
Synthetic Integral Cohomology in Cubical Agda
Guillaume Brunerie #Ñ

Independent researcher, Stockholm, Sweden

Axel Ljungström #

Department of Mathematics, Stockholm University, Sweden

Anders Mörtberg #Ñ

Department of Mathematics, Stockholm University, Sweden

Abstract
This paper discusses the formalization of synthetic cohomology theory in a cubical extension of Agda
which natively supports univalence and higher inductive types. This enables significant simplifications
of many proofs from Homotopy Type Theory and Univalent Foundations as steps that used to require
long calculations now hold simply by computation. To this end, we give a new definition of the group
structure for cohomology with Z-coefficients, optimized for efficient computations. We also invent
an optimized definition of the cup product which allows us to give the first complete formalization
of the axioms needed to turn the integral cohomology groups into a graded commutative ring. Using
this, we characterize the cohomology groups of the spheres, torus, Klein bottle and real/complex
projective planes. As all proofs are constructive we can then use Cubical Agda to distinguish between
spaces by computation.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Type theory

Keywords and phrases Synthetic Homotopy Theory, Cohomology Theory, Cubical Agda

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.11

Supplementary Material A complete formalization of all results in the paper can be found at:
Software (Source Code): https://github.com/agda/cubical/blob/master/Cubical/Papers/
ZCohomology.agda

Funding The material in this paper is based upon research supported by the Swedish Research
Council (SRC, Vetenskapsrådet) under Grant No. 2019-04545.

Acknowledgements The authors are grateful to the anonymous reviewers for their insightful com-
ments and feedback. The authors would also like to thank Evan Cavallo for many discussions and
for his contributions of various useful results to the Cubical Agda library.

1 Introduction

Homotopy Type Theory and Univalent Foundations (HoTT/UF) [38] extends Martin-Löf
type theory [30] with Voevodsky’s univalence axiom [41] and higher inductive types (HITs).
This is based on a close correspondence between types and topological spaces represented as
Kan simplicial sets [24]. With this interpretation, points in spaces correspond to elements of
types, while paths and homotopies correspond to identity types between these elements [3].
This enables homotopy theory to be developed synthetically using type theory. Many classical
results from homotopy theory have been formalized in HoTT/UF this way: the definition of
the Hopf fibration [38], the Blakers-Massey theorem [22], the Seifert-van Kampen theorem [23]
and the Serre spectral sequence [39], among others. Using these results, many homotopy
groups of spaces – represented as types – have been characterized. However, just like in
classical algebraic topology, these groups tend to be complicated to work with. Because of
this, other topological invariants like cohomology have been invented.

© Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.brunerie@gmail.com
https://guillaumebrunerie.github.io/
mailto:axel.ljungstrom@math.su.se
mailto:anders.mortberg@math.su.se
https://staff.math.su.se/anders.mortberg/
https://orcid.org/0000-0001-9558-6080
https://doi.org/10.4230/LIPIcs.CSL.2022.11
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Synthetic Integral Cohomology in Cubical Agda

Informally, the integral cohomology groups Hn(X) of a space X describe its n-dimensional
holes. For instance, the n-dimensional hole in the n-sphere Sn corresponds to Hn(Sn) ≃ Z.
These holes constitute a topological invariant, making cohomology a powerful technique for
establishing which spaces cannot be homotopy equivalent. The usual formulation of singular
cohomology using cochain complexes relies on taking the underlying set of topological spaces
when defining the singular cochains [19]. This operation is not invariant under homotopy
equivalence, which makes it impossible to use when formalizing cohomology synthetically.
Luckily, there is an alternative definition of cohomology using Eilenberg-MacLane spaces which
is homotopy invariant [26]. This was initially studied at the IAS special year on HoTT/UF
in 2012–2013 [33] and has since been used to develop the Eilenberg-Steenrod axioms [11]
and cellular cohomology [8]. This paper builds on this prior work, but uses Cubical Agda– a
recent cubical extension of the dependently typed programming language Agda [35].

The Cubical Agda system is based on a variation of cubical type theory formulated by
Coquand et al. [14]. These type theories can be seen as refinements of Book HoTT [38] where
the homotopical intuitions are taken very literally and made part of the theory. Instead
of relying on the inductively defined identity type [29] to define paths and homotopies, a
primitive interval type I is added. Paths and homotopies are then represented as functions
out of I, just like in traditional topology. This has some benefits compared to Book HoTT.
First, many proofs become simpler. For instance, function extensionality becomes trivial to
prove, as opposed to in Book HoTT where it either has to be postulated or derived from the
univalence axiom [42]. Second, it gives computational meaning to HoTT/UF, which makes it
possible to use the system to do computations using univalence and HITs. Finally, it makes it
possible to formulate a general schema for HITs where the eliminators compute definitionally
for higher constructors [12, 15]. This is still an open problem for Book HoTT, and HITs have
to be added axiomatically, which leads to bureaucratic transports that complicate proofs.

Mörtberg and Pujet explored practical implications of formalizing synthetic homotopy
theory in Cubical Agda in [31]. This work provided empirical evidence that formalizing
synthetic homotopy theory in cubical type theory can lead to significant simplifications of
the corresponding formal Book HoTT proofs. For instance, the proof of the 3× 3 lemma
for pushouts was shortened from 3000 lines of code (LOC) in HoTT-Agda [7] to only 200 in
Cubical Agda. Another proof that becomes substantially shorter is the proof that the torus
is equivalent to the product of two circles. This elementary result in topology turned out
to have a surprisingly non-trivial proof in Book HoTT because of the lack of definitional
computation rules for higher constructors [25, 34]. With the additional computation rules of
Cubical Agda, this proof is now trivial [40, Sect. 2.4.1].

The present paper is a natural continuation of this prior work and the two main goals
are to characterize Z-cohomology groups of types and to compute using these groups. In
classical algebraic topology, characterize and compute are often used interchangeably when
discussing cohomology. We are careful to distinguish these two notions. When characterizing
a cohomology group of some type, we prove that it is isomorphic to another group. As all of
our proofs are constructive, we can then use Cubical Agda to actually compute with this
isomorphism. Having the possibility of doing proofs simply by computation is one of the
most appealing aspects of developing synthetic homotopy theory cubically. As this is not
possible with pen and paper proofs, or even with many formalized proofs in Book HoTT,
one often has to resort to doing long calculations by hand. If proofs instead can be carried
out using a computer, many of these long calculations become obsolete. This is a reason
why many proofs from synthetic homotopy theory are substantially shorter in Cubical Agda.
However, not everything has successfully been possible to reduce to computations. A famous

G. Brunerie, A. Ljungström, and A. Mörtberg 11:3

example is the Brunerie number. This is a synthetic definition of a number n : Z such that
π4(S3) = Z/nZ. Brunerie proved in his PhD thesis [5] that n = ±2, but even though this is
a constructive definition, it has thus far proved infeasible to compute using Cubical Agda,
despite considerable efforts. In this paper, we construct a similar number, also inspired by [5],
using the multiplicative structure on Hn(CP 2). This number was proved to be ±1 using
sophisticated techniques in [5, Chapter 6], but we have thus far been unable to verify this
purely by computation. However, as this number is substantially simpler than the Brunerie
number, it provides a new computational challenge which should be more feasible.

Contributions. The main novel result of the paper is the first computer formalization of the
graded commutative ring axioms for Z-cohomology in HoTT/UF (Section 4). To this end,
we first develop Z-cohomology groups (Section 3). The definitions are inspired by [5], but
the additive structure is new and optimized for efficient computations. The definition of the
cup product is also new and provides significant simplifications compared to related proofs in
HoTT-Agda [4]. We also characterize the cohomology groups of various types (Section 5); for
instance, we give the first synthetic characterizations of the cohomology groups of the Klein
bottle and real projective plane. In order to characterize Hn(CP 2), we have verified that
our definition of cohomology satisfies the Eilenberg-Steenrod axioms for cohomology theories
and constructed the Mayer-Vietoris sequence. We finally reap the fruits of our constructive
definitions in Section 6 where we prove that S2 ∨ S1 ∨ S1 and the torus are not equivalent by
computing with Cubical Agda.

All results in the paper have been formalized in Cubical Agda. Much of the code in the
paper is literal Cubical Agda code, but we have taken some liberties when typesetting, to
closer resemble standard mathematical notations. In order to clarify the connections be-
tween the paper and formalization, we provide a summary file: https://github.com/agda/
cubical/blob/master/Cubical/Papers/ZCohomology.agda. This file typechecks with the
--safe flag, which ensures that there are no postulates or unfinished goals.

2 Homotopy Type Theory in Cubical Agda

The Agda system [35] is a dependently typed programming language in which both programs
and proofs can be written using the same syntax. Dependent function types (Π-types) are
written (x : A) → B while non-dependent function types are written A → B. Implicit
arguments to functions are written using curly braces {x : A} → B and function application
is written using juxtaposition, so f x instead of f(x). Universes are written Type ℓ, where ℓ

is a universe level. In order to ease notation, we omit universe levels in this paper. Readers
familiar with Agda will also notice that we rename Set to Type. Agda supports many features
of modern proof assistants and has recently been extended with an experimental cubical mode.
The goal of this section is to introduce notions from HoTT/UF (including their formalizations
in Cubical Agda) which the rest of the paper relies on. Due to space constraints, we omit
many technical details and refer curious readers to the paper of Vezzosi et al. [40] for a
comprehensive technical treatment of the features of Cubical Agda.

2.1 Important notions in Cubical Agda
The first addition to make Agda cubical is an interval type I with endpoints i0 and i1. This
corresponds to the real interval [0, 1] ⊂ R. However, in Cubical Agda, this is a purely formal
object. A variable i : I represents a point varying continuously between the endpoints. There
are three primitive operations on I: minimum/maximum (_∧_, _∨_ : I→ I→ I) and reversal

CSL 2022

https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda

11:4 Synthetic Integral Cohomology in Cubical Agda

(∼_ : I → I). A function I→ Type represents a line between two types. By iterating this, we
obtain squares, cubes and hypercubes of types making Agda inherently cubical. In order to
specify the endpoints of a line, we use path types:

PathP : (A : I → Type) → A i0 → A i1 → Type

As paths are functions, they are introduced as λ i → t : PathP A t[i0 / i] t[i1 / i]. Given
p : PathP A a0 a1, we can apply it to r : I and obtain p r : A r. Also, we always have that p i0
reduces to a0 and p i1 reduces to a1. The PathP types should be thought of as representing
heterogeneous equalities since the two endpoints are in different types; this is similar to
dependent paths in Book HoTT [38, Section 6.2]. Given A : Type, we define the type of
non-dependent paths in A using PathP as follows:

≡ : A → A → Type
≡ x y = PathP (λ _ → A) x y

Representing equalities as paths allows us to directly reason about equality. For instance,
the constant path λ i→ x represents a proof of reflexivity refl : {x : A} → x ≡ x. We can
also directly apply a function to a path in order to prove that dependent functions respect
path-equality, as shown in the definition of cong below:

cong : {B : A → Type} {x y : A} (f : (x : A) → B x) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y)
cong f p = λ i → f (p i)

We write cong2 for the binary version of cong; its proof is equally direct. These functions
satisfy the standard property that refl gets mapped to refl. They are also definitionally
functorial. The latter is an important difference to the corresponding operations defined using
path induction which only satisfy the functoriality equations up to a path. Path types also
let us prove new things that are not provable in standard Agda, e.g. function extensionality:

funExt : {B : A → Type} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g
funExt p i x = p x i

One of the key operations of type theoretic equality is transport: given a path between
types, we get a function between these types. In Cubical Agda, this is defined using another
primitive called transp. However, for this paper, the cubical transport function suffices:

transport : {A B : Type} → A ≡ B → A → B
transport p a = transp (λ i → p i) i0 a

The substitution principle, called “transport” in [38], is an instance of cubical transport:

subst : (B : A → Type) {x y : A} → x ≡ y → B x → B y
subst B p b = transport (λ i → B (p i)) b

This function invokes transport with a proof that the family B respects the equality p. By
combining transport and _∧_, we can define the induction principle for paths. However, an
important difference between path types in Cubical Agda and Book HoTT is that _≡_ does
not behave like an inductive type. In particular, the cubical path induction principle does
not definitionally satisfy the computation rule when applied to refl. Nevertheless, we can still
prove that this rule holds up to a path. This is a subtle, but important, difference between
cubical type theory and Book HoTT. Readers familiar with Book HoTT might be worried

G. Brunerie, A. Ljungström, and A. Mörtberg 11:5

that the failure of this equality to hold definitionally complicates many proofs. However, in
our experience, this is rarely the case, as many proofs that require path induction in Book
HoTT can be proved more directly using cubical primitives.

Cubical Agda also has a primitive operation hcomp for composing paths and, more
generally, for composing higher dimensional cubes. An important special case is binary
composition of paths _·_ : x ≡ y → y ≡ z → x ≡ z. By composing paths and higher cubes
using hcomp, we can reason about paths in a very direct way, avoiding path induction.

2.2 Important concepts from HoTT/UF in Cubical Agda
Pointed types and functions will play an important role in this paper. Formally, a pointed
type is a pair (A , ∗A) where A is a type with ∗A : A. We write Type∗ for the universe of
pointed types. Given A, B : Type∗, a pointed function is a pair (f , p) : A →∗ B, where
f : A→ B and p : f ∗A ≡ ∗B . We often leave ∗A and p implicit and write simply A : Type∗
and f : A→∗ B. We also sometimes just write A for the underlying type of A : Type∗.

Most HITs in [38] can be defined directly using the general schema of Cubical Agda. For
example, the circle and suspension HITs can be written as:

data S1 : Type where
base : S1
loop : base ≡ base

data Susp (A : Type) : Type where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south

Functions out of HITs are written using pattern-matching equations, just like regular
Agda functions. When typechecking the cases for path constructors, Cubical Agda checks
that the endpoints of what the user writes match up. We could directly define specific
higher spheres as HITs with a base point and a constructor for iterated paths. However, the
following definition is often easier to work with, as one can reason inductively about it:

▶ Definition 1 (Sn). The n-spheres are pointed types defined by recursion:

Sn =


(Bool , true) if n = 0
(S1 , base) if n = 1
(Susp Sn−1 , north) if n ≥ 2

We could equivalently have defined S1 = (Susp Bool , north), but in our experience, the
base/loop-construction is often easier to work with and gives faster computations.

Consistent with the intuition that types correspond to topological spaces (up to homotopy
equivalence), we may consider loop spaces of pointed types.

▶ Definition 2 (Loop spaces). Given a pointed type A : Type∗, we define its loop space as
the pointed type Ω A = (∗A ≡ ∗A , refl). For n : N, we let Ωn+1 A = Ω (Ωn A).

As an example of a non-trivial result which is proved using path induction in Book HoTT,
but which can be proved very concisely in Cubical Agda, consider the Eckmann-Hilton
argument. It says that path composition in higher loop spaces is commutative and can be
proved using a single transport with the unit laws for _·_ and some interval operations.

EH : {n : N} (p q : Ω^ (2 + n) A) → p · q ≡ q · p
EH p q = transport (λ i → (λ j → rUnit (p j) i) · (λ j → lUnit (q j) i)

≡ (λ j → lUnit (q j) i) · (λ j → rUnit (p j) i))
(λ i → (λ j → p (j ∧ ∼ i) · q (j ∧ i)) · (λ j → p (∼ i ∨ j) · q (i ∨ j)))

CSL 2022

11:6 Synthetic Integral Cohomology in Cubical Agda

A type A is not uniquely determined by its points – also (higher) paths in A have to be
taken into account. However, for some types, these paths become trivial at some point. We
define what this means formally as follows.

▶ Definition 3 (n-types). Given n ≥ −2, a type A is:
a (−2)-type if A is contractible (i.e. A is pointed by a unique point).
an (n + 1)-type if for all x, y : A, x ≡ y is an n-type.

We write n-Type for the universe of n-types (at some level ℓ).

Equivalently, we could have said that, for n ≥ −1, A is an n-type if Ωn+1A is contractible for
any choice of base point a : A. We follow HoTT/UF terminology and refer to (−1)-types as
propositions and 0-types as sets. A type is a proposition iff all of its elements are path-equal.

Sometimes we are only interested in the structure of a type A and its paths up to a
certain level n. That is, we want to turn A into an n-type while preserving the structure of
A for levels less than or equal to n. This can be achieved using the n-truncation HITs ∥A ∥n.
Just like for Sn, these are easily defined in Cubical Agda for fixed n, but for general n ≥ −2
we rely on the “hub and spoke” construction [38, Section 7.3].1 This construction introduces
a point constructor |_ | : A→ ∥A ∥n and constructors hub and spoke ensuring that any map
Sn+1 → ∥A ∥n is constant (thus contracting Ωn+1 ∥A ∥n). Using pattern-matching, we can
define the usual elimination principle which says: given B : ∥A ∥n → n-Type, in order to
construct an element of type B x, we may assume that x is of the form | a | for some a : A.
This extends to paths p : |x | ≡ | y | in ∥A ∥n+1. Suppose we have B : |x | ≡ | y | → n-Type
and want to construct B p. The elimination principle tells us that it suffices to do so when
p = cong |_ | q for q : x ≡ y in A. This is motivated by [38, Theorem 7.3.12].

Truncations allow us to talk about how connected a type is.

▶ Definition 4 (Connectedness). A type A is n-connected if ∥A ∥n is contractible.

Connectedness expresses in particular that |x | ≡ | y | holds in ∥A ∥n for all x, y : A of an
n-connected type A. This enables applications of the induction principle for truncated path
spaces discussed above. Most types in this paper are 0-connected. For such types, we can
assume that x≡ y holds for x, y : A whenever we are proving a family of propositions.

Another important class of HITs are pushouts. These correspond to homotopy pushouts
in topology. Given f : A→ B and g : A→ C, the pushout of the span B

f← A
g→ C is:

data Pushout (f : A → B) (g : A → C) : Type where
inl : B → Pushout f g
inr : C → Pushout f g
push : (a : A) → inl (f a) ≡ inr (g a)

Many types that we have seen so far can be defined as pushouts. For instance, Susp A is
equivalent to the pushout of the span 1← A→ 1. Another example is wedge sums:

▶ Definition 5 (Wedge sums). Given pointed types A and B, the wedge sum A∨B is the
pushout of the span A

λ x → ∗A←−−−−−− 1
λ x → ∗B−−−−−−→ B. This is pointed by inl ∗A.

1 For n = −2 this construction fails. In this case, simply let ∥ A ∥−2 = 1 where 1 is the unit type.

G. Brunerie, A. Ljungström, and A. Mörtberg 11:7

2.3 Univalence
One of the most important notions in HoTT/UF is Voevodsky’s univalence axiom [41].
Informally, this postulates that for all types A and B, there is a term

univalence : (A ≃ B) ≃ (A ≡ B)

Here, A ≃ B is the type of functions e : A→ B equipped with a proof that the fiber/preimage
of e is contractible at every x : B [38, Chapter 4.4]. This axiom is a provable theorem in
Cubical Agda using the Glue types of [14, Section 6]. This gives a function ua : A ≃ B →
A ≡ B which converts equivalences to paths. Transporting along a path constructed using
ua applies the function e of the underlying equivalence.

Equivalences A ≃ B are often constructed by exhibiting functions f : A → B and
g : B → A together with proofs that they cancel. Such a quadruple is referred to as a
quasi-equivalence in [38]. It is a corollary of [38, Theorem 4.4.5] that all quasi-equivalences
can be promoted to equivalences. This fact is used throughout the formalization and paper.

An important consequence of univalence is that it also applies to structured types. A
structure on types is simply a function S : Type → Type. By taking the dependent sum
of this, one obtains types with S-structures as pairs (A , s) : ΣA:Type (S A). One example
is the type of groups. This is defined as (G , isGroup G), where isGroup G is a structure
which consists of proofs that G is a set, is pointed by some 0G : G, admits a binary
operation +G, and satisfies the usual group laws. In [2], a notion of univalent structure
and structure preserving isomorphisms ∼=, for which it is direct to prove that ua induces a
function sip : A ∼= B → A ≡ B, are introduced in Cubical Agda. This is one way to formalize
the informal Structure Identity Principle (SIP) [38, Section 9.8]. One can show that isGroup
(with group isomorphism) is a univalent structure and that equivalences e : G ≃ H sending
+G to +H preserve this structure. In other words: sip implies that isomorphic groups are
path-equal.

3 Integral cohomology in Cubical Agda

In classical mathematics, the nth cohomology group with coefficients in an abelian group
G of a CW-complex X may be characterized as the group of homotopy classes of functions
X → K(G, n). Here, K(G, n) denotes the nth Eilenberg-MacLane space of G. That is,
K(G, n) is the unique space with a single non-trivial homotopy group isomorphic to G, i.e.
πn(K(G, n)) ∼= G and πm(K(G, n)) ∼= 1 for m ̸= n. While this is a theorem in classical
mathematics, we take it as our definition of the nth cohomology group of a type A:

Hn(A; G) = ∥A→ K(G, n) ∥0

This type will inherit the group structure2 from K(G, n) and the goal of this section is to
define this explicitly when G = Z. The group structure which we will define here differs
(intensionally) from previous variations in that it is optimized for efficient computations.

3.1 Eilenberg-MacLane spaces
The family of spaces K(G, n) was constructed as a HIT and proved to be an n-truncated
and (n− 1)-connected pointed type by Licata and Finster [26]. In this paper, we focus on
the case G = Z and define this special case following Brunerie [5, Def. 5.1.1]:

2 Technically, K(G, n) is a higher group – it is not a set, but satisfies all other group axioms.

CSL 2022

11:8 Synthetic Integral Cohomology in Cubical Agda

▶ Definition 6. The nth Eilenberg-MacLane space of Z, written Kn, is a pointed type:

Kn =
{

(Z , 0) if n = 0
(∥Sn ∥n , | ∗Sn |) if n ≥ 1

We write Hn(A) for Hn(A;Z) with Kn for K(Z, n). The type Kn is clearly n-truncated and
the fact that it is (n− 1)-connected follows from the following proposition.

▶ Proposition 7. Sn is (n− 1)-connected for n : N.

Proof. By the definition of (n − 1)-truncation, the map |_ | : Sn → ∥Sn ∥n−1 is constant.
Hence, ∥ Sn ∥n−1 has a trivial constructor and must be contractible. ◀

Note that, in particular, Kn is 0-connected for n > 0; it is an easy lemma that any m-
connected type is also k-connected for k < m. Alternatively, one may prove 0-connectedness
of Kn directly by truncation elimination and sphere elimination.

The above proof is much more direct than the one in [5, Prop. 2.4.2] which relies on
general results about connectedness of pushouts. The reason we prefer this more direct, but
less general proof, is that it computes much faster. The problem seems to be that the general
theory of connectedness heavily uses univalence. In particular, it relies on repeated use of
[38, Thm. 7.3.12] which says that the type of paths |x | ≡ | y | over ∥A ∥n+1 is equivalent to
the type of truncated paths ∥x ≡ y ∥n.

A more substantial deviation from [5] is in the definition of the group structure on
Kn. This is defined in [5, Prop. 5.1.4] using Kn ≃ Ω Kn+1 which itself is proved using the
Hopf fibration [38, Section 8.5] when n = 1 and the Freudenthal suspension theorem [38,
Section 8.6] when n ≥ 2. This gives rather indirect definitions of addition and negation
on Kn by going through Ω Kn+1. It turns out that these indirect definitions lead to slow
computations [28]. To circumvent this, we give a direct definition of the group structure on
Kn which in turn gives a direct proof that Kn ≃ Ω Kn+1 inspired by the proof that Ω S1 ≃ Z
of Licata and Shulman [27]. The strategy of first defining the group structure on Kn to then
prove that Ω Kn+1 ≃ Kn is similar to the one for proving the corresponding statements for
general K(G, n) in [26]. However, we deviate in that we avoid the Freudenthal suspension
theorem and theory about connectedness.

The neutral element of Kn is ∗Kn
and we denote it by 0k. In order to prove that Kn is a

(higher) group, we first define addition +k : Kn → Kn → Kn. The following lemma is the
key for doing this. It is a special case of [38, Lemma 8.6.2], but the proof does not rely on
general theory about connected types.

▶ Lemma 8. Let n, m ≥ 1 and suppose we have a fibration P : Sn × Sm → (n + m− 2)-Type
together with functions

f l : (x : Sn)→ P (x , ∗Sm) f r : (y : Sm)→ P (∗Sn , y)

and a path p : f l ∗Sn ≡ f r ∗Sm . There is a function f : (z : Sn × Sm)→ P z with paths

left : (x : Sn)→ f l x ≡ f (x , ∗Sm) right : (y : Sm)→ f r y ≡ f (∗Sn , y)

such that p ≡ left ∗Sn · (right ∗Sm)-1. Furthermore, either left or right holds definitionally
(modulo pattern matching on n and m).

Proof. By sphere induction on both Sn and Sm. For details, see the formalization. ◀

G. Brunerie, A. Ljungström, and A. Mörtberg 11:9

The general version of Lemma 8 is used for K(G, n) in [26]. The advantage of the above
form is the definitional reductions which follow from use of sphere induction in its proof.
Consequently, we may define +k so that e.g. 0k +k |x | ≡ |x | holds definitionally. This
allows for statements and proofs which would otherwise not be well-typed.

We define +k : Kn → Kn → Kn and -k : Kn → Kn by cases on n. When n = 0, these are
integer addition and negation. Otherwise, we consider the following cases:

When n = 1, we define +k and -k by cases:

base	+k	x	=	x
loop i	+k	base	=	loop i
loop i	+k	loop j	=	Q i j

-k | base | = | base |
-k | loop i | = | loop (∼ i) |

where Q is a suitable filler of a square with loop on all sides. The filler Q is easily defined
by an hcomp so that cong2 (λ x y → |x | +k | y |) loop loop ≡ cong |_ | (loop · loop) holds
definitionally. We will, from now on, with some abuse of notation, simply write loop for
the canonical loop in K1, i.e. cong |_ | loop.
When n ≥ 2, we need to construct a map Sn × Sn → Kn to define addition. Because
Kn is n-truncated, it is also an (n + n− 2)-Type. By Lemma 8, we are done if we can
provide two maps Sn → Kn and prove that they agree on ∗Sn . In both cases we choose
the truncation map λ x→ |x |. We then just need to prove that | ∗Sn | ≡ | ∗Sn |, which
we do by refl.
To construct -k, we send | north | and | south | to 0k and |merid a i | to σn a (∼ i). Here,
σn is the map from the Freudenthal equivalence [38, Section 8.6] defined by:

σn : Kn → Ω Kn+1

σn |x | = cong |_ | (merid x · (merid ∗Sn)-1)

The fact that +k and -k satisfy the group laws follows from Lemma 8. In fact, all group
laws either hold by refl or have proofs that are at least path-equal to refl at 0k. This in
turn simplifies many later proofs and improves the efficiency of computations. We write
lUnitk/rUnitk for the left/right unit laws and lCancelk/rCancelk for the left/right inverse laws.

The definition of +k for n ≥ 2 may seem naive. However, it provably agrees with the
definition given in [5, Prop. 5.1.4]. In fact, a simple corollary of Lemma 8 is that there is at
most one binary operation on Kn with lUnitk and rUnitk such that lUnitk 0k ≡ rUnitk 0k (i.e.
there is at most one h-structure [26, Def. 4.1] on Kn). The fact that this is satisfied by +k

holds by refl. The same result was proved for the addition of [5, Prop. 5.1.4] in [28].
The group structure on Kn allows us to extend the usual encode-decode proof that

Z ≃ Ω S1 (or, equivalently, K0 ≃ Ω K1) to Kn with n ≥ 1. We should note that a similar
proof was used in [26] in order to prove that G ≃ π1(K(G, 1)).

▶ Theorem 9. Kn ≃ Ω Kn+1

Proof. The proof is a direct encode-decode proof involving +k and σn. As usual, this proof
technique uses univalence. The details can be found in the formalization. ◀

In addition to this, the direct definition of +k gives a short proof that Ω Kn is commutative.

▶ Lemma 10. For n ≥ 1 and p, q : Ω Kn, we have p · q ≡ cong2 +k p q.

Proof. First, we remark that the statement is well-typed due to the definitional equality
0k +k 0k ≡ 0k. Recall, p, q : 0k ≡ 0k and cong2 +k p q is of type 0k +k 0k ≡ 0k +k 0k.

CSL 2022

11:10 Synthetic Integral Cohomology in Cubical Agda

Using this definitional equality, we may apply rUnitk and lUnitk pointwise to p and q:

p ≡ cong (λ x → x +k 0k) p q ≡ cong (λ y → 0k +k y) q

By functoriality of cong2, we get

p · q ≡ cong (λ x→ x +k 0k) p · cong (λ y → 0k +k y) q ≡ cong2 +k p q ◀

▶ Lemma 11. For n ≥ 1 and p, q : Ω Kn, we have cong2 +k p q ≡ cong2 +k q p.

Proof. By a very similar argument as in Lemma 10, but using commutativity of +k. ◀

▶ Theorem 12. Ω Kn is commutative with respect to path composition.

Proof. As Z is a set, this is trivial for n = 0. For n ≥ 1 it follows from Lemmas 10 and 11. ◀

An alternative proof of Theorem 12 can be found in [5, Prop. 5.1.4]. In that proof, one
first translates Ω Kn into Ω2 Kn−1, applies the Eckmann-Hilton argument and then translates
back. This translation back-and-forth is problematic from a computational point of view,
and the proof of Theorem 12 is more computationally efficient.

3.2 Group structure on Hn(A)
We now return to Hn(A) and define 0h = |λ x → 0k | together with the group operations:

| f | +h | g | = |λ x → f x +k g x | -h | f | = |λ x → -k f x |

The fact that (Hn(A), 0h, +h, -h) forms an abelian group follows immediately from the group
laws for Kn and funExt. We have also defined a reduced version of our cohomology theory and
proved that it satisfies the Eilenberg-Steenrod axioms [16]. We refer the interested reader
to the formalization for the statement and verification of these axioms. This allows us to
use abstract machinery to characterize cohomology groups of many spaces. However, in
order to obtain definitions with good computational properties, we often prefer giving direct
characterizations not relying on abstract results.

4 The cup product and cohomology ring

We will now equip the cohomology groups studied in the previous section with a multiplicative
structure ⌣ : Hn(A)→ Hm(A)→ Hn+m(A). This operation is called the cup product and
it turns the Hn(A) into a graded commutative ring H∗(A) called the cohomology ring of A.

4.1 Defining the cup product in Cubical Agda
The cup product ⌣ for Z-cohomology in HoTT/UF was introduced by Brunerie [5, Section
5.1]. The definition is induced from a pointed map Kn ∧Km →∗ Kn+m, where ∧ is the smash
product HIT. This HIT has proved to be surprisingly complex to reason about formally [6]
and we therefore consider an alternative definition of ⌣. The key observation in this
reformulation is the pointed equivalence of A∧B →∗ C and A →∗ B →∗ C proved in
HoTT/UF by van Doorn [39, Thm 4.3.8]. We hence construct ⌣ by first defining a pointed
map x ⌣k y : Kn → Km →∗ Kn+m by induction on n, thereby avoiding the smash product.
When n = 0, this map just adds y to itself x times and similarly when m = 0. When
n, m ≥ 1, the key lemma is:

G. Brunerie, A. Ljungström, and A. Mörtberg 11:11

▶ Lemma 13. The type Km →∗ Kn+m is an n-type.

Proof. This is a special case of [9, Corollary 4.3]. We have formalized a direct proof of this
special case which does not rely on any explicit connectedness arguments. ◀

Truncation elimination can hence be applied and we only need to define | a |⌣k y for a : Sn.

n = 1 :
| base |⌣k y = 0k

| loop i |⌣k y = σm y i

n ≥ 2 :
| north |⌣k y = 0k

| south |⌣k y = 0k

|merid a i |⌣k y = σ(n−1)+m (| a |⌣k y) i

The fact that λ y → x ⌣k y is pointed for x : Kn follows easily. In addition, we get
pointedness in x immediately by construction. With this simple definition, we can now define
the cup product ⌣ : Hn(A)→ Hm(A)→ Hn+m(A) analogously to +h by:

| f |⌣ | g | = |λ x → f x ⌣k g x |

4.2 The cohomology ring
We will now prove that ⌣ turns Hn(A) into a graded ring. First of all, as ⌣k is pointed
in both arguments, we get that x ⌣ 0h ≡ 0h ≡ 0h ⌣ y. Furthermore, it is easy to see that
1h = |λ x → 1 | in H0(A) is a unit for ⌣. The key lemma for proving properties of ⌣k is:

▶ Lemma 14. Given a pointed type A and two pointed functions (f, p), (g, q) : A→∗ Kn, we
have that if f ≡ g then (f, p) ≡ (g, q).

Proof. This is proved using a notion of homogeneous types, see the formalization. ◀

In order to increase readability, we omit transports in Propositions 15, 17, and 18. We
first verify that ⌣k distributes over +k.

▶ Proposition 15. For z : Kn and x, y : Km, we have z ⌣k (x +k y) ≡ z ⌣k x +k z ⌣k y

and (x +k y) ⌣k z ≡ x ⌣k z +k y ⌣k z.

Proof. We sketch the proof for left distributivity and focus on the case when n, m ≥ 1. We
want to show that λ z → z ⌣k (x +k y) and λ z → z ⌣k x +k z ⌣k y are equal as pointed
functions. This allows for truncation elimination on x and y by Lemma 13. Thus we want
to show that z ⌣k (| a | +k | b |) ≡ z ⌣k | a | +k z ⌣k | b | for a, b : Sm. We are proving an
(m− 1)-type and Lemma 8 applies. Hence we need to construct

fl : (a : Sn)→ z ⌣k (| a | +k 0k) ≡ z ⌣k | a | +k z ⌣k 0k

fr : (b : Sm)→ z ⌣k (0k +k | b |) ≡ z ⌣k 0k +k z ⌣k | b |

such that fl(∗Sn) ≡ fr(∗Sm). By Lemma 14, we only need to construct fl and fr for the
underlying functions. We get fl and fr by applications of lUnitk/rUnitk and the law of right
multiplication by 0k. Due to definitional equalities at 0k, fl(∗Sn) ≡ fr(∗Sm) holds by refl. ◀

In order to prove that ⌣k is associative, we need the following lemma:

▶ Lemma 16. Let n, m ≥ 1. For x : Kn and y : Km, σn+m(x ⌣k y) ≡ cong (⌣k y) (σn x).

Lemma 16 occurs in [5, Prop. 6.1.1], albeit for a different definition of ⌣. Interestingly,
Brunerie does not use it to prove associativity of ⌣k, but to construct the Gysin sequence.

CSL 2022

11:12 Synthetic Integral Cohomology in Cubical Agda

▶ Proposition 17. For x : Kn, y : Km and z : Kℓ, we have x ⌣k (y ⌣k z) ≡ (x ⌣k y) ⌣k z.

Proof. The proof is easy when one of n, m or ℓ is 0. When n, m, ℓ ≥ 1, we want to show that
λ z y → x ⌣k (y ⌣k z) and λ z y → (x ⌣k y) ⌣k z are equal as doubly pointed functions,
i.e. as terms of Km →∗ Kℓ →∗ Kn+m+ℓ. This is an n-type by repeated use of Lemma 13
and we may let x = | a | for a : Kn. We again only need to prove the underlying functions
equal. We do this by induction on n. For n = 1, the case a = base holds by refl. In the case
a = loop i, we need to prove that σm+ℓ(y ⌣k z) ≡ cong (⌣k z) (σm y) which is Lemma 16.
The n ≥ 2 case follows by an analogous argument using the inductive hypothesis. ◀

Finally, we can verify that ⌣k is graded commutative.

▶ Proposition 18. For x : Kn and y : Km, we have x ⌣k y ≡ -k
m·n (y ⌣k x).

Proof. The proof is by induction on n and m. Due to space constraints, we omit the base
cases and focus on the inductive step where n, m ≥ 2 (the case n = 1 and m ≥ 1 is close
to identical). We may assume as our inductive hypothesis that the statement holds for all
n′, m′ : N such that n′ + m′ < n + m. The proof boils down to showing that

λ i j → |merid a i |⌣k |merid b j | ≡ λ i j → -k
m·n (|merid b j |⌣k |merid a i |)

ignoring coherence paths and transports. Here, a : Sn−1 and b : Sm−1. We fix i and j and
give a rough outline of the argument. We have:

|merid a i |⌣k |merid b j | ≡ σn+m−1(| a |⌣k |merid b j |) i

≡ -k
m·(n−1) (σn+m−1(|merid b j |⌣k | a |) i)

≡ -k
m·(n−1) (σn+m−1(σn+m−2(| b |⌣k | a |) j) i)

≡ -k
m·(n−1)-k

(n−1)·(m−1) (σn+m−1(σn+m−2(| a |⌣k | b |) j) i)
≡ -k

n+1 (σn+m−1(σn+m−2(| a |⌣k | b |) j) i)
≡ -k

n+1 (σn+m−1(|merid a j |⌣k | b |) i)

≡ -k
n+1-k

(m−1)·n (σn+m−1(| b |⌣k |merid a j |) i)

≡ -k
n+1-k

(m−1)·n (|merid b i |⌣k |merid a j |)
≡ -k

m·n+1 (|merid b i |⌣k |merid a j |)
≡ -k

m·n (|merid b j |⌣k |merid a i |)

The above chain of equalities repeatedly uses that for a path p : Ω2 A, we have (λ i j →
p j i) ≡ p -1, and for a path q : Ω Kn, we have cong -k q ≡ q -1. The remaining steps are
just unfoldings of the definition of ⌣k and applications of the inductive hypothesis and
σn(-k x) ≡ cong -k (σn x). ◀

Although this informal argument is fairly direct, the formal version is much more technical
as we also have to verify that the proof sketched above respects the boundary constraints (i.e.
our choices of paths for the point constructors). As we also need to express many of these
equalities using PathP or transport (over paths in N), things become even more complicated.

The cup product ⌣ inherits the properties of ⌣k and we can hence organize Hn(A) into
a graded commutative ring H∗(A).

G. Brunerie, A. Ljungström, and A. Mörtberg 11:13

5 Characterizing integral cohomology groups

We will now characterize Hn(A) for A being the spheres, torus, Klein bottle, and real/complex
projective planes. The cases when Hn(A) ≃ 1 for n ≥ 1 are easy using connectedness
arguments (see the formalization). It is also an easy lemma that H0(X) ≃ Z if X is 0-
connected, which is the case for all types considered here. The main focus in this section will
hence be on the non-trivial Hn(A) with n ≥ 1. Furthermore, we only focus on the equivalence
parts of the characterizations, but we emphasize that all cases, including homomorphism
proofs, have been formalized.

5.1 Spheres
The key to characterizing the cohomology groups of Sn is the Suspension axiom for
cohomology. This axiom says that Hn(A) ≃ Hn+1 (Susp A) and a proof can be found
in the formalization. Recall that Sm+1 = SuspSm for m ≥ 1 and thus we have that
Hn+1(Sm+1)≃Hn(Sm).

▶ Proposition 19. Hn(Sn) ≃ Z for n ≥ 1.

Proof. By Suspension and induction, it suffices to consider the n = 1 case. We inspect the
underlying function space of H1(S1), i.e. S1 → K1. A map f : S1 → K1 is uniquely determined
by f base : K1 and cong f loop : f base ≡ f base. Thus, we have H1(S1) ≃ ∥

∑
x:K1

x ≡ x ∥0.
By a base change we get (x ≡ x) ≃ (0k ≡ 0k) for any x : K1. Hence

H1(S1) ≃ ∥K1 × Ω K1 ∥0 ≃ ∥K1 ∥0 × ∥Ω K1 ∥0 ≃ ∥Ω K1 ∥0 ≃ ∥ΩS1 ∥0 ≃ Z ◀

5.2 The torus
The torus HIT, T 2, is defined as follows:

data T2 : Type where
pt : T2

ℓ1 ℓ2 : pt ≡ pt
□ : PathP (λ i → ℓ2 i ≡ ℓ2 i) ℓ1 ℓ1

The constructor □ corresponds to the usual gluing diagram for constructing the torus in
classical topology as it identifies ℓ1 with itself over an identification of ℓ2 with itself. As
discussed in the introduction, proving T 2≃S1×S1 is easy in Cubical Agda. This allows us
to curry T 2 → Kn, which is the key step to prove Propositions 20 and 21.

▶ Proposition 20. H1(T 2) ≃ Z × Z

Proof. We inspect the underlying function space T 2 → K1, which is equivalent to S1 →(
S1 → K1

)
. From Proposition 19, we know that

(
S1 → K1

)
≃ K1 × Ω K1 ≃ K1 × Z. Hence

H1(T 2) ≃∥S1 → K1×Z ∥0≃∥S
1 → K1 ∥0×∥S

1 → Z ∥0
def≡H1(S1) ×H0(S1)≃Z×Z ◀

▶ Proposition 21. H2(T 2) ≃ Z

Proof. The underlying function space, post currying, is S1 → (S1 → K2). Like above, this is
(S1 → K2 × Ω K2) ≃ (S1 → K2 × K1) ≃

(
S1 → K2

)
×
(
S1 → K1

)
. Hence

H2(T 2) ≃ ∥ (S1 → K2
)
×
(
S1 → K1

)
∥0 ≃ H2(S1) × H1(S1) ≃ Z ◀

CSL 2022

11:14 Synthetic Integral Cohomology in Cubical Agda

5.3 The Klein bottle and real projective plane
The Klein bottle and real projective plane are also HITs, but with twists in □ just like in the
classical gluing diagrams:

data K2 : Type where
pt : K2

ℓ1 ℓ2 : pt ≡ pt
□ : PathP (λ i → ℓ2 (∼ i) ≡ ℓ2 i) ℓ1 ℓ1

data RP 2 : Type where
pt : RP 2

ℓ : pt ≡ pt
□ : ℓ ≡ ℓ −1

Note that □ for K 2 equivalently may be interpreted as the path ℓ2 · ℓ1 · ℓ2 ≡ ℓ1. To
characterize the cohomology groups of K 2, we need to understand their underlying function
spaces. It is easy to see that(

K 2 → Kn

)
≃
∑
x:Kn

∑
p,q:x ≡ x

(p · q · p ≡ q)

By Theorem 12, _·_ in Ω Kn is commutative, so (p · q · p ≡ q) ≃ (p · p ≡ refl). Hence

(
K 2 → Kn

)
≃
∑
x:Kn

(
(x ≡ x) ×

∑
p:x ≡ x

(p · p ≡ refl)
)

(1)

▶ Proposition 22. H1(K 2) ≃ Z

Proof. Note that for x : K1, we have that
∑

p:x ≡ x(p · p ≡ refl) ≃
∑

a:Z(a + a ≡ 0) ≃ 1.
This allows us to simplify (1) and get

H1(K 2) ≃ ∥K 2 → K1 ∥0 ≃ ∥
∑
x:K1

(x ≡ x) ∥0 ≃ H1(S1) ≃ Z ◀

▶ Lemma 23. For n : Z, define p : ∥
∑

x:K1
(x +k x ≡ 0k) ∥0 by p = | (0k , loopn) |. We have

p ≡ | (0k , refl) | if n is even and p ≡ | (0k , loop) | if n is odd.

▶ Proposition 24. H2(K 2) ≃ Z/2Z

Proof. Using 0-connectedness of K2 and (x ≡ x) for x : K2, it is easy to see that, by
truncating both sides of (1), we get

H2(K 2) ≃ ∥ ∑
p:Ω K2

(p · p ≡ refl) ∥0

Using the equivalence Ω K2 ≃ K1 and the fact that it takes path composition to addition,
this can be further simplified to ∥

∑
x:K1

(x +k x ≡ 0k) ∥0. It is easy to see that for any
p : ∥

∑
x:K1

(x +k x ≡ 0k) ∥0, we have that p ≡ | (0k , loopn) | for some n : N. We map p into
Z/2Z by sending it to 0 if n is even and 1 if n is odd. As an immediate consequence of
Lemma 23, this map must be an equivalence, and thus we are done. ◀

The attentive reader will have noticed that something reminiscent of the real projective
plane, RP 2, appears in both proofs in this section. We characterize Hn(RP 2) for n ≥ 1 by

∥RP 2 → Kn ∥0≃∥
∑
x:Kn

∑
p:x ≡ x

(p≡ p -1) ∥0≃∥
∑
x:Kn

∑
p:x ≡ x

(p · p≡ refl) ∥0≃∥
∑

p:Ω Kn

(p · p≡ refl) ∥0

When n is 1 or 2, this is precisely one of the types appearing in the proofs of Propositions 22
and 24 respectively, so H1(RP 2) ≃ 1 and H2(RP 2) ≃ Z/2Z.

G. Brunerie, A. Ljungström, and A. Mörtberg 11:15

5.4 The complex projective plane

We define the complex projective plane, CP 2, as the pushout of the span S2 h←− S3 → 1

where h is part of the Hopf fibration [38, Section 8.5]. The function space CP 2 → Kn is quite
hard to work with directly, so we settle for an indirect characterization of Hn(CP 2) via the
Mayer-Vietoris sequence (see the formalization). For n ≥ 2, this gives us an exact sequence:

Hn−1(S2)→ Hn−1(S3)→ Hn(CP 2)→ Hn(S2)→ Hn(S3)

For n ∈ {3, 5, 6, . . . }, we have that Hn(CP 2)≃1, as other groups in the sequence become
trivial. When n = 2, all groups but H2(S2) are trivial, and hence H2(CP 2)≃H2(S2)≃Z.
When n = 4, the only non trivial group is H3(S3), and hence we get H4(CP 2)≃H3(S3)≃Z.
A simple connectedness argument finally gives us that H1(CP 2)≃1.

6 Proving by computations in Cubical Agda

One of the appealing aspects of developing cohomology theory in Cubical Agda is that we can
prove properties purely by computation. This can discharge proof goals involving complex
path algebra as soon as the types are fully instantiated. For example, in Proposition 18 when
m = n = 1, the main subgoal involves compositions paths in Ω2 K2 which can be reduced
to a computation purely involving Z, using the equivalence Ω2 K2≃Z. As we have been
careful about proving things as directly as possible with efficient computations in mind, this
works quite well, but there are some cases which are surprisingly slow in Cubical Agda, and
we have collected some benchmarks at https://github.com/agda/cubical/blob/master/
Cubical/Experiments/ZCohomology/Benchmarks.agda.

Furthermore, we can use the fact that the isomorphisms compute to establish that some
types cannot be equivalent. This is the case for all spaces in the previous section, as they
have different cohomology groups. However, there are some spaces where it is not enough to
only look at the cohomology groups. We have proved that our cohomology theory satisfies the
Binary Additivity axiom which says that Hn(A∨B)≃Hn(A)×Hn(B). So we can easily
prove that S2 ∨S1 ∨S1 has the same cohomology groups as T 2. However, these two types are
not equivalent and the standard way to prove this is to use the cup product. We can do this
traditional proof computationally in Cubical Agda by defining a predicate P : Type→ Type
by P (A) = (x y : H1(A))→ x ⌣ y ≡ 0h and show that P (S2 ∨S1 ∨S1) holds while P (T 2)
does not. In Cubical Agda, we have defined isomorphisms:

f1 : H1(T 2)∼=Z × Z
f2 : H2(T 2)∼=Z

g1 : H1(S2 ∨ S1 ∨S1)∼=Z × Z
g2 : H2(S2 ∨ S1 ∨S1)∼=Z

To disprove P (T 2) we need x, y : H1(T 2) such that x ⌣ y ̸≡ 0h. Let x = f−1
1 (0, 1) and

y = f−1
1 (1, 0). In Cubical Agda, f2(x ⌣ y)≡ 1 holds by refl and thus x ⌣ y ̸≡ 0h. It

remains to prove P (S2 ∨ S1 ∨S1). Let x, y : H1(S2 ∨S1 ∨S1). In Cubical Agda, we have that
g2(g−1

1 (g1 x) ⌣ g−1
1 (g1 y)) ≡ 0, again by refl, and thus g−1

1 (g1 x) ⌣ g−1
1 (g1 y) ≡ x ⌣ y ≡ 0h.

For a more ambitious example, consider [5, Chapter 6]. This is devoted to proving, using
sophisticated techniques like the Gysin sequence, that the generator e : H2(CP 2) when
multiplied with itself yields a generator of H4(CP 2). Let g : Z→ Z be the map described by

Z
∼=−→ H2(CP 2) λ x→x ⌣ x−−−−−−−→ H4(CP 2)

∼=−→ Z

The number g(1) should reduce to ±1 for e ⌣ e to generate H4(CP 2) and by evaluating it
in Cubical Agda we should be able to reduce the whole chapter to a single computation.
However, Cubical Agda is currently stuck on computing g(1). This number can hence be

CSL 2022

https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda
https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda

11:16 Synthetic Integral Cohomology in Cubical Agda

seen as another “Brunerie number” – a mathematically interesting number which is currently
infeasible to compute using an implementation of cubical type theory. This computation
should be more feasible than the original Brunerie number. As our definition of ⌣ produces
very simple terms, most of the work has to occur in the two isomorphisms, and we are
optimistic that future optimizations will allow us to perform this computation.

7 Conclusions

We have developed multiple classical results from cohomology theory synthetically in Cubical
Agda. This has led to new and more direct constructive proofs than what already existed
in the HoTT/UF literature. Furthermore, Section 4 contains the first fully formalized
verification of the graded commutative ring axioms for Z-cohomology. The key to this is the
new definition of ⌣ which avoids the smash product. The synthetic characterizations of
the cohomology groups of K 2 and RP 2 are also novel. The proofs have been constructed
with computational efficiency in mind, allowing us to make explicit computations involving
several non-trivial cohomology groups. In particular, the number g(1) is another “Brunerie
number” which should be more feasible to compute, and its computation would allow us to
reduce the complex proofs of [5, Chapter 6] to a single computation. This is hence a new
challenge for future improvements of Cubical Agda and related systems like cooltt [37].

Related and future work

In addition to the related work already mentioned in the paper, there is some related prior
work in Cubical Agda. Qian [32] formalized K(G, 1) as a HIT, following [26], and proved
that it satisfies π1(K(G, 1)) ≡ G. Alfieri [1] and Harington [18] formalized K(G, 1) as the
classifying space BG using G-torsors. Using this, H1(S1;Z) ≡ Z was proved – however,
computing using the maps in this definition proved to be infeasible. It is not clear where
the bottlenecks are, but we emphasize that with the definitions in this paper, there are no
problems computing with this cohomology group.

Certified computations of homology groups using proof assistants have been considered
prior to HoTT/UF. For instance, the Coq system [36] has been used to compute homology [21]
and persistent homology [20] with coefficients in a field. This was later extended to homology
with Z-coefficients in [10]. The approach in these papers was entirely algebraic and spaces
were represented as simplicial complexes. However, a synthetic approach to homology in
HoTT/UF was developed informally by Graham [17] using stable homotopy groups. This
was later extended with a proof of Hurewicz theorem by Christensen and Scoccola [13]. It
would be interesting to see if this could be made formal in Cubical Agda so that we can also
characterize and compute with homology groups.

The definition of H∗(A) in HoTT/UF is due to Brunerie [5, Chapter 5.1]. Here, however,
⌣ relies on the smash product which has proved very complex to reason about formally [6].
Despite this, Baumann generalized this to Hn(X; G) and managed to formalize graded
commutativity in HoTT-Agda [4]. Baumann’s formal proof of this property is ∼ 5000 LOC
while our formalization is just ∼ 900 LOC. This indicates that it would be infeasible to
formalize other algebraic properties of H∗(A) with this definition. Associativity seems
particularly infeasible, but with our definition the formal proof is only ∼ 200 LOC. However,
this comparison should be taken with a grain of salt as Baumann proves the result for
Hn(X; G). Nevertheless, we conjecture that our constructions should be relatively easy to
generalize to cohomology with coefficients in an arbitrary group.

G. Brunerie, A. Ljungström, and A. Mörtberg 11:17

References
1 Victor Alfieri. Formalisation de notions de théorie des groupes en théorie cubique des types,

2019. Internship report, supervised by Thierry Coquand.
2 Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing representation

independence with univalence. Proc. ACM Program. Lang., 5(POPL), January 2021. doi:
10.1145/3434293.

3 Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types. Math-
ematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55, January 2009.
doi:10.1017/S0305004108001783.

4 Tim Baumann. The cup product on cohomology groups in homotopy type theory. Master’s
thesis, University of Augsburg, 2018.

5 Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD thesis,
Université Nice Sophia Antipolis, 2016. arXiv:1606.05916.

6 Guillaume Brunerie. Computer-generated proofs for the monoidal structure of the smash
product. Homotopy Type Theory Electronic Seminar Talks, November 2018. URL: https:
//www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html.

7 Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Tim Baumann, Eric Finster,
Jesper Cockx, Christian Sattler, Chris Jeris, Michael Shulman, et al. Homotopy Type Theory
in Agda, 2018. URL: https://github.com/HoTT/HoTT-Agda.

8 Ulrik Buchholtz and Kuen-Bang Hou Favonia. Cellular Cohomology in Homotopy Type
Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 521–529, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3209108.3209188.

9 Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. Higher Groups in Homotopy Type
Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 205–214, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3209108.3209150.

10 Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg, and Vincent Siles. Formalized
Linear Algebra over Elementary Divisor Rings in Coq. Logical Methods in Computer Science,
12(2), 2016. doi:10.2168/LMCS-12(2:7)2016.

11 Evan Cavallo. Synthetic Cohomology in Homotopy Type Theory. Master’s thesis, Carnegie
Mellon University, 2015.

12 Evan Cavallo and Robert Harper. Higher Inductive Types in Cubical Computational Type
Theory. Proceedings of the ACM on Programming Languages, 3(POPL):1:1–1:27, January
2019. doi:10.1145/3290314.

13 J. Daniel Christensen and Luis Scoccola. The Hurewicz theorem in Homotopy Type Theory,
2020. Preprint. arXiv:2007.05833.

14 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,
2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2015.
5.

15 Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Inductive Types in
Cubical Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, pages 255–264, New York, NY, USA, 2018. ACM. doi:
10.1145/3209108.3209197.

16 Samuel Eilenberg and Norman Steenrod. Foundations of Algebraic Topology. Foundations of
Algebraic Topology. Princeton University Press, 1952.

17 Robert Graham. Synthetic Homology in Homotopy Type Theory, 2018. Preprint. arXiv:
1706.01540.

CSL 2022

https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1017/S0305004108001783
http://arxiv.org/abs/1606.05916
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://github.com/HoTT/HoTT-Agda
https://doi.org/10.1145/3209108.3209188
https://doi.org/10.1145/3209108.3209150
https://doi.org/10.2168/LMCS-12(2:7)2016
https://doi.org/10.1145/3290314
http://arxiv.org/abs/2007.05833
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
http://arxiv.org/abs/1706.01540
http://arxiv.org/abs/1706.01540

11:18 Synthetic Integral Cohomology in Cubical Agda

18 Elies Harington. Groupes de cohomologie en théorie des types univalente, 2020. Internship
report, supervised by Thierry Coquand.

19 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. URL: https://pi.
math.cornell.edu/~hatcher/AT/AT.pdf.

20 Jónathan Heras, Thierry Coquand, Anders Mörtberg, and Vincent Siles. Computing Persistent
Homology Within Coq/SSReflect. ACM Transactions on Computational Logic, 14(4):1–26,
2013. doi:10.1145/2528929.

21 Jónathan Heras, Maxime Dénès, Gadea Mata, Anders Mörtberg, María Poza, and Vincent
Siles. Towards a Certified Computation of Homology Groups for Digital Images. In Proceedings
of the 4th International Conference on Computational Topology in Image Context, CTIC’12,
pages 49–57, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-30238-1_6.

22 Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine. A
Mechanization of the Blakers-Massey Connectivity Theorem in Homotopy Type Theory. In
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, pages 565–574, New York, NY, USA, 2016. ACM. doi:10.1145/2933575.2934545.

23 Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kampen Theorem in
Homotopy Type Theory. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2016.22.

24 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Founda-
tions (after Voevodsky). Journal of the European Mathematical Society, 23:2071–2126, March
2021. doi:10.4171/JEMS/1050.

25 Daniel R. Licata and Guillaume Brunerie. A Cubical Approach to Synthetic Homotopy
Theory. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’15, pages 92–103, Washington, DC, USA, 2015. IEEE Computer Society.
doi:10.1109/LICS.2015.19.

26 Daniel R. Licata and Eric Finster. Eilenberg-MacLane Spaces in Homotopy Type Theory.
In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2603088.2603153.

27 Daniel R. Licata and Michael Shulman. Calculating the Fundamental Group of the Circle
in Homotopy Type Theory. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’13, pages 223–232, Washington, DC, USA, 2013. IEEE
Computer Society. doi:10.1109/LICS.2013.28.

28 Axel Ljungström. Computing Cohomology in Cubical Agda. Master’s thesis, Stockholm
University, 2020.

29 Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E. Rose and J. C.
Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 73–118. North-Holland, 1975. doi:10.1016/S0049-237X(08)71945-1.

30 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

31 Anders Mörtberg and Loïc Pujet. Cubical Synthetic Homotopy Theory. In Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020, pages 158–171, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3372885.3373825.

32 Zesen Qian. Towards Eilenberg-MacLane Spaces in Cubical Type Theory. Master’s thesis,
Carnegie Mellon University, 2019.

33 Michael Shulman. Cohomology, 2013. Post on the Homotopy Type Theory blog: http:
//homotopytypetheory.org/2013/07/24/.

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.1145/2528929
https://doi.org/10.1007/978-3-642-30238-1_6
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.4230/LIPIcs.CSL.2016.22
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1109/LICS.2015.19
https://doi.org/10.1145/2603088.2603153
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1145/3372885.3373825
http://homotopytypetheory.org/2013/07/24/
http://homotopytypetheory.org/2013/07/24/

G. Brunerie, A. Ljungström, and A. Mörtberg 11:19

34 Kristina Sojakova. The Equivalence of the Torus and the Product of Two Circles in Homotopy
Type Theory. ACM Transactions on Computational Logic, 17(4):29:1–29:19, November 2016.
doi:10.1145/2992783.

35 The Agda Development Team. The Agda Programming Language, 2021. URL: http://wiki.
portal.chalmers.se/agda/pmwiki.php.

36 The Coq Development Team. The Coq Proof Assistant, 2021. URL: https://www.coq.inria.
fr.

37 The RedPRL Development Team. The cooltt proof assistant, 2021. URL: https://github.
com/RedPRL/cooltt/.

38 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. Self-published, Institute for Advanced Study, 2013. URL: https://
homotopytypetheory.org/book/.

39 Floris van Doorn. On the Formalization of Higher Inductive Types and Synthetic Homotopy
Theory. PhD thesis, Carnegie Mellon University, May 2018. arXiv:1808.10690.

40 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A Dependently Typed
Programming Language with Univalence and Higher Inductive Types. Proceedings of the ACM
on Programming Languages, 3(ICFP):87:1–87:29, August 2019. doi:10.1145/3341691.

41 Vladimir Voevodsky. The equivalence axiom and univalent models of type theory, February
2010. Notes from a talk at Carnegie Mellon University. URL: http://www.math.ias.edu/
vladimir/files/CMU_talk.pdf.

42 Vladimir Voevodsky. An experimental library of formalized mathematics based on the
univalent foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.
doi:10.1017/S0960129514000577.

CSL 2022

https://doi.org/10.1145/2992783
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.coq.inria.fr
https://www.coq.inria.fr
https://github.com/RedPRL/cooltt/
https://github.com/RedPRL/cooltt/
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
http://arxiv.org/abs/1808.10690
https://doi.org/10.1145/3341691
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
https://doi.org/10.1017/S0960129514000577

	1 Introduction
	2 Homotopy Type Theory in Cubical Agda
	2.1 Important notions in Cubical Agda
	2.2 Important concepts from HoTT/UF in Cubical Agda
	2.3 Univalence

	3 Integral cohomology in Cubical Agda
	3.1 Eilenberg-MacLane spaces
	3.2 Group structure on H^n(A)

	4 The cup product and cohomology ring
	4.1 Defining the cup product in Cubical Agda
	4.2 The cohomology ring

	5 Characterizing integral cohomology groups
	5.1 Spheres
	5.2 The torus
	5.3 The Klein bottle and real projective plane
	5.4 The complex projective plane

	6 Proving by computations in Cubical Agda
	7 Conclusions

