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—— Abstract

The non-existence of polynomial kernels for OR- and AND-compositional problems is now a well-
established result. Some of these problems have adaptive or non-adaptive polynomial Turing kernels.
Up to now, most known polynomial Turing kernels are non-adaptive and most of them are of the
conjunctive or disjunctive kind. For some problems it has been conjectured that the existence
of polynomial Turing kernels is unlikely. For instance, either all or none of the WK][1]-complete
problems have polynomial Turing kernels. While it has been conjectured that they do not, a proof
tying their non-existence to some complexity theoretic assumption is still missing and seems to be
beyond the reach of today’s standard techniques.

In this paper, we prove that OR-compositional problems and all WK][1]-hard problems do not
have conjunctive polynomial kernels, a special type of non-adaptive Turing kernels, under the
assumption that coNP ¢ NP /poly. Similarly, it is unlikely that AND-compositional problems have
disjunctive polynomial kernels. Moreover, we present a way to prove that the parameterized versions
of some @P-hard problems, for instance, ODD PATH on planar graphs, do not have conjunctive
or disjunctive polynomial kernels, unless coNP C NP/poly. Finally, we identify a problem that is
unlikely to have either a conjunctive or disjunctive polynomial kernel, unless coNP C NP /poly, due
to a reduction from an NP-hard problem instead: WEIGHTED ODD PATH on planar graphs.
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1 Introduction

Kernelization [12] is a central notion in parameterized complexity. Given a parameterized
problem, a kernelization procedure reduces an instance of size n and parameter k to a size
that only depends on the parameter in polynomial time. A polynomial kernel is the result
of a kernelization procedure where one can find a single instance equivalent to the original
instance but of size polynomial in k.

However, there are problems that do not admit polynomial kernels under common
complexity theoretic assumptions. In particular, Fortnow and Santhanam [13] together with
Bodlaender et al. [2] proved that, so called, OR-compositional problems do not have polynomal
kernels, unless NP C coNP /poly, which means that the polynomial hierarchy collapses to the
third level [25]. Polynomial parameter transformations (PPT) also allowed to further extend
the class of problems unlikely to have polynomial kernels [4]. Some of these problems are,
for instance, LONGEST PATH, CLIQUE(VC), SET COVER(|U]), and CONNECTED VERTEX
COVER. If nothing is otherwise indicated, these problems are parameterized by the targeted
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solution size k. Here (VC) indicates that the problem is parameterized by the size of the
vertex cover, and |U| indicates that the problem is parameterized by the universe size. The
exact definitions of all problems in this paper can be found in [12], unless otherwise stated.

Later, Drucker [11] extended these results by proving that AND-compositional problems
do not have polynomial kernels, unless there are statistical zero knowledge proofs for all
the problems in NP, which is a stronger condition than NP C coNP /poly. Thus, the list
of problems that do not have polynomial kernels also includes TREEWIDTH, INDEPENDENT
SET(w), and 3-COLORING(w), where w indicates parameterization by size of the treewidth.
Moreover, Drucker extended the previous results to include the unlikely existence of prob-
abilistic polynomial kernels, for both OR and AND-compositional problems, with a small
enough error probability.

Guo was the first to ask the question whether one could extend the notion of efficient
kernelization to include polynomial Turing kernelizations [5], where instead of building one
reduction, an algorithm builds many reductions from the original problem into instances
of smaller size (only depending polynomially on the parameter), then the algorithm has
access to an oracle solving such instances, and outputs an answer for the original instance
in polynomial time. The first example of such a kernel, by Raible et al. [1], is the LEAF
OUT-BRANCHING problem, in which, given a directed graph G and an integer k, one needs to
find whether G contains a directed tree with at least k leaves. If the root of the tree is fixed,
this problem admits a kernel of size O(k?), thus, by fixing all possible n vertices one can
build the kernel for each possible root and use the oracle to find out whether at least one of
these roots extends to a tree with at least k vertices, if none of them do, the graph does not
contain such a tree, and otherwise the answer is yes. We call such a Turing kernel formed as
the disjunction of n (or more) different instances a disjunctive Turing kernel, or a disjunctive
kernel for short. Analogously one can find in the literature other examples of disjunctive
kernels for OR-compositional problems such as CLIQUE with bounded degree, CLIQUE(VC),
etc. One can analogously find conjunctive Turing kernelizations, or conjunctive kernelizations,
for AND-compositional problems in some cases, however, not all such problems seem to
admit one of these kernelizations. The first instance of an adaptive Turing kernelization that
is neither conjunctive nor disjunctive is for LONGEST PATH in planar graphs by Jansen [15].
In this paper, unless otherwise specified, all mentions of conjunctive, disjunctive, or Turing
kernelizations refer to polynomial conjunctive, disjunctive, or Turing kernelizations.

Hermelin et al. [14] propose a completeness theory for Turing kernelization. Using the
class of problems WK]|1], characterized among others by SET COVER(|U]), the authors
conjecture that problems that are hard for this class do not admit Turing kernelizations,
however, the authors do not provide complexity-theoretic consequences for the non-existence
of Turing kernels for those problems.

On the other hand, Witteveen, Bottesch, and Torenvliet [24] show that the kernelization
hierachy is strict by using diagonalization arguments to show that there exist problems that
have Turing kernels but do not have non-adaptive Turing kernels such as disjunctive or
conjunctive kernels, and problems that have non-adaptive Turing kernels but do not admit
polynomial kernels. However, the presented problems to prove the strictness of the hierarchy
are not natural.

It is worth mentioning that there are problems for which polynomial Turing kernels are
unlikely due to lower bounds on their FPT running time. Any problem with a polynomial
Turing kernel, whose non-parameterized version is in EXPTIME, will have a single expo-
nential FPT algorithm consisting of running the algorithm for the polynomial Turing kernel
and solving any calls to the oracle with the non-parameterized algorithm. For instance,



E. Burjons and P. Rossmanith

Cygan, Pilipczuk and Pilipczuk [7] proved that the EDGE CLIQUE COVER problem has no
22O(k)poly(n) algorithm unless the ETH hypothesis fails. Thus, it is equally unlikely that
there exist subexponential Turing kernels for EDGE CLIQUE COVER.

In this paper, we extend the proofs of nonexistence of polynomial kernels to the nonex-
istence of conjunctive kernels in the case of OR-compositional problems and disjunctive
kernels in the case of AND-compositional problems under the same complexity theoretic
assumptions also in the probabilistic case. We prove, thus, that WK][1]-hard problems do
not admit conjunctive kernels, unless NP C coNP /poly. Using these results, we consider
XOR-compositional problems, which naturally correspond to problems counting parity, and
prove that if a reduction from an NP-hard problem is possible these types of problems do
not have conjunctive or disjunctive kernels, unless coNP C NP /poly. We also prove that if a
reduction from a @P-hard problem is possible XOR-cross-compositional problems do not
have a conjunctive or disjunctive kernel, unless NP C coNP/poly. By way of an example,
we find that ODD PATH on planar graphs, the problem of finding whether a planar graph
contains an odd number of paths of length k, is unlikely to have conjunctive or disjunctive
kernels.

Furthermore, we find an example of problem that does not have conjunctive or disjunctive
kernels using the traditional complexity-theoretic approach to lower bounds, i.e., through a
reduction from an NP-hard problem, in this case, LONGEST PATH. The problem WEIGHTED
ODD PATH on planar graphs, a weighted version of the ODD PATH problem, does not have
conjunctive or disjunctive kernels, unless NP C coNP/poly. We hope that this approach,
using the classic complexity-theoretic results to achieve the lower bound, can be used to
prove similar lower bounds on the existence of conjunctive and disjunctive kernels for more
classical FPT problems in the future.

These lower bounds do not provide lower bounds for the existence of Turing kernels in
general, but they do provide lower bounds for some of the most common kinds of Turing
kernelizations.

2 Lower Bounds for Conjunctive Kernels

First we want to prove that there are no conjunctive kernels for OR-compositional para-
meterized problems. In order to do that, we first formally define the notion of conjunctive
kernelization.

» Definition 1 (Conjunctive Compression). Given two parameterized problems L and R, a
conjunctive compression is an algorithm that given an instance (x, k) for L of size n, it outputs
in polynomial time a set of instances (x}, k}) for R with 1 <14 < p(n) and |z}|, k; < q(k) for

every i for some polynomials p(-) and ¢(-), such that (z,k) € L if and only if (z},%}) € R for
every 4.

2.1 Conjunctive OR-distillations

To prove that this type of kernels do not exist we have to go to the original proof of
nonexistence of polynomial compressions for OR-distillable problems. Given a problem L,
we define the problem OR(L), where the input is a set of instances z1,...,z; of length at
most n, and the task is to decide whether there exists an i such that x; € L.

First we define distillation algorithm.
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» Definition 2 (OR-Distillation Algorithm [2]). Let L, R C {0,1}* be a pair of languages and
let t: N — N\ {0} be a function. Then a t-bounded OR-distillation algorithm from L into R
is an algorithm A that for every n, given t(n) input strings 1, ..., Ty, with |z;| = n for
all ¢, A runs in polynomial time and outputs a string y of length at most ¢(n) - logn such
that y € R if and only if z; € L for some i € {1,...,t(n)}.

Essentially, an OR~distillation for a problem L is a reduction from OR(L) into R. Recall
that, an NP-hard problem cannot have an OR-distillation, unless NP C coNP /poly [13]. A
Conjunctive OR-Distillation Algorithm is an extension of this definition.

» Definition 3 (Conjunctive OR-Distillation Algorithm). Let L, R C {0,1}* be a pair of
languages and let t: N — N\ {0} be a function. Then a t-bounded conjunctive OR-
distillation algorithm from L into R is an algorithm A that for every n, given t(n) input
strings 1, ..., Ty(n), with [2;| = n for all i, A runs in polynomial time and outputs p(n)
strings y1, ..., Yp(n) Of length at most (n) - logn such that y; € R for every i € {1,...,p(n)}
if and only if z; € L for some j € {1,...,t(n)}.

We can use the same procedure as in [13] to rule out the existence of Conjunctive
OR-Distillation Algorithms for NP-hard languages.
We take the pigeonhole lemma from Fomin et al. [12].

» Lemma 4. Let X,Y be finite sets, t be a natural number and 3: Xt — Y be a mapping.
We say that y € Y covers x € X if there exist x1,...,xy such that ©; = x for some 1,
B((x1,...,2¢)) =y. Then at least one element from'Y covers at least | X|/{/|Y| elements of
X.

Now we are ready to prove the following theorem.

» Theorem 5. If there is a t-bounded Conjunctive OR-distillation algorithm from a language
L C {0,1}* into a language R C {0,1}* for some polynomially bounded function t, then
L € NP /poly. In particular if L is NP-hard, then coNP C NP /poly.

Proof. Let n € N and L, = {2 € L | || = n}. Let us assume that there is a t-
bounded Conjunctive OR-distillation algorithm A from L into R. Then, for each input
(@1, Teny) € HI("), A outputs yi,...,Ypmn) such that |y;| < t(n)-logn and y; € R for
at least one i. Define 3: L™ Rgt(n) log(n) as follows: If A(z1,...,Z¢m)) = Y1, Yp(n)
then define 3(x1,...,24)) = y; where i is the smallest index for which y; € R. Now apply
Lemma 4 to this function g with ¢ = ¢(n), X = L and Y = R. The lemma then states that
there is a z; € R that covers at least |Ly|/|R(n)10g(n) \Ut(n) > |L,|/n elements from L.

