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Abstract
This paper studies online makespan minimization in the secretary model. Jobs, specified by their
processing times, are presented in a uniformly random order. The input size n is known in advance.
An online algorithm has to non-preemptively assign each job permanently and irrevocably to one
of m parallel and identical machines such that the expected time it takes to process them all, the
makespan, is minimized.

We give two deterministic algorithms. First, a straightforward adaptation of the semi-online
strategy LightLoad [4] provides a very simple approach retaining its competitive ratio of 1.75. A new
and sophisticated algorithm is 1.535-competitive. These competitive ratios are not only obtained in
expectation but, in fact, for all but a very tiny fraction of job orders.

Classically, online makespan minimization only considers the worst-case order. Here, no compet-
itive ratio below 1.885 for deterministic algorithms and 1.581 using randomization is possible. The
best randomized algorithm so far is 1.916-competitive. Our results show that classical worst-case
orders are quite rare and pessimistic for many applications.

We complement our results by providing first lower bounds. A competitive ratio obtained on
nearly all possible job orders must be at least 1.257. This implies a lower bound of 1.043 for both
deterministic and randomized algorithms in the general model.
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1 Introduction

We study one of the most basic scheduling problems, the classic problem of makespan
minimization. For the classic makespan minimization problem, one is given an input set J
of n jobs, which have to be scheduled onto m identical and parallel machines. Preemption is
not allowed. Each job J ∈ J runs on precisely one machine. The goal is to find a schedule
minimizing the makespan, i.e. the completion time of the last job. This problem admits
a long line of research and countless practical applications in both, its offline variant see
e.g. [31, 34] and references therein, as well as in the online setting studied in this paper.

In the online setting, jobs are revealed one by one and each has to be scheduled by
an online algorithm A immediately and irrevocably without knowing the sizes of future
jobs. The makespan of online algorithm A, denoted by A(J σ), may depend on both the job
set J and the job order σ. The optimum makespan OPT(J ) only depends on the former.
Traditionally, one measures the performance of A in terms of competitive analysis. The input
set J as well as the job order σ are chosen by an adversary whose goal is to maximize the
ratio A(J σ)

OPT(J ) . The maximum ratio, c = supJ ,σ
A(J σ)

OPT(J ) , is the (adversarial) competitive ratio.
The goal is to find online algorithms obtaining small competitive ratios.
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6:2 Scheduling in the Secretary Model

In the classical secretary problem, the goal is to hire the best secretary out of a linearly
ordered set S of candidates. Its size n is known. Secretaries appear one by one in a uniformly
random order. An online algorithm can only compare secretaries it has seen so far. It has to
decide irrevocably for each new arrival whether this is the single one it wants to hire. Once
a candidate is hired, future ones are automatically rejected even if they are better. The
algorithm fails unless it picks the best secretary. Similar to makespan minimization this
problem has been long studied, see [21, 24, 25, 35, 44, 46, 47] and references therein.

This paper studies makespan minimization under the input model of the secretary
problem. The adversary determines a job set of known size n. Similar to the secretary
problem, these jobs are presented to an online algorithm A one by one in a uniformly random
order. Again, A has to schedule each job without knowledge of the future. The expected
makespan is considered. The competitive ratio in the secretary (or random-order) model is
c = supJ Eσ

[
A(J σ)

OPT(J )

]
= supJ

1
n!

∑
σ∈Sn

A(J σ)
OPT(J ) , the maximum ratio between the expected

makespan of A and the optimum makespan. The goal is again to obtain small competitive
ratios.

We propose the term secretary model to set this result apart from [6] where we provide a
1.8478-competitive where n, the number of jobs, is not known in advance. Not knowing n is
quite restrictive and has never been considered in any other scheduling algorithm designed
with random-order arrival in mind [3, 28, 51, 52]. We hope to raise attention to these two
surprisingly different models. Even though for the adversarial model such information is
useless; the secretary-model requires novel and significantly different approaches and leads
to, as our results show, vastly better performance guarantees.

Frameworks similar to the secretary model received a lot of recent attention in the
research community sparking the area of random-order analysis. Random-order analysis has
been successfully applied to numerous problems such as matching [29, 36, 38, 48], various
generalizations of the secretary problem [9, 24, 25, 33, 35, 44, 46], knapsack problems [10],
bin packing [42], facility location [49], packing LPs [43], convex optimization [32], welfare
maximization [45], budgeted allocation [50] and recently scheduling [3, 6, 28, 51, 52]. We
refer to the chapter [8] for a general overview over random-order models.

For makespan minimization, the role of randomization is poorly understood. The lower
bound of 1.581 from [14, 55] is considered pessimistic and exhibits quite a big gap towards
the best randomized ratio of 1.916 from [2]. A main consequence of the paper is that
random-order arrival allows to beat the lower bound of 1.581. This formally sets the secretary
model apart from the classical adversarial setting even if randomization is involved.

Previous work. Online makespan minimization and variants of the secretary problem have
been studied extensively. We only review results most relevant to this work, beginning with
the traditional deterministic adversarial setting. For m identical machines, Graham [31]
showed 1966 that the greedy strategy, which schedules each job onto a least loaded machine, is(
2− 1

m

)
-competitive. This was subsequently improved in a long line of research [27, 11, 37, 1]

leading to the currently best competitive ratio by Fleischer and Wahl [26], which approaches
1.9201 for m→∞. Chen et al. [15] presented a deterministic algorithm whose competitive
ratio is at most (1 + ε)-times the optimum one, although the actual ratio remains to be
determined. For general m, lower bounds are provided in [23, 12, 30, 53]. The currently best
bound is due to Rudin III [53] who shows that no deterministic online algorithm can be
better than 1.88-competitive.

The role of randomization in this model is not well understood. The currently best
randomized ratio of 1.916 [2] barely beats deterministic guarantees. In contrast, the best
lower bound approaches e

e−1 > 1.581 for m → ∞ [14, 55]. There has been considerable
research interest in tightening these bounds.
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Recent results for makespan minimization consider variants where the online algorithm
obtains extra resources. In semi-online settings, additional information on the job sequence
is given in advance, such as the optimum makespan [13, 39] or the total processing time
of jobs [4, 16, 41, 40]. In the former model, the optimum competitive ratio lies in the
interval [1.333, 1.5], see [13], while for the latter the optimum competitive ratio is known to
be 1.585 cf. [4, 40]. Taking this further, the advice complexity setting allows the algorithm
to receive a certain number of advice bits from an offline oracle [5, 20, 41]. Other algorithms
can migrate jobs [54] or offer a buffer, which they use to reorder the job sequence [22, 41].

The secretary problem is even older than scheduling [25]. We only summarize the work
most relevant to this paper. Lindley [47] and Dynkin [21] first show that the optimum strategy
finds the best secretary with probability 1/e for n→∞. Recent research focusses on many
variants, among others generalizations to several secretaries [7, 44] or even matroids [9, 24, 46].
A modern version considers adversarial orders but allows prior sampling [18, 35, 8, 33]. Related
models are prophet inequalities and the game of googol [17, 19].

So far, little is known for scheduling in the secretary model. Osborn and Torng [52]
prove that Graham’s greedy strategy is still not better than 2-competitive for m→∞. We
study makespan minimization in the restricted random-order model where n is not known in
advance [6] and the dual problem, Machine Covering, in the secretary model [3]. Molinaro [51]
studies a very general scheduling problem. His algorithm uses n to restart itself after half
the jobs are seen and has expected makespan (1 + ε)OPT + O(log(m)/ε). Göbel et al. [28]
study scheduling on a single machine where the goal is to minimize weighted completion
times. Their competitive ratio is O(log(n)) whereas they show that adversarial models allow
no sublinear competitive ratios.

