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Abstract
We develop approximation algorithms for set-selection problems with deterministic constraints,
but random objective values, i.e., stochastic probing problems. When the goal is to maximize the
objective, approximation algorithms for probing problems are well-studied. On the other hand,
few techniques are known for minimizing the objective, especially in the adaptive setting, where
information about the random objective is revealed during the set-selection process and allowed
to influence it. For minimization problems in particular, incorporating adaptivity can have a
considerable effect on performance. In this work, we seek approximation algorithms that compare
well to the optimal adaptive policy.

We develop new techniques for adaptive minimization, applying them to a few problems of interest.
The core technique we develop here is an approximate reduction from an adaptive expectation
minimization problem to a set of adaptive probability minimization problems which we call threshold
problems. By providing near-optimal solutions to these threshold problems, we obtain bicriteria
adaptive policies.

We apply this method to obtain an adaptive approximation algorithm for the Min-Element
problem, where the goal is to adaptively pick random variables to minimize the expected minimum
value seen among them, subject to a knapsack constraint. This partially resolves an open problem
raised in [5]. We further consider three extensions on the Min-Element problem, where our objective
is the sum of the smallest k element-weights, or the weight of the min-weight basis of a given matroid,
or where the constraint is not given by a knapsack but by a matroid constraint. For all three of
the variations we explore, we develop adaptive approximation algorithms for their corresponding
threshold problems, and prove their near-optimality via coupling arguments.

2012 ACM Subject Classification Theory of computation → Stochastic approximation; Mathematics
of computing → Combinatorial optimization

Keywords and phrases approximation algorithms, stochastic probing, minimization

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.120

Related Version Full Version: https://arxiv.org/abs/2111.01955 [14]

Funding AG was supported in part by NSF awards CCF-1907820, CCF-1955785, and CCF-2006953.
WW and JW were supported in part by NSF award CNS-2007733. JW was supported in part by
the GEM Fellowship and the Gates Millennium Scholars Program.

1 Introduction

Consider the following stochastic optimization problem: given a collection X1, X2, . . . , Xn of
independent non-negative r.v.s (random variables), with each r.v. Xe having an associated
cost ce and a known probability distribution, pick a subset S ⊆ [n] (from a collection of
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120:2 Probing to Minimize

feasible sets F ⊆ 2[n]) that minimizes

fmin(S) ≜ E
[
min
e∈S

Xe

]
;

more generally, given a “well-behaved” function f , pick a set S ∈ F to minimize

E[f(S)].

Such a constrained stochastic minimization problem may arise in many contexts. For example,
the government might have $100 billion to disburse for vaccine research, and seek to produce
a viable vaccine as quickly as possible. Given that each company e requests a funding amount
ce and, upon receiving funding, produces a viable vaccine in time Xe, the government might
seek to fund companies in a way that minimizes the time it takes for at least one company
to produce a viable vaccine. Alternatively, consider a home-repair setting, where among a
large pool of possible repairmen, a homeowner might be willing to ask for at most k price
estimates for a home-repair, and seek to minimize her final price paid; or a collection setting,
where among a pool of 4000 possible sellers, a collector might purchase multiple copies of the
same collectible from various distributors, and seek to minimize the number of defects in the
best copy. In all of these settings, there is a natural tradeoff between quality assurance and
constraint impact which makes these problems hard: often, riskier prospects are “cheaper”
but could pay off handsomely, while more stable prospects are either more expensive or have
a smaller possible upside.

While there has been considerable work on maximization problems in this setting (see,
e.g., [7, 6, 9]), few algorithms and techniques are known for minimization problems. Indeed,
the minimization problems appear much harder. One exception is the work of Goel et al.
In [5], they consider the Min-Element problem, in which one chooses a set S to minimize
E[mine∈S Xe], subject to S satisfying a knapsack constraint

∑
e∈S ce ≤ B. Goel et al.

consider the non-adaptive version of this Min-Element problem, where one commits to
a set S of variables before seeing any of the outcomes {Xe}e∈S . They give a non-adaptive
bicriteria approximation to the optimal non-adaptive policy, i.e., a set S whose cost exceeds
the budget B by an O(log log m) factor (where the r.v.s take on values in the set {0, . . . , m}),
such that E[mine∈S Xe] is at most (1 + ε) times the optimum.

Such non-adaptive solutions are particularly interesting when they have a small adaptivity
gap, i.e., when non-adaptive solutions have a performance close to the best adaptive solutions.
An adaptive solution builds its set S element-by-element: the outcome of an r.v.’s weight is
revealed immediately after it is added to the selection set S, and the selection policy can
then adapt and make future selections based on all the outcomes seen so far. Unfortunately,
simple examples show that the Min-Element problem can have a large adaptivity gap:
see §A for a case with three random variables such that the best non-adaptive solution is
arbitrarily worse than the best adaptive one.

Given such a large gap, it becomes interesting to find adaptive solutions which compare
well to the optimal adaptive policy, so that we do not pay the price of the huge adaptivity
gap. In [5], Goel et al. mention getting good adaptive solutions as a (potentially challenging)
open problem; our work does exactly this.

1.1 Our results
We focus on providing efficiently computable bicriteria guarantees. We call an algorithm
π an (α, β)-approximation if the selection set S(π) is the union of at most β feasible sets,
and the objective value E

[
f
(
S(π))] is at most α times the optimal expected objective value.

Henceforth, [m]≥0 ≜ {0, 1, 2, . . . , m}.
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Our first main result is for the Min-Element problem in the adaptive setting; to
differentiate it from the extensions we consider next, we call it the Min-Element-Knapsack
problem.

▶ Theorem 1. For the Min-Element-Knapsack problem where the random variables take
values in [m]≥0, there exists an adaptive policy that obtains a (4, O(log log m))-approximation.

Theorem 1 provides a partial answer to an open question in [5]. Interestingly, our
O(log log m) resource augmentation factor matches that obtained by the authors of [5] in
their result for the non-adaptive setting. However, these factors seem to arise for different
reasons: their non-adaptive factor comes from a use of greedy submodular optimization, while
ours comes from a new adaptive binary search procedure. This procedure, which reduces the
original adaptive expectation minimization problem to an adaptive probability minimization
problem, is a basic building block in our approach.

The Min-Element-Knapsack can be generalized in many ways: we can consider richer
function classes (and not just the minimum function), and we can consider richer constraint
sets (and not just the simplest knapsack setting). In the first extension we present, the
objective function f(S) is the sum of the smallest k outcomes in S. We call this the
Min-k-Knapsack problem.

▶ Theorem 2. For the Min-k-Knapsack problem where the random variables take values in
[m]≥0, there exists an adaptive policy that obtains an

(
8, O

(
log log m · log2 k

))
-approximation.

To prove Theorem 2, we use the same adaptive binary search idea from Theorem 1, and
relate the resultant probability minimization problem to a different probability maximization
problem that we call the i-heads problem, which is an interesting problem in its own right.
We then obtain a better-than-optimal solution for this problem by extending the simple
greedy algorithm used for Theorem 1, albeit overspending by an O(log k) factor. A detailed
discussion appears in the techniques section.

Next we consider the Min-k-Matroid problem, where the objective function f(S) is
again the sum of the smallest k outcomes in the selection set S, but the constraint is now a
matroid constraint.2 Our solution for this setting has an even better approximation than for
the case of knapsack constraints.

▶ Theorem 3. For the Min-k-Matroid problem where the random variables take values in
[m]≥0, there exists an adaptive policy that obtains a (8, O(log log m · log k))-approximation.

Theorem 3 takes the techniques developed for the Min-k-Knapsack problem, and shows
the core reason why those techniques work: framed correctly, both constraints admit a nice
sense of interchangeability. For the adaptive probability minimization problem we reduce to
here, a non-adaptive greedy algorithm actually becomes optimal.

Finally, we investigate the MinBasis-Cardinality problem, where the constraint is a
cardinality constraint (we can pick at most B elements), but we generalize the objective
function from being the sum of the smallest k random variables to the setting of matroids.
Specifically, we now have a matroid MI = (U , I) of rank k, and we consider the minimum-
weight basis in this matroid. One should note that taking a uniform matroid as the constraint
here gives us back the Min-k-Knapsack problem, albeit in the case where all items have
unit cost.

2 A matroid MO = (U , I) is specified by a ground set U and a family of independent sets I. A selection
set S(π) is feasible if and only if it is an independent set, i.e., S(π) lies in the family of feasible sets
F = I.

ITCS 2022



120:4 Probing to Minimize

▶ Theorem 4. For the MinBasis-Cardinality problem where the random variables
takes value in [m]≥0, there exists an adaptive policy that obtains a (8, O(log log m · log k))-
approximation.

While the result of Theorem 3 shows the importance of interchangeability in the constraint,
Theorem 4 shows the importance of interchangeability in the objective. When the matroid
constraint moves into the objective, the previously optimal non-adaptive matroid greedy
algorithm now needs to be made adaptive in order to maintain optimality. We note a
peculiarity here: while solving the non-adaptive probability minimization problem is non-
trivial, the adaptive version of this problem has a simpler optimal solution.

1.2 Techniques

We now give some more details about the main techniques behind our results.

1.2.1 Reduction to threshold problems

The primary technique we use is a reduction to threshold problems. The idea is a clean one,
provided we observe that, since f(S) is a random variable taking values in [m]≥0,

E
[
f
(

S(π)
)]
≤ Pr

(
f
(

S(π)
)

> 0
)

+
⌊log m⌋∑

j=0
Pr
(

f
(

S(π)
)

> 2j
)

2j ≤ 2E
[
f
(

S(π)
)]

; (1)

This suggests that a good policy for minimizing E
[
f
(
S(π))] should somehow simultaneously

minimize all of these Pr
(
f
(
S(π)) > t

)
terms for values of t that are powers of 2. Now if we

have an algorithm, referred to as Threshold, which can (α, β)-approximate these threshold
problems for every power-of-2 threshold, we obtain a (2α, O(log m)β)-approximation to
the optimal adaptive policy: first, use Threshold to approximate all of these threshold
problems, then combine their solutions. Since we require that f(·) is non-increasing, our
combined set inherits all the guarantees of its subsets. But this is incredibly wasteful, and
does not use the adaptivity. To avoid this loss, we again use that f(·) is non-increasing; if
we obtain f

(
S(π)) ≤ t, we no longer need to worry about solving threshold problems with

thresholds larger than t. To make use of this observation, we instead perform an adaptive
binary search to determine the next threshold to call Threshold on.

Adaptive binary search. Starting with the median threshold t, Threshold probes a set
St that aims to minimize the probability of f(St) > t. If Threshold obtains f(St) ≤ t,
we say it succeeds and we recurse on the thresholds smaller than t; if Threshold fails to
obtain f(St) ≤ t, we recurse on the set of thresholds larger than t. While this seems simple,
one should note the asymmetry between success and failure here: success at a threshold t

guarantees that our final objective value is at most t, but failure at t does not guarantee that
the final objective value is greater than t.

Nevertheless, we construct an upper bound UB on our algorithm’s objective value, which
allows us to analyze it as if failure at t does imply that the objective is at least t from then
on. See §2 for details. This adaptive binary search now reduces the number of calls to
O(log log m).
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1.2.2 The Min-Element-Knapsack problem
Armed with this reduction to a threshold problems, the proof of Theorem 1 follows from an
approximation to the Min-Element-Knapsack threshold problem below, where Adm(F)
denotes the set of admissible policies with F being the collection of feasible sets for selection:

min
π∈Adm(F)

Pr
(

min
e∈S(π)

Xe > t

)
.

Since any policy π succeeds at obtaining mine∈S Xe ≤ t as soon as it finds a single element
for which Xe ≤ t, adaptivity adds nothing to solving this problem. Hence we focus on the
non-adaptive problem

min
S∈F

Pr
(

min
e∈S

Xe > t

)
.

Taking the logarithm of the objective, we reduce to a knapsack instance where each element
has reward equal to − log Pr(Xe > t). Now a greedy procedure gives a (1, 2)-approximation to
the threshold problem. Combining all these together gives the (4, O(log log m))-approximation
from Theorem 1.

1.2.3 The Min-k-Knapsack problem
We turn next to a strict extension of the Min-Element-Knapsack problem: the Min-k-
Knapsack problem. The first step, like in the Min-Element-Knapsack problem, is to
apply a threshold-based reduction. An idea similar to that from §1.2.1 allows us to reduce a
slightly richer set of objective functions to threshold minimization problems.

Indeed, if yi(S) is the weight of the i-th smallest weight element in S, then our objective
f(S) is

∑k
i=1 yi(S), the sum of the k smallest weights in S. Writing the expectation as a

sum of thresholds like in (1), we get that it suffices to find approximations to the threshold
problem

min
π∈Adm(F)

Pr
(

yi

(
S(π)

)
> t
)

for different values of t. This problem can be thought of in the following way.

▶ Problem (The i-heads problem). We are given a set of coins U , each having cost ce and
bias pe. We can flip a coin e at most once, at a cost of ce. Given a budget B, the i-heads
problem seeks to adaptively flip coins to maximize Pr(see at least i heads).

We extend the greedy knapsack strategy from §1.2.2 used to solve the case i = 1 to the
case of a general i: the idea is again to pick items in increasing order of cost-per-reward,
except that the budget is extended from B to B + iδ, where δ is the maximum cost of any
element. In order to control this δ term, we bucket the coins and choose the best coins at
each of the top O(log i) levels until the cost of each coin becomes smaller than B/i.

The proof that this greedy policy G outperforms any admissible policy π requires some
new ideas. The heart of the argument is to first construct a surrogate policy π̃ which strictly
outperforms any policy π, and then to show an ordering of the coins of G such that

The policies G and π̃ probe the same set after obtaining their first heads.
For any amount of remaining budget B′, the probability that G obtains its first heads
with B′ budget remaining is greater than the probability that π obtains its first heads
with B′ budget remaining.

In the end, our argument shows that G stochastically dominates every admissible policy π,
which completes the proof.

ITCS 2022
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1.2.4 The Min-k-Matroid problem
We now discuss our first matroid-based variation on the Min-k-Knapsack problem, which
we call the Min-k-Matroid problem. The same reduction used in the Min-k-Knapsack
problem implies that proving Theorem 3 reduces to providing a (1, O(1))-approximation to
threshold problem for matroids. We show that the matroid greedy algorithm MGreedy
is an optimal policy for this problem. In fact, the matroid greedy algorithm stochastically
dominates any other policy. We argue this via induction on the matroid rank. The main
observation we make here is that, after probing a single element, we find ourselves in a
problem state nearly exactly like the starting state, but with a possibly reduced number of
heads, and a resulting constraint family which is a matroid with a strictly smaller rank. Due
to space limitations, we defer this section to the extended version [14].

1.2.5 The MinBasis-Cardinality problem
We now discuss the treatment of our final problem, the MinBasis-Cardinality problem.
The proof of Theorem 4 is again through the reduction to threshold problems for an objective
f(S) that is in the form of

∑k
i=1 gi(S). However, unlike the case of a Min-k objective, now it

is not obvious how we can write the MinBasis objective f(S) as
∑k

i=1 gi(S) for a monotonic
function sequence (gi(·)) where each gi(·) is a non-decreasing function taking values in [m]≥0.
In our proof, we first show that we can specify gi(S) to be the i-th smallest element in the
minimum-weight basis contained in S generated by the standard matroid greedy algorithm.
Then we show inductively that AdapMGreedy, a simple adaptive matroid greedy algorithm,
is optimal for the resulting threshold problem. The key idea here is again to use our inductive
assumption to reason about the future behavior of an optimal policy. As we did for the
Min-k-Matroid problem, we defer this section to the extended version in [14].

1.3 Related Work
The work closest to ours in content and aim is [5]. That paper allows a more general model,
where element weights can take on non-negative discrete values µ1, µ2, . . . , µL, but restricts
it focus to the Min-Element objective f(S) ≜ mine∈S Xe. . The authors give a bicriteria
approximation scheme, showing for every ε > 0 how to obtain a set T such that cost(T ) ≤
O
(

log(L) + log 1
log (1+ε)

)
with E[f(T )] ≤ (1 + ε)E[f(S∗)] where S∗ ≜ arg minS∈F E[f(S)].

Moreover, they show that finding a poly(L) approximation to the non-adaptive problem is
NP-hard, by establishing an approximation-preserving reduction to a special class of covering
integer programs.

Our results differ in several ways. First, the authors of [5] consider non-adaptive approx-
imations to the optimal non-adaptive policy, whereas we provide adaptive approximations
to the optimal adaptive policy, partially closing an open question posed by them. Second,
they obtain a (1 + ε)-approximation instead of a constant-factor approximation. Third, their
techniques are quite different from ours: they use the submodularity of (a transformation of)
the expected objective E[f(S)], while we adaptively explore elements through an adaptive
binary search. Moreover, we consider several generalizations of the Min-Element problem
with more general objectives and constraints.