Let Z; the set of x € L,, covered by z;. Then we consider the set L,, \ Z; and find in the
same way a z that covers as many instances from L,, \ Z; as possible. Repeating this for 2n
rounds we get a set of z;’s that together cover all of L,, just as in the proof by Fortnow and
Santhanam [13]: In each round the number of uncovered elements is reduced by a factor of
1 —1/nand (1—1/n)?" < 27" As|L| < 2" the number of uncovered elements in the end
is less than one and hence it is exactly zero. In conclusion we have shown that there is a
polynomial size subset S,, of elements of R that covers the whole L,,.

We want to show next how a nondeterministic TM can decide L in polynomial time with
the help of polynomial advice. For an input = of size n the TM does the following: First,
it guesses x1,...,Ty,) such that x = z; for some ¢ and z; € L for every j # i. Then it
computes A(Z1,...,ZTyn)) = Y1, - -, Yp(n) and checks if y; € S, for at least one 7. The set S,
is read from the advice tape. If there is indeed such a y; € S,, the machine accepts = and
rejects it otherwise.
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If « € L then the TM will accept: As x is covered by some y € S, there must be such an
T1,...,Typ) that lets the machine accept x and it can guess it nondeterministically. On the

other hand, if # € L it is easy to see that the TM cannot accept for any guessed z1, ..., Zy()-

If L is NP-hard then L is coNP-hard. This means that every problem in coNP can be
reduced to L. Thus, coNP C NP /poly. <

2.2 Conjunctive Kernels

In order to use Theorem 5 to prove that some parameterized problems are unlikely to
have conjunctive kernelizations, we use OR-cross-compositions and polynomial parameter
transformations.

» Definition 6 (Bodlaender, Jansen, and Kratsch [3]). An equivalence relation R on the set
¥* is a polynomial equivalence relation if there exists an algorithm that given two strings
x,y € X* resolves whether z is equivalent to y in polynomial time in |z| + |y|, and for any
finite set S C X%, R partitions the elements of S into at most (max,eg |z|)°™") classes.

» Definition 7 (Bodlaender, Jansen, and Kratsch [3]). Let L C ¥* be a language and
Q C X* x N be a parameterized language. We say that L OR-cross-composes into Q) if there
exists a polynomial equivalence relation R and an algoritm A called an OR~cross-composition
such that A takes as input x1,...,2; € ¥* equivalent with respect to R, and outputs one
instance (y, k) € ¥* x N such that k is polynomial in the size of z; and logt, and (y, k) € Q
if and only if there exists one index 4 such that x; € L.

In particular, for any problem L, we have a trivial OR-cross-composition to OR(L)
parameterized by the size of the largest instance |x;| = n.

» Theorem 8. Let L C ¥* be an NP-hard language. If L OR-cross-composes into a
parameterized problem @Q and Q has a conjunctive kernelization, then coNP C NP /poly.

Proof Sketch. The proof is equivalent to that in Bodlaender et al. [2], for polynomial
compressions. Given an NP-hard language L and an OR-cross-composition from L into a
parameterized problem @, if @ had a conjunctive kernelization, one would be able to build a
conjunctive distillation for L. <

From here we are only left to list problems that are unlikely to have a conjunctive
kernelization because an NP-hard problem OR-cross-composes into them. These problems,
called OR-compositional, form an extensive list, a subset of them would be.

» Corollary 9. Unless coNP C NP /poly, none of the following FPT problems have conjunctive
kernelizations: LONGEST PATH, LONGEST CYCLE, EXAcT CYCLE, SHORT CHEAP TOUR,
GRAPH MINOR ORDER TEST, BOUNDED TREEWIDTH SUBGRAPH TEST, STEINER TREE,
and CLIQUE(VC).

Proof. ExacT CYCLE, SHORT CHEAP TOUR, GRAPH MINOR ORDER TEST and BOUNDED
TREEWIDTH SUBGRAPH TEST are defined in Bodlaender et al. [2], the authors provide
OR-cross-compositions from their own unparameterized versions for these problems together
with LONGEST PATH and LONGEST CYCLE. Dom, Lokshtanov, and Saurabh provide an
OR-cross-composition for STEINER TREE [8], and finally, the OR-cross-composition for
CLIQUE(VC) is due to Bodlaender Jansen and Kratsch [3]. <
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Most of the problems on this list cross-compose from their own unparameterized versions,
or from a similar problem. But that is not the only option. Once one has a list of problems
unlikely to have conjunctive kernelizations one can extend it using Polynomial parameter
transformations (PPT).

» Definition 10 (Bodlaender, Thomassé, and Yeo [4]). Given two parameterized problems P
and @ an algorithm A is a PPT from P to @ if given an instance (z, k) for P, A transforms
it in polynomial time into an instance (z/, k') for @ such that &’ is polynomial in k and
(x,k) € P if and only if (', k') € Q.

At this point it is easy to see that, if a problem @ has a conjunctive kernelization, and
there is a PPT from P to @ then P also has a conjunctive kernelization (or compression).

Due to the existence of appropriate PPTs the following problems are also unlikely to have
conjunctive kernelizations:

» Corollary 11. Unless coNP C NP/poly, none of the following FPT problems have con-
junctive kernelizations: PATH PACKING, CYCLE PACKING, RED BLUE DOMINATING SET,
SET COVER(|U|), CONNECTED VERTEX COVER, and CAPACITADED VERTEX COVER.

Proof. There are PPTs for PATH PACKING and CYCLE PACKING from LONGEST PATH and
LONGEST CYCLE respectively by Fomin et al. [12]. RED BLUE DOMINATING SET has a
PPT from its own colored version due to Dom Lokstanov and Saurabh [8], furthermore SET
CovER(|U]), CONNECTED VERTEX COVER and CAPACITADED VERTEX COVER have PPTs
to RED BLUE DOMINATING SET, as was also shown in [8, 12]. <

The list of problems unlikely to have conjunctive kernelization through PPTs is longer,
we only presented some examples.

