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Abstract
We present a new approach for solving (minimum disagreement) correlation clustering that results in
sublinear algorithms with highly efficient time and space complexity for this problem. In particular,
we obtain the following algorithms for n-vertex (+/−)-labeled graphs G:

A sublinear-time algorithm that with high probability returns a constant approximation clustering
of G in O(n log2 n) time assuming access to the adjacency list of the (+)-labeled edges of G (this
is almost quadratically faster than even reading the input once). Previously, no sublinear-time
algorithm was known for this problem with any multiplicative approximation guarantee.
A semi-streaming algorithm that with high probability returns a constant approximation cluster-
ing of G in O(n log n) space and a single pass over the edges of the graph G (this memory is
almost quadratically smaller than input size). Previously, no single-pass algorithm with o(n2)
space was known for this problem with any approximation guarantee.

The main ingredient of our approach is a novel connection to sparse-dense graph decompositions
that are used extensively in the graph coloring literature. To our knowledge, this connection is the
first application of these decompositions beyond graph coloring, and in particular for the correlation
clustering problem, and can be of independent interest.
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1 Introduction

Correlation clustering is an extensively studied problem in theoretical computer science and
machine learning. In this problem, we are given a complete undirected graph G = (V, E)
with edges labeled by (+) or (−). The general goal is to cluster the vertices in a way that
(+) edges appear more inside the clusters and (−) edges appear more outside. Correlation
clustering has found its applications in various areas, including image segmentation [31],
document clustering [10], community detection [38], cross-lingual link detection [26], matrix
decomposition [9], among others [12,17].
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One of the most popular optimization objectives for correlation clustering is disagreement
minimization, wherein the goal is to minimize the total number of (+) edges that cross
different clusters and (−) edges that are inside the same clusters. We study this disagreement
minimization variant of correlation clustering in this paper. The problem is known to be both
NP-hard and APX-hard, and there is a classical polynomial-time algorithm that achieves 2.06-
approximation [10]. Disagreement minimization has been explored under various contexts,
including the semi-random model [19], fair clustering [2], quantum approximation [42], and
local clustering [11,30], among others.

Nevertheless, for applications to modern massive datasets, even the efficiency of the
polynomial-time approximation algorithms become insufficient. In particular, for a modern
massive graph, even simple tasks like storing and processing all the edges once becomes
challenging. Therefore, there is a quest for obtaining sublinear algorithms for correlation
clustering. In such algorithms, the resource costs are usually asymptotically smaller than the
input size, which allows correlation clustering to scale up to massive datasets.

Two of the most canonical examples of sublinear algorithms are sublinear-time algorithms
and (sublinear-space) streaming algorithms. The former model assumes the data is provided
to the algorithm in a specific format, say, the adjacency lists of the input graph, and one
can query each entry of the input in O(1) time; the goal is then to solve the problem faster
than even reading the entire input once. The latter model instead focuses on space of the
algorithms by assuming the data is presented to the algorithm in a stream and the goal is
to process this stream in a space much smaller than the input size. In light of the above
discussion, we study the following fundamental question in this paper:

Can we design sublinear time and/or space algorithms for correlation clustering?

This question and similar variants have already been pursued extensively in the literature.
For sublinear-time algorithms, [11, 27] designed algorithms that given access to the adja-
cency matrix of G, run in O(n/ε) time and output a 3-multiplicative plus (ε · n2)-additive
approximation to correlation clustering. Moreover, impossibility results by [11, 13] prove
that these algorithms are effectively optimal in a sense that one needs1 Ω̃(n2) additive error
whenever working with Õ(n) time algorithms in the adjacency matrix access model. These
results however leave open the possibility of other natural access models to the input such as
adjacency lists access, employed extensively both in theory and practice.

For sublinear-space algorithms, the “sweet spot” for correlation clustering is considered
semi-streaming algorithms [24] that have space complexity Õ(n) which is proportional to the
answer itself [3, 18, 21]. The first semi-streaming algorithm for this problem is due to [18]
and obtains (3 + ε)-approximation in O( log2(n)

ε ) passes. This algorithm was improved by [3]
to 3-approximation in O(log log n) passes. Most recently, [21] presented a novel algorithm
with O(1)-approximation in O(1) passes2. These results however come short of providing
any non-trivial guarantees for single-pass algorithms, which are by far the most studied and
practically appealing variants of (semi-)streaming algorithms3.

In this work, we answer this fundamental question in the affirmative by designing highly
efficient sublinear-time and sublinear-space algorithms for O(1)-approximation of correlation
clustering in these models: An Õ(n)-time algorithm assuming adjacency lists access model,
and a semi-streaming algorithm in a single pass.

1 Throughout, we use Ω̃(f(n)) and Õ(f(n)) to suppress dependence on poly log (n) factors.
2 While the constant in number of passes in [21] is not stated in their paper, it appears to be 6 passes.
3 Beside being quantitatively more efficient, single-pass algorithms are qualitatively more appealing

because they can process data generated “on the fly” without ever having to store it even once (e.g., in
applications in network monitoring).
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1.1 Our Contributions
Our first main result is a sublinear-time algorithm that instead of adjacency matrix in prior
work [11, 13, 27], works with the adjacency lists of (+)-labeled edges and bypasses the strong
impossibility results of [11,13]. Formally,

▶ Theorem 1. There exists a randomized algorithm that given the adjacency lists of the (+)-
labeled subgraph of any labeled graph, with high probability4 outputs an O(1)-approximation
of correlation clustering in O(n log2 n) time and O(n log n) queries.

To our knowledge, prior to our work, no o(n2) time algorithm for multiplicative-
approximation of correlation clustering was known (under any access model). We shall
formally define the access model in Theorem 1 in Section 2.2 but basically it involves provid-
ing the algorithm with query access to the (+)-edges incident on each vertex individually.
This seems to be a natural access from a practical point of view in many applications. For
instance, in the applications of coreference [20] and cross-lingual link detection [26], the
“natural” labels available are often the positive ones (e.g. the “co-occurance” and the “article
similarity”), and the negative labels are usually inferred based on the positive edges. In
the full version, we further investigate other natural sublinear-time access models such as
adjacency lists access to the labeled graph itself or (−)-labeled subgraph instead and prove
that no multiplicative approximation is possible in these models in o(n2) time. This highlights
our model as the more theoretically-natural one for this problem also.

Our second main result is a single-pass semi-streaming algorithm for correlation clustering.

▶ Theorem 2. There exists a randomized algorithm that with high probability computes an
O(1)-approximation of correlation clustering in O(n log n) space and a single pass over the
edges of any given labeled graph. Moreover, each edge insertion can be processed in O (log(n))
time, and the post-processing time is bounded by O(n log2(n)).

To our knowledge, no o(n2) space streaming algorithms was known for this problem in
a single pass before our work. The only single-pass algorithm for this problem that we are
aware of is due to [3] that requires Õ(n + m) space on graphs with m (−)-labeled edges which
can be Ω(n2) space5. We further show (in the full version) that our algorithm in Theorem 2
can be extended to other streaming models such as when only (+)- or (−)-labeled edges are
arriving, or even to dynamic streams, still in Õ(n) space.

1.2 Our Techniques
The earlier work on sublinear algorithms for correlation clustering in [3, 11,18,27] were all
based on implementing the so-called Pivot method of [4] via sublinear algorithms. The Pivot
method is based on computing a random-order maximal independent set of (+)-labeled edges
and achieves a 3-approximation. This method however does not seem particularly suitable for
either sublinear-time or (single-pass) streaming algorithms: it is known that computing any
type of maximal independent set (let alone the one required by the Pivot method) requires
Ω(n2) time given access to both adjacency lists and matrix of the input graph [7, 8] as well
as Ω(n2) space in single-pass streams [7, 22].

4 Throughout, we use the therm “with high probability” to refer to with probability at least 1 − 1
nc for

some large constant c > 0.
5 Note that from a purely streaming point of view, one can entirely store a graph with m (−)-labeled

edges in Õ(n + m) space (even in a dynamic stream), and then solve the problem exactly on the stored
graph at the end of the stream in exponential time.

ITCS 2022
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In a recent elegant work, [21] presented an interesting new insight on the problem. Their
approach is based on trimming down the edges of the graph in multiple steps into Õ(n)
edges that can be stored in the memory and finding connected components of this trimmed
graph. The authors then show that placing these connected components into their own
clusters achieves an O(1)-approximation to the problem. The proof of this part is done via a
charging scheme that exploits the fact that vertices not in the same connected component
have “different neighborhoods” while vertices inside the components are “tightly connected”.

The idea demonstrated by [21] is quite neat and inspiring. Yet, their edge trimming
approach does not give us any sublinear time nor single-pass semi-streaming algorithm.
In fact, there are immediate roadblocks to adapt the edge trimming algorithm in [21] to
both settings. For sublinear time algorithms, the implementation of edge trimming in [21]
requires to compute the common neighborhood between the endpoints of every edge, which
inevitably introduces an Ω(n2) time complexity in the worst case. Moreover, the edge
trimming algorithm in [21] processes edges in steps, i.e. the removal of the edges in the
second step depends on the results of removal in the first step. As a result, it does not lend
itself to a single-pass stream algorithm (rather, an O(1)-pass one as obtained in [21]

In this work, we first observe that this general strategy of partitioning a graph into
different-neighborhood vs tightly-connected subgraphs is reminiscent of a classical approach
in graph coloring literature referred to as sparse-dense decompositions. These decompositions
have their root in the work of [32,35–37] (see also [33,34]) in graph theory and more recently
have been at the core of several breakthrough results on graph coloring in distributed [15,28,29]
and sublinear algorithms [5,7]. A typical sparse-dense decomposition partitions the graph
into sparse vertices that have many non-edges in their neighborhood, and a collection of
almost-cliques that are subgraphs which are close to a clique in a property testing sense. It
is thus natural to wonder whether such decompositions can be used in place of the trimming
step of [21], specially as some earlier work in [7] have already shown ways of finding these
decompositions via different sublinear algorithms.

The first challenge in implementing this strategy is that these decompositions are almost
exclusively tailored toward maximum-degree ∆ of the graph, in the sense that their sparse
vertices include all vertices with degree, say, < 0.9∆, and their almost-cliques are only
≈ ∆-cliques. While this is quite natural for graph coloring problems such as (∆ + 1)-coloring
and alike, such a decomposition would not be particularly helpful for correlation clustering.
The only exception that we are aware of is a recent decomposition of [5] for the so-called
(deg +1)-coloring problem which actually generates different types of sparse vertices and
almost-cliques that are proportional to degree of individual vertices.

It turns out however that the decomposition of [5] is too rigid to be used in the context
of the correlation clustering and the charging framework of [21] (we elaborate more on this
in Section 3). On top of that, the decomposition of [5] is primarily used as a structural result
in [5] and its only known algorithmic implementation requires using several instantiations of
the algorithm of [7], which does not result in simple nor particularly efficient algorithms for
the decomposition6.

Our main technical ingredient is then to design a new sparse-dense decomposition that
remedies this situation. We state our decomposition informally here and postpone the
detailed and lengthy definitions to Theorem 5 (see also Section 2 for missing notation).

6 We emphasize that main results of both [5, 7] rely on existence of such a decomposition and do not
require an algorithm for finding it (although [7] give such algorithms also). This is different from our
purpose of using the decomposition as it is only useful to us if it can be found algorithmically.
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A (Yet Another) Sparse-Dense Decomposition: For any small constant ε > 0,
vertices of any graph G = (V, E) (not necessarily a labeled graph) can be decomposed
into the following sets:

Sparse vertices: each sparse vertex v has approximately ε · deg (v) neighbors u such
that N(v) and N(u) differ in approximately ε · max {deg(v), deg(u)} verticesa.
Dense vertices: each dense vertex v belongs to an almost-clique of size approximately
(1 ± ε) · deg(v), where an almost-clique is a subgraph of G that can be turned into
an actual clique by changing approximately ε-fraction of edges of each of its vertices.

