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Abstract
A pair of sources X, Y over {0, 1}n are k-indistinguishable if their projections to any k coordinates
are identically distributed. Can some AC0 function distinguish between two such sources when k is
big, say k = n0.1? Braverman’s theorem (Commun. ACM 2011) implies a negative answer when X

is uniform, whereas Bogdanov et al. (Crypto 2016) observe that this is not the case in general.
We initiate a systematic study of this question for natural classes of low-complexity sources,

including ones that arise in cryptographic applications, obtaining positive results, negative results,
and barriers. In particular:

There exist Ω(
√

n)-indistinguishable X, Y , samplable by degree-O(log n) polynomial maps (over
F2) and by poly(n)-size decision trees, that are Ω(1)-distinguishable by OR.
There exists a function f such that all f(d, ϵ)-indistinguishable X, Y that are samplable by
degree-d polynomial maps are ϵ-indistinguishable by OR for all sufficiently large n. Moreover,
f(1, ϵ) = ⌈log(1/ϵ)⌉ + 1 and f(2, ϵ) = O(log10(1/ϵ)).
Extending (weaker versions of) the above negative results to AC0 distinguishers would require
settling a conjecture of Servedio and Viola (ECCC 2012). Concretely, if every pair of n0.9-
indistinguishable X, Y that are samplable by linear maps is ϵ-indistinguishable by AC0 circuits,
then the binary inner product function can have at most an ϵ-correlation with AC0 ◦ ⊕ circuits.

Finally, we motivate the question and our results by presenting applications of positive results to
low-complexity secret sharing and applications of negative results to leakage-resilient cryptography.
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1 Introduction

A pair of sources X,Y over {0, 1}n are k-indistinguishable if their projections to any k

coordinates are identically distributed. Can some AC0 function distinguish between two such
sources when k is big, say k = n0.1? Braverman’s theorem [15, 56] implies a negative answer
when X is uniform, or equivalently when X,Y are k-independent. What about the general
case?

The above question was posed by Bogdanov et al. [13], who observed a tight connection1

(via LP duality) with the approximate degree of the distinguisher. Using this connection,
positive answers can be derived from the literature on the approximate degree of AC0

functions [44, 45, 53, 7, 1, 51, 17, 18, 19, 20, 21, 22, 52]. In particular, there exist
√
n-

indistinguishable sources that can be Ω(1)-distinguished by the OR function [43] and n1−δ-
indistinguishable sources that can be Ω(1)-distinguished by an AC0 function for every
δ > 0 [22]. On the other hand, upper bounds on approximate degree imply limitations on
the indistinguishability threshold k. In particular, the

√
n threshold for OR distinguishers is

known to be asymptotically tight, whereas the n1−δ threshold for AC0 distinguishers is only
conjectured to be tight.

The study of the bounded indistinguishability question in [13] was motivated by the
following “win-win” connection with cryptography. If the answer to the question turns out
to be positive, namely there exist k-indistinguishable X,Y that can be distinguished in
AC0, this implies secret-sharing schemes2 where the secret can be reconstructed in AC0.
This is surprising in light of the fact that standard secret-sharing schemes, such as Shamir’s
scheme [50], use a linear function to reconstruct the secret. On the flip side, a negative answer
is motivated by the goal of protecting cryptographic applications against leakage of partial
information on their internal state. Concretely, in any application that was designed to
protect against local leakage of k bits, a negative answer implies automatic protection against
global AC0 leakage. Such applications abound in the vast literature on secure multiparty
computation (MPC), originating from [66, 34, 9, 23], and leakage-resilient circuits, originating
from [36]. Braverman’s theorem does not apply here because the process of computing on
secret-shared data, while respecting k-indistinguishability by design, inevitably creates local
dependencies. Obtaining provable resilience to AC0 leakage turned out to be a challenging
task that has led to more intricate constructions and analysis [31, 48, 12].

1 The connection with approximate degree breaks down over non-binary alphabets [13]. Here we restrict
the attention to the binary case, which suffices for our motivating applications.

2 Here we refer to a relaxation of standard threshold secret sharing that allows for a gap between the
secrecy and the reconstruction thresholds and for a small error probability. Bogdanov et al. [13] present
general techniques for narrowing the gap and making the error probability negligible by increasing the
share size, while keeping reconstruction in AC0.
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On the downside, both kinds of “win” come with a caveat. In the secret-sharing application,
schemes arising from the approximate degree literature minimize reconstruction complexity
at the expense of a high sharing complexity, of generating the shares. The question of
simultaneously minimizing the complexity of sharing and reconstruction remained largely
open. For the leakage-resilience application, a general protection even against benign leakage
by an OR function (capturing so-called “selective failure” attacks, discussed below) requires
k ≫

√
n. Viewing n as the total number of wires in a circuit, existing constructions of

leakage-resilient circuits (such as [36]) are far from achieving this k-local secrecy threshold,
rendering the generic “security upgrade” guarantee essentially useless in the context of natural
applications.

Towards tackling both of the above challenges, we take a more fine-grained view of
bounded indistinguishablity, asking the following main question:

Can some AC0 function distinguish between simple k-indistinguishable sources?

To make the question precise, we need to specify a class F of samplers that define a
“simple” source. We also consider distinguisher classes C that are strict subclasses of AC0, such
as depth 1 (OR) or depth 2 (DNF) distinguishers. Given F and C, the goal is to understand
the achievable tradeoff between the threshold k and the distinguishing advantage ϵ.

Braverman’s theorem resolves the analogous question for k-independent sources. As
k-independent sources can be sampled both linearly and locally, the fooling ability of such
sources does not depend on their complexity. In contrast, in this work we demonstrate that
the fooling power of k-indistinguishable sources is significantly affected by their complexity.

Useful classes of simple sources. We will be mainly interested in sources that can be
sampled by low-degree polynomial maps over F2. Beyond the complexity-theoretic interest
in such sources (see, e.g., [46, 29, 30, 10, 39]), they are also motivated by the two kinds of
cryptographic applications discussed above. In the context of secret sharing, positive answers
for degree 1 sources (also referred to as linear or affine sources) would give rise to linear
secret-sharing schemes with AC0 reconstruction. Linear schemes have the useful feature of
supporting local addition of shared secrets. Perhaps more surprisingly, degree 2 (quadratic)
sources are also naturally motivated by cryptographic applications. We observe that many
existing MPC protocols from the literature (including the most efficient ones [26]) can be
brought to a form where, for every fixed input, the full transcript is a degree 2 function of the
randomness. This holds regardless of the complexity of the function being computed. If for
quadratic sources we can get negative answers for much smaller values of k than for general
sources, this would enable strong leakage-resilience guarantees for natural applications.

We also consider the minimal depth and locality required for sampling the sources. A
positive result from [13] shows that OR can distinguish between a pair of k-indistinguishable
AC0-samplable sources. However, a direct implementation of this sampler has depth 9. How
low can the depth be? Considering locality, can AC0 distinguish between NC0-samplable
sources? Positive answers to the above questions are motivated by the goal of simultaneously
minimizing the complexity of sharing and reconstructing secrets.

Useful classes of distinguishers. As random parity-0 and parity-1 strings are (n− 1)-wise
indistinguishable but samplable by essentially the simplest possible closed-under-projection
class F of linear 2-local sources,3 it is sensible to restrict attention to distinguisher classes C

3 The sampler for parity-b strings of length n is r1, r1 ⊕ r2, . . . , rn−2 ⊕ rn−1, rn−1 ⊕ b.

ITCS 2022
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that cannot compute parities, such as AC0 or some subclass of it. The simplest subclasses
are depth 1 OR distinguishers (disjunction of a subset of the source bits and their negations)
and depth 2 DNF distinguishers. Positive results for OR give rise to visual secret-sharing
schemes [43], where the secret can be reconstructed by overlaying transparencies. Negative
results for OR and DNF are motivated by securing computations against selective failure
attacks, where there are multiple events that can trigger failure and only the existence
of failure is leaked to the attacker. Beyond this direct motivation, OR leakage comes up
naturally in MPC protocols based on garbled circuits [40, 35]. DNF leakage can capture
stronger selective failure attacks. See [13, 12] for further discussion.

1.1 Overview of results

We now give a detailed account of our main results, for the classes of source samplers F
and distinguishers C discussed above. The results can be classified into three types: positive
(distinguishability), negative (indistinguishability), and barriers. They are summarized in
Table 1.

Some of our results merely require that one of the sources X,Y be simple and allow the
other to be of arbitrary complexity. For given parameters k, ϵ, we say that

F weakly ϵ-fools C if for every k-indistinguishable pair X,Y with X ∈ F and Y ∈ F
and every C ∈ C, | Pr[C(X) = 1] − Pr[C(Y ) = 1]| ≤ ϵ. We refer to this as MAIN(k, ϵ).
F strongly ϵ-fools C if for every k-indistinguishable pair X,Y with X ∈ F or Y ∈ F and
every C ∈ C, | Pr[C(X) = 1] − Pr[C(Y ) = 1]| ≤ ϵ. We refer to this as GENERAL(k, ϵ).

In this terminology, Braverman’s theorem states that for k = polylog(n), the uniform
distribution strongly o(1)-fools AC0. We say that C distinguishes F if F does not fool C.

Positive results. In [11, Section 5] we show the existence of an Oϵ(
√
n)-indistinguishable

pair of sources that are (1 − ϵ)-distinguishable by OR and samplable by (a) decision trees of
size polynomial in n, and (b) polynomials of degree O(logn) (Theorem 3) thereby showing
that OR ϵ-distinguishes the sources described in (a) as well as in (b). Part (a) improves on the
aforementioned result of Bogdanov et al., by weakening the circuit class from AC0 to decision
trees. Moreover, these sources implement an evolving visual secret sharing scheme [38] of
very low informational and computational complexities (see [11, Section 5.5]).

Our positive result for degree-O(logn) sources is obtained by applying a suitable ran-
domized encoding technique [47, 54, 6] to sources sampled by decision trees. In [11, Section
8] we consider other applications of this technique, showing that a (hypothetical) positive
result for o(log logn)-local sources implies a positive result for 4-local sources. We also put
forward a natural conjecture ([11, Conjecture 7]) on the complexity of randomized encoding
of AC0 functions that may be viewed as a barrier to negative results.

Negative results. In contrast to Theorem 3, we show that constant-degree sources are
indistinguishable by OR (see Table 1):
1. O(log(n/ϵ))-indistinguishable linear sources strongly ϵ-fool polysize unambiguous DNFs

and ORs of O(1)-local functions. ([11, Lemma 6.2] + [11, Lemma 6.8])
2. O(log10(n/ϵ))-indistinguishable quadratic sources strongly ϵ-fool polysize unambiguous

DNFs. (Theorem 4 + [11, Lemma 6.8])
3. Od,ϵ(1)-indistinguishable degree-d sources weakly ϵ-fool OR. ([11, Corollary 6.15] + [11,

Corollary 6.6.])
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Table 1 Our main results for sources in class F and distinguishers of type C. A positive result
gives a value of k such that there exist F-samplable, k-indistinguishable distributions that are ϵ-
distinguished by C. A negative result gives a value of k for which any F-samplable, k-indistinguishable
distributions ϵ-fool C. A barrier typically shows that proving a (stronger) negative result would
settle a natural conjecture, implying a conditional difficulty to do so. All distinguishers are poly(n)
sized. LDPC refers to uniform distributions over two distinct cosets of a good (linear) low-density
parity-check code. Due to space limitations, only a few results are formally stated. The precise
statements of negative results appear in [11, Section 6] and barriers in [11, Section 4.2, Section 7.2,
Section 8.2].

Source (F) Distinguisher (C) Statement
Result Ref.

Po
si

tiv
e Symmetric,

AC0 OR ¬MAIN(Θϵ(
√

n), 1 − ϵ) [13]

Mixture of
IID, Poly-size
decision trees,

Degree
O(log n)

OR ¬MAIN(Θϵ(
√

n), 1 − ϵ) Theorem 3

N
eg

at
iv

e Linear O(1)-local DNF GENERAL(O(log 1
ϵ
), ϵ)

Degree O(1) OR MAIN(Oϵ(1), ϵ)
Quadratic Unambiguous DNF GENERAL(poly(log n

ϵ
), ϵ)

Quadratic OR GENERAL(poly(log 1
ϵ
), ϵ)

Depth 1 Arbitrary MAIN(O(log log(n/ϵ)), ϵ) Theorem 1

B
ar

rie
r Linear AC0 MAIN(n/ log n, ϵ) ⇒ IPAP(ϵ)

Linear
(LDPC) AC0 No NC0 reduction to k-independence

NC0 AC0 MAIN(nΩ(1), 1/3) ⇒ [11, Conjecture 7]

In applications to leakage-resilient cryptography, it is desirable to make the adversary’s
advantage ϵ a negligible function of the instance size n. The first two negative results allow
a low indistinguishability parameter k even when ϵ must vanish exponentially with n. In
particular, the first result implies that all linear secret-sharing schemes are automatically
immune to selective failure attacks (see [13, Section 3.3]). The second result implies the same
kinds of immunity for efficient MPC protocols, as it turns out that the joint view of the
parties in such protocols can be sampled by quadratic polynomial maps (see [11, Section
9.1]).

Degree 1

GENERAL
local DNF

Degree 2

GENERAL
unambiguous DNF

Degree O(1)

MAIN
OR

Degree O(logn)

¬MAIN
OR

Figure 1 Main results in terms of degree for different classes of distinguishers.

As decision trees can be expressed by depth 2 AND/OR formulas (both CNFs and DNFs)
of the same size, our positive result leaves open the fooling power of depth 1 sources. We
obtain a strong negative result for such sources (see Figure 2) in Theorem 1 which is as
follows:

ITCS 2022



26:6 Bounded Indistinguishability for Simple Sources

▶ Theorem 1. If X,Y are two (log log(n/ϵ) + 2)-indistinguishable depth 1 sources then the
statistical distance between X and Y is at most ϵ.

Depth 1

MAIN
arbitrary

Depth 2

¬MAIN
OR

Figure 2 Main results in terms of depth for different classes of distinguishers.

This result is optimal not only in terms of the depth, but also in terms of the indistin-
guishability parameter, at least for constant ϵ (see a matching positive result in [11, Lemma
6.39]).

Barriers for linear sources. The basic building block of MPC protocols and other crypto-
graphic applications is linear secret sharing. It is thus especially important to understand
the consequences of bounded indistinguishability for linear sources. We believe that it is
plausible to conjecture the following:

▶ Conjecture 2. k-indistinguishable linear pairs of sources on n bits o(1)-fool AC0 when
k = polylog(n).

When one of the sources is uniform, this is implied by Braverman’s theorem [15, 56].
When the distinguisher is the OR function, it follows from our first negative result. In [11,
Section 4.2] we show, however, that proving Conjecture 2 for any k = o(n/ logn) requires
first proving the “IPAP conjecture” (Inner Product by AC0 over Parities) of Servedio and
Viola [49], which states that the binary inner product function on n inputs (IP) cannot be
computed by AC0 ◦ ⊕ circuits, i.e. bounded-depth AND/OR circuits with a bottom layer
of PARITY gates. While a number of partial results have been obtained in support of
IPAP [25, 24, 16], it currently remains out of reach.

While IP is known not to be computable by the subclass DNF ◦ ⊕ of AC0 ◦ ⊕ [49, 2], its
approximability on a constant fraction of inputs remains open [25]. Proving even the special
case of Conjecture 2 when the class of distinguishers is restricted to DNFs requires resolving
this problem.

One possible approach for making progress on Conjecture 2 (and therefore also IPAP)
is to find, for every pair of k-indistinguishable linear sources, an AC0 reduction that maps
them to some pair of k′-independent sources. In [11, Section 7.2], we rule out the existence
of NC0 reductions of this type in general. However, in [11, Section 7.1] we give examples
of linear NC0 reductions to bounded independence for specific k-indistinguishable pairs of
sources that describe the views of MPC protocols. The results of [12] are also proved via
reductions of this type.

The examples in [11, Section 7.1] are related to the study of the complexity of distribu-
tions [5, 33, 59, 41, 8, 28, 60, 61, 62, 63, 64], intimately related to the study of extractors [58].
However, this line of study focuses on the complexity of sampling distributions given uniform
sources, whereas we allow arbitrary k-independent sources.
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On the gap between IPAP and Conjecture 2: predicting parity from parities. While a
positive resolution of the IPAP conjecture is necessary to prove Conjecture 2, it is unclear if it is
sufficient. Towards bridging this gap, in [11, Section 4.2] we show that Conjecture 2 is implied
by PREDICTION⊕(AC0,Ω(1/n)), where PREDICTION⊕(C, ϵ) is the following statement (see
[11, Conjecture 5]):

A class-C circuit on n inputs that is given as advice some set S of linear functions of
its inputs, under the constraint that no polylog(n) of the functions in S XOR to the
parity of all inputs, cannot predict parity on a (1 + ϵ)/2 fraction of inputs.

In the other direction, PREDICTION⊕(AC0,Ω(1)) implies the average-case IPAP con-
jecture (see Figure 3). As additional evidence towards Conjecture 2, we prove that
PREDICTION⊕(size-s DNF, 1 − Ω(1/s)) holds for s = poly(n), thereby strengthening a result
of Cohen and Shinkar [25] (see [11, Corollary 4.6]).

To give a bit more intuition on the distinction between Conjecture 2 and the IPAP
conjecture: Refuting Conjecture 2 is equivalent to showing that some (polynomial-length)
F2-linear encoding of n input bits can be used by an AC0 circuit to nontrivially predict the
parity of some subset of these bits. (Here “nontrivially” means that the target parity is not
spanned by polylogarithmically many outputs of the encoding.) In contrast, refuting the
IPAP conjecture requires proving the existence of a single encoding as above that enables AC0

circuits to predict the parity of every subset. The equivalence between the two conjectures is
open even if we replace “predict” by “exactly compute.”

GENERAL MAIN PREDICTION IPAP
linear

linear

Figure 3 Relations between indistinguishability, prediction, and the IPAP conjecture.

Applications to leakage-resilient cryptography. We already discussed applications to low-
complexity secret sharing. In [11, Section 9] we consider applications to leakage-resilient
circuit compilers (LRCC) [36], which protect sensitive computations against leakage from
the internal wires of the computation. More concretely, an LRCC transforms a circuit C into
a randomized circuit Ĉ mapping an encoded input to an encoded output, such that revealing
the output of a leakage function applied to wires of Ĉ reveals essentially nothing about the
input. Much of the work in this area focuses on obtaining efficient constructions for local
leakage, confined to a small subset of k wires. Following [42], Faust et al. [31] considered
the global leakage model where the leakage function acts on all the wires but is restricted
to a low complexity class such as AC0. LRCC constructions in this model, such as those
of Rothblum [48] and Bogdanov et al. [12], are complex to analyze and incur a significant
overhead, compiling a circuit C to Ĉ of size Õ(λ2|C|) for a security error parameter 2−λ. In
contrast, the best known LRCC constructions in the local leakage model based on efficient
MPC protocols [27, 26] can be quite efficient and only incur a polylogarithmic overhead in
the local leakage parameter k. A natural question is whether this gap is inherent.

We show that one can bridge the efficiency gap between the local leakage and the global
leakage models assuming our main conjecture holds for quadratic sources. Specifically,
assuming this conjecture, we give a construction of LRCC against AC0 circuits with |Ĉ| =
|C| · polylog(λ) (plus additive terms that only depend on the depth of C). As an additional
application, we use the same conjecture for linear sources to show that a construction of

ITCS 2022



26:8 Bounded Indistinguishability for Simple Sources

LRCC from [36, 12] for the class of circuits that only contain XOR gates satisfies a stronger
security property. Namely, we show that security against AC0 leakage is retained even when
the output decoder is not implemented by a trusted hardware. We also show how to improve
the efficiency of this construction by relying on a high-rate variant of Shamir’s secret-sharing
scheme [32].