3 Lower Bounds for Disjunctive Kernels

From the results we have seen so far for OR~compositional problems, it would seem reasonable
to find similar results for AND-compositional problems, however, the proof that AND-
distillable problems are unlikely to have compressions was not as straightforward. Drucker [11],
proved that it is also unlikely that OR-distillable problems have probabilistic compressions
and more importantly, that AND-distillable problems are also unlikely to have deterministic
or probabilistic compressions.

3.1 Disjunctive AND-distillations

A simplified version of Drucker’s approach [11] was presented in a conference version of the
paper [10] and in the following book [9]. This simplified version does not have the same
scope as the full proof but it can be used to prove that AND-distillable problems are unlikely
to have deterministic compressions.

We now extend this result to state that AND-distillable problems are unlikely to have
deterministic disjunctive compressions.

The notion of a disjunctive algorithm can be defined analogously the to the conjunctive
version.

» Definition 12 (Disjunctive Distillation Algorithm). Let L, R C {0,1}* be a pair of languages
and let t: N — N\ {0} be a function. Then a t-bounded disjunctive AND-distillation algorithm
from L into R is an algorithm A that for every n, given t(n) input strings 1, ..., Z), with
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|z;| = n for all ¢, A runs in polynomial time and outputs p(n) strings y1,. .., ypn), where
each y; has length at most ¢(n)logn, such that y; € R for some i € {1,...,p(n)} if and only
if z; € L for every j € {1,...,t(n)}.

Also, given a problem L, we define the problem AND(L), where the input is a set of
instances x1, ..., x; of length at most n, and the task is to decide whether z; € L for every
ie{l,...,t}.

Equivalently, we can consider the algorithm A as a set of p(n) polynomially computable
functions f;: {0,1}1xn — [0, 1}t(M1een in such a way that the required property is
satisfied.

We start by introducing some basic notions and lemmas.

Given a statistical distribution D, the support of D, sup(D) is the set of values that D
assumes with nonzero probability, and D(u) = Prob[D = u]. We can assume from now on
that we talk about distributions with finite supports.

» Definition 13 (Statistical Distance). The statistical distance of distributions D and D’ is

1
HD_D/Hstat = 5 Z ‘D(’U/) _D/(u”
u€sup(D)Usup(D’)

Just to get some intuition, if two distributions have completely different supports, their
distance is 1. If two distributions share some support their distance is smaller.

Now, given a function f: {0,1}**" — {0,1}*, given a subset A C {0,1}" we can define
the distribution F 4 = f(US"), where US" is the uniform distribution over ¢-tuples of elements
of A. Moreover, for any a € {0,1}" we define the distribution

Fala = fU59 " a,uf"7)

where j is sampled from the uniform distribution over the integers from 1 to ¢, U;.
Finally, we define the standout factor of a with respect to A as

Bla,A) = |[Fa — Fala]llstat -
The Disguising-Distribution lemma states

» Lemma 14 (Drucker [10]). Let f: {0,1}2%" — {0,1}" be any (possibly randomized) function
fort,t’ e NT. Let S C {0,1}", and fixr d > 0. Given any e >0, let s = [(0.5In2)n/e?]. Let

5= min{ (In2)(t' + 1)/2¢,1 — 2—3—’”} .

Then there exists a collection K, ..., Ky of multisets of size d contained in S, such that for
every y € S, we have

Eivu, By, Ki\y)] <0 +2t/(d+1) +¢.

Intuitively, given a language L, this lemma allows us to pick multisets of L of size d
(potentially polynomial), and given any other element of L, the expected statistical distance
to one of these multisets will be small, allowing us to distinguish potentially, if a particular
element is in L or not. In order for these statistical distances to give meaningful complexity
theoretic consequences, we turn to promise problems, in particular circuits.

For a boolean circuit C let Do be the output distribution for a random input. Given
two parameters 0 < d < D < 1, we define the promise problem SDEdD with the yes
instances being Iy = {(C,C"): [|[Dc — Devllstat > D}, and the subset of no instances
My = {(C,C"): [ Do — Do s < d}.

We will use the class of promise problems having statistical zero-knowledge proofs (pr-
SZK). In particular
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» Theorem 15 (Sahai and Vadhan [20]). Let 0 < d = d(n) < D = D(n) < 1 be (not
necessarily computable) parameters.

1. If D > d + 1/poly(n), then SD%? € pr-NP/poly.
2. If we have the stronger gap D? > d + 1/poly(n), then SD%dD is many-to-one reducible to

SDZ}/3 € pr-SZK.

From Lemma 14 and Theorem 15, Drucker [10] proves that (probabilistic) AND-
compositional and OR-compositional problems are unlikely to have polynomial kernels.
We adapt the proof to our case and state the following theorem for disjunctive kernels
for deterministic AND-compositional problems. In Subsection 4.1 we show how one can
analogously adapt the proof to work in the probabilistic case, this allows us to present first a
self-contained proof that focuses on the difference between AND-distillations and disjunctive
AND-distillations without worrying about the probabilistic aspect. This result is already
sufficient to prove that AND-compositional problems are unlikely to have disjunctive kernels.

» Theorem 16. Let L be any language. Suppose that t(n): NT — NT is a function.
Suppose that there exists a t-bounded disjunctive AND-distillation defined by p(n) functions
fi: {0, 131> 5 fo 1} 0gn for [ with parameter t(n), and some target language R.
Then, L € coNP /poly.

Proof. We prove this theorem by reducing L to SDEdD. First of all, let us define L, =
{0,1}"NL, and let us assume that L,, C {0,1}". For every function f; we apply the disguising
distribution lemma to L,,. This means that for every i, we define S = L,,, f = f;, t = t(n),
' = t(n)logn, e = 1/4n°, d = 8t(n)n° and § = min {V/(In2)(tlogn + 1)/2t,1 —273-leen},
Lemma 14 states that for every f; there exists a collection K1, ..., K} of multisets of size d
contained in L,, such that for every y € L,, we have

Ejmiy By, K\ 9)] <0+ 2t/(d+1) +¢.

