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Abstract
In this work we propose a formal system for fuzzy algebraic reasoning. The sequent calculus we define
is based on two kinds of propositions, capturing equality and existence of terms as members of a fuzzy
set. We provide a sound semantics for this calculus and show that there is a notion of free model for
any theory in this system, allowing us (with some restrictions) to recover models as Eilenberg-Moore
algebras for some monad. We will also prove a completeness result: a formula is derivable from
a given theory if and only if it is satisfied by all models of the theory. Finally, leveraging results
by Milius and Urbat, we give HSP-like characterizations of subcategories of algebras which are
categories of models of particular kinds of theories.
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1 Introduction

One of the most fruitful and influential lines of research of Logic in Computer Science is
the algebraic study of computation. After Moggi’s seminal work [18] showed that notions of
computation can be represented as monads, Plotkin and Power [21] approached the problem
using operations and equations, i.e., Lawvere theories. Since then, various extensions of the
notion of Lawvere theory have been introduced in order to accommodate an ever increasing
number of computational notions within this framework; see, e.g., [22, 11, 20], and more
recently [3, 4] for quantitative algebraic reasoning for probabilistic computations.

Along this line of research, in this work we study algebraic reasoning on fuzzy sets.
Algebraic structures on fuzzy sets are well known since the seventies (see e.g., [24, 16, 1, 19]).
Fuzzy sets are very important in computer science, with applications ranging from pattern
recognition to decision making, from system modeling to artificial intelligence. So, one may
wonder if it is possible to use an approach similar to above for fuzzy algebraic reasoning.

In this paper we answer positively to this question. We propose a sequent calculus based
on two kind of propositions, one expressing equality of terms and the other the existence of a
term as a member of a fuzzy set. These sequents have a natural interpretation in categories of
fuzzy sets endowed with operations. This calculus is sound and complete for such a semantics:
a formula is satisfied by all the models of a given theory if and only if it is derivable from it.

It is possible to go further. Both in the classical and in the quantitative settings there is a
notion of free model for a theory; we show that is also true for theories in our formal system
for fuzzy sets. In general the category of models of a given theory will not be equivalent
to the category of Eilenberg-Moore algebras for the induced monad, but we will show that
this equivalence holds for theories with sufficiently simple axioms. Finally we will use the
techniques developed in [17] to prove two results analogous to Birkhoff’s theorem.
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Synopsis. In Section 2 we recall the category Fuz(H) of fuzzy sets over a frame H. Section 3
introduces the syntax and the rules of fuzzy theories. Then, in Section 4 we introduce the
notions of algebras for a signature and of models for a theory; in this section we will also
show that the calculus proposed is sound and complete. Section 5 is devoted to free models
and it is shown that if a theory is basic then its category of models arose as the category of
Eilenberg-Moore algebras for a monad on Fuz(H). In Section 6 we use the results of [17] to
prove two HSP-like theorems for our calculus. Finally, Section 7 draws some conclusions and
directions for future work. Complete proofs are in the extended version [8].

2 Fuzzy sets

In this section we will recall the definition and some well-known properties of the category of
fuzzy sets over a frame H (i.e. a complete Heyting algebra [12]).

▶ Definition 2.1 ([26, 27]). Let H be a frame. A H-fuzzy set is a pair (A,µA) consisting in
a set A and a membership function µA : A → H. The support of µA is the set supp(A,µA)
of elements x ∈ A such that µA(x) ̸= ⊥. An arrow f : (A,µA) → (B,µB) is a function
f : A → B such that µA(x) ≤ µB(f(x)) for all x ∈ A.

We denote by Fuz(H) the category of H-fuzzy sets and their arrows. We will often drop
the explicit reference to the frame H when there is no danger of confusion.

▶ Proposition 2.2. For any frame H, the forgetful functor V : Fuz(H) → Set has both a
left and a right adjoint ∇ and ∆ endowing a set X with the function constantly equal to the
bottom and the top element of H, respectively.

Proof. If ∇(X) and ∆(X) are, respectively (X, c⊥) and (X, c⊤), where c⊥ and c⊤ are the
functions X → H constant in ⊥ and ⊤, then for any X ∈ Set, idX : V (∆(X)) = X → X =
V (∇(X)) is the counit of V ⊣ ∆ and the unit of ∇ ⊣ V . ◀

▶ Definition 2.3. Let e : A → B and m : C → D be two arrows in a category C, we say
that m has the left lifting property with respect to e if for any two arrows f : A → C and
g : B → D such that m ◦ f = g ◦ e there exists a unique k : B → C with m ◦ k = g.

A strong monomorphism is an arrow m which has the left lifting property with respect to
all epimorphisms.

▶ Proposition 2.4. Let f : (A,µA) → (B,µB) be an arrow of Fuz(H), then:
1. f is a monomorphism iff it is injective; f is an epimorphism iff it is surjective;
2. f is a strong monomorphism iff it is injective and µB(f(x)) = µA(x) for all x ∈ A;
3. f is a split epimorphism iff for any b ∈ B there exists ab ∈ f−1(b) such that µB(b) =

µA(ab).

▶ Definition 2.5 ([13]). A proper factorization system on a category C is a pair (E ,M )
given by two classes of arrows such that:

E and M are closed under composition;
every isomorphism belongs to both E and M ;
every e ∈ E is an epimorphism and every m ∈ M is a monomorphism;
every m ∈ M has the left lifting property with respect to every e ∈ E ;
every arrow of C is equal to m ◦ e for some m ∈ M and e ∈ E .

▶ Lemma 2.6. For any frame H, Fuz(H) has all products. Moreover the classes of
epimorphisms and strong monomorphisms form a proper factorization system on it.
▶ Remark 2.7. Completeness and the existence of both adjoints to V can be deduced directly
from the fact that Fuz(H) is topological over Set [26, Prop. 71.3].
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3 Fuzzy Theories

In this section we introduce the syntax and logical rules of fuzzy theories. The first step is
to introduce an appropriate notion of signature. Differently from usual signatures, in fuzzy
theories constants cannot be seen simply as 0-arity operations, because , as we will see in
Section 4, these are interpreted as fuzzy morphisms from the terminal object, and these
correspond only to elements whose membership degree is ⊤.

▶ Definition 3.1. A signature Σ = ()O, ar, C) is a set O of operations with an arity function
ar : O → N+ and a set C of constants. Signatures form a category Sign in which an arrow
Σ1 = (O1, ar1, C1) → Σ2 = (O2, ar2, C2) is a pair F = (F1, F2) of functions: F1 : O1 → O2
and F2 : C1 → C2 with the property that ar2 ◦ F1 = ar1.

An algebraic language L is a pair (Σ, X) where Σ is a signature and X a set. The
category Lng of algebraic languages is just Sign × Set.

▶ Example 3.2. The signature of semigroups ΣS in which O = {·}, ar(·) = 2 and C = ∅.

▶ Example 3.3. The signature of groups ΣG is equal to ΣS plus an operation (−)−1 of arity
1 and a constant e.

Given a language L we can inductively apply the operations to the set of variables to construct
terms, and once terms are built we can introduce equations.

▶ Definition 3.4. Given a language L = (Σ, X), the set L-Terms is the smallest set s.t.
X ⊔ C ⊂ L-Terms;
if f ∈ O and t1, . . . , tar(f) ∈ L-Terms then f

(
t1, . . . , tar(f)

)
∈ L-Terms.

