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Abstract
Miller and Reif’s FOCS’85 [49] classic and fundamental tree contraction algorithm is a broadly
applicable technique for the parallel solution of a large number of tree problems. Additionally it is
also used as an algorithmic design technique for a large number of parallel graph algorithms. In
all previously explored models of computation, however, tree contractions have only been achieved
in Ω(log n) rounds of parallel run time. In this work, we not only introduce a generalized tree
contraction method but also show it can be computed highly efficiently in O(1/ϵ3) rounds in the
Adaptive Massively Parallel Computing (AMPC) setting, where each machine has O(nϵ) local
memory for some 0 < ϵ < 1. AMPC is a practical extension of Massively Parallel Computing
(MPC) which utilizes distributed hash tables [10, 16, 44]. In general, MPC is an abstract model
for MapReduce, Hadoop, Spark, and Flume which are currently widely used across industry and
has been studied extensively in the theory community in recent years. Last but not least, we show
that our results extend to multiple problems on trees, including but not limited to maximum and
maximal matching, maximum and maximal independent set, tree isomorphism testing, and more.
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1 Introduction

In this paper, we study and extend Miller and Reif’s fundamental FOCS’85 [48–50] O(log n)-
round parallel tree contraction method. Tree contraction is a process involving iterated
contraction on graph components for efficient computation of problems on trees (see Sec-
tion 1.2). Their work leverages PRAM, a model of computation in which a large number of
processors operate synchronously under a single clock and are able to randomly access a large
shared memory. In PRAM, tree contractions require n processors. Though the initial study
of tree contractions was in the CRCW (concurrent read from and write to shared memory)
PRAM model, this was later extended to the stricter EREW (exclusive read from and write
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to shared memory) PRAM model [27] as well, and then to work-optimal parallel algorithms
with O(n/ log n) processors [29]. Since then, a number of additional works have also built on
top of Miller and Reif’s tree contraction algorithm [1, 25, 35]. Tree-based computations have
a breadth of applications, including natural graph problems like matching and bisection on
trees, as well as problems that can be formulated on tree-like structures including expression
simplification.

The tree contraction method in particular is an extremely broad technique that can be
applied to many problems on trees. Miller and Reif [49] initially motivated their work by
showing it can be used to evaluate arithmetic expressions. They additionally studied a number
of other applications [50], using tree contractions to construct the first polylogarithmic round
algorithm for tree isomorphism and maximal subtree isomorphism of unbounded degrees,
compute the 3-connected components of a graph, find planar embeddings of graphs, and
compute list-rankings. An incredible amount of research has been conducted to further
extend the use of tree contractions for online evaluation of arithmetic circuits [47], finding
planar graph separators [30], approximating treewidth [20], and much more [9,36,37,42,46,52].
This work extends classic tree contractions to the adaptive massively parallel setting.

The importance of large-scale data processing has spurred a large interest in the study of
massively parallel computing in recent years. Notably, the Massively Parallel Computation
(MPC) model has been studied extensively in the theory community for a range of applications
[2–8,10,12,15,17,19,22,26,31,38,41,45,51,53,54], many with a particular focus on graph
problems. MPC is famous for being an abstraction of MapReduce [43], a popular and
practical programming framework that has influenced other parallel frameworks including
Spark [55], Hadoop [28], and Flume [23]. At a high level, in MPC, data is distributed across
a range of low-memory machines which execute local computations in rounds. At the end
of each round, machines are allowed to communicate using messages that do not exceed
their local space constraints. In the most challenging space-constrained version of MPC, we
restrict machines to O(nϵ) local space for a constant 0 < ϵ < 1 and Õ(n + m) total space
(for graphs with m edges, or just Õ(n) otherwise).

The computation bottleneck in practical implementations of massively parallel algorithms
is often the amount of communication. Thus, work in MPC often focuses on round complexity,
or the number of rounds, which should be O(log n) at a baseline. More ambitious research
often strives for sublogarithmic or even constant round complexity, though this often requires
very careful methods. Among others, a specific family of graph problems known as Locally
Checkable Labeling (LCL) problems – which includes vertex coloring, edge coloring, maximal
independent set, and maximal matching to name a few – admit highly efficient MPC
algorithms, and have been heavily studied during recent years [6,7,14,19,26,32,34]. Another
consists of DP problems on sequences including edit distance [22] and longest common
subsequence [40], as well as pattern matching [39]. The round complexity of aforementioned
MPC algorithms can be interpreted as the parallelization limit of the corresponding problems.

While MPC is generally an extremely efficient model, it is theoretically limited by the
widely believed 1-vs-2Cycle conjecture [33], which poses that distinguishing between a graph
that is a single n-cycle and a graph that is two n/2-cycles requires Ω(log n) rounds in the
low-memory MPC model. This has been shown to imply lower bounds on MPC round
complexity for a number of other problems, including connectivity [17], matching [33, 51],
clustering [54], and more [5, 33, 45]. To combat these conjectured bounds, Behnezhad et
al. [16] developed a stronger and practically-motivated extension of MPC, called Adaptive
Massively Parallel Computing (AMPC). AMPC was inspired by two results showing that
adding distributed hash tables to the MPC model yields more efficient algorithms for finding
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connected components [44] and creating hierarchical clusterings [10]. AMPC models exactly
this: it builds on top of MPC by allowing in-round access to a distributed read-only hash
table of size O(n + m). See Section 1.1 for a formal definition.

In their foundational work, Behnezhad et al. [16] design AMPC algorithms that outperform
the MPC state-of-the-art on a number of problems. This includes solving minimum spanning
tree and 2-edge connectivity in log logm/n(n) AMPC rounds (outperforming O(log n) and
O(log D log logm/n n) MPC rounds respectively), and solving maximal independent set, 2-
Cycle, and forest connectivity in O(1) AMPC rounds (outperforming Õ(

√
log n), O(log n), and

O(log D log logm/n n) MPC rounds respectively). Perhaps most notably, however, they proved
that the 1-vs-2Cycle conjecture does not apply to AMPC by finding an algorithm to solve
connectivity in O(log logm/n n) rounds. This was later improved to be O(1/ϵ) by Behnezhad
et al. [18], who additionally found improved algorithms for AMPC minimum spanning forest
and maximum matching. Charikar, Ma, and Tan [24] recently show that connectivity in
the AMPC model requires Ω(1/ϵ) rounds unconditionally, and thus the connectivity result
of Behnezhad et al. [18] is indeed tight. In a subsequent work, Behnezhad [13] shows an
O(1/ϵ)-round algorithm for the maximal matching problem in AMPC.

A notable drawback of the current work in AMPC is that there is no generalized framework
for solving multiple problems of a certain class. Such methods are important for providing a
deeper understanding of how the strength of AMPC can be leveraged to beat MPC in general
problems, and often leads to solutions for entirely different problems. Studying Miller and
Reif [49]’s tree contraction algorithm in the context of AMPC provides exactly this benefit.
We get a generalized technique for solving problems on trees, which can be extended to a
range of applications.

Recently, Bateni et al. [11] introduced a generalized method for solving “polylog-
expressible” and “linear-expressible” dynamic programs on trees in the MPC model. This
was heavily inspired by tree contractions, and also is a significant inspiration to our work.
Specifically, their method solves minimum bisection, minimum k-spanning tree, maximum
weighted matching, and a large number of other problems in O(log n) rounds. We extend
these methods, as well as the original tree contraction methods, to the AMPC model to
create more general techniques that solve many problems in Oϵ(1) rounds.