Observe, that in this case as long as ¢(n) is polynomial in n, both s and d are polynomial
in n, too. Thus, as long as p(n) is also polynomial in n, which by construction it is if this
condition is satisfied for ¢(n), the collection of all subsets for every i is polynomial in size,
too. This will be our advice.

On input y € {0,1}", our reduction outputs for every mapping f;, (C;, C?) of the following
randomized circuits. Circuit C; samples j ~ U]y, then samples &; ~ U%(n), and outputs z; =

J
fi(#;). Circuit C] samples j ~ Uy, and k ~ Uy(y,), then samples Z; ~ (Uggk_l), yJ/{f?gt(n)_k))
and outputs z; = fi(Z;). ’ ’

The idea is that we have a control circuit C' that only samples elements from L, the other
circuit C” takes also the original input, if both outputs are in the target language this should
be reflected in their statistical distance being small. On the other hand, if the input is not in
L, then the output generated by circuit C” is not in the target language, thus, the support of
(' is completely disjunct from the support of the distribution of control circuit C' and their
statistical distance is 1. This however, has to be tempered by the disjunctive property of the
reduction.

> Claim 17. The following holds:
1. If y ¢ L, then for every i, we have ||Dc, — Do ||stat = D(n) = 1;
2. If y € L then there exists an 4 such that, |Dc, — Der||star < d(n) = 6+ 1/2n°
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The first part follows from the AND-respecting and disjunctive properties of the reduction. If
there is an element that is not in L, there cannot be any mapping that outputs an element of
the target language. Thus, every possible output for C; will not be in R, while every output
from Cj is, thus, these two distributions have completely different supports and they do not
intersect, thus their statistical distance must be 1. The second part follows from Lemma 14
and the disjunctive properties of the reduction, the formal proof will follow.

Now, to prove Theorem 16, if 1 — § > 1/n¢ for sufficiently large n, then 1 — d(n) =
D(n) —d(n) < 1/n¢, thus the gap is inversely polynomial in n and also inversely polynomial
in the length of the output pairs (C;, C}). Thus, given an instance y of the decision problem
L, there exists at least one 7, for which the pair (C;, C?) is a valid instance of the promise

problem SDE}i(n). We know by Theorem 15 that for the given values of d(n) and D(n),

SD??((;I)) € pr-NP/poly. Thus, assume we are given an algorithm A that, with advice a,,

solves SDde((;l)) in nondeterministic polynomial time. Given an instance y, we can run the
reduction and then apply this algorithm to every (C;, C!) given by instance y and correctly
decide if y ¢ L. In particular, if y ¢ L, for every 4, (C;,C}) € Ily, otherwise y € L and
there exists one 4 such that (C;, C!) € IIy. Note here, that there might be pairs that are
not a valid instance for the promise problem, but this is not a concern, as there is at least
one which will be solved by A together with the advice. Observe that this procedure runs
in polynomial time, as one can run A in parallel for every pair (C;, C!), and the amount
of pairs is t(n) which we have assumed to be polynomial in n. Thus, L € NP/poly, and
L € coNP/poly. <

Proof of Claim 17. The first part of the claim is already proven after the claim state-
ment. For the second part, given a disjunctive AND-distillation defined by p(n) functions
fi: {0, 1}t x5 £0 1} logn for [, with parameter #(n), and some target language R, and
y € L then, given (x1,...,;) such that every z,, € L for every m € [t(n)] and z; = y for
some j € [t(n)], there exists an ¢ € [p(n)] such that f;(x1,...2¢) € R. Thus, by Lemma 14
if we take the same values of d, 6 and ¢ as in the main theorem, there exists a collection
Ki, ..., K! of multisets of size d contained in L,, such that for every y € L,, we have

Bjmiy By, K\ y)] <0+ 2t/(d+1) +¢.

But, recall that §(y, K; \ y) is nothing else than the statistical distance between the two
distributions, which means that the expected value for all possible values of j is the same as
[Dc; — Do |lstat by construction, and also 0 +2t/(d + 1) +& =0+ 1/2n° = d(n). <

3.2 Disjunctive Kernels

In order to use this result to prove that some parameterized problems do not have conjunctive
kernelizations, we use AND-cross-compositions and polynomial parameter transformations
just as we did in Subsection 2.2.

We are going to define AND-cross-compositions analogously to OR-cross-compositions
using equivalence relations.

» Definition 18. Let L C ¥* be a language and @ C ¥* x N be a parameterized language.
We say that L AND-cross-composes into @ if there exists a polynomial equivalence relation
R and an algoritm A called a cross-composition such that A takes as input zy,...,x; € ¥*
equivalent with respect to R, and outputs one instance (y,k) € ¥* x N such that k is
polynomial in the size of z; and logt, and (y, k) € @ if and only if for every index i, z; € L.
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Now we are ready to state the following theorem.

» Theorem 19. Let L C X* be an NP-hard language. If L AND-cross-composes into a
parameterized problem @ and Q has a disjunctive kernelization, then coNP C NP /poly.

Proof Sketch. The proof is analogous to the one for Theorem 8. The main idea is that if we
had an AND-cross-composition into such a parameterized problem, and we had a disjunctive
kernelization for that problem, we would be able to build a disjunctive distillation for our
original problem, which by Theorem 16 would imply that coNP C NP /poly. |

From here we are only left to list problems that are unlikely to have a disjunctive
kernelization because an NP-hard problem cross-composes into them. These problems,
sometimes called AND-compositional, form an extensive list, a subset of them would be:

» Corollary 20. Unless coNP C NP /poly, none of the following FPT problems have dis-
junctive kernelizations: TREEWIDTH, PATHWIDTH, CUTWIDTH, and MODIFIED CUTWIDTH.

Proof. For the definitions of these problems together with their the AND-compositions we
refer to Bodlaender et al. [2]. <

Just as in the conjunctive case, the list of problems unlikely to have disjunctive kerneliza-
tions be extended using polynomial parameter transformations (PPT).

Other problems that admit AND-compositions or admit PPT to AND-compositional
problems are some problems parameterized by treewidth (w).

» Corollary 21. Unless coNP C NP /poly, none of the following FPT problems have dis-
Junctive kernelizations: INDEPENDENT SET(w) and 3-COLORING (w).

Proof. Bodlaender et al. present AND-compositions for these two problems in [2]. <

4 Problems without Conjunctive or Disjunctive Kernels

In the previous two sections we have proven that there are problems that are unlikely
to have conjunctive kernels and disjunctive kernels, respectively. However, none of these
problems intersect. In this section, we prove that if a ®P-hard problem is in coNP/poly
then coNP C NP /poly. Furthermore, we use this result to find a class of problems without
conjunctive or disjunctive kernels if they reduce from a problem that is NP-hard or &P-hard.
For each class, we present an FPT problem unlikely to have conjunctive or disjunctive
kernels. The problem ODD PATH on planar graphs does not have conjunctive or disjunctive
kernels, unless coNP C NP /poly, due to a reduction from its own unparameterized version
and its weighted version, the WEIGHTED ODD PATH problem on planar graphs, does not
have conjunctive or disjunctive kernels, unless coNP C NP /poly, due to a reduction from
LONGEST PATH, an NP-hard problem.

4.1 Probabilistic Compressions
First we provide the framework for Probabilistic compressions.

» Definition 22 (Probabilistic conjunctive OR-distillation). Let L, R C {0,1}* be a pair of
languages and let t: N — N\ {0} be a function. Then a probabilistic t-bounded conjunctive
OR-distillation algorithm from L into R with bounded error 0 < £ < 0.5 is an algorithm
A that for every n, given t(n) input strings 1, ..., Ty, with |z;] = n for all 4, A runs in
polynomial time and outputs #(n) strings y1, ..., Yy yn) of length at most #(n) -logn such that
with a probability greater than 1 —¢, y; € R for every ¢ € {1,...,¢(n)} if and only if x; € L
for some j € {1,...,t(n)}.
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Essentially one can make mistakes with probability smaller than & but otherwise the
algorithm should produce a conjunctive OR-distillation. And analogously we can define
probabilistic disjunctive AND-distillations.

» Definition 23 (Probabilistic disjunctive AND-distillation). Let L, R C {0,1}* be a pair of
languages and let ¢: N — N\ {0} be a function. Then a probabilistic ¢-bounded disjunctive
AND-distillation algorithm from L into R with bounded error 0 < £ < 0.5 is an algorithm
A that for every n, given t(n) input strings x1,...,Z(,), with |z;| = n for all 4, A runs in
polynomial time and outputs #(n) strings yi,...,%s(n), Where each y; has length at most
t(n)logn, such that with probability greater than 1 — £ y; € R for some i € {1,...,¢t(n)} if
and only if x; € L for every j € {1,...,t(n)}.

We can now prove that if such distillations exist then the language is in coNP /poly by
adapting the proof by Drucker [10] to work as well for the probabilistic version of conjunctive
and disjunctive distillations.

» Theorem 24. Let L be any language. Suppose that t(n): NT — NV is a function. Suppose
that there exists a probabilistic conjunctive OR-distillation or a probabilistic disjunctive AND-
distillation defined by p(n) functions f;: {0, 131> — L0, 1}t 108n for [ with parameter
t(n), error bound £(n) < 0.5, and some target language R. Let

n{ (In2)(t' + 1)/2¢,1 — 2*3*f’/t} .

If, for some constant ¢ > 0, we have 1 — 2€(n) — 6 > 1/n¢, then L € coNP /poly.

The proof of this theorem is completely analogous to the proof of Theorem 16, where the
treatment of the probabilistic aspect is analogous to the one by Drucker [10]. One needs to be
careful to state an appropriate version of Claim 17 for both the conjunctive and disjunctive
cases, which should take into account the probabilistic aspect of the distillation, the OR
or AND properties of the reduction itself, as well as the conjunctive or disjunctive aspect.
These claims read as follows.

> Claim 25. If L is a language with a probabilistic conjunctive OR-distillation as determined
in Theorem 24, the following holds:
1. If y ¢ L, then there exists an i such that, D¢, — Do |lstar > D(n) = 1 — 2£(n);

2. If y € L then for every i, we have || D¢, — Derllstar < d(n) = § +1/2n°

> Claim 26. If L is a language with a probabilistic disjunctive AND-distillation as determined
in Theorem 24, the following holds:

1. If y ¢ L, then for every i, we have ||Dc, — Dcy|lstat = D(n) = 1 — 2§(n);

2. If y € L then there exists an i such that, D¢, — Der|star < d(n) = 6+1/2n°

These claims can be proven using Lemma 14 and then Theorem 24 follows also from
applying the same circuit reduction, now with the probabilistic aspect, and using Theorem 15.

4.2 XOR-compositional Problems

In the same way that we defined for a problem L, the problem OR(L) and AND(L) one can
easily imagine defining problems for other boolean operations, for example XOR/(L) would
count the parity of the number of yes instances. Formally,
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» Definition 27. Given a problem L, we define the boolean variable by, (x) such that b (z) = 1
if and only if z € L. We say that a set of instances (z1,...,2;) each having a length of at
most n is in XOR(L) if and only if XOR(br(21),...,br(z:)) = 1.

Analogously we define XOR-cross-composition.

» Definition 28. Let L C ¥* be a language and @ C ¥* x N be a parameterized language.
We say that L XOR~cross-composes into @ if there exists a polynomial equivalence relation
R and an algoritm A called a cross-composition such that A takes as input zy,...,x; € ¥*
equivalent with respect to R, and outputs one instance (y,k) € ¥* x N such that k is
polynomial in the size of ; and logt, and (y, k) € @ if and only if there is an odd number of
instances x; € L.

The goal is to prove that for some problems L, if one has an XOR-cross-composition
from L into a parameterized problem @), and a conjunctive or disjunctive kernelization for
@, then one would be able to build a conjunctive or disjunctive distillation for L, which by
Theorem 24 means that L C NP /poly. Thus, if L is for instance NP-hard, @ is unlikely to
have conjunctive or disjunctive kernels.

In general, when we think of problems that XOR~cross-compose to their own parameterized
versions, or problems where L is equivalent to XOR(L), an instance will be in L then, if
we have an odd number of solutions, which in general means, that they belong to &P, or
are ®P-hard instead of NP-hard, making it difficult to find problems that are unlikely to
have conjunctive and disjunctive, or even polynomial kernels through the usual complexity-
theoretic consequence coNP C NP /poly. To avoid this problem, we establish a collapse of the
polynomial hierarchy in the case of &P problems. First, we formally define some complexity
classes and state a few complexity theoretic results.

We first define the general complexity class BP - C.

» Definition 29 (Schéning [21]). Given a complexity class C, the bounded error probabilistic-
C class (BP - C), is defined as the class of all languages L such that for some language L’ € C,
for some polynomial p and for all inputs x of length n, we have

Prob[(z,y) € L' if x € L] > 2/3

Prob[(x,y) € L' if x ¢ L] <1/3

where y is chosen uniformly at random from all strings of length p(n).
With this definition we prove the following theorem.
» Theorem 30. BP - (NP/poly) C NP /poly.

Proof. Given the defintion of BP - (C), and using amplification, we know that a language L
is in BP - (NP/poly) if there exists a language L’ € NP /poly and a polynomial p such that
for all inputs of length n, we have

Prob|(z,y) e L' ifx € L] > 1 — 9=’
Prob[(z,y) € L' if x ¢ L] <27
where y is chosen uniformly at random from all strings of length p(n).
Let us consider such a language L € BP - (NP /poly), with its corresponding language

L' € NP/poly and polynomial p. There are only 2" many inputs of length n for any given n,
thus, by the union bound, the probability that a string string y provides a bad outcome for
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at least one input « of length n is at most 2™ - 27" < 1. Thus, there must be a fixed string
y of length p(n), such that = € L if and only if (z,y) € L' for every input z of length n.

A nondeterministic Turing machine M with polynomial advice can decide whether = € L
in polynomial time as follows. Given a nondeterministic Turing machine N with polynomial
advice solving L', M obtains first y from the advice tape and then tests whether (x,y) € L’
by simulating N on (z,y) by using the subsequent advice that it also obtains from the same
advice tape. Observe that both the advice and the running time of M are polynomial. <«

We now formally define ®@P introduced by Papadimitriou and Zachos [19].

» Definition 31. @P is the class of decision problems solvable by a nondeterminsitic Turing
machine in polynomial time, with an odd number of accepting computation paths.

An example of a P problem is ODD PATH, where given a graph G one has to decide
whether GG contains an odd number of k-paths. For the purposes of this paper, we are
interested on ODD PATH on planar graphs, which can be formally defined as:

Input: A planar graph G and an integer k.
Task: Decide whether G contains an odd number of k-paths.

There are many other examples of problems in &P or problems that are complete for
®P, a compillation can be found in [23].

An important property of ®P as it relates to the polynomial hierarchy (PH) is that
PH C BP - ®#P, which is an important ingredient in the proof of Toda’s theorem [22]. This
property together with Theorem 30 allows us to prove that @P-hard problems are unlikely
to be in coNP/poly we can do it in the following way

» Theorem 32. If a problem L is both ®P-hard and L € coNP /poly, then coNP C NP /poly.

Proof. If a language L is both ®P-hard and L € coNP/poly, this means that &P C
coNP/poly, in particular, because @P is closed under complement it implies that P C
NP /poly.

Using the fact that PH C BP - @P [22, Theorem 3.1] and Theorem 30, we can see that
@P C NP/poly implies that

PH C BP - ®P C BP - (NP/poly) C NP /poly ,

which is unlikely because it makes the polynomial hierarchy colapse. In particular, coNP C
PH C NP/poly brings us to our usual complexity theoretic consequence for this kind of
lower bounds. A result by Yap [25] shows that coNP C NP /poly means that the polynomial
hierarchy collapses to the third level. A more refined result by Koébler and Watanabe [16]
shows a stronger collapse, that is, if coNP C NP /poly then the polynomial hierarchy collapses
to ZPP(XF). |

Moreover, we are able to prove that problems which XOR-cross compose into parameter-
ized problems that have conjunctive or disjunctive polynomial kernels are in NP /poly.

» Theorem 33. Let L C X* be a language. If L XOR-cross-composes into a parameterized
problem Q and Q has a conjunctive or disjunctive kernelization, then L € coNP /poly.

Proof. We prove for conjunctive kernelizations, as we will see, the case for disjunctive
kernelizations is analogous.

Let L C ¥* be a language, and let A be an XOR-cross-composes into a parameterized
problem @, which has a conjunctive kernelization. Let us build a probabilistic conjunctive
OR-distillation for L. Given a set of inputs x1,...z; for L, the first step in our distillation is
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to delete every input z; at random with probability 1/2. This way, if there are any z; € L,
after this procedure there will be an odd number of them with probability 1/2 and if there
were none to begin with, there are still none after this procedure. Then, to the remaining
set of instances zf,...,z}; we apply the XOR-cross-composition and from the result we
build a conjunctive kernel. The probability of success is 1 if the initial input contained
no z; € L, and otherwise the probability of sucess is 1/2. This is not good enough, as we
need a probabilistic conjunctive OR-distillation with an error bound smaller than 1/2 to be
able to apply Theorem 24. In order to do this we sacrifice the onesided error in a clever
way. With a probability of 1/4 we substitute the remaining set of instances z,...,z} for a
single instance x € L before applying the XOR-cross-composition. The probability of success
is now 3/8 +1/4 = 5/8 if x; € L for some i, and 3/4 otherwise, making the total error
bound £ < 3/8. We have thus, a probabilistic conjunctive OR-distillation satisfying all of
the conditions to apply Theorem 24, which means that L € coNP/poly. The reduction for
disjunctive kernelizations is analogous. <

Thus, by Theorems 32 and 33 if a problem is hard for NP or &P and reduces to a
parameterized problem, then the parameterized problem is unlikely to have polynomial
conjunctive or disjunctive kernels.