Moreover, there is an algorithm that samples O (n log(n)) edges of G (from a certain non-
uniform distribution) and uses degrees of vertices of G to compute this decomposition
in O(n log2 n) time.
a Beside the recovery algorithm, this is the guarantee that is different from [5] and needed for

correlation clustering.

We remark that our way of defining and forming the decomposition is quite different from all
recent algorithmic approaches for sparse-dense decompositions in [5, 7, 15,28,29]. Instead,
to be able to provide the per-vertex guarantee needed by our decomposition, we follow the
classical work of [36] that seems to give a better handle on the properties of the decomposition.
As a result, we also give the first efficient implementation of this type of decompositions via
a sampling algorithm that is easily implementable in various computational models including
sublinear algorithms studied in this paper.

At this point, our task of designing sublinear algorithms is simple. Firstly, we show
that given the decomposition of the (+)-labeled subgraph of the input, there is a natural
way of forming an O(1)-approximation correlation clustering (see Theorem 6), following
the approach of [21]. Basically, sparse vertices of the decomposition are so costly even for
optimum solution that one might as well place them in singleton clusters; on the other hand,
each almost-clique of dense vertices is so closely connected that the best strategy is to cluster
them together. Secondly, the sampling algorithm that creates this decomposition is simple
enough that it can easily be implemented via simple sublinear algorithms (see Theorems 12
and 13, and algorithms under broader settings in the full version).

In conclusion, we found the application of sparse-dense decompositions to correlation
clustering (and graph clustering) quite natural and hope our work paves the path for further
study of this connection. Moreover, unlike almost all aforementioned work that uses sparse-
dense decompositions as a subroutine in much more complicated algorithms and proofs, here
the main bulk of work is in designing the decomposition itself; as such, this application can
perhaps find its way as a gentle(r) introduction to sparse-dense decompositions.

1.3 Related Work
Correlation clustering is one of the most well-studied clustering problems. Apart from the
classical settings where the edges are either (−) or (+), results have also been developed under
general graphs, where the edge weights are real numbers and the graphs are not necessarily
complete. On this front, the work of [23] gives an O(log(n))-approximation algorithm in
polynomial time. The NP-hardness result on labeled (complete) graphs automatically applies
to general graphs, and it is further shown that the approximation even on weighted complete
graphs is APX-hard [16,23].

Beyond the disagreement minimization objective, another popular optimization target is
agreement maximization, which aims to maximize the (+) edges in the same clusters and
(−) edges across different clusters. Computing the exact solution of agreement maximization

ITCS 2022
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is also NP-hard. However, it admits a PTAS, rendering the objective more tractable for
approximation [10]. Furthermore, for general graphs, the work of [16, 39] give algorithms
that achieve 0.766 approximation in polynomial time. More recently, [1] proposed a new
min-max objective, whose goal is to minimize the maximum number of disagreement edges
inside each cluster. It is further shown in [1] that such an objective admits a worst-case
O(log(n)) approximation in polynomial time.

The quest for sublinear correlation clustering algorithms also goes outside sublinear-
time and streaming models. For instance, correlation clustering under distributed settings,
especially under the Massively Parallel Computation (MPC) models, has been extensively
studied. On this front, [18] designs an algorithm that achieves O(1)-approximation in
O(log(n)) parallel rounds. The main technical ingredient of their algorithm is to simulate
the Pivot algorithm in O(log(n)) rounds. In the same spirit, one can adapt the streaming
algorithm in [3] to a distributed algorithm with O(log log(n)) rounds, given a near-linear
memory for each machine. The recent algorithm of [21] now improves this to an O(1)
approximation algorithm in constant many parallel rounds and even sublinear memory per
machine (see also [14] for an MPC algorithm on bounded arboricity graphs). Finally, outside
the MPC model, distributed correlation clustering algorithms have also been explored under
PRAM and LOCAL models; see [25] and references therein.

In addition to the distributed setting, the “local” correlation clustering introduced by [11]
is another interesting setting for sublinear algorithms. Under the model, an algorithm outputs
the cluster of a single vertex at a time, and the cluster of each vertex is consistent with the
“global” clustering. The algorithm of [11] runs in O(1) time for each vertex; nevertheless, its
approximation guarantee is weaker than ours since it introduces a Θ(n2) additive error.

2 Preliminaries

Set notation. For two sets A and B, we use A △ B := (A − B) ∪ (B − A) to denote the
symmetric difference of A and B. We say that a collection S of sets is laminar if for any two
sets A, B ∈ S, either A ∩ B = ∅ or A ⊆ B or B ⊆ A. For any laminar collection S, we say
that a set S ∈ S is a root if S is not a proper subset of any other set in S.

Graph notation. For any graph G = (V, E), and vertex v ∈ V , we use N(v) to denote the
neighbors of v and E(v) to denote the edges incident on v. We say that a pair (u, v) is a
non-edge in the graph G if there is not an edge between u and v in G.

Concentration inequalities. We use the following standard forms of Chernoff bound in our
proofs.

▶ Proposition 3 (Chernoff Bound; cf. [6]). Let X1, X2, · · · , Xm be m independent random
variables in [0, 1]. Define X =

∑m
i=1 Xi. Then, for every δ > 0 and t ≥ 1,

Pr (|X − E [X]| ≥ δ · E [X]) ≤ 2 · exp
(

− δ2

2 + δ
· E [X]

)
;

Pr (|X − E [X]| ≥ t) ≤ 2 · exp
(

−2t2

m

)
.

We also use the following form of Bernstein’s inequality.
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▶ Proposition 4 (Bernstein’s inequality; cf. [40]). Let X1, . . . , Xm be m independent random
variables such that E [Xi] = 0 and |Xi| < M for all i ∈ [m]. Then, for any t ≥ 1,

Pr
(

m∑
i=1

Xi ≥ t

)
≤ exp

(
− t2

2
∑m

i=1 E [X2
i ] + 2/3 · M · m

)
.

2.1 Problem Definition
Throughout, by a labeled graph G = (V, E), we mean a complete graph with edges in E

labeled in {−1, +1}. We use G+ and G− to denote the subgraphs of G consisting of only
(+)-edges and (−)-edges, respectively. We extend this definition analogously to neighbor-sets
N+(v) and N−(v), and edge-sets E+(v) and E−(v), for every v ∈ V .

Suppose we are given a labeled graph G = (V, E). Let C be any clustering of vertices of
G into disjoints clusters C1, . . . , Ck. For any vertex v ∈ V , we use C(v) to denote the cluster
Ci ∈ C that v belongs to. For any edge e = (u, v), we define the cost of e in the clustering C
as:

cost C(e) =


1 if e ∈ G+ and C(u) ̸= C(v)
1 if e ∈ G− and C(u) = C(v)
0 otherwise

. (1)

In words, cost of (+)-edge is 1 if its endpoints are clustered differently, and cost of a (−)-edge
is 1 if its endpoints are clustered together. The total cost of a clustering C is then:

cost(C) =
∑
e∈G

cost C(e). (2)

The goal in the correlation clustering problem is to find a clustering C that minimizes Eq (2).

2.2 Sublinear Algorithms Models
In this paper, we focus on two of the most canonical models of sublinear algorithms, namely,
sublinear-time algorithms, and (sublinear-space) streaming algorithms. These models are
defined formally as follows.

Sublinear-time algorithms. When working with sublinear-time algorithms, it is important
to specify the exact data model as the algorithm does not even have time to read the input
once. In this paper, we assume the algorithms are given access to the adjacency lists of the
(+)-graph G+ of the input labeled graph G. This means that the algorithm can query the
following information in O(1) time:
1. Degree queries: What is deg+(v) of a given vertex v ∈ V ?
2. Neighbor queries: What is the i-th vertex in N+(v) of v ∈ V for i ≤ deg+(v)?
The goal is to return a correlation clustering of G under cost function of Eq (2) quickly.

A remark about this model is in order. The standard query model for graph problems
provides access to the adjacency lists (or matrix) of G itself (and not that of G+). But in
the context of labeled graphs, adjacency lists of G itself provides little information: degree
queries are entirely uninformative (always return n − 1) and neighbor queries only reveal the
label of the edge between vertex v to some other vertex u, similar to access to the adjacency
matrix. Alternatively, we could have also considered access to the adjacency lists of the
(−)-graph G− instead, which at least is more informative than that of G.

ITCS 2022



10:8 Sublinear Algorithms for Correlation Clustering

Nevertheless, we prove that neither model allows for any non-trivial sublinear-time
algorithm for correlation clustering with any multiplicative approximation guarantees (in
the full version). In light of this impossibility result, and our sublinear-time algorithms,
we believe the model we consider for this problem is most natural from the perspective of
sublinear-time algorithms.

Semi-streaming algorithms. Semi-streaming algorithms focus on minimizing the space
usage as opposed to time. In this model, the vertices of input labeled graph G = (V, E) are
known and the edges E arrive one by one in a stream together with their labels. The goal
is to read this stream in the given order only once7 and use only O(n · polylog (n)) space
measured in machine words of size O(log n) bits. At the end of the stream, the algorithm
should return a correlation clustering of G (under cost function of Eq (2)).

Our streaming model is the same as the one studied by earlier work on this problem. But
one can again wonder what would happen if only edges of G+ or G− are being streamed
instead of G. It turns out unlike the sublinear-time model, these different choices do not
matter much for our purpose. In the full version, we show that our algorithm can be extended
to handle either of these cases, plus other natural variants such as dynamic (insertion-deletion)
streams at the cost of increasing the space by at most polylog (n) factor.

3 A (Yet Another) Sparse-Dense Decomposition

We present our sparse-dense decomposition in this section. Due to space limits, we only
provide the statement of the decomposition theorem and high-level remarks. We defer the
full proof of theorem and the algorithm that recovers it to the full version.

We state the theorem in a form that allows for its recovery via sublinear algorithms
in subsequent sections – however, we opted to present the recovery algorithm in a model-
independent manner as this general form can also be applicable in other models of computation
not considered in this paper.

▶ Theorem 5 (Sparse-Dense Decomposition (algorithmic version)). There are absolute constants
ε0, η0 > 0 such that the following is true. For every ε < ε0, vertices of any given graph
G = (V, E) can be partitioned into the following sets:

Sparse vertices Vsparse: Any vertex v ∈ Vsparse has at least η0 · ε · deg(v) neighbors u

such that:

|N(v) △ N(u)| ≥ η0 · ε · max {deg(u), deg(v)} .

Dense vertices partitioned into almost-cliques K1, . . . , Kk: For every i ∈ [k], each
Ki has the following properties. Let ∆(Ki) be the maximum degree (in G) of the vertices
in Ki, then:

1. Every vertex v ∈ Ki has at most ε · ∆(Ki) non-neighbors inside Ki;
2. Every vertex v ∈ Ki has at most ε · ∆(Ki) neighbors outside Ki;
3. Size of each Ki satisfies (1 − ε) · ∆(Ki) ≤ |Ki| ≤ (1 + ε) · ∆(Ki).

Moreover, there is an absolute constant c > 0 and an algorithm that given access to only the
following information about G, with high probability, computes this decomposition of G in
O(ε−2 · n log2 n) time:

Degree information: Set of all vertices v ∈ V plus their degrees deg(v);

7 Or a few times in case of multi-pass algorithms – our algorithm in this paper however is single-pass.
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Random edge samples: A collection of sets Nsample(v) of

t = c · ε−2 · log n

neighbors of each vertex v ∈ V chosen independently and uniformly at random (with
repetition);
Random vertex samples: A set Sample of vertices wherein each v ∈ V is included
independently with probability

pv := min
{

c · log n

deg(v) , 1
}

,

together with all the neighborhood N(v) of each sampled vertex v ∈ Sample.
(The probability of success is over the random choice of edge and vertex samples.)

The sparse vertices in Theorem 5 are such that “many” of their neighbors have a
“different” neighborhood than themselves. Thus, even though we refer to them as “sparse” to
be consistent with prior sparse-dense decompositions, these vertices do not necessarily have
a sparse neighborhood as in standard decompositions but rather have a 2-hop neighborhood
that is very different than their 1-hop neighborhood.

The almost-cliques on the other hand, as the name suggests, are basically induced
subgraphs of G on “similar degree” vertices that can be turned into an actual clique by
changing a small fraction of edges in their neighborhood. This part is also different from
typical decompositions in that the almost-cliques are allowed to have varying sizes tailored to
degrees of individual vertices as opposed to a single size based on the maximum degree. The
only other sparse-dense decomposition with such guarantees that we know of is that of [5].
However, both in terms of precise guarantees and also the construction, our Theorem 5 is
quite different from [5]. To be specific:

The sparse vertices in Theorem 5 have an individual guarantee on their “different”
neighbors, while [5] makes an aggregate guarantee for the entire neighborhood of a vertex.
The construction of [5] is based on the notion of balanced- and friend-edges, which does
not seem to allow for the fine-grained guarantees required by our decomposition. Instead,
the proof of Theorem 5 involves a more direct approach based on classical sparse-dense
decompositions.
Finally, the decomposition in [5] is a structural result while ours is constructive via the
sampling algorithm, which is needed for our sublinear algorithms.

4 Correlation Clustering via the Sparse-Dense Decomposition

We are now ready to present a correlation clustering scheme based on the decomposition
results in Section 3, applied to the underling G+ graph. Our approach is to simply place
the sparse vertices in separate singleton clusters and treat each almost-clique of the dense
vertices as one disjoint cluster. Formally,

▶ Theorem 6. Suppose G = (V, E) is any labeled graph and V = Vsparse ⊔ K1 ⊔ . . . ⊔ Kk

is an ε-sparse-dense decomposition of G+ for ε > 0 according to Theorem 5. Let A be the
following clustering:

Any vertex v ∈ Vsparse is placed in a singleton cluster, i.e., A(v) = {v};
Any almost-clique Ki forms a separate cluster, i.e., for any v ∈ Ki, A(v) = {u | u ∈ Ki}.

Then, A is an O(ε−2)-approximation correlation clustering of G.

ITCS 2022



10:10 Sublinear Algorithms for Correlation Clustering

The intuition behind the proof of Theorem 6 is simple: the (+)-neighborhood of sparse
vertices is so different from that of their neighbors that no matter how we cluster them,
we will need to pay a cost proportional to their degree; so we might as well cluster them
individually. On the other hand, the almost-cliques are so tightly connected to each other
and so loosely connected to outside by their (+)-edges that they simply form the best cluster
possible themselves; so we cluster them that way also.

We formalize this intuition in this section. Our analysis of Theorem 6 is inspired by the
recent work of [21]. The main difference is in using the decomposition of Theorem 5 instead
of the rather ad-hoc and “multi-step” partitioning in [21] which is crucial for our sublinear
algorithms (the decomposition allows us to also give a more modular proof by focusing on
each part of the partition separately).

Throughout this section, fix O to be a fixed optimal clustering of G and recall that A
denotes the clustering returned by Theorem 6. Similar to [21], we use a charging scheme:
To any vertex z ∈ V and any edge f incident on z, i.e., f ∈ E+(z) ⊔ E−(z), we assign a
value charge(z, f) as follows:

Charging scheme for the analysis of Theorem 6.

(i) Initially, charge(z, f) = 0 for all z ∈ V and f ∈ E(z);
(ii) For any edge e ∈ E with cost A(e) = 1, we will find a collection of vertex-edge

pairs, called the charge-set of e:

ChargeSet(e) ⊆ {(z, f) | z ∈ V, f ∈ E(z), and cost O(f) = 1} .

For simplicity of notation, we define ChargeSet(e) = ∅ if cost A(e) = 0.
(iii) Increase charge(z, f) for all (z, f) ∈ ChargeSet(e) by |ChargeSet(e)|−1.

The main part in this charging scheme is to find proper charge-sets for all edges. The
following lemma establishes our desired property of the charging scheme.

▶ Lemma 7. Suppose there is a choice of ChargeSet(e) for edges e ∈ E in the charging
scheme such that for all z ∈ V and f ∈ E(z), we have charge(z, f) ≤ α for some α ≥ 1.
Then, cost(A) ≤ 2α · cost(O).

By Lemma 7, we only need to find charge-sets of the given edges so that charge(z, f) is small
for all vertex-edge pairs (z, f). This is done for edges of sparse and dense vertices separately
in the next subsections.

A helper lemma. Before getting to the main part of the proof, we will prove a helper
lemma that simplifies our task of finding charge-sets for (+)-edges in the later parts of the
analysis. Roughly speaking, it states that if we have a collection of edges whose endpoints
have sufficiently different neighborhood, then we can find a charge-set for all the given edges
without increasing charge of any vertex-edge pair by much.

▶ Lemma 8. Let θ ∈ (0, 1) be a parameter and E be any collection of edges in E+ in the
input labeled graph G such that for all ξ = (α, β) ∈ E,

N+(α) △ N+(β) ≥ θ · max
{

deg+(α), deg+(β)
}

. (3)

Then, there is a choice of ChargeSet(ξ) for all ξ ∈ E such that charge(z, f) = O(θ−1) for all
vertex-edge pairs (z, f) in G.
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Proof. We define ChargeSet(ξ) for any ξ ∈ E as follows:
Type-1 charges: when cost O(ξ) = 1. In this case, we simply set ChargeSet(ξ) = {(α, ξ)}
itself.
Type-2 charges: when cost O(ξ) = 0. This is the more challenging case. Note that in this
case, we have that O(α) = O(β), and let us denote this cluster as Oαβ . Consider any
vertex w ∈ N+(α) △ N+(β):

Case A: w ∈ N+(α) and w ∈ N−(β). In this case, there is cost O((w, β)) = 1 if
O(w) = Oαβ , and cost O((w, α)) = 1 if O(w) ̸= Oαβ .
Case B: w ∈ N+(β) and w ∈ N−(α). In this case, there is cost O((w, α)) = 1 if
O(w) = Oαβ , and cost O((w, β)) = 1 if O(w) ̸= Oαβ .

Therefore, in both cases, there is exactly one edge f(w) ∈ {(w, α), (w, β)} such that
cost O(f(w)) = 1. Let z(w) ∈ {α, β} be the vertex other than w incident on f(w). We
add all pairs (z(w), f(w)) to ChargeSet(ξ), i.e.,

ChargeSet(ξ) =
{

(z(w), f(w)) | w ∈ N+(α) △ N+(β)
}

.

Given the bound on the size of N+(α) △ N+(β), we have that |ChargeSet(ξ)| ≥ θ ·
max

{
deg+(α), deg+(β)

}
.

An illustration of the type-2 charges can be found in Figure 1.
Let us now bound the distributed charges. We have three different choices for (z, f) that

can belong to ChargeSet(ξ) for some edge ξ ∈ E as follows (a graphical exemplification can
be found in Figure 2):

A pair (α, ξ) charged by a type-1 charge, where ξ ∈ E and α is an endpoint of ξ:
In this case charge(α, ξ) = 1 because there is only a single edge ξ that can make such a
charge.
A pair (α, f(w)) charged by a type-2 charge, where w ∈ N+(α) △ N+(β) and z(w)=α:
For any such charge, we increase charge(α, f(w)) by

|ChargeSet(ξ)|−1 ≤ (θ · deg+(α))−1.

At the same time, such a charge can only be made by edges from α to β ∈ N+(α) (so
that (α, β) ∈ E+), which are deg+(α) many. Thus, the total charge made in this case
leads to charge(α, f(w)) = O(θ−1).
A pair (β, f(w)) charged by a type-2 charge, where w ∈ N+(α) △ N+(β) and z(w)=β:
For any such charge, we increase charge(β, f(w)) by

|ChargeSet(ξ)|−1 ≤ (θ · deg+(β))−1.

At the same time, such a charge can only be made by edges from β to α ∈ N+(β) (so
that (α, β) ∈ E+), which are deg+(β) many. Thus, the total charge made in this case
leads to charge(β, f(w)) = O(θ−1).

This concludes the proof of the lemma. ◀

Part I: Sparse Vertices
We now analyze the cost of edges incident on the sparse vertices Vsparse. We define
sparse-charge(z, f) as the contribution from the sparse vertices to charge(z, f). We show that,

▶ Lemma 9. There exist sets ChargeSet(e) for every ε-sparse vertex v and e ∈ E(v) such
that

for all vertex-edge pairs (z, f): sparse-charge(z, f) = O(ε−2).
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α

β

N+(α) − N+(β)

w

ξ

costO((α, w))=1
if O(w) ̸= Oαβ

costO((β, w))=1
if O(w) = Oαβ

Figure 1 Illustration of the type-2 charge conditioning on α and β are in the same cluster Oαβ .
For each vertex w ∈ N+(α) − N+(β), if w is in Oαβ , the negative edge (β, w) induces a cost of 1 in
O; otherwise, if w is in a different cluster, the positive edge (α, w) induces a cost of 1 in O. Vertices
in N+(β) − N+(α) works in the same way.

α β

N+(α) − N+(β)

ξ

w1

......

wθ·deg+(α)

α w

N+(α)

β1

......

βdeg+(α)

ξ1 ξdeg+(α)

a). Distribute charges of ξ b). Any (α, w) being charged

(α, w1) (α, wθ·deg+(α))...... ......

Figure 2 Illustration of the bound of charges on each vertex-edge pair. Focus on pairs that
include α, we assume w.log. that deg+(α) ≥ deg+(β), and use N+(α) − N+(β) as a special case of
N+(α) △ N+(β). There are two types of edges: edges that distribute charges (red solid lines) and
edges that are charged (blue dashed lines). For each edge ξ = (α, β) that distributes charges, there
are at least θ · deg+(v) edges to be charged. Therefore, it suffices to distributed 1

θ·deg+(v) charges to
each of the edges being charged. For each edge (α, w) to be charged, only edges indent to α can
distribute a charge, which is at most deg+(v) many. Therefore, every vertex-edge pair that include α

is charged at most θ−1.



S. Assadi and C. Wang 10:13

Proof. Since we place each v ∈ Vsparse in a separate cluster, cost A(e) = 0 for every e ∈ E−(v).
Hence, we can focus only on e ∈ E+(v) where cost A(e) = 1.

Fix any vertex v ∈ Vsparse. By the guarantee of Theorem 5 for G+, there is a subset S(v)
of N+(v) with size at least |S(v)| ≥ η0 · ε · deg+(v) such that for every vertex u ∈ S(v),∣∣N+(v) △ N+(u)

∣∣ ≥ η0 · ε · max
{

deg+(u), deg+(v)
}

.

Define the set of (+)-edges between v and the vertices in S(v) as E+(v, S). By the size
lower bound of S(v), we can bound the charge of sparse-charge(z, f) by the charge of E+(v, S)
with a multiplicative O(1/ε) factor. Formally, let sparse-S-charge(z, f) denote the part of
sparse-charge(z, f) contributed by E+(v, S). One can arbitrarily set the charge-set of every
1/(ε · η0) (+)-edges incident on v to be the same as a single edge in E+(v, S). Thus,

for all vertex-edge pairs (z, f): sparse-charge(z, f) ≤ 1
ε · η0

· sparse-S-charge(z, f). (4)

Therefore, it suffices to upper bound the charge contributed by E+(v, S). We construct
the charge set and upper bound the charge by Lemma 8 as follows.

We set E as the set of all edges between vertices v ∈ Vsparse and S(v) ⊆ N+(v).
For any v ∈ Vsparse and u ∈ S(v),∣∣N+(u) △ N+(v)

∣∣ ≥ η0 · ε · max
{

deg+(u), deg+(v)
}

,

so we can set θ = η0 · ε.
Therefore, by Lemma 8, there exists a charge-set for all edges in E such that for any vertex-
edge pair (z, f), sparse-S-charge(z, f) = O(ε−1) (as η0 is an absolute constant). Combining
this with Eq (4) gives us the desired O(ε−2) bound. ◀

Part II: Almost-Cliques
We now turn to the analysis of the charge contributed by almost-cliques. Here, there are two
types of edges to consider: (+)-edges between different almost-cliques (intra cluster edges)
and (−)-edges inside each single almost-clique (inter cluster edges); all remaining edges are
already handled in the previous part. The following two lemmas handle these cases.

▶ Lemma 10. There exists ChargeSet(e) for every (+)-edge between two different almost-
cliques such that

for all vertex-edge pairs (z, f): outside-clique-charge(z, f) = O(1).

▶ Lemma 11. There exists ChargeSet(e) for every (−)-edge inside any single almost-clique
such that

for all vertex-edge pairs (z, f): inside-clique-charge(z, f) ≤ 1.

We defer the proofs of Lemmas 10 and 11 to the full version, and give some high-level
strategies here. The proof of Lemma 10 is similar to the one for sparse vertices in Lemma 9.
We show that neighborhood of endpoints of (+)-intra cluster edges are very different, simply
because they belong to different almost-cliques, and then apply Lemma 8. In contrast, the
proof of Lemma 11 follows a different strategy: we show that the best clustering one can do
for almost-cliques individually (in absence of all other edges) is to just cluster them one by
one exactly as in A.

In conclusion, the proof of Theorem 6 now follows by Lemma 9 (for handling all edges
with at least one sparse endpoint) and Lemmas 10 and 11 (for handling all edges between
dense vertices).
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5 Sublinear Algorithms for Correlation Clustering

With the sparse-dense decomposition result from Section 3 and the correlation clustering
scheme in Section 4 that built upon it, we can now describe our sublinear algorithms. We
start with our sublinear-time algorithm.

▶ Theorem 12 (Formalization of Theorem 1). There exists a randomized algorithm that
given a labeled graph G = (V, E), specified via adjacency lists of its (+)-subgraph G+, with
high probability finds an O(1)-approximation to the correlation clustering problem on G in
O(n log n) query and O(n log2 n) time.

We remind the reader about our discussion earlier in Section 2.2 on the necessity of access
to the adjacency lists of G+ as opposed to G in Theorem 12.

The second sublinear algorithm we present is a sublinear-space streaming algorithm.

▶ Theorem 13 (Formalization of Theorem 2). There exists a randomized single-pass semi-
streaming algorithm that given a labeled graph G = (V, E), specified via a stream of edges of G

together with their labels, with high probability finds an O(1)-approximation to the correlation
clustering problem on G in O(n log n) space. Moreover, the algorithm has O(log n) processing
time per each element of the stream and O(n log2 n) post-processing time.

As we discussed in Section 2.2, this algorithm can be extended to various other streaming
scenarios, such as when only edges of G+ or G− are streamed, or dynamic (insertion-deletion)
and sliding window streams, by increasing the space with at most a polylog (n) factor.

5.1 A Sublinear-Time Algorithm: Proof of Theorem 12

The algorithm is a direct implementation of the recovery algorithm of Theorem 5 for finding
the decomposition plus the scheme of Theorem 6. We also need to show that we can provide
the recovery algorithm of Theorem 5 with proper information it needs. This is done as
follows.

Algorithm 1 A sublinear-time algorithm for correlation clustering.

Input: A labeled graph G = (V, E) specified via adjacency lists access to G+.

(i) Let ε > 0 be a sufficiently small constant as prescribed by Theorem 5.
(ii) For each vertex v ∈ V , use degree queries to get positive degree deg+(v) of v.
(iii) For each vertex v, use neighbor queries to sample t = (c · log n)/ε2 neighbors

of v from N+(v) with repetition to get Nsample(v) (for the absolute constant
c > 0 in Theorem 5).

(iv) Sample each vertex with probability pv := min
{

c log(n)
deg+(v) , 1

}
and call this set

Sample. Use neighbor queries to get N+(v) for v ∈ Sample.
(v) Run the algorithm of Theorem 5 for sparse-dense decomposition with parameter

ε and the inputs {Nsample(v)}v∈V and {N+(v)}v∈Sample to its recovery algorithm.
(vi) Output clustering A based on the resulting Vsparse ⊔ K1 ⊔ . . . ⊔ Kk as prescribed

in Theorem 6.

We now prove the correctness and the bounds on query and time complexity of Algorithm 1.
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Correctness. The information provided to the recovery algorithm of Theorem 5 by Al-
gorithm 1 is exactly as prescribed in the theorem (for the underlying graph G+). As such,
with high probability, the resulting decomposition is a valid sparse-dense decomposition
specified by Theorem 5. Conditioned on this event, by Theorem 6, the returned answer is an
O(1)-approximation to the correlation clustering on G.

Query complexity. The total number of queries made by Algorithm 1 is equal to n degree
queries plus the number of edge-samples and neighbors of all vertex-samples. By a simple
analysis for the number of edges adjacent to the vertex-samples (which one can find in the
full version), this is O(n log n) edges.

Runtime analysis. The runtime of Lines ii,iii, and iv is equal to the query complexity of
the algorithm and is thus O(n log n) with high probability. The runtime of Item v is equal
to the recovery algorithm of Line Theorem 5 which is O(n log2 n) with high probability. The
runtime of Line vi is equal to O(n) as it only involves a direct partitioning of n vertices as
specified in the statement of Theorem 6. This is O(n log2 n) time in total.

This concludes the proof of Theorem 12.

5.2 A Semi-Streaming Algorithm: Proof of Theorem 13
We now give a single-pass semi-streaming algorithm for correlation clustering in insertion-only
streams (over the edges of the input labeled graph G). For further extensions of this algorithm
to other streaming models, please refer to the the full version of the paper.

