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Abstract
This document describes our exact solver “ADE” for the unweighted cluster editing problem submitted
to the PACE 2021 competition. The solver’s core consists of an FPT-algorithm using a branch and
bound strategy in conjunction with several data reduction rules.
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1 Introduction

The PACE 20211 competition features the Cluster Editing problem. The task of Cluster
Editing is to find a minimum size set of edges to add or delete such that the resulting graph
is a cluster graph, that is, every connected component is a clique.

Our solver is implemented in Java and its source code can be found at https://doi.
org/10.5281/zenodo.4889012 or via GitHub https://github.com/EmanuelHerrendorf/
pace-2021 . It expects the input graph via the standard input and outputs on the standard
output one minimum set of edges to modify to obtain a cluster graph. To avoid stack overflow
issues the stack size for the JVM should be increased using the -Xss parameter. Our solver
is an FPT-algorithm based on a branch and bound strategy. The refined search tree for
unweighted cluster editing introduced by Gramm et al. [5] is used as the branching strategy.
It guarantees a search tree size of O(2.27k) where k refers to the minimum number of edge
modifications needed to turn the input graph into a cluster graph. During branching edges
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can be marked as permanent and non-edges as forbidden indicating that these edges need
not be modified to obtain an optimal solution.

2 Finding an Optimal Solution

In order to find an optimal solution for Cluster Editing one has to find a valid solution
and prove the non-existence of another solution with fewer edge modifications. This can be
done for each connected component of the input graph independently, described for example
by Böcker et al. [2]. We solve the decision variant of Cluster Editing iteratively asking
whether a solution can be found with at most k edge modifications. To arrive at an optimal
solution as quickly as possible we try to choose a “good” initial value for k before starting
our search tree and then go from there depending on the results we get while traversing it.

For setting the initial value of k we compute a lower and upper bound on the initial graph.
These are then heuristically weighted (10% lower bound and 90% upper bound) in order to
arrive at an initial value between both of them (version 1 and 3 start with the upper bound
decremented by one instead). Also we keep the lower and upper bound and the heuristic
solution saved for later use. We then begin traversing the search tree.

If we do not find a solution our current cost limit k is too low so we heuristically increase
it by three at a time in order to avoid too many full traversals of unsuccessful search trees
and then start traversing the search tree all over. If we have reached the point where we
previously already have found a valid solution of size k + 1 (either the initial upper bound
or another solution found during branching), we simply output this solution. Otherwise we
update the lower bound to k + 1.

If we, however, do find a solution we have to consider two different cases in order to
ensure it is indeed an optimal one:
1. The solution’s size matches the current lower bound. Then we can immediately output

the solution.
2. The solution is at least one larger than the current lower bound. Then there could still

be a valid solution with a size smaller than our current solution. We know, however,
that the part of the current search tree which we did already traverse cannot contain it.
Otherwise we would have found it earlier instead of the current solution. So we simply
continue the traversal of the current search tree with k decremented by one.

3 Branching

Before the branching data reduction rules are applied. After the data reduction, the lower
bound is computed to check whether the current branch cannot be solved without exceeding
the edge modification limit k. The search tree introduced by Gramm et al. [5] is based on
branching on P3s until no P3 exists. During the branching a data structure containing all
P3s is maintained and updated according to the modified edges. Furthermore we maintain a
conflict graph over all P3s in which an edge represents two P3s sharing one non-permanent
edge or the non-forbidden non-edge. We define an ordering in which the P3s are selected by
the branching with respect to the following properties of a P3. Primarily the P3 with the
higher number of permanent or forbidden edges is selected. The following properties will be
used to break ties (all in descending order):
1. the number of neighbours in the previously mentioned P3 conflict graph
2. the degree sum of the three vertices of the P3
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3. the sum of the common neighbours of non-permanent edges and non-common neighbours
of non-forbidden non-edges

4. the maximum degree of the vertices of the P3
If a tie still occurs after these properties have been taken into account, a random P3 is
selected.

4 Lower Bound

The lower bound used for restricting the size of the search tree is the size of a maximal
conflict-disjoint P3 packing which has been suggested by Hartung and Hoos [6]. We follow the
incremental approach of Gottesbüren et al. [4] where an initial greedy packing is computed
and further improved by local search. For the greedy step the P3s are taken into account
using the same ordering as defined for the branching except that the properties are used in
ascending order. The local search tries to exchange one P3 contained in the packing with at
least two P3s not being part of the packing until no such exchanges can be found. Before
the lower bound is updated again, one-to-one exchanges are performed to replace P3s in the
packing with P3s that are smaller in terms of the ordering.

5 Upper Bound

An upper bound is used in combination with the lower bound to select the k value to start
the search tree with. The upper bound used for the parameter k is the size of a heuristically
computed solution. This heuristic consists of two steps.

First, the graph is split into clusters using a greedy approach. The closed neighbourhood
of a vertex with lowest modification cost is made a clique and removed from the graph until
the graph is empty. These costs are the sum of the closed neighbourhood’s cut weight and
deficiency defined by Cao and Chen [3]. Furthermore, we extended this process such that a
vertex from the second neighbourhood of vertex v will be inserted into the clique of v as well
if they have at least as many common neighbours as non-common neighbours.

In the second step, these clusters are modified using local search. Three operations being
variants of the cluster operations described by Bastos et al. [1] are performed exhaustively
until the solution size cannot be decreased anymore. The first operation consists of removing
a vertex from a cluster to create its own cluster. The second operation tries to move a vertex
into another cluster. The last one merges two clusters. To increase the search area the
last two operations are also applied if they leave the solution size unchanged and the total
number of such applications does not exceed a threshold.

6 Data Reduction Rules

To reduce the size of the search tree, a set of data reduction rules is applied. We use the
(k + 1)-rule introduced by Gramm et al. [5] and improved by Hartung and Hoos [6]. This
rule is applied on the whole graph every fourth search tree node and supplemented by a
lighter variant local to recent edge edits and used in the other search tree nodes. If the rule
was successfully applied on the whole graph, version 3 afterwards tries to improve the lower
bound and then additionally applies the light variant. The following reduction rules are
applied in every search tree node. We apply both P3-rules introduced by van Bevern et al.
[7]. Two other reduction rules suggested by Gramm et al. [5] are considered. First, the third
(non-)edge of a vertex triple can be directly edited or marked as not editable if the other
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two (non-)edges are already not editable and this triple otherwise would form a permanent
P3. The second rule deletes an edge of a P3 if it is only connected to the rest of the graph
through its middle node. Finally, we use a rule of Bastos et al. [1] which sets non-edges
{u, v} to forbidden if u and v do not have common neighbours.
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