
Approximation Algorithms for Flexible Graph
Connectivity
Sylvia Boyd # Ñ

School of Electrical Engineering and Computer Science, University of Ottawa, Canada

Joseph Cheriyan #Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Arash Haddadan #

Warner Music Group, New York, NY, USA

Sharat Ibrahimpur #Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Abstract
We present approximation algorithms for several network design problems in the model of Flexible

Graph Connectivity (Adjiashvili, Hommelsheim and Mühlenthaler, “Flexible Graph Connectivity”,
Math. Program. pp. 1–33 (2021), IPCO 2020: pp. 13–26). In an instance of the Flexible Graph
Connectivity (FGC) problem, we have an undirected connected graph G = (V, E), a partition of E

into a set of safe edges S and a set of unsafe edges U, and nonnegative costs {ce}e∈E on the edges. A
subset F ⊆ E of edges is feasible for FGC if for any unsafe edge e ∈ F ∩U, the subgraph (V, F \ {e})
is connected. The algorithmic goal is to find a (feasible) solution F that minimizes c(F) =

∑
e∈F

ce.
We present a simple 2-approximation algorithm for FGC via a reduction to the minimum-cost r-out
2-arborescence problem. This improves upon the 2.527-approximation algorithm of Adjiashvili et al.

For integers p ≥ 1 and q ≥ 0, the (p, q)-FGC problem is a generalization of FGC where we seek
a minimum-cost subgraph H = (V, F) that remains p-edge connected against the failure of any set
of at most q unsafe edges; that is, for any set F ′ ⊆ U with |F ′| ≤ q, H − F ′ = (V, F \ F ′) should be
p-edge connected. Note that FGC corresponds to the (1, 1)-FGC problem. We give approximation
algorithms for two important special cases of (p, q)-FGC: (a) Our 2-approximation algorithm for
FGC extends to a (k + 1)-approximation algorithm for the (1, k)-FGC problem. (b) We present a
4-approximation algorithm for the (k, 1)-FGC problem.

For the unweighted FGC problem, where each edge has unit cost, we give a 16/11-approximation
algorithm. This improves on the result of Adjiashvili et al. for this problem.

The (p, q)-FGC model with p = 1 or q ≤ 1 can be cast as the Capacitated k-Connected Subgraph
problem which is a special case of the well-known Capacitated Network Design problem. We denote
the former problem by Cap-k-ECSS. An instance of this problem consists of an undirected graph
G = (V, E), nonnegative integer edge-capacities {ue}e∈E , nonnegative edge-costs {ce}e∈E , and a
positive integer k. The goal is to find a minimum-cost edge-set F ⊆ E such that every (non-trivial)
cut of the capacitated subgraph H(V, F, u) has capacity at least k. We give a min(k, 2 maxe∈E ue)-
approximation algorithm for this problem.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Combinatorial Optimization, Network Design,
Edge-Connectivity of Graphs, Reliability of Networks

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.9

Funding Joseph Cheriyan: Supported in part by NSERC, RGPIN-2019-04197.
Arash Haddadan: This work was mostly done when this author was a postdoctoral researcher at the
Biocomplexity Institute and Initiative at the University of Virginia, Charlottesville, and supported
by NSF Expeditions in Computing Grant with award number CCF-1918656.
Sharat Ibrahimpur : Supported in part by NSERC grant 327620-09.

Acknowledgements We thank the anonymous reviewers and PC members for their comments.

© Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sboyd@uottawa.ca
https://www.site.uottawa.ca/~sylvia
mailto:jcheriyan@uwaterloo.ca
http://www.math.uwaterloo.ca/~jcheriyan
mailto:arash.haddadan@gmail.com
mailto:sharat.ibrahimpur@uwaterloo.ca
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Approximation Algorithms for Flexible Graph Connectivity

1 Introduction

Network design and graph connectivity are core topics in Theoretical Computer Science and
Operations Research. A basic problem in network design is to find a minimum-cost sub-
network H of a given network G such that H satisfies some specified connectivity requirements.
Most of these problems are NP-hard. Several important algorithmic paradigms were developed
in the context of these topics, ranging from exact algorithms for the shortest (s, t)-path
problem and the minimum spanning tree (MST) problem to linear programming-based
approximation algorithms for the survivable network design problem and the generalized
Steiner network problem. Network design problems are often motivated from practical
considerations such as the design of fault-tolerant supply chains, congestion control for urban
road traffic, and the modeling of epidemics (see [11, 12, 15]).

Recently, Adjiashvili, Hommelsheim and Mühlenthaler [1, 2] introduced a new model called
Flexible Graph Connectivity (FGC), that is motivated by research in robust optimization.
In an instance of FGC, we have an undirected connected graph G = (V, E) on n vertices, a
partition of E into safe edges S and unsafe edges U, and nonnegative costs {ce}e∈E on the
edges. The graph G may have multiedges, but no self-loops. A subset F ⊆ E of edges is
feasible for FGC if for any unsafe edge e ∈ F ∩ U, the subgraph (V, F \ {e}) is connected.
The problem is to find a (feasible) solution F minimizing c(F) =

∑
e∈F ce. The motivation

for studying FGC is two-fold. First, FGC generalizes many well-studied survivable network
design problems. Notably, the problem of finding a minimum-cost 2-edge connected spanning
subgraph (abbreviated as 2ECSS) corresponds to an instance of FGC where all edges are
unsafe, and the MST problem corresponds to an instance of FGC where all edges are safe.
Second, FGC captures a non-uniform model of survivable network design problems where a
subset of edges never fail, i.e., they are always safe.

The notion of (p, q)-FGC is an extension of the basic FGC model where we have two
additional integer parameters p and q satisfying p ≥ 1 and q ≥ 0. A subset F ⊆ E of edges
is feasible for (p, q)-FGC if the spanning subgraph H = (V, F) is p-edge connected, and
moreover, the deletion of any set of at most q unsafe edges of F preserves p-edge connectivity.
In other words, each nontrivial cut (S, V \S) of H either contains p safe edges or contains p+q

(safe or unsafe) edges. Note that the FGC problem is the same as the (1, 1)-FGC problem.
The algorithmic goal is to find a feasible edge-set F of minimum cost. The (p, q)-FGC
problem is a natural and fundamental question in robust network design. It can be seen as a
way of interpolating between p-edge connectivity (when all edges are safe) and (p + q)-edge
connectivity (when all edges are unsafe). We remark that for all problems considered in this
work, we are only allowed to use at most one copy of an edge; multiedges may arise in F due
to multiedges in G.

One of our goals is to give approximation algorithms for important special cases of
(p, q)-FGC. Since FGC generalizes the 2ECSS problem, it is already APX-hard (see [5]),
so a polynomial-time approximation scheme is ruled out unless P=NP. In the following we
sketch a simple randomized O(q log n)-approximation algorithm for (p, q)-FGC under some
assumptions. For simplicity, assume that p and q are such that q/p ≤ α for an absolute
constant α ≥ 0. Let F ∗ denote an optimal solution to the given (p, q)-FGC instance. To
start with, let H = (V, F) denote a 2-approximate p-edge connected spanning subgraph
(abbreviated p-ECSS) of the graph G with edge-costs {ce}e∈E , where we make no distinction
between safe and unsafe edges; such an H can be found in polynomial-time by using (say)
Jain’s iterative rounding algorithm [8]. Note that c(F) ≤ 2c(F ∗), since (V, F ∗) is a p-edge
connected spanning subgraph of G.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:3

We say that a nonempty set R ⊊ V is “deficient” if |δ(R)∩F | < p+q and |δ(R)∩F ∩S| < p;
thus, R ⊊ V is deficient if the cut δ(R) has less than (p + q) F -edges and has less than p

safe F -edges. Let C denote the family of all deficient sets. Note that deficient sets are the
only obstructions to the (p, q)-FGC-feasibility of F . We fix deficient sets by performing a
sequence of at most q augmentation iterations, where in each iteration we augment F with
an edge-set F ′ ⊆ E \ F such that δ(R) ∩ F ′ ̸= ∅ for each R ∈ C. We compute the desired
F ′ via a reduction to the weighted set cover problem. First, let us state an upper bound
on |C|. For every R ∈ C, observe that δ(R) is a (1 + α)-approximate min-cut in H, because
H is p-edge connected (i.e., the size of a min-cut of H is ≥ p). By Karger’s bound [9], we
have |C| ≤ n2α+2. In fact, with probability at least 1 − 1/n, we can explicitly compute C in
time polynomial in nα. For simplicity, assume that we have explicit access to C. Consider an
instance of the weighted set cover problem where we want to cover elements of C by using
sets of the form {Re}e∈E\F , where Re := {R ∈ C : e ∈ δ(R)}, and the weight of Re is ce.(
Informally speaking, we have a ground-set of “points” that correspond to elements of C, i.e.,

the deficient sets, we have a weighted set Re corresponding to each edge e ∈ E \ F , and the
goal is to pick a min-weight family of sets Re whose union contains all the “points”.

)
Since

F ∪ F ∗ is feasible for the given (p, q)-FGC-instance, {Re}e∈F ∗\F is a feasible solution to the
set-cover instance with cost at most c(F ∗). The well-known greedy algorithm for weighted
set cover (see Theorem 13.3 in [16]) finds an F ′ ⊆ E \F satisfying δ(R)∩F ′ ̸= ∅ for all R ∈ C
and c(F ′) ≤ O(α log n)c(F ∗). We augment F to F ∪ F ′ and discard the sets R ∈ C that are
no longer deficient w.r.t. the augmented F . We repeatedly apply such augmenting iterations
until C is empty. There are at most q such iterations, because each iteration increases the
cardinality of δ(R) ∩ F by one or more for each R ∈ C. We summarize this discussion by the
next claim.

▷ Claim. There is a randomized polynomial-time O(q log n)-approximation algorithm for
the special case of (p, q)-FGC where q/p ≤ O(1).

The (p, q)-FGC model is related to the model of Capacitated Network Design. There are
several results pertaining to approximation algorithms for various problems in Capacitated
Network Design, for example, see Goemans et al. [6] and Chakrabarty et al. [3]. A well-
studied problem in this area that is relevant to us is the Capacitated k-Connected Subgraph
problem, see [3]. We denote this problem by Cap-k-ECSS. Formally, in an instance of this
problem, we have an undirected multigraph G = (V, E), nonnegative integer edge-capacities
{ue}e∈E , nonnegative edge-costs {ce}e∈E , and a positive integer k. The goal is to find an
edge-set F ⊆ E such that for any nonempty R ⊊ V we have

∑
e∈δ(R)∩F ue ≥ k, and c(F) is

minimized. Let n and m denote the number of vertices and edges of G, respectively. For this
problem, Goemans et al. [6] give a min(2k, m)-approximation algorithm, and Chakrabarty
et al. [3] give a randomized O(log n)-approximation algorithm.

In general, (p, q)-FGC and Cap-k-ECSS models are incomparable (see below for more
details), however, when p = 1 or q ≤ 1 holds, then (p, q)-FGC can be cast as an instance
of the Cap-k-ECSS problem. The usual k-ECSS problem corresponds to the Cap-k-ECSS
problem with unit edge capacities. The FGC problem corresponds to the Cap-2-ECSS
problem, where safe edges have capacity 2 and unsafe edges have capacity 1. More generally,
(1, k)-FGC corresponds to the Cap-(k+1)-ECSS problem, where safe edges have capacity k+1
and unsafe edges have capacity 1, and (k, 1)-FGC corresponds to the Cap-(k(k + 1))-ECSS
problem where safe edges have capacity k + 1 and unsafe edges have capacity k. We remark
that the most general models of (p, q)-FGC and Cap-k-ECSS are incomparable. In particular,
it is easy to see that the (p, q)-FGC problem is not the same as the Cap-(p(p + q))-ECSS
problem where safe edges have a capacity of p + q and unsafe edges have a capacity of p. For

FSTTCS 2021

9:4 Approximation Algorithms for Flexible Graph Connectivity

instance, take p = 2 and q = 3: a cut with one safe edge (of capacity 5) and three unsafe
edges (each with capacity 2) has total capacity 11 ≥ p(p + q), but such a cut is deficient in
the (2, 3)-FGC model.

Our Contributions. We mention the main contributions of this work along with a brief
overview of our results and techniques.

Our first result is a simple reduction from FGC to the well-known minimum-cost 2-
arborescence problem that achieves an approximation guarantee of two. This result matches
the current best approximation guarantee known for the 2ECSS problem, and improves
on the 2.527-approximation algorithm of [2]. At a high level, our result is based on a
straightforward extension of the 2-approximation algorithm of Khuller and Vishkin [10] for
the 2ECSS problem. (In fact, Khuller and Vishkin [10] give a simple reduction from the
k-ECSS problem to the problem of computing a minimum-cost k-arborescence in a digraph
that achieves an approximation guarantee of two.)

▶ Theorem 1. There is a 2-approximation algorithm for FGC.

The following result generalizes Theorem 1 to the (1, k)-FGC problem, where we want to
find a min-cost spanning subgraph that remains connected against the failure of any set of
at most k unsafe edges.

▶ Theorem 2. There is a (k + 1)-approximation algorithm for (1, k)-FGC.

Our proof of Theorem 2 is based on a reduction from (1, k)-FGC to the minimum-cost
(k + 1)-arborescence problem (see [13], Chapters 52 and 53). We lose a factor of k + 1 in this
reduction.

In Section 3, we consider the unweighted version of FGC, where each edge has unit cost.
We design improved approximation algorithms for this special case.

▶ Theorem 3. There is a 16
11 -approximation algorithm for unweighted FGC.

In Section 4, we consider the (k, 1)-FGC problem, where we seek a min-cost spanning
subgraph that is k-edge connected against failure of at most one unsafe edge. Our main
contribution here is the following.

▶ Theorem 4. There is a 4-approximation algorithm for (k, 1)-FGC.

Our algorithm in Theorem 4 runs in two stages. In the first stage we pretend that
all edges are safe. Under this assumption, (k, 1)-FGC simplifies to the k-ECSS problem,
for which several 2-approximation algorithms are known. Let H = (V, F) be the k-edge
connected spanning subgraph found in Stage 1. In the second stage, our goal is to preserve
k-edge connectivity against the failure of any one unsafe edge. In the graph H, consider a
cut that has (exactly) k edges and that contains at least one unsafe edge. Such a cut, that
we call deficient, certifies that F is not feasible for (k, 1)-FGC, so it needs to be augmented.
The residual problem is that of finding a cheapest augmentation of F on all deficient cuts.
It turns out that this cut-augmentation problem can be formulated as the f -connectivity
problem for an uncrossable function f (to be defined in Section 4). Williamson, Goemans,
Mihail and Vazirani [17] present a 2-approximation algorithm for the latter problem.

Lastly, in Section 5, we consider the Capacitated k-Connected Subgraph problem that
we denote by Cap-k-ECSS. For notational convenience, let umax := max{ue : e ∈ E}
denote the maximum capacity of an edge in the given instance of Cap-k-ECSS; similarly, let
umin := min{ue : e ∈ E}. Our main result in Section 5 is the following.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:5

▶ Theorem 5. There is a min(k, 2umax)-approximation algorithm for the Cap-k-ECSS
problem.

Similar to Theorems 1 and 2, our proof of Theorem 5 is based on a reduction from
the Cap-k-ECSS problem to the minimum-cost k-arborescence problem. The factor m in
the min(2k, m) approximation guarantee of Goemans et al. comes from the fact that a
simple greedy strategy yields an m-approximation for the Cap-k-ECSS problem. Assuming
min(k, 2umax) ≤ m, our result has a better dependence on k, and, in fact, for the standard
case of umin = 1, umax = k ≪ m, no previous result achieves an approximation guarantee of
k (to the best of our knowledge). Our result above is incomparable to the result in [3]: our
approximation guarantee is independent of the graph size, whereas their result is independent
of k. The algorithm in [3] is probabilistic and its analysis is based on Chernoff tail bounds.

Theorem 5 provides the following approximation guarantees for special cases of (p, q)-FGC:
(i) for (1, 1)-FGC, k = umax = 2, so Theorem 5 gives a 2-approximation (same as

Theorem 1);
(ii) for (1, q)-FGC, k = umax = q + 1, so Theorem 5 gives a (q + 1)-approximation (same

as Theorem 2); and
(iii) for (p, 1)-FGC with p > 1, k = p(p + 1) and umax = p + 1, so Theorem 5 gives a

2(p + 1)-approximation (this is weaker than the 4-approximation given by Theorem 4).

2 A (k + 1)-Approximation Algorithm for (1, k)-FGC

We give a (k + 1)-approximation for (1, k)-FGC, where k is a positive integer. The 2-
approximation for FGC (Theorem 1) follows as a special case. Recall that in an instance of
(1, k)-FGC we have an undirected multigraph G = (V, E) (with no self loops), a partition of
E = S ⊔ U into safe and unsafe edges, and nonnegative edge-costs {ce}e∈E . Our objective is
to find a minimum-cost edge-set F ⊆ E such that the subgraph (V, F) remains connected
against failure of any k unsafe edges.

For a subgraph H of G and a nonempty vertex-set S ⊊ V , we use δH(S) to denote the set of
edges in H with exactly one endpoint in S, i.e., δH(S) := {e = uv ∈ E(H) : |{u, v} ∩ S| = 1}.
We drop the subscript H when the underlying graph is clear from the context. The following
characterization of (1, k)-FGC solutions is straightforward.

▶ Proposition 6. F is feasible for (1, k)-FGC if and only if for all nonempty S ⊊ V , the
edge-set F ∩ δ(S) contains a safe edge or k + 1 unsafe edges.

For the rest of the paper, we assume that the given instance of (1, k)-FGC is feasible: this
can be checked by computing a (global) minimum cut in G where we assign a capacity of k +1
to safe edges and a capacity of 1 to unsafe edges. As mentioned before, our algorithm for
(1, k)-FGC is based on a reduction to the minimum-cost r-out (k + 1)-arborescence problem.
We state a few standard results on arborescences. Let D = (W, A) be a digraph and {c′

a}a∈A

be nonnegative costs on the arcs. We remark that D may have parallel arcs but it has no
self-loops. Let r ∈ W be a designated root vertex. For a subgraph H of D and a nonempty
vertex-set S ⊊ W , we use δin

H(S) to denote the set of arcs in H such that the head of the arc
is in S and the tail of the arc is in W \ S, i.e., δin

H(S) := {a = (u, v) ∈ A(H) : u /∈ S, v ∈ S}.

▶ Definition 7 (r-out arborescence). An r-out arborescence (W, T) is a subgraph of D

satisfying: (i) the undirected version of T is acyclic; and (ii) for every v ∈ W \ {r}, there is
a directed path from r to v in the subgraph (W, T).

FSTTCS 2021

9:6 Approximation Algorithms for Flexible Graph Connectivity

In other words, an r-out arborescence is a directed spanning tree rooted out of r. More
generally, an r-out k-arborescence is a union of k arc-disjoint r-out arborescences.

▶ Definition 8 (r-out k-arborescence). For a positive integer k, a subgraph (W, T) is an r-out
k-arborescence if T can be partitioned into k arc-disjoint r-out arborescences.

The following results on existence of arborescences and the corresponding optimization
problem will be useful to us.

▶ Theorem 9 ([13], Chapter 53.8). Let D = (W, A) be a digraph, r ∈ W be a root vertex, and
k be a positive integer. Then, D contains an r-out k-arborescence if and only if |δin

D(S)| ≥ k

for any nonempty vertex-set S ⊆ V \ {r}.

▶ Theorem 10 ([13], Theorem 53.10). In strongly polynomial time, we can obtain an optimal
solution to the minimum c′-cost r-out k-arborescence problem on D, or conclude that there is
no r-out k-arborescence in D.

The following claim is useful in our analysis.

▷ Claim 11. Let (W, T) be an r-out k-arborescence for an integer k ≥ 1. Let u, v ∈ W be
two distinct vertices. Then, the number of arcs in T that have one endpoint at u and the
other endpoint at v (counting multiplicities) is at most k.

Proof. Since an r-out k-arborescence is a union of k arc-disjoint r-out 1-arborescences, it
suffices to prove the result for k = 1. The claim holds for k = 1 because the undirected
version of T is acyclic, by definition. ◁

In our proofs we move from undirected graphs to their directed counterparts by bidirecting
edges. We formalize this notion.

▶ Definition 12 (Bidirected pair). For an undirected edge e = uv, we call the arc-set
{(u, v), (v, u)} a bidirected pair arising from e.

The following lemma shows how a (1, k)-FGC solution F can be used to obtain an r-out
(k + 1)-arborescence (in an appropriate digraph) of cost at most (k + 1)c(F).

▶ Lemma 13. Let F be a (1, k)-FGC solution. Consider the digraph D = (V, A) where the
arc-set A is defined as follows: for each unsafe edge e ∈ F ∩ U, we include a bidirected pair
of arcs arising from e, and for each safe edge e ∈ F ∩ S, we include k + 1 bidirected pairs
arising from e. Consider the natural extension of the cost vector c to D where the cost of an
arc (u, v) ∈ A is equal to the cost of the edge in G that gives rise to it. Then, there is an
r-out (k + 1)-arborescence in D with cost at most (k + 1)c(F).

Proof. Let (V, T) be a minimum-cost r-out (k + 1)-arborescence in D. First, we argue that
T is well-defined. By Theorem 9, it suffices to show that for any nonempty S ⊆ V \ {r},
we have |δin

D(S)| ≥ k + 1. Fix some nonempty S ⊆ V \ {r}. By feasibility of F , F ∩ δ(S)
contains a safe edge or k + 1 unsafe edges (see Proposition 6). If F ∩ δ(S) contains a safe
edge e = uv with v ∈ S, then by our choice of A, δin

D(S) contains k + 1 (u, v)-arcs. Otherwise,
F ∩ δ(S) contains k + 1 unsafe edges, and for each such unsafe edge uv with v ∈ S, δin

D(S)
contains the arc (u, v). In both cases we have |δin

D(S)| ≥ k + 1, so T is well-defined.
We use Claim 11 to show that T satisfies the required bound on the cost. For each unsafe

edge e ∈ F , T contains at most 2 arcs from the bidirected pair arising from e, and for each
safe edge e ∈ F , T contains at most k + 1 arcs from the (disjoint) union of k + 1 bidirected
pairs arising from e. Thus, c(T) ≤ 2 c(F ∩ U) + (k + 1) c(F ∩ S) ≤ (k + 1) c(F). ◀

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:7

Lemma 13 naturally suggests a reduction from (1, k)-FGC to the minimum-cost r-out
(k + 1)-arborescence problem. We prove the main theorem of this section.

Proof of Theorem 2. Fix some vertex r ∈ V as the root vertex. Consider the digraph
D = (V, A) obtained from G as follows: for each unsafe edge e ∈ U, we include a bidirected
pair arising from e, and for each safe edge e ∈ S, we include k + 1 bidirected pairs arising
from e. For each edge e ∈ E, let R(e) denote the multi-set of all arcs in D that arise from
e ∈ E. For any edge e ∈ E (that could be one of the copies of a multiedge) and each of the
corresponding arcs e⃗ ∈ R(e), we define ce⃗ := ce. Let (V, T) denote a minimum c-cost r-out
(k + 1)-arborescence in D. By Lemma 13, c(T) ≤ (k + 1)c(F ∗), where F ∗ denotes an optimal
(1, k)-FGC solution to the given instance.

We finish the proof by arguing that T induces a (1, k)-FGC solution F with cost at most
c(T). Let F := {e ∈ E : R(e) ∩ T ̸= ∅}. By definition of F and our choice of arc-costs in
D, we have c(F) ≤ c(T). It remains to show that F is feasible for (1, k)-FGC. Consider a
nonempty set S ⊆ V \ {r}. Since T is an r-out (k + 1)-arborescence, by Theorem 9 we have
|δin

T (S)| ≥ k + 1. If δin
T (S) contains a safe arc (i.e., an arc that arises from a safe edge), then

that safe edge belongs to F ∩ δ(S). Otherwise, δin
T (S) contains some k + 1 unsafe arcs (that

arise from unsafe edges). Since both orientations of an edge cannot appear in δin
D(S), we get

that |F ∩ U ∩ δ(S)| ≥ k + 1. By Proposition 6, F is a feasible solution for the given instance
of (1, k)-FGC with c(F) ≤ (k + 1)OPT. ◀

3 Unweighted FGC

Consider the unweighted version of FGC where each edge has unit cost, i.e., ce = 1 for all e ∈
E. We present a 16

11 -approximation algorithm (see Theorem 3); to the best of our knowledge,
this is the first result that provides a better than 3

2 approximation for unweighted FGC.
Adjiashvili et al. [2] gave an

(
α
2 + 1

)
-approximation algorithm for unweighted FGC, assuming

the existence of an α-approximation algorithm for the unweighted 2ECSS problem: this
implies a 5

3 -approximation algorithm for unweighted FGC by using the result of Sebö and
Vygen [14]. The algorithm in [2] starts with a maximal forest of safe edges in the graph. At
the end of this section, we give an example showing that no such algorithm can obtain an
approximation factor better than 3

2 . Our main result in this section is the following.

▶ Theorem 14. Suppose that there is an α-approximation algorithm for the unweighted
2ECSS problem. Then, there is a 4α

2α+1 -approximation algorithm for unweighted FGC.

Theorem 3 follows from the above theorem by using the 4
3 -approximation algorithm of

Sebö and Vygen [14] for the unweighted 2ECSS problem. Before delving into the proof
of Theorem 14, we introduce some basic results on W -joins, which will be useful in our
algorithm and its analysis. Let G′ = (V ′, E′) be an undirected multigraph with no self-loops
and let {c′

e}e∈E′ be nonnegative costs on the edges.

▶ Definition 15 (W -join). Let W ⊆ V ′ be a subset of vertices with |W | even. A subset
J ⊆ E′ of edges is called a W -join if W is equal to the set of vertices of odd degree in the
subgraph (V ′, J).

The following classical result on finding a minimum-cost W -join is due to Edmonds.

▶ Theorem 16 ([13], Theorem 29.1). In strongly polynomial time, we can obtain a minimum
c′-cost W -join, or conclude that there is no W -join in G′.

FSTTCS 2021

9:8 Approximation Algorithms for Flexible Graph Connectivity

The W -join polytope is the convex hull of the incidence vectors of W -joins. Its dominant
has a simple linear description.

▶ Theorem 17 ([13], Corollary 29.2b). The dominant of the W -join polytope is given by
{x ∈ RE′

≥0 : x(δG′(S)) ≥ 1 ∀ S ⊊ V ′ s.t. |S ∩ W | odd}.

Consider an instance of unweighted FGC consisting of a multigraph G = (V, E = S ∪ U)
with a specified partition of E into safe and unsafe edges. We will assume that G is connected
and has no unsafe bridges, since otherwise the instance is infeasible. Let F ∗ denote an
optimal solution. Suppose that we have access to an α-approximation algorithm for the
2ECSS problem. We give two algorithms for obtaining two candidate solutions to the given
instance. We then argue that the cheaper of these two solutions is a 4α

2α+1 -approximate
solution.

Join-based Algorithm for Unweighted FGC. Let T be a spanning tree in G that maximizes
the number of safe edges. If |T ∩ S| = |V | − 1, then T is an optimal FGC solution for the
given instance, and we are done. Otherwise, let T ′ := T ∩ U be the (nonempty) collection of
unsafe edges in T . Let G′ = (V ′, E′) denote the graph obtained from G by contracting (safe)
edges in T \ T ′. We remove all self-loops from G′, but retain parallel edges that arise due to
edge contractions. Note that all edges in E′ are unsafe and T ′ is a spanning tree of G′. Let
W ′ denote the (nonempty) set of odd degree vertices in the subgraph (V ′, T ′). Let J ′ ⊆ E′

be a minimum-cardinality W ′-join in G′, which we can compute in polynomial time by using
Theorem 16. By our choice, the subgraph (V ′, T ′ ⊔ J ′) is connected and Eulerian, so it is
2-edge connected in G′. Consider the multiset F1 = T ⊔ J ′ consisting of edges in E; if an
edge e appears in both T ′ and J ′, then we include two copies of e in F1.
If F1 contains at most one copy of each edge in E, then F1 is FGC-feasible. Otherwise,
we modify F1 to get rid of all duplicates without increasing |F1|. Consider an unsafe edge
e ∈ E′ that appears twice in F1, i.e., e belongs to both T ′ and J ′. We remove a copy of e

from F1. If this does not violate FGC-feasibility, then we take no further action. Otherwise,
the second copy of e in F1 is an unsafe bridge in (V, F1) that induces a cut S in G. By our
assumption that G has no unsafe bridges, there is another edge e′ ∈ E that is in δ(S) but
not in F1. We include e′ in F1. This finishes the description of our first algorithm.

At the end of the de-duplication step, F1 is FGC-feasible and it contains at most one
copy of any edge e ∈ E. It is also clear that |F1| ≤ |T | + |J ′|. The following claim gives a
bound on the quality of our first solution.

▷ Claim 18. We have |J ′| ≤ 1
2 |F ∗ ∩ U|. Hence, |F1| ≤ |F ∗ ∩ S| + 3

2 |F ∗ ∩ U|.

Proof. We prove the claim by constructing a fractional W ′-join of small size. Recall that
we chose T so that T \ T ′ is a maximal safe forest in G, and we obtained G′ by contracting
connected components in (V, T \ T ′). By our assumption that G has no unsafe bridges, we
have that G′ is 2-edge connected and consists of only unsafe edges. Let B := F ∗ ∩ E′ denote
the set of unsafe edges in the optimal solution F ∗ that also belong to G′. Consider the vector
z := 1

2 χB where χB ∈ [0, 1]E′ is the incidence vector of B in G′. Let S′ be an arbitrary cut
in G′ and let S be the unique cut in G that gives rise to S′ when we contract (safe) edges
in T \ T ′. Since F ∗ is FGC-feasible and there are no safe edges in δG(S), we must have
|B ∩ δG′(S′)| ≥ 2. Consequently, z(δG′(S′)) = 1

2 |B ∩ δG′(S′)| ≥ 1. By Theorem 17, z lies in
the dominant of the W ′-join polytope, i.e., z dominates a fractional W ′-join. Since J ′ is
a min-cardinality W ′-join, |J ′| ≤ 1T z ≤ 1

2 |F ∗ ∩ U|. We bound the size of F1 by using the
trivial bound |T | ≤ |F ∗|:

|F1| ≤ |F ∗| + |J ′| ≤ |F ∗ ∩ S| + 3
2 |F ∗ ∩ U|. ◁

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:9

The above claim shows that the size of F1 can be charged to a certain combination of
the number of safe and unsafe edges in F ∗. Our second algorithm uses the α-approximation
for the 2ECSS problem as a subroutine. The solution returned by this algorithm has the
property that its size complements that of F1.

2ECSS-based Algorithm for Unweighted FGC. Consider the multigraph G′′ obtained
from G by duplicating every safe edge in E. Similarly, let F ′′ be the multiedge-set obtained
from F ∗ by duplicating every safe edge in F ∗. Clearly, (V, F ′′) is a 2-edge connected
subgraph of G′′ consisting of 2|F ∗ ∩ S| + |F ∗ ∩U| edges. Let F2 be the output of running the
α-approximation algorithm for the unweighted 2ECSS problem on G′′. Since F2 is 2-edge
connected and only safe edges can appear more than once in F2 (because G′′ only has
duplicates of safe edges), we can drop the extra copy of all safe edges while maintaining
FGC-feasibility in G. This finishes the description of our second algorithm.

The following claim is immediate.

▷ Claim 19. We have |F2| ≤ 2α|F ∗ ∩ S| + α|F ∗ ∩ U|.

We end this section with the proof of our main result on unweighted FGC.

Proof of Theorem 14. Given an instance of unweighted FGC, we compute two candidate
solutions F1 and F2 as given by the two algorithms described above. The solution F1 can be
computed using algorithms for the MST problem and the minimum-weight W ′-join problem,
followed by basic graph operations. The solution F2 can be computed using the given
α-approximation algorithm for the 2ECSS problem. We show that the smaller of F1 and F2 is
a 4α

2α+1 -approximate solution for the given unweighted FGC-instance. By Claims 18 and 19:

min(|F1|, |F2|) ≤ 2α

2α + 1 |F1| + 1
2α + 1 |F2| = 4α

2α + 1 |F ∗| ◀

As mentioned earlier, we have an example (see Figure 1 below) such that any algorithm for
unweighted FGC that starts with a maximal forest on safe edges achieves an approximation
guarantee of 3

2 or more.

. . .
v1 v2 v3 v4 v5 v2n−1

v2n

Figure 1 In this instance we have a graph on 2n vertices. The set of unsafe edges, shown using
solid lines, forms a Hamiltonian cycle. For each i = 1, . . . , n − 1, there is a safe edge, shown using
a thick dashed line, between v2i and v2n. The solution consisting of all unsafe edges is feasible,
and any feasible solution must contain all unsafe edges, so OPT = 2n. Any feasible solution that
contains a maximal forest on safe edges has size at least 3n − 1.

FSTTCS 2021

9:10 Approximation Algorithms for Flexible Graph Connectivity

4 A 4-Approximation Algorithm for (k, 1)-FGC

Our main result in this section is a 4-approximation algorithm for (k, 1)-FGC (Theorem 4).
Recall that in an instance of (k, 1)-FGC, we have a multigraph G = (V, E = S ∪ U) with a
partition of the edge-set into safe and unsafe edges, nonnegative edge-costs {ce}e∈E , and a
positive integer k. The objective is to find a minimum-cost subgraph that remains k-edge
connected against the failure of any one unsafe edge. We remark that for the k = 1 case,
Theorem 1 yields a better approximation guarantee than Theorem 4. Let F ∗ denote an
optimal solution to the given instance. The following characterization of (k, 1)-FGC solutions
is straightforward.

▶ Proposition 20. F is feasible for (k, 1)-FGC if and only if for all nonempty S ⊊ V , the
edge-set F ∩ δ(S) contains k safe edges or k + 1 edges.

The above proposition suggests a two-stage strategy for (k, 1)-FGC. Suppose that in
the first stage we compute a cheap k-edge connected spanning subgraph H1 = (V, F1) of
G without making any distinction between safe and unsafe edges. For any nonempty cut
S ⊊ V , we have δH1(S) ≥ k, so by Proposition 20, the only hindrance to the (k, 1)-FGC
feasibility of F1 are k-cuts in H1 that contain at least one unsafe edge. We call such cuts
deficient. The subproblem remaining for the second stage is an augmentation problem for
these deficient cuts, which is special case of the (minimum-cost) f -connectivity problem.

In the f-connectivity problem we have an undirected multigraph G′ = (V ′, E′), non-
negative edge-costs {c′

e}e∈E′ , and a cut-requirement function f : 2V ′ → {0, 1} satisfying
f(∅) = f(V) = 0. We assume access to f via a value oracle that takes as input a vertex-set
S ⊆ V and outputs f(S). An edge-set F ⊆ E′ is feasible for the f -connectivity problem if
|F ∩ δG′(S)| ≥ f(S) for every S ⊆ V ′. In other words, F is feasible if and only if for every
cut S with f(S) = 1 there is at least one F -edge in this cut. The objective is to find a
feasible F ⊆ E′ that minimizes c(F). The f -connectivity problem can be modeled as an
integer program whose linear relaxation (P) is stated below. For each edge e ∈ E′ the LP
has a nonnegative variable xe that models the extent to which the edge e is picked by the
solution.

min
∑
e∈E′

c′
exe (P)

subject to x(δG′(S)) ≥ 1 ∀ S ⊆ V ′ s.t. f(S) = 1
xe ≥ 0 ∀ e ∈ E′.

The f -connectivity problem has received a lot of attention in Combinatorial Optimization
since it captures many well-known network design problems. In particular, it captures the
generalized Steiner network problem. Williamson et al. [17] gave a primal-dual framework
to obtain approximation algorithms for the f -connectivity problems when f is a proper
function, and more generally, when f is an uncrossable function (also see the book chapter by
Geomans and Williamson [7] for an excellent survey on primal-dual algorithms for network
design problems).

▶ Definition 21 (Uncrossable function). A function f : 2V ′ → {0, 1} is called uncrossable if
f(V ′) = 0 and f satisfies the following two conditions:

(i) f is symmetric, i.e., f(S) = f(V ′ \ S) for all S ⊆ V ′;
(ii) for any two sets A, B ⊆ V ′ with f(A) = f(B) = 1, either f(A ∩ B) = f(A ∪ B) = 1 or

f(A \ B) = f(B \ A) = 1 holds.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:11

Under the assumption that minimal violated sets can be computed efficiently throughout
the algorithm, the primal-dual algorithm of [17] gives a 2-approximation for the f -connectivity
problem with an uncrossable function f . There is no explicit result in [17] that can be quoted
verbatim and applied for our purposes, so we reference the most relevant lemma from their
work.

▶ Definition 22 (Minimal violated sets). Let f : 2V ′ → {0, 1} be a cut-requirement function
and F ⊆ E′ be an edge-set. A vertex-set S ⊆ V ′ is said to be violated, w.r.t. f and F , if
f(S) = 1 and F ∩ δG′(S) = ∅. We say that S is a minimal violated set if S is inclusion-wise
minimal among all violated sets.

▶ Theorem 23 ([17], Lemma 2.1). Let f : 2V ′ → {0, 1} be an uncrossable function that is
given via a value oracle. Suppose that for any F ⊆ E′ we can compute all minimal violated
sets (w.r.t. f and F) in polynomial time. We can compute a 2-approximate solution to the
f -connectivity problem in polynomial time.

We now describe a two-stage algorithm that produces a 4-approximate (k, 1)-FGC solution
in polynomial time, thereby proving Theorem 4.

Description of Our 4-Approximation Algorithm for (k, 1)-FGC. Our algorithm runs in two
stages. In the first stage, we compute a 2-approximate k-edge connected spanning subgraph
H1 = (V, F1) of G without making any distinction between safe and unsafe edges; since F ∗

is k-edge connected, the k-ECSS instance is feasible. This can be done using Jain’s iterative
rounding algorithm [8]. Next, we compute the collection C = {S ⊊ V : |δ(S) ∩ F1| = k}
of all (minimum) k-cuts in H1. Consider the cut-requirement function f : 2V → {0, 1}
where f(S) is 1 if and only if S ∈ C and F1 ∩ δ(S) ∩ U ̸= ∅. Consider an instance of the
f -connectivity problem for the graph G′ := G − F1 with edge-costs {ce}e∈E\F1 ; note that
F ∗ \ F1 is feasible to this f -connectivity instance. In the second stage, we use Theorem 23 to
compute a 2-approximate solution F2 ⊆ E \ F1 for this f -connectivity instance. We return
the solution F = F1 ⊔ F2.

To prove Theorem 4, we need to argue the following: (i) f is uncrossable; (ii) we can
compute minimal violated sets (w.r.t f and any F ′ ⊆ E \ F1) in polynomial time; (iii) F is a
feasible (k, 1)-FGC solution; (iv) c(F) ≤ 4c(F ∗); (v) the whole algorithm runs in polynomial
time. We defer the proofs of (i) and (ii) to the end of this section. Assuming that they are
true, (v) follows from Theorem 23. The following lemma covers (iii) and (iv).

▶ Lemma 24. The edge-set F is feasible for (k, 1)-FGC and satisfies c(F) ≤ 4c(F ∗).