Our contribution. We study makespan minimization for the secretary (or random-order)
model in depth. We show that basic sampling ideas allow to adapt a fairly simple algorithm
from the literature [4] to be 1.75-competitive. A more sophisticated algorithm vastly improves
this competitive ratio to 1.535. Both algorithms are deterministic. This ratio of 1.535 beats
all lower bounds for adversarial scheduling, including the bound of 1.582 for randomized
algorithms. [14, 55]

Our main results focus on large number of machines, m→∞. This is in line with most
recent adversarial results [3, 2, 26] and all random-order scheduling results [6, 28, 51, 52],
excluding [28] who study scheduling on one machine. While adversarial guarantees are known
to improve for small numbers of machines, nobody has ever, to the best of our knowledge,
explored guarantees for random-order arrival on small number of machines. We prove that
our simple algorithm is

(
1.75 + O( 1√

m
)
)
-competitive. Explicit bounds on the term hidden in

the O-notation are provided. This result indicates that the focus of contemporary analyses
on the limit case is sensible and does not hide unreasonably large terms.

All upper bounds in this paper abide to the stronger measure of nearly competitiveness
from [6]. An algorithm is required to achieve its competitive ratio not only in expectation but
on nearly all input permutations. Thus, input sequences where the competitive ratios are not
obtained can be considered extremely rare and pathological. Moreover, we require worst-case
guarantees even for such pathological inputs. This is relevant to practical applications, where
we do not expect fully random inputs. Both algorithms hold up to this stronger measure of
nearly competitiveness.

A basic approach in secretary models uses sampling statistics; a small part of the input
allows to predict the rest. Sampling lets us include techniques from semi-online and advice
settings with two further challenges. On the one hand, the advice is imperfect and may be,
albeit with low probability, totally wrong. On the other hand, the advice has to be learned,
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6:4 Scheduling in the Secretary Model

rather than being available right from the start. In the beginning “mistakes” cannot be
avoided. This makes it impossible to adapt better semi-online algorithms than LightLoad,
namely [33, 16, 41, 40] to our model. These algorithms need to know the total processing
volume right from the start. The advanced algorithm in this paper out-competes the optimum
competitive ratio of 1.585 these semi-online algorithms can achieve [1, 40]. We conjecture that
this is not possible for order oblivious algorithms that solely use sampling. Order oblivious
algorithms first observe a random sample and then treat the input sequence in an adversarial
order [8, 33]. Our analysis indicates that LightLoad can be adapted as an order-oblivious
algorithm. The 1.535-competitive algorithm does not maintain its competitive ratio in such
a setting.

The 1.535-competitive main algorithm is based on a modern point of view, which,
analogous to kernelization, reduces complex inputs to sets of critical jobs. A set of critical
jobs is estimated using sampling. Critical jobs impose a lower bound on the optimum
makespan. If the bound is high, an enhanced version of Graham’s greedy strategy suffices;
called the Least-Loaded-Strategy. Else, it is important to schedule critical jobs correctly.
The Critical-Job-Strategy, based on sampling, estimates the critical jobs and schedules
them ahead of time. An easy heuristic suffices due to uncertainty involved in the estimates.
Uncertainty poses not only the main challenge in the design of the Critical-Job-Strategy. On
a larger scale, it also makes it hard to decide, which of the two strategies to use. Sometimes
the Critical-Job-Strategy is chosen wrongly. These cases comprise the crux of the analysis
and require using random-order arrival in a novel way beyond sampling.

The analyses of both algorithms follow three steps, which leads to the situation depicted
in Figure 1. In the first step, adversarial analyses give worst-case guarantees and take care of
simple job sets. These simple sets lack structure to be exploited via random reordering but
do not pose problems to online algorithms. We thus are reduced to non-simple inputs. Non-
simple random sequences have useful properties with high probability. They are “sampleable”
and do not have too many problematic jobs clustered at the end of the sequence. A second step
formalizes this, introducing stable sequences. Non-stable sequences are rare and negligible,
we are thus reduced to stable sequences. The third step is a classical adversarial analysis
that uses the properties of stable sequences to again establish worst-case guarantees.

The paper concludes with lower bounds. We show that no algorithm, deterministic or
randomized, is better than nearly 1.257-competitive. This immediately implies a lower bound
of 1.043 in the general secretary model.

Notation. We use the notation [J ] or [J σ] to highlight values that depend on the job set J
or the ordered job sequence J σ. Such appendage is omitted when the dependency needs not
be highlighted. In similar vein, we may write OPT for OPT(J ).

stable
Sn simple

Sn

Figure 1 The lay of the land in our analysis. The algorithm is (c + ε)-competitive on simple
and stable sequences. Only the small unstable remainder (hashed) is problematic. Dashed lines
mark orbits under the action of the permutation group Sn. Simple sequences stay simple under
permutation. Non-simple orbits have at most an ε-fraction, which is unstable (hashed). Thus, the
algorithm is (c + ε)-competitive with probability at least 1 − ε after random permutation.
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2 A strong measure of random-order competitiveness

Consider a job set J = {J1, . . . , Jn} of known size n. Each job is fully defined1 by its
non-negative size (or processing time) p1, . . . , pn. Let Sn be the group of permutations of the
integers from 1 to n, which we consider a probability space under the uniform distribution.
We pick each permutation with probability 1/n!. Each permutation σ ∈ Sn, called an order,
gives us a job sequence J σ = Jσ(1), . . . , Jσ(n). Recall that traditionally an online algorithm
A is called c-competitive for some c ≥ 1 if we have for all job sets J and job orders σ that
A(J σ) ≤ cOPT(J ). We call this the adversarial model.

In the secretary model we consider the expected makespan of A under a uniformly random
job order, i.e. Eσ∼Sn

[A(J σ)] = 1
n!

∑
σ∈Sn

A(J σ). We use the term secretary model, to
distinguish this setting from the random-order model in [6] where the input size n is not
known in advance. The algorithm A is c-competitive in the secretary model if we have
Eσ∼Sn

[A(J σ)] ≤ cOPT(J ) for all input sets J .
The secretary model tries to lower the impact of particularly badly ordered sequences

by looking at competitive ratios only in expectation. Interestingly, the scheduling problem
allows for a stronger measure of random-order competitiveness for large m, called nearly
competitiveness [6]. One requires the given competitive ratio to be obtained on nearly all
sequences – not only in expectation – as well as a bound on the adversarial competitive ratio
as well. We recall the definition and the main fact, that an algorithm is already c-competitive
in the secretary model if it is nearly c-competitive.

▶ Definition 1. A deterministic online algorithm A is called nearly c-competitive if the
following two conditions hold.

The algorithm A achieves a constant competitive ratio in the adversarial model.
For every ε > 0, we can find m(ε) such that for all machine numbers m ≥ m(ε) and all
job sets J there holds Pσ∼Sn

[A(J σ) ≥ (c + ε)OPT (J )] ≤ ε.

▶ Lemma 2. If a deterministic online algorithm is nearly c-competitive, then it is c-competitive
in the secretary model for m → ∞, i.e. for its competitive ratio cm on m machines holds
lim

m→∞
cm = c.

3 Basic properties

Let us fix an input set J . Graham [31] establishes that his greedy strategy is 2-competitive.
He considers the average load L = L[J ] = 1

m

∑m
i=1 pi, which is the same for any schedule

of the jobs in J , and the maximum size of any job pmax = maxi pi. Both are lower bounds
for OPT. Indeed, even the best schedule cannot have all machines loads below average, i.e.
smaller than L, and the machine containing the largest job has load at least pmax. Now,
Graham observes that the smallest load in any schedule cannot exceed the average load L.
Greedily using the least loaded machine causes makespan at most L + pmax ≤ 2OPT. The
greedy strategy is thus 2-competitive.