1.1 The AMPC Model
The AMPC model, introduced by Behnezhad et. al [16], is an extension of the standard MPC
model with additional access to a distributed hash table. In MPC, data is initially distributed
across machines and then computation proceeds in rounds where machines execute local
computations and then are able to share small messages with each other before the next
round of computation. A distributed hash table stores a collection of key-value pairs which
are accessible from every machine, and it is required that both key and value have a constant
size. Each machine can adaptively query a bounded sequence of keys from a centralized
distributed hash table during each round, and write a bounded number of key-value pairs
to a distinct distributed hash table which is accessible to all machines in the next round.
The distributed hash tables can also be utilized as the means of communication between
the machines, which is implicitly handled in the MPC model, as well as a place to store the
initial input of the problem. It is straight-forward to see how every MPC algorithm can be
implemented within the same guarantees for the round-complexity and memory requirements
in the AMPC model.

ITCS 2022
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▶ Definition 1. Consider a given graph on n vertices and m edges. In the AMPC model,
there are P machines each with sublinear local space S = O(nϵ) for some constant 0 < ϵ < 1,
and the total memory of machines is bounded by Õ(n+m). In addition, there exist a collection
of distributed hash tables H0,H1,H2, . . ., where H0 contains the initial input.

The process consists of several rounds. During round i, each machine is allowed to make
at most O(S) read queries from Hi−1 and to write at most O(S) key-value pairs to Hi.
Meanwhile, the machines are allowed to perform an arbitrary amount of computation locally.
Therefore, it is possible for machines to decide what to query next after observing the result
of previous queries. In this sense, the queries in this model are adaptive.

1.2 Our Contributions
The goal of this paper is to present a framework for solving various problems on trees with
constant-round algorithms in AMPC. This is a general strategy, where we intelligently shrink
the tree iteratively via a decomposition and contraction process. Specifically, we follow Miller
and Reif’s [49] two-stage process, where we first compress each connected component in
our decomposition, and then rake the leaves by contracting all leaves of the same parent
together. We repeat until we are left with a single vertex, from which we can extract a
solution. To retrieve the solution when the output corresponds to many vertices in the tree
(i.e., maximum matching istead of maximum matching value), we can undo the contractions
in reverse order and populate the output as we gradually reconstruct the original tree.

The decomposition strategy must be constructed very carefully such that we do not lose
too much information to solve the original problem and each connected component must
fit on a single machine with O(nϵ) local memory. To compress, we require oracle access
to a black-box function, a connected contracting function, which can efficiently contract a
connected component into a vertex while also retaining enough information to solve the
original problem. To rake leaves, we require oracle access to another block-box function, a
sibling contracting function, which executes the same thing but on a set of leaves that share
a parent. These two black-box functions are problem specific (e.g., we need a different set of
functions for maximum matching and maximum independent set). In this paper,

we only require contracting functions to accept nϵ vertices as the input subgraphs, and
we always run these black-box functions locally on a single machine. Thus, we can compress
any arbitrary collection of disjoint components of size at most nϵ in O(1) AMPC rounds.
See Section 2.1 for formal definitions.

This general strategy actually works on a special class of structures, called degree-weighted
trees (defined in §2). Effectively, these are trees T = (V, E, W ) with a multi-dimensional
weight function where W (v) ∈ {0, 1}Õ(deg(v)) stores a vector of bits proportional in size to
the degree of the vertex v ∈ V . When we use our contracting functions, we use W to store
data about the set of vertices we are contracting. This is what allows our algorithms to
retain enough information to construct a solution to the entire tree T when we contract sets
of vertices. Note that the degree of the surviving vertex after contraction could be much
smaller than the total degree of the original set of vertices.

Our first algorithm works on trees with bounded degree, more precisely, trees with
maximum degree at most nϵ. The reason this is easier is because when an internal connected
component is contracted, we often need to encode the output of the subproblem at the root
(e.g., the maximum weighted matching on the rooted subtree) in terms of the children of this
component post-contraction. In high degree graphs, it may have many children after being
contracted, and therefore require a large encoding (i.e., one larger than O(nϵ)) and thus not
fit on one machine.
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In this algorithm, we find that if the degree is bounded by nϵ and we compress sufficiently
small components, then the algorithm works out much more smoothly. The underlying
technique that allows us to contract the tree into a single vertex in O(1/ϵ) iterations is a
decomposition of vertices based on their preorder numbering. The surprising fact is that
each group in this decomposition contains at most one non-leaf vertex after contracting
connected components. Thus, an additional single rake stage is sufficient to collapse any tree
with n vertices to a tree with at most n1−ϵ vertices in a single iteration. However, we need
O(1/ϵ) AMPC rounds at the beginning of each iteration to find the decomposition associated
with the resulting tree after contractions performed in the previous iteration. This becomes
O(1/ϵ2) AMPC rounds across all iterations. See Section 3.1 for the proofs and more details.

This is a nice independent result, proving a slightly more efficient O(1/ϵ2)-round algorithm
on degree bounded trees. Additionally, many problems on larger degree trees can be
represented by lower degree graphs. For example, both the original Miller and Reif [48]
tree contraction and the Betani et al. [11] framework consider only problems in which we
can replace each high degree vertex by a balanced binary tree, reducing the tree-based
computation on general trees to a slightly different computation on binary trees. Equally
notably, it is an important subroutine in our main algorithm.

▶ Theorem 2. Consider a degree-weighted tree T = (V, E, W ) and a problem P . Given a
connected contracting function on T with respect to P , one can compute P (T ) in O(1/ϵ2)
AMPC rounds with O(nϵ) memory per machine and Õ(n) total memory if deg(v) ≤ nϵ for
every vertex v ∈ V .

▶ Remark 3. It may be tempting to suggest that in most natural problems the input tree
can be transformed into a tree with degree bounded by nϵ. However, we briefly pose the
MedianParent problem, where leaves are given values and parents are defined recursively as
the median of their children. By transforming the tree to make it degree bounded, we lose
necessary information to find the median value among the children of a high degree vertex.

Next, we move onto our main result: a generalized tree contraction algorithm that works
on any input tree with arbitrary structure. Building on top of Theorem 2, we can create
a natural extension of tree contractions. Recall that the black-box contracting functions
encode the data associated with a contracted vertex in terms of its children post-contraction.
Thus, allowing high degree vertices introduces difficulties working with contracting functions.
In particular, it is not possible to store the weight vector W (v) of a high degree vertex v

inside the local memory of a single machine. The power of this algorithm is its ability to
implement Compress and Rake for nϵ-tree-contractions in O(1/ϵ3) rounds.

The most significant novelty of our main algorithm is the handling of high degree vertices.
To do this, we first handle all maximal connected components of low degree vertices using
the algorithm from Theorem 2 as a black-box. This compresses each such component into
one vertex without needing to handle high degree vertices. By contracting these components,
we obtain a special tree called Big-Small-tree (defined formally in §3.2) which exhibits nice
structural properties. Since the low degree components are maximal, the degree of each
vertex in every other layer is at least nϵ, implying that a large fraction of the vertices in a
Big-Small-tree must be leaves. Hence, after a single rake stage, the number of high degree
vertices drops by a factor of nϵ.

In order to rake the leaves of high degree vertices, we have to carefully apply our
sibling contracting functions in a way that can be implemented efficiently in AMPC. Unlike
Theorem 2 in which having access to a connected contracting function is sufficient, here we
also require a sibling contracting function. Consider a star tree with its center at the root.