Proof. We first argue that F is feasible. Since F1 and F2 are edge-disjoint, F is a subgraph
of G. We use the characterization of feasible solutions given by Proposition 20. Let S ⊊ V be
an arbitrary nonempty cut. Since H1 = (V, F1) is a k-edge connected subgraph of G, we have
|F1 ∩ δ(S)| ≥ k. If |F1 ∩ δ(S)| ≥ k + 1, then |F ∩ δ(S)| ≥ k + 1, and we are done. Otherwise,
S is a k-cut in H1, i.e., S ∈ C. If F1 ∩ δ(S) contains only safe edges, then F ∩ δ(S) contains
k safe edges, and we are done. Otherwise, by definition, f(S) = 1. Next, by feasibility of F2
for f -connectivity, we have F2 ∩ δ(S) ̸= ∅. So, |F ∩ δ(S)| = |F1 ∩ δ(S)| + |F2 ∩ δ(S)| ≥ k + 1,
and we are done.

We show that F is 4-approximate by arguing that c(F1) and c(F2) are bounded by 2c(F ∗).
The bound on c(F1) is immediate from the fact that F ∗ is feasible for the k-ECSS instance
considered in Stage 1. Next, by feasibility of F ∗ \ F1 for the f -connectivity instance, we have
c(F2) ≤ 2c(F ∗ \ F1) ≤ 2c(F ∗), so we are done. ◀

FSTTCS 2021

9:12 Approximation Algorithms for Flexible Graph Connectivity

▷ Claim 25. For any F ′ ⊆ E \ F1, we can compute all minimal violated sets w.r.t. f and F ′.

Proof. Since a graph on n vertices has at most O(n2) min-cuts [9], we have |C| = O(|V |2).
Using standard network flow algorithms, we can compute C in polynomial time (for instance,
see [4]). Since we have explicit access to C, we have a value oracle for f . Fix some F ⊆ E \F1.
Any violated set must have f(S) = 1, so there are at most |C| many violated sets. We can
exhaustively go through all violated sets and find the minimal elements. ◁

Lastly, we show that f is uncrossable.

▶ Lemma 26. f is uncrossable.

Proof. We check if the two properties of an uncrossable function hold for f (recall Defin-
ition 21); f(V) = 0 is trivial. Symmetry of f follows from symmetry of cuts in undir-
ected graphs. To check the second property, consider nonempty A, B ⊊ V satisfying
f(A) = f(B) = 1. By definition of f , in the subgraph H1 = (V, F1), both A and B are
(minimum) k-cuts with at least one unsafe edge on their respective boundaries. Let e1
be an unsafe edge in δH1(A) and let e2 be an unsafe edge in δH1(B). Let r ∈ V be an
arbitrary vertex. By symmetry of the cut function, we may assume without loss of gen-
erality that r /∈ A ∪ B. If A ∩ B = ∅, then f(A \ B) = f(B \ A) = 1, so we are done. If
A ⊆ B or A ⊇ B, then f(A ∩ B) = f(A ∪ B) = 1, so we are done. Thus, we may assume
that A ∩ B, V \ (A ∪ B), A \ B, B \ A are all nonempty. By submodularity of the function
d(S) := |δH1(S)|, we get:

|δH1(A ∩ B)| = |δH1(A ∪ B)| = |δH1(A \ B)| = |δH1(B \ A)| = k. (1)

Furthermore, we also have:

F1 ∩ E(A \ B, B \ A) = ∅ and F1 ∩ E(A ∩ B, V \ (A ∪ B)) = ∅, (2)

where E(S, T) denotes the set of edges in G with one endpoint in S and the other endpoint
in T . We finish the proof by doing a case analysis on e1 and e2. By (2), exactly one of
the following happens: (i) e1 ∈ E(A \ B, V \ (A ∪ B)); or (ii) e1 ∈ E(A ∩ B, B \ A). If (i)
happens, then f(A \ B) = f(A ∪ B) = 1. Otherwise, f(A ∩ B) = f(B \ A) = 1. We do a
similar analysis on e2. Exactly one of the following happens: (a) e2 ∈ E(B \ A, V \ (A ∪ B));
or (b) e2 ∈ E(A ∩ B, A \ B). If (a) happens, then f(B \ A) = f(A ∪ B) = 1. Otherwise,
f(A ∩ B) = f(A \ B) = 1. It is easy to verify that for each of the four combinations, we
either have f(A ∩ B) = f(A ∪ B) = 1 or we have f(A \ B) = f(B \ A) = 1. ◀

5 The Capacitated k-Connected Subgraph Problem

In this section we consider the Cap-k-ECSS problem. We are given a multigraph G = (V, E),
nonnegative integer edge-capacities {ue}e, nonnegative edge-costs {ce}e, and a positive
integer k. Our goal is to find a spanning subgraph H = (V, F) such that for all nonempty
sets R ⊊ V we have

∑
e∈δ(R)∩F ue ≥ k, and the cost c(F) is minimized.

Given an instance of the Cap-k-ECSS problem, we may assume without loss of generality
that ue ∈ {1, . . . , k} for all e ∈ E (we can drop edges with zero capacity and replace
edge-capacities ≥ k + 1 by k). We also assume that the instance is feasible. This can
be verified in polynomial time by checking if G has any cut with capacity less than k.
Let umax = maxe∈E ue denote the maximum capacity of an edge in G. Our main result
in this section is a min(k, 2umax)-approximation algorithm for the Cap-k-ECSS problem
(Theorem 5); our algorithm is based on a reduction to the min-cost k arborescence problem.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:13

Description of Our Algorithm for the Cap-k-ECSS Problem

Let D = (V, A) be the directed graph obtained from G by replacing every edge xy ∈ E by uxy

pairs of bidirected arcs (x, y), (y, x), each with the same cost as the edge xy (thus, each edge
e in G has 2ue corresponding arcs in D, each of cost ce). Designate an arbitrary vertex r ∈ V

as the root. By feasibility of the Cap-k-ECSS instance, we know that D contains an r-out
k-arborescence (see Theorem 9). We use Theorem 10 on (D, c) to obtain a minimum-cost
r-out k-arborescence T ′ in polynomial time. Let F ′ be the set of all edges e ∈ E for which at
least one of the corresponding 2ue arcs in D appears in the optimal r-out k-arborescence T ′.

▶ Lemma 27. The edge-set F ′ obtained by the above algorithm is feasible for the given
Cap-k-ECSS instance and it has cost at most c(T ′).

