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Abstract
We present a novel linear program (LP) for the Steiner Tree problem, where a set of terminal
vertices needs to be connected by a minimum weight tree in a graph G = (V, E) with non-negative
edge weights. This well-studied problem is NP-hard and therefore does not have a compact extended
formulation (describing the convex hull of all Steiner trees) of polynomial size, unless P=NP. On the
other hand, Steiner Tree is fixed-parameter tractable (FPT) when parameterized by the number k

of terminals, and can be solved in O(3k|V | + 2k|V |2) time via the Dreyfus-Wagner algorithm. A
natural question thus is whether the Steiner Tree problem admits an extended formulation of
comparable size.
We first answer this in the negative by proving a lower bound on the extension complexity of the
Steiner Tree polytope, which, for some constant c > 0, implies that no extended formulation
of size f(k)2cn exists for any function f . However, we are able to circumvent this lower bound
due to the fact that the edge weights are non-negative: we prove that Steiner Tree admits an
integral LP with O(3k|E|) variables and constraints. The size of our LP matches the runtime of the
Dreyfus-Wagner algorithm, and our poof gives a polyhedral perspective on this classic algorithm.
Our proof is simple, and additionally improves on a previous result by Siebert et al. [2018], who
gave an integral LP of size O((2k/e)k)|V |O(1).
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1 Introduction

A central topic in combinatorial optimization is to determine whether a polynomially solvable
optimization problem admits a compact extended formulation, i.e., if it admits a polytope
of polynomial size describing the convex hull of all feasible solutions. The existence of
such a polytope means that the corresponding problem can be solved efficiently using linear
programming (LP) solvers. This has been a very fruitful research direction from its beginnings
all the way to the present day, of which we give a brief overview below (see the surveys [10, 18])
to set the stage for our contribution on the NP-hard Steiner Tree problem.

If P = {x ∈ Rn | Ax ≤ b} is an n-dimensional polytope then a d-dimensional polytope
Q ⊆ Rd is an extension of P if P is the projection of Q onto the variables of P , i.e.,
P = {x | ∃y : (x, y) ∈ Q}. The size of a polytope is the number of its facets (i.e., the number
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18:2 On Extended Formulations for Parameterized Steiner Trees

of inequalities in its description), and its extension complexity is the minimum size of any
of its extensions. An extended formulation of an optimization problem is an extension of
the polytope given by the convex hull of all characteristic vectors of feasible solutions to the
problem. An extended formulation is said to be compact if its size is polynomially bounded
in the input size. In particular, once a compact extended formulation has been found, we
may optimize over it using an LP solver and then project the LP solution to a solution of
the problem. Given a modern LP solver this can be used to obtain very efficient algorithms
to solve the problem.

The well known Weyl-Minkowski Theorem [28] states that every convex hull of a finite
set of vectors (of solution vectors in particular) can be described as a polytope, i.e., every
optimization problem with a finite number of solutions admits an extended formulation, which
however may not be compact. There are problems for which compact extended formulations
exist, for example spanning trees [23] and perfect matchings in planar graphs [3]. On the
other hand, there are some polynomially solvable problems that do not admit compact
extended formulations, notably for matchings in general graphs: Rothvoß [26] proved that
the matching polytope has exponential extension complexity.

For NP-hard problems we do not expect to find compact extended formulations, since
this would imply P=NP given that LPs can be solved in polynomial time. However, in the
past few decades the development of the theory of fixed-parameter tractability (cf. [11])
has given us a more fine-grained view, where we differentiate between NP-hard problems
that are more tractable than others: it can be shown that for some NP-hard problems the
expected super-polynomial runtime overhead can be restricted to a parameter k ∈ N, which
describes some property of the input, while the runtime remains polynomial in the input
size n. Formally, a problem is called fixed-parameter tractable (FPT) if it can be solved
by an algorithm with runtime f(k)nO(1) for any input of size n and parameter k, where
f : N → N is some computable function. Analogous to the complexity class P, which captures
all problems that are polynomially solvable, the class FPT contains all problems that are
FPT, and can thus be considered more tractable than other NP-hard problems for which
FPT algorithms do not exist.

In light of the research on compact extended formulation for problems in P, a very natural
question becomes: what problems in FPT admit extended formulations of size f(k)nO(1)?
Or even more ambitious: suppose that a problem in FPT can be solved in time O(g(k)nc)
for some specific function g and constant c (say g(k) = 2k and c = 1). Is there an extended
formulation for which the size matches the running time O(g(k)nc) of the algorithm? This
question has for instance been studied by Buchanan [4] for the Vertex Cover problem.
He gave an extended formulation of size O(1.47k + kn) where k is the solution size, which
does not yet match the currently best running time of O(1.2738k + kn) for the problem [8].
For the parameterization by the treewidth t of the input graph, an extended formulation
of size O(2tn) exists [5], which in this case also matches the fastest algorithm for this
parameter [11]. A generalization of this results is by Kolman et al. [20], who give extended
formulations for CSPs parameterized by the treewidth.

Given a graph G = (V, E) and a set of terminals T ⊆ V , a Steiner tree of G is an
inclusion-wise minimal connected subgraph of G containing all the terminals (it has to
be a tree where all the leaves are terminals). In this paper, we consider the Steiner
Tree problem, where we are given an undirected graph G with non-negative edge weights
w : E → R+ and a set of terminals T ⊆ V , and the aim is to find a minimum weight Steiner
tree for the terminal set T in G. This problem is known to be NP-hard [14], and has a lot of
applications including VLSI routing [9, 17], phylogenetic tree construction [16], and network
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routing [22]. A well-studied parameter for this problem is the number of terminals k = |T |,
for which the classic Dreyfus-Wagner algorithm [12] solves the problem in O(3kn + 2kn2)
time. In light of the above discussion, we wish to compare this runtime to the extension
complexity of the Steiner Tree polytope, defined as

ST (G, T ) := conv.hull {xE(H) ∈ {0, 1}|E(G)| | H is a Steiner tree for T in G},

where for a subgraph H of G, xE(H) represents the characteristic vector of length |E(G)| for
the set E(H), and conv.hull(S) denotes the convex hull of a set S of vectors.

Our first result is a lower bound showing that the extension complexity of the Steiner
Tree polytope is exponential, and thus, in contrast to the Vertex Cover problem, in
general we cannot hope to find an extended formulation of f(k)nO(1) size. In fact this is true
even if the number k of terminals is constant.

▶ Theorem 1. There exists a constant c > 0 such that for any function f , there exists
a graph G on n vertices such that the extension complexity of the Steiner Tree poly-
tope ST (G, T ) is at least f(k)2cn, where k = |T |.1 In particular, the extension complexity of
ST (G, T ) is 2Ω(n) for some graph G with n vertices even when |T | = 2.

An extended formulation asymptotically matching this exponential lower bound can
be obtained for Steiner Tree via the matroid polytope [21]. However, in contrast to
Theorem 1 we give an integral LP for Steiner Tree, i.e., an LP for which each extreme
point is a (0, 1)-vector: our main result is that for any graph G and terminal set T , there
is an LP of f(k)nO(1) size that optimizes over a polyhedron, which contains an extension
of ST (G, T ), and every optimum solution to the LP given by non-negative edge weights
projects to a point of ST (G, T ). In other words, we find a polyhedron that describes the
lower envelope of the Steiner Tree polytope by projecting to all the characteristic vectors
of optimum Steiner trees for non-negative edge weights. Thus, it suffices to solve this LP to
solve the Steiner Tree problem given its definition, and so we are able to circumvent the
lower bound of Theorem 1.

▶ Theorem 2. For any Steiner Tree instance on a graph G = (V, E) with n vertices,
m edges, and k terminals T ⊆ V , there is a 3km-dimensional polyhedron Q given by
2kn + 3km constraints, such that ST (G, T ) ⊆ {x ∈ R|E| | ∃y : (x, y) ∈ Q} and optimizing
over Q with any non-negative edge weight function w : E → R+ gives a point of Q that
projects to a point of ST (G, T ).

Siebert et al. [27] showed that Steiner Tree can be solved using O((2k/e)k) polynomial-
sized integral LPs. Each solution vector also projects to a Steiner tree. It is possible to write
all these LPs into one integral LP (by a result of Balas [1, 2], see Theorem 10), which then has
size (2k/e)knO(1) = 2O(k log k)nO(1). Theorem 2 improves on this result by making the size
single exponential. Moreover, the size of our LP matches the runtime of the Dreyfus-Wagner
algorithm, and thus Theorem 2 provides an alternative way of solving the Steiner Tree
problem in comparable runtime via linear programming. In another work, Martin et al. [24]
show how to obtain an LP having size linear in the running time of any dynamic programming
algorithm. Even though their result can be used to solve the Steiner Tree problem due
to the Dreyfus-Wagner dynamic program [12], their LP is not an extension of the Steiner

1 We remark that compared to parameterized runtime lower bounds, this lower bound is unconditional
and therefore the function f is not restricted to be computable.
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Tree polytope, i.e., it does not project down to ST (G, T ). Instead their LP describes the
states of the dynamic program and thus gives an indirect way to encode a solution via an LP.
On the other hand, our LP solutions describe the vertices of ST (G, T ) via a direct projection.

1.1 Our techniques

On a high level our LP of Theorem 2 takes its inspiration from flow based formulations.
A well-known approach to obtain an LP relaxation used for approximation algorithms for
Steiner Tree is to first construct the corresponding bidirected graph, in which each
undirected edge uv is replaced by the two directed edges uv and vu and setting their weights
to the weight of the original undirected edge. Then one of the terminals is declared the
root, and the constraints of the LP relaxation say that each terminal sends a unit flow to
the root. Typically, the LP is formulated using cut constraints, which by the celebrated
MaxFlow-MinCut theorem imply that the required flows exist. Roughly speaking, for our
integral LP, we formulate the problem by sending a “labelled” unit flow from each terminal
to the root. The flows are labelled by pairs of terminal subset T1, T2 ⊆ T on each edge e,
with the meaning that flows from these two sets converge at e. Because we work with these
labelled flows, in contrast to usual flow formulations, we do not obtain an equivalent cut
formulation. We present our LP in section 2

Since we use directed edges to formulate flows, in fact we prove Theorem 2 for the more
general Directed Steiner Tree problem, where we are given a directed graph G = (V, E)
(of which bidirectedness is a special case) with non-negative edge weights w : E → R+, a
set of terminals T ⊆ V , and a root r ∈ V . The aim is to find an arborescence2 A ⊆ G of
minimum weight, such that there is a path from t to r in A for each t ∈ T .

To prove Theorem 2, in section 3 we develop a primal-dual algorithm for our LP. Interest-
ingly, it turns out that this algorithm can be interpreted as the Dreyfus-Wagner algorithm,
and thus we give a polyhedral perspective on this classic algorithm. After proving Theo-
rem 2 we turn to Theorem 1 in section 4. Towards that, we show that the the Steiner
Tree polytope contains the Hamiltonian Path polytope as a face, for which exponential
lower bounds on the extension complexity can be derived from known lower bounds for
Hamiltonian Cycle.

1.2 Related results

Karp [19] mentioned the Steiner Tree problem in his seminal list of NP-hard problems
already in 1972, and the problem has since been widely studied. The best approximation
algorithm known today is by Byrka et al. [6], and achieves an approximation ratio of ln(4)+ ϵ.
Their result uses a hypergraphic LP relaxation, which has also been studied in [7]. Further
LPs for Steiner Tree can be found in [15]. Faster FPT algorithms than the one by Dreyfus
and Wagner also exist: for arbitrary non-negative edge weights Steiner Tree can be
solved in (2 + ϵ)knOϵ(1) time [13], and the unweighted problem can even be solved in 2knO(1)

time [25].

2 a directed graph with exactly one sink of out-degree 0, for which the underlying undirected graph is a
tree.
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2 The linear program

In this section we describe our linear program and prove its correctness. Throughout this
paper we will assume that the root r of the instance is not contained in the terminal set T .
For technical reasons, we also have to assume that each non-terminal (so-called Steiner
vertices) has at most three neighbours, and the root and each terminal has one neighbour.
This can be achieved using a standard preprocessing procedure (cf. Appendix A). We call
such a preprocessed instance reduced.

For any non-empty terminal subset T ′ ⊆ T we define the reachability set RT ′ ⊆ V ∪ E

as those vertices u ∈ V and edges uv ∈ E for which every terminal t ∈ T ′ has a path to u

in G. Our Parameterized Directed Steiner Tree (PDST) LP has one variable x
{T1,T2}
e for

every unordered pair of sets T1, T2 ⊆ T that are disjoint, i.e., T1 ∩ T2 = ∅, and not both of
T1 and T2 are empty, i.e., T1 ∪ T2 ̸= ∅, and for every directed edge e ∈ RT1∪T2 reachable
from both T1 and T2. In the following, δ−(v) ⊆ E denotes all incoming edges to a vertex v,
while δ+(v) ⊆ E denotes its outgoing edges.

min
∑

T1∪T2 ̸=∅,
T1∩T2=∅
e∈RT1∪T2

x{T1,T2}
e w(e) such that (PDST)

∑
T1∪T2=T ′

T1∩T2=∅
e∈δ−(v)∩RT ′

x{T1,T2}
e =

∑
T ′′⊆T \T ′

e∈δ+(v)∩RT ′∪T ′′

x{T ′,T ′′}
e

{
∀T ′ ⊆ T : T ′ ̸= ∅, and
∀v ∈ RT ′ \ (T ∪ {r})

(1)

x{{t},∅}
e = 1

{
∀t ∈ T, {e} = δ+(t) (2)

∑
T1∪T2=T ′

T1∩T2=∅

x{T1,T2}
e = 0

{
∀t ∈ T, {e} = δ+(t), and
∀T ′ ⊆ T : ∅ ≠ T ′ ̸= {t}

(3)

∑
T1∪T2=T
T1∩T2=∅

x{T1,T2}
e = 1

{
{e} = δ−(r) (4)

∑
T1∪T2=T ′

T1∩T2=∅

x{T1,T2}
e = 0

{
{e} = δ−(r), and
∀T ′ ⊆ T : ∅ ≠ T ′ ̸= T

(5)

x{T1,T2}
e ≥ 0


∀T1, T2 ⊆ T : T1 ∩ T2 = ∅,

T1 ∪ T2 ̸= ∅, and
∀e ∈ RT1∪T2

(6)

Before we prove the correctness of the LP, we try to give some intuition about how it
works. As usual, we want an integral solution for the LP to correspond to a solution for
the original instance, where exactly one variable corresponding to every edge in the solution
is 1. The idea is to look at the solution in the graph as a flow from the terminals to the
root. Each terminal pushes a flow of value 1, but as we go closer to the root, the number of
edges carrying the flow decrease, while flows from many terminals combine on these edges,
but still we would want their corresponding variables to be 1. To this end, we index the
variables for the edges with pairs of subsets of T . If there are flows from two subsets of
terminals T ′ and T ′′ flowing through an edge uv, then we want x

{T ′,T ′′}
uv to be set to 1 by a

IPEC 2021



18:6 On Extended Formulations for Parameterized Steiner Trees

solution to the LP. From preprocessing, it is guaranteed that in any Steiner arborescence,
each vertex has in-degree at most 2. To get the flow for set T ′ at uv, it must be the case that
T ′ = T1 ∪ T2 for some T1, T2 ⊆ T such that T1 ∩ T2 = ∅, and T1 and T2 had combined to form
T ′ before u. This condition is captured by Constraint (1), which is the crucial constraint of
the LP. This process of forming a flow from T ′ might have happened long before reaching an
incoming edge of u and then taking a path to u, so we allow one of T1 and T2 to be empty.
Constraint (2) ensures that terminals send a flow of 1. Constraint (4) makes sure that there
is a flow from all the terminals to the root. Constraint (3) makes sure that a terminal does
not send flows for sets other than the singleton set containing itself, and finally Constraint (5)
ensures that no other flow from a subset of terminals reaches it, except from the full terminal
set. Constraint (5) will not be needed for the correctness of the LP in this section, but will
simplify the dual LP given in the next section.

Now we are ready to prove the correctness of the LP, for which we need to argue that
there is an integral solution to the LP of cost at most W if and only if there is a Steiner
arborescence in the input graph of cost at most W . We begin with the following lemma.

▶ Lemma 3. Let I := (G, T, r, w) be a reduced Directed Steiner Tree instance, and let
(PDST) be the corresponding LP for it. If instance I has a solution of weight at most W ,
then (PDST) has an integral solution of weight at most W .

Proof. Let A be a minimal solution to I of weight at most W such that every terminal t ∈ T

is a leaf in A and every internal vertex of A has degree at most 3 in A. From minimality
of A, we know that A is an arborescence, so for every vertex v ∈ V (A) \ {r}, we have that
|δ+(v)∩E(A)| = 1. To get an integral feasible solution for (PDST), we first put x

{T1,T2}
e := 0

for all e /∈ E(A)∩RT1∪T2 , for all T1, T2 ⊆ T . We know that every vertex v ∈ V (A)\ (T ∪{r}),
deg+(v) + deg−(v) ≤ 3. Now we define a function T (e) for all edges e = uv ∈ E(A) to
be the set of all the terminals in the subtree of A rooted at the vertex u. For every edge
e = uv ∈ E(A) such that e ̸= tv for some t ∈ T , u has either one or two incoming edges. If u

has only one incoming edge e′ = wu, then we put x
{T (e′),∅}
e := 1, and x

{T1,T2}
e := 0 for all

other T1, T2 ⊆ T . If u has two incoming edges in A, then let e1 = w1u and e2 := w2u be
those two edges. We put x

{T (e1),T (e2)}
e := 1 and x

{T1,T2}
e := 0 for all other T1, T2 ⊆ T . For

e ∈ E(A) such that e = tv for some t ∈ T , we put x
{{t},∅}
e := 1. For every other variable

x
{T1,T2}
e , we put x

{T1,T2}
e := 0. It is easy to see that this procedure decides to set x

{T1,T2}
e to

1 only if e ∈ RT1∪T2 , and hence the the variable x
{T1,T2}
e exists, and the assignment is valid.

Since for all the edges e ∈ E(A), exactly one of the variables x
{T1,T2}
e is set to 1 and

all other variables are set to 0, it follows that the weight of this assignment for (PDST) is
same as weight of A, which is at most W . So all we need to show is that this assignment is
feasible for (PDST). It is easy to see that the Constraints (4), (5), and (6) are satisfied by
this assignment. To see that Constraint (1) is satisfied, we observe that for any v /∈ V (A), all
the variables corresponding to edges incident on it are set to 0, and hence (1) is satisfied. For
v ∈ V (A) \ (T ∪ {r}), it has exactly one outgoing edge e = vw in A, such that x

{T ′,T ′′}
e := 1

for a unique pair T ′, T ′′ ⊆ T with T ′ ∪ T ′′ ̸= ∅ and T ′ ∩ T ′′ = ∅. If v has only one incoming
edge e′ = uv in A, then we have that T ′′ = ∅, and T ′ is the set of terminals in the subtree
rooted at u. The assignment puts x

{T1,T2}
e′ := 1 for some T1, T2 ⊆ T ′ such that T1 ∩ T2 = ∅

and T1 ∪ T2 = T ′, and hence constraint (1) is satisfied. In the other case, let e1 = u1v and
e2 = u2v be the two incoming edges to v in A. Let A1 and A2 be subtrees of A rooted
at u1 and u2 respectively and let T1 and T2 be set of terminals in A1 and A2. The above
assignment puts x

{T3,T4}
e1 = 1 for some T3 and T4 such that T3 and T4 are disjoint subsets of

T1 with T3 ∪ T4 ≠ ∅. Since x
{T3,T4}
e1 is the only variable corresponding to e1 put as 1, we can
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see that the Constraint (1) is satisfied for v and T ′. Similarly we can show that Constraint (1)
is satisfied for v and T ′′ also. To see that Constraints (2) and (3) are satisfied, we only need
to look at the edge tv ∈ E(A) for t ∈ T . For that, the assignment puts x

{{t},∅}
tv = 1, and all

other variables corresponding to the edge tv are set to 0, so Constraints (2) and (3) are also
satisfied. ◀

Next we prove the other direction needed to show the correctness of the LP. This step
critically relies on the fact that all edge weights are non-negative.

▶ Lemma 4. Let I := (G, T, r, w) be a reduced Directed Steiner Tree instance, and
let (PDST) be the corresponding LP for it. If (PDST) has an integral solution of weight at
most W then I has a solution of weight at most W .

Proof. It suffices to prove the lemma for an integral solution x to (PDST) of minimum
weight. Consider the support of x in G = (V, E), i.e., the set F ⊆ E of edges for which
x

{T1,T2}
e > 0 for some T1, T2 ⊆ T . We claim that for any terminal t ∈ T there exists a path

from t to the root r in the graph spanned by F in G. Since x is integral, any strictly positive
variable has value at least 1. Using the fact that all edge weights are non-negative, this
implies that the objective function value of (PDST) is at least the weight of the union of
these paths (where each edge is counted only once even if it appears in several paths). As
these paths form a feasible solution to the Directed Steiner Tree instance, the lemma
follows.

To show the existence of a path from some t to r spanned by edges in F , we show that
there is a walk from t to r given by a finite sequence of edges {ei}i≥1, such that for any i ≥ 1
the head of ei is the tail of ei+1, and there exists a set T i

1 ⊆ T with t ∈ T i
1 and x

{T i
1 ,T i

2 }
ei > 0

for some T i
2 ⊆ T . By Constraint (2), we have x

{{t},∅}
e = 1 for {e} = δ+(t) and so we may set

e1 = e, T 1
1 = {t}, and T 1

2 = ∅ for i = 1. Now let i ≥ 1 and assume that we have identified an
edge ei = uv with the properties required for the walk. Note that v /∈ T , since in the reduced
instance G any terminal has in-degree 0. So if v ̸= r then v ∈ V \ (T ∪{r}) and Constraint (1)
implies that, if x

{T i
1 ,T i

2 }
ei > 0 then there must be an edge e ∈ δ+(v) with x

{T ′,T ′′}
e > 0 for

T ′ = T i
1 ∪ T i

2 and for some T ′′ ⊆ T . Hence we may set ei+1 = e, T i+1
1 = T ′, and T i+1

2 = T ′′.
This way we obtain a walk of potentially infinite length. Note however that if it is

finite then it must end in r, since this is the only condition under which we would not
be able to identify the next edge ei for the sequence in the above argument. To see that
the length of the walk is finite, note that T j

1 ⊆ T i
1 for all i > j, i.e., the sets T i

1 form a
sequence with non-decreasing sizes. Assuming the walk has infinite length, there must thus
be some index j ≥ 1 for which T i

1 = T j
1 for all i > j, since every set T i

1 ⊆ T has size at
most k. By construction we have T i+1

1 = T i
1 ∪ T i

2, and so T i
1 = T j

1 = T i+1
1 implies T i

2 = ∅
for all i > j. Since there is a finite number of edges in G, the edges ei with i > j must
contain a simple cycle C. We now subtract 1 from each variable x

{T j
1 ,∅}

e where e ∈ E(C),
and claim that the resulting solution x′ is a feasible integral solution for (PDST), which
however would contradict that x has minimum weight. As C is a simple cycle we subtract 1
from both the left- and right-hand side of Constraint (1) for every vertex v lying on C and
T ′ = T j

1 . Constraint (6) is also still valid, since every decreased variable lies in the support
of the integral solution x. All other constraints are unchanged, leading to the required
contradiction. ◀

Combining Theorem 3 and 4 gives us the following theorem, which proves the correctness
of the linear program (PDST). In particular, it implies the first part of Theorem 2, i.e.,
ST (G, T ) ⊆ {x | ∃y : (x, y) ∈ Q} where Q is the polyhedron defined by the constraints
of (PDST).
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▶ Theorem 5. Let I := (G, T, r, w) be a reduced Directed Steiner Tree instance, and
let (PDST) be the corresponding LP for it. (PDST) has an integral solution of weight at
most W if and only if I has a solution of weight at most W .

3 Integrality via primal-dual algorithm

In this section we will show that (PDST) is integral. For this we develop a primal-dual
algorithm to compute an optimum solution to (PDST), which is also integral. The dual to
(PDST) is captured by the following LP, which has a variable zT ′

v for every non-empty set
T ′ ⊆ T and vertex v ∈ RT ′ reachable from T ′ corresponding to each of the Constraints (1),
(2), (3), (4), and (5). To simplify the notation, we additionally define a variable z∅

u for every
vertex u ∈ V \ T and empty terminal set, and set all these to zero. Note that these variables
only occur on the right-hand side of Constraint (7) of the dual LP (PDST⋆) below.

max zT
r +

∑
t∈T

z
{t}
t such that (PDST⋆)

zT1∪T2
v ≤ zT1

u + zT2
u + w(uv)

{
∀T1, T2 ⊆ T : T1 ∩ T2 = ∅, T1 ∪ T2 ̸= ∅
∀uv ∈ RT1∪T2 : u /∈ T

(7)

zT ′

t + zT ′

v ≤ w(tv)
{

∀T ′ ⊆ T : T ′ ̸= ∅, and
∀t ∈ T, v ∈ RT ′ , tv ∈ E

(8)

z∅
u = 0

{
∀u ∈ V \ T (9)

We now describe the algorithm, which uses (PDST⋆) to construct an integral solution to
(PDST). In particular, the algorithm maintains a feasible dual solution to (PDST⋆) from
which in the end it extracts a feasible solution to (PDST).

Initially the algorithm sets all variables zT ′

v = 0 in (PDST⋆). Clearly this dual solution
is feasible for (PDST⋆), as all edge weights are non-negative. The algorithm considers
all possible non-empty subsets of terminals T ′ ⊆ T in non-decreasing order of their sizes
(breaking ties arbitrarily) to change variables zT ′

v where v ∈ RT ′ . Starting with singleton
terminal sets, if d(u, v) denotes the shortest-path distance from u to v in G, for every t ∈ T

and v ∈ R{t} the algorithm sets

z{t}
v = d(t, v). (10)

After this the algorithm considers each T ′ ⊆ T with |T ′| ≥ 2. For every v ∈ RT ′ it sets
the variables according to the following recurrence.

zT ′

v = min
u∈RT ′

T1∪T2=T ′

T1∩T2=∅
T1,T2 ̸=∅

{zT1
u + zT2

u + d(u, v)}. (11)

Note that here the sets T1 and T2 are proper subsets of T ′ and have thus been considered
by the algorithm in a previous step. Also note that u may be equal to v in which case
d(u, v) = 0. As a consequence, every variable zT ′

v is set to a finite value. In particular, if
a vertex u ∈ RT ′ does not have a path to v then d(u, v) = ∞ and so the minimum of the
right-hand side of (11) is always obtained by some vertex u that has a path to v.
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We remark that setting the variables as shown above can be seen as a step of the dynamic
program of the Dreyfus-Wagner algorithm (where the table entries are given by all dual
variables).3 On the other hand, this can also be seen as setting the dual variables to a
highest possible value without violating constraints of (PDST⋆) (as is typical in primal-dual
algorithms), where we witness the maximality of the dual values by arguing that certain
corresponding constraints of (PDST⋆) are tight, meaning that they are fulfilled with equality.
This is formalized by the following two lemmas, where we first show that the dual solution is
feasible.

▶ Lemma 6. Given a non-empty terminal subset T ′ ⊆ T , after the algorithm sets all dual
variables zT ′

v with v ∈ RT ′ according to either (10) or (11), the dual solution is feasible
for (PDST⋆).

Proof. Neither (10) nor (11) change the value of any variable z∅
u, and as these are set to 0

initially, Constraint (9) is never violated. For any t ∈ T and T ′ ⊆ T such that |T ′| ≥ 2, the
algorithm never sets zT ′

t to a non-zero value because t is a leaf and cannot be reached by
all the terminals in T ′. Constraint (8) can only be violated for T ′ ⊆ T of size at least 2 if
the algorithm sets zT ′

v to a non-zero value according to (11). This is not possible because
v is the only neighbour of t and so there does not exist any u ∈ RT ′ different from v. So,
Constraint (8) can only be violated if the algorithm sets a dual variable z

{t}
v according

to (10), since |T ′| ≥ 2 in (11). However, z
{t}
t = d(t, t) = 0, and so a variable z

{t}
v is set to its

maximum possible value without violating Constraint (8), i.e., it is tight.
For Constraint (7) and an edge uv, note that if T1 ̸= ∅ and T2 ̸= ∅ then (11) sets zT1∪T2

v

to a value of at most zT1
u + zT2

u + d(u, v), since the shortest path from u to v is considered in
the right-hand side of (11). Because d(u, v) ≤ w(uv), Constraint (7) is not violated in this
case. Furthermore, if one of the two sets, say T2, is empty, then zT2

u = 0 by Constraint (9)
and so Constraint (7) is given by zT1

v ≤ zT1
u + w(uv). According to (11), zT1

u is set to some
value z

T ′
1

q + z
T ′

2
q + d(q, u) for some vertex q and sets T ′

1, T ′
2, which together form T1. The

shortest path from q to v is at most as long as the shortest path from q to u plus the
edge uv, i.e., d(q, v) ≤ d(q, u) + w(uv). Thus according to (11), zT1

v is set to a value of at
most z

T ′
1

q + z
T ′

2
q + d(q, v) ≤ z

T ′
1

q + z
T ′

2
q + d(q, u) + w(uv) = zT1

u + w(uv), which concludes the
proof. ◀

To identify the tight constraints after running the algorithm, we say that Constraint (7)
of (PDST⋆) is tight for (uv, {T1, T2}) if the corresponding inequality is tight, i.e., zT1∪T2

v =
zT1

u + zT2
u + w(uv), and Constraint (8) of (PDST⋆) is tight for (tv, T ′) if zT ′

t + zT ′

v = w(tv)
for the corresponding inequality. Given t ∈ T and v ∈ R{t} so that z

{t}
v is set according

to (10), we say that a t → v path P in G is tight for {t} if
for the first edge tv′ of P , Constraint (8) is tight for (tv′, {t}), and
for every edge u′v′ of P , Constraint (7) is tight for (u′v′, {{t}, ∅}).

Given |T ′| ≥ 2 and v ∈ RT ′ so that zT ′

v is set according to (11) where the minimum of the
right-hand side of (11) is obtained by u ∈ RT ′ and T1, T2 ⊆ T ′, we say that a u → v path P

in G is tight for {T1, T2} if
for the first edge uv′ of P , Constraint (7) is tight for (uv′, {T1, T2}), and
for every edge u′v′ of P , Constraint (7) is tight for (u′v′, {T ′, ∅}).

3 Note that the dynamic program of Dreyfus and Wagner is typically set up slightly differently, such
that the table entries are initially set to ∞. This implies that for any vertex v that is not reachable
from a terminal set T ′, the corresponding entry for v and T ′ will be set to ∞ when filling the table.
Here we instead initialize the dual variables to 0 in order to obtain a feasible dual solution. We then
counteract any effects that this has on the recursion by only considering vertices in the reachability set
when changing variables.
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▶ Lemma 7. Given a terminal t ∈ T , after the algorithm sets all dual variables z
{t}
v with

v ∈ R{t} according to (10), any shortest t → v path for v ∈ R{t} is tight for {t}. Given
a terminal subset T ′ ⊆ T with |T ′| ≥ 2, after the algorithm sets all dual variables zT ′

v

with v ∈ RT ′ according to (11) such that zT ′

v = zT1
u + zT2

u + d(u, v) for some u ∈ RT ′ and
T1, T2 ⊆ T ′, any shortest u → v path for v ∈ RT ′ is tight for {T1, T2}.

Proof. Consider a terminal t ∈ T , v ∈ R{t}, and any shortest t → v path P . We saw in the
proof of Lemma 6 above that for the first edge tv′ of P , Constraint (8) is tight for (tv′, {t}).
Now consider any edge u′v′ of P . According to (10), z

{t}
v′ = d(t, v′) and z

{t}
u′ = d(t, u′).

As u′ and v′ lie on the shortest path P , u′ also lies on a shortest t → v′ path and so
d(t, v′) = d(t, u′) + w(u′v′). Hence we get z

{t}
v′ = z

{t}
u′ + w(u′v′), i.e., Constraint (7) is tight

for (u′v′, {{t}, ∅}) using that z∅
u′ = 0 according to Constraint (9).

Given a terminal set T ′ with |T ′| ≥ 2 and v ∈ RT ′ , let zT ′

v be set according to (11) so
that zT ′

v = zT1
u + zT2

u + d(u, v) for some u ∈ RT ′ and T1, T2 ⊆ T ′. Consider any vertex p of
any shortest u → v path P . According to (11), zT ′

p = z
T ′

1
q + z

T ′
2

q + d(q, p) for some q ∈ RT ′

and T ′
1, T ′

2 ⊆ T ′, which together form T ′. As zT1
u + zT2

u + d(u, p) is considered by (11) when
setting zT ′

p , we have z
T ′

1
q +z

T ′
2

q +d(q, p) ≤ zT1
u +zT2

u +d(u, p). Since p lies on the path P leading
to v, there exists a path from q to v via p, and d(q, v) ≤ d(q, p) + d(p, v). Consequently,

z
T ′

1
q + z

T ′
2

q + d(q, v) ≤ z
T ′

1
q + z

T ′
2

q + d(q, p) + d(p, v)
≤ zT1

u + zT2
u + d(u, p) + d(p, v)

= zT1
u + zT2

u + d(u, v),

where the last equality uses the fact that p lies on the shortest u → v path P . The value
z

T ′
1

q +z
T ′

2
q +d(q, v) is considered when setting zT ′

v according to (11). But since zT1
u +zT2

u +d(u, v)
minimizes the right-hand side of (11) when setting zT ′

v , the latter inequalities are in fact
equalities. In particular, after subtracting d(p, v) from the above, the second (in)equality
implies z

T ′
1

q + z
T ′

2
q + d(q, p) = zT1

u + zT2
u + d(u, p). As zT ′

p = z
T ′

1
q + z

T ′
2

q + d(q, p) this means that
in fact zT ′

p = zT1
u + zT2

u + d(u, p).
Now consider the first edge uv′ of the shortest u → v path P , for which w(uv′) = d(u, v′).

By setting p = v′, from our previous conclusion we obtain zT ′

v′ = zT1
u + zT2

u + w(uv′), i.e.,
Constraint (7) is tight for (uv′, {T1, T2}). Finally, consider any edge u′v′ of P . Since p

was an arbitrary vertex of P in the above argument, we can conclude that both zT ′

v′ =
zT1

u + zT2
u + d(u, v′) and zT ′

u′ = zT1
u + zT2

u + d(u, u′). From d(u, v′) = d(u, u′) + w(u′v′) we
thus get zT ′

v′ = zT ′

u′ + w(u′v′), i.e., Constraint (7) is tight for (u′v′, {T ′, ∅}). ◀

We now use the tight paths identified by Theorem 7 to extract a feasible integral primal
solution to (PDST) from the dual solution computed by the algorithm. This can be done by
the following recursive procedure, for which we initially set all variables x

{T1,T2}
e = 0. Each

recursive call is given by a function primSol(v, T ′) on some vertex v and terminal set T ′

with v ∈ RT ′ , and we begin the recursion with a call primSol(r, T ) on the root r and the
full terminal set T . Note that w.l.o.g., we may assume that every terminal can reach the
root, i.e., r ∈ RT . We will maintain the invariant that v ∈ RT ′ during each recursive call.

Given a vertex v and a terminal set T ′, the function primSol(v, T ′) does the following.
If |T ′| ≥ 2 then let PT ′ be any tight shortest u → v path for {T1, T2} given by Theorem 7
(using that v ∈ RT ′) for the vertex u ∈ RT ′ and sets T1, T2 ⊆ T ′ for which the minimum is
obtained on the right-hand side of (11) when setting zT ′

v . If f denotes the first edge of PT ′ ,
then in (PDST) the function sets x

{T1,T2}
f = 1, and x

{T ′,∅}
e = 1 for every edge e ̸= f of PT ′ .

After this the function makes a recursive call primSol(u, T1) on u and T1, and thereafter a
call primSol(u, T2) on u and T2. Note that in particular u ∈ RT1 and u ∈ RT2 and thus the
invariant v ∈ RT ′ is given for each recursive call.
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Finally, if T ′ = {t} for some terminal t ∈ T , then let P{t} be any tight shortest t → v

path for {t} given by Lemma x7 (using that v ∈ R{t}). The function primSol(v, {t}) sets
x

{{t},∅}
e = 1 in (PDST) for every edge e of P{t}. Here the recursion ends.

Note that, since (PDST) only has equality constraints, using tight paths to set variables
of the primal solution to 1 means that the primal and dual solutions are complementary slack,
i.e., for every non-zero variable of the primal (dual) LP the corresponding constraint in the
dual (primal) LP is tight. It is well-known (cf. [21]) that feasible primal and dual solutions
are complementary slack if and only if both solutions are optimal for their LPs. As we prove
in the next lemma, the above procedure computes a feasible integral primal solution. By
Theorem 6 also the dual solution is feasible, and so the primal and dual solutions are optimal
for (PDST) and (PDST⋆), respectively. In particular, the primal solution is an optimal
integral (0, 1)-solution to (PDST), proving the second part of Theorem 2.

▶ Lemma 8. The above recursive procedure computes a feasible integral primal solution
to (PDST) for any reduced Directed Steiner Tree instance.

Proof. First observe that for any terminal subset T ′, (11) always minimizes over proper
subsets T1, T2 ⊂ T ′ partitioning T ′. Since the recursive calls are on the same sets T1 and T2,
this implies that at most one recursive call is made on any set T ′, and in particular, the
path PT ′ is well-defined. Moreover, for any T ′ the procedure only sets variables x

{T1,T2}
e to

non-zero values if T1 ∪ T2 = T ′ (where possibly T1 = T ′ and T2 = ∅). As a consequence, for
every non-zero variable x

{T1,T2}
e with T1 ∪ T2 = T ′, e lies on the path PT ′ .

Now consider Constraint (1) of (PDST) for some vertex v ∈ V \ (T ∪ {r}) and non-empty
terminal subset T ′ ⊆ T . If any variable x

{T1,T2}
e contributes a non-zero value to the left-hand

side of this constraint, then e lies on PT ′ , since T1 ∪ T2 = T ′ by definition of Constraint (1).
Note that there can be only one non-zero variable on the left-hand side of the constraint,
as there is only one recursive call on T ′. Furthermore, v can only be the last vertex or an
internal vertex of PT ′ , since e ∈ δ−(v) for any left-hand side variable.

If v is the last vertex of the tight path PT ′ for {T1, T2}, then the procedure did a recursive
call primSol(v, T ′) on T ′ and v. Since v ̸= r, this call was made due to a previous call on a
set T ′ ∪ T ′′ for some non-empty set T ′′, and v is the first vertex of the tight path PT ′∪T ′′

for {T ′, T ′′}. During this call the function sets the variable x
{T ′,T ′′}
f = 1 for the the first

edge f ∈ δ+(v) of PT ′∪T ′′ . This variable thus contributes a non-zero value to the right-hand
side of the constraint for v and T ′. As v is the last vertex of PT ′ and only the unique
recursive call on T ′ sets variables x

{T ′,∅}
e to non-zero values, all such variables with e ∈ δ+(v)

on the right-hand side of the constraint are set to zero. Furthermore, for each non-zero
variable x

{T ′,T ′′}
e with T ′′ ̸= ∅ and e ∈ δ+(v), there is a recursive call primSol(v, T ′) on v

and T ′: the procedure will only set such a variable to a non-zero value if both T ′ and T ′′ are
non-empty and e is the first edge of the tight path for {T ′, T ′′}. As each recursive call is on
a unique set T ′, this means that there can only be one non-zero variable on the right-hand
side of the constraint. Since all non-zero variables are set to 1, if the left-hand side has one
variable set to 1, then so does the right-hand side. Note that the above arguments also
imply the reverse: if the right-hand side has a variable x

{T ′,T ′′}
f = 1 with f ∈ δ+(v), then

the recursive call primSol(v, T ′) sets a variable x
{T1,T2}
e = 1 with e ∈ δ−(v), and there can

be only one such non-zero variable on each of the right- and left-hand sides. Therefore the
constraint is valid if v is the last vertex of PT ′ .

If v is an internal vertex of PT ′ , the procedure sets x
{T ′,∅}
e for the edge e ∈ δ+(v) lying

on PT ′ to a non-zero value. As only the unique call on T ′ sets variables x
{T ′,∅}
e , no other

such variable with e ∈ δ+(v) is set to a non-zero value. Now consider a variable x
{T ′,T ′′}
f
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with f ∈ δ+(v) and T ′′ ̸= ∅. Since both T ′ and T ′′ are non-empty, if x
{T ′,T ′′}
f is non-zero

then f must be the first edge of a tight path PT ′∪T ′′ and x
{T ′,T ′′}
f is set during a recursive

call on T ′ ∪ T ′′. However, since |T ′ ∪ T ′′| ≥ 2, this would mean during this call a recursive
call primSol(v, T ′) was made on v and T ′, implying that v is the last vertex of PT ′ – a
contradiction. Hence as before, if the left-hand side of the constraint has one variable set
to 1, then so does the right-hand side, and the reverse is also true. Thus Constraint (1) is
valid.

For the other constraints of (PDST) it is easy to see that they are valid: for Constraint (2)
the procedure sets x

{{t},∅}
e = 1 for {e} ∈ δ+(t), as the recursion begins with the full terminal

set T and so must end in each terminal t ∈ T , and the tight path P{t} for {t} always has t

as the first vertex. Since all variables are initially set to zero, for Constraint (3) it suffices to
note that no tight path PT ′ with T ′ ≠ {t} can contain terminal t, as the Directed Steiner
Tree instance is reduced and so every terminal has only one neighbour. Constraint (4)
is valid since the recursion begins at the root r with the full terminal set T , so that some
variable x

{T1,T2}
e with T1 ∪ T2 = T is set to 1. As the recursive call on T is unique, exactly

one such variable is non-zero. For Constraint (5) it again suffices to note that no tight
path PT ′ with T ′ ̸= T can contain r, since also the root only has one neighbour. Finally,
Constraint (6) is obviously valid, since the procedure sets all variables to either 0 or 1. ◀

4 Extension complexity of the Steiner tree polytope

In this section we prove Theorem 1, i.e., that the extension complexity of the Steiner tree
polytope ST (G, T ) is exponential. For that, we will need the following two additional
polytopes. One is for the Hamiltonian Path problem, where we are given an undirected
graph G = (V, E) and two vertices u, v ∈ V and we need to decide whether there exists a
path P in G between u and v such that P visits all vertices of G. A related problem is the
Hamiltonian Cycle problem, where we need to decide whether an undirected graph G has
a cycle that visits all the vertices of G.

HP (G, u, v) := conv.hull {xE(P ) ∈ {0, 1}|E(G)| | P is a Hamiltonian u → v path in G}

HC(G) := conv.hull {xE(C) ∈ {0, 1}|E(G)| | C is a Hamiltonian cycle in G}

Now, we first show a lemma that relates the extension complexity of HP (G, u, v) and
ST (G, T ) for any graph G. In fact, we will show the lemma for the case when the number
of terminals for the Steiner Tree instance is 2. In the following we denote the extension
complexity of any polytope Q by xc(Q).

▶ Lemma 9. For any graph G, xc(HP (G, u, v)) ≤ xc(ST (G, {u, v})).

Proof. Observe that
∑

e∈E(G) xe ≤ n − 1 is a valid inequality for ST (G, T ), as any Steiner
tree has at most n−1 edges, and thus ST (G, T )∩{x |

∑
e∈E xe = n−1} is a face of ST (G, T ).

We want to show that HP (G, u, v) = ST (G, {u, v}) ∩ {x |
∑

e∈E xe = n − 1}. This would
mean that the polytope HP (G, u, v) is a face of the polytope ST (G, {u, v}), which would
imply that the extension complexity of HP (G, u, v) is at most the extension complexity of
ST (G, {u, v}), and thus prove the lemma.

Now, to show the claim, it is enough to show that the extreme points of the left-hand
side belong to the polytope on the right-hand side and vice versa. We look at an extreme
point x ∈ HP (G, u, v), that is, there exists a Hamiltonian path P between u and v such that
x = xE(P ). Clearly, P has n − 1 edges, so we have that

∑
e∈E xe = n − 1. On the other

hand, since P is a path between u and v, it is a minimal connected subgraph containing u

and v and hence x ∈ ST (G, {u, v}).
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For the other direction, let us take an extreme point of the polytope ST (G, {u, v}) ∩ {x |∑
e∈E xe = n − 1}. As observed earlier, for all the extreme points x of ST (G, {u, v}),∑
e∈E xe ≤ n − 1 is a valid inequality. This means that the polytope ST (G, {u, v}) lies on

one side of the hyperplane {x |
∑

e∈E xe = n − 1}. This gives us that all the extreme points
of ST (G, {u, v}) ∩ {x |

∑
e∈E xe = n − 1} are also extreme points of ST (G, {u, v}). So, to

prove the other direction, it is enough to look at the extreme points of ST (G, {u, v}). Now,
let x be an extreme point of ST (G, {u, v}), which also belongs to {x |

∑
e∈E xe = n − 1}.

This means that x = xE(H) for some Steiner tree H for (G, {u, v}). We also know that∑
e∈E xe = n − 1. Since H is a minimal subgraph connecting u and v having n − 1 edges, it

has to be a Hamiltonian path between u and v, and hence x ∈ HP (G, u, v). This finishes
the proof of the lemma. ◀

Now we state the following lemma by Balas [1, 2], which bounds the extension complexity
of union of several polytopes.

▶ Theorem 10 ([1, 2]). Consider q polytopes P i ⊆ Rn, i = 1, . . . , q and write P :=
conv.hull(∪i∈[q]P

i). Then, xc(P ) ≤ q +
∑

i∈[q] xc(P i).

We use this theorem in the following to relate the extension complexities of Hamiltonian
cycles of the complete graph Kn and Hamiltonian paths.

▶ Lemma 11. Let Kn be a complete graph with n vertices and u and v be two arbitrary
vertices of Kn. Then xc(HC(Kn)) ≤

(
n
2
)

+
(

n
2
)

· xc(HP (Kn − uv, u, v)), where Kn − uv is
the graph Kn with the edge uv removed.

Proof. We will show HC(Kn) to be convex hull of the union of
(

n
2
)

polytopes, which have their
extension complexity same as that of HP (Kn − uv, u, v). We take Quv := HP (Kn − uv, u, v)
for all uv ∈ E(Kn). Observe that the dimension of Quv is

(
n
2
)

− 1. For each x ∈ Quv,
we make a y ∈ Puv of length

(
n
2
)

by adding the co-ordinate for the edge uv and giving it
value 1. Since Puv is just an embedding of the (

(
n
2
)

− 1)-dimensional polytope Quv into(
n
2
)
-dimensional space by fixing the additional co-ordinate to be 1, the number of facets of

Puv and Quv remain the same, which is at most xc(HP (Kn − uv, u, v)). Observe that for all
edges uv and u′v′ in E(Kn), the polytopes HP (Kn − uv, u, v) and HP (Kn − u′v′, u′, v′) are
isomorphic to each other and hence have the same extension complexity. So the polytopes
Puv and Pu′v′ also have the same extension complexity for all uv, u′v′ ∈ E(K ′).

Now we just need to show that HC(Kn) = conv.hull(∪uv∈E(Kn)Puv), and the proof of
the lemma will follow by Theorem 10. Let us look at an extreme point x ∈ HC(Kn). Clearly,
x = xE(C) for some Hamiltonian cycle C of Kn. Let e = uv be an arbitrary edge in C. We
claim that x ∈ Puv. For that, first observe that C contains a Hamiltonian path between u

and v, which is the cycle C with edge uv removed. So the characteristic vector of C is the
same as the characteristic vector of C − uv in Kn − uv along with 1 at the co-ordinate for
the edge uv, so x ∈ Puv. For the other side, let x be an extreme point in ∪uv∈E(Kn)Puv and
hence in some Puv. From the construction of Puv, x has the coordinates for E(P ) and the
edge uv as 1, where P is some Hamiltonian path between u and v in Kn − uv. This shows
that x is a characteristic vector of a Hamiltonian cycle in Kn and hence x ∈ HC(Kn). ◀

To show Theorem 1 with the help of the lemmas proved above, we use the following result
about the extension complexity of Hamiltonian cycles in complete graphs.

▶ Theorem 12 ([26]). xc(HC(Kn)) = 2Ω(n).
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Proof of Theorem 1. For the sake of contradiction, let us assume that Theorem 1 is not true.
This means that for all constants c > 0, there exists a function f such that for all n vertex
graphs G, xc(ST (G, T )) < f(k)2cn, where k = |T |. Now, Lemma 9 and Lemma 11 imply
that xc(HC(Kn)) ≤

(
n
2
)

+
(

n
2
)
xc(HP (Kn − uv, u, v)) ≤

(
n
2
)

+
(

n
2
)
xc(ST (Kn − uv, {u, v})).

We know that xc(ST (Kn − uv, {u, v})) < f(2)2cn for some function f and all constants c.
This would mean that xc(HC(Kn)) < d2cn for all constants c, where d = f(2) is another
constant, which contradicts Theorem 12. This finishes the proof of Theorem 1. ◀
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A Preprocessing

In this section, given an instance (G, T, r, w) of Directed Steiner Tree, we will transform
it into an equivalent instance (G′, T ′, r′, w′), where G′ is a directed graph and G has a
solution of weight W if and only if there exists a solution for G′ of weight W where all the
terminals are leaves with out-degree 1, the root is a leaf with in-degree 1 and for every other
vertex v, we have that deg+(v) + deg−(v) ≤ 3. Formally, we want to prove the following
lemma.

▶ Lemma 13. Given an instance (G, T, r, w) of Directed Steiner Tree, in polynomial
time, we can transform it into another Directed Steiner Tree instance (G′, T ′, r′, w′)
such that (G, T, r, w) has a solution A of weight W if and only if (G′, T ′, r′, w′) has a solution
A′ of weight W where all the terminals are leaves with out-degree 1, the root is a leaf with
in-degree 1, and for all v ∈ V (G′) \ (T ′ ∪ {r′}), we have deg+(v) + deg−(v) ≤ 3.

Proof. We will prove the lemma in two stages. First we transform (G, T, r, w) to
(G1, T1, r1, w1) where G1 is the graph obtained by making a copy t′ of every terminal
t ∈ T , and adding the edge (t′, t) with zero weight. Let T ∗ be the set of these new vertices.
We also add a vertex r∗ as a new root, and add the edge (r, r∗) with zero weight. Then we
take T1 := T ∗, r1 := r∗, and w1 is obtained by adding the new zero edge weights to w. It is
easy to see that (G, T, r, w) has a solution of weight W if and only if (G1, T1, r1, w1) has a
solution of weight W where all the terminals are leaves with out-degree 1 and the root is a
leaf with in-degree 1.

Given (G1, T1, r1, w1) of Directed Steiner Tree as described above, we make an
instance (G2, T2, r2, w2) of Directed Steiner Tree by the following transformation. For
every vertex v ∈ V (G1) \ (T1 ∪ {r1}) with in-degree deg−(v) and out-degree deg+(v) such
that deg+(v) + deg−(v) ≥ 4, we replace it with a cycle of length d := deg+(v) + deg−(v)
defined as Cv = v1v2 . . . vdv1 where v1, v2, . . . , vd are new vertices. Then for every neighbour
u of v, if uv ∈ E(G1) (or vu ∈ E(G1)), we find a unique vi of v, a unique copy uj of u, and
add the edge viuj (or ujvi). Then we take T2 := T1 and r2 := r1 This way, the graph G2 has
maximum degree 3 and all the terminals are leaves in G2 with out-degree 1 and the root is a
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leaf with in-degree 1. For every edge e in the cycle Cv, we put w2(e) := 0. For every other
edge uivj ∈ E(G2) such that ui and vj are in cycles Cu and Cv corresponding to u ∈ V (G1)
and v ∈ V (G1), we put w2(uivj) := w1(uv). Given a solution of weight W of (G2, T2, r2, w2),
we can transform it into a solution of weight W for (G1, T1, r1, w1) by contracting the zero
weight edges of the cycles in the solution. On the other hand, given a solution of weight W

for (G1, T1, r1, w1), for an edge uv in the solution, we pick the edge between unique copies
ui and vj of u and v corresponding to the edge uv and connect all these edges by picking as
many edges from Cu and Cv as we want at no extra cost. Observe that the terminals and
the root are leaves in G2, so they will be leaves in any solution as well. This shows that
(G1, T1, r1, w1) has a solution of weight W where all the terminals are leaves with out-degree
1 and the root is also a leaf with in-degree 1 if and only if (G2, T2, r2, w2) has a solution of
weight W where all the terminals are leaves with out-degree 1 and the root is also a leaf with
in-degree 1 and all the vertices v ∈ V (G2) \ (T2 ∪ {r2}), we have that deg+(v) + deg−(v) ≤ 3.
Finally taking (G′, T ′, r′, w′) := (G2, T2, r2, w2) finishes the proof of the lemma. ◀
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