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Abstract
We study a variant of the classical membership problem in automata theory, which consists of
deciding whether a given input word is accepted by a given automaton. We do so through the lenses
of parameterized dynamic data structures: we assume that the automaton is fixed and its size is
the parameter, while the input word is revealed as in a stream, one symbol at a time following the
natural order on positions. The goal is to design a dynamic data structure that can be efficiently
updated upon revealing the next symbol, while maintaining the answer to the query on whether the
word consisting of symbols revealed so far is accepted by the automaton. We provide complexity
bounds for this dynamic acceptance problem for timed automata that process symbols interleaved
with time spans. The main contribution is a dynamic data structure that maintains acceptance of a
fixed one-clock timed automaton A with amortized update time 2O(|A|) per input symbol.
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1 Introduction

Imagine we would like to monitor whether the behavior of a server is correct. The run of
the server can be abstracted by an infinite stream w = a1a2a3 . . . ∈ Σω, where Σ is a finite
alphabet of possible events. The events are disclosed one at a time on the input, and at every
moment we should tell whether the prefix consisting of the events observed so far is correct.
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A simple yet expressive formalism for describing properties of such data streams is provided
by classical finite automata. For example, suppose we would like to verify the property
that a certain resource is being used by at most one process. Assume that the alphabet is
Σ = {o, r} ∪ Γ, where o denotes a request of the resource, r denotes a release of the resource,
and Γ contains other immaterial events. The streams satisfying the discussed property can
be then characterized as those where every prefix is accepted by the two-state automaton A
of Figure 1. Here, a state indicates whether the resource is currently available or not.

Verifying the correctness of a stream over time can be formalized through the following
dynamic acceptance problem: for a fixed automaton A, design a data structure that upon
receiving subsequent events from the stream, monitors whether the prefix read so far is
accepted by A. An obvious, though usually suboptimal solution would be to store in the data
structure the prefix read so far, and, upon receiving a new symbol, run the automaton on the
whole prefix. This would require time linear in the total length of the prefix, which after a
while can become very large compared to |A|, the size of the automaton A. So we would like
to minimize the update time by smartly organizing and reusing information computed before.

Cast in this way, the dynamic acceptance problem naturally lends itself to a treatment
using the notions of parameterized complexity. Namely, we consider the automaton A fixed
and use the parameter |A| as an auxiliary measure for expressing guarantees on the update
time. Ideally, we would like to obtain update time bounded by a computable function of |A|
only. This way, our work inscribes into the area of parameterized dynamic data structures,
which is a direction that is still relatively unexplored, but starts to attract considerable
attention; see e.g. [3, 7, 11] and references therein for an overview of recent advances.

For finite automata, the dynamic acceptance problem can be solved easily with update
time O(|A|), as follows. After reading a prefix u, the data structure stores the subset of states
S ⊆ Q in which the automaton may be after reading u (in general, we allow the automaton
to be non-deterministic). Upon receiving the next input symbol, the set S is updated by
applying the possible transitions on every state in S. Moreover, telling whether A accepts
the current input prefix boils down to checking whether S contains an accepting state. Both
the update and the query described above can be implemented in time linear in |A|.

Unfortunately, real-life scenarios involve many aspects that cannot be captured by a
simple formalism such as finite automata. One of these aspects is time. Consider the following
example of property that needs to be verified: at every moment in time when an event
occurs, a backup operation has been performed within the last 24 hours. A natural choice to
model this and similar properties is to enhance finite automata with the ability of measuring
time, by adding one or more clocks. A definition of the resulting automaton model, called
timed automaton, is presented in Section 2. Intuitively, a possible timed automaton for the
considered property would have one clock x and two states, “before backup” and “after
backup”, and would behave as follows (see the right hand-side of Figure 1). The idea is
that while processing an input prefix u, the automaton non-deterministically guesses a single
backup event b and verifies that this event occurred within the last 24 hours. Thus, upon
reading an occurrence of event b, the automaton may either ignore this event and carry on,

A : o

r

Γ Γ
B :

b, reset x

Γ ∪ {b} Γ ∪ {b}, x ≤ 24

Figure 1 Left: a finite automaton A recognising language Γ∗(oΓ∗rΓ∗)∗({ε} ∪ oΓ∗), where
occurrences of o are interleaved by occurrences of r. Right: a timed automaton B with single clock x.
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or move from state “before backup” to state “after backup” and reset the clock. The input
prefix u is accepted if the automaton reached state “after backup” and, during events since
the last reset, the value of the clock has never exceeded 24 hours.

Timed automata are a central topic in the area of verification, and they have a rich and
diverse literature, see e.g. [4, 8, 12]. In this work we are interested in the dynamic acceptance
problem for timed automata, defined analogously to that for finite automata.

Note that in the setting of timed automata, the same technique that worked for finite
automata will not work so easily. The reason is that for a finite automaton A, the set
of configurations in which A may be is a subset of the set of control states, whose size is
bounded by the size of A. On the other hand, a configuration of a timed automaton consists
of a control state and a tuple of clock values, so the number of possible configurations is a
priori unbounded. Concretely, after reading a prefix of length n, there may be as many as
O(|A| · nk) different configurations which the given k-clock timed automaton may possibly
reach, due to non-determinism and clock resets. Efficient maintenance of this configuration
set in a data structure poses the main conceptual challenge in this paper.

Our contribution. We design a dynamic data structure that, for a fixed timed automaton
A with one clock, monitors whether A accepts the prefix read so far with amortized update
time 2O(|A|). This can be improved to worst-case (i.e. non-amortized) update time when the
input stream is discrete, that is, when all time spans between consecutive events are equal.
Our data structure actually works in a slightly more general setting, where the automaton A
is not entirely fixed, but rather is provided on input upon initialization of the data structure.

We also give a somewhat complementary lower bound: under the 3SUM Conjecture, we
prove that there exists a fixed timed automaton A with two clocks and additive constraints
on them such that no data structure for the dynamic acceptance problem for A may achieve
strongly sublinear amortized update time (i.e. time O(n1−δ) for δ > 0). Here, by additive
constraints we mean that in the transition relation of A we may use affine clock conditions
that involve more than one clock, e.g. x + y = c where x, y are clocks and c is a constant.

If the given timed automaton A has more than one clock, but only constraints involving
a single clock are allowed, it remains open whether there is an efficient data structure for the
dynamic acceptance problem or a lower bound similar to the above one.

Related work. The setting in this work is close to runtime verification [20], an area that
focuses on verification techniques that could be performed at runtime, e.g. using timed
automata [26, 10]. However, while we study monitoring a data stream through a suitable
data structure in the dynamic setting, studies on runtime verification typically focus on
static problems. An example of such a problem is: given an input prefix u, verify whether
there is a sequence of events that extends u to a word accepted by the device (e.g. a finite
automaton). The problem studied in [25] is similar to the setting presented here; however,
this line of work considers constants (e.g. 24 in Figure 1) as part of the input contributing to
the considered parameter, and this considerably simplifies the problem (see Section 2 and 3).

The dynamic acceptance problem that we consider here resembles the setting of streaming
algorithms; see e.g. [5, 13, 17] for works with a similar motivation. In this context, a typical
problem is to compute (possibly approximately) some statistics or an aggregate function
over the sequence of data, where the main point is to assume severe restrictions on the space
usage. Note that in our setting, we focus on obtaining low time complexity per update and
query, rather than optimizing the space complexity. In this respect, our work leans more
towards the area of dynamic data structures, in particular dynamic query evaluation [9, 18].

IPEC 2021



20:4 Dynamic Data Structures for Timed Automata Acceptance

For Boolean properties several papers [21, 22, 6] have considered streaming algorithms for
testing membership in regular and context-free languages. Another variant of the problem
was considered in [16, 15, 14], where the regular property is verified on the last N letters of
the stream, instead of the entire prefix up to the current position.

The closest to our setting is the work [24], which studies the dynamic evaluation problem
for monoids over a sliding window, and describes a data structure that can be updated in
constant time for a fixed finite monoid. When the monoid is finite, the considered problem is
basically the same as monitoring whether the input stream restricted to the sliding window
is accepted by a finite automaton. We show in Example 1, that in this case, the problem can
be reduced to the dynamic acceptance problem for a special form of timed automaton.

2 Preliminaries

Finite automata. A finite automaton is a tuple A = (Σ, Q, I, E, F ), where Σ is a finite
alphabet, Q is a finite set of states, E ⊆ Q × Σ × Q is a transition relation, and I, F ⊆ Q

are the sets of initial and final states. A run of A on a word w = a1 . . . an ∈ Σ∗ is a sequence
ρ = q0

a1−−−→ q1
a2−−−→ . . . an−−−→ qn where (qi−1, ai, qi) ∈ E for all i = 1, . . . , n. Moreover, ρ is a

successful run if q0 ∈ I and qn ∈ F . A word w is accepted by A if there is a successful run of
A on w.

Timed automata. Let X be a finite set of clocks, usually denoted x, y, . . .. A clock valuation
is a function ν : X → R≥0 from clocks to non-negative reals. Clock conditions are formulas
defined by the grammar: CX := true | x < c | x > c | x = c | CX ∧ CX | CX ∨ CX , where
x ∈ X and c ∈ R≥0. By a slight abuse of notation, we also denote by CX the set of clock
conditions over X. Given a clock condition γ and a valuation ν, we say that ν satisfies γ

and write ν |= γ, if the arithmetic expression obtained from γ by substituting each clock x
with its value ν(x) evaluates to true.

A timed automaton is a tuple A = (Σ, Q, X, I, E, F ), where Q, Σ, I, F are defined exactly
as for finite automata, X is a finite set of clocks, and E ⊆ Q × Σ × CX × Q × 2X is a finite
transition relation. We say that c ∈ R≥0 is a clock constant of A if c appears in some clock
condition of a transition from E. A configuration of A is a pair (q, ν), where q ∈ Q and ν is a
clock valuation. Recall that finite automata process words over a finite alphabet Σ; likewise,
timed automata process timed words over an alphabet of the form Σ ⊎ R>0, with Σ finite.

A run of a timed automaton A on a timed word w = e1 . . . en ∈ (Σ ∪ R>0)∗ is a sequence
ρ = (q0, ν0) e1−−−→ (q1, ν1) e2−−−→ . . . en−−−→ (qn, νn), where each (qi, νi) is a configuration and

if ei ∈ R>0, then qi+1 = qi and νi+1(x) = νi(x) + ei for all x ∈ X;
if ei ∈ Σ, then there is a transition (qi, ei, γ, qi+1, Z) ∈ E such that νi |= γ and either
νi+1(x) = 0 or νi+1(x) = νi(x) depending on whether x ∈ Z or x ∈ X \ Z.

Thus, the set Z in a transition (qi, ei, γ, qi+1, Z) ∈ E corresponds to the subset of clocks that
are reset when firing the transition. Note that the values of the other clocks stay unchanged.
An example of a one clock timed automaton was given in the introduction (see Figure 1).

A run ρ as above is successful if q0 ∈ I, ν0(x) = 0 for all x ∈ X, and qn ∈ F . A word
w ∈ (Σ ∪ R>0)∗ is accepted by A if there is a successful run of A on w.

Size of an automaton. The size of a finite automaton A = (Σ, Q, I, E, F ) is defined as
|A| = |Q| + |E|. This is asymptotically equivalent to essentially every possible definition of
size of a finite automaton that can be found in the literature. The size of a timed automaton
A = (Σ, Q, X, I, E, F ) is instead defined as |A| = |Q| + |X| +

∑
(p,a,γ,q,Z)∈E |γ|, where |γ|

is the number of atomic expressions (i.e. expressions of the form true, x < c, x > c, x = c)



A. Grez, F. Mazowiecki, M. Pilipczuk, G. Puppis, and C. Riveros 20:5

appearing in the clock condition γ. Note that the size of a timed automaton does not take
into account the magnitude of the clock constants. These constants are specified with the
automaton and stored in suitable floating-point memory cells (see the computation model
below).

Computation model. As clock constants and time spans in the input stream are arbitrary
real numbers, it is convenient to use the real RAM model of computation. This is a standard
model with integer memory cells that can store integers and floating-point memory cells that
can store real numbers. There are no bounds on the bit length or precision of the stored
numbers. Basic arithmetic operations – addition, subtraction, multiplication, and division –
can be performed in unit time, but modulo arithmetics and rounding are not included in the
model. In fact, we do not use multiplication or division on real numbers either.

3 The dynamic acceptance problem and main results

The dynamic acceptance problem amounts to designing a data structure that can be initialized
for a given timed automaton A with one clock, and afterwards, upon consuming consecutive
elements of the data stream, efficiently maintains the information on whether the word read
so far is accepted by A. Formally, the data structure should support the following operations:

init(A): Initialize the data structure for a given automaton A. This automaton is fixed
for the entire lifespan of the data structure.
accepted(): Query whether the prefix of the stream consumed up to the current moment
is accepted by A.
read(e): Consume the next element e from the input stream, be it a letter from Σ or a
time span from R>0, and update the data structure accordingly.

The running time of each of these operations needs to be as low as possible. More precisely,
we shall say that a data structure supports dynamic acceptance in time f(s, n) if the first
operation init(A) takes at most f(s, 0) time, and every subsequent execution of accepted()
or read(e) takes at most f(s, n) time, where s = |A| and n is the number of stream elements
consumed so far. Similarly, a data structure supports dynamic acceptance in amortized time
f(s, n) if the first operation init(A) takes at most f(s, 0) time and, for every n, the first
n operations of the form accepted() and read(e) take at most n · f(s, n) time in total.
Ultimately, we are interested in designing data structures where the complexity guarantee
f(s, n) is independent of n, that is, the (amortized) update time is a function of |A| only.

Before presenting the complexity results in detail, we provide an example of application
of the dynamic acceptance problem.

▶ Example 1. We discuss the relationship between our dynamic acceptance problem for
timed automata and an aggregation problem for monoids over a sliding window, as considered
in [24]. When the monoid is finite, every element of it represents a regular language, and
thus the aggregation problem can be seen as an acceptance problem. This means that the
aggregation problem for finite monoids over a sliding window is reducible to an automaton
membership problem in the sliding window model (see also [14]). We formalize this problem
below.

Let A = (Σ, Q, I, E, F ) be a finite automaton and C a positive integer defining the width
of the sliding window. The membership problem of A with a sliding window of width C

consists of processing, from left to right, an arbitrary input w = a1a2a3 . . . over Σ, while
maintaining the answer to the following query: is the sequence of the last C consumed letters
accepted by A? The goal is to design a data structure that can be updated in a time that
only depends on the automaton A, and not on the size of the window C.

IPEC 2021
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A :
a a

b

Â :

∗ | reset x

a

a, check x = C

a

b

Figure 2 Reducing the sliding window membership problem to the dynamic acceptance problem.

Next, we explain how the above problem can be reduced to our dynamic acceptance
problem. Here, we consider only streams that are discrete, and in fact even slightly more
restricted: we assume that every input stream belongs to the language ({1}·Σ)ω, namely, that
the letters from Σ are interleaved by the time unit 1. We map the input word w = a1a2a3 . . .

to a corresponding discrete stream ŵ = 1a11a21a3 . . ., and modify the finite automaton A to
obtain a corresponding timed automaton Â, as follows. We introduce a new state q̂, which
will be the only final state of Â, and a clock x. We then replace every transition (q, a, q′)
of A with the transition (q, a, true, q′, ∅). Note that these transitions have a vacuous clock
condition, hence they are applicable in Â whenever the original transitions of A are so. In
addition, when the former transition (q, a, q′) reaches a final state q′ ∈ F , we also have a
transition (q, a, x = C, q̂, ∅) in Â. Finally, we add looping transitions on the initial states
that reset the clock, that is, transitions of the form (q, a, true, q, {x}), with q ∈ I and a ∈ Σ.
Figure 2 shows the timed automaton Â corresponding to an automaton A recognising ab∗a.

From the above construction it is clear that Â accepts a prefix 1a1 . . . 1an of ŵ if and
only if A accepts the C-letter factor an−C+1 . . . an of w. Thus, the membership problem
for A in the C-width sliding window model is reduced to the dynamic acceptance problem
for Â over the stream ŵ. We will see later (Theorem 2) that there is a data structure that
supports dynamic acceptance for Â with update time 2O(|Â|) = 2O(|A|). This means that
we can process one letter at a time from a word w, while answering in time 2O(|A|) whether
A accepts the sequence of the last C consumed letters. Note that the complexity here is
independent of C.

Results. We say that a stream w is discrete if its elements range over Σ ⊎ {1}, that is, if all
time spans in the stream coincide with the time unit 1. Our main result is the following:

▶ Theorem 2. Consider the dynamic acceptance problem for timed automata with one clock.
There is a data structure that

supports dynamic acceptance in time 2O(|A|) on discrete streams, and
supports dynamic acceptance in amortized time 2O(|A|) on arbitrary streams,

where A is the automaton provided upon initialization.

We stress that the complexity in Theorem 2 depends only on the size of A. In particular, it
does not depend on the bitlength of clock constants (e.g. 24 in Figure 1). Note that thanks
to the assumption of the real RAM model, the question of the complexity of arithmetic
operations on reals is separated from the running time analysis in the proof of Theorem 2.
This feature reflects the real-life scenarios, where the automaton is small, while real numbers
involved can be efficiently manipulated by the processor despite having large bitlength. The
proof of Theorem 2 is presented in Section 4.

We do not know whether this theorem can be generalized to timed automata with more
than one clock while preserving independence of the time complexity of updates from the
length of the consumed stream prefix. However, we establish a negative result for a slightly
more powerful model of timed automata, called timed automata with additive constraints
(see e.g. [8]). Formally, a timed automaton with additive constraints is defined exactly as a
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timed automaton – that is, as a tuple A = (Σ, Q, X, I, E, F ) consisting of an input alphabet,
a set of states, a set of clocks, etc. – but clock conditions are now allowed to satisfy an
extended grammar obtained by adding new rules of the form

( ∑
x∈Z x

)
∼ c, where Z ⊆ X

and ∼ ∈ {<, >, =}. For instance, one can write x + y ≤ c, where c is a clock constant.
To give some background, let us briefly discuss in more detail the power of this extension.
Allowing additive constraints is a non-trivial extension of timed automata and in particular
it makes the emptiness problem undecidable [8, Theorem 2]. However, undecidability holds
when at least four clocks are available. Moreover, it is shown that for timed automata with
additive constraints with two clocks the emptiness problem is decidable; and the proof is a
straightforward modification of the standard region construction [8, Proposition 1].

Our negative result relies on the 3SUM conjecture, stated just below. Recall that in
the 3SUM problem we are given a set S of positive real numbers and the question is to
determine whether there exist a, b, c ∈ S satisfying a + b = c. It is easy to solve the problem
in time O(n2), where n = |S|; the 3SUM Conjecture asserts that this cannot be significantly
improved:

▶ Conjecture 3 (3SUM Conjecture). In the real RAM model, the 3SUM problem cannot be
solved in strongly sub-quadratic time, that is, in time O(n2−δ) for any δ > 0, where n is the
number of values forming the input.

The 3SUM Conjecture is widely used in computational geometry and fine-grained
complexity theory (see an overview in [2, Appendix A]), and it was applied to establish lower
bounds for several dynamic problems [1, 3, 19, 23]. Our negative result is similar in nature:

▶ Theorem 4. If the 3SUM Conjecture holds, then there is a two-clock timed automaton
A with additive constraints such that there is no data structure that, when initialized on A,
supports dynamic acceptance in time O(n1−δ) for any δ > 0, where n is the length of the
consumed stream prefix.

The proof of Theorem 4 follows almost directly from an analogous 3SUM-hardness result
in the static setting:

▶ Lemma 5. If the 3SUM Conjecture holds, then there is a two-clock timed automaton
A with additive constraints for which there is no algorithm that, given a finite timed word
w ∈

(
Σ ⊎ R>0

)∗ as input, where Σ is a two-letter alphabet, decides whether A accepts w in
time O(n2−δ) for any δ > 0 and for n = |w|.

Proof. We construct a two-clock timed automaton A with additive constraints and an
algorithm that given a set S of n positive reals, outputs a word w ∈

(
Σ ⊎ R>0

)∗ such that
w is accepted by A if and only if there are a, b, c ∈ S satisfying a + b = c. We find it more
convenient to first present the construction of w from S. Then we present the automaton A
and analyze its runs on w.

Let S = {s1, s2, . . . , sn} be a set of positive real numbers and M = max(S) + 1. By
sorting S we may assume that 0 < s1 < . . . < sn < M . We set Σ = {♢, ♠}. The word is
defined as

w = u ♠ u ♠ v,

where

u = 2(M − sn) ♢ 2(sn − sn−1) ♢ 2(sn−1 − sn−2) ♢ . . . ♢ 2(s2 − s1) ♢ 2(s1 − 0);
v = (M − sn) ♢ (sn − sn−1) ♢ (sn−1 − sn−2) ♢ . . . ♢ (s2 − s1) ♢.

IPEC 2021
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p1

p2

q1

q2

r1

r2

♢

♢

♢

♢

♢

♢

♢ | reset x
♠ | rese

t y
♢ | reset y

♠ ♢, test x + y = 4M

Figure 3 Timed automaton for reducing 3SUM.

Note that w has length O(n) and can be constructed from S in time O(n log n). Intuitively,
the factors u, u, and v above are responsible for the choice of a, b, and c, respectively.

We now describe a timed automaton A that accepts w if and only if a + b = c. The
automaton is depicted in Figure 3. It uses two clocks, named x and y. All the transitions
have trivial (always true) clock conditions, apart from the transition from r1 to r2, where
we check that the sum of clock values is equal to 4M . The only initial state is p1; the only
accepting state is r2.

Next, we analyze the runs of A on w, with the goal of showing that A accepts w if and
only if there are a, b, c ∈ S such that a + b = c. Consider any successful run ρ of A on w.
Observe that the moment of reading the first symbol ♠ in w must coincide with firing the
transition from p2 to q1. At this moment, the automaton has consumed the first factor u

of w, and there was a moment where it moved from state p1 to state p2 upon reading one
of the ♢ symbols from u. Supposing that the transition in ρ from p1 to p2 happens at the
i-th symbol ♢ of u, the clock valuation at the moment of reaching q1 for the first time must
satisfy x = 2(si − si−1) + . . . + 2(s2 − s1) + 2s1 (= 2si) and y = 0. We conclude the following.

▷ Claim 6. The set of possible clock valuations at the moment of reaching the state q1 for
the first time is {(x = 2a, y = 0) : a ∈ S}.

Next, observe that the moment of reading the second occurrence of ♠ in w must coincide
with firing the transition from q2 to r1. Between the first and the second symbol ♠ the
automaton consumes the second factor u, and during this the clock x increases exactly by the
sum of the time spans within u, i.e. by 2M . On consuming the second factor u, the clock y is
reset once, and precisely when firing the transition from q1 to q2, which happens on reading
one of the occurrences of ♢ in u. Again, if this happens when reading the j-th occurrence of
♢, then, after the reset, y is incremented by exactly 2sj units. We conclude the following.

▷ Claim 7. The set of possible clock valuations at the moment of reaching the state r1 for
the first time is {(x = 2a + 2M, y = 2b) : a, b ∈ S}.

Finally, after consuming the last factor v, the automaton can move to the accepting
state r2 if and only if at some point, upon reading an occurrence of ♢, the condition
x + y = 4M holds. Observe that the sum of the first k numbers encoded in v is equal to
M − sn−k+1. Hence, after parsing those numbers, the set of possible clock valuations is
{(x = 2a + 2M + M − c, y = 2b + M − c) : a, b ∈ S}, for some choice of c ∈ S. Moreover,
the latter valuations satisfy the condition x + y = 4M if and only if a + b = c.

Based on the above arguments, we infer that a successful run like ρ exists on input w if
and only if there are a, b, c ∈ S such that a + b = c. To conclude the proof, we observe that
if an algorithm could decide whether A accepts w in time O(n2−δ) for any δ > 0, then by
combining this algorithm with the presented construction, one could solve 3SUM in time
O(n2−δ). This would contradict the 3SUM Conjecture. ◀
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We conclude the section by showing how Theorem 4 follows from Lemma 5. Consider the
timed automaton A provided by the lemma. If a data structure as in the statement of the
theorem existed, then using this data structure one could decide in strongly sub-quadratic
time whether any input timed word w is accepted by A, by simply applying the sequence of
read(·) operations corresponding to w, followed by the query accepted().

Recall that we do not know whether a negative result similar to Theorem 4 also holds for
plain timed automata (without additive constraints).

4 Data structure: proof of Theorem 2

Notation. Let us fix, once and for all, the timed automaton A = (Σ, Q, X, I, E, F ) with a
single clock x that is provided upon initialization. By adding a non-accepting sink state, if
necessary, we may assume that for every q ∈ Q and a ∈ Σ, some transition over letter a can
be always applied at q at any time. As A uses only one clock, every configuration of A can
be written simply as a pair (q, t), where q ∈ Q is the state and t ∈ R≥0 is the value of the
clock x.

Let 0 = C0 < C1 < . . . < Cm be the clock constants used in A, where we assume without
loss of generality that C0 = 0. For simplicity we also let Cm+1 = ∞. Note that m ≤ |A|.

Consider now an arbitrary stream w ∈ (Σ ∪ R>0)ω. For every n ∈ N, let wn = w[1 . . . n]
be the n-element prefix of w. Recall that wn can be thought of as the stream prefix that is
disclosed after n operations read(e). We say that a configuration (q, t) is active at step n if
there is a run of A on wn that starts in a configuration (q0, 0) for some q0 ∈ I and ends in
(q, t). We let Kn be the set of all configurations (q, t) that are active at step n.

Partitioning the problem. It is clear that the dynamic acceptance problem essentially boils
down to designing an efficient data structure that maintains Kn upon reading subsequent
elements from the stream. This data structure should offer a query on whether Kn contains
an accepting configuration. The main observation is that configurations with clock values
that are in the same order with respect to the clock constants C1, . . . , Cm satisfy exactly
the same clock conditions in E. Precisely, let us consider the partition of R≥0 into intervals
J0, J1, . . . J2m+1, where J2i = [Ci, Ci], J2i+1 = (Ci, Ci+1), for all i ∈ {0, . . . , m}. The
following assertion holds: for any two configurations (q, t), (q, t′), with t, t′ ∈ Ji for some
0 ≤ i ≤ 2m + 1, exactly the same transitions are available in (q, t) as in (q, t′).

For n ∈ N and i ∈ {0, . . . , 2m + 1}, let

Kn[i] = { (q, t) ∈ Kn : t ∈ Ji }.

The idea is to maintain each set Kn[i] in a separate data structure. Each of these data
structures follows the same design, which we call the inner data structure.

Inner data structure: an overview. Every inner data structure is constructed for an interval
J ∈ {J0, . . . , J2m+1}. We will denote it by D[J ], or simply by D[i] when J = Ji. Each
structure D[J ] stores a set of configurations L satisfying the following invariant: all clock
values of configurations in L belong to J . In the final design we will maintain the invariant
that the set L stored by D[i] at step n is equal to Kn[i], but for the design of D[J ] it is easier
to treat L as an arbitrary set of configurations with clock values in J .

The inner data structure should support the following methods:
Method init(J) stores the interval J and initializes D[J ] by setting L = ∅.
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Method accepted() returns true or false, depending on whether or not L contains an
accepting configuration, that is, a configuration (q, t) such that q ∈ F .
Method insert(q, t) adds a configuration (q, t) to L. This method will be always applied
with a promise that t ∈ J and t ≤ t′ for all configurations (q′, t′) already present in L.
Method updateTime(r), where r ∈ R>0, increments the clock values of all configurations
in L by r. All configurations whose clock values ceased to belong to J are removed from
L, and they are returned by the method on output. This output is organised as a doubly
linked list of configurations, sorted by non-decreasing clock values.
Method updateLetter(a) updates L by applying to all configurations in L all possible
transitions over the given letter a ∈ Σ. Precisely, the updated set comprises all configura-
tions (q, t) that can be obtained from configurations belonging to L before the update
using transitions over a that do not reset the clock. The configurations (q, 0) which can
be obtained from L using transitions over a that do reset the clock are not included in
the updated set, but are instead returned by the method as a doubly linked list.

In Section 4.2 we will provide an efficient implementation of the inner data structure, which
is encapsulated in the following lemma.

▶ Lemma 8. For each J ∈ {J0, J1, . . . , J2m+1}, the inner data structure D[J ] can be
implemented so that methods init(), accepted(), insert(·, ·), and updateLetter(·) run
in time 2O(|A|), while method updateTime(·) runs in time 2O(|A|) · ℓ, where ℓ is the size of
its output.

We postpone the proof of Lemma 8 and we show now how to use it to prove Theorem 2.
That is, we design an outer data structure that monitors the acceptance of A.

4.1 Outer data structure
The outer data structure consists of a list D[0], . . . ,D[2m + 1], where each D[i] is a copy of
the inner data structure constructed for the interval Ji. We will keep the following invariant:

I1. After step n, for each i ∈ {0, 1, . . . , 2m + 1} the data structure D[i] stores Kn[i].

We first explain how the outer data structure implements the promised operations:
initialization, queries about the acceptance, and updates upon reading the next element of
the stream w. Then we discuss the amortized complexity of the updates.

Initialization. Given A, we store A in the data structure and we read the clock constants
0 = C0 < C1 < . . . < Cm from A. Then we initialize 2m + 1 copies D[0], . . . ,D[2m + 1] of the
inner data structure by calling method init(J) for each interval J among J0, J1, . . . , J2m+1.
Finally, for each initial state q, we apply method insert(q, 0) on D[0]. As K0 = {(q, 0) : q ∈
I}, after this we have that Invariant (I1) holds for n = 0.

Query. We query all the data structures D[0], . . . ,D[2m + 1] for the existence of accepting
configurations using the accepted() method, and return the disjunction of the answers. The
correctness follows directly from Invariant (I1).

Update by a time span. Suppose the next element from the stream is a time span r ∈ R>0.
We update the outer data structure as follows. First, we apply method updateTime(r) to
each data structure D[i]. This operation increments the clock values of all configurations
stored in D[i] by r, but may output a set of configurations whose clock values ceased to fit in
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the interval Ji. Recall that this set is organised as a doubly linked list of configurations, sorted
by non-decreasing clock values; call this list Si. Now, we need to insert each configuration
(q, t) that appears on those lists into the appropriate data structure D[j], where j is such
that t ∈ Jj . However, we have to be careful about the order of insertions: we process the
lists S2m+1, S2m, . . . , S0 in this precise order, and each list Si is processed from the end, that
is, following the non-increasing order of clock values. When processing a configuration (q, t)
from the list Si, we find the index j > i such that t ∈ Jj and apply the method insert(q, t)
on the structure D[j]. In this way the condition required by the insert method – that t ≤ t′

for every configuration (q′, t′) currently stored in D[j] – is satisfied. It is also easy to see that
Invariant (I1) is preserved after the update.

Update by a letter. Suppose the next symbol read from the stream is a letter a ∈ Σ. We
update the outer data structure as follows. First, we apply method updateLetter(a) to
each data structure D[i]. This operation applies all possible transitions on letter a to all
configurations stored in D[i], and outputs a list of configurations Ri where the clock got
reset. All these configurations have clock value 0, hence the length of Ri is at most |Q|. It
now suffices to insert all the configurations (q, 0) appearing on all the lists Ri to D[0] using
method insert(q, 0). We may do this in any order, as the condition required by the insert
method is trivially satisfied. Again, Invariant (I1) is clearly preserved after the update.

This concludes the implementation of the outer data structure. While the correctness is
clear from the description, we are left with arguing that the time complexity is as promised.

From Lemma 8 it readily follows that each of the following operations takes time 2O(|A|):
initialization, a query about the acceptance, and an update by a letter. As for an update by
a time span r ∈ R>0, by Lemma 8 the complexity of such an update is 2O(|A|) ·

∑2m+1
i=0 |Si|,

where S0, . . . , S2m+1 are the sets returned by the applications of method updateTime(r) to
data structures D[0], . . . ,D[2m + 1], respectively. We need to argue that the amortized time
complexity of all these updates is bounded by 2O(|A|).

Consider the following definition: a clock value t ∈ R≥0 is active at step n if Kn contains
a configuration with clock value t. Observe that upon an update by a time span r ∈ R>0,
the set of active clock values simply gets shifted by r, while upon an update by a letter a ∈ Σ
it stays the same, except that clock value 0 may also become active. Since at step 0 the
only active clock value is 0, we conclude that for every n ∈ N, at most n + 1 active clock
values may have appeared until step n. Note that there may be at most |Q| different active
configurations with the same active clock value, hence the complexity of each update by a
time span is bounded by 2O(|A|) · |Q| times the number of active clock values that change
membership from an interval to another one, where we imagine that each active clock value
is shifted by the time span. As every active clock value can change membership in an interval
at most 2m + 1 times, and since the total number of active values that appear until step n is
at most n + 1, we conclude that the total time spent on updates by time spans throughout
the first n steps is bounded by 2O(|A|) · |Q| · (2m + 1) · (n + 1) = 2O(|A|) · n. Hence, the
amortized time complexity is 2O(|A|).

Finally, note that in the case of discrete streams each set Si consists of configurations
with the same clock value, hence |Si| ≤ |Q| ≤ |A| for all i ∈ {0, . . . , 2m + 1}. So in this case,
the complexity of an update by a time span is bounded by 2O(|A|), without any amortization.

This finishes the proof of Theorem 2, assuming Lemma 8. We prove the latter next.
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4.2 Inner data structure
We now describe the inner data structure D[J ] and prove Lemma 8. Let us fix an interval
J ∈ {J0, . . . , J2m+1}. We denote by L the set of configurations currently stored by the inner
data structure D[J ]. It is convenient to represent L by a function λ : R≥0 → 2Q defined by

λ(t) = { q ∈ Q : (q, t) ∈ L}.

We let L̂ be the set of all clock values that are active in L, that is, L̂ comprises all t ∈ R≥0
such that λ(t) ̸= ∅. Recall that we assume that L̂ ⊆ J .

Before we dive into the details, let us discuss the intuition. The basic idea is to store all the
configurations in L in a queue, implemented as a doubly-linked list ordered by non-decreasing
clock values. To handle clock values efficiently, we do not store them directly. Instead, we
maintain a global clock that measures the total time since the initialization of the data
structure, and each configuration bears a timestamp that is the value of this global clock
at the moment of the last reset. Thus, updating by a time span boils down to increasing
the value of the global clock and popping any configurations at the back of the queue whose
clock values ceased to fit into the interval J .

Updating by a letter is more problematic, as we need to apply the transition relation of
the automaton A to all the configurations of L simultaneously. In the data structure we
store a partition of the active clock values L̂ according to their images under λ(·), so that for
each block of this partition (whose number is at most 2|Q|), we can simultaneously update
all corresponding configurations in constant time. There is a caveat here: it is possible that
for some t, t′ ∈ L̂ we have λ(t) ̸= λ(t′) before the update, but λ(t) = λ(t′) after the update.
That is, the blocks of the partition may require merging upon updates. We resolve this issue
by representing the partition in a forest, similarly as the union-find data structure would do.
The key point is that the height of this forest can be kept bounded by 2|Q|.

Description of the structure. In short, the data structure D[J ] consists of three elements:
The clock, denoted y, is a real that represents the total time elapsed since initialization.
The list, denoted l, stores the set of active clock values L̂.
The forest, denoted f, is built on top of the elements of l and describes the function λ.

We describe the list and the forest in more details (the reader can refer to Figure 4).

The list. The list l encodes the clock values present in L̂, sorted in the increasing order
and organised into a doubly linked list. Each node α on l is a record consisting of:

next(α): a pointer to the next node on the list;
prev(α): a pointer to the previous node on the list; and
timestamp(α) ∈ R: the timestamp of the node.

As usual, the data structure stores l by maintaining pointers to the first and last nodes.
The clock value represented by a node α on l is equal to clock(α) = y − timestamp(α);

this will always be a non-negative real. Thus, the timestamp is essentially the total elapsed
time recorded at the moment of the last reset of the clock. Note that this implementation
allows for a simultaneous increment of clock(α) for all nodes α on l in constant time: it
suffices to simply increment y.