Stochastic probing maximization problems have been studied much more broadly: the
results for these problems often show small adaptivity gaps and focus on particular classes of
objective functions [1, 8, 2, 6]. In contrast, we show that one of our minimization problems
has a large adaptivity gap, and our main technical result, the reduction to threshold problems,
applies to a general class of objectives. Moreover, the approaches used for these problems
and for ours are quite different.
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There has been some work on adaptive minimization problems outside of the stochastic
probing contexts. One example is the stochastic k-TSP model introduced by Ene et al. in
[4]. In that setting, each vertex v in a given metric contains a stochastic reward Rv, and the
goal is to adaptively minimize the expected cumulative distance one travels before obtaining
k reward. In that introductory paper, Ene et al. gave an adaptive O(log k)-approximation
and a non-adaptive O(log2 k)-approximation for this problem. Much like we do, they solve
their problem by repeatedly approximating an associated “dual” problem; in our case,
this is a threshold problem, and in their case, this is an orienteering problem. In a later
work [11], Jiang et al. extended this result, using some clever modifications to obtain an
O(1)-approximation.

Another good example is the general disutility-minimization problem covered by the
Price-of-Information framework, introduced by Singla in [13]. In their setting, like ours, one
must choose a set of items to probe, where each item has a fixed probing price and a random
disutility value, and, once done probing, one must choose a minimum disutility subset from
within the probed set, where this subset must satisfy some given covering constraint. In
contrast to our setting, though, in the Price-of-Information framework the probing constraints
are soft constraints; one seeks to minimize the sum of the probing costs and the final disutility
value. As such, their main result, showing that simple modifications of standard greedy
algorithms form good approximations, can no longer be applied.

With respect to solving threshold problems, to the authors’ knowledge, generally little is
known. However, the threshold problem associated with the Min-k-Knapsack problem (see
§ 4) has been heuristically treated before. In particular, it is a Bernoulli version of a more
general adaptive knapsack problem, where rewards are independently random but the cost of
each item is fixed, and the goal is to achieve a cumulative reward above some threshold with
optimal probability. Previous work ([3], [10]) on this problem has focused on the development
of heuristics and on optimizing the dynamic programming solution, in the setting where
rewards are normally distributed. This work is instead concerned with the development of
bicriteria approximation algorithms in the setting where rewards are Bernoulli distributed,
though it may be possible to extend our methods to the more general case.

1.4 Open Problems

Our results leave open many questions, a few of which we explicitly pose here. Our first focus
is the tightness of Lemma 5, our reduction to threshold problems. Is the log log m in our
resource augmentation factor tight? That is, assuming we use Threshold in a black-box
way, is there a better way to choose our threshold values than adaptive binary search?
Alternatively, is it possible to modify our algorithm to obtain a bicriteria approximation
scheme, as was done in [5]?

Our next focus is on hardness. In [5], the non-adaptive version of the Min-Element
problem was shown to be hard to approximate without relaxing the budget, by giving an
approximation-preserving reduction to a class of hard integer programs. Does a similar result
exist for the adaptive version, or any of its extensions? We leave all of these questions as
challenging open problems.

2 General Framework with Threshold Problems

In this section, we present the full details of the reduction from the stochastic minimization
problem to threshold problems, first alluded to in Section 1.2.

ITCS 2022
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Formally, the f -F threshold problem with threshold t is an adaptive probability minim-
ization problem, wherein the policy π tries to avoid f(S(π)) > t with as high a probability
as possible, while abiding by the constraint that S(π) ∈ F . Lemma 5 says that, given an
(α, β)-approximation for the f -F threshold problem, one can construct a (4α, O(log log m)β)-
approximation for the adaptive expectation minimization problem minπ∈Adm(F) E

[
f(S(π))

]
.

Our results are summarized in Lemma 5 and Corollary 6, which we state now.

▶ Lemma 5 (Reduction to threshold problems). Let f(S) be a non-increasing objective
function taking values in [m]≥0 for a positive integer m. Let F be the constraint family and
Adm(F) be the set of feasible policies under F . Suppose that for any t ∈ [m]≥0, the f-F
threshold problem

min
π∈Adm(F)

Pr
(

f
(

S(π)
)

> t
)

admits an (α, β)-approximation. Then the stochastic minimization problem

min
π∈Adm(F)

E
[
f
(

S(π)
)]

admits a (4α, O(log log m) · β)-approximation.

▶ Corollary 6 (Sum-of-k reduction). Let gi(S), i ∈ [k], be a non-increasing function
taking values in [m]≥0, and assume that the function sequence (gi) is monotonic in i. Let
f(S) =

∑k
i=1 gi(S). Suppose that for any t ∈ [m]≥0, the gi-F threshold problem

min
π∈Adm(F)

Pr
(

gi

(
S(π)

)
> t
)

admits an (α, β)-approximation. Then the stochastic minimization problem

min
π∈Adm(F)

E
[
f
(

S(π)
)]

admits an (8α, O(log log m · log k) · β) approximation.

As described in Section 1.2, to build the intuition for the reduction, we start with
the decomposition (1): E

[
f
(
S(π))] ≤ Pr

(
f
(
S(π)) > 0

)
+
∑⌊log m⌋

j=0 Pr
(
f
(
S(π)) > 2j

)
2j ≤

2E
[
f
(
S(π))]. This bound follows from two basic observations: the relation E

[
f
(
S(π))] =∑m

t=0 Pr
(
f
(
S(π)) > t

)
, which follows from the fact that f(S) ∈ [m]≥0, and the bound∑m

t=0 at ≤ a0 +
∑⌊log m⌋

j=0 a2j 2j ≤ 2
∑m

t=0 at, which applies to any non-increasing non-negative
sequence (at)m

t=0.This powers-of-2 bound is a slight modification of the bound used in the
proof of Cauchy’s condensation test in [12].

With (1) in mind, consider the following policy π̂. Let Ŝt be an (α, β)-approximation to the
threshold problem minπ∈Adm(F) Pr

(
f
(
S(π)) > t

)
, and let S(π̂) = Ŝ0∪Ŝ20∪Ŝ21∪· · ·∪Ŝ2⌊log m⌋ .

Then

E
[
f
(

S(π̂)
)]
≤ Pr

(
f
(

S(π̂)
)

> 0
)

+
⌊log m⌋∑

j=0
Pr
(

f
(

S(π̂)
)

> 2j
)

2j

≤ Pr
(

f
(

Ŝ0

)
> 0
)

+
⌊log m⌋∑

j=0
Pr
(

f
(

Ŝ2j

)
> 2j

)
2j
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≤ α Pr(OPT > 0) +
⌊log m⌋∑

j=0
α Pr

(
OPT > 2j

)
2j

≤ 2αE[OPT],

where OPT is the value of an optimal policy for minπ∈Adm(F) E
[
f
(
S(π))], and we have used

the fact that f(·) is non-increasing. Unfortunately, the policy π̂ uses a resource augmentation
factor of the order of log m. In the proof of Lemma 5, we further reduce the resource
augmentation factor using the policy MetaMin, described in Algorithm 1, which performs
an adaptive binary search on the threshold values R = {0, 20, 21, . . . , 2⌊log m⌋}. Note that
MetaMin requires as input a function Threshold(t), which, for any t ∈ [m]≥0, generates
an (α, β)-approximation to the f −F threshold problem with threshold value t.

Algorithm 1 MetaMin(Threshold).

1: Initialization: R← {0} ∪ {2j : j = 0, 1, . . . , ⌊log m⌋}; Ŝ ← ∅
2: Ŝ0 ← Threshold(0) ▷ Boundary case
3: Ŝ ← Ŝ ∪ Ŝ0

4: if f
(

Ŝ0

)
= 0 then ▷ Succeeds the threshold test at 0

5: return Ŝ

6: else ▷ Fails the threshold test at 0
7: R← R \ {0}
8: while R ̸= ∅ do ▷ Adaptive threshold testing
9: t← median of R

10: Ŝt ← Threshold(t)
11: Ŝ ← Ŝ ∪ Ŝt

12: if f
(

Ŝt

)
≤ t then ▷ Succeeds the threshold test at t

13: R← R \ {τ ∈ R : τ ≥ t}
14: else ▷ Fails the threshold test at t

15: R← R \ {τ ∈ R : τ ≤ t}
16: return Ŝ

2.1 Proof of Lemma 5 (Reduction to threshold problems)
Proof. We prove Lemma 5 by showing that the policy MetaMin in Algorithm 1 is a
(4α, O(log log m) · β)-approximation. It is easy to see that the final set S(MetaMin) is the
union of at most (O(log log m) · β) F -feasible sets, since MetaMin performs a binary search
on |R| = O(log m) threshold values. Using MetaMin to refer to the random objective value
obtained by running MetaMin, it suffices to show that E[MetaMin] ≤ 4αE[OPT].

We first construct an upper bound UB on the objective value MetaMin whose value
directly reflects the failing or succeeding of threshold tests. Specifically, let τ be the last
threshold at which MetaMin fails, and we define UB = max{MetaMin, τ + 1}. Clearly,
MetaMin ≤ UB. Note that τ is also the largest threshold at which MetaMin fails during
the binary search procedure, so if MetaMin fails the test at threshold value t, then UB > t.

We now show how the constructed upper bound UB reflects the test results. For notational
convenience, we partition the interval [0, m] into the following intervals:

[0, m] = {0} ∪ (0, 1] ∪ (1, 2] ∪ (2, 22] ∪ · · · ∪ (2⌊log m⌋−1, 2⌊log m⌋] ∪ (2⌊log m⌋, m],
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which we denote as

I−1 = (0, 1] ≜ (a−1, b−1]; Ij = (2j , 2j+1] ≜ (aj , bj ], j = 0, 1, . . . , ⌊log m⌋ − 1;

I⌊log m⌋ = (2⌊log m⌋, m] ≜ (a⌊log m⌋, b⌊log m⌋].

We use the phrase that “MetaMin succeeds/fails the test at a threshold” to mean that
“MetaMin indeed performs the test and succeeds/fails”.

The key to our proof is the claim below, which directly links the value of UB with behavior
of these threshold tests. Note that the same relation does not generally hold when UB is
replaced by MetaMin, i.e., with Pr(MetaMin ∈ (aj , bj ]) on the left side. It is possible that
MetaMin fails at some aj but ultimately attains a value smaller than aj , if it happens to
observe a small f

(
Ŝt

)
when it succeeds at later threshold t.

▷ Claim. For any j ∈ {−1, 0, 1, . . . , ⌊log m⌋},

Pr(UB ∈ (aj , bj ]) = Pr(MetaMin fails at aj and succeeds at bj).

Proof of Claim. It suffices to focus on the case where MetaMin fails the test at threshold 0.
We first argue that if MetaMin fails at aj and succeeds at bj , then UB ∈ (aj , bj ]. By the
construction of UB, we have seen that if MetaMin fails the test at aj , then UB ≥ aj +1 > aj .
If MetaMin succeeds the test at bj , then MetaMin ≤ bj , and MetaMin does not perform
tests at threshold values above bj and thus does not have a chance to fail at these threshold
values. Therefore, UB ≤ bj .

We now show that if UB ∈ (aj , bj ], then MetaMin fails at aj and succeeds at bj . After
MetaMin terminates, let tF be the largest threshold that MetaMin has failed at, and let
tS be the smallest threshold that MetaMin has succeeded at. We argue that it must hold
that tF = aj and tS = bj , which is sufficient for the claim. By the termination condition,
(tF , tS ] must be an interval among the class of intervals {(au, bu] : u = −1, 0, 1, . . . , ⌊log m⌋}.
By the argument in the last paragraph, the fact that MetaMin fails at tF and succeeds
at tS implies that UB ∈ (tF , tS ]. Since the intervals (au, bu]’s are disjoint, it must be that
(tF , tS ] is the same interval as (aj , bj ], which completes the proof. ◁

With this claim, we complete the proof of Lemma 5 through the following inequalities.
First, it is easy to see that the claim implies that

Pr(UB ∈ (aj , bj ]) ≤ Pr(MetaMin fails at aj) ≤ Pr
(

f
(

Ŝaj

)
> aj

)
,

where Ŝaj
is the set chosen by Threshold for the threshold problem at threshold aj . Then

E[UB] ≤
⌊log m⌋∑
j=−1

Pr(UB ∈ (aj , bj ]) · bj ≤
⌊log m⌋∑
j=−1

Pr
(

f
(

Ŝaj

)
> aj

)
· 2j+1

≤
⌊log m⌋∑
j=−1

α Pr(OPT > aj) · 2j+1 = α Pr(OPT > 0) + 2α

⌊log m⌋∑
j=0

Pr
(
OPT > 2j

)
· 2j

≤ 4αE[OPT],

where the last line follows from the decomposition in (1). Recalling that E[MetaMin] ≤
E[UB], we have completed the proof that MetaMin is a (4α, O(log log m) ·β)-approximation.

◀
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2.2 Proof of Corollary 6 (Sum-of-k reduction)
Proof. Without loss of generality, we assume that the function sequence (gi) is non-increasing
in i since otherwise we can reverse their indices. Applying the same powers-of-2 condensation
trick for the non-increasing sequence g1(S), g2(S), . . . , gk(S), we have that for any policy π,

E

[
k∑

i=1
gi

(
S(π)

)]
≤ E

⌊log(k)⌋∑
j=0

g2j

(
S(π)

)
2j

 ≤ 2E
[

k∑
i=1

gi

(
S(π)

)]
.

We now consider the following policy π̃. For each j = 0, 1, . . . , ⌊log(k)⌋, let Sj be
the output of the policy MetaMin in Algorithm 1 for minπ∈Adm(F) E

[
g2j

(
S(π))]. Then let

S(π̃) = S0∪S1∪· · ·∪S2⌊log k⌋ . Recall that MetaMin is a (4α, O(log log m) ·β)-approximation.
Clearly, the policy π̃ has an augmentation factor of O(log log m · log k) · β. Using linearity
of expectation along with the inequality above, it follows neatly that E

[∑k
i=1 gi

(
S(π̃)

)]
≤

8αE[OPT]. This completes the proof that the policy π̃ is a (8α, O(log log m · log k) · β)-
approximation. ◀

3 The Min-Element-Knapsack Problem

In this section, we focus on the Min-Element-Knapsack problem, where the objective
function is the minimum weight and the constraint is a knapsack constraint. Specifically,
letting F = {S ⊆ U : cost(S) ≤ B}, the Min-Element-Knapsack problem can be written
as:

min
π∈Adm(F)

E
[

min
e∈S(π)

Xe

]
. (2)

Our main result is Theorem 1, restated below for convenience.

▶ Theorem 1. For the Min-Element-Knapsack problem where the random variables take
values in [m]≥0, there exists an adaptive policy that obtains a (4, O(log log m))-approximation.

By the reduction to threshold problems in Lemma 5, to prove Theorem 1, it suffices to
give a (1, 2)-approximation to the Min-Element-Knapsack threshold problem:

min
π∈Adm(F)

Pr
(

min
e∈S(π)

Xe > t

)
. (3)

In the remainder of this section, we show that a non-adaptive algorithm for this threshold
problem achieves the desired (1, 2) approximation ratio. More specifically, we first show
that for the Min-Element-Knapsack threshold problem, a non-adaptive feasible policy
achieves the adaptive optimum, i.e., the adaptivity gap is 1, or equivalently, we say that
there is no adaptivity gap. We then give a (1, 2)-approximation for the non-adaptive version
of the threshold problem.

3.1 No adaptivity gap
▶ Lemma 7. The Min-Element-Knapsack threshold problem in (3) has an adaptivity gap
of 1 for any t ∈ [m]≥0.

Proof. Consider an arbitrary t ∈ [m]≥0. We induct on the size of the universe U . Clearly,
the adaptivity gap is 1 when U consists of one element.
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Assume that the adaptivity gap is 1 when the universe consists of n elements for some
n ≥ 1; i.e., for any input of the threshold problem (3) such that the universe consists of n

elements, an optimal non-adaptive policy achieves the same objective value as an optimal
adaptive policy. Now consider any input such that the universe U has n + 1 elements and let
π∗ be an optimal adaptive policy for it. We will construct a non-adaptive policy, represented
by a set S ⊆ U , such that

P
(

min
e∈S

Xe > t

)
= P

(
min

e∈S(π∗)
Xe > t

)
. (4)

Without loss of generality, we can assume that X1 is the first element probed by the
optimal adaptive policy π∗ since the first probing decision does not depend on realizations of
the random variables. After X1 is probed, we consider the threshold problem whose input
consists of a universe U ′ = U \ {1} and a budget B′ = B − c1. Since |U ′| = n, we know
that this problem has an adaptivity gap of 1. Let S′ ⊆ U ′ be the set chosen by an optimal
non-adaptive policy for this problem.

We claim that S = {1} ∪ S′ satisfies (4). To see this, let π∗
x for x ∈ [m]≥0 be the

subsequent policy of π∗ after seeing X1 = x, and let S(π∗
x) ⊆ U ′ be the set chosen by π∗

x.
Then

P
(

min
e∈S(π∗)

Xe > t

)
=

m∑
x=t+1

P(X1 = x)P
(

min
e∈S(π∗)

Xe > t

∣∣∣∣ X1 = x

)

=
m∑

x=t+1
P(X1 = x)P

(
min

e∈S(π∗
x)

Xe > t

)
(5)

≥
m∑

x=t+1
P(X1 = x)P

(
min
e∈S′

Xe > t

)
(6)

= P(X1 > t)P
(

min
e∈S′

Xe > t

)
= P

(
min
e∈S

Xe > t

)
,

where (5) is due to the property of the minimum value, and (6) follows from the induction
assumption that the non-adaptive choice of S′ achieves optimality. Since π∗ is an (adaptive)
optimal policy, we know that this inequality is in fact an equality, which completes the
proof. ◀

3.2 Reduction to knapsack
By Lemma 7, to solve the threshold problem (3), it suffices to solve its non-adaptive
counterpart:

min
S∈F

Pr
(

min
e∈S

Xe > t

)
(7)

Note that Pr(mine∈S Xe > t) =
∏

e∈S Pr(Xe > t). Taking a log of this probability, we rewrite
(7) as:

max
S∈F

∑
e∈S

(
− log Pr(Xe > t)

)
(8)

This is a knapsack problem where the reward of each element e is − logP(Xe > t). Therefore,
a (1, 2)-approximation is given by greedily adding elements in decreasing order of − log P(Xe>t)

ce

until the first time the total cost exceeds the budget. This completes the proof of Theorem 1.
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4 The Min-k-Knapsack Problem

In this section, we give the proof of Theorem 2 alluded to in § 1.2. We restate that theorem
now, for the reader’s convenience.

▶ Theorem 2. For the Min-k-Knapsack problem where the random variables take values in
[m]≥0, there exists an adaptive policy that obtains an

(
8, O

(
log log m · log2 k

))
-approximation.

We begin by rewriting f(S). For i ∈ [k], if |S| ≥ k, let yi(S) be the i-th smallest weight in S.
Then f(S) =

∑k
i=1 yi(S). Noting that the functions yi(S) are monotonic in i, non-increasing

in S, and take values in [m]≥0, we apply Corollary 6, reducing the Min-k-Knapsack problem
to the yi-Knapsack threshold problem. Let C = BIN(U , B, i, t) be the output of the binning
procedure in Algorithm 2 and let G = ExtGreedy

({
e ∈ U : ce ≤ B

i

}
, B, i, t

)
be the output

of the extended greedy algorithm in Algorithm 3. To complete the proof, we show that the
non-adaptive policy G ∪ C is a

(
1, O

(
log k

))
-approximation for the yi-Knapsack problem.

Before that though, we give an equivalent formulation of the threshold problem.

▶ Definition 8. For a fixed threshold t, call an element e below-threshold if Xe ≤ t.
Define rank(S) as the number of below-threshold elements contained in S, i.e., rank(S) =
|{e ∈ S : Xe ≤ t}|.

It follows from definitions that yi(S) ≤ t if and only if rank(S) ≥ i, since both conditions
imply and are implied by the presence of i below-threshold elements in S. Using the
rank-based condition, the yi-Knapsack threshold problem

min
π∈Adm(F)

Pr
(

yi

(
S(π)

)
> t
)

. (9)

is equivalent to the following problem, which we call the i-th rank problem

max
π∈Adm(F)

Pr
(

rank
(

S(π)
)
≥ i
)

. (10)

Note that the i-th rank problem is an instance of the i-heads problem defined in § 1.2.3 with
heads-probability for element e set to be Pr(Xe ≤ t). To complete our proof, it suffices to
show that, for any i ∈ [k] and π ∈ Adm(F),

Pr(rank(G ∪ C) ≥ i) ≥ Pr
(

rank
(

S(π)
)
≥ i
)

, (11)

and that cost(G ∪ C) ≤ O(log k)B.

We refer to these as the value inequality and cost inequality, respectively. To see cost
inequality, note that for the Cj in the binning procedure in Algorithm 2, Cj ≤ 2j · B

2j−1 = 2B

and cost(G) ≤ B + (i + 1) · B
i ≤ 3B. Since C = ∪⌈log i⌉

j=1 Cj , it follows that cost(G ∪ C) ≤
3B + ⌈log i⌉ · 2B ≤ O(log k)B, where the final step comes from the fact that i ≤ k.

We prove (11) by showing the following lemmas.

▶ Lemma 9. For the i-th rank problem with knapsack constraint F in (10), suppose that
there is a set of policies {πℓ : ℓ ∈ [i]} such that for any ℓ ∈ [i] and any π̂ ∈ Adm(F) whose
S(π̂) only consists of elements from

{
e ∈ U : ce ≤ B

i

}
,

Pr
(

rank
(

S(πℓ)
)
≥ ℓ
)
≥ Pr

(
rank

(
S(π̂)

)
≥ ℓ
)

.

Let C = BIN(U , B, i, t) be the output of the binning procedure. If one probes C and then
executes πℓ∗ with ℓ∗ = max{i− rank(C), 1}, then the final selection set C ∪S(πℓ∗ ) obtains an
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objective value in the i-th rank problem that is as good as the optimum, i.e., for any policy
π ∈ Adm(F),

Pr
(

rank
(

C ∪ S(πℓ∗ )
)
≥ i
)
≥ Pr

(
rank

(
S(π)

)
≥ i
)

.

▶ Lemma 10. Define Gℓ as ExtGreedy
(
{e ∈ U : ce ≤ B

i }, B, ℓ, t
)
, and consider the se-

quence of sets {Gℓ : ℓ ∈ [i]}. Then for any ℓ ∈ [i] and any π̂ ∈ Adm(F) whose S(π̂) ⊆
{

e ∈
U : ce ≤ B

i

}
,

Pr(rank(Gℓ) ≥ ℓ) ≥ Pr
(

rank
(

S(π̂)
)
≥ ℓ
)

.

Algorithm 2 BIN(U , B, i, t).

1: Initialization: z ← ⌈log i⌉; C ← ∅
2: for j from 1 to z do ▷ Construct the cost bucket
3: low← max

{
B
2j , B

i

}
; high← B

2j−1

4: bucketj ← {e ∈ U : low < ce ≤ high}
5: Cj ← ∅ ▷ Perform greedy selection
6: while |Cj | < 2j and bucketj ̸= ∅ do
7: ℓ← arg maxe∈bucketj

Pr(Xe ≤ t)
8: bucketj ← bucketj − {ℓ}
9: Cj ← Cj ∪ {ℓ}

10: C ← C ∪ Cj

11: return C.

Algorithm 3 ExtGreedy(U ′, B′, i′, t).

1: Initialization: δ ← maxe∈U ′ ce; G← ∅; pool← U ′

2: for e ∈ U ′: do ▷ Compute density of each element
3: ae ← − log Pr(Xe>t)

ce

4: while cost(G) < B′ + i′δ do ▷ Perform greedy selection
5: ℓ← arg maxe∈pool ae

6: G← G ∪ {ℓ}
7: pool← pool− {ℓ}
8: return G

Combining Lemmas 9 and 10 completes the proof of the value inequality (11) once we
notice that the {Gℓ : ℓ ∈ [i]} in Lemma 10 serves as the {πℓ : ℓ ∈ [i]} in Lemma 9 and Gℓ ⊆ G

for all ℓ ∈ [i], where one should recall that G = ExtGreedy({e ∈ U : ce ≤ B
i }, B, i, t). We

prove each in turn.

4.1 Proof of Lemma 9 (Analysis of BIN)
We prove this lemma via two claims. First, in Claim 11, we show that the rank of the
selection set S(π) under any policy π is stochastically smaller than the rank of S

(π)
≤ B

i

∪ C

where S
(π)
≤ B

i

≜ S(π) ∩{e ∈ U : ce ≤ B
i }. In other words, we can replace the high-cost elements

of S(π) with C and strictly improve its performance.
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Second, in Claim 12 we argue that, for any policy π, given knowledge of the set C’s rank,
we can choose a policy π′ which selects only elements from {e ∈ U : ce ≤ B

i } whose set in
expectation outperforms S

(π)
≤ B

i

. Note that the set S
(π)
≤ B

i

is a random set whose composition
may depend on the weights of elements with costs larger than B

i . Formally, we show the
following claims.

▷ Claim 11. For any selection set S(π), Pr
(
rank

(
S(π)) ≥ i

)
≤ Pr

(
rank

(
S

(π)
≤ B

i

∪ C
)
≥ i
)

.

▷ Claim 12. Let F ′ =
{

S ∈ F : ce ≤ B
i ,∀e ∈ S

}
be the constraint family F but with all the

high-cost elements removed. For any π ∈ Adm(F) and ℓ ∈ [i], there exists a π′
ℓ ∈ Adm(F ′)

such that

Pr
(

rank
(

S
(π)
≤ B

i

∪ C
)
≥ i

∣∣∣ rank(C) = i− ℓ
)
≤ Pr

(
rank

(
S(π′

ℓ)
)
≥ ℓ
)

From these two claims, the proof of Lemma 9 flows quite directly:

Pr
(
rank

(
S(π)) ≥ i

)
≤ Pr

(
rank

(
S

(π)
≤ B

i

∪ C
)

≥ i
)

(12)

=
∑
ℓ∈[i]

Pr(rank(C) = i − ℓ) Pr
(

rank
(

S
(π)
≤ B

i

∪ C
)

≥ i

∣∣∣ rank(C) = i − ℓ
)

≤
∑
ℓ∈[i]

Pr(rank(C) = i − ℓ) Pr
(

rank
(

S(π′
ℓ)
)

≥ ℓ
)

(13)

≤
∑
ℓ∈[i]

Pr(rank(C) = i − ℓ) Pr
(
rank

(
S(πℓ)) ≥ ℓ

)
(14)

= Pr
(

rank
(

C ∪ S(πi−rank(C))
)

≥ i
)

,

where (12) follows from Claim 11, (13) follows from Claim 12, and (14) follows from Lemma 9’s
main assumption on {πℓ : ℓ ∈ [i]}. This completes our proof of Lemma 9, contingent on
the claims.