Summary of unconditional applications. While several of the cryptographic applications
presented in this work depend on unproven conjectures, others can be based on theorems we
prove unconditionally. For convenience, we summarize applications of the latter kind below.

Low-complexity secret sharing. Our positive results imply secret-sharing schemes
with secrecy threshold k = Ω(

√
n), reconstruction by OR4 (with small constant error

probability), and sharing by (depth-2) polynomial-size decision trees or degree-O(logn)
F2-polynomials ([11, Section 5.2] and [11, Section 5.3] respectively). This improves over
similar results in [13] in which sharing is done by higher depth AC0 circuits. We show
that our schemes are depth-optimal by ruling out similar schemes with depth-1 sharing.
Concretely, we show that the highest achievable secrecy threshold for schemes with
depth-1 sharing is k = Θ(log logn) (see [11, Section 6.5]). Finally, our results imply the
first evolving visual secret-sharing scheme in the sense of [38] (see [11, Section 5.5]).
Leakage-resilient cryptography. Our negative results imply that k-
indistinguishability of degree-1 or degree-2 sources with k ≥ polylog(n) suffices for
protecting against low-depth leakage classes, including depth-1 AC0 and unambiguous
DNF. The latter capture natural kinds of selective failure attacks. We further show that
degree-2 sources suffice in the context of efficient leakage-resilient circuit compilers. In par-
ticular, all of the applications discussed above and in [11, Section 9] apply unconditionally
to leakage by depth-1 AC0 and unambiguous DNF.

1.2 Open questions
Our results suggest many open questions. We would like to single out the following.

▶ Open Question 1. What is the smallest possible degree d for which there are Θ(
√
n)-

indistinguishable degree d sources which OR can Ω(1)-distinguish?

Our results show that d = ω(1) and d = O(logn).

▶ Open Question 2. Are the GENERAL and MAIN conjectures equivalent? Is the PRE-
DICTION conjecture for linear sources implied by IPAP?

We are mainly interested in the case of AC0 distinguishers. GENERAL trivially implies
MAIN, and PREDICTION for linear sources implies IPAP, so the open question is asking for
the converse directions. We are able to show that MAIN and PREDICTION are equivalent
for linear sources (for general sources, we only know that MAIN implies PREDICTION). A
positive answer to the latter question roughly amounts to showing that if linear preprocessing
can help AC0 circuits nontrivially predict some parity of n bits then there is universal
linear preprocessing that helps predict all parities. This implication is open even for exact
computation.

4 Alternatively, allowing AC0 reconstruction, an amplification technique from [13] can be used to obtain
near-threshold schemes with negligible reconstruction error and the same sharing complexity.
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▶ Open Question 3. Is there a pair of nΩ(1)-indistinguishable sources, samplable in NC0,
which can be Ω(1)-distinguished in AC0?

A positive answer would imply an extreme form of low-complexity secret sharing, where
secrets are shared by NC0 circuits and reconstructed by AC0 circuits. Our positive results
imply weaker secret-sharing schemes with sharing by polynomial-size decision trees. In [11,
Section 8] we show that a negative answer to the question would imply a natural conjecture
on low-complexity randomized encodings of functions. Another reason why settling Open
Question 3 in the negative may be challenging is the difficulty of ruling out local sampling
(up to a small statistical error) even for some simple and explicit distributions [63].

2 Technical Overview of Our Results

In this section we outline the proofs of some of our main results. For a detailed discussion, see
the full version [11]. In Section 2.1 we describe our construction of Ω(

√
n)-indistinguishable

sources that are samplable by sources of degree O(logn) and are Ω(1)-distinguished by OR.
In Section 2.2 we describe our various indistinguishability results. Finally, in Section 2.3 we
outline the proof of the equivalence of MAIN and PREDICTION for linear sources, and the
proof that LDPC sources cannot be reduced to bounded independence using local maps.

2.1 OR can distinguish logarithmic degree sources

Bogdanov et al. [13] showed that there exists a pair X,Y of
√
n-indistinguishable sources

over {0, 1}n which OR distinguishes, by appealing to LP duality. Explicit constructions
appear in other works, for example Špalek [55] and Bun and Thaler [17]. However, except
for a construction of AC0-sampleable sources from [13], the corresponding distributions do
not satisfy natural notions of computational simplicity. As our first result, we show how to
reduce X,Y to sources samplable by polynomial size decision trees, as well as to sources of
degree Oϵ(logn), proving the following.

▶ Theorem 3.
(a) For any ϵ > 0 there exists a pair X,Y of Θϵ(

√
n)-indistinguishable sources over {0, 1}n

samplable by decision trees of size Oϵ(n3 log2 n) that the OR function OR(x) = x1∨· · ·∨xn

can (1 − ϵ)-distinguish.
(b) For any ϵ > 0 there exists a pair X,Y of Θϵ(

√
n)-indistinguishable sources over {0, 1}n

of degree Oϵ(logn) that the OR function OR(x) = x1 ∨ · · · ∨ xn can (1 − ϵ)-distinguish.
We convert an arbitrary pair of

√
n-indistinguishable distributions which OR can distin-

guish into a similar pair samplable by simple sources using a sequence of reductions:

Arbitrary sources ====⇒ Mixtures of iid ====⇒ Decision trees ====⇒ O(logn) degree

Each of these reductions preserves indistinguishability (possibly modifying n) while having
only a small effect on the distinguishing advantage of OR.

Mixtures of i.i.d. A distribution on {0, 1}n is a mixture of iid if we can sample it using a
two-step process:
1. Sample a bias p ∈ [0, 1] according to some distribution on [0, 1].
2. Sample n iid bits with bias p.

ITCS 2022
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Given an arbitrary source X0 over {0, 1}m, we construct a mixture of iid X1 using erase-
all-subscripts symmetrization [21]: Sample x ∼ X0, and then sample n uniform bits chosen
from x.

If X0,Y 0 are k-indistinguishable and we construct X1,Y 1 in this fashion, then X1,Y 1
are still k-indistinguishable. If X0,Y 0 are ϵ-distinguished by OR then this means that
| Pr[X0 = 0] − Pr[Y 0 = 0]| ≥ ϵ. Since

Pr[X0 = 0] ≤ Pr[X1 = 0] ≤ Pr[X0 = 0] +
(

1 − 1
m

)n

,

if we choose n = Θ(m log(1/ϵ)) then X1,Y 1 are Ω(ϵ)-distinguished by OR. We can choose
X0,Y 0 to be k-indistinguishable for k = Θ(

√
m) = Θ(

√
n).

Decision trees. The next step is to show that we can approximately sample X1,Y 1 using
decision trees whose randomness derives from a supply of unbiased random bits. If we
had access to biased random bits, then this would be immediate, and we can simulate
biased random bits using unbiased random bits with some small failure probability. In
order to maintain k-indistinguishability, in case of failure we output the constant vector 0.
In this way we construct a pair of sources X2,Y 2 which are k-indistinguishable and are
Ω(ϵ)-distinguished by OR.

How large are the decision trees used to sample X2,Y 2? This depends both on the
failure probability and on the complexity of X1,Y 1, as measured in the bit complexity of
the probabilities used to define these mixtures of iid. Taking a close look at the construction
of Bun and Thaler [17], we show that if we use it as our starting point X0,Y 0 then the
resulting X1,Y 1 are low complexity, and so X2,Y 2 are samplable using polynomial size
decision trees for any constant failure probability.

Logarithmic degree. The final step is converting X2,Y 2 to a pair of distributions X3,Y 3
samplable by sources of degree O(logn). The idea is to used a randomized encoding inspired
by the Razborov–Smolensky [47, 54] lower bound technique. (See [11, Section 8] for a more
general perspective using the randomized encoding framework of [6].)

Razborov and Smolensky approximate the AND function on ℓ bits to error 2−d using the
degree-d F2 polynomial

d∏
i=1

1 +
ℓ∑

j=1
ri,j(1 + xj)

 .

Here x1, . . . , xℓ are the inputs, and ri,j are random bits. When x1 = · · · = xℓ = 1, this
expression always equals 1, and otherwise each factor is a random bit, and so the expression
equals 0 with probability 1 − 2−d.

A decision tree can be written as an “unambiguous” sum of conjunctions, that is, at most
one conjunction can be true. For example, the decision tree

x1

x2

0 1

x3

1 0

0 1

0 1 0 1

can be expressed as

(1 − x1)(1 − x3) + x1x2.
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We have one conjunction per leaf labeled 1, and the conjunction corresponds to the path
leading to the leaf.

We convert the decision tree into a polynomial by replacing each conjunction with its
Razborov–Smolensky encoding. If the decision tree has size s then we need the error to be
O(ϵ/s), and so the resulting degree is log(s/ϵ). When s is polynomial, this is O(log(n/ϵ)).

We note that when attempting to apply the Razborov–Smolensky encoding to a general
AC0 circuit, rather than a decision tree or an unambiguous DNF, not only does the degree
of the encoding grow to polylog(n), but there is also an encoding privacy error. The latter
results in an approximate notion of k-indistinguishability in which the k-projections have
2−polylog(n) statistical distance. This relaxed notion, studied in [14], is qualitatively weaker
than the perfect notion we consider in this work. In particular, it may totally break down
when the projection set is chosen in an adaptive fashion. See [11, Section 8] for more details.

2.2 Fooling OR and DNFs
In this section we describe our various negative results, as described in Table 1. Most of
these results are proved via the notion of predictability, which we first explain. We then
briefly outline the proofs of the remaining negative results.

2.2.1 Predictability
Let X be a source over {0, 1}n. We say that a subset S of coordinates ϵ-predicts X if

Pr[X|S = 0 and X ̸= 0] ≤ ϵ.

Roughly speaking, this means that in order to know the value of OR on X, it suffices to
peek at the coordinates in S.

If X,Y are each ϵ-predicted by a subset of k coordinates, then the union of the two
subsets ϵ-predicts both sources. Hence if X,Y are 2k-indistinguishable, then they ϵ-fool OR.

A more surprising observation is that if Y is ϵ/n-predicted by a subset S of k coordinates
and X,Y are (k + 1)-indistinguishable, then S also ϵ-predicts X; this is because for any
coordinate i /∈ S,

Pr[Y |S = 0 and Y i ̸= 0] ≤ ϵ

n
.

Accordingly, we define two notions of predictability for classes of sources:
F is weakly predictable if for every ϵ > 0, any source from F is ϵ-predicted by a subset of
C(ϵ) coordinates.
F is strongly predictable if for every ϵ > 0, any source from F is ϵ-predicted by a subset
of polylog(1/ϵ) coordinates.

Strongly predictable sources in fact fool not only OR, but also unambiguous DNFs. An
unambiguous DNF is a disjunction of conjunctions, with the promise that no two conjunctions
can be satisfied simultaneously. As explained in Section 2.1, a decision tree of size s can be
converted to an unambiguous disjunction of at most s conjunctions. Writing the unambiguous
DNF as a sum of ANDs (over the reals!), it suffices to (ϵ/s)-fool each AND in order to ϵ-fool
the entire DNF. Consequently (since fooling ANDs and ORs is the same), polylog(ns/ϵ)-
indistinguishable sources ϵ-fool unambiguous DNFs as long as one of the sources belongs to a
strongly predictable class of sources which is closed under input negation.
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2.2.2 Applying predictability

Our main results are:
Constant degree sources are weakly predictable. This also includes sources of constant
locality.
Quadratic sources (i.e., degree 2 sources) are strongly predictable.

We also show that linear sources fool local DNFs, which are disjunctions of local functions.
The proof is very similar to the proof that local sources fool OR, and so we do not describe
it here.

Linear sources. We prove predictability using the structure vs randomness paradigm. As an
example, consider the class of linear sources, in which each output bit is an affine combination
of input bits. For ease of exposition, we consider the special case in which each output bit is
a linear combination of inputs bits (i.e., we disallow x1 = r1 ⊕ r2 ⊕ 1). We will show that
every linear source X is ϵ-predicted by a subset of log(1/ϵ) coordinates.

The source X is pseudorandom if it has rank at least log(1/ϵ). In this case, any subset S
of log(1/ϵ) linearly independent coordinates ϵ-predicts X, since Pr[X|S = 0] ≤ ϵ.

The source X is structured if it has rank at most log(1/ϵ). In this case, we choose a
subset S such that {Xi}i∈S spans X1, . . . ,Xn. This subset 0-predicts X since if X|S = 0
then X = 0.

Local sources. A more sophisticated example is that of s-local sources, that is, sources
where every output bit Xi depends on at most s input bits, forming a set Ji. Suppose that
we are given such a source X.

The source X is pseudorandom if we can find 2s log(1/ϵ) coordinates which depend
on disjoint sets of inputs. A short calculation shows that the probability that all these
coordinates equal zero is at most ϵ.

Otherwise, the source X is structured: we can find a “hitting set” T of size s2s log(1/ϵ)
for J1, . . . , Jn. For each setting of the input bits in T , the source simplifies to an (s− 1)-local
source, and we can find an ϵ-predicting set by induction. Putting all of these sets together,
we obtain an ϵ-predicting set for the original source.

A very similar argument appears in work of Trevisan [57], in the context of deterministic
approximate counting of solutions to k-CNFs, and in recent work of Akmal and Williams [3],
in the context of threshold counting of solutions to k-CNFs. See Williams [65] for deterministic
approximate counting of solutions to systems of polynomial equations, a topic related to our
next example, constant degree sources.

Constant-degree sources. We handle degree d sources using a similar argument. We need
to find a pseudorandomness condition for a set S of coordinates which will guarantee that
Pr[X|S = 0] ≤ ϵ. Such a condition is supplied by higher-order Fourier analysis: if all linear
combinations of {Xi}i∈S have high rank (a notion we explain below) and S is large enough,
then Pr[X|S = 0] ≤ ϵ (pseudorandom case).

Otherwise (structured case), we choose a maximal set T such that all linear combinations
of {Xi}i∈T have high rank. By the definition of rank, this implies that each i /∈ T simplifies,
modulo {Xi}i∈T , to a function depending on a bounded number of degree d− 1 polynomials,
and we can complete the proof by induction.
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Quadratic sources. The arguments for local sources and for constant degree sources result
in a very bad dependence between ϵ and the size C(ϵ) of the ϵ-fooling subset of coordinates.
In the case of quadratic sources, we are able to use Dickson’s structure theorem for quadratic
polynomials, via a series of careful reductions, to obtain the much better dependence
C(ϵ) = O(log10(1/ϵ)).

▶ Theorem 4. The class of quadratic sources is (O(log10(1/ϵ)), ϵ)-predictable.

2.2.3 Other negative results
We prove two other negative results: the prediction variant holds for linear sources and DNF
distinguishers, and depth 1 sources fool arbitrary distinguishers.

PREDICTION holds for linear sources and DNF distinguishers. Given a DNF ϕ and a
linear source X, our goal is to show that if no k coordinates of X span some target parity π,
then ϕ cannot compute π, even with a small error.

If T is any term of ϕ, then the probability that T is satisfied is 2− rank(T ), where the rank
of T is the rank of the span of the corresponding coordinates of X. If T has large rank then
it is unlikely to be satisfied, so we can drop all of these terms, obtaining a narrow DNF ψ.

We now apply Jackson’s lemma [37], according to which ψ must correlate with some
Fourier character χS , where S is a subset of the set of variables appearing in some term of ψ.
Since all terms in ψ are narrow and ψ computes π (with small error), this implies that π has
nontrivial correlation with, and so is equal to, a linear combination of a small number of
coordinates in X, which contradicts our initial assumption.

Depth 1 sources fool arbitrary distinguishers. Let X,Y be k-indistinguishable depth 1
sources, that is, each coordinate is an AND or OR of literals. Since we allow arbitrary
distinguishers, we can assume that each coordinate is an AND of literals.

Wide conjunctive coordinates are hardly ever 1, so allowing for a small error, we can
replace them with constant 0 coordinates. We are left with only narrow coordinates, say of
width at most log(n/ϵ). Applying a result of Amano et al. [4], if k = log log(n/ϵ) + 2 then
the two truncated sources are identically distributed, completing the proof.

2.3 Other results
MAIN and PREDICTION are equivalent for linear sources. To prove the equivalence
between [11, Conjecture 9] (MAIN⊕(AC0)) and PREDICTION⊕(AC0), we consider an equival-
ent formulation of PREDICTION⊕(AC0), which we call COSET⊕(AC0). This is the special
case of MAIN⊕(AC0) in which the two k-indistinguishable sources arise from a single source
by fixing the first bit of the seed. The resulting sources are uniformly distributed on two
cosets of the same linear subspace, hence the name. The equivalence of the two formulations
is a simple exercise (see [11, Section 4]).

Two linear sources are k-indistinguishable if they satisfy the same affine constraints of
width k or less. This suggests the following strategy for proving MAIN⊕ (with parameters k, ϵ)
given COSET⊕ (with parameters k, δ): Given two k-indistinguishable linear sources X,Y ,
construct the “free k-indistinguishable source” Z given by all affine constraints of width at
most k satisfied by X. This is the most general linear source which is k-indistinguishable
from X. Moreover, we obtain exactly the same source if we apply the same construction to
Y . Therefore it suffices to show that X,Z fool C.
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The idea is to construct a sequence of hybrids Z0, . . . ,Zt, where Z0 = Z, Zt = X, and
Zi+1 is obtained from Zi by imposing one more affine constraint. We can also define W i+1
in the same way, by imposing the opposite constraint (for example, x1 ⊕ x2 = 1 rather than
x1 ⊕x2 = 0). By construction, Zi+1,W i+1 are cosets, and so COSET⊕(AC0) shows that they
δ-fool C. On the other hand, Zi is a 1

2 - 1
2 mixture of Zi+1,W i+1, and so Zi,Zi+1 δ/2-fool C.

In total, X,Z tδ/2-fool C, and so X,Y tδ-fool C. Clearly t ≤ n, and so it suffices to take
δ = ϵ/n.

LDPC codes cannot be reduced to bounded independence using local maps. An LDPC
code is a code whose parity-check matrix is sparse: every message bit appears in exactly D
parity checks (this is one of several common definitions). If we choose a θn× n parity-check
matrix at random, then the bipartite graph corresponding to the parity-check matrix will be
an expander, and so the corresponding code will have linear minimum distance, say at least
γn.

A simple sensitivity argument shows that for large n, such a code C cannot be generated
using B-local maps from the uniform distribution over m bits: The n × m binary matrix
describing which input bits each output bit depends on contains at most Bn ones, and so
there must be some input bit affecting at most Bn/m output bits. Flipping this bit results
in flipping at most Bn/m input bits. Since the minimum distance of C is at least γn, this
shows that m ≤ B/γ. On the other hand, m must be at least the rate (1 − θ)n of the code,
and we obtain a contradiction for n > B/γ(1 − θ).

Does the picture change if we are allowed to reduce to an arbitrary k-independent
distribution z? Let P be the parity-check matrix of C, and let F denote the B-local
reduction. Thus PF (z) = 0 for all z in the support of z. Since every column of P contains
D many ones, the average row of P contains D/θ many ones, and so the typical entry of
PF (z) depends on at most BD/θ many bits of z. If BD/θ ≪ k then the projection of z to
these coordinates will have full support due to k-independence, and so PF (z) = 0 for all
z. Thus F also works as a reduction to the uniform distribution, allowing us to apply the
earlier lower bound.
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