The forest. Forest f represents the mapping from elements t ∈ L̂, encoded in l, to respective
sets of control states λ(t). It is a rooted forest where nodes may have arbitrarily many
children, and these children are unordered. Every node γ of f is a record containing:
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. . .

Figure 4 The inner data structure. List elements are depicted as squares while the forest nodes
are depicted as circles. The black circles are the roots.

parent(γ): a pointer to the parent of γ; and
#children(γ): an integer equal to the number of children of γ.

The leaves of the forest will always coincide with the nodes on the list l. In particular, we
augment the records stored for the nodes on l by adding the parent(·) pointer, and treat
them as nodes of the forest f at the same time. The counter #children(·) would always be
equal to 0 for those nodes, so we may omit it.

The roots of the forest are the nodes β with no parent, i.e. parent(β) = ⊥. We will
maintain the invariant that no root is a leaf in f, that is, every root has at least one child. In
the data structure we store a doubly linked list containing all the roots of f. This list will be
denoted r, and again it is stored by pointers to its first and last element. Thus, the records
of the roots of f are augmented by next(·) and prev(·) pointers describing the structure of r,
with the usual meaning. In addition to this, every root β of f carries two additional values:

states(β) ⊆ Q: a non-empty subset of control states for which β is responsible; and
rank(β): an integer from the set {1, 2, 3, . . . , 2|Q|}.

We will maintain two invariants about these values. First, the sets states(β) must be
different for distinct roots β of f, and the same holds for the ranks rank(β). Note that this
implies that f has at most 2|Q| − 1 roots. Second, for every root β, the tree rooted at β –
which is the tree containing β and all its descendants in f – has depth at most rank(β) + 1 –
where the depth of a forest is the maximum number of edges on a path from a leaf to a root.
Note that this implies that the depth of the forest f is bounded by 2|Q| + 1.

Function λ is then represented as follows. For every node α on l, let root(α) be the root of
the tree of f that contains α. Then denoting t = clock(α), we have λ(t) = states(root(α)).
Note that the invariant stated above implies that from every leaf α of f, root(α) can be
computed from α by following the parent(·) pointer at most 2|Q| times. Hence, given t ∈ L̂

and a node α on l satisfying t = clock(α), we can compute λ(t) in time O(2|Q|) ≤ 2O(|A|).

Invariants. For convenience, we gather here all the invariants maintained by the inner data
structure which we mentioned before:
I2. For each node α on l, the value clock(α) = y − timestamp(α) belongs to J .
I3. The nodes on l are sorted by increasing clock values, or equally by decreasing timestamps.

That is, timestamp(α) > timestamp(next(α)) for every non-last node α on l.
I4. Every root of f has at least one child, and the leaves of f are exactly all the nodes on l.
I5. The roots of f carry pairwise different, non-empty sets of control states, and they have

pairwise different ranks. Moreover, all the ranks belong to the set {1, 2, . . . , 2|Q|}.
I6. For every root β of f, the depth of the tree rooted at β is at most rank(β) + 1.

IPEC 2021



20:14 Dynamic Data Structures for Timed Automata Acceptance

Implementation. Now we show how to implement the methods init(J), accepted(),
insert(q, t), updateTime(r), and updateLetter(a) in the data structure. Recall that all
these methods should work in time 2O(|A|), with the exception of updateTime(r) which is
allowed to work in time 2O(|A|) · ℓ, where ℓ is the size of its output. The description of each
method is supplied by a running time analysis and an argumentation of the correctness,
which includes a discussion on why the invariants stated above are maintained.

Removing nodes. Before we proceed to the description of the required methods, we briefly
discuss an auxiliary procedure of removing a node from the list l and from the forest f, as
this procedure will be used several times. Suppose we are given a node α on the list l and we
would like to remove it, which corresponds to removing from L all configurations (q, t) where
t = clock(α) and q ∈ λ(t). We can remove α from l in the usual way. Then we remove α

from f as follows. First, we decrement the counter of children in the parent of α. If this
counter stays positive then there is nothing more to do. Otherwise, we need to remove the
parent of α as well, and accordingly decrement the counter of children in the grandparent of
α. This can again trigger removal of the grandparent and so on. If eventually we need to
remove a root of f, we also remove it from the list r in the usual way. Note that since by
Invariants (I5) and (I6), the depth of f is bounded by 2|Q| + 1, the whole procedure can be
performed in time O(2|Q|) ≤ 2O(|A|). It is clear that all the invariants are maintained.

Initialization. The init(J) method stores the interval J , that defines the range of clock
values that could be represented in the data structure. It also sets y = 0 and initializes l
and r as empty lists. The correctness and the running time are clear.

Acceptance query. The accepted() method is implemented as follows. We iterate through
the list r to check whether there exists a root β of f such that states(f) contains any
accepting state, say q. If this is the case, then by Invariant (I4) there is a node α on
l satisfying root(α) = β, hence (q, t) is an accepting configuration that belongs to L,
where t = clock(α). So we may return a positive answer from the query. Otherwise, all
configurations in L have non-accepting states, and we may return a negative answer. Note
that since by Invariant (I5) the list r has length at most 2|Q| − 1, the above procedure works
in time 2O(|A|).

Insertion. We now implement the method insert(q, t), where (q, t) is a configuration.
Recall that when this method is executed, we have a promise that t ∈ J and t ≤ t′ for all
configurations (q′, t′) that are currently present in D[J ].

Let α be the first node on the list l. Let t′ = clock(α). By the promise, we have t ≤ t′.
We consider cases: either t < t′ or t = t′. The former case also captures the situation when l
is empty. When t < t′ or l is empty, the new configuration (q, t) gives rise to a new active
clock value t. Therefore, we create a new list node α0 and insert it at the front of the list l.
We set the timestamp as timestamp(α0) = y − t, so that the node correctly represents the
clock value t. It is clear that Invariants (I2) and (I3) are thus satisfied.

