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Abstract
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative
logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics
have not previously been studied in the framework of dynamical systems, which are pairs (X, f)
consisting of a topological space X equipped with a continuous function f : X → X.

We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke
model property and are sound and complete with respect to the d-semantics in this dynamical
setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems,
K4C is the d-logic of all TD dynamic topological systems, and GLC is the d-logic of all dynamic
topological systems based on a scattered space. We also prove a general result for the case where f

is a homeomorphism, which in particular yields soundness and completeness for the corresponding
systems wK4H, K4H and GLH.

The main contribution of this work is the foundation of a general proof method for finite model
property and completeness of dynamic topological d-logics. Furthermore, our result for GLC
constitutes the first step towards a proof of completeness for the trimodal topo-temporal language
with respect to a finite axiomatisation – something known to be impossible over the class of all
spaces.
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1 Introduction

Dynamic (topological) systems are mathematical models of processes that may be iterated
indefinitely. Formally, they are defined as pairs ⟨X, f⟩ consisting of a topological space
X = ⟨X, τ⟩ and a continuous function f : X → X; the intuition is that points in the space X

“move” along their orbit, x, f(x), f2(x), . . . which usually simulates changes in time. Dynamic
topological logic (DTL) combines modal logic and its topological semantics with linear
temporal logic (see Pnueli [23]) in order to reason about dynamical systems in a decidable
framework.

Due to their rather broad definition, dynamical systems are routinely used in many
pure and applied sciences, including computer science. To cite some recent examples, in
data-driven dynamical systems, data-related problems may be solved through data-oriented
research in dynamical systems as suggested by Brunton and Kutz [4]. Weinan [6] proposes
a dynamic theoretic approach to machine learning where dynamical systems are used to
model nonlinear functions employed in machine learning. Lin and Antsaklis’s [20] hybrid
dynamical systems have been at the centre of research in control theory, artificial intelligence
and computer-aided verification. Mortveit and Reidys’s [22] sequential dynamical systems
generalise aspects of systems such as cellular automata, and also provide a framework through
which we can study dynamical processes in graphs. Another example of dynamical systems
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19:2 Dynamic Cantor Derivative Logic

and computer science can be found in the form of linear dynamical systems, i.e. systems
with dynamics given by a linear transformation. Examples of such systems in computer
science include Markov chains, linear recurrence sequences and linear differential equations.
Moreover, there are known strong connections between dynamical systems and algorithms.
This may be found for example in the work of Hanrot, Pujol and Stehlé [15], and in the work
of Chu [5].

Such applications raise a need for effective formal reasoning about topological dynamics.
Here, we may take a cue from modal logic and its topological semantics. The study of the
latter dates back to McKinsey and Tarski [21], who proved that the modal logic S4 is complete
for a wide class of spaces, including the real line. Artemov, Davoren and Nerode [1] extended
S4 with a “next” operator in the spirit of LTL, producing the logic S4C. They proved that
this logic is sound and complete with respect to the class of all dynamic topological systems.
The system S4C was enriched with the “henceforth” tense by Kremer and Mints, who
dubbed the new logic dynamic topological logic (DTL). Later, Konev et al. [16] showed that
DTL is undecidable, and Fernández-Duque [11] showed that it is not finitely axiomatisable
on the class of all dynamic topological spaces.

The aforementioned work on dynamic topological logic interprets the modal operator ♢
as a closure operator. However, McKinsey and Tarski had already contemplated semantics
that are instead based on the Cantor derivative [21]: the Cantor derivative of a set A, usually
denoted by d(A), is the set of points x such that x is in the closure of A \ {x} (see Section
2). This interpretation is often called d-semantics and the resulting logics are called d-logics.
These logics were first studied in detail by Esakia, who showed that the d-logic wK4 is sound
and complete with respect to the class of all topological spaces [8]. It is well-known that
semantics based on the Cantor derivative are more expressive than semantics based on the
topological closure. For example, consider the property of a space X being dense-in-itself,
meaning that X has no isolated points (see Section 3.2). The property of being dense-in-itself
cannot be expressed in terms of the closure operator, but it can be expressed in topological
d-semantics by the formula ♢⊤.

Logics based on the Cantor derivative appear to be a natural choice for reasoning about
dynamical systems. However, there are no established results of completeness for such
logics in the setting of dynamical systems, i.e. when a topological space is equipped with a
continuous function. Our goal is to prove the finite Kripke model property, completeness
and decidability of logics with the Cantor derivative operator and the “next” operator #
over some prominent classes of dynamical systems: namely, those based on arbitrary spaces,
on TD spaces (spaces validating the 4 axiom □p → □□p) and on scattered spaces (see
Section 3.2 for definitions). The reason for considering scattered spaces is to circumvent the
lack of finite axiomatisability of DTL by restricting to a suitable subclass of all dynamical
systems. In the study of dynamical systems and topological modal logic, one often works
with dense-in-themselves spaces. This is a sensible consideration when modelling physical
spaces, as Euclidean spaces are dense-in-themselves. However, as we will see in Section 3.2,
some technical issues that arise when studying DTL over the class of all spaces disappear
when restricting our attention to scattered spaces, which in contrast have many isolated
points. Further, we consider dynamical systems where f is a homeomorphism, i.e. where f−1

is also a continuous function. Such dynamical systems are called invertible.
The basic dynamic d-logic we consider is wK4C, which consists of wK4 and the temporal

axioms for the continuous function f . In addition, we investigate two extensions of wK4C:
K4C and GLC. As we will see, K4C is the d-logic of all TD dynamical systems, and GLC
is the d-logic of all dynamical systems based on a scattered space. Unlike the generic logic of
the trimodal topo-temporal language L◦∗

♢ , we conjecture that a complete finite axiomatisation
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for GLC, extended with axioms for the “henceforth” operator, will not require changes to the
trimodal language. This logic is of special interest to us as it would allow for the first finite
axiomatisation and completeness results for a logic based on the trimodal topo-temporal
language.