Graham’s argument builds the foundation for subsequent work on scheduling problems.
The following proposition guarantees a (small) constant adversarial ratio for almost every
sensible random-order algorithm, which is necessary for obtaining nearly competitiveness.

1 We propose for completeness that jobs of similar size are indistinguishable. A unique identification, say
the index or a hash value, could in theory be used to derandomize a randomized algorithm. All of the
results in this paper hold independently of whether such identification is possible.
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6:6 Scheduling in the Secretary Model

▶ Proposition 3. Assume job J is scheduled on a machine M such that at most i−1 machines
have strictly smaller load than M . Then load of M is at most

(
m

m−i + 1
)

OPT afterwards.

Proof. Let l be the load of M prior to receiving job J . By assumption at least m−i machines
have load l. Thus L ≥ m−i

m l. We schedule job J of size at most OPT on machine M of load
at most l ≤ m

m−i L ≤ m
m−i OPT. The resulting load is at most

(
m

m−i + 1
)

OPT . ◀

The previous result cannot be improved in general. The most difficult adversarial sequences
have L ≈ pmax ≈ OPT. Random-order arrival faces further challenges. Certain degenerate
sequences, where few jobs carry all the load, are not suited for reordering arguments. See
Figure 2. This “degeneracy” is measured by R(J ) = min( L

pmax
, 1). Adapting the previous

arguments we obtain the following result, which indicates good performance in almost all
situations if R(J ) is small.

▶ Proposition 4. Let M be a machine such that at most i− 1 machines have strictly smaller
load than M . If M receives a job, its load is at most

(
m

m−i R(J ) + 1
)

OPT afterwards.

Proof. Adapt the previous proof using that L ≤ R(J )OPT. ◀

Proposition 3 and 4 form the basis of our analyses. They give conditions when to use the
Least-Loaded-Strategy in the main algorithm, establish most of our worst-case guarantees
and explain why we can exclude simple sequences like the one in Figure 2. In the full paper,
we generalize these propositions further, which is required for the main algorithm.

Figure 2 A surprisingly difficult sequence for random-order arguments. The big job carries most
of the processing volume. Other jobs are negligible. Thus, all permutations look basically the same.
Such “simple” job sets need to be excluded before the main analysis.

3.1 Sampling for Scheduling Problems
We now explain how we use sampling in the secretary model. Consider any input per-
mutation J σ = Jσ(1) . . . Jσ(n). A standard technique is to sample the φ-fraction of jobs,
Jσ(1) . . . Jσ(⌈φn⌉), to make predictions about J σ. The previous section gives two prime
candidates for sampling which relate to OPT, namely L and pmax. Directly “sampling” OPT
is futile.

The size pmax is best estimated by pφt
max = max(pσ(t′) | σ(t′) < φn + 1). This corresponds

to how we try to estimate the best secretary in the secretary-problem. Of course, pφt
max

may vastly underestimate pmax. If the sequence contains only a single huge job, this job
is unlikely to be observed in the sample. Still, only very few jobs can have size exceeding
pφt

max on random-order sequences; only 1/φ in expectation. The main algorithm uses reserve
machines to catch these “exceptional” jobs.

For L we can get an unbiased2 estimator from the sample: Lφ = 1
φm

∑
σ(t)≤φn pi. Of

course, we still need to determine how close Lφ is to L. Can we say that with high probability
Lφ ≈ L? For the sequence in Figure 2 such a statement cannot be true. The main observation

2 The estimator is unbiased, i.e. E[Lφ] = L, if φn is a natural number. For general n, we could have
replaced the factor 1

φm in the definition of Lφ by the more complicated expression n
⌈φn⌉m .
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50 100 1500
0.2
0.4
0.6
0.8

1

t

Lt

40 machines.

800 1,6000
0.2
0.4
0.6
0.8

1

t

400 machines.

8,000 16,0000
0.2
0.4
0.6
0.8

1

t

4000 machines.

Figure 3 A graphic depicting the average load over time on the classical lower bound sequence
from [1] for 40, 400 and 4000 machines. The dashed line corresponds to the original adversarial
order. The three solid lines, corresponding to random permutations, clearly approximate a straight
line. Thus, sampling allows to predict the (final) average load.

is that these counterexamples tend to have a small value R(J ). Given a lower bound Rlow > 0
on R(J ) the following Load Lemma establishes Lφ ≈ L. We have seen in the previous section
that sequences with R(J ) < Rlow pose no major obstruction. The results in the previous
section guarantee arbitrarily good performance if we choose Rlow > 0 small enough.

The Load Lemma is quite potent and thus fundamental to random-order makespan
minimization. It may be somewhat surprising to researchers on related problems since it
makes implicit use of having non-small input sizes. Note that for our problem small inputs
of size less than m are trivially scheduled optimally.

▶ Lemma 5 (Load Lemma [6]). Let Rlow = Rlow(m) > 0, 1 ≥ φ = φ(m) > 0 and
ε = ε(m) > 0 be three functions in m such that ε−4φ−1R−1

low = o(m). Then there exists a
variable m(Rlow, φ, ε), depending on these three functions, such that for m ≥ m(Rlow, φ, ε)
machines and all job sets J with R(J ) ≥ Rlow and |J | ≥ m:

Pσ∼Sn

[∣∣∣∣Lφ[J σ]
L[J ] − 1

∣∣∣∣ ≥ ε

]
< ε.

A less general version of the Load Lemma already appeared in [6]. While the Load Lemma
gives only asymptotic guarantees simulations show that it requires not very large numbers
of machines. Figure 4 shows the expected value of

∣∣∣ L1/4[J σ ]
L[J ] − 1

∣∣∣ on a suitable benchmark
sequence.

For our more sophisticated algorithm we also use sampling to estimate the size of critical
jobs. Consider a job class C of size nC ∈ O(m). A consequence of Chebyshev’s inequality,
detailed in the full version, shows that we can estimate nC up to an additive summand of
m3/4 after sampling a 1

log(m) -fraction of the sequence. In fact the load lemma is proven by
sampling job classes obtained through geometric rounding.

4 A simple 1.75-competitive algorithm

We modify the semi-online algorithm LightLoad from the literature to obtain a very simple
nearly 1.75-competitive algorithm. For any 0 ≤ t ≤ n, let M t

mid be a machine having the
⌊m/2⌋-lowest load at time t, i.e. right before job Jt+1 is scheduled. Let lt

mid be its load and
let lt

low be the smallest load of any machine.
Let δ = δ(m) be a certain margin of error our algorithm allows. It is optimal to set δ = 0

but then the analysis requires a generalization of the result in [4]. In order for our main
result to be self-contained one may set δ = 1

log(m) , which allows to use results from [4] as a
black box.
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6:8 Scheduling in the Secretary Model

Given an input sequence J σ we know from Section 3 that L̂pre = L̂pre[J σ] = L1/4[J σ ]
1−δ

provides a good estimate of the (final) average load L = 1
m

∑m
i=1 pi. We use the index “pre”

since our main algorithm later will use a slightly different guess L̂. Consider the following
adaptation LightLoadROM of the algorithm LightLoad from Albers and Hellwig [4].

Algorithm 1 The algorithm LightLoadROM.

1: Let Jt be the job to be scheduled and let pt be its size.
2: if t < n/4 or lt−1

low ≤ 0.25L̂pre or lt−1
mid + pt > 1.75L̂pre then

3: Schedule Jt on any least loaded machine;
4: else schedule Jt on M t−1

mid ;

▶ Remark 6. The first condition in the if -statement, t < n/4, already implies lt−1
low ≤ 0.25L̂pre

and is thus technically superfluous. We added it to clarify that LightLoadROM can be
implemented as an online algorithm and only needs to know L̂pre once t ≥ n/4.

If we replace L̂pre in the previous pseudocode by the average load L, we recover the
semi-online algorithm LightLoad for makespan minimization, which has been analyzed by
Albers and Hellwig [4]. They show that the algorithm is 1.75-competitive for L = L̂pre. We
can show that the algorithm can also be used for general values L̂ ≈ L. The performance
gracefully decreases with |L− L̂pre|.

▶ Theorem 7. Let J σ be any (ordered) input sequence. The makespan of LightLoadROM
on J σ is at most 1.75

(
1 + |L̂pre[J σ ]−L|

L

)
OPT.

Proof Sketch. For L̂pre = L, this is the main result in [4].
ItFor L̂pre ≥ L, we can reduce ourselves to the case L̂pre = L. Consider any machine M

in the optimum schedule of J that has load lM < max(L̂pre, OPT). We assign an additional
job JM of size pM = max(L̂pre, OPT(J )) − lM to this machine. For the resulting job set
J ′ clearly OPT(J ′) = L(J ′) = max(L̂pre, OPT). We can apply the main result of [4] to
see that LightLoad has makespan at most 1.75 max(L̂pre, OPT(J )) if it first schedules the
jobs J σ (in order σ) followed by the additional jobs. But on the prefix J σ LightLoad
behaves precisely like LightLoadROM on input J σ. Thus, LightLoadROM has makespan
at most 1.75 max(L̂pre[J σ], OPT(J )). Then, the theorem follows for L̂pre ≥ L since L̂pre ≤(
1 + L̂pre−L

L

)
L ≤

(
1 + |L̂pre[J σ]−L|

L

)
OPT.

If L̂pre ≤ L, the statement of the theorem still holds. can be derived similar to the
analysis in [4]. Unfortunately, it cannot be immediately deduced from their results. Instead,
their proofs need to be adapted. We sketch the necessary adaptations in the full version. ◀

The previous theorem already establishes a constant adversarial competitive ratio of 7.
Use that 0 ≤ L̂pre ≤ L1/4 ≤ 4L implies |L̂pre[J σ] − L| ≤ 3L. We can improve this result,
most importantly, if R(J ) is small.

▶ Lemma 8. For any (ordered) job sequence J σ the makespan of LightLoadROM is at
most (1 + 2R(J ))OPT(J ). In particular, it is at most 3 OPT(J ) in general and at most
1.75 OPT(J ) for R(J ) < 3/8.

Proof. Since LightLoadROM only considers the least or the ⌊m/2⌋-th least loaded machine,
the lemma follows from Proposition 4. ◀

We now establish the competitive ratio of LightLoadROM in the strong model of nearly
competitiveness. Corollary 10 follows immediately by Lemma 2.
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▶ Theorem 9. The algorithm LightLoadROM is nearly 1.75-competitive.

▶ Corollary 10. LightLoadROM is 1.75-competitive in the secretary model for m→∞.

Proof of Theorem 9. Our analysis forms a triad outlining how we analyze the more soph-
isticated 1.535-competitive main algorithm. See Figure 1 for an illustration. Since we only
prove the case L̂ ≥ L of Theorem 7, we will not rely on the case L ≤ L̂ in this proof. For
this, we need to set δ(m) = 1

log(m) .

Analysis basics. By Lemma 8 algorithm LightLoadROM is 3-competitive in the adversarial
model. The first condition of nearly competitiveness is satisfied. We call input set J simple
if |J | ≤ m or R[J ] < 3

8 . Observe that LightLoadROM is (adversarially) 1.75-competitive on
simple job sets. Indeed, if |J | < m LightLoadROM assigns every job to an empty least-loaded
machine, which is obviously optimal. If R[J ] < 3

8 , Lemma 8 bounds the competitive ratio
by 1 + 2R[J ] < 1.75. We thus are left to consider non-simple, so called proper, job sets.

Stable job sequences. We call a sequence J σ stable if L ≤ L̂pre ≤ 1+δ(m)
1−δ(m) L. If a sequence

is proper, it fulfills the conditions of the Load Lemma with φ = 1/4, Rlow = 3
8 and

ε(m) = δ(m) = 1/ log(m) ∈ ω(m−1/4). The Load Lemma guarantees that for m large
enough, Pσ∼Sn

[∣∣∣ Lφ[J σ ]
L[J ] − 1

∣∣∣ ≥ δ
]

< δ. Note that
∣∣∣ Lφ[J σ]

L[J ] − 1
∣∣∣ < δ is equivalent to (1−δ)L <

Lφ[J σ] < (1 + δ)L, which in turn implies that L ≤ L̂pre ≤ 1+δ(m)
1−δ(m) L. Thus, the probability

of the sequence J σ being stable is at least 1− δ for m large enough and J proper.

Adversarial Analysis. By Theorem 7, the makespan of LightLoadROM on stable sequences
with L ≤ L̂pre ≤ 1+δ(m)

1−δ(m) L is at most 1.75 · 1+δ(m)
1−δ(m) OPT =

(
1.75 + 3.5·δ(m)

1−δ(m)
)
OPT(J ). We only

require the easy case, L ≤ L̂pre of Theorem 7, which is fully proven in this paper.

Conclusion. Let ε > 0. Since δ(m)→ 0, we can choose m large enough such that 3.5δ(m)
1−δ(m) ≤ ε.

In particular Pσ∼Sn
[LightLoadROM(J σ) ≥ (1.75 + ε)OPT (J )] ≤ δ(m) ≤ ε since the only

sequences where the inequality does not hold are proper but not stable. This concludes the
second condition of nearly competitivity.

The δ-term. Setting δ = 0 can increase the |L̂pre[J σ ]−L|
L -term in Theorem 7 by at most

1/ log(m), which vanishes for m → ∞. Of course, in reality LightLoadROM improves for
δ = 0. ◀

Analyzing the algorithm LightLoadROM on small numbers of machines.
From now on, we consider LightLoadROM with δ = 0. Thus, the average load L is estimated
by L̂pre = L1/4. The normalized absolute mean deviation of L̂pre = L1/4 is defined as
NMD(L̂pre) = Eσ∼Sn

[
|L̂pre[J σ ]−L|

L

]
. The following is a consequence of Theorem 7 .

▶ Theorem 11. On input set J the competitive ratio of LightLoadROM in the secretary
model is at most 1.75(1 + NMD(L̂pre)).

In the full version we give an estimation on NMD(L̂pre), which leads to the following
result.

▶ Theorem 12. The competitive ratio of LightLoadROM is 1.75 + 18√
m

+ O
( 1

m

)
.
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6:10 Scheduling in the Secretary Model

The techniques presented in this section can, in theory, be extended to analyze the main
algorithm in the next section. This is impractical due to the complexity of the analysis at
hand. We are certain that the error term involved will be of the form m−1/a for a small.

The constant summand 18√
m

in Theorem 12 is pessimistic. We discuss several avenues of
further improvement in the full version. The best we are aware of allows for a competitive
ratio as small as 4.4√

m
+ 7

m + O
( 1

m3/2

)
but there are ways to improve even further. The terms

still hidden in the O-notation result from the Stirling-approximation and are known to be
tiny. Figure 4 shows NMD(L̂pre) on the lower bound from [1], which is a sensible benchmark.

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,0000
0.02
0.05

0.1

250
number of machines m

An approximation of NMAD[L̂pre] for different numbers of machines.

Figure 4 The extra cost for small numbers of machines. The graph shows an estimation of
NMD(L̂pre) on the lower bound sequence from [1] based on 10, 000 random samples. Theorem 11
this indicates good performance of LightLoadROM in practice.