4.1.1 Proof of Claim 11
To show that

Pr
(

rank
(

S(π)
)
≥ i
)
≤ Pr

(
rank

(
S

(π)
≤ B

i

∪ C
)
≥ i
)

,

we make a simple coupling argument. Consider the following alteration of π. Execute the
policy π as normal but, for any j, every time π would probe an element e in bucketj ,
instead make π do the following:
1. If e ̸∈ Cj , then we instead make π probe the unprobed element in Cj of smallest below-

threshold probability. In other words, π probes arg minv∈Cj−S(π) Pr(Xv ≤ t), where S(π)

is the policy π’s current selection set (instead of its final selection set, as in the usual
definition).

2. If e ∈ Cj and still unselected, then we allow π to proceed as usual, i.e., we allow π to
probe e.

3. If e ∈ Cj but has already been probed (due to the first line in this list), we direct π

to probe the element v ∈ Cj − S(π) of immediately higher Pr(Xv ≤ t); this is always
possible, since π probes at most 2j elements from bucketj , and we swap out elements
in ascending order of Pr(Xv ≤ t).
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If this procedure is applied, every probed element of cost > B
i must lie in C. Note also that,

in all cases, the replacement element must have a below-threshold probability at least as big
as the element e being replaced, since Cj contains the 2j elements from bucketj with the
highest below-threshold probability. For any optimal policy, it follows that this would result
in a strict increase in success probability. But every element in our procedure must lie in C,
and probing the rest of C can only improve things, which implies the claim.

4.1.2 Proof of Claim 12
To see that

Pr
(

rank
(

S
(π)
≤ B

i

∪ C
)
≥ i

∣∣∣ rank(C) = i− ℓ
)
≤ Pr

(
rank

(
S(π′

ℓ)
)
≥ ℓ
)

it suffices to consider the following thought experiment: Give a policy free access to C, and
full knowledge of {Xe : e ∈ C}, but restrict it to selecting new elements of cost > B

i ; how
would that policy maximize Pr(its selection set reaches rank i)? One approach is to run π

using the replacement procedure from the proof of Claim 11; whenever π would probe an
element e of cost > B

i , we pretend π looked at Xe while using the weight of its replacement
element. Doing this, we can simulate full access to all high-cost elements, while actually only
having access to C.

Call a policy low-cost if it does not choose elements of cost > B
i . A better way is to take

the remaining rank required, ℓ = i− rank(C), and find a low-cost policy π′ which maximizes
Pr
(

rank
(

S(π′)
)
≥ ℓ

∣∣∣ ∩e∈C{Xe = xe}
)

. Clearly though, from the independence of weights,
the performance of any valid policy which probes no elements in C must be independent of
the outcomes in C, i.e.,Pr

(
rank

(
S(π′)

)
≥ ℓ

∣∣∣ ∩e∈C{Xe = xe}
)

= Pr
(

rank
(

S(π′)
)
≥ ℓ}

)
.

Take L to be the set of (xe)e∈C values where rank(C) = i − ℓ. Since by assumption π′
ℓ is

better than π′, it follows from the above that

Pr(rank(C) = i − ℓ) Pr
(

rank
(

S
(π)
≤ B

i

∪ C
)

≥ i

∣∣∣ rank(C) = i − ℓ
)

= Pr(rank(C) = i − ℓ) Pr
(

rank
(

S
(π)
≤ B

i

)
≥ ℓ

∣∣∣ rank(C) = i − ℓ
)

=
∑

(xe)e∈C ∈L

Pr(∩e∈C{Xe = xe}) Pr
(

rank
(

S
(π)
≤ B

i

)
≥ ℓ

∣∣∣ ∩e∈C{Xe = xe}
)

≤
∑

(xe)e∈C ∈L

Pr(∩e∈C{Xe = xe}) Pr
(

rank
(

S(π′)
)

≥ ℓ

∣∣∣ ∩e∈C{Xe = xe}
)

=
∑

(xe)e∈C ∈L

Pr(∩e∈C{Xe = xe}) Pr
(

rank
(

S(π′)
)

≥ ℓ
)

Since Pr
(

rank
(

S(π′)
)
≥ ℓ
)
≤ Pr

(
rank

(
S(π′

ℓ)
)
≥ ℓ
)

and∑
(xe)e∈C∈L Pr(∩e∈C{Xe = xe}) is simply Pr(rank(C) = i− ℓ), the claim follows.

4.2 Proof of Lemma 10 (Analysis of ExtGreedy)
We now prove to prove the remaining lemma, which concerns ExtGreedy, Algorithm 3.

Throughout this proof, we assume, for brevity’s sake, that U contains no elements of cost
> B

i and that the constraint F is a knapsack constraint using the original budget B and
this limited-cost universe U . This in no way affects the proofs here, since G is drawn from a
limited cost universe and the policy it is competing against, π̂, must be admissible in this
low-cost setting.
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We proceed in four steps. Recall that we say a policy π succeeds if rank
(
S(π)) ≥ ℓ. First,

we provide a characterization of Pr(π succeeds) based on a structural decomposition of π’s
decision tree. Second, we use that characterization to derive a sufficient condition on two
policies π and π′ which implies that Pr(π′ succeeds) ≥ Pr(π succeeds). In the last two steps,
we prove that this sufficient condition holds for Gℓ and π.

4.2.1 Characterization of success probability
In the first step of our proof, we characterize the success probability of policies for the ℓ-th
rank problem. First, we decompose the structure of a policy π, then we describe how to use
that decomposition to represent the probability that π succeeds.

4.2.1.1 Policies and decision trees

We assume without loss of generality that a policy is constructed as a decision tree, where
nodes correspond to elements probed, and edges correspond to the particular value of an
element’s weight upon probing. Because we are concerned only with rank(S), and element-
weights are independent of each other, one can, without lowering a policy’s probability of
success, separate the (m + 1)-many possible outcomes into two particular meta-outcomes:
whether the element e probed has Xe ≤ t, or Xe > t. We also associate a particular
directionality to outcomes: the root is the first element probed, the left child of the root is
the element probed if the root is below-threshold, and so on.

▶ Definition 13 (The Left Chain, L(π)). Define the “left chain” of a decision tree to be
the sequence of elements probed when every previous element probed is above-threshold. Let
l(π)

j be the j-th element in this sequence. Then, the left chain of a policy π is simply the
sequence L(π) ≜

(
l(π)

0 , l(π)
1 , . . .

)
. Further, let L

(π)
j ≜

(
l(π)

0 , l(π)
1 , . . . , l(π)

j

)
be the left chain

of π, truncated at the j-th element.

▶ Definition 14 (Exit trees, T
(π)
j ). We say the policy π “exits the left chain” at j if l(π)

j is
the first below-threshold element probed. It follows that, for every j, one can talk about the
decision sub-tree corresponding to “exiting” at j; we call this sub-tree T

(π)
j .

With L(π), these T
(π)
j give a neat decomposition of the policy π; we visualize this in Figure 1b.

4.2.1.2 Non-adaptive policies

One can also apply this decomposition to non-adaptive policies (deterministic sets) G. In
fact, one special characteristic of non-adaptive policies is that there is no fixed left chain:
one can probe the deterministic set G in any order, without changing the probability that
rank(G) ≥ ℓ. In other words, one can define L(G) to be an arbitrary permutation of G

without affecting the probability that G succeeds. Note that, by definition, the “exit trees”
of G are simply the policies which probe whatever elements in G remain unprobed. In other
words, T

(G)
j ≜ G− L

(G)
j .

We next characterize the success probability Pr
(
rank

(
S(π)) ≥ ℓ

)
under a policy π based

on the structural decomposition.

▶ Definition 15 (The Exit Value, H
(π)
j ). For a policy π, let the exit value H

(π)
j be the

probability of the policy π’s success given it has exited the left chain after probing the element
l(π)

j , i.e.,

H
(π)
j ≜ Pr

(
rank

(
S(π)

)
≥ ℓ

∣∣∣ rank
(

L
(π)
j−1

)
= 0, l(π)

j is below-threshold
)

.

ITCS 2022



120:18 Probing to Minimize

. . .

wid
(
L
(π)
0

)
·H(π)

0(
wid

(
L
(π)
1

)
− wid

(
L
(π)
0

))
·H(π)

1(
wid

(
L
(π)
2

)
− wid

(
L
(π)
1

))
·H(π)

2

wid
(
L
(π)
0

)
wid

(
L
(π)
1

)
wid

(
L
(π)
2

)
(a) A visualization of the success probability de-
composition found in (15). The j-th rectangle has
width wid

(
L

(π)
j

)
and height H

(π)
j . The total area

covered by these rectangles is the success probabil-
ity Pr

(
rank

(
S(π)

)
≥ ℓ
)
. Full details can be found in

§ 4.2.1.

T
(π)
0

T
(π)
1

T
(π)
2

l
(π)
0

l
(π)
1

l
(π)
2

l
(π)
|L(π)|

X
l
(π)
0
≤ tX

l
(π)
0
> t

. . .

L
(π)
2L(π)

(b) A visualization of the structural decomposi-
tion. Upon probing an element l(π)

j , if Xl(π)
j

≤ t,
then the policy π proceeds to the right child of
the node (l(π)

j ); otherwise, π proceeds to the
left child. The left child of the node (l(π)

j ) is
l(π)

j+1, the next node in the left chain L(π). The
right child is the exit tree T

(π)
j .

Figure 1 Illustrations of the probability decomposition and structural decomposition, respectively,
of § 4.2.1.

For each possible exit j, let F ′ be a knapsack constraint with universe U ′ = U − L
(π)
j and

budget B′ = B − cost
(

L
(π)
j

)
. By element-weight independence, the behavior of policy π

after leaving the left chain at j can be treated, without loss of generality, as the behavior of
a some new policy π′ with constraint F ′. In other words,

H
(π)
j = Pr

(
rank

(
S(π)

)
≥ ℓ

∣∣∣ π exits at j
)

= Pr
(

rank
(

S(π′)
)
≥ ℓ− 1

)
.

4.2.1.3 Basic characterization of a policy π

Let p
(π)
j be the probability that the left-element l(π)

j is below-threshold. Together with the
left chain and exit values of a policy π defined, we can characterize the success probability of
a policy as

Pr
(

rank
(

S(π)
)
≥ ℓ
)

= p
(π)
0 ·H(π)

0 +
|L(π)|∑
j=1

[
j−1∏
y=0

(
1− p(π)

y

)]
p

(π)
j ·H(π)

j .

We develop this decomposition further.

▶ Definition 16 (The width, wid(S)). For a set S, define the width of S, denoted wid(S), to
be the probability that at least one element in S is below-threshold.

Define the reward of an element e as reward(e) = − log(Pr(Xe > t)), and the total reward of
a set S by extension as reward(S) =

∑
e∈S reward(e). Note that wid(S) can be written as

wid(S) = 1 −
∏
e∈S

(Pr(Xe > t)) = 1 − exp

(∑
e∈S

log(Pr(Xe > t))

)
= 1 − exp

(
− reward(S)

)
,
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which implies that wid(S) is an increasing function of reward(S). Notice also that, for any
element u ̸∈ S, the difference wid(S ∪ {u}) − wid(S) =

[∏
e∈S (1− pe)

]
pu. It follows that,

for any policy π with a left chain of length x,

Pr
(

rank
(

S(π)
)
≥ ℓ
)

= wid
(

L
(π)
0

)
·H(π)

0 +
|L(π)|∑
j=1

[
wid
(

L
(π)
j

)
− wid

(
L

(π)
j−1

)]
·H(π)

j (15)

4.2.2 A sufficient condition: Rectangle covering
In the second step of our proof, we use the characterization just developed to derive a sufficient
condition on two policies π and π′ which implies that Pr(π′ succeeds) ≥ Pr(π succeeds). We
make a visual argument. One can characterize the summation in (15) as the total area
covered by a sequence of rectangles all nestled in the corner of the positive orthant, where
the j-th rectangle in the sequence has height H

(π)
j and width wid

(
L

(π)
j

)
; we visualize this

in Figure 1a.
Likewise, for any non-adaptive policy G, for any left-chain ordering L(G) on

the set G, one has precisely the previous decomposition of (15), where H
(G)
j =

Pr
(

rank
(

G− L
(G)
j

)
≥ ℓ− 1

)
.

4.2.2.1 Main idea

Geometrically, to show that a non-adaptive policy G succeeds more often than an optimal
policy π, it suffices to show that the area covered by G in such a diagram is larger than
the area covered by π in such a diagram. Further, it suffices to show that the each of π’s
rectangles is completely covered by at least one G’s rectangles, for some ordering of the
elements on the left chain L(G). We shall do precisely this, with G = ExtGreedy(U , B, ℓ, t).
Formally, we will show the following lemma.

▶ Lemma 17 (Rectangle-covering lemma). Let G = ExtGreedy(U , B, ℓ, t). Given an
optimal policy π’s left chain L(π), one can construct a fixed ordering L(G) such that there
exists an increasing sequence of indices (σ(j))j∈(0,1,...,|L(π)|) satisfying for every j

wid
(

L
(G)
σ(j)

)
≥ wid

(
L

(π)
j

)
(16)

and

H
(G)
σ(j) ≥H

(π)
j . (17)

In other words, the σ(j)-th rectangle of G completely covers the j-th rectangle of π.

Note that the sequence of σ(j)’s in Lemma 17 need not be consecutive. For example, the
first rectangle of G might completely cover the first 4 rectangles of π. In that case, one could
set σ(1), σ(2), σ(3), and σ(4) all to be 1. The σ(·) sequence is simply a formalism by which
we can explicitly assign coverage of a particular π-rectangle to a particular G-rectangle.

4.2.3 Proof of Lemma 17
All that remains to prove Lemma 10 is to prove Lemma 17. To do so, we induct on the
target rank ℓ.

In the base case, ℓ = 1, and whenever a policy exits its left chain, it has succeeded. In other
words, for any policy π and index j, the height H

(π)
j = 1. To prove the base case, since all

rectangle heights are the same, it suffices to show the width inequality wid
(
L(G)) ≥ wid

(
L(π));
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equivalently, we must show that reward
(
L(G)) ≥ reward

(
L(π)). But this follows directly

from our greedy-until-overflowing strategy for selecting G, proving the base case.
For the remainder of this section, we assume the following inductive assumption.

Inductive assumption. Given any universe U ′, budget B′, target ℓ′ < ℓ, and threshold
t, for any policy π′ ∈ Adm(F ′), one can construct a fixed ordering L(G′) of the set
G′ = ExtGreedy(U ′, B′, ℓ′, t) such that there exists an increasing sequence of indices
(β(j))j∈(0,1,...,|L(π′)|) satisfying the analogous height and width conditions (17) and (16).

4.2.3.1 Inductive step

For the remainder of our proof, we use our inductive assumption for lower-rank problems
to construct a left chain ordering L(G) and assignment sequence σ(·) which satisfies these
conditions for the ℓ-th rank problem. Before we continue with our construction, we define a
surrogate policy π̃ for the policy π which simplifies our analysis.

Construction of the surrogate policy π̃.

▶ Definition 18 (The residual sets, T ∗
j .). Let

T ∗
j = ExtGreedy(U − L

(π)
j , B − cost

(
L

(π)
j

)
, ℓ− 1, t)

be the extended greedy set one would choose using the resources available after exiting the left
chain at j while executing π. As usual, we refer to both the non-adaptive policy which probes
T ∗

j and the set T ∗
j by the same name.

Given a policy π and the residual sets T ∗
j , we now construct a simpler-to-analyze policy

π̃ such that Pr(π̃ succeeds) ≥ Pr(π succeeds).

▷ Claim 19. Recall the decomposition of π into L(π) and sub-trees T
(π)
j . Likewise, define π̃

as the policy which has the same left chain as π, but replaces each sub-tree T
(π)
j with the set

T ∗
j . Then,

Pr
(

rank
(

S(π̃)
)
≥ ℓ
)
≥ Pr

(
rank

(
S(π)

)
≥ ℓ
)

. (18)

Proof. We show first that π̃ is a valid policy. Let U ′ = U − L
(π)
j , let B′ = B − cost

(
L

(π)
j

)
,

and let F ′ be a knapsack constraint formed with universe U ′ with budget B′. Since the
behavior of policy π after leaving the left chain at j is equivalent to the behavior of some
new policy π′ with constraint F ′, and the set G′ = ExtGreedy(U ′, B′, ℓ − 1, t) must be
disjoint from L

(π)
j , it follows that π̃, which probes the left chain L(π) until we exit at j then

probes G′, is a perfectly valid policy; it probes no elements twice, and uses no foreknowledge
of any weight outcomes.

We now argue that Pr(π̃ succeeds) ≥ Pr(π succeeds) from the success probability charac-
terization of (15). Since π̃ and π share the same left chain L(π), they must have the same
width values wid

(
L

(π)
j

)
. Thus, it suffices to show that replacing π′ with G′ can only increase

the height of π̃, i.e., that H
(π̃)
j ≥H

(π)
j . To see this, note that, by the same justification that

says Lemma 17 (rectangle covering) implies Lemma 10 (ExtGreedy is better than π), our
inductive assumption immediately implies that, since π′ ∈ Adm(F ′),

H
(π̃)
j = Pr(rank(G′) ≥ ℓ− 1) ≥ Pr

(
rank

(
S(π′)

)
≥ ℓ− 1

)
.
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By the definition of π′ and H
(π)
j ,

Pr
(

rank
(

S(π′)
)
≥ ℓ− 1

)
= Pr

(
rank

(
S(π)

)
≥ ℓ

∣∣∣ π exits the left chain at j
)

= H
(π)
j .

Combining these observations, we find that H
(π̃)
j ≥H

(π)
j , as desired. ◁

Construction of L(G) and σ(·). We now proceed with our construction. We first make
the following claim about the sets T ∗

j .

▷ Claim 20. Let π be any policy in Adm(F) and let L(π) be its left chain. Let

T ∗
j = ExtGreedy

(
U − L

(π)
j , B − cost

(
L

(π)
j

)
, ℓ− 1, t

)
.

Then T ∗
j+1 ⊆ T ∗

j ⊆ G, for all j ∈ [|L(π)|].

Proof. We first find a simpler condition to show. As usual, for a fixed index j, let
U ′ = U − L

(π)
j and let B′ = B − cost

(
L

(π)
j

)
. Now, let δ′ be the max cost of

any element in U ′. By the definition of ExtGreedy, ExtGreedy(U ′, B′, ℓ− 1, t) =
ExtGreedy(U ′, B′ + (ℓ− 1)δ′, 0, t). As the maximum cost of any element in U can
only decrease as elements are removed, δ′ ≤ δ, and, from a budget argument,
ExtGreedy(U ′, B′ + (ℓ− 1)δ′, 0, t) ⊆ ExtGreedy(U ′, B′ + (ℓ− 1)δ, 0, t). As such, we
have that T ∗

j = ExtGreedy(U ′, B′ + (ℓ− 1)δ′, 0, t) and, letting e = l(π)
j be the j-th element

in the left chain L(π), T ∗
j+1 ⊆ ExtGreedy(U ′ − {e}, B′ − ce + (ℓ− 1)δ′, 0, t). Thus, to show

T ∗
j+1 ⊆ T ∗

j ⊆ G, we prove a more general claim; that, for a general universe Û , budget B̂,
and element e ∈ Û ,

ExtGreedy
(
Û − {e}, B̂ − ce, 0, t

)
⊆ ExtGreedy

(
Û , B̂, 0, t

)
.

For brevity, call the former set T ′ and the latter T . Without loss of generality, number
the elements of Û from 1 to |Û | in descending order of reward density, maintaining that
higher density elements have lower element number. Let τ be the smallest index for which∑τ

x=1 cx ≥ B̂. Then, by definition, the set T = {1, 2, . . . , τ}. Likewise, if τ ′ is the smallest
index for which

∑τ ′

x=1,x ̸=e cx ≥ B̂− ce, then T ′ = {1, 2, . . . , τ ′}− {e}. Thus, to show T ′ ⊆ T ,
it suffices to show that τ ′ ≤ τ .

There are two cases. If the removed element e ≤ τ , then the selection process for T ′ ends
by τ at the latest, since

∑τ
x=1 cx ≥ B̂ implies that

∑τ
x=1,x ̸=e cx =

∑τ
x=1 cx − ce ≥ B̂ − ce,

and τ ′ is the smallest index which satisfies this condition. Hence, τ ′ ≤ τ .
In the other case, the removed element e > τ , and

∑τ
x=1 cx =

∑τ
x=1,x̸=e cx meaning∑τ

x=1,x ̸=e cx ≥ B̂ ≥ B̂ − ce. Since τ ′ is the smallest index satisfying the above, τ ′ ≤ τ ,
proving the claim. ◁

This claim gives the construction almost directly. First, it induces a total order on G,
where the order of an element e ∈ G is the smallest index j for which e ̸∈ T ∗

j , i.e., all the
elements of G − T ∗

0 are of order 0, all the elements of T ∗
0 − T ∗

1 are of order 1, and so on.
We can then take L(G) to be any permutation of G which proceeds in non-decreasing order.
Second, it allows us to define σ(j) as the index r for which G− L

(G)
r = T ∗

j ; in other words,
we make σ(j) = |{e ∈ G : e’s order ≤ j}| − 1.
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Verifying the construction. Having given a construction for L(G) and σ(·), in this final
part of our proof, we show that the given construction satisfies Lemma 17’s width and height
conditions. The height condition is satisfied by construction, since, if π̃ exits the left chain
at j, then it probes T ∗

j , the same set that G probes upon exiting its left chain at σ(j). All
that remains is to show that

wid
(

L
(G)
σ(j)

)
= wid

(
G− T ∗

j

)
≥ wid

(
L

(π)
j

)
= wid

(
L

(π̃)
j

)
,

where the first and last equalities follow by construction. Our argument here centers on
the reward characterization of the width, where reward(S) =

∑
e∈S − log Pr(Xe > t). As

explained in the definition of wid(S), it is monotonically increasing in the reward of S. Thus,
it suffices to show that reward

(
G− T ∗

j

)
≥ reward

(
L

(π)
j

)
.

We prove this in three short steps. First, since the reward is a modular set function,
we may eliminate the common elements between L

(π)
j and G − T ∗

j , giving us L′ and G′

respectively. Second, we argue that, since L
(π)
j is disjoint from T ∗

j , the intersection of these
two sets satisfies L

(π)
j ∩ (G − T ∗

j ) = L
(π)
j ∩ G, and thus L′ must also be disjoint from G.

Because ExtGreedy selects elements in order of decreasing reward density (i.e., in order
of decreasing reward per unit cost), it follows that every element in G′ has a higher reward
density than every element in L′. From here, it suffices to show that cost(G′) ≥ cost(L′),
or, since cost too is a modular set function, that cost

(
G− T ∗

j

)
≥ cost

(
L

(π)
j

)
.

This third and final step follows from some basic facts about G, T ∗
j , δ, and L

(π)
j . First,

note that cost
(
T ∗

j

)
≤ B− cost

(
L

(π)
j

)
+ (ℓ− 1)δ + δ, where the first 3 terms follow from the

definition of ExtGreedy and the final δ term follows from the fact that δ is the that maximum
cost of any element. From there, we note that cost

(
G− T ∗

j

)
= cost(G)− cost

(
T ∗

j

)
, since

T ∗
j ⊆ G. Once we note that cost(G) ≥ B + ℓδ by ExtGreedy’s stopping condition, it

follows that cost
(
G− T ∗

j

)
≥ cost

(
L

(π)
j

)
, completing our proof of Lemma 17.
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A Adaptivity Gap Example

▶ Example 21. Consider the following probing problem. We are given a universe of three
elements, X1, X2, and X3 to choose from, independently distributed from each other, with
distributions we describe later. We are allowed to choose 2 of these random variables for our
set S, and the end objective f(S) is the minimum weight element in S. The distributions
are as follows: X1 is N2 with probability (w.p.) 1

N2 and 1 otherwise, X2 is N2 w.p. 1
N and 0

otherwise, and X3 is N w.p. 1.
Computing the expected value of each fixed two-element set, we find that

E[f({1, 3})] = E[min(X1, N)] =
(

1− 1
N2

)
· 1 +

(
1

N2

)
·N ≥ 1,

E[f({1, 2})] =
(

1− 1
N

)
E[X1] =

(
1− 1

N

)[(
1− 1

N2

)
· 1 +

(
1

N2

)
·N2

]
≥ 1,

E[f({2, 3})] = E[min(X2, N)] = 1
N
·N = 1.

Now consider the following adaptive policy, which we call π: First, probe element 1. If
X1 = 1, then probe element 2; otherwise probe element 3. Intuitively, this policy probes the
‘risky’ element 2 only if it has already secured an objective value f(S(π)) ≤ 1. Computing
the expectation, we find E

[
f
(
S(π))] =

(
1− 1

N2

)
· 1

N · 1 +
( 1

N2

)
·N ≤ 2

N . Thus, the adaptivity
gap of this instance is at least N

2 , which can be made arbitrarily large.
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