Our semi-streaming algorithm is also a direct implementation of our recovery algorithm
in Theorem 5 and the scheme of Theorem 6 (by focusing on edges of G+ in the stream
and simply skipping any edge of G−). However, compared to the previous section, for this
algorithm we have to be a bit careful in how we exactly provide the required information
to the recovery algorithm of Theorem 5. This is primarily because, in a single pass over
the stream, we will not know degrees of vertices beforehand so that we can sample the set
Sample store all their neighbors appropriately. Nevertheless, we show that simple ideas in
reservoir sampling [41] can be used to address this problem. Thus we first start by designing
a subroutine for obtaining Sample and N(v) for v ∈ Sample and then show use to obtain
our final semi-streaming algorithm.

Sampling vertices and storing their neighbors. We present the following lemma and
algorithm for sampling vertices inversely proportional to their degree and storing all neighbors
of sampled vertices (We note that we shall apply the following lemma to the underlying
graph G+). The idea behind this lemma seems standard to us and we present it here for
completeness.

▶ Lemma 14. Let β0 > 0 be a sufficiently large constant. There is a semi-streaming algorithm
that given any arbitrary graph G = (V, E) (not necessarily a labeled graph) specified via a
stream of its edges and a parameter β > β0, at every point of time t during the stream:
1. Maintains a collection St of vertices together with Nt(v) for all v ∈ St so that each

vertex is sampled independently and with probability min {(β · log n)/degt(v), 1} in St

(here, Nt(v) and degt(v) refer to the set of neighbors of v and degree of v among the
edges up to time t in the stream);

2. With high probability, uses space of O(β · n log n) throughout the stream and O(1) time
per update.

(We note that the independence guarantee of the algorithm is across the vertices and not time
steps.)

ITCS 2022
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Proof. The algorithm is as follows.

Sampling algorithm of Lemma 14.

(i) Let S1 = V , N1(v) = ∅, deg1(v) = 0 for v ∈ V .
(ii) For each arriving edge et = (ut, vt):

a. Update Nt(w) and degt(w) for w ∈ St−1 by adding ut and vt to the neigh-
borhood of respective vertices and increasing their degree and keeping other
neighbor-sets intact.

b. Update St from St−1 by keeping all vertices other than ut and vt in St

and removing z ∈ {ut, vt} from St with probability 1/degt(z) if degt(z) >

(β · log n); if z is removed from St we also discard Nt(z) from the memory.

Fix a vertex v ∈ V and let t0(v) denote the first time step t such that degt(v) > (β · log n).
For any time t < t0(v), we have v in St as it cannot be removed by the algorithm. For a
time t1 ≥ t0(v), we have,

Pr (v ∈ St1) =
t1∏

t=t0

Pr (v ∈ St | v ∈ St−1)

=
t1∏

t=t0

(1 − 1
degt(v) ) (as v is removed from St w.p. 1/degt(v))

=
degt0(v) − 1

degt(v) (by a simple cancelation of intermediate terms)

= (β · log n)
degt(v) .

Thus, each vertex v belongs to St with probability min {(β log n)/degt(v), 1}. Moreover, the
choice of inclusion or exclusion of different vertices in St is independent, proving the first
part of the lemma.

For the second part, given the correctness of the first, at each time step t, the information
stored by the algorithm consists a random subset St of vertices where each vertex is included
with probability min {(β log n)/degt(v), 1} plus all edges incident on vertices. For the graph
at time t, we can define random variable Xt

v to be 0 if v ̸∈ St and to be deg(v) if v ∈ St. Let
Xt =

∑
v∈V Xt

v be the random variable for the number of edges we store at time step t. By
a simple calculation, we can show that E [Xt] = O(β · n log n). Furthermore, by applying
Bernstein’s inequality (Proposition 4) on Xt, we can show that the total number of stored
edges at step t is O(β · n log n) with high probability. A union bound on at most

(
n
2
)

steps
concludes the proof (the bound of O(1) on the update time is immediate). ◀

The semi-streaming algorithm. We can now present our semi-streaming algorithm for The-
orem 13.

Correctness. The information provided to the recovery algorithm of Theorem 5 by Al-
gorithm 1 is exactly as prescribed in the theorem (for the underlying graph G+). As such,
with high probability, the resulting decomposition is a valid sparse-dense decomposition
specified by Theorem 5. Conditioned on this event, by Theorem 6, the returned answer is an
O(1)-approximation to the correlation clustering on G.
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Algorithm 2 A single-pass semi-streaming algorithm for correlation clustering.

Input: A labeled graph G = (V, E) specified via an arbitrarily ordered stream
of edges E.

(i) Let ε > 0 be a sufficiently small constant as prescribed by Theorem 5.
(ii) For each vertex v ∈ V , use a counter over edges of E+(v) to maintain deg+(v).
(iii) For each vertex v, use reservoir sampling to sample t = (c · log n)/ε2 neighbors

of v from N+(v) with repetition to get Nsample(v) (for the absolute constant
c > 0 in Theorem 5).

(iv) Run the algorithm of Lemma 14 on the graph G+ with parameter β = c. Let
Sample be the final set of vertices maintained by the algorithm and note we have
N+(v) for v ∈ Sample.

(v) Run the algorithm of Theorem 5 for sparse-dense decomposition with parameter
ε and the inputs {Nsample(v)}v∈V and {N+(v)}v∈Sample to its recovery algorithm.

(vi) Output clustering A based on the resulting Vsparse ⊔ K1 ⊔ . . . ⊔ Kk as prescribed
in Theorem 6.

Space complexity. Line ii requires storing O(n) numbers. Line iii requires storing O(log n)
neighbors of each vertex for O(n log n) space in total. Line iv uses O(n log n) space with high
probability by Lemma 14. The algorithms of Theorems 5 and 6 require space proportional
to their input which is O(n log n) in total. Thus, overall space of the algorithm is O(n log n).

Update time and post-processing time. The update time is O(1) for Lines ii and iv
and O(log n) for Line iii. Thus, the update time is O(log n). The post-processing time is
O(n log2 n) time by Theorem 5.

This concludes the proof of Theorem 13.
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