5 The nearly 1.535-competitive algorithm

The new main algorithm achieves a competitive ratio of c = 1+
√

13
3 ≈ 1.535. It consists of

three components: a sampling phase, the Least-Loaded-Strategy and the Critical-Job-Strategy.
We now give a simplified description of the algorithm.

The sampling phase. A few jobs are sampled to predict the whole sequence. These Jobs
are scheduled greedily with a some machines kept in reserve. This phase is uninformed and
“mistakes” are unavoidable. Such mistakes are few, since the processing volume scheduled
is small – at least if we exclude worst-case sequences. First, we sample B, which tries to
estimate max(pmax, L) ≤ OPT. We then use sampling to predict critical jobs of size in
between (c − 1)B and B. Intuitively, jobs smaller than (c − 1)B are too small to pose a
problem. Jobs larger than B are also critical but cannot be predicted since they did not
appear during sampling. This in turn means that they are rare. We keep a few reserve
machines to safely process them.

The Critical-Job-Strategy. Our plan is to assign critical jobs ahead of time. Formally,
placeholder jobs are used to reserve space for jobs yet to come. Critical jobs are assigned
according to an easy heuristic: Each machine gets either one big or two medium jobs. Reserve
machines handle errors in the predictions and unexpected huge jobs.

The Least-Loaded-Strategy. Sometimes the Critical-Job-Strategy is not feasible; there
simply are too many critical jobs. This may already by apparent from sampling predictions,
but for some job sets this cannot be predicted. The latter input sets form the crux of the
analysis. Once we find out, we pick the Least-Loaded-Strategy, which enhances a Graham’s
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greedy approach by still maintaining reserve machines for particularly large jobs. Intuitively,
many critical jobs make it even for OPT impossible to schedule all jobs efficiently, which is
why we rely on this less sophisticated strategy.

Further challenges. Algorithm design and analysis have to deal with three further issues.
First, the Critical-Job-Strategy needs to take scheduling decisions made during sampling
into account. Second, a consequence of sampling is that no value is exact, small sources of
errors are imminent. Third, we need a constant competitive ratio against an adversary. All
these challenges impact details of the algorithm design in rather subtle ways.

5.1 Formal Description
Let δ = δ(m) = 1

log(m) be the margin of error our algorithm allows. Most of the time, it
is sensible to treat δ as a constant and forget about its dependency on m. Our algorithm
maintains a set of ⌈δm⌉ reserve machines. Their complement are the principal machines.
Let us fix an input sequence J σ. Let L̂ = L̂[J σ] = Lδ2 [J σ]. For simplicity, we hide the
dependency on J σ whenever possible. Our online algorithm uses B = max

(
pδ2n

max, L̂
)

as
an estimated lower bound for OPT. This bound is known after the first ⌊δ2n⌋ jobs are
treated. Our algorithm uses geometric rounding implicitly. Given a job Jt of size pt let
f(pt) = (1 + δ)⌊log1+δ pt⌋ be its rounded size. We also call Jt an f(pt)-job.

Using rounded sizes, we introduce job classes. Let psmall = c− 1 =
√

13−2
3 ≈ 0.535 and

pbig = c
2 = 1+

√
13

6 ≈ 0.768. We call job Jt

small if f(pt) ≤ psmallB and critical else,
big if f(pt) > pbigB,
medium if J is neither small nor big, i.e. psmallB ≤ f(pt) ≤ pbigB,
huge if its (not-rounded) size exceeds B, i.e. B < pt, and normal else.

Consider the set P = {(1 + δ)i | psmallB ≤ (1 + δ)i ≤ B} corresponding to rounded sizes
of critical jobs. Given p ∈ P let np be the total number of p-jobs. We could estimate np by
δ−2n̂p after sampling where n̂p = |{Jσ(j) | σ(j) ≤ δ2n ∧ Jσ(j) is a p-job}| after sampling. In
practice we need a more complicated guess: cp = max

(⌊(
δ−2n̂p −m3/4)

w(p)
⌋

, n̂p

)
w(p)−1.

It has two advantages. The value cp is close to np with high probability, but unlikely to
exceed it. Overestimating np turns out to be far worse than underestimating it. It also
simplifies the description of the algorithm allowing medium jobs to always “pair up”.

principal machines reserve machines

Sampling Phase

principal machines reserve machines

Critical-Job-Strategy

principal machines reserve machines

Least-Loaded-Strategy

Figure 5 The 1.535-competitive algorithm. First, few jobs are sampled. Then, the algorithm
decides between two strategies. The Critical-Job-Strategy tries to schedule critical jobs ahead of
time. The Least-Loaded-Strategy follows a greedy approach, which reserves some machines for large
jobs. Sometimes, we realize very late that the Critical-Job-Strategy does not work and have to
switch to the Least-Loaded-Strategy “on the fly”. We never switch in the other direction.
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6:12 Scheduling in the Secretary Model

Statement of the algorithm. If there are less jobs than machines, each job is placed
onto a separate machine. This is optimal. Else, a short sampling phase greedily assigns
each of the first ⌊δ2n⌋ jobs to the least loaded principal machine. Now, B and (cp)p∈P are
known. We choose the Least-Loaded-Strategy if we predict the Critical-Job-Strategy to be
infeasible. Formally, if

∑
p∈P w(p)cp > m, where w(p) = 1/2 for p ≤ pbig and 1 > p ≤ pbig. If∑

p∈P w(p)cp ≤ m, we choose the Critical-Job-Strategy. The Critical-Job-Strategy requires a
one-time preparation. It may later switch to the Least-Loaded-Strategy but it never switches
the other way around.

The Least-Loaded-Strategy

principal machines reserve machines

Figure 6 The Least-Loaded-Strategy schedules jobs greedily. A few machines are reserved for
unexpected huge jobs. For example the largest job, which is unlikely to arrive in the sampling phase.

The Least-Loaded-Strategy places any normal job on a least loaded principal machine.
Huge jobs are scheduled on a least loaded reserve machine. This reserve machine will be
empty, unless we consider rare and pathological worst-case orders.

The Critical-Job-Strategy
For the Critical-Job-Strategy we introduce p-placeholder-jobs for every size p ∈ P. Sensibly,
the size of a p-placeholder-job is p. During the Critical-Job-Strategy we treat placeholder-jobs
similar to real jobs. They are assigned in the Preparation for the Critical-Job-Strategy.
We try to pair off medium jobs, some of which already arrived during sampling. Moreover it
is important to assign fewer processing volume to those machines, which have a higher load
after the sampling phase.

principal machines reserve machines

Figure 7 The Critical-Job-Strategy. Each machine gets either two medium, one large or no critical
job. Placeholder jobs (dotted) reserve space for critical jobs yet to come. Processing volume of small
jobs (dark) on the bottom arrived during the sampling phase. Reserve machines accommodate huge
jobs or, possibly, jobs without matching placeholders.

The Critical-Job-Strategy places small jobs on least-loaded principal machines taking
placeholders into account. Critical jobs of rounded size p ∈ P replace p-placeholder-jobs
whenever possible. If no matching placeholder is found or if the current job is exceptional,
the reserve machines are used. Again, medium jobs are paired up. If the reserve machines
are full, the algorithm fails. It switches to the Least-Loaded-Strategy.

The full description of the main algorithm is provided in Appendix B.
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6 Analysis of the algorithm

Theorem 13 is main result of the paper.

▶ Theorem 13. Our algorithm is nearly c-competitive. Recall that c = 1+
√

13
3 ≈ 1.535.

Due to Lemma 2 this competitive ratio also holds in the general secretary model.

▶ Corollary 14. Our algorithm is c-competitive in the secretary model as m→∞.