▶ Proposition 3.5. There exists a functor Terms : Lng → Set sending L to L-Terms.

▶ Definition 3.6 (Formulae). For any language L we define the sets Eq(L) of equations as
the product Eq(L) := L-Terms × L-Terms and the set M(L) of membership propositions as
M(L) := H × L-Terms. We will write s ≡ t for (s, t) ∈ Eq(L) and E(l, t) for (l, t) ∈ M(L).
The set Form(L) of formulae is then defined as Eq(L) ⊔ M(L).

Clearly, a proposition s ≡ t means “s and t are equivalent and hence interchangeable”; on
the other hand, E(l, t) intuitively means “the degree of existence of t is at least l”.

▶ Definition 3.7 (Sequent ant fuzzy theory). A sequent Γ ⊢ ψ is an element (Γ, ψ) of
Seq(L) := P(Form(L)) × Form(L), where P is the (covariant) power set functor. A fuzzy
theory in the language L is a subset Λ ⊂ Seq(L) and we will use Th(L) for the set P(Seq(L)).

▶ Notation. We will write ⊢ ϕ for ∅ ⊢ ϕ.
For any function σ : X → L-Terms and t ∈ L-Terms we denote t[σ] the term obtained

substituting σ(x) to any occurence of x in t. Moreover, for any formula ϕ ∈ Form(L) we define
ϕ[σ] as t[σ] ≡ s[σ] if ϕ is t ≡ s or as E(l, t[σ]) if ϕ is E(l, t). Finally, given Γ ⊂ P(Form(L))
we put Γ[σ] := {ϕ[σ] | ϕ ∈ Γ}.

▶ Definition 3.8. For any L, the fuzzy sequent calculus is given by the rules in Figure 1.
Given a fuzzy theory Λ, its deductive closure Λ⊢ is the smallest subset of Seq(L) which

contains Λ and it is closed under the rules of fuzzy sequent calculus. A sequent is derivable
from Λ (or simply derivable if Λ = ∅) if it belongs to Λ⊢. We will write ⊢Λ ϕ if ⊢ ϕ ∈ Λ⊢.

Finally we say that two theories Λ and Θ are deductively equivalent if Λ⊢ = Θ⊢.

CSL 2022
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ϕ ∈ Γ
Γ ⊢ ϕ

A
Γ ⊢ ϕ

Γ ∪ ∆ ⊢ ϕ
Weak

{Γ ⊢ ϕ | ϕ ∈ Φ} Φ ⊢ ψ

Γ ⊢ ψ
Cut

Γ ⊢ s ≡ s
Refl

Γ ⊢ s ≡ t

Γ ⊢ t ≡ s
Sym

Γ ⊢ s ≡ t Γ ⊢ t ≡ u

Γ ⊢ t ≡ u
Trans

σ : X → L-Terms Γ ⊢ ψ

Γ[σ] ⊢ ψ[σ]
Sub

f ∈ O {Γ ⊢ ti ≡ si}ar(f)
i=1

Γ ⊢ f
(
t1, . . . , tar(f)

)
≡ f

(
s1, . . . , sar(f)

) Cong

Γ ⊢ E(⊥, t)
Inf

Γ ⊢ E(l, t)
Γ ⊢ E(l ∧ l′, t)

Mon
{Γ ⊢ E(li, ti)}ar(f)

i=1

Γ ⊢ E
(
inf ({li}n

i=1), f
(
t1, . . . , tar(f)

)) Exp

S ⊂ H {Γ ⊢ E(l, t)}l∈S

Γ ⊢ E(sup(S), t)
Sup

Γ ⊢ t ≡ s Γ ⊢ E(l, t)
Γ ⊢ E(l, s)

Fun

Figure 1 Derivation rules for the fuzzy sequent calculus.

The next result shows how maps between languages are lifted to theories.

▶ Proposition 3.9. For any F : L1 → L2 arrow of Lng:
1. there exists a Galois connection F∗ ⊣ F∗ between (Th(L1),⊂) and (Th(L2),⊂);
2. F∗

(
Λ⊢

1
)

⊂ (F∗(Λ1))⊢ and (F∗(Λ2))⊢ ⊂ F∗(
Λ⊢

2
)

for any Λ1 ∈ Th(L1) and Λ2 ∈ Th(L2).

Usually, logics enjoy the so-called “deduction lemma”, which allows us to treat elements
of a theory on a par with assumptions in sequents. In fuzzy theories, this holds in a slightly
restricted form, as proved next.

▶ Lemma 3.10 (Partial deduction lemma). Let Λ be in Th(L) and Γ ∈ P(Form(L)), let also
Λ[Γ] be the theory Λ ∪ {∅ ⊢ ϕ | ϕ ∈ Γ}. Then the following are true:
1. Γ ∪ ∆ ⊢ ψ in Λ⊢ implies ∆ ⊢ ψ in (Λ[Γ])⊢;
2. if ∆ ⊢ ψ is derivable from Λ[Γ] without using rule Sub then Γ ∪ ∆ ⊢ ψ is in Λ⊢.

Proof.
1. By hypothesis Γ ∪ ∆ ⊢ ψ is in Λ⊢ then, since Λ ⊂ Λ[Γ], it is also in (Λ[Γ])⊢. Now, for

any ϕ ∈ Γ and θ ∈ ∆ rules Weak and A give

⊢ ϕ

∆ ⊢ ϕ
Weak

∆ ⊢ θ
A

so {∆ ⊢ ϕ | ϕ ∈ Γ ∪ ∆} is contained in (Λ[Γ])⊢ and we can apply Cut to get the thesis:

{∆ ⊢ ϕ | ϕ ∈ Γ ∪ ∆} Γ ∪ ∆ ⊢ ψ

∆ ⊢ ψ
Cut

2. Let us proceed by induction on a derivation of ∆ ⊢ ψ from Λ[Γ].
If ∆ ⊢ ψ ∈ Λ[Γ] then or ∆ ⊢ ψ ∈ Λ and we are done, or ψ ∈ Γ and we can conclude
since Γ ∪ ∆ ⊢ ϕi is in Λ⊢ by rules A and Weak
If ∆ ⊢ ψ follows from the application of one of the rules A, Inf or Refl then it
belongs to the closure of any theory, by Weak this is true even for Γ ∪ ∆ ⊢ ψ which,
in particular, it belongs to Λ⊢.
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Suppose that ∆ ⊢ ψ comes from an application of Weak, then there exists Ψ and Φ
such that Ψ ∪ Φ = ∆ and Ψ ⊢ ϕ is in (Λ[Γ])⊢. By inductive hypothesis we have the
following derivation of Γ ∪ ∆ ⊢ ψ from Λ:

Γ ∪ Ψ ⊢ ψ

Γ ∪ Ψ ∪ Φ ⊢ ψ
Weak

If ∆ ⊢ ψ is derived with an application of Cut as last rule then there exists a
set Θ such that {∆ ⊢ θ | θ ∈ Θ} ∪ {Θ ⊢ ψ} ⊆ (Λ[Γ])⊢, therefore, by the inductive
hypothesis, we have that {Γ ∪ ∆ ⊢ θ | θ ∈ Θ} ∪ {Γ ∪ Θ ⊢ ψ} is conteined in Λ⊢. Now,
{Γ ∪ ∆ ⊢ ϕ | ϕ ∈ Γ ∪ Θ} ⊂ Λ⊢ by rule A so an application of Cut gives the thesis:

{Γ ∪ ∆ ⊢ ϕ | ϕ ∈ Γ ∪ Θ} Γ ∪ Θ ⊢ ψ

Γ ∪ ∆ ⊢ ψ
Cut

Any other rule is of the form

{Ψ ⊢ ξj}j∈J

Ψ ⊢ ξ
R

therefore, if ∆ ⊢ ψ is derived with an application of one of this rules then the set
of its premises must be an element of (Λ[Γ])⊢ of type {∆ ⊢ ξj}j∈J , so by inductive
hypothesis {Γ ∪ ∆ ⊢ θj}j∈J ⊆ Λ⊢ and then the thesis is witnessed by

{Γ ∪ ∆ ⊢ ξj}j∈J

Γ ∪ ∆ ⊢ ψ
R

◀

▶ Example 3.11. Our first set of running examples is inspired by [19]. Let ΣS be the
signature of semigroups and X a countable set. The theory of fuzzy semigroups ΛS is simply
the usual theory of semigroups, i.e given by the sequent (using infix notation)

⊢ (x · y) · z ≡ x · (y · z)

We get the theory of left ideal ΛLI if we add the axioms (one for any l ∈ L):

E(l, y) ⊢ E(l, x · y)

Similarly the theory ΛRI of right ideal is obtained from the axioms:

E(l, x) ⊢ E(l, x · y)

Finally we get the theory of (bilateral) ideal ΛI taking the union of the above theories.

▶ Example 3.12 ([24, 1, 2]). Let ΣG be the signature of groups and X a countable set. The
theory ΛG of fuzzy groups is simply the usual theory of groups, i.e that given by the sequents

⊢ x · x−1 ≡ e ⊢ x−1 · x ≡ e ⊢ e · x ≡ x ⊢ x · x ≡ x ⊢ (x · y) · z ≡ x · (y · z)

We get the theory ΛN of normal fuzzy groups ([16]) if we add the axioms:

E(l, x) ⊢ E
(
l, y · (x · y−1)

)
It can be shown that the sequents E(l, x) ⊢ E(l, e) and E

(
l, y · (x · y−1)

)
⊢ E(l, x) are derivable,

respectively, from ΛG and from ΛN .

CSL 2022
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4 Fuzzy algebras and semantics

In this section we provide a sound and complete semantics to the syntax and sequents
introduced in Section 3. The first step is to define the semantic counterpart of a signature.

▶ Definition 4.1. Given a signature Σ, a Σ-fuzzy algebra A := ((A,µA),ΣA) is a fuzzy set
(A,µA) and a collection ΣA = {fA | f ∈ O} ⊔ {cA | c ∈ C} of arrows:

fA : (A,µA)ar(f) → (A,µA) cA : (1, c⊥) → (A,µA)

where c⊥ is the constant function in ⊥. A morphism of Σ-fuzzy algebras A → B is an arrow
g : (A,µA) → (B,µB) such that g ◦ cA = cB and fB ◦ gar(f) = g ◦ fA for every c ∈ C and
f ∈ O. We will write Σ-Alg for the resulting category of Σ-fuzzy algebras.

▶ Remark 4.2. We will not distinguish between a function from the singleton and its value.

▶ Definition 4.3. Let L = (Σ, X) be a language and A =
(
(A,µA),ΣA)

be a Σ-algebra.
An assignment is simply a function ι : X → A. We define the evaluation in A with

respect to ι as the function (-)A,ι : L-Terms → A by induction:
xA,ι := ι(x) if x ∈ X;
cA,ι := cA if c ∈ C;
(f(t1, . . . , tar(f)))A,ι := fA(tA,ι

1 , . . . , tA,ι
ar(f)) if f ∈ O.

▶ Proposition 4.4. Let A be a Σ-algebra. Given a function σ : X → L-Terms and an
assignment ι : X → A define ισ : X → A as the assignment sending x to (σ(x))A,ι. Then
A ⊨ι ϕ[σ] if and only if A ⊨ισ ϕ.

Proof. This follows at once noticing that
(
t[σ]

)A,ι = tA,ισ holds for every term t. ◀

▶ Definition 4.5. A satisfies ϕ ∈ Form(L) with respect to ι, and we write A ⊨ι ϕ, if ϕ is
E(l, t) and l ≤ µA(tA,ι) or if ϕ is t ≡ s and tA,ι = sA,ι.

A satisfies ϕ if A ⊨ι ϕ for all ι : X → A, and we write A ⊨ ϕ, similarly, given
Γ ⊂ Form(L), A ⊨ Γ (A ⊨ι Γ) means A ⊨ ϕ (A ⊨ι ϕ) for any ϕ ∈ Γ.

Finally, given a sequent Γ ⊢ ϕ we say that A satisfies it with respect to ι and we will
write Γ ⊨A,ι ϕ if A ⊨ι ϕ whenever A ⊨ι Γ; if this happens for all assignments ι we say that
A satisfies the sequent and we will write Γ ⊨A ϕ.

We say that a Σ-fuzzy algebra A is a model of a fuzzy theory Λ ∈ Th(L) if it satisfies all
the sequents in it. Mod(Λ) denotes the full subcategory of Σ-Alg given by the models of Λ.

Clearly Σ-Alg = Mod(∅). For any Λ ∈ Th(L) there exist two forgetful functors UΛ :
Mod(Λ) → Fuz(L) and VΛ : Mod(Λ) → Set. We will write UΣ and VΣ for U∅ and V∅.

▶ Proposition 4.6. For any signature Σ, VΣ has a left adjoint F Set
Σ : Set → Mod(Λ).

Proof. For any set X take the language LX and define F Set
Σ (X) has

(∇(LX -Terms),ΣF Set
Σ (X)) where cF Set

Σ (X) := c and for any f ∈ O,

fF Set
Σ (X) : ∇(LX -Terms)ar(f) → ∇(LX -Terms)

(
t1, . . . , tar(f)

)
7→ f(t1, . . . , tar(f))

It is easy to see that for any ι : X → VΣ(A) the evaluation (-)A,ι is the unique morphism of
Σ-Alg that composed with the inclusion X → LX -Terms gives back ι. ◀

We now provide two technical results about interpretations. The first describes how
interpretations are moved along morphisms of algebras.
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▶ Proposition 4.7. Let L = (Σ, X) be a language, Λ ∈ Th(L) and A =
(
(A,µA),ΣA)

,
B =

(
(B,µB),ΣB)

be two Σ-algebras. Let also f : A → B be a morphism between them, then:
1. A is a model of Λ if and only if it is a model of Λ⊢;
2. f ◦ (−)A,ι = (−)B,f◦ι for every assignment ι : X → A;
3. for any assignment ι : X → A, A ⊨ι ϕ entails B ⊨f◦ι ϕ;
4. if UΣ(f) is a strong monomorphism in Fuz(H) and ι : X → A is an assignment then,

for any formula ϕ, A ⊨ι ϕ if and only if B ⊨f◦ι ϕ;
5. if UΣ(f) is a strong monomorphism in Fuz(H) and B ∈ Mod(Λ) then A ∈ Mod(Λ).

We can also move interpretations and theories along morphisms of signatures.

▶ Definition 4.8. For any F : Σ1 → Σ2 arrow of Sign and any A =
(
(A,µA),ΣA

2
)

∈ Σ2-Alg,
we define rF(A) =

(
(A,µA),ΣrF(A)

1

)
∈ Σ1-Alg putting, for any f ∈ O1

f rF(A) : (A,µA)ar(f) → (A,µA)
(
a1, . . . , aar(f)

)
7→ F2(f)A(

a1, . . . , aar(f)
)

and crF(A) := F3(c)A for every c ∈ C1.

▶ Lemma 4.9. Let L1 = (Σ1, X) and L2 = (Σ2, Y ) and F = ((F1, F2), g) : L1 → L2, then:
1. there exists a functor rF : Σ2-Alg → Σ1-Alg sending A to rF(A);
2. trF(A),ι◦g = (Terms(F)(t))A,ι for any assignment ι : Y → A and t ∈ L1-Terms;
3. for any assignment ι : Y → A, rF(A) ⊨ι◦g ϕ if and only if A ⊨ι Form(F)(ϕ);
4. If X = Y and g = idX then rF restricts to a functor rF, Λ : Mod(Λ) → Mod(F∗(Λ)).

▶ Example 4.10. The models for ΛS , ΛLI , ΛRI and ΛI (Example 3.11) are precisely the
structures defined in [19], while the models for ΛG (Example 3.12) are precisely the fuzzy
groups as in [24] and those of ΛN are the structures called normal fuzzy subgroups in [2, 1, 16].

Soundness. Now we can proceed proving the soundness of the rules in Figure 1.

▶ Lemma 4.11. Let L = (Σ, X) be a language and A = ((A,µA),ΣA) a Σ-algebra, then:
1. for any assignment ι : X → A and rule

{Ψi ⊢ ξi}i∈I

Ψ ⊢ ξ
R

different from Sub, if Ψi ⊨A,ι ξi for all i ∈ I then Ψ ⊨A,ι ξ too;
2. for any σ : X → L-Terms, if Γ ⊨A ψ then Γ[σ] ⊨A ψ[σ].

▶ Corollary 4.12 (Soundness). If a Σ-algebra satisfies all the premises of a rule of the fuzzy
sequent calculus then it satisfies also its conclusion.

▶ Remark 4.13. Let us see why the deduction lemma (Lemma 3.10) cannot be extended
to rule Sub. Take Σ to be the empty set, X = {x, y, z} and H = {0, 1}. Notice that
Σ-Alg = Fuz(H). We have the derivation

⊢ x ≡ y

⊢ x ≡ z
Sub

If the deduction lemma held for Sub, x ≡ y ⊢ x ≡ z would be in ∅⊢, hence satisfied by any
fuzzy set, but (H, idH) with ι : X → H sending x and y to 0 and z to 1 is a counterexample.
▶ Remark 4.14. Let us take Σ = ∅ and H = {0, 1} and X = {x, y, z} and the derivation as
in Remark 4.13. Now, a fuzzy set (A,µA) satisfies ⊢ι x ≡ y if and only if ι(x) = ι(y), thus, if
we take (H, idH) and the assignment ι of the previous example, then (H, idH) ⊢ι x ≡ y but
it does not satisfy x ≡ z with respect to ι.

CSL 2022
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Completeness. Now we prove that the calculus we have provided in Section 3 is complete.
Let us start with the following observation.
▶ Remark 4.15. For any Λ ∈ Th(L) the relation ∼Λ given by all t and s such that ⊢Λ t ≡ s,
is an equivalence relation on L-Terms.
Using this equivalence, we can define the model of terms, as done next.

▶ Definition 4.16. Let L = (Σ, X) be a language and Λ ∈ Th(L), we define Terms(Λ) to be
the quotient of L-Terms by ∼Λ, moreover, by rule Fun, the function

µ̂ : L-Terms → H t 7→ sup {l ∈ H | ⊢Λ E(l, t)}

induces a function µΛ : Terms(Λ) → H. For any f ∈ O and c ∈ C putting cTΛ := [c] and

fTΛ : Terms(Λ)ar(f)
,→ Terms(Λ)

(
[t1], . . . , [tar(f)]

)
7→

[
f

(
t1, . . . , tar(f)

)]
gives us a Σ-algebra TΛ =

(
(Terms(Λ), µΛ),ΣTΛ

)
, called the Σ-algebra of terms in Λ. The

canonical assignment is the function ιcan : X → Terms(Λ) sending x to its class [x].

▶ Remark 4.17. Rule Cong assures us that fTΛ is well defined while Exp implies that it is
an arrow of Fuz(H).
The following Lemma will be needed to prove completeness.

▶ Lemma 4.18. Let L = (Σ, X) be a language and Λ ∈ Th(L), then:
1. for any ϕ ∈ Form(L) the following are equivalent:

a. TΛ ⊨ ϕ,
b. TΛ ⊨ιcan

ϕ,
c. ⊢Λ ϕ;

2. for any assignment ι : X → Terms(Λ) and formula ϕ, TΛ ⊨ι ϕ if and only if ⊢Λ ϕ[σ ◦ ι]
for one (and thus any) section σ of the quotient L-Terms → Terms(Λ);

3. TΛ =
(
(Terms(Λ), µΛ),ΣTΛ

)
is a model of Λ.

Let us start with a technical result.

▶ Proposition 4.19. Let L = (Σ, X) be a language, Λ ∈ Th(L), and σ : Terms(Λ) → L-Terms
a section of the quotient L-Terms → Terms(Λ). The equation tTΛ,ι = [t[σ ◦ ι]] holds for any
assignment ι : X → Terms(Λ) and t ∈ L-Terms. In particular tTΛ,ιcan = [t].

Now we can proceed with the proof of Lemma 4.18.

Proof of Lemma 4.18.
1. Let us show the three implications. (a)⇒(b) follows from the definition. For the

implication (b)⇒(c) we split the cases.
ϕ is t ≡ s. Then TΛ ⊨ιcan

ϕ means

[t] = tTΛ,ιcan = sTΛ,ιcan = [s]

thus t ∼Λ s i.e. ⊢Λ t ≡ s.
ϕ is E(l, t). Let S be {l′ ∈ H | Λ ⊢ E(l′, t)}, by hypothesis TΛ ⊨ιcan ϕ, so

l ≤ µΛ

(
tTΛ,ιcan

)
= µΛ([t]) = sup(S)

hence l = l ∧ sup(S) and, since H is a frame, l = sup ({l ∧ l′ | l′ ∈ S}), by rule Mon
we know that that ⊢Λ E(l ∧ l′, t) for all l′ ∈ S and so rule Sup gives us ⊢Λ E(l, t).
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Finally, for (c)⇒(a), let ι : X → Terms(Λ) be an assignment and σ a section as in the
hypothesis; by rule Sub we get ⊢Λ ϕ[σ ◦ ι], and by Proposition 4.19 follows the thesis.

2. By Proposition 4.19 we have

tTΛ,ι = [t[σ ◦ ι]] = (t[σ ◦ ι])TΛ,ιcan

we can conclude using the previous point.
3. Let Γ ⊢ ψ be a sequent in Λ with Γ = {ϕi}n

i=1 and ι : X → Terms(Λ) an assignment such
that TΛ ⊨ι Γ. By point 1 above this means that ⊢Λ Γ[σ ◦ ι] and applying Sub and Cut
we can conclude that ⊢Λ ψ[σ ◦ ι]. By the previous point this is equivalent to TΛ ⊨ι ψ. ◀

Since satisfaction of a formula by TΛ entails its derivability from Λ we can deduce immediately
a form of completeness.

▶ Corollary 4.20 (Completeness for formulae). For any theory Λ ∈ Th(L), A ⊨ ϕ for all
A ∈ Mod(Λ) if and only if ⊢Λ ϕ.

5 From theories to monads

Given a language L = (Σ, X) and a fuzzy theory Λ ∈ Th(L) we have a forgetful functor:
UΛ : Mod(Λ) → Fuz(L). In this section we first show that it has a left adjoint (Section 5.1)
and that for a specific class of theories, models correspond to Eilenberg-Moore algebras for
the monad induced by this adjunction (Section 5.2).

5.1 The free fuzzy algebra on a fuzzy set
To give the definition of free models (Definition 5.8) we need some preliminary constructions.

▶ Definition 5.1. Let A be a Σ-algebra and f : (B,µB) → UΣ(A) an arrow in Fuz(H), a
Σ-algebra generated by f in A is a morphism ϵ : ⟨B,µB⟩A,f → A such that:

UΣ(ϵ) is strong mono;
there exists f̄ : (B,µB) → ⟨B,µB⟩A,f such that UΣ(ϵ) ◦ f̄ = f ;
if g : C → A is a morphism such that UΣ(g) is strong monomorphism and UΣ(g) ◦ h = f

for some h then there exists a unique k : ⟨B,µB⟩A,f → C such that g ◦ k = ϵ.

We can construct ⟨B,µB⟩A,f closing f(B) under the iterated images of the functions gA,
when g varies between the operations in O, so we get easily the following.

▶ Proposition 5.2. For any signature Σ, Σ-algebra A and f : (B,µB) → UΣ(A), ⟨B,µB⟩A,f

exists and it is unique up to isomorphism.

▶ Remark 5.3. Proposition 4.7 implies that, given a model A =
(
(A,µA),ΣA)

of a theory
Λ ∈ Th(L), and a morphism f : (B,µB) → (A,µA), the Σ-algebra ⟨B,µB⟩A,f is in Mod(Λ).

The next result follows at once noticing that ⟨B,µB⟩A,f is built from f(B) closing it under
the interpretation of elements of O.

▶ Proposition 5.4. Let A be a Σ-algebra and f : (B,µB) → UΣ(A), then, for any other
Σ-algebra C and h : (B,µB) → UΣ(C) there exists at most one k : ⟨B,µB⟩A,f → C such that
k ◦ f̄ = h.

The next definition explains how to extend a theory in a given language with the data of
a fuzzy set.
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▶ Definition 5.5. Let (M,µM ) be a fuzzy set, L = (Σ, X) a language with Σ = (O, ar, C).
We define Σ[M,µM ] to be (O, ar, C ⊔M) and L(M,µM ) to be (Σ[M,µM ], X). We have an
obvious morphism I : L → L(M,µM ) given by the identities and the inclusion iC : C → C ⊔M .

For any Λ ∈ Th(L) we define Λ[M,µM ] ∈ L(M,µM ) as I∗(Λ) ∪ (M,µM ) where (M,µM ) =
{⊢ E(l,m) | m ∈ M, l ∈ L and µM (m) ≥ l}.

▶ Remark 5.6. It is immediate to see that I∗(Λ[M,µM ]) = Λ.
In the next proposition we show that, for any theory Λ, a fuzzy set can be mapped into

the term model of the theory Λ extended with it. Hence, the natural candidate to be the
free model is the algebra generated by such map.

▶ Proposition 5.7. For any fuzzy set (M,µM ) and any theory Λ ∈ Th(L):
1. the function η̄(M,µM ) sending m to the class [m] of the corresponding constant defines an

arrow of fuzzy sets η̄(M,µM ) : (M,µM ) → Terms(Λ[M,µM ]);
2. any element in ⟨M,µM ⟩TΛ[M,µM ],η̄(M,µM ) has a representative without variables;
3. ⟨M,µM ⟩TΛ[M,µM ],η̄(M,µM ) is the initial object of Mod(Λ[M,µM ]).

▶ Definition 5.8. For any language L, Λ ∈ Th(L) and (M,µM ) ∈ Fuz(H) we define the free
model FΛ(M,µM ) of Λ generated by (M,µM ) to be rI, Λ[M,µM ]

(
⟨M,µM ⟩TΛ[M,µM ],η̄(M,µM )

)
.

We set TΛ(M,µM ) to be UΛ(FΛ(M,µM )).

Now it is enough to check that the free model just defined actually provides the left adjoint.

▶ Theorem 5.9. For any language L and Λ ∈ Th(L) the functor UΛ : Mod(Λ) → Fuz(L)
has a left adjoint FΛ.

Proof. By construction η̄(M,µM ) factors through η(M,µM ) : (M,µM ) → TΛ(M,µM ) which
sends m to [m]. Let now g : (M,µM ) → UΛ(B) be another arrow in Fuz(H), we can turn B
into a Σ[M,µM ]-algebra Bg setting mBg to be g(m) for any m ∈ M .

Let us show that Bg is a model of Λ[M,µM ]. Surely it is a model of Λ since B is, let
⊢ E(l,m) be a sequent in (M,µM ), then for any assignment ι : V → B:

Bg ⊨ι E(l,m) ⇐⇒ l ≤ µB(mBg,ι)l ≤ µΛ

(
tFΛ(M,µM ),η(M,µM )◦ι

)
⇐⇒ l ≤ µB(g(m))

but g is an arrow of Fuz(H) so µB(g(m)) ≥ µM (m) and we are done.
Now, since Bg is a model of Λ[M,µM ], we can take ḡ to be the image through rI, Λ[M,µM ]

of the unique arrow ⟨M,µM ⟩TΛ[(M,µM )],η̄(M,µM ) → Bg, by construction

ḡ(η(M,µM )(m)) = ḡ([m]) = mBg

= g(m)

so UΛ(ḡ) ◦ η(M,µM ) = g. Uniqueness follows from Proposition 5.7. ◀

▶ Definition 5.10. Given a theory Λ ∈ Th(L), its associated monad TΛ : Fuz(H) → Fuz(H)
is the composite UΛ ◦ FΛ.

▶ Remark 5.11. If Λ is the empty theory (in any language), then, by Proposition 4.6, the
composittion F∅ ◦ ∇ gives us a functor isomorphic to F Set

Σ .

▶ Notation. We will denote by F∅ with FΣ and with TΣ the monad T∅ = UΣ ◦ FΣ.

In this setting we can provide a result similar to Lemma 4.18.

▶ Lemma 5.12. For any language L = (Σ, X) we define the natural assignment ιnat as the
adjoint to the unit ∇(X) → TΛ(∇(X)). Then FΛ(∇(X)) ⊨ιnat

ϕ if and only if ⊢Λ ϕ.
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Proof. The implication from the right to the left follows immediately since FΛ(∇(X)) is
a model for Λ. By adjointness he canonical assignment ιcan induces an arrow ∇(X) →
UΛ[∇(X)]

(
TΛ[∇(X)]

)
, which, in turn, induces a morphism e : FΛ(∇(X)) → TΛ[∇(X)] of Σ-

algebras such that, as function between sets, e ◦ ιnat = ιcan. Recalling that I is the arrow
(Σ, X) → (Σ[∇(X)], X) and using Proposition 4.7, Lemma 4.9 and Lemma 4.18:

FΛ(∇X) ⊨ιnat
ϕ ⇐⇒ rI, Λ[∇(X)]

(
⟨∇(X)⟩TΛ[∇(X)],η̄∇(X)

)
⊨ιnat

ϕ

⇐⇒ rI
(
⟨∇(X)⟩TΛ[∇(X)],η̄∇(X)

)
⊨ιnat ϕ ⇐⇒ ⟨∇(X)⟩TΛ[∇(X)],η̄∇(X) ⊨ιnat ϕ

=⇒ TΛ[∇(X)] ⊨e◦ιnat
ϕ ⇐⇒ TΛ[∇(X)] ⊨ιcan

ϕ ⇐⇒ ⊢Λ[∇(X)] ϕ

Now, by definition ∇(X) is equal to {⊢ E(⊥, x) | x ∈ X}, therefore (Λ[∇(X)])⊢ = Λ⊢ and
we get the thesis. ◀

5.2 Eilenberg-Moore algebras and models
In this section we will compare the category Mod(Λ) of models of some Λ ∈ Th(L) and
Alg(TΛ) of Eilenberg-Moore algebras for the corresponding monad TΛ. First of all we recall
the following classic lemma ([7, Prop. 4.2.1] and [14, Theorem VI.3.1]).

▶ Lemma 5.13. Let L : C → D be a functor with right adjoint R and let T = R ◦ L be
its associated monad, then there exists a comparison functor K : D → Alg(T) such that
UT◦K = R , where UT : Alg(T) → C is the forgetful functor. K sends D in (R (D),R (ϵD)),
where ϵ is the counit of the adjunction.

As a consequence, for any theory Λ we have a functor from Mod(Λ) to Alg(TΛ). We want
to construct an inverse of such functor.

▶ Definition 5.14. Let Λ be in Th(L) and ξ : TΛ(M,µM ) → (M,µM ) an object of Alg(TΛ),
we define its associated algebra H (ξ) =

(
(M,µM ),ΣH (ξ)

)
putting, for every c ∈ C and

f ∈ O:

cH (ξ) := ξ
(
cFΛ(X,µX )

)
fH (ξ) := ξ ◦ fFΛ(X,µX ) ◦ ηar(f)

(M,µM )

▶ Lemma 5.15. For any Eilenberg-Moore algebra ξ : TΛ(M,µM ) → (M,µM ), ξ itself is an
arrow FΛ(X,µX) → H (ξ) of Σ-Alg. In particular, for every term t and assignment ι:

tH (ξ),ι = ξ
(
tFΛ(M,µM ),η(M,µM )◦ι

)
Proof. The proof of the first half is a straightforward calculation. The second half follows
from point 2 of Proposition 4.7 applied to ξ noticing that ι = ξ ◦ η(M,µM ) ◦ ι. ◀

In general H (ξ) is not a model of Λ, but we can restrict to a class of theories such this
holds. As in [4, 15], we consider theories whose sequents’ premises contain only variables.

▶ Definition 5.16. A theory Λ ∈ Th(L) is basic1 if, for any sequent Γ ⊢ ϕ in it, all the
formulae in Γ contain only variables.

▶ Example 5.17. Fuzzy groups, fuzzy normal groups, fuzzy semigroups and left, right,
bilateral ideals (Examples 3.11 and 3.12) are all examples of basic theories.

1 In [3] such theories are called simple.

CSL 2022



13:12 Fuzzy Algebraic Theories

▶ Lemma 5.18. H (ξ) is a model of Λ for any basic theory Λ ∈ Th(L) and Eilenberg-Moore
algebra ξ : TΛ(M,µM ) → (M,µM ).

Proof. We start observing that if Γ ⊢ ϕ is in Λ and ι : X → M is an assignment such that
H (ξ) ⊨ι Γ then FΛ(M,µM ) ⊨η(M,µM )◦ι Γ. Indeed, ψ in Γ can be or x ≡ y, and in such case
ι(x) = ι(y) implies the thesis, or ψ is E(l, x), but then we can conclude since the membership
degree of η(M,µM )(ι(x)) in TΛ(M,µM ) is greater than µM (ι(x)). Therefore, we know that
FΛ(M,µM ) ⊨η(M,µM )◦ι ϕ. Let us split again the two cases.

ϕ is t ≡ s. In this case, tFΛ(M,µM ),η(M,µM )◦ι = sFΛ(M,µM ),η(M,µM )◦ι, therefore

tH (ξ),ι = ξ
(
tFΛ(M,µM ),η(M,µM )◦ι

)
= ξ

(
sFΛ(M,µM ),η(M,µM )◦ι

)
= sH (ξ),ι

ϕ is E(l, t). This means that l ≤ µΛ

(
tFΛ(M,µM ),η(M,µM )◦ι

)
, hence, thus:

l ≤ µΛ

(
tFΛ(M,µM ),η(M,µM )◦ι

)
≤ µM

(
ξ
(
tFΛ(M,µM ),η(M,µM )◦ι

))
= µM

(
tH (ξ),ι

)
and we can conclude. ◀

▶ Theorem 5.19. For any basic theory Λ ∈ Th(L), the functor K : Mod(Λ) → Alg(TΛ)
has an inverse H : Alg(TΛ) → Mod(Λ) sending ξ : TΛ(M,µM ) → (M,µM ) to H (ξ).

Proof (sketches). We have already constructed the inverse H on objects. If Λ is basic it can
be extended to a functor Alg(TΛ) → Mod(Λ) defining its action on arrows as the identity.
A straightforward calculation now shows that K ◦H = idAlg(TΛ) and H ◦K = idMod(Λ). ◀

▶ Corollary 5.20. For any basic theory Λ ∈ Th(L), Alg(TΛ) and Mod(Λ) are isomorphic,
and thus equivalent, categories.

6 Equational axiomatizations

In this section we prove two results for our calculus analogous to the classic HSP theorem [5],
using the results by Milius and Urbat [17].

The abstract framework. Let us start recalling the tools introduced in [17], adapted to
our situation. In the following we will fix a tuple2 (

C,
(
E ,M

)
,X

)
where C is a category,(

E ,M
)

is a proper factorization system on C and X is a class of objects of C.

▶ Definition 6.1. An object X of C is projective with respect to an arrow f : A → B if for
any h : X → B there exists a k : X → A such that f ◦ k = h.

We define EX as the class of e ∈ E such that for every X ∈ X , X is projective with
respect to e. A EX -quotient is just an arrow in EX .

In the rest of the section, we assume that
(
C,

(
E ,M

)
,X

)
satisfies the following requirements:

C has all (small) products;
for any X ∈ X , the class X

↠

C of all e ∈ E with domain X is essentially small, i.e. there
is a set J ⊂ X

↠

C such that for any e : X → C ∈ X

↠

C there exists e′ : X → D ∈ J and
an isomorphism ϕ such that ϕ ◦ e = e′;
for every object C of C there exists e : X → C in EX with X ∈ X .