» Corollary 34. The ODD PATH problem on planar graphs is FPT and does not have
conjunctive or disjunctive kernels, unless coNP C NP /poly.

Proof. The ODD PATH problem is FPT on planar graphs because it can be solved by dynamic
programming on graphs of bounded tree-depth using standard techniques. Reducing the
problem from planar graphs to graphs of bounded tree-depth can be done with low tree-depth
colorings [18].

The problem trivially XOR-cross-composes to itself and is in @P. Moreover, ODD PATH
on planar graphs is ®P-hard because it can be reduced to the problem of finding the parity
of the number of Hamiltionian paths (k = n) on planar graphs with maximum degree 3,
which is @P-complete [23]. <

The question whether ODD PATH on general graphs is FPT remained open until very
recently, when Curticapean, Dell and Husfeldt proved that ODD PATH is &-W(1]-complete,
thus is unlikely to be fixed parameter tractable [6].

4.3 The Weighted Odd Path Problem

In order to find an FPT problem without conjunctive or disjunctive kernels, with a reduction
from an NP-hard problem instead of a reduction from a @&P-hard problem, we consider the
WEIGHTED ODD PATH problem with parameter k on planar graphs, i.e., the weighted version
of the ODD PATH problem:

Input: A planar graph G with edge weights and two integers k and m.
Task: Decide whether G contains an odd number of k-paths with weight m.

This problem is in FPT on planar graphs because it can be solved by dynamic programming
on graphs of bounded tree-depth using standard techniques. Reducing the problem from
planar graphs to graphs of bounded tree-depth can be done with low tree-depth colorings [18].

We now prove, through a reduction from LONGEST PATH, that WEIGHTED ODD PATH
is unlikely to have conjunctive or disjunctive kernels. The reduction uses a probabilistic
XOR-cross-composition and then proves that conjunctive and disjunctive kernels are still
unlikely following the same techniques as used in Theorem 33.
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» Theorem 35. Unless coNP C NP /poly, WEIGHTED ODD PATH on planar graphs has no
disjunctive or conjunctive kernelizations.

Proof. The XOR-cross-composition from LONGEST PATH into WEIGHTED ODD PATH relies
on the following observation. Let G be a graph of order n. If we turn G into an edge-weighted
graph by equipping each edge with a random weight from {1,...,n3} then the Isolation
Lemma [17] shows that a k-path with minimum weight is unique with a failure probability of
at most 1/n. If, on the other hand, G does not contain a k-path, then its weighted version
will not contain a k-path of any weight.

Thus, the reduction runs as follows. First we turn G into a weighted graph G’ as explained
above. Then create k(n® — 1) + 1 different instances (G’ k, k), (G', k + 1,k),..., (G’ kn3 k)
of the WEIGHTED ODD PATH problem. If G does contain a k-path, then with probability
of at least 1 — 1/n one of the instances is a yes-instance. Second, we delete each instance
from this collection independently with a probability of 1/2. Let us call the remaining set
of instances I. Now I contains an odd number of yes-instances with probabilty of at least
1/2 — 1/2n if G contains at least one k-path. Now, to offset the one-sided error, just as we
did in the previous subsection, with a probability of 1/4 we redefine I to be a single (trivial)
yes-instance. If G contained no k-path, the probability that I does not contain a k-path
is now 3/4, whereas if G contains at least one k-path, now I contains an odd number of
yes-instances with probabilty of at least 1/4 4+ 3/8(1 —1/n) =5/8 —3/8n > 1/2.

Third, we turn [ into a single graph as follows: If I contains (G’,i, k) we double each
edge weight in G’ and call the resulting weighted graph G/. Then we attach to each vertex
in G a new pendant vertex via a new edge with weight n”/2 —i. Note that G contains a
k + 2-path of weight n” iff G’ contains a k-path of weight i. Finally we create a new graph
G"" that consists of all GY for i € {k,..., kn?}.

We arrived at the following situation: If G does not contain a k-path, then with a
probability of 3/4 the graph G”” does not contain a k + 2-path of weight n7. Otherwise, if
G contains a k-path, G’" contains a k + 2-path of weight n” with a probability of at least
5/8 — 3/8n.

Let us now assume that WEIGHTED ODD PATH has a polynomial conjunctive kernel.
Then we can use this kernel on G"”" and get a randomized conjunctive OR-distillation for
LONGEST PATH, which implies, by Theorem 24 that NP € coNP/poly. Hence, the WEIGHTED
ODD PATH problem should not have a conjunctive polynomial kernel. Because there is an
almost trivial self reduction to its complement it should also have no polynomial disjunctive
kernel. |

5 Conclusion

Lower bounds were part of parameterized complexity from the very begining in terms of
W-completeness. However, it took more than 20 years for the first strong bounds on non-
existence of many-one polynomial kernels, which was finally achieved by the concerted efforts
of research in classical and parameterized complexity theory. Today, the next big open
question are similar lower bounds for polynomial Turing kernels, a task which has so far
withstood every solution attempt. In this paper, we went a little beyond many-one kernels
by considering disjunctive and conjunctive kernels, which are arguably the most common
types of Turing kernels in parameterized algorithmics. Besides the big question about general
Turing kernels we pose the following open questions: Can we prove the same lower bounds
for LONGEST PATH as we did for ODD PATH and WEIGHTED ODD PATH? Can we prove the
nonexistence of disjunctive kernels for any of the WK][1]-hard problems?
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