Outline. This paper is structured as follows: in Section 2 we give the required definitions
and notations necessary to understand the paper. In Section 3 we provide some background
on prior work on the topic of dynamic topological logics. Moreover, we motivate our interest
in GLC, the most unusual logic we work with.

In Section 4 we present the canonical model, and in Section 5 we construct a “finitary”
accessibility relation on it. Both are then used in Section 6 in order to develop a proof
technique that, given the right modifications, would work for many d-logics above wK4C. In
particular, we use it to prove the finite model property, soundness and completeness for the
d-logics wK4C, K4C and GLC, with respect to the appropriate classes of Kripke models.

In Section 7 we prove topological d-completeness of K4C, wK4C and GLC with respect
to the appropriate classes of dynamical systems. In Section 8 we present logics for systems
with homeomorphisms and provide a general completeness result which, in particular, applies
to the d-logics wK4H, K4H and GLH. Finally, in Section 9 we provide some concluding
remarks.

2 Preliminaries

In this section we review some basic notions required for understanding this paper. We work
with the general setting of derivative spaces, in order to unify the topological and Kripke
semantics of our logics.

▶ Definition 1 (topological space). A topological space is a pair X = ⟨X, τ⟩, where X is a
set and τ is a subset of ℘(X) that satisfies the following conditions:

X,∅ ∈ τ ;
if U, V ∈ τ , then U ∩ V ∈ τ ;
if U ⊆ τ , then

⋃
U ∈ τ .

The elements of τ are called open sets, and we say that τ forms a topology on X. A
complement of an open set is called a closed set.

The main operation on topological spaces we are interested in is the Cantor derivative.

▶ Definition 2 (Cantor derivative). Let X = ⟨X, τ⟩ be a topological space. Given S ⊆ X, the
Cantor derivative of S is the set d(S) of all limit points of S, i.e. x ∈ d(S) ⇐⇒ ∀U ∈ τ s.t.
x ∈ U, (U ∩ S)\{x} ≠ ∅. We may write d(S) or dS indistinctly.

When working with more than one topological space, we will often denote the Cantor
derivative of the topological space ⟨X, τ⟩ by dτ . Given subsets A,B ⊆ X, it is not difficult
to verify that d = dτ satisfies the following properties:
1. d(∅) = ∅;
2. d(A ∪B) = d(A) ∪ d(B);
3. dd(A) ⊆ A ∪ d(A).
In fact, these conditions lead to a more general notion of derivative spaces:1

1 Derivative spaces are a special case of derivative algebras introduced by Esakia [9], where ℘(X) is
replaced by an arbitrary Boolean algebra.

CSL 2022



19:4 Dynamic Cantor Derivative Logic

▶ Definition 3. A derivative space is a pair ⟨X, ρ⟩, where X is a set and ρ : ℘(X) → ℘(X)
is a map satisfying properties 1-3 (with ρ in place of d).

Accordingly, if X = ⟨X, τ⟩ is a topological space and dτ is the Cantor derivative on X,
then ⟨X, dτ ⟩ is a derivative space. However, there are other examples of derivative spaces.
The standard topological closure may be defined by c(A) = A ∪ dτ (A). Then, ⟨X, c⟩ is
also a derivative space, which satisfies the additional property A ⊆ c(A) (and, a fortiori,
cc(A) = c(A)); we call such derivative spaces closure spaces. For convenience, we denote the
closure of the topological space ⟨X, τ⟩ by cτ .

Another example of derivative spaces comes from weakly transitive Kripke frames. For
the sake of succinctness, we call these frames derivative frames. Below and throughout the
text, we write ∃x = y φ instead of ∃x(y < x ∧ φ), and adopt a similar convention for the
universal quantifier and other relational symbols.

▶ Definition 4. A derivative frame is a pair F = ⟨W,<⟩ where W is a non-empty set and <
is a weakly transitive relation on W , meaning that w < v < u implies that w ⊑ u, where ⊑
is the reflexive closure of <.

We chose the notation < because it is suggestive of a transitive relation, but remains
ambiguous regarding reflexivity, as there may be irreflexive and reflexive points. Note
that < is weakly transitive iff ⊑ is transitive. Given A ⊆ W , we define ↓< as a map
↓< : ℘(W ) → ℘(W ) such that

↓<(A) = {w ∈ W : ∃v = w(v ∈ A)}.

The following is then readily verified:

▶ Lemma 5. If ⟨W,<⟩ is a derivative frame, then ⟨W, ↓<⟩ is a derivative space.

There is a connection between derivative frames and topological spaces. Given a derivative
frame ⟨W,<⟩, we define a topology τ< on W such that U ∈ τ< iff U is upwards closed under
<, in the sense that if w ∈ U and v = w then v ∈ U . Topologies of this form are Aleksandroff
topologies. The following is well known and easily verified.

▶ Lemma 6. Let ⟨W,<⟩ be a derivative frame and τ = τ<. Then, dτ = ↓< iff < is irreflexive
and cτ = ↓< iff < is reflexive.

Dynamical systems consist of a topological space equipped with a continuous function.
Recall that if ⟨X, τ⟩ and ⟨Y, υ⟩ are topological spaces and f : X → Y , then f is continuous if
whