PACE Solver Description: A Simplified Threshold
Accepting Approach for the Cluster Editing
Problem®

Martin Josef Geiger =

Logistics Management Department, University of the Federal Armed Forces Hamburg, Germany

—— Abstract

We present a simple heuristic for the Cluster Editing Problem as presented in the Parameterized
Algorithms and Computational Experiments (PACE) 2021. Our method makes use of a simple
Threshold Accepting strategy and employs single neighborhood moves only.

Despite its simplicity, the results of the method are encouraging. However, and this has to
be expected, the approach cannot ultimately win in a competitive setting such as PACE 2021.
Nevertheless, some interesting insights can be derived from such a simple method, as this gives an
idea of how good results can be by a comparable basic approach with a reasonable implementation
effort.

2012 ACM Subject Classification Theory of computation — Randomized local search
Keywords and phrases Cluster Editing Problem, Threshold Accepting, Local Search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.34

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.4891323

1 Introduction

In the fall of 2020, the Parameterized Algorithms and Computational Experiments (PACE)
competition invited to work on the Cluster Editing Problem. In this problem, an undirected,
weighted graph G = (V, E) is to be transformed into a cluster graph by a minimum number
of edge modifications (additions and/ or deletions).

Following our contribution to the PACE 2018, and based on our experiences with simple,
yet effective local search algorithms in other competitions (with a local search technique
reduced to a single-operator search for the VeRoLog Solver Challenge 2019 as a prominent
example), we decided to concentrate on what works best with little effort.

2 The actual algorithm

The method implemented for PACE 2021 is best characterized as a multi-start Threshold
Accepting-type local search.

2.1 Preprocessing

We did experiment with some preprocessing techniques that allow for a reduction of the
graph GG. However, in our limited experiments, we did not find them to be overly beneficial,
so for the actual submission, all of them have been removed.

* This is a brief description of one of the highest ranked solvers of PACE Challenge 2021. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Martin Josef Geiger;
37 licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 34; pp. 34:1-34:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:m.j.geiger@hsu-hh.de
https://orcid.org/0000-0003-1797-957X
https://doi.org/10.4230/LIPIcs.IPEC.2021.34
https://doi.org/10.5281/zenodo.4891323
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2

PACE 2021 Solver Description: Simplified Threshold Accepting for Cluster Editing

2.2 Creating an initial solution

The initialization of the first alternative is straight-forward: Each node is placed in a separate
cluster. Hence, |V| clusters are initially created, and the objective function value of this
initial solution is (always) |E|.

2.3 Improvements by Local Search

The only move implemented in our contribution is a single-node-move operator. This operator
investigates the effect of removing a single node from its current clusters, and placing it
either

in a new, i.e., a previously empty cluster, or

in a “neighboring” cluster.
The first sub-type is important as otherwise the number of clusters would monotonically
decrease — and can only decrease — throughout the runs. Note that the definition of a
neighboring cluster is based on the elements in E: A node might join another cluster if (and
only if) there is an incident edge in E connecting it to a node of this cluster. Effectively, this
sub-type can be implemented on the edges as given in G.

Moves are considered in random order.

2.4 Acceptance condition

Any move improving the current solution is accepted right away. Moreover, moves that do
not change the current evaluation are accepted with p = 0.5. Furthermore, moves that are
within a threshold T' of the current best-know-solution are accepted with, again, p = 0.5. T
is, during search, randomly changed every 1,000,000 moves by choosing it from {0, 1,2}.

A value of T' = 0 corresponds to a pure hillclimbing algorithm, while values of {1,2}
allow the search to escape local optima. In our experience, and based on the limited work
put into this project, this mechanism contributes to the quality of the identified solutions. It
has also been observed that accepting moves that do not change the objective function value
(but merely maintain it) are beneficial in terms of diversifying the search.

2.5 Restarts

Once the algorithm is unable to improve the current best-known solution for 50 percent of
its running time, a restart is triggered. See subsection 2.2 on the initial solution.

The best solution identified through all runs is kept and reported once the termination
criterion is reached.

3 Source-code

The source-code of our contribution has been published under the Creative Commons
Attribution 4.0 International Public License and made available under https://doi.org/
10.5281/zenodo.4891323.

https://doi.org/10.5281/zenodo.4891323
https://doi.org/10.5281/zenodo.4891323

	1 Introduction
	2 The actual algorithm
	2.1 Preprocessing
	2.2 Creating an initial solution
	2.3 Improvements by Local Search
	2.4 Acceptance condition
	2.5 Restarts

	3 Source-code