2 In their work Milius and Urbat additionaly require a full subcategory of C and a fixed class of cardinals,
but we will not need this level of generality.
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▶ Definition 6.2. An X -equation is an arrow e ∈ X

↠

C with X ∈ X . We say that an object
A of C satisfies e : X → C, and we write A ⊨X e, if for every h : X → A there exists
q : C → A such that q ◦ e = h. Given a class E of X -equations, we define V(E) as the full
subcategory of C given by objects that satisfy e for every e ∈ E. A full subcategory V is
X -equationally presentable if there exists E such that V = V(E).

▶ Remark 6.3. The definition of equation in [17, Def. 3.3] is given in terms of suitable
subclasses of X

↠

C. However in our setting Milius and Urbat’s definition reduces to ours
(cfr. [17, Remark 3.4]).

▶ Theorem 6.4 ([17, Th. 3.15, 3.16]). A full subcategory V of C is X -equationally presentable
if and only if it is closed under EX -quotients, M -subobjects and (small) products.

Application to fuzzy algebras. In order to apply the results above to Σ-Alg, we need to
define the required inputs, i.e., to specify a factorization system and a class of Σ-algebras.

▶ Lemma 6.5. For any Σ, the classes EΣ := {e map of Σ-Alg | UΣ(e) is epi} and MΣ :=
{m map of Σ-Alg | UΣ(m) is strong mono} form a proper factorization system on Σ-Alg.

▶ Definition 6.6. We define the following two classes of Σ-algebras:

X0 :=
{

F Set
Σ (X) | X ∈ Set

}
XE := {FΣ(X,µX) | (X,µX) ∈ Fuz(H)}

We will use EΣ,X0 (resp., EΣ,XE) for the class of e ∈ E such that every X ∈ X0 (resp. X ∈ XE)
is projective with respect to e.

▶ Remark 6.7. X0 = {FΣ(X,µX) | supp(X,µX) = ∅}.

We have now all the ingredients needed to use the results recalled above.

▶ Lemma 6.8. With the above definitions:
1. EΣ,X0 = EΣ;
2. EΣ,XE = {e ∈ EΣ | UΣ(e) is split};
3. (Σ-Alg, (EΣ,MΣ),X0) and (Σ-Alg, (EΣ,MΣ),XE) satisfy the conditions of our settings.

Proof.
1. Let e : A → B be an arrow in EΣ and let h : F Set

Σ (X) → B be any morphism of
Σ-Alg. By point 2 of Proposition 2.4 e is surjective so for any x ∈ X we can take a
ax ∈ e−1(h(ηX(x))), where η is the unit of the adjunction F Set

Σ ⊣ VΣ of Proposition 4.6,
and define k̄ : X → A mapping x to ax, where A =

(
(A,µA),ΣA)

, this induces k :
F Set

Σ (X) → A and (e ◦ k) ◦ ηX = e ◦ k̄ = h ◦ ηX , thus e ◦ k = h.

VΣ(A)

VΣ(B)VΣ
(
F Set

Σ (X)
)

X

VΣ(e)

η∇(X) VΣ(h)

VΣ(k)

k̄
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2. Let e : A → B be in EΣ such that UΣ(e) is split and let s be a section in Fuz(H),
then, for any h : FΣ(X,µX) → B we can consider the arrow s ◦ h ◦ η(X,µX ), which, by
adjointness provides a k : FΣ(X,µX) → A, moreover:

e ◦ k ◦ η(X,µX ) = e ◦ s ◦ h ◦ η(X,µX ) = (e ◦ s) ◦
(
h ◦ η(X,µX )

)
= h ◦ η(X,µX )

so k is the wanted lifting. On the other hand, if e is in EΣ,X1 we can take the diagram:

UΣ(A)

UΣ(B)UΣ(FΣ(UΣ(B)))UΣ(B)

UΣ(e)
ηUΣ(B) UΣ(ϵB)

UΣ(k)

idUΣ(B)

where ϵB is the component of the counit ϵ : FΣ ◦ UΣ → idΣ-Alg and k its lifting. Taking
UΣ(k) ◦ ηUΣ(B) we get the desired section of UΣ(e).

3. First, notice that Fuz(H) has all products by Lemma 2.6. Moeover, it can be shown that
X

↠

C is essentially small. For any fuzzy set (X,µX) we can consider the identity id(X,µX ) :
(X,µX) → (X,µX) and the counit ϵ(X,µX ) : ∇(X) → (X,µX) of the adjunction ∇ ⊣ U
of Proposition 2.2. They induce arrows e0 : F Set

Σ (X) → (X,µX) and eE : FΣ(X,µX) →
(X,µX) such that UΣ(e0)◦η∇(X) = ϵ(X,µX ) and UΣ(eH)◦η(X,µX ) = id(X,µX ). So UΣ(eH)
is split and, since ϵ(X,µX ) is surjective, point 2 of Proposition 2.4 allows us to conclude
that UΣ(e0) is an epimorphism. ◀

We want now to translate formulae of our sequent calculus into X0- and XE-equations.
To this end, we have to restrict to two classes of theories, which we introduce next.

▶ Definition 6.9. Let L = (Σ, X) be a language, a theory Λ ∈ Th(L) is said to be:
unconditional ([17, App. B.5]) if any sequent in Λ is of the form ⊢ ϕ for some formula ϕ;
of type E if any sequent in Λ is of the form {E(li, xi)}i∈I ⊢ ϕ for some formula ϕ,
{xi}i∈I ⊂ X and {li}i∈I ⊂ H.

▶ Lemma 6.10. For any signature Σ and XE-equation e : FΣ(X,µX) → B there exists a
type E theory Λe such that, for every Σ-algebra A, A ⊨X1 e if and only if A ∈ Mod(Λe).
Moreover |Γ| ≤ |supp(X,µX)| for any Γ ⊢ ϕ ∈ Λe.

Proof. Let Le be (Σ, X). We define ΓX := {E(µX(x), x) | x ∈ supp(X,µX)} and Λe ∈ Th(L)
as Λ1

e ∪ Λ2
e where

Λ1
e := {ΓX ⊢ E(l, t) | l ≤ µB(e([t]))}

Λ2
e := {ΓX ⊢ [s] ≡ [t] | e([t]) = e([s])}

and (B,µB) is UΣ(B). Let us show the two implications.
⇒ Any ι : X → A such that A ⊨ι ΓX defines an arrow ῑ(X,µX) → UΣ(A). By adjointness

we have a homomorphism hι : FΣ(X,µX) → A hence, by hypothesis, there exists
qι : B → A such that qι◦e = hι. Now, notice that (see Theorem 5.9, and Proposition 5.7(4))
hι([t]) = tA,ι. Take a sequent ΓX ⊢ ψ in Λe, we have two cases, depending on ψ.