ITCS 2022
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Without a sibling contracting function, we are able to contract at most O(nϵ) vertices in
each round since the components we pass to the contracting functions must be disjoint. But
having access to a sibling contracting function, we can rake up to O(n) leaf children of a
high degree vertex in O(1/ϵ) rounds. For more details about the algorithm and proofs see
Section 3.2.

▶ Theorem 4. Consider a degree-weighted tree T = (V, E, W ) and a problem P . Given a
connected contracting function and a sibling contracting function on T with respect to P ,
one can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n)
total memory.

Theorem 2 and Theorem 4 give us general tools that have the power to create efficient
AMPC algorithms for any problem that admits a connected contracting function and a
sibling contracting function. Intuitively, they reduce constant-round parallel algorithms for a
specific problem on trees to designing black-box contracting functions that are sequential.
We should be careful in designing contracting functions to make sure that the amount of data
stored in the surviving vertex does not asymptotically exceed its degree in the contracted tree.
Also note that a connected contracting function works with unknown values that depend on
the result of other components.

Satisfying these conditions is a factor that limits the extent of problems that can be solved
using our framework. For example, the framework of Bateni et. al [11] works on a wider range
of problems on trees since their algorithm, roughly speaking, tolerates exponential growth of
weight vectors using a careful decomposition of tree. Indeed, they achieve these benefits at
the cost of an inherent requirement for at least O(log n) rounds due to the divide-and-conquer
nature of their algorithm. However, their framework comes short on addressing problems such
as MedianParent (defined in Remark 3) that are not reducible to binary trees. Nonetheless,
we show several techniques for designing contracting functions that satisfy these conditions,
in particular:
1. In Section 3.3, we prove a general approach for designing a connected contracting function

and a sibling contracting function given a PRAM algorithm based on the original Miller
and Reif [48] tree contraction. We do this by observing that in almost every conventional
application of Miller and Reif’s framework, the length of data stored at each vertex
remains constant throughout the algorithm.

2. Storing a minimal tree representation of a connected component contracted into v in the
weight vector W (v) enables us to simplify a recursive function defined on the subtree
rooted at v in terms of yet-unknown values of its children, while keeping the length of W (v)
asymptotically proportional to deg(v). For instance, our maximum weighted matching
algorithm (See Section 4.1 of the full version for more details) uses this approach.

Ultimately, this is a highly efficient generalization of the powerful tree contraction
algorithm. To illustrate the versatility of our framework, we show that it gives us efficient
AMPC algorithms for many important applications of frameworks such as Miller and Reif [49]’s
and Bateni et al. [11]’s by constructing sequential black-box contracting functions. In doing
so, we utilize a diverse set of techniques, including the ones mentioned above, that are of
independent interest and can be applied to a broad range of problems on trees. The proof
Theorem 5 and more details about each application can be found in the full version.

▶ Theorem 5. Algorithms 1 and 2 can solve, among other applications, dynamic expression
evaluation, tree isomorphism testing, maximal matching, and maximal independent set in
O(1/ϵ2) AMPC rounds, and maximum weighted matching and maximum weighted independent
set in O(1/ϵ3) AMPC rounds. All algorithms use O(nϵ) memory per machine and Õ(n) total
memory.
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1.3 Paper Outline

The work presented in this paper is a constant-round generalized technique for solving a
large number of graph theoretic problems on trees in the AMPC model. In Section 2, we
go over some notable definitions and conventions we will be using throughout the paper.
This includes the introduction of a generalized weighted tree, a formalization of the general
tree contraction process, the definition of contracting functions, and a discussion of a tree
decomposition method we call the preorder decomposition. In the Section 3, we go over our
main results, algorithms, and proofs. The first result (§3.1) is an algorithm for executing a
tree contraction-like process which solves the same problems on trees of bounded maximum
degree. The second result (§3.2) utilizes the first result as well as additional novel techniques
to implement generalized tree contractions. We additionally show (§3.3) that our algorithms
can also implement Miller and Reif’s standard notion of tree contractions, and (§3.4) we show
how to efficiently reconstruct a solution on the entire graph by reversing the tree contracting
process.

2 Preliminaries

In this work, we are interested in solving problems on trees T = (V, E) where |V | = n. Our
algorithms iteratively transform T by contracting components in an intelligent way that:
(1) components can be stored on a single machine, (2) the number of iterations required
to contract T to a single vertex is small, and (3) at each step of the process, we still have
enough information to solve the initial problem on T .

To achieve (3), we must retain some information about an original component after we
contract it. For instance, consider computing all maximal subtree sizes. For a connected
component S with r = lca(S)1, the contracted vertex vS of S might encode |S| and a list of its
leaves (when viewing S as a tree itself). It is not difficult to see that this would be sufficient
knowledge to compute all maximal subtree sizes for the rest of the vertices in T without
considering all individual vertices in S. Data such as this is encoded as a multi-dimensional
weight function which maps vertices to binary vectors. We will specifically consider trees
where the dimensionality of the weight function is bounded by the degree of the vertex.

We note that in this paper, when we refer to the degree of a vertex in a rooted tree, we
ignore parents. Therefore, deg(v) is the number of children a vertex has.

▶ Definition 6. A degree-weighted tree is a tree T = (V, E, W ) with vertex set V , edge
set E, and vertex weight vector function W such that for all v ∈ V , W (v) ∈ {0, 1}Õ(deg(v)).2

Notationally, we let w(v) = dim(W (v)) = Õ(deg(v)) be the length of the weight vectors.
Additionally, note that a tree T = (V, E) is a degree-weighted tree where W (v) = ∅ for all
v ∈ V .

In order to implement our algorithm, we also require specific contracting functions whose
properties allow us to achieve the desired result (§2.1). In addition, we will introduce a
specific tree decomposition method, called a preorder decomposition, that we will efficiently
implement and leverage in our final algorithms (§2.2).

1 lca is the least common ancestor function.
2 Õ(f(n)) = O(f(n) log n).

ITCS 2022
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(a) Each vertex in the degree weighted tree T stores the
size of its subtree, which is 1 initially and the structure
of the subtree between each vertex and its children using
parenthesis notation which is simply a star for every
vertex at the beginning. In the parenthesis notation, we
traverse the tree according to the preorder numbering
and put an ‘(’ whenever we go down from a parent to
a child, and a ‘)’ whenever we go up from a child to a
parent.

(b) In the contracted degree weighted tree
T ′, the structure of the yellow subgraph is
recorded in the weight vector of the root, a
tree with 4 leaves (equal to the degree of root)
which is not a star. In addition, the size of the
contracted subgraph is stored in the weight
vector of the root.

Figure 1 A degree weighted tree T = (V, E, W ) with |V | = 11. In Subfigure 1a, we have a degree
weighted tree with |Wv| ≤ 4deg(v). We contract the subgraph with 7 vertices depicted by yellow in
Subfigure 1a using a connected contracting function (Defined in Definition 8). The resulting degree
weighted tree T ′ is depicted in Subfigure 1b. Note that the length of weight vectors in proportional
to the degree of each vertex even after the contraction.

2.1 Tree Contractions and Contracting Functions
Our algorithms provide highly efficient generalizations to Miller and Reif’s [49] tree contraction
algorithms. At a high level, their framework provides the means to compute a global property
with respect to a given tree in O(log n) phases. In each phase, there are two stages:

Compress stage: Contract around half of the vertices with degree 1 into their parent.
Rake stage: Contract all the leaves (vertices with degree 0) into their parent.

Repeated application of Compress and Rake alternatively results in a tree which has
only one vertex. Intuitively, the Compress stage aims to shorten the long chains, maximal
connected sequences of vertices whose degree is equal to 1, and the Rake stage cleans up
the leaves. Both stages are necessary in order to guarantee that O(log n) phases are enough
to end up with a single remaining vertex [49].

In the original variant, every odd-indexed vertex of each chain is contracted in a Compress
stage. In some randomized variants, each vertex is selected with probability 1/2 independently,
and an independent set of the selected vertices is contracted. In such variants, contracting
two consecutive vertices in a chain is avoided in order to efficiently implement the tree
contraction in the PRAM model. However, this restriction is not imposed in the AMPC
model, and hence we consider a more relaxed variant of the Compress stage where each
maximal chain is contracted into a single vertex.

We introduce a more generalized version of tree contraction called α-tree-contractions.
Here, the Rake stage is the same as before, but in the Compress stage, every maximal
subgraph containing only vertices with degree less than α is contracted into a single vertex.

▶ Definition 7. In an α-tree-contraction of a tree T = (V, E), we repeat two stages in a
number of phases until the whole tree is contracted into a single vertex:

Compress stage: Contract every maximal connected component S containing only vertices
with degree less than α, i.e., deg(v) < α ∀v ∈ S, into a single vertex S′.
Rake stage: Contract all the leaves into their parent.
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Figure 2 An example phase in α-tree-contraction for α = 4. In the leftmost tree the initial tree
is depicted, and the vertices are numbered from 1 to n in the preorder ordering. In the middle tree,
we performed a Compress stage to get a tree with 12 vertices. Next, we Rake the leaves to end up
with a tree with 3 vertices depicted on the right.

Notice that the relaxed variant of Miller and Reif’s Compress stage is the special case
when α = 2. Our goal will be to implement efficient α-tree-contractions where α = nϵ.

In order to implement Compress and Rake, we need fundamental tools for contracting
a single set of vertices into each other. We call these contracting functions. In the Compress
stage, we must contract connected components. In the Rake stage, we must contract leaves
with the same parent into a single vertex. These functions run locally on small sets of
vertices.

▶ Definition 8. Let P be some problem on degree-weighted trees such that for some degree-
weighted tree T , P (T ) is the solution to the problem on T . A contracting function on T

with respect to P is a function f that replaces a set of vertices in T with a single vertex and
incident edges to form a degree-weighted tree T ′ such that P (T ) = P (T ′)3. There are two
types:
1. f is a connected contracting function if f contracts4 connected components into a

single vertex of T .
2. f is a sibling contracting function if f is defined on sets of leaf siblings (i.e., leaves

that share a parent p) of T , and the new vertex is a leaf child of p.

Since the output of the contracting function is a degree-weighted tree, it implicitly must
create a weight W (v) for any newly contracted vertex v.

2.2 Preorder Decomposition
A preorder decomposition (formally defined shortly) is a strategy for decomposing trees into a
disjoint union of (possibly not connected) vertex groups. In this paper, we will show that the
preorder decomposition exhibits a number of nice properties (see §3) that will be necessary
for our tree contraction algorithms. Ultimately, we wish to find a decomposition of vertices
V1, V2, . . . , Vk ⊆ V of a given tree T = (V, E) (∪k

i=1Vi = V and Vi ∩ Vj = ϕ ∀i, j : i ≠ j) so
that for all i ∈ [k], after contracting each connected component contained in the same vertex
group, the maximum degree is bounded by some given λ. Obviously, this won’t be generally
possible (i.e., consider a large star), but we will show that this holds when the maximum
degree of the input tree is bounded as well.

3 With some nuance, it depends on the format of the problem. For instance, when computing the value of
the maximum independent set, the single values P (T ) and P (T ′) should be the same. When computing
the maximum independent set itself, uncontracted vertices must have the same membership in the set,
and contracted vertices represent their roots.

4 Consider a connected component S with a set of external neighbors N(S) = {v ∈ V \ S : ∃u ∈ S(v, u) ∈
E}. Then contracting S means replacing S with a single vertex with neighborhood N(S).
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The preorder decomposition is depicted in Figure 3a. Number the vertices by their index
in the preorder traversal of tree T , i.e., vertices are numbered 1, 2, . . . , n where vertex i is
the i-th vertex that is visited in the preorder traversal starting from vertex 1 as root. In a
preorder decomposition of T , each group Vi consists of a consecutive set of vertices in the
preorder numbering of the vertices. More precisely, let li denote the index of the vertex
v ∈ Vi with the largest index, and assume l0 = 0 for consistency. In a preorder decomposition,
group Vi consists of vertices li−1 + 1, li−1 + 2, . . . , li.

▶ Definition 9. Given a tree T = (V, E), a “preorder decomposition” V1, V2, . . . , Vk of
T is defined by a vector l ∈ Zk+1, such that 0 = l0 < l1 < . . . < lk = n, as Vi =
{li−1 + 1, li−1 + 2, . . . , li} ∀i ∈ [k]. See Subfigure 3a for an example.

Assume we want each Vi in our preorder decomposition to satisfy
∑

v∈Vi
deg(v) ≤ λ

for some λ. As long as deg(v) ≤ λ for all v ∈ V , we can greedily construct components
V1, . . . , Vk according to the preorder traversal, only stopping when the next vertex violates
the constraint. Since

∑
v∈V deg(v) ≤ n, it is not hard to see that this will result in O(n/λ)

groups that satisfy the degree sum constraint.

▶ Observation 10. Consider a given tree T = (V, E). For any parameter λ such that
deg(v) ≤ λ for all v ∈ V , there is a preorder decomposition V1, V2, . . . , Vk such that ∀i ∈ [k],∑

v∈Vi
deg(v) ≤ λ, and k = O(n/λ).

The dependency tree T ′ = (V ′, E′), as seen in Figure 3b of a decomposition is useful
notion for understanding the structure of the resulting graph. In T ′, vertices represent
connected components within groups, and there is an edge between vertices if one contains a
vertex that is a parent of a vertex in the other. This represents our contraction process and
will be useful for bounding the size of the graph after each step.

▶ Definition 11. Given a tree T = (V, E) and a decomposition of vertices V1, V2, . . . , Vk, the
dependency tree T ′ = (V ′, E′) of T under this decomposition is constructed by contracting
each connected component Ci,j for all j ∈ [ci] in each group Vi. We call a component
contracted to a leaf in T ′ an independent component, and a component contracted to a
non-leaf vertex in T ′ a dependent component.

3 Constant-round Tree Contractions in AMPC

The main results of this paper are two new algorithms. The first algorithm applies α-tree-
contraction-like methods in order to solve problems on trees where the degrees are bounded
by nϵ. Though this algorithm is similar in inspiration to the notion of tree contractions, it is
not a true α-tree-contraction method.

▶ Theorem 2. Consider a degree-weighted tree T = (V, E, W ) and a problem P . Given a
connected contracting function on T with respect to P , one can compute P (T ) in O(1/ϵ2)
AMPC rounds with O(nϵ) memory per machine and Õ(n) total memory if deg(v) ≤ nϵ for
every vertex v ∈ V .

This algorithm provides us with two benefits: (1) it is a standalone result that is quite
powerful in its own right and (2) it is leveraged in our main algorithm for Theorem 4. The
only differences between this result and our main result for generalized tree contractions is
that we require deg(v) ≤ nϵ, but it runs in O(1/ϵ2) rounds, as opposed to O(1/ϵ3) rounds.
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(a) An example preorder decomposition of T into
V1, V2, . . . , V7 with λ = 8. Edges within any Fi are de-
picted bold, and edges belonging to no Fi are depicted
dashed.

(b) Dependency tree T ′, created by contracting
connected components of every Fi. Each red
vertex represents a dependent component, and
each white vertex represents an independent
component.

Figure 3 In Subfigure (a), a preorder decomposition of a given tree T is demonstrated. Based on
this preorder decomposition, we define a dependency tree T ′ so that each connected component S

in each forest Fi is contracted into a single vertex S′. This dependency tree T ′ is demonstrated in
Subfigure (b). It is easy to observe that the contracted components are maximal components which
are connected using bold edges in T , and each edge in T ′ corresponds to a dashed edge in T .

Thus, if the input tree has degree bounded by nϵ, then clearly the precondition is satisfied.
Additionally, if the tree can be decomposed into a tree with bounded degree such that we
can still solve the problem on the decomposed tree, this result applies as well.

Our general results are quite similar, with a slightly worse round complexity, but with the
ability to solve the problem on all trees. Notably, it is a true α-tree-contraction algorithm.

▶ Theorem 4. Consider a degree-weighted tree T = (V, E, W ) and a problem P . Given a
connected contracting function and a sibling contracting function on T with respect to P ,
one can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n)
total memory.

In this section, we introduce both algorithms and prove both theorems.

3.1 Contractions on Degree-Bounded Trees
We now provide an O(1/ϵ2)-round AMPC algorithm with local space O(nϵ) for solving
any problem P on a degree-weighted tree T = (V, E, W ) with bounded degree deg(v) ≤ nϵ

for all v ∈ V given a connected contracting function for P . The method, which we call
BoundedTreeContract, can be seen in Algorithm 1.

Much like an α-tree-contraction algorithm, it can be divided into a Compress and Rake
stage. In the Compress stage, instead of compressing the whole maximal components that
consist of low-degree vertices as required for α-tree-contractions, we partition the vertices
into groups using a preorder decomposition and bounding the group size by nϵ. In the Rake
stage, since the degree is bounded by nϵ, all leaves who are children of the same vertex can
fit on one machine. Thus each sibling contraction that must occur can be computed entirely
locally. If we include the parent of the siblings, we can simply apply Compress’s connected
contracting function on the children. This is why we do not need a sibling contracting
function.

Let T0 = T be the input tree. For every iteration i ∈ [O(1/ϵ)]: (1) find a preorder
decomposition V1, . . . Vk of Ti−1, (2) contract each connected component in the preorder
decomposition, and (3) put each maximal set of leaf-siblings (i.e., leaves that share a parent)
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in one machine and contract them into their parent. We sometimes refer to these maximal
sets of leaf-siblings by leaf-stars. After sufficiently many iterations, this should reduce the
problem to a single vertex, and we can simply solve the problem on the vertex.

Algorithm 1 BoundedTreeContract
(Computing the solution P (T ) of a problem P on degree-weighted tree T with max degree
nϵ using connected contracting function C).

Data: Degree-weighted tree T = (V, E, W ) with degree bounded by nϵ and a
connected contracting function C.

Result: The problem output P (T ).
1 T0 ← T ;
2 for i← 1 to l = O(1/ϵ) do
3 Let O be a preordering of Vi−1;
4 Find a preorder decomposition V1, V2, . . . , Vk of Ti−1 with λ = nϵ using O;
5 Let Si−1 be the set of all connected components in Vi for all i ∈ [k];
6 Let T ′

i−1 be the result of contracting C(Si−1,j) for all Si−1,j ∈ Si−1;
7 Let Li−1 be the set of all maximal leaf-stars (containing their parent) in T ′

i−1;
8 Let Ti be the result of contracting C(Li−1,j) for all Li−1,j ∈ Li−1;
9 end

10 return C(Tl);

Notice that we can view the first and second steps as the Compress stage except that
we limit each component such that the sum of the degrees in each component is at most
nϵ. Since the size of the vector W (v) is w(v) = Õ(deg(v)) = Õ(nϵ), we can store an entire
component (in its current, compressed state) in a single machine, thus making the second
step distributable. The third step can be viewed as a Rake function which, as we stated,
can be handled on one machine per contraction using the connected contracting function.

In order to get O(1/ϵ2) rounds, we first would like to show that the number of phases
is bounded by O(1/ϵ). To prove this, we show that there will be at most one non-leaf
node after we contract the components in each group. In other words, the dependency tree
resulting from the preorder decomposition has at most one non-leaf node per group in the
decomposition. This is a necessary property of decomposing the tree based off the preorder
traversal. To see why this is true, consider a connected component in a partition. If it is not
the last connected component (i.e., it does not contain the partition’s last vertex according
to the preorder numbering), then after contracting, it cannot have any children.

▶ Lemma 12. The dependency tree T ′ = (V ′, E′) of a preorder decomposition V1, V2, . . . , Vk

of tree T = (V, E) contains at most 1 non-leaf vertex per group for a total of at most k

non-leaf vertices. In other words, there are at most k dependent connected components in
∪i∈[k]Fi.

Proof. Each group Vi induces a forest Fi on tree T , and recall that each Fi is consisted
of multiple connected components Ci,1, Ci,2, . . . , Ci,ci , where ci is the number of connected
components of Fi. Assume w.l.o.g. component Ci,ci

is the component which contains vertex
li, the vertex with the largest index in Vi. We show that every connected component in Fi

except Ci,ci
is independent, and thus Lemma 12 statement is implied. See in Subfigure 3b

that there is at most 1 dependent component, red vertices in T ′, for each group Vi. Also note
that Ci,ci , the only possibly dependent component in Fi, is always the last component if we
sort the components based on their starting index since li ∈ Ci,ci

and each Ci,j contains a
consecutive set of vertices.
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Assume for contradiction that there exists Ci,j for some i ∈ [k], j ∈ [ci − 1], a non-last
component in group Vi, such that Ci,j is a dependent component, or equivalently C ′

i,j is not
a leaf in T ′. Since Ci,j is a dependent component, there is a vertex v ∈ Ci,j which has a
child outside of Vi. Let u be the first such child of v in the pre-order traversal, and thus
u ∈ Vj for some j > i. Consider a vertex w ∈ Vi that comes after v in the pre-order traversal.
Then, since u, and thus Vj , comes after v and Vi in the pre-order traversal, u must come
after w in the pre-order traversal. Since w is between v and u in the pre-order traversal, and
u is a child of v, the only option is for w to be a descendant of v. Then the path from w to
v consists of w, w’s parent p(w), p(w)’s parent, and so on until we reach v. Since a parent
always comes before a child in a pre-order traversal, all the intermediate vertices on the path
from w to v come between w and v in the pre-order traversal, so they must all be in Vi. This
means w is in Ci,j since w is connected to v in Fi. Since any vertex after v in Vi must be
in Ci,j , Ci,j must be the last connected component, i.e., j = ci. This implies that the only
possibly dependent connected component of Fi is Ci,ci

, and all other Ci,j ’s for j ∈ [ci − 1]
are independent. ◀

Lemma 12 nicely fits with our result from Observation 10 to bound the total number of
phases BoundedContract requires. In addition, we can show how to implement each phase
to bound the complexity of our algorithm. Note that we are assuming that our component
contracting function is defined to always yield a degree-weighted tree. We only need to show
that the degrees stay bounded throughout the algorithm.

Proof of Theorem 2. In each phase of this algorithm, the only modifications to the graph
that occur are applications of the connected contracting functions to connected components
of the tree. Since these are assumed to preserve P (T ) and we simply solve P (Tl) for the final
tree Tl, correctness of the output is obvious.