The analysis of the algorithm proceeds along the same three reduction steps used in
the proof of Theorem 9. First, we assert that our algorithm has a constant adversarial
competitive ratio, which approaches 1 as R(J ) → 0. Not only does this lead to the first
condition of nearly competitiveness, it also enables us to introduce simple job sets on which
we perform well due to basic considerations resulting from Section 3.

▶ Definition 15. A job set J is called simple if R(J ) ≤ (1−δ)δ2

δ2+1 (c − 1) or if it consists
of at most m jobs. Else, we call it proper. We call any ordered input sequence J σ simple
respectively proper if the underlying set J has this property.

▶ Main Lemma 16. In the adversarial model our algorithm has competitive ratio 4 + O(δ)
on general input sequences and c + O(δ) on simple sequences.

We are thus reduced to treating proper job sets. In the second reduction we introduce
stable sequences. These have many desirable properties. Most notably, they are suited to
sampling. Their formal definition can be found later in Definition 22. The second reduction
shows that stable sequences arise with high probability if the order of a proper job set J is
picked uniformly randomly.

Formally, for m the number of machines, let P (m) be the maximum probability by which
the permutation of any proper sequence may not be stable, i.e.

P (m) = sup
J proper

Pσ∼Sn
[J σ is not stable] .

The second main lemma asserts that this probability vanishes as m→∞.

▶ Main Lemma 17. lim
m→∞

P (m) = 0.

In other words, non-stable sequences are very rare and of negligible impact in random-
order analyses. Thus, we only need to consider stable sequences. In the final, third, step
we analyze our algorithm on stable sequences. This analysis is quite general. In particular,
it does not rely further on random-order arrival. Instead, we work with worst-case stable
inputs, i.e. we allow an adversary to present any stable input sequence.

▶ Main Lemma 18. Our algorithm is adversarially (c+O(δ))-competitive on stable sequences.

These three main lemmas allow us to conclude the proof of Theorem 13.

Proof of Theorem 13. Recall that δ(m) → 0 for m → ∞. By Main Lemma 16, the first
condition of nearly competitiveness holds, i.e. our algorithm has a constant competitive
ratio. Moreover, by Main Lemma 16 and Main Lemma 18, given ε > 0, we can pick m0(ε)
such that our algorithm is (c + ε)-competitive on all sequences that are stable or simple, if
there are at least m0(ε) machines. This implies that for m ≥ m0(ε) the probability of our
algorithm not being (c + ε)-competitive is at most P (m), the maximum probability with
which a random permutation of a proper input sequence is not stable. By Main Lemma 17,
we can find m(ε) ≥ m0(ε) such that P (m) ≤ ε for m ≥ m(ε). This choice of m(ε) satisfies
the second condition of nearly competitiveness. ◀
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6:14 Scheduling in the Secretary Model

Proof sketch of Main Lemma 16

The anticipated load l̃t
M of a machine M at time t denotes its load including placeholder-jobs.

We can obtain the following two bounds on the average anticipated load L̃ = supt
1
m

∑
M l̃t

M .

▶ Lemma 19. We have L̃ ≤ L + 2pmax, as well as L̃ ≤
(
1 + 1

δ2

)
L.

Thus the average anticipated load L̃ relates to the original values L, pmax. In the full
version, we generalize Proposition 4 to anticipated loads. We can then use Lemma 19 to
conclude Main Lemma 16. The only exception are reserve machines, which receives its
last job using the Critical-Job-Strategy. Their load needs to be bounded using different
techniques.

Formally, we can prove the following two statements, which imply Main Lemma 16.

▶ Proposition 20. The main algorithm is adversarially
(

1 + 3
1−δ + 2δ

)
-competitive.

▶ Proposition 21. The main algorithm has makespan at most (c + 2δ)OPT on simple
sequences J σ.

Stable job sequences and a proof sketch of Main Lemma 17

We introduce the class of stable job sequences. The first two conditions state that all estimates
our algorithm makes are accurate, i.e. sampling works. By the third condition there are less
exceptional jobs than reserve machines and the fourth condition states that these jobs are
distributed evenly. The final condition is a technicality. Stable sequences are useful since
they occur with high probability if we randomly order a proper job set.

▶ Definition 22. A job sequence J σ is stable if the following conditions hold:
The estimate L̂ for L is accurate, i.e. (1− δ)L ≤ L̂ ≤ (1 + δ)L.
The estimate cp for np is accurate, i.e. cp ≤ np ≤ cp + 2m3/4 for all p ∈ P.
There are at most ⌈δm⌉ exceptional jobs in J σ.
Let t̃ be the time the last exceptional job arrived and let np,t̃ be the number of p-jobs
scheduled at that time for a given p ∈ P. Then np,t̃ ≤

(
1− δ3)

np for every p ∈ P.
δ3 ⌊(

1− δ − 2δ2)
m/|P|

⌋
≥ 2|P|m3/4.

Proof sketch of Main Lemma 17. The first condition follows from Lemma 5. The second
condition can be derived using Chebyshev’s inequality as discussed at the end of Section 3.1.
Both conditions require that only proper sequences are considered. The third condition is
equivalent to demanding one of the ⌈δm⌉ largest jobs to occur during the sampling phase.
This is extremely likely. In expectation the rank of the largest job occurring in the sampling
phase is δ−2, a constant. The fourth condition states that the exceptional jobs are evenly
spread throughout the sequence compared to the p-jobs for any p ∈ P . Again, this is expected
of a random sequence and corresponds to how one would determine randomness statistically.
For the final condition it suffices to choose the number of machines m large enough. One
technical problem arises since the set of rounded critical job sizes P = P [J σ] is defined using
the value B[J σ]. It thus highly depends on the input permutation σ. We rectify this by
passing over to a larger class P̂ such that P ⊂ P̂ with high probability. ◀

Proof sketch of Main Lemma 18

We first consider the Critical-Job-Strategy. Main Lemma 18 holds as long as it is employed.

▶ Lemma 23. The makespan of our algorithm is at most (c + O(δ)) max (B, L, pmax) on
stable sequences till it employs the Least-Loaded-Strategy (or till the end of the sequence).
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Proof sketch. Let us only consider critical jobs at any time the Least-Loaded-Strategy is
not employed. We can then show that a machine contains either one big job or at most
two medium jobs. In the first case we bound the size of this big, possibly exceptional,
job by pmax. Else, if the machine contains two medium jobs their total weight is at most
2(1+δ)pbigB = (1+δ)cB. The factor (1+δ) arises since we use rounded sizes in the definition
of medium jobs. Thus, critical jobs may cause a load of at most max(pmax, (c + O(δ))B).

Analyzing the load increase caused by small jobs requires techniques similar to the proof
of Main Lemma 16. ◀

Note that for stable sequences L̂ ≤ (1+δ)L ≤ (1+δ)OPT, in particular max (B, L, pmax) =
max

(
pδ2n

max, L̂, L, pmax

)
≤ (1 + δ)OPT. This proves the following corollary to Lemma 23.

▶ Corollary 24. Till our algorithm uses the Least-Loaded-Strategy its makespan is less than
(c + O(δ))OPT on stable sequences.

Hence, we are left to consider the Least-Loaded-Strategy. We say the algorithm fails if it
has to switch from the Critical-Job-Strategy to the Least-Loaded-Strategy. The following
lemma is crucial and relies deeply on the properties of stable sequences, in particular the
fourth one.

▶ Lemma 25. If the algorithm fails, every exceptional job has been scheduled.

The lemma shows that the Least-Loaded-Strategy only needs to deal with exceptional
jobs if it is picked immediately. In this case, all reserve machines are empty. The third
property of stable sequences ensures that there are enough reserve machines so that every
exceptional job is assigned to an empty machine.

Non-exceptional jobs, i.e. jobs of size at most B, are scheduled onto a least loaded principal
machine. This machine was among the δm + 1 least loaded machines and had load at most
mL/(m−δm+1) by Proposition 4. Afterwards, its load was at most mL/(m−δm+1)+B ≤
(2 + O(δ))B since (1 − δ)L ≤ B for stable sequences. The following lemma concludes the
proof of Main Lemma 18 since it implies that (2 + O(δ))B ≤ (c + O(δ))OPT.

▶ Lemma 26. If the Least-Loaded-Strategy is applied on a stable sequence, B ≤ c
2 OPT.

The proof of Lemma 26 is left to the full version.

7 Lower bounds

We establish the following theorem using two lower bound sequences. These results generalize
to randomized algorithms using appropriate notions of (nearly) competitiveness.

▶ Theorem 27. For every online algorithm A, deterministic or randomized, there exists a
job set J such that Pσ∼Sn

[
A(J σ) ≥

√
73−1
6 OPT(J )

]
≥ 1

6 . If A is randomized the previous
probability also includes its random choices.

The lower bound highlights the inability of the main algorithm to decide between the
Least-Loaded-Strategy and the Critical-Job-Strategy. If we could communicate this decision,
say through a single advice bit, our main algorithm would become nearly optimal, i.e. nearly
1-competitive, on the lower bound sets. Theorem 27 implies the following lower bounds.

▶ Corollary 28. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.

▶ Corollary 29. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.

The lower bounds are proven in the appendix.
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A Lower bounds

We establish the following theorem using two lower bound sequences.

▶ Theorem 27. For every online algorithm A, deterministic or randomized, there exists a
job set J such that Pσ∼Sn

[
A(J σ) ≥

√
73−1
6 OPT(J )

]
≥ 1

6 . If A is randomized the previous
probability also includes its random choices.

Theorem 27 implies the following lower bounds.

▶ Corollary 28. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.

▶ Corollary 29. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.

Let us now prove these results. For this section let c =
√

73−1
6 be our main lower bound

on the competitive ratio. We consider three types of jobs:
1. negligible jobs of size 0 (or a tiny size ε > 0 if one were to insist on positive sizes).
2. big jobs of size 1− c

3 = 17−
√

37
18 ≈ 0.581.

3. small jobs of size c
3 = 1+

√
37

18 ≈ 0.419

Let J be the job set consisting of m jobs of each type.
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▶ Lemma 30. There exists a schedule of J where every machine has load 1. Every schedule
that has a machine with smaller load has makespan at least c.

Proof. This schedule is achieved by scheduling a type 2 and a type 3 job onto each machine.
The load of each machine is then 1. Every schedule which allocates these jobs differently
must have at least one machine M which contains at least three jobs of type 2 or 3 by the
pigeonhole principle. The load of M is then at least 3 c

3 = c. ◀

Given a permutation J σ of J and an online algorithm A, which expects 3m + 1 jobs to
arrive in total. Let A(J σ, 3m + 1) denote its makespan after it processes J σ expecting yet
another job to arrive. Let P = P[A(J σ, 3m + 1) = 1] be the probability that A achieves the
optimal schedule where every machine has load 1 under these circumstances. Depending on
P we pick one out of two input sets on which A performs bad.

Let j ∈ {1, 2}. We now consider the job set Jj consisting of m jobs of each type plus
one additional job of type j, i.e. a negligible job if j = 1 and a big one if j = 2. We call an
ordering J σ

j of Jj good if it ends with a job of type j or, equivalently, if its first 3m jobs are
a permutation of J . Note that the probability of J σ being good is m+1

3m+1 ≥
1
3 for σ ∼ S3m+1.

▶ Lemma 31. For job set J1 we have Pσ∼Sn
[A(J σ

1 ) ≥ cOPT(J )] ≥ 1−P
3 and for job set J2

furthermore Pσ∼Sn [A(J σ
2 ) ≥ cOPT(J )] ≥ P

3 .

Proof. Consider a good permutation of J1. Then with probability 1− P the algorithm A

does have makespan c even before the last job is scheduled. On the other hand OPT(J1) = 1.
Thus with probability 1−P

3 we have A(J σ
1 ) = c = cOPT(J1).

Now consider a good permutation of J2. Then, with probability P , algorithm A has to
schedule the last job on a machine of size 1. Its makespan is thus 2− c

3 = c2 by our choice
of c. The optimum algorithm may schedule two big jobs onto one machine, incurring load
2− 2c

3 < c, three small jobs onto another one, incurring load c and one job of each type onto
the remaining machines, causing load 1 < c. Thus OPT(J2) = c. In particular we have with
probability P

3 that A(J σ
2 ) = c2 = cOPT(J2). ◀

We now conclude the main three lower bound results.

▶ Theorem 27. For every online algorithm A, deterministic or randomized, there exists a
job set J such that Pσ∼Sn

[
A(J σ) ≥

√
73−1
6 OPT(J )

]
≥ 1

6 . If A is randomized the previous
probability also includes its random choices.

Proof. By the previous lemma we get that

max
j=1,2

(
Pσ∼Sn

[
A(J σ

j ) ≥ cOPT(J )
])

= max
(

1− P

3 ,
P

3

)
≥ 1

6 . ◀

▶ Corollary 28. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.

Proof. This is immediate by the previous theorem. ◀

▶ Corollary 29. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.

Proof. Let A be any online algorithm. Pick a job set J according to Theorem 27. Then

Arom(J ) = Eσ∼Sn [A(J σ)] ≥ 1
6 ·
√

73− 1
6 OPT(J ) + 5

6OPT(J ) =
√

73 + 29
36 OPT(J ).◀
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B Full description of the main algorithm

Our new algorithm achieves a competitive ratio of c = 1+
√

13
3 ≈ 1.535. Let δ = δ(m) = 1

log(m)
be the margin of error our algorithm allows. Throughout the analysis it is mostly sensible
to treat δ as a constant and forget about its dependency on m. Our algorithm maintains
a certain set Mres of ⌈δm⌉ reserve machines. Their complement, the principal machines,
are denoted by M. Let us fix an input sequence J σ. Let L̂ = L̂[J σ] = Lδ2 [J σ]. For
simplicity, we hide the dependency on J σ whenever possible. Our online algorithm uses
B = max

(
pδ2n

max, L̂
)

as an estimated lower bound for OPT. This bound B is known after the
first ⌊δ2n⌋ jobs are treated. Our algorithm uses geometric rounding implicitly. Given a job
Jt of size pt let f(pt) = (1 + δ)⌊log1+δ pt⌋ be its rounded size. We also call Jt an f(pt)-job.
Using rounded sizes, we introduce job classes. Let psmall = c − 1 =

√
13−2
3 ≈ 0.535 and

pbig = c
2 = 1+

√
13

6 ≈ 0.768. Then we call job Jt

small if f(pt) ≤ psmallB and critical else,
big if f(pt) > pbigB,
medium if J is neither small nor big, i.e. psmallB ≤ f(pt) ≤ pbigB,
huge if its (not-rounded) size exceeds B, i.e. B < pt, and normal else.

Consider the sets Pmed = {(1 + δ)i | (1 + δ)−1psmallB < (1 + δ)i ≤ pbigB} and Pbig =
{(1 + δ)i | pbigB < (1 + δ)i ≤ B} corresponding to all possible rounded sizes of medium
respectively big jobs, excluding huge jobs. Let P = Pmed∪Pbig. This subdivision gives rise to
a weight function, which will be important later. Let w(p) = 1/2 for p ∈ Pmed and w(p) = 1
for p ∈ Pbig. The elements p ∈ P define job classes Cp ⊆ J consisting of all p-jobs, i.e. jobs of
rounded size p. By some abuse of notation, we call the elements in P “job classes”, too. We
let np = |Cp| and n̂p = |{Jσ(j) | σ(j) ≤ δ2n ∧ Jσ(j) is a p-job}|. We want to use the values
n̂p, which are available to an online algorithm quite early, to estimate the values np, which
accurately describe the set of critical jobs. First, δ−2n̂p comes to mind as an estimate for
np. Yet, we need a more complicated guess: cp = max

(⌊(
δ−2n̂p −m3/4)

w(p)
⌋

, n̂p

)
w(p)−1.

