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Abstract
Chandran et al. (SIAM J. Comput. ’14) formally introduced the cryptographic task of position
verification, where they also showed that it cannot be achieved by classical protocols. In this work,
we initiate the study of position verification protocols with classical verifiers. We identify that proofs
of quantumness (and thus computational assumptions) are necessary for such position verification
protocols. For the other direction, we adapt the proof of quantumness protocol by Brakerski et
al. (FOCS ’18) to instantiate such a position verification protocol. As a result, we achieve classically
verifiable position verification assuming the quantum hardness of Learning with Errors.

Along the way, we develop the notion of 1-of-2 non-local soundness for a natural non-local game
for 1-of-2 puzzles, first introduced by Radian and Sattath (AFT ’19), which can be viewed as a
computational unclonability property. We show that 1-of-2 non-local soundness follows from the
standard 2-of-2 soundness (and therefore the adaptive hardcore bit property), which could be of
independent interest.
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1 Introduction

Position verification is the central task for position-based cryptography [15], which aims to
verify one’s geographical location in a cryptographically secure way. The main technique is
distance bounding, which infers the location assuming no faster-than-light communications
from special relativity by placing timing constraints on the protocol.

The work of Chandran et al. [15] first formalized the task of position verification. They
in addition showed that it is impossible to achieve via any classical protocol where all the
parties are classical. Specifically, a few colluding adversaries can always efficiently convince
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the verifiers of an incorrect position, even with the help of computational assumptions. As
a result, all known classical position verification protocols that are secure against multiple
adversaries, make hardware assumptions on the adversaries [15, 11].

However, it turns out the attack above does not extend when the parties exchange
quantum information. The attack requires the adversaries to store the messages from the
verifiers and at the same time forward them to the other adversaries, which violates the
no-cloning theorem when the messages are quantum states unknown to adversaries. A long
line of work [7, 19, 24, 25, 12, 8, 17] explored this idea by constructing protocols with BB84
states (or other similar states [13, 5, 18]), and proving them to be unconditionally secure.
Intuitively, these protocols get around the impossibility as these BB84 states are information
theoretically unclonable when the adversaries receive them.

Downsides of Quantum Communications

There are a lot of drawbacks for using quantum communication, especially under the context
of position verification.

First and foremost, transmitting quantum information with fault tolerance is much more
challenging. As position verification is only meaningful with free-space (wireless) transmission,
any practical protocol must be subject to a high loss. In fact, Qi and Siopsis [21] have
shown that many known protocols stop working (lose either completeness/correctness, or
soundness/security) when the error rate is above some threshold. Unlike quantum key
distribution, the parties in position verification do not share an authenticated classical
channel, and must follow strict timing constraints, so techniques there do not generically
carry over. Furthermore, prior to our work, there was no known construction of fully loss
tolerant position verification protocols against entangled adversaries, meaning being tolerant
to any loss bounded away from 1.

Another issue arises when we consider high dimensions (2D or higher), which is that the
parties must also send the quantum messages in the desired direction with high accuracy, or
they would incur an even higher loss in transmission. In practice, this is usually mitigated
via a tracking laser [26, 23], although not perfectly. If the BB84 state is naively broadcasted,
the adversaries could obtain one copy each and therefore completely break the protocol.

Finally, adding other properties to the protocol is more difficult and inefficient when the
communication is quantum. For example, one could desire to authenticate the messages sent
by the verifiers in order to protect the prover from revealing his location to other untrusted
verifiers. Unfortunately, authenticating a quantum message is highly nontrivial [6, 4].

All of these issues can be trivially resolved if the communication is classical.
One approach to remove quantum communication is to have the verifiers and the prover

pre-share entanglement and use teleportation to transmit quantum messages over a classical
channel. However, this generic approach consumes the entanglement and therefore is
undesirable if they would like to run the protocol multiple times for a considerable time.
Furthermore, it would require the parties to keep the entanglement coherent before the
protocol begins, which can be expensive.

2 Our Results

In this work, we show how to construct position verification protocols with classical verifiers,
showing that quantum communication is not necessary for position verification without
hardware assumptions. Our main result is the following.
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▶ Theorem 1. Assuming the quantum (polynomial) hardness of Learning with Errors (LWE),
there exists a classically verifiable position verification (CVPV) protocol with almost perfect
completeness and negligible soundness against polynomial-time adversaries without pre-shared
entanglement.

Our construction of the CVPV protocol is inspired by the (classically verifiable) proof of
quantumness protocol by Brakerski et al. [10], which is proven secure under the same LWE
assumption.

We also proved two variations of the theorem to handle adversaries with entanglement,
albeit either assuming a stronger assumption or proven in an ideal model.

▶ Theorem 2. Assuming the quantum subexpopopopopopopopopopoponential hardness of LWE, there exists a CVPV
protocol with almost perfect completeness and inverse-subexponential soundness against
bounded-entanglegleglegleglegleglegleglegleglement subexponential-time adversaries.

▶ Theorem 3. Assuming the quantum hardness of LWE, there exists a CVPV protocol
with almost perfect completeness and negligible soundness against unbounded-entanglegleglegleglegleglegleglegleglement
polynomial-time adversaries in the quantumquantumquantumquantumquantumquantumquantumquantumquantumquantumquantum random oracle model.

The quantum random oracle model (QROM), introduced by Boneh et al. [9], captures
generic quantum attacks against cryptographic hash functions, modeled by random functions.

To the best of our knowledge, our protocols matches the state of the art in quantum
position verification in terms of the entanglement bound. All previous protocols in the
standard model (as opposed to the QROM) are not known to be secure even against an
arbitrary polynomial amount of entanglement, and any protocol can be broken with an
exponential amount of entanglement [12, 7]. Furthermore, the only position verification
protocol that is secure against any polynomial amount of entanglement that we are aware of
is also proven in the QROM [25].

We further show that there are also efficient attacks against Theorems 1 and 2 if the
adversaries are allowed to pre-share more entanglement than what the entanglement bound
allows.

Finally, for the other direction, we show that our assumption is somewhat minimal.
The classical impossibility easily extends if the prover is classical. On a high level, if the
adversaries can run in exponential time, the prover can always be simulated classically as her
inputs and outputs are all classical; therefore, we would run into the classical impossibility.

Formally, we strengthen this intuition to show that proofs of quantumness are necessary for
any construction of classically verifiable position verification, even if we relax the requirement
for position verification to be sound only against classical adversaries. Since the prover
response in a proof of quantumness could be simulated by a PostBQP = PP machine1 [2], as
a consequence, it is impossible to construct unconditionally-sound proofs of quantumness
(and thus classically verifiable position verification) without proving PP ̸⊆ BPP, even if we
only consider position verification protocols with classical communications and quantum
verifiers.

1 The idea is that one can capture simulation of the quantum prover as a sampling variant of the PostBQP
problem as follows: simulate the quantum prover’s next classical message given the current classical
transcript of the protocol.
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3 Technical Overview

Quantum Position Verification with One Quantum Message

We first recall the position verification protocol investigated by many works [7, 19, 24, 12, 8].
The protocol has the property that only one message is quantum, and the only quantum
requirement on the verifiers is to generate BB84 states.

Consider that in one-dimensional spacetime, there are two verifiers V0, V1, wishing to
verify that the prover P is located at a specific position somewhere between them. At the
beginning of the protocol, V0 sends a BB84 qubit Hθ |x⟩ (where θ, x are uniformly random
bits), and V1 sends a classical bit θ, so that they arrive at the prover’s claimed position at
the same time. P is supposed to measure the qubit in basis θ and return the measurement
result to both verifiers. At the end, the verifiers check that the prover’s measurement result
is x, and that they have received the responses “in time”.

The intuition of the security proof is the following. Consider an adversary A0 located in
between V0 and P , and another adversary A1 in between P and V1. When A0 receives the
qubit, he does not yet know the basis θ, and therefore he cannot immediately measure it.
However, if they decide to wait until θ is received, then either A0 or A1 will not have enough
time to know the measurement result and send it to the verifiers. Therefore, it seems if they
want to answer correctly in time on both ends, A0 must somehow produce two copies of the
BB84 state, which is impossible as the state is information-theoretically unclonable without
knowing the basis θ.

Computationally Unclonable States from Trapdoor Claw-free Functions (TCFs)

As we have discussed, CVPVs require a proof of quantumness. Therefore, a natural starting
point is to open up the construction of the LWE proof of quantumness protocol by Brakerski
et al. [10], and look for a similar unclonability property.

The proof of quantumness protocol could be described under the 1-of-2 puzzle framework
by Radian and Sattath [22]. In particular, both trapdoor claw-free functions (TCFs) and noisy
trapdoor claw-free functions (NTCFs) can be used to instantiate 1-of-2 puzzles. However, we
only have constructions of NTCFs from quantum LWE. For this overview, we will work with
the more intuitive notion of TCFs and use the 1-of-2 puzzle framework in the main technical
body.

A TCF family is a family of efficiently computable 2-to-1 functions fpk : {0, 1}n → Y.
“Trapdoor” means that with the trapdoor td, one can efficiently invert the corresponding fpk
and get the two pre-images x0, x1. “Claw-free” means that without the trapdoor, it is hard
for any polynomial-time quantum algorithms to find a collision for a random fpk.

The proof of quantumness protocol works as follows. The verifier starts by sampling
pk along with the trapdoor td, and sends pk to the prover. The prover prepares a uniform
superposition over {0, 1}n, computes fpk on the superposition coherently, measures the image
register to obtain y ∈ Y, and sends y as his response. As fpk is 2-to-1, the residual state of
the prover is

1√
2

(|x0⟩ + |x1⟩), (1)

where x0, x1 are the two pre-images of y. The protocol concludes with the verifier sending
a uniformly random challenge b to the prover, and the prover measuring (1) either in the
standard basis or the Hadamard basis.
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If the prover is asked to measure in the standard basis, the measurement outcome will
be a uniformly random x which is either x0 or x1. If the prover is asked to measure in
the Hadamard basis, the measurement outcome will be a uniformly random d such that
d · (x0 ⊕x1) = 0 over Fn

2 . Since the verifier has the trapdoor, he can obtain x0, x1 by inverting
y, and thus check whether the measurement outcome satisfies the requirements above.

As for security, we need an additional property called adaptive hardcore bit, which says that
any efficient quantum algorithm given pk, cannot produce y, x, d that passes the two checks
simultaneously with probability significantly higher than ½, i.e. fpk(x) = y, d · (x0 ⊕ x1) = 0,
and d ̸= 0. To see that this implies the proof of quantumness property, assume a classical
prover can pass this proof of quantumness protocol with probability 1, then we can always
extract both x and d with probability 1 by simply rewinding the classical prover.

In fact, the adaptive hardcore bit property also implies that the state (1) must be
computationally unclonable. This is simply because if somehow we can prepare two copies of
this state, then measuring two copies in two bases will yield both x and d. This computational
unclonability property has also been observed and used in prior works, in particular in the
context of semi-quantum money [22] and two-tier quantum lightning [20]. Later we will see
that the security proof for our CVPV protocol requires a stronger variant of computational
unclonability than the ones considered in these works.

Constructing CVPV

Given the setup, a natural idea for achieving CVPV is that instead of sending an unclonable
state prepared by V0, perhaps we can ask the prover (and hopefully also the adversaries)
to prepare a quantum state that she herself cannot clone, similar to that in the proof of
quantumness protocol. Specifically, consider the CVPV protocol, where V0 sends pk and
V1 sends b with the same timing as before. In the end, they check that whether they have
received the same prover response in time and whether the prover’s measurement outcome
passes the proof of quantumness check. On the other hand, the prover in CVPV will run
the prover in the proof of quantumness protocol and output y, ans, where y is the measured
image of the superposition evaluation, and ans is the measurement outcome in the basis
specified by b.

We now show that this construction already seems to get around the classical impossibility.
The attack from the impossibility is following: A0, A1 forwards the classical messages pk, b

to each other, and at the end, they run the honest prover and send the output. However,
in this protocol, since the measurement performed by the prover has some nontrivial min-
entropy, the verifiers will get two different responses with constant probability! It is also not
clear whether this computation could be simulated (almost) deterministically with shared
randomness. Certainly, if it could be simulated classically, then it would be breaking the
proof of quantumness property.

Unfortunately, it turns out that a different attack completely breaks this CVPV protocol.
When A0 receives pk, he can simply runs the honest prover twice – once on b = 0 and once
on b = 1. He obtains y0, ans0 for b = 0 and y1, ans1 for b = 1, and sends both of them to A1.
On the other hand, A1 simply forwards b. Later, when both of them receive the message
from each other, they pick yb, ansb as their responses to the verifiers. It is not hard to show
that this strategy simulates the prover perfectly.

We observe that in order for this attack to work, it is crucial that the adversaries can
pick y after seeing b, which is impossible in the proof of quantumness protocol. Therefore, to
prevent this attack, our idea is to “nudge” the prover to the left, so that she can commit to y

before seeing b. More formally, the protocol is the same as before but the timing constraints

ITCS 2022
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are changed. In particular, the verifiers make sure that the message pk reaches the prover a
bit earlier than b, and at the end, they check that she should output y as soon as she receives
pk (and before she receives b).

Proving Soundness of CVPV

It turns out that with this simple fix, this CVPV can be proven secure. According to
the timing constraints, we can again, without loss of generality, assume that there are
two adversaries A0, A1, and that A0 upon receiving pk needs to output y to the verifiers
immediately, and after they receive a private communication from each other, they are
supposed to produce two ans’s to pass the verification.

We first consider a restricted set of adversarial strategies, called challenge-forwarding
adversaries, where the only restriction is that A1 upon receiving b simply forwards b and
does nothing else. We claim that the success probability for challenge-forwarding adversaries
cannot be significantly higher than ¾.

We now show that this suffices to show that the success probability for any adversarial
strategy without pre-shared entanglement cannot be significantly higher than ¾. The proof
is that assume (A0, A1) breaks the CVPV with probability noticeably higher than ¾, we
construct a challenge-forwarding adversary (B0, B1) with the same success probability, which
leads to a contradiction. The construction of the reduction is similar to the attack for
the first CVPV construction. B0, upon receiving pk, runs A0 on pk (and commits y) and
simultaneously A1 twice – once on b = 0 and once on b = 1 – and sends the residual state to
the other party. We can run A1 twice as they do not pre-share entanglement. Later, when
both of them learn b, they can pick the correct execution to finish simulating (A0, A1).

A (Computational) Non-Local Game for TCFs

What is left to be shown is that even challenge-forwarding adversaries cannot break the
CVPV protocol. It can be shown that for our protocol, what the adversaries can do is more
or less equivalent to the following computational (two-player) non-local game:

The game begins by announcing a TCF public key pk.
Two (computationally bounded) players B and C upon receiving pk, agree on a classical
“commitment” y. They then prepare a possibly entangled bipartite state ρBC between
themselves, after which they are separated.
A single challenge b is then sampled uniformly at random and announced to B and C

separately.
B and C produce two answers ansB and ansC using ρB or ρC separately, and win the
non-local game if both answers pass the proof of quantumness check with respect to
pk, y, b.

Another way to view this game is that it is the same as the TCF proof of quantumness
protocol, except that after halfway, we ask the prover to run two copies of himself, i.e.
split himself into two executions and finish each execution separately with the same verifier
randomness. If the prover’s internal state was clonable, then the best prover’s success
probability should never decrease after the transformation. Therefore, this can also be viewed
as a computational unclonability property.

To prove the non-local soundness, assume that a strategy wins this non-local game
significantly higher than ¾. We construct an algorithm breaking the adaptive hardcore bit
property, by asking B challenge 0 (produce x) and C challenge 1 (output d). On a high level,
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this reduction works because in a non-local game, the measurements made by B and C are
on disjoint registers, and thus must be compatible no matter which challenges are given to
them.

We now provide an informal proof that this reduction works for any non-signaling players.
A strategy is non-signaling if the marginal distribution for one player is independent of what
the other player does, and the no signaling principle says that any bipartite measurement
of a quantum state is non-signaling. Let W0, W1 be the events where B or C produces a
correct answer respectively in the non-local game. We can rewrite the success probability of
the non-local game to be p := Pr[W0 ∧ W1]. Then

p = 1
2 Pr[W0 ∧ W1|b = 0] + 1

2 Pr[W0 ∧ W1|b = 1] ≤ 1
2 Pr[W0|b = 0] + 1

2 Pr[W1|b = 1].

On the other hand, let W ′
0, W ′

1 be the events where B or C produces a correct answer
respectively in the reduction, where B receives challenge 0 and C receives challenge 1. Then
the success probability of the reduction is p′ := Pr[W ′

0 ∧W ′
1]. p′ ≤ 1

2 +negl since the reduction
is efficient, and by union bound,

p′ = 1 − Pr[¬W ′
0 ∨ ¬W ′

1] ≥ 1 − Pr[¬W ′
0] − Pr[¬W ′

1] = Pr[W ′
0] + Pr[W ′

1] − 1.

Notice that Pr[W ′
0] = Pr[W0|b = 0] by construction and the no signaling principle, and

similarly Pr[W ′
1] = Pr[W1|b = 1]. The conclusion p ≤ 3

4 + negl follows by rearranging the
terms.

The computational unclonability requirements in prior works [22, 20] cannot be cast as a
non-local game, since there the two players need to answer different challenges instead of
the same one. Therefore, by adaptive hardcore bit property, the game is hard even if the
two players can communicate. We think that this computational non-local hardness that we
achieve could potentially have applications to other quantum cryptography relying on the
no-cloning principle.

Soundness Amplification via Parallel Repetition

So far, we have shown how to construct a CVPV with soundness ¾ against adversaries
without pre-shared entanglement.

To achieve negligible soundness, one natural attempt is to do sequential repetition.
However, sequential repetitions are undesirable in our setting as (1) sequential repetitions
will undesirably increase the number of rounds/time/complexity of the final protocol; (2)
more crucially, adversaries can take advantages of a multiple round protocol and use quantum
communication to share some entanglement even if they have no pre-shared entanglement
at the beginning of the protocol. Note that our protocol can be attacked if the adversaries
have preshared entanglement. The attack is simply that one adversary, upon receiving pk,
could prepare the state (1) honestly, and then carry out the teleportation attack against the
BB84 protocol. Therefore, entangled adversaries can simulate the honest prover perfectly.
Combining with this attack, one can show that with sequential repetitions, the soundness
does not decrease at all!

Therefore, we turn to consider parallel repetitions, which traditionally have been more
technically challenging than sequential repetitions under numerous different contexts. One
difficulty is that our CVPV protocol can be viewed as a four-message private-coin interactive
argument with additional structures, and therefore known transformations for interactive
arguments do not apply. Another difficulty is that a common technique for proving parallel

ITCS 2022
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repetition for private-coin arguments is to perform rejection sampling, which in our case
of proving parallel repetition of CVPV, would lead to either communication or pre-shared
entanglement between the adversaries, neither of which is allowed for this setting.

The key idea is that instead of proving a parallel repetition theorem for the CVPV
protocol, we first establish a parallel repetition theorem for the TCF non-local game, where
at least the two players are allowed to share entanglement. We then construct a CVPV
protocol with a stronger variant of the non-local game. However, we still need to be careful
about the reduction since in the non-local game, two players cannot communicate after y is
sent.

We first consider the parallel repetition where the non-local game is repeated k times in
parallel, except that we use a single challenge b for all the executions. We show that the
non-local soundness can be decreased to ½ if k is large enough using known results [22]
(which in turn uses a classical parallel repetition theorem [14]). The ½ soundness here is
tight as the adversaries can always guess b correctly with probability ½.

We next consider a second parallel repetition where the strengthened game from above
is repeated k′ times in parallel, and this time we use fresh random challenges for all the
executions. As the strengthened game has soundness ½, this implies that the two quantum
predicates (standard basis test and Hadamard basis test) satisfy computational orthogonality,
similar to the one that has appeared under a different application of parallel repetitions for
TCFs, which is quantum delegation [3, 16]. Therefore, using the ideas from those works, we
show that the non-local soundness decreases exponentially in k′.

Finally, using the same reduction from non-local games to CVPV as before, we show that
we can achieve the CVPV protocol with negligible soundness.

Handling Entangled Adversaries

We have proven that our protocol is negligibly sound against adversaries without pre-shared
entanglement. It turns out that our protocol is similar enough to the previous quantum
position verification that a lot of techniques there can be naturally ported here as well.

Using a standard trick [1, 24], we can show that the protocol can be made secure against
any adversaries with an a-priori-chosen polynomial amount of pre-shared entanglement, albeit
requiring subexponential hardness of quantum LWE, as the reduction for parallel repetition
needs to run in subexponential time.

On the other hand, our protocol can also be attacked with n EPR pairs where n is the
length of the output of fpk. The attack is very similar to the attack for the quantum position
verification protocol we give in the beginning. The adversaries simply prepare the state (1)
honestly (which we recall is the only non-timing-wise change to the protocol) and perform
the attack against the base protocol. In particular, they teleport the state using EPR pairs
to perform measurements in a homomorphic way, whose outcome later they can recover with
one round of communication. Attacking the protocol after parallel repetition can be done by
running the attack above in parallel.

Finally, we modify the CVPV protocol into the QROM to prove that it is sound against
unbounded entanglement, where the modification is very similar to how Unruh [25] modifies
the base position verification protocol into the QROM. On a high level, the attack for the
previous protocol works because the honest prover’s operation after committing y is a Clifford.
With Unruh’s transformation, the operation now involves evaluating a random function,
which cannot be efficiently computed by a Clifford circuit. The security proof in the QROM
from Unruh’s work also carries over, except here we reduce the adversarial strategy with
entanglement against the QROM CVPV, to the TCF non-local game after parallel repetition
(in the standard model), instead of a monogamy-of-entanglement game [24].
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4 Future Directions

High Dimensional Position Verification

We conjecture that the following construction, inspired by the position verification protocol
of Unruh [25], could be secure in higher dimensions under the quantum random oracle model
(QROM) using the ideas from Unruh:
1. V0 broadcasts pk.
2. V0, ..., Vn sample uniformly random strings x0, ..., xn respectively and broadcast them.

The timing is done so that these strings arrives at the prover a bit later than pk.
3. At the end, the (n + 1) verifiers check that the prover answers arrive in time, and passes

the check with respect to challenge H(x0 ⊕ · · · ⊕ xn), where H is the random oracle.

Time-Entanglement Trade-Offs: Upper and Lower Bounds

Classically verifiable position verification protocols have the curious feature of being com-
pletely broken against classical adversaries with unbounded computational power, as they can
simulate the honest quantum execution. On the other hand, our protocol can be efficiently
broken using a linear amount of entanglement but secure against adversaries with bounded
entanglement. This suggests that there may be some time-entanglement trade-offs for the
optimal attack. Clearly, the trivial trade-off to attack the CVPV after parallel repetition is
that the adversaries can use their entanglement to break some copies, and brute-force the
rest of the copies. It is interesting whether there is a significantly better time-entanglement
trade-offs that could be achieved for attacking this protocol or classically verifiable position
verification protocols in general.

For the other direction, we also wonder if there is a tighter lower bound on the entanglement
than what we prove.

Decreasing Quantum Memory for the Prover

We have shown in Theorem 2 that assuming subexponential hardness of quantum LWE,
we can construct classically verifiable position verification protocols that is secure against
any a-priori bounded entanglement. Unfortunately, in our protocols, even the honest prover
needs to keep his quantum memory coherent for some time, and the size of the quantum
memory is even larger than the entanglement bound. Indeed, we have also shown that if the
adversaries share as much entanglement as the size of the honest prover’s quantum memory,
then the protocol can be efficiently broken.

We therefore ask whether it is possible to come up with provably secure CVPV protocols
where the honest prover’s quantum memory is smaller than the entanglement bound in the
standard model, or maybe even without any quantum memory at all.

Weakening the Assumption

We show how to achieve CVPV assuming quantum hardness of LWE, which is a cryptographic
assumption. Can we relax this assumption further? One possible assumption is the existence
of a classically verifiable quantum sampling task satisfying some requirements.
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