Proof. Let R ⊊ V \ {r} be an arbitrary nonempty vertex-set that excludes the root vertex r.
Since T ′ contains k arc-disjoint r-out arborescences, |δin

T ′(R)| ≥ k. For each edge e ∈ E, at
most ue of the corresponding arcs in D can appear in the set of T ′-arcs entering R. Thus,∑

e∈δ(R)∩F ′ ue ≥ |δin
T ′(R)| ≥ k, and F ′ is a feasible solution for the Cap-k-ECSS instance, as

required. For any edge e ∈ E, we only include a single copy of e in F ′ whenever any of the
corresponding 2ue arcs appear in T ′, so we have c(F ′) ≤ c(T ′). ◀

We now prove Theorem 5 by showing that F ′ is the desired min(k, 2umax)-approximate
solution.

Proof of Theorem 5. Let (G(V, E), u, c, k) be a feasible instance of the Cap-k-ECSS problem.
Let D = (V, A) be the digraph and T ′ be the r-out k-arborescence as constructed by our
algorithm. Let F ∗ be an optimal solution to the Cap-k-ECSS instance, and let D∗ = (V, A∗)
be the digraph obtained from (V, F ∗) by replacing every edge xy ∈ F ∗ by uxy pairs of
bidirected arcs (x, y), (y, x) each with the same cost as edge xy. Let r ∈ V be the root vertex
fixed by the algorithm. By feasibility of F ∗ (for the Cap-k-ECSS instance), we know that
D∗ contains an r-out k-arborescence. Let T ∗ denote an optimal r-out k-arborescence in
D∗. Since D∗ is a subgraph of D and T ′ is an optimal r-out k-arborescence in D, we have
c(T ′) ≤ c(T ∗). By Lemma 27, c(F ′) ≤ c(T ′), so to prove the theorem it suffices to argue
that c(T ∗) ≤ min(t, 2umax)c(F ∗). To this end, observe that for any edge e ∈ F ∗ there can
be at most 2ue arcs in A∗ by construction of D∗. Hence, c(T ∗) ≤ c(A∗) ≤ 2umaxc(F ∗) holds.
Next, by definition, T ∗ can be partitioned into k (arc-disjoint) r-out arborescences, each of
which can use at most one of the 2ue arcs corresponding to an edge e of G. It follows that
for each edge e ∈ F ∗ at most k of the corresponding 2ue arcs can appear in T ∗. Therefore,
c(T ∗) ≤ kc(F ∗). This completes the proof. ◀

References
1 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible Graph Connectivity.

In Proceedings of the 21st Integer Programming and Combinatorial Optimization Conference,
volume 12125 of Lecture Notes in Computer Science, pages 13–26, 2020. doi:10.1007/
978-3-030-45771-6_2.

2 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible Graph Connectivity.
Mathematical Programming, pages 1–33, 2021. doi:10.1007/s10107-021-01664-9.

3 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Ap-
proximability of Capacitated Network Design. Algorithmica, 72(2):493–514, 2015. doi:
10.1007/s00453-013-9862-4.

FSTTCS 2021

https://doi.org/10.1007/978-3-030-45771-6_2
https://doi.org/10.1007/978-3-030-45771-6_2
https://doi.org/10.1007/s10107-021-01664-9
https://doi.org/10.1007/s00453-013-9862-4
https://doi.org/10.1007/s00453-013-9862-4

9:14 Approximation Algorithms for Flexible Graph Connectivity

4 Lisa Fleischer. Building Chain and Cactus Representations of All Minimum Cuts from
Hao-Orlin in the Same Asymptotic Run Time. Journal of Algorithms, 33(1):51–72, 1999.
doi:10.1006/jagm.1999.1039.

5 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the Smallest k-Edge Connected Spanning Subgraph by LP-rounding. Networks, 53(4):345–357,
2009. doi:10.1002/net.20289.

6 Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva Tardos,
and David P. Williamson. Improved Approximation Algorithms for Network Design Problems.
In Proceedings of the 5th Symposium on Discrete Algorithms, pages 223–232, 1994. doi:
10.5555/314464.314497.

7 Michel X. Goemans and David P. Williamson. The Primal-Dual Method for Approximation
Algorithms and its Application to Network Design Problems, chapter 4, pages 144–191. PWS
Publishing Company, Boston, MA, 1997. URL: https://math.mit.edu/~goemans/PAPERS/
book-ch4.pdf.

8 Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

9 David R. Karger. Global Min-Cuts in RN C, and Other Ramifications of a Simple Min-Cut
Algorithm. In Proceedings of the 4th Symposium on Discrete Algorithms, pages 21–30, 1993.
doi:10.5555/313559.313605.

10 Samir Khuller and Uzi Vishkin. Biconnectivity Approximations and Graph Carvings. Journal
of the ACM, 41(2):214–235, 1994. doi:10.1145/174652.174654.

11 Thomas L. Magnanti and Richard T. Wong. Network Design and Transportation Planning:
Models and Algorithms. Transportation Science, 18(1):1–55, 1984. doi:10.1287/trsc.18.1.1.

12 Polina Rozenshtein, Aristides Gionis, B. Aditya Prakash, and Jilles Vreeken. Reconstructing
an Epidemic Over Time. In Proceedings of the 22nd International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 1835–1844, 2016. doi:10.1145/2939672.2939865.

13 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer-Verlag Berlin Heidelberg, 2003.

14 András Sebö and Jens Vygen. Shorter Tours by Nicer Ears: 7/5-Approximation for the Graph-
TSP, 3/2 for the Path Version, and 4/3 for Two-Edge-Connected Subgraphs. Combinatorica,
34(5):597–629, 2014. doi:10.1007/s00493-014-2960-3.

15 Lawrence V. Snyder, Maria P. Scaparra, Mark S. Daskin, and Richard L. Church. Planning
for Disruptions in Supply Chain Networks, pages 234–257. Institute for Operations Research
and the Management Sciences (INFORMS), 2014. doi:10.1287/educ.1063.0025.

16 Vijay V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2003. doi:
10.1007/978-3-662-04565-7.

17 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A Primal-
Dual Approximation Algorithm for Generalized Steiner Network Problems. Combinatorica,
15(3):435–454, 1995. doi:10.1007/BF01299747.

https://doi.org/10.1006/jagm.1999.1039
https://doi.org/10.1002/net.20289
https://doi.org/10.5555/314464.314497
https://doi.org/10.5555/314464.314497
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf
https://doi.org/10.1007/s004930170004
https://doi.org/10.5555/313559.313605
https://doi.org/10.1145/174652.174654
https://doi.org/10.1287/trsc.18.1.1
https://doi.org/10.1145/2939672.2939865
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1287/educ.1063.0025
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/BF01299747

	1 Introduction
	2 A (k+1)-Approximation Algorithm for (1,k)-FGC
	3 Unweighted FGC
	4 A 4-Approximation Algorithm for (k,1)-FGC
	5 The Capacitated k-Connected Subgraph Problem