It has three desirable advantages. First, for every p ∈ P the value cp is close to np with
high probability, but, opposed to δ−2n̂p, unlikely to exceed it. Overestimating np turns out
to be far worse than underestimating it. Second, w(p)cp is an integer and, third, we have
cp ≥ n̂pw(p)−1. A fundamental fact regarding the values (cp)p∈P and B is, of course, that
they are known to the online algorithm once ⌊δ2n⌋ jobs are scheduled.

Algorithm 2 The complete algorithm: How to schedule job Jt.

1: strat is initialized to Critical, Jt is the job to be scheduled.
2: if n ≤ m then Schedule Jt on any empty machine;
3: else if t ≤ φn then schedule Jt on a least loaded machine in M; ▷ Sampling phase
4: else
5: if we have t = ⌊φn⌋+ 1 then
6: if

∑
p∈P w(p)cp > m then strat← Least-Loaded

7: else proceed with the Preparation for the Critical-Job-Strategy (Algorithm 4);
8: if strat = Critical then proceed with the Critical-Job-Strategy (Algorithm 5);
9: else proceed with the Least-Loaded-Strategy (Algorithm 3);

Statement of the algorithm. If there are less jobs than machines, i.e. n ≤ m, it is optimal
to put each job onto a separate machine. Else, a short sampling phase greedily schedules
each of the first ⌊δ2n⌋ jobs to the least loaded principal machine M ∈M. Now, the values
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B and (cp)p∈P are known. Our algorithm has to choose between two strategies, the Least-
Loaded-Strategy and the Critical-Job-Strategy, which we will both introduce subsequently. It
maintains a variable strat, initialized to Critical, to remember its choice. If it chooses the
Critical-Job-Strategy, some additional preparation is required. It may at any time discover
that the Critical-Job-Strategy is not feasible and switch to the Least-Loaded-Strategy but it
never switches the other way around.

The Least-Loaded-Strategy places any normal job on a least loaded principal machine.
Huge jobs are scheduled on any least loaded reserve machine. This machine will be empty,
unless we consider rare worst-case orders.

Algorithm 3 The Least-Loaded-Strategy: How to schedule job Jt.

1: if Jt is huge then schedule Jt on any least loaded reserve machine;
2: else schedule Jt on any least loaded principal machine;

For the Critical-Job-Strategy we introduce p-placeholder-jobs for every size p ∈ P . Sensibly,
the size of a p-placeholder-job is p. During the Critical-Job-Strategy we treat placeholder-jobs
similar to real jobs. The anticipated load l̃t

M of a machine M at time t is the sum of all jobs
on it, including placeholder-job, opposed to the common load lt

M , which does not take the
latter into account. Note that l̃t

M defines a pseudo-load as introduced in Section 3.
During the Preparation for the Critical-Job-Strategy the algorithm maintains a

counter c′
p of all p-jobs scheduled so far (including placeholders). A job class p ∈ P is called

unsaturated if c′
p ≤ cp. First, we add unsaturated medium placeholder-jobs to any principal

machine that already contains a medium real job from the sampling phase. We will see in
Lemma 32 that such an unsaturated medium job class always exists. Now, let mempty be the
number of principal machines which do not contain critical jobs. We prepare a set Jrep of
cardinality at most mempty, which we will then schedule onto these machines. The set Jrep
may contain single big placeholder-jobs or pairs of medium placeholder-jobs. We greedily
pick any unsaturated job class p ∈ P and add a p-placeholder-job to Jrep. If p is medium, we
pair it with a job belonging to any other, not necessarily different, unsaturated medium job
class. Such a job class always exists by Lemma 32. We stop once all job classes are saturated
or if |Jrep| = mempty. We then assign the elements in Jrep to machines. We iteratively pick
the element e ∈ Jrep of maximum size and assign the corresponding jobs to the least loaded
principal machine, which does not contain critical jobs yet. Sensibly, the size of a pair of
jobs in Jrep is the sum of their individual sizes. We repeat this until all jobs and job pairs in
Jrep are assigned to some principal machine.

Algorithm 4 Preparation for the Critical-Job-Strategy.

1: while there is a machine M containing a single medium job do
2: Add a placeholder p-job for an unsaturated size class p ∈ Pmed to M ; c′

p ← c′
p + 1;

3: while there is an unsaturated size class p ∈ P and |Jrep| < mempty do
4: Pick an unsaturated size class e = p ∈ P with c′

p minimal; w(e)← p; c′
p ← c′

p + 1;
5: if p is medium then pick q ∈ Pmed unsaturated. e← (p, q); w(e)← p+q; c′

q ← c′
q +1;

6: Add e to Jrep;
7: while Jrep ̸= ∅ do
8: Pick a least loaded machine M ∈M, which does not contain a critical job yet;
9: Pick e ∈ Jrep of maximum size w(e) and add the jobs in e to M ;

10: Jrep ← Jrep \ {e};
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▶ Lemma 32. In line 2 and 5 of Algorithm 4 there is always an unsaturated medium size
class available. Thus, Algorithm 4, the Preparation for the Critical-Job-Strategy, is well
defined.

Proof. Concerning line 2, there are precisely
∑

p∈Pmed
n̂p machines with critical jobs while

there are at least
∑

p∈Pmed
(cp − n̂p) ≥

∑
p∈Pmed

n̂p placeholder-jobs available to fill them.
Here we make use of the fact that for medium jobs p ∈ Pmed we have cp ≥ n̂pw(p)−1 = 2n̂p.

Concerning line 5, observe that so far every machine and every element in Jrep contains
an even number of medium jobs. If the placeholder picked in line 4 was the last medium job
remaining,

∑
p∈Pmed

cp would be odd. But this is not the case since every cp for p ∈ Pmed is
even. ◀

Algorithm 5 The Critical-Job-Strategy.

1: if Jt is medium or big then let p denote its rounded size;
2: if there is a machine M containing a p-placeholder-job J then
3: Delete the p-placeholder-job J and assign Jt to M ;
4: else if Jt is medium and there exists M ∈Mres containing a single medium job then
5: Schedule Jt on M ;
6: else if there exists an empty machine M ∈Mres then schedule Jt on M ;
7: else stat← Least-Loaded; ▷ We say the algorithm fails.
8: use the Least-Loaded-Strategy (Algorithm 3) from now on;
9: else assign Jt to the least loaded machine in M (take placeholder jobs into account);

After the Preparation is done, the Critical-Job-Strategy becomes straightforward.
Each small job is scheduled on a principal machines with least anticipated load, i.e. taking
placeholders into account. Critical jobs of rounded size p ∈ P replace p-placeholder-jobs
whenever possible. If no such placeholder exists anymore, critical jobs are placed onto the
reserve machines. Again, we try pair up medium jobs whenever possible. If no suitable
machine can be found among the reserve machines, we have to switch to the Least-Loaded-
Strategy. We say that the algorithm fails if it ever reaches this point. In this case, it should
rather have chosen the Least-Loaded-Strategy to begin with. Since all reserve machines are
filled at this point, the Least-Loaded-Strategy is impeded, too. The most difficult part of
our analysis shows that, excluding worst-case orders, this is not a problem on job sets that
are prone to cause failing.
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