Next, we need to insert the new node α0 to the forest f. We iterate through the list
r in search for a root β that satisfies states(β) = {q}. In case there is one, we simply
set parent(α0) = β and increment #children(β). Otherwise, we construct a new root β0
with states(β0) = {q} and #children(β0) = 1, insert it at the front of the list r, and set
parent(α0) = β0. To determine the rank of β0, we find the smallest integer k ∈ {1, . . . , 2|Q|}
that is not used as the rank of any other root of f. Observe that, by Invariant (I5), the forest
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f has at most 2|Q| − 1 roots, so there is always such a number k, and it can be found in time
2O(|A|) by inspecting the list r. We then set rank(β0) = k. It is clear that this operation
can be performed in time 2O(|A|), and that Invariants (I4), (I5), and (I6) are maintained.
For the last one, observe that the new leaf α0 is attached directly under a root of f, so no
tree in f existing before the insertion could have increased its depth.

We are left with the case when t = t′. We first compute the set X equal to λ(t) before
the insertion: it suffices to find root(α) in time 2O(|A|) and read X = states(root(α)).
If q ∈ X then the configuration (q, t) is already present in L, so there is nothing to do.
Otherwise, we need to update the data structure so that λ(t) is equal to X ∪ {q} instead of
X. Consequently, we remove the node α from l and from f, using the operation described
earlier, and we insert a new node α′ at the front of l, with the same timestamp equal to
that of α. Thus, clock(α′) = t. We next insert the new node α′ to the forest f using the
same procedure as described in the previous paragraph, but applied to the state set X ∪ {q}
instead of {q}. Again, it is clear that these operations can be performed in time 2O(|A|), and
the same argumentation shows that all the invariants are maintained.

Update by a time span. Next, we implement the method updateTime(r), for r ∈ R>0.
First, we increment y by r. Thus, for every node α in the list l, the value clock(α) is
incremented by r. However, the Invariant (I2) may have ceased to hold, as some active clock
values could have been shifted outside of the interval J . The configurations with these clock
values should be removed from the data structure and their list should be the output of
the method.

We extract these configurations as follows. Construct an initially empty list of configura-
tion lret, on which we shall build the output. Iterate through the list l, starting from its
back. For each consecutive node α, compute t = clock(α). If t ∈ J , then break the iteration
and return lret, as there are no more configurations to remove. Otherwise, find root(α) in
time 2O(|A|), read λ(t) = states(root(α)), and add at the front of lret all configurations
(q, t) for q ∈ λ(t), in any order. Then remove α from the list l and from the forest f, and
proceed to the previous node in l (if there is none, finish the iteration).

By Invariant (I3), it is clear that in this way we remove from D[J ] exactly all the
configurations whose clock values got shifted outside of J , hence Invariants (I2) and (I3) are
maintained. As the forest structure was influenced only by removals, Invariants (I4), (I5),
and (I6) are maintained as well. Note that the output list lret is ordered by non-decreasing
clock values, as required. As for the time complexity, the procedure presented above takes
time 2O(|A|) · ℓ′, where ℓ′ is the number of nodes that we remove from l. As for every node α

the set states(root(α)) is non-empty and of size at most |Q|, with every removed node we
add to lret between 1 and |Q| new configurations. Hence, we can also bound the complexity
by 2O(|A|) · ℓ, where ℓ is the number of configurations that appear in the output list lret.

Update by a letter. We proceed to the method updateLetter(a), where a ∈ Σ. As argued
before, every clock condition appearing in A is either true for all clock values in J , or false
for all clock values in J . For every subset of states S ⊆ Q, let Φ(S) be the set of all states
q such that there is a transition (p, a, q, γ, ∅) in E for some p ∈ S and clock condition γ

that is true in J . In other words, Φ(S) comprises states reachable from the states of S by
non-resetting transitions over a that are available for clock values in J . We define Ψ(S) in a
similar way, but for resetting transitions over a that are available for clock values in J .

First, we compute the output of the method, which is {(q, 0) : q ∈ Ψ(S)} where S is the
set of all states appearing in the configurations of L. Note that, by Invariant (I4), S can be
computed in time 2O(|A|) by iterating through the list r and computing the union of sets
states(β) for roots β appearing on it. Thus, the output can be computed in time 2O(|A|).
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Second, we need to update the values of function λ by applying all possible non-resetting
transitions over a. This can be done by iterating through the list r and, for each root β

appearing on it, substituting states(β) with Φ(states(β)). Note that since we assumed
that for every state q, some transition over a is always available at q, it follows that Φ maps
non-empty sets of states to non-empty sets of states. Hence, after this substitution the roots
of f will still be assigned non-empty sets of states. However, Invariant (I5) may cease to
hold, as some roots may now be assigned the same set of states.

We fix this as follows. For every root β of f, inspect the list r and find the root β′ that has
the largest rank among those satisfying states(β) = states(β′). If β = β′, then do nothing.
Otherwise, turn β into a non-root node of f, remove it from the list r, set parent(β) = β′, and
increment #children(β′) by one. Note that after applying this modification, the function λ

stored in the data structure stays the same, while Invariant (I5) becomes satisfied.
As for the other invariants, the satisfaction of Invariants (I2), (I3), and (I4) after the

update is clear. However, we need to be careful about Invariant (I6), as we might have
substantially modified the structure of the forest f. Observe that each modification of f that
we applied boils down to attaching a tree with a root of some rank i as a child of a tree with
a root of some rank j > i. By Invariant (I6), the former tree has depth at most i + 1, which
is bounded from above by j. Thus, after the attachment, the depth of the latter tree cannot
become larger than j + 1. We conclude that Invariant (I6) is maintained as well.

Finally, note that since the number of roots of f is always bounded by 2|Q| − 1, all the
operations described above can be performed in time 2O(|A|).

5 Concluding remarks and future work

In this work we studied the dynamic acceptance problem for timed automata processing
data streams. We designed a suitable data structure for one-clock timed automata, where
the amortized update time depends only on the size of the automaton. We leave as an open
question whether this result can be generalised to the case of multiple clocks.

More generally speaking, it seems that our work identifies dynamic variants of classic
automata problems as a potential area of interest for the paradigm of parameterized dynamic
data structures. More precisely, if the automaton model in question allows for the device to
potentially be in an unbounded number of configurations, then the dynamic maintenance of
this set of configurations is a computationally challenging problem, as show-cased in this
paper. There are multiple models of devices where similar questions can be asked. Examples
include counter automata, register automata, weighted automata, or pushdown automata.
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