If ψ = E(l, t) ∈ Λme
e we have

l ≤ µB(e([t])) ≤ µA(qι(e([t]))) = µA(hι([t])) = tA,ι

therefore A ⊨ι ψ.
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If ϕ = [s] ≡ [t] ∈ Λeq
e then

tA,ι = hι([t]) = qι(e([t])) = qι(e([s])) = hι([t]) = sA,ι

and even in this case A ⊨ι ψ.
⇐ Take h : FΣ(X,µX) → A, UΣ(h) ◦ η∇(X) is an arrow (X,µX) → UΣ(A), so forgetting

the fuzzy set structure too gives us an assignment ιh : X → A such that A ⊨ιh
ΓX . As

before h([t]) = tA,ιh for every [t] ∈ FΣ(X,µX). Since A ∈ Mod(Λe) we have
tA,ιh = sA,ιh for all terms t and s such that e([t]) = e([s]);
l ≤ µA(tA,ιh) for all terms t such that l ≤ µB(e([t])).

So, the function q : B → A which sends b ∈ B to h([t]) for some [t] ∈ e−1(b), provides us
with an arrow UΣ(B) → UΣ(A) such that q ◦ e = h and a straightforward computation
shows that it is an arrow of Σ-Alg. ◀

▶ Corollary 6.11. For any signature Σ and X0-equation e : F Set
Σ (X) → B there exists an

unconditional theory Λe such that, for any Σ-algebra A, A ⊨X0 e if and only if A ∈ Mod(Λe).

Finally, from the results above we can easily conclude HSP-like results for Σ-Alg.

▶ Theorem 6.12. Let V be a full subcategory of Σ-Alg, then
1. V is closed under epimorphisms, (small) products and strong monomorphisms if and only

if there exists a class of unconditional theories {Λe}e∈E such that A ∈ V if and only if
A ∈ Mod(Λe) for all e ∈ E.

2. V is closed under split epimorphisms, (small) products and strong monomorphisms if
and only if there exists a class of type E theories {Λe}e∈E such that A ∈ V if and only if
A ∈ Mod(Λe) for all e ∈ E.

Proof. Straightforward in light of Theorem 6.4, Lemma 6.10 and Corollary 6.11. ◀

▶ Remark 6.13. We cannot arrange the collection {Λe}e∈E into a unique theory since in order
to write down all the sequents we need a proper class of variables. A possible way to deal
with this issue is to fix two Grothendieck universes ([25]) U1 ⊂ U2 and allow for a proper
class (i.e., an element of U2) of variables in Definition 3.1. All the proofs of this paper can
be repeated verbatim in this context carefully distinguishing between fuzzy sets (i.e., those
defined on an element of U1) and fuzzy classes (i.e., those defined on an element of U2).
Then the algebras of terms will be a fuzzy class in general but it is possible to show, using
the explicit construction, that TΛ(X,µX) is a fuzzy set if X ∈ U1 and so we can retain all
the results of Section 5.

The issue mentioned in the previous remark can be avoided if the family {Λe}e∈E satisfies
a boundedness property about the premises of the sequents belonging to each Λe.

▶ Definition 6.14. Given a cardinal κ we say that a XE-equation e : FΣ(X,µX) → B is
κ-supported if |supp(X,µX)| < κ.

▶ Proposition 6.15. Let V = V(E) be an XE-equational defined subcategory of Σ-Alg and
suppose every e ∈ E is κ-supported, then there exists a theory Λ ∈ Th(L), where L = (Σ, κ),
such that V = Mod(Λ).

Proof. For any e : FΣ(Xe, µXe
) → Be in E we can fix an injection ie : supp(Xe, µXe

) → κ

and an extension let īe : X → κ of it, fix also morphisms Ie : Le → L given by (idΣ, īe). Let
now {Λe}e∈E be the collection of theories given by Corollary 6.11 and Theorem 6.12, since
each Λe ∈ Form(Le) we can define:

Λ :=
⋃
e∈E

Ie
∗(Λe)

CSL 2022
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We have to show that A ∈ V if and only if A ∈ Mod(Λ).
⇒ Let Form(Ie)(ΓXe

) ⊢ Form(Ie)(ψ) be a sequent in Λ and let ι : κ → A an assignment such
that A ⊨ι Form(Ie)(ΓXe

). By point 3 of Lemma 4.9 this implies A ⊨ι◦īe
ΓXe

, therefore
A ⊨ι◦īe

ψ and we conclude applying lemma 4.9 again.
⇐ If UΣ(A) = (∅, !

H), ( !

H being the empty map ∅ → H) then there are no assignment
κ → A and so A is in Mod(Λ). In the other cases let ΓXe ⊢ ψ be in Λe and ι : Xe → A

such that A ⊨ι ΓXe
, since A ̸= ∅ there exists ι̂ : κ → A such that ι̂ ◦ īe = ι as in the

previous point Lemma 4.9 implies A ⊨ι̂ Form(Ie)(ΓXe), so A ⊨ι̂ Form(Ie)(ψ) and again
this is equivalent to A ⊨ι ψ. ◀

▶ Corollary 6.16. V is closed under epimorphisms, (small) products and strong monomorph-
isms if and only if there exists a language L and an unconditional theory Λ ∈ Th(L) such
that V = Mod(Λ).

7 Conclusions and future work

In this paper we have introduced a fuzzy sequent calculus to capture equational aspects
of fuzzy sets. While equalities are captured by usual equations, information contained in
the membership function is captured by membership proposition of the form E(l, t), to be
interpreted as “the membership degree of t is at least l”. We have used a natural concept of
fuzzy algebras to provide a sound and complete semantics for such calculus, in the sense that
a formula is satisfied by all the models of a given theory if and only if it is derivable from it
using the rules of our sequent calculus.

As in the classical and quantitative contexts, there is a notion of free model of a theory
Λ and thus an associated monad TΛ on the category Fuz(H) of fuzzy sets over a frame H.
However, in general Eilenberg-Moore algebras for such monad are not equivalent to models
of Λ, but we have shown that this equivalence holds if Λ is basic. In this direction it would be
interesting to better understand the categorical status of our approach, investigating possible
links between our notion of fuzzy theory and Fuz(H)-Lawvere theories as introduced in full
generality by Nishizawa and Power in [20]. A difference between the two approaches is that
for us arities are simply finite sets, while following [20] a Fuz(H)-Lawvere theory arities
would be given by finite fuzzy sets. A possible underlying concept to both approaches is that
of discrete Lawvere theories [23, 10].

Finally, using the results provided in [17] we have proved that, given a signature Σ, sub-
categories of Σ-Alg which are closed under products, strong monomorphisms and epimorphic
images correspond precisely with categories of models for unconditional theories, i.e. theories
axiomatised by sequents without premises. Moreover, using the same results, we have also
proved that the categories of models of theories of type E, i.e. those whose axioms’ premises
contain only membership propositions involving variables, are exactly those subcategories
closed under products, strong monomorphisms and split epimorphisms.

Our category Fuz(H) of fuzzy sets has crisp arrows and crisp equality: arrows are
ordinary functions between the underlying sets and equalities can be judged to be either
true or false. A way to further “fuzzifying” concepts is to use the topos of H-sets over the
frame H introduced in [9]: this is equivalent to the topos of sheaves over H and contains
Fuz(H) as a (non full) subcategory. By construction, equalities and functions are “fuzzy”. It
would be interesting to study an application of our approach to this context. A promising
feature is that in an H-set the membership degree function is built-in as simply the equality
relation, so it would not be necessary to distinguish between equations and membership
propositions. Even more generally, we can replace H with an arbitrary quantale V and
consider the category of sets endowed with a “V-valued equivalence relation” [6].
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