An important invariant in this algorithm is the O(nϵ) bound on the degree of vertices
throughout the algorithm. At the beginning, we know that the degrees are bounded according
as it is promised in the input. We show that this bound on the maximum degree of the tree
is invariant by proving the degree of vertices are still bounded after a single contraction.

Recall that we use preorder decomposition with λ = nϵ to find the connected components
we need to contract in the Compress stage. According to definition, the total degree of each
group in our decomposition is bounded by λ. After we contract a component S, the degree of
the contracted vertex vS never exceeds the sum of the degree of all vertices in S since every
child of vS is a child of exactly one of the vertices in S. Thus, the degree of vS is bounded
by λ = nϵ. In Rake stage, we contract a number of sibling leaves into their common parent.
In this case, the degree of the parent only decreases and the bound still holds.

We now focus on round and space complexities. A preordering can be computed using
the preorder traversal algorithm from Behnezhad et al. [16], which executed in O(1/ϵ) rounds
with O(nϵ) local space and Õ(n) total space w.h.p.5 This completes step 1. In steps 2 and 3,
the contracting functions are applied in parallel for a total of O(1) rounds (based off our
assumption about any given contracting functions) within the same space constraints. Thus,
all phases require O(1) rounds except the first, which is O(1/ϵ) rounds, and satisfy the space
constraints of our theorem.

Now we must count the phases. Lemma 12 tells us that for every group, we only have one
non-leaf component in the dependency graph after each step 2. In step 3, we then “Rake”
all leaves into their parents. This means that the remaining number of vertices after step

5 This means with probability at least 1/poly(n)
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3 is equal to the number of non-leaf vertices in the dependency graph after step 2, which
is k = nϵ. Observation 10 tells us that the resulting graph size is then O(n/nϵ) = O(n1−ϵ).
Therefore, in order to get a graph where |Tl| = 1, we require O(1/ϵ) phases. Combining this
with the complexity of each phase yields the desired result. ◀

3.2 Generalized α-Tree-Contractions
In the rest of this section we prove our main result: a generalized tree contraction algorithm,
Algorithm 2. Building on top of Theorem 2, we can create a natural extension of tree
contractions. Recall from §2 that in the Compress stage, we must contract maximal
connected components containing only vertices v with degree d(v) < α. Conveniently, by
Theorem 2, Algorithm 1 achieves precisely this. Therefore, to implement tree contractions,
we simply need to:
1. Identify maximal connected components of low degree (Algorithm 2, line 3), which can

be done in O(1/ϵ) rounds by Behnezhad et al. [18].
2. Use our previous algorithm to execute the Compress stage on each component (Al-

gorithm 2, line 5), which can be done by Algorithm 1 in O(1/ϵ2) rounds.
3. Apply a function that can execute the Rake stage (Algorithm 2, lines 7 through 14).

To satisfy the third step, we use a sibling contracting function (Definition 8), which can
contract leaf-siblings of the same parent into a single leaf. Since a vertex might have up
to n children, to do this in parallel, we may have to group siblings into nϵ-sized groups
and repeatedly contract until we reach one leaf. Assuming sibling contractions are locally
performed inside machines, this will then take O(1/ϵ) AMPC rounds.

Algorithm 2 TreeContract
(Computing the solution P (T ) of a problem P on degree-weighted tree T using a connected
contracting function C and a sibling contracting function R).

Data: Degree-weighted tree T = (V, E, W ), a connected contracting function C, and
a sibling contracting function R.

Result: The problem output P (T ).
1 T0 ← T ;
2 for i← 1 to l = O(1/ϵ) do
3 Let Si−1 ← Connectivity(Ti−1 \ {v ∈ V : deg(v) > nϵ);
4 Let Ki−1 ← Components in Si−1,j which represent a leaf in T ′

i−1;
5 Contract each Si−1,j ∈ Ki−1 into S′

i−1,j by applying BoundedTreeContract(Sj , C);
6 Let Li−1 be the set of all maximal leaf-stars (excluding their parent) in T ′

i−1;
7 for Li−1,0 = {v1, v2, . . . , vk} ∈ Li−1 do
8 for j ← 1 to 1/ϵ do
9 Split Li−1,j−1 into k/njϵ parts Li−1,j,1, . . . , Li−1,j,k/njϵ each of size nϵ;

10 Contract each Li−1,j,z into L′
i−1,j,z by applying R(Li−1,j,z);

11 Let Li−1,j ← {L′
i−1,j,1, . . . , L′

i−1,j,k/njϵ};
12 end
13 Contract Li−1,1/ϵ by applying R(Li−1,1/ϵ);
14 end
15 Let Ti ← T ′

i−1;
16 end
17 return C(Tl);
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We can show that this requires O(1/ϵ) phases to execute, and each phase takes O(1/ϵ2)
rounds to compute due to Theorem 2 and our previous argument for Rake by sibling
contraction. Thus we achieve the following result:

▶ Theorem 4. Consider a degree-weighted tree T = (V, E, W ) and a problem P . Given a
connected contracting function and a sibling contracting function on T with respect to P ,
one can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n)
total memory.

Recall the definition of α-tree-contraction (Definition 7) from §2.1. First, we prove
Lemma 13 to bound the number of phases in α-tree-contraction.

▶ Lemma 13. For any α ≥ 2, the number of α-tree-contraction phases until we have a
constant number of vertices is bounded by O(logα(n)).

To show Lemma 13 we will introduce a few definitions. The first definition we use is a
useful way to represent the resulting tree after each Compress stage. Before stating the
definition, recall the Dependency Tree T ′ of a tree T from Definition 11.

▶ Definition 14. An α-Big-Small Tree T ′ is the dependency tree of a tree T with weighted
vertices if it is a minor of T constructed by contracting all components of T made up of low
vertices v with deg(v) < α (i.e., the connected components of T if we were to simply remove
all vertices u with deg(v) ≥ α) into a single node.

We call a node v in T ′ with deg(v) > α in T a big node. All other nodes in T ′, which
really represent contracted components of small vertices in T , are called small components.

Note that a small component may not be small in itself, but it can be broken down into
smaller vertices in T . It is not hard to see the following simple property. This simply comes
from the fact that maximal components of small degree vertices are compressed into a single
small component, thus no two small components can be adjacent.

▶ Observation 15. No small component in an α-Big-Small tree can be the parent of another
small component.

Consider our dependency tree T ′ based off a tree T that has been compressed. Obviously,
T ′ is a minor of T constructed as described for α-Big-Small Tree because the weight of
a vertex equals its number of children (by the assumption of Lemma 13). Note a small
component refers to the compressed components, and a big node refers to nodes that were
left uncompressed.

To show Lemma 13, we start by proving that the ratio of leaves to nodes in T ′ is large.
Since Rake removes all of these leaves, this shows that T gets significantly smaller at each
step. Showing that the graph shrinks sufficiently at each phase will ultimately give us that
the algorithm terminates in a small number of phases.

▶ Lemma 16. Let T ′
i be the tree at the end of phase i. Then the fraction of nodes that are

leaves in T ′
i is at least α/(α + 4) as long as w(v) is equal to the number of children of v for

all v ∈ T ′
i and α ≥ 2.

Proof. For our tree T ′
i , we will call the number of nodes n, the number of leaves ℓ, and the

number of big nodes b. We want to show that ℓ > nα/(α + 4). We induct on b. When b = 0,
we can have one small component in our tree, but no others can be added by Observation 15.
Then n = ℓ = 1, so ℓ > nα/(α + 4).

ITCS 2022



83:16 Adaptive Massively Parallel Constant-Round Tree Contraction

Now consider T ′
i has some arbitrary b number of big nodes. Since T ′

i is a tree, there must
be some big node v that has no big node descendants. Since all of its children must be small
components and they cannot have big node descendants transitively, then Observation 15
tells us each child of v is a leaf. Note that since v is a big node, it must have weight w(v) > α,
which also means it must have at least α children (who are all leaves) by the assumption
that w(v) is equal to the number of children.

Consider trimming T ′
i on the edge just above v. The size of this new graph is now

n∗ = n− w(v)− 1. It also has exactly one less big node than T ′
i . Therefore, inductively, we

know the number of leaves in this new graph is at least ℓ∗ ≥ α
α+4 n∗ = α

α+4 (n− w(v)− 1).
Compare this to the original tree T ′

i . When we replace v in the graph, we remove up to one
leaf (the parent p of v, if p was a leaf when we cut v), but we add w(v) new leaves. This
means the number of leaves in T ′

i is:

ℓ =ℓ∗ − 1 + w(v)

= α

α + 4(n− w(v)− 1)− 1 + w(v)

= α

α + 4n− α

α + 4w(v)− α

α + 4 − 1 + w(v)

= α

α + 4n + 4
α + 4w(v)− 2α + 4

α + 4

>
α

α + 4n + 4
α + 4α− 2α + 4

α + 4 (1)

≥ α

α + 4n (2)

Where in line (1) we use that w(v) > α and in line (2) we use that α ≥ 2. ◀

Now we can prove our lemma.

Proof of Lemma 13. To show this, we will prove that the number of nodes from the start
of one Compress to the next is reduced significantly. Consider Ti as the tree before the
ith Compress and T ′

i as the tree just after. Let Ti+1 be the tree just before the i + 1st
Compress, and let ni be the number of nodes in Ti, n′

i be the number of nodes in T ′
i , and

ni+1 be the number of nodes in Ti+1. Since T ′
i is a minor of Ti, it must have at most the same

number of vertices as Ti, so n′
i ≤ ni. Since Ti+1 is formed by applying Rake to T ′

i , then it
must have the number of nodes in T ′

i minus the number of leaves in T ′
i (ℓ′

i). Therefore:

ni+1 = n′
i − ℓ′

i ≤ n′
i −

α

α + 4n′
i = 4

α + 4n′
i ≤

4
α + 4ni

Where we apply both Lemma 16 that says ℓ′
i ≥ α

α+4 n′
i and the fact that we just showed

that n′
i ≤ ni. This shows that from the start of one compress phase to another, the number

of vertices reduces by a factor of 4
α+4 . Therefore, to get to a constant number of vertices, we

require log α+4
4

(n) = O(logα(n)) phases. ◀

Now we are ready to prove our main theorem.

▶ Theorem 4. Consider a degree-weighted tree T = (V, E, W ) and a problem P . Given a
connected contracting function and a sibling contracting function on T with respect to P ,
one can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n)
total memory.
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Proof. We will show that our Algorithm 2 achieves this result. Lemma 13 shows that there
will be only at most O(1/ϵ) phases. In each phase i, we start by running a connectivity
algorithm to find maximally connected components of bounded degree, which takes O(1/ϵ)
time. Let Ki−1 be the set of connected components which are leaves in T ′

i−1. Then for each
component Si−1,j ∈ Ki−1, we run BoundedTreeContract (Algorithm 1) in parallel using only
our connected contracting function C. Since the total degree of vertices over all members
of Ki−1 is not larger than |Ti−1| and the amount of memory required for storing a degree-
weighted trees is not larger than the total degree, the total number of machines is bounded
above by O(n1−ϵ). By definition, the maximum degree of any Si−1,j is nϵ. By Theorem 2,
each instance of BoundedTreeContract requires O(1/ϵ2) rounds, O(|Si−1,j |ϵ) local memory
and Õ(|Si−1,j |) total memory. As |Si−1,j | ≤ |Ti−1| (we know |T0| = n and it only decreases
over time), we only require at most O(nϵ) memory per machine. Since Since the total degree
of vertices over all members of Ki−1 is not larger than |Ti−1|, the total memory required is
only Õ(|Ti−1|)) = Õ(n). This is within the desired total memory constraints.

Finally, R is given to us as a sibling contractor. Consider the Rake stage in our algorithm.
We distribute machines across maximal leaf-stars. For any leaf-star with nϵ ≤ deg(v) ≤ knϵ

for some (possibly not constant) k, we will allocate k machines to that vertex. Since again
the number of vertices is bounded above by n, this requires only O(n1−ϵ) machines. On each
machine, we allocate up to nϵ leaf-children to contract into each other. We can then contract
siblings into single vertices using R. Since there are at most n children for a single vertex, it
takes at most O(1/ϵ) rounds to contract all siblings into each other. Then, finally, we can
use C to compress the single child into its parent, which takes constant time.

Therefore, we have O(1/ϵ) phases which require O(1/ϵ2) rounds each, so the total number
of rounds is at most O(1/ϵ3). We have also showed that throughout the algorithm, we
maintain O(nϵ) memory per machine and Õ(n) total memory. This concludes the proof. ◀

3.3 Simulating 2-tree-contraction in O(1) AMPC rounds
Due to Theorem 4, we can compute any P (T ) on trees as long as we are provided with a
connected contracting function and a sibling contracting function with respect to P . A natural
question that arises is the following: for which class of problem P there exists black-box
contracting functions? We argue that many problems P for which we have a 2-tree-contraction
algorithm can also be computed in O(1/ϵ3) AMPC rounds using nϵ-tree-contraction.

In many problems which are efficiently implementable in the Miller and Reif [49] Tree
Contraction framework, we are given C and R contracting functions, for Compress and
Rake stages respectively, which contract only one node: either a leaf in case of Rake or
a vertex with only one child in case of Compress. Let us call this kind of contracting
functions unary contracting functions and denote them by C1 and R1. This is a key point
of original variants of Tree Contraction which contract odd-indexed vertices, or contract
a maximal independent set of randomly selected vertices. Working efficiently regardless
of using only unary contracting functions is the reason Tree Contraction was considered a
fundamental framework for designing parallel algorithms on trees in more restricted models
such as PRAM. For example, in the EREW variant of PRAM, an O(log(n)) rounds tree
contraction requires to use only unary contracting functions R1 and C1. More generally, we
define i-ary contracting functions as follows.

▶ Definition 17. An “i-ary contracting function”, denoted by Ci or Ri, is a contracting
function which admits a subset S = {v1, v2, . . . , vk} of at most i + 1 vertices at a time
such that

∑k
j=1 deg(vj) = O(i). A special case of i-ary contracting functions, are “unary

contracting functions”, denoted by C1 or R1, which contract only one vertex at a time.
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However, in the the AMPC model, we can contract the chains more efficiently, and thus
we are allowed to utilize more relaxed variants of Compress stage. Furthermore, as we show
in Theorem 18, designing unary contracting functions C1 and R1 is not easier than designing
i-ary contracting functions Ci and Ri in the AMPC model. We show this by reducing Ci

and Ri to C1 and R1 in O(1) rounds for any i = O(nϵ). In other words, the restrictions of
PRAM model, which requires C1 and R1 exclusively, enables us to directly translate a vast
literature of problems solved using tree contraction to efficient AMPC algorithms for the
same problem given C1 and R1.

As we have shown in Theorem 4, it is possible to solve any problem P (T ) in O(1/ϵ3)
AMPC rounds given a connected contracting function C and a sibling contracting function R,
where both are nϵ-ary contracting with respect to P . In what follows, we demonstrate the
construction of nϵ-ary contracting functions given a unary connected contracting function C1

and a sibling contracting function R1.

▶ Theorem 18. Given a unary connected contracting function C1 and a unary sibling
contracting function R1 with respect to a problem P defined on trees, one can build an i-ary
connected contracting function Ci and an i-ary sibling contracting function Ri with respect
to P and both Ci and Ri run in one AMPC rounds as long as i = O(nϵ).

Proof. First, we present an algorithm for Ci. We are given a connected subtree induced by
S = {v1, v2, . . . , vk} of T so that

∑k
j=1 degT (vj) = O(i). Since i = O(nϵ), the whole subtree

fits into the memory of a single machine. Some of the leaves of this subtree are known,
meaning that they are a leaf also in T , and others are unknown, meaning that they have
children outside S. Let U = {u1, u2, . . . , ul} be the set of the children of unknown leaves
as well as the children of non-leaf nodes which are outside of S. Ultimately, we want to
compress the data already stored on the vertices of S into a memory of Õ(l) as the degree of
v1 in the contracted tree T ′ will be l + 1, and thus degT ′(v1) = l + 1.

The W (v1) of each contracted vertex v1 is a weighted-degreee tree structure T C(v1) whose
leaves are the children of v1 in T ′, and there is no vertex with exactly one child in T C(v1).
Thus, the number of vertices in T C(v1) is bounded by O(l) = O(degT ′(v1)). In addition, we
are guaranteed that the total size of vectors on each vertex of T C(v1) is bounded by |T C(v1)|
since C1 and R1 are unary contracting functions. Therefore, we assume each W (vj) for each
vertex vj ∈ S has stored a tree structure of size Õ(degT (vj)). We concatenate all these trees
to get an initial T C(v1) whose size is bounded by

∑k
j=1 Õ(degT (vj)) = Õ(nϵ).

We run a 2-tree-contraction-like algorithm locally on T C(v1) using C1 and R1. Note that
we can only rake the known leaves since the data of unknown leaves depend on their children.
We repeating Compress and Rake stages until there is no known leaf or a vertex with one
child remain in T C(v1). Then, according to Lemma 13 for α = 2, the number of remaining
vertices in T C(v1) is bounded by O(l). We store the final T C(v1) in T ′ which requires a
memory of Õ(l) = Õ(wT ′(v1)). Hence, Ci satisfies the size-constraint on the weight vectors
of the resulting weighted-degree tree.

Finally, we present an algorithm for Ri which is more straight-forward compared to that
of Ci. We are given a leaf-star S = {v1, v2, . . . , vk} of T so that

∑k
j=1 degT (vj) = O(i). This

implies that there are at most O(nϵ) vertices in S as long as i = O(nϵ), and we can fit the
whole S into a memory of a single machine. To simulate Ri, we only need to k − 1 times
apply R1 on Sj = {v1, vj+1} at the j-th iteration. Note that every vj ∈ S is a leaf in T , so
the data stored in W (vj) is just Õ(1) bits and not a tree structure. Theorem 18 statement is
implied. ◀
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3.4 Reconstructing the Tree for Linear-sized Output Problems
Consider a problem P (T ) whose output size is also linear in the size of input n. For instance,
in maximum weighted matching we need to find the matching itself. Up to this point, in all
of our algorithms, we assume the output of function P (T ) is of constant-sized. We simply
contract the tree through some iterations until it collapses into a single vertex, and we do not
need to remember anything about a vertex which is contracted as a member of a connected
component or as a member of a leaf-star.

In this section, we present a general approach for retrieving the linear-sized solution in
a natural scenario, where we need to retrieve a recursively-defined weight vector P (v) of
constant size for each vertex v ∈ V . In the special case of maximum weighted matching
which can be formulated as a dynamic programming problem, P (v) contains the final value
of different DP values with respect to the subtree rooted at v6.

Roughly speaking, our reconstruction algorithm is based on storing the information about
components we contracted throughout the algorithm in an auxiliary memory of size O(n). It
is easy to observe that if we store the degree-weighted subtree of every connected component
or leaf-star that we contract during the algorithm we need at most O(n) addition total
memory. Note that during each application of black-box contracting functions, we remove at
least one vertex from the tree and each vertex except root is removed exactly once when the
algorithm terminates. Namely, for every phase i we need to store Si and Li in Algorithm 1,
and Ki and every Li,j,z in Algorithm 2 (In addition to the data stored by each black-box
application of Algorithm 1). Since we have adaptive access to these subsets in AMPC, it is
sufficient to index them by the id of the surviving vertex of each subset.

The full reconstruction algorithm starts after the main contraction algorithm finishes.
We only need to store the information about contracted subsets during the running time of
the contraction algorithm. Next, we iterate over the phases of the algorithm in reverse order,
i.e., i = {1/ϵ, 1/ϵ− 1, . . . , 1}, and undo the contractions that were performed during phase i.
Let Cv be a connected contracted component rooted at v, and {w1, w2, . . . , wk} be children
of v post-contraction.

Whenever we undo a connected contraction like Cv, we replace v with the whole structure
of Cv including W (u) for every u ∈ Cv, u ̸= v. Then we populate the P (u) for every
u ∈ Cv, u ≠ v. During the contraction algorithm P (wj) is not known for any j. However,
during the reconstruction we know P (wj) for every 1 ≤ j ≤ k since these vertices are
contracted in a later phase than the phase we contract Cv. Hence, we have already populated
P (wj) and we can use these values to locally populate P (u) for every u ∈ Cv. Undoing
the sibling contracting functions in much simpler since their values do not depend on other
vertices nor the value of other vertices depend on their value. We populate P (u) for every
u ∈ L, where L is a leaf-star, based on the already constant-sized weight vectors W (u).

4 Conclusion

This paper introduces some of the first generalized techniques for solving various problems in
the AMPC model. Specifically, we show that Miller and Reif’s [48] O(log n)-time PRAM tree
contraction algorithm can be efficiently extended to a constant-round low-memory AMPC
algorithm. This implies O(1/ϵ2)-round algorithms for expression evaluation, tree isomorphism

6 Note that retrieving P (v) for each vertex v still does not give us the optimum matching and a problem-
specific post-processing step is required to retrieve the actual matching
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testing, maximal matching on trees, and maximal independent set on trees. It additionally
implies O(1/ϵ3)-round algorithms for maximum weighted matching and maximum weighted
independent set on trees. However, we expect these algorithms to have much broader
applications to tree-based problems, as did the original work by Miller and Reif.

It remains to be seen precisely which of extensions of the PRAM algorithm apply to
the AMPC model. Many of them require computational overhead beyond the black-box
application of the tree contraction process (which our algorithm can directly and efficiently
simulate), therefore the extension of those applications to this work is highly non-trivial. Of
notable interest is the application of tree contractions to graphs of bounded treewidth, where
Bodlaender and Hagerup [21] showed how to construct low-width tree decompositions using
PRAM tree contractions. If AMPC tree contractions can also solve this and additionally
solve tree contractions on graphs of bounded tree-width, then our work can be notably
generalized. Another potential course of research is the exploration of problems such as
MedianParent, which cannot be simplified to problems on trees with bounded tree width. It
is an open question if these, too can be solved in O(1/ϵ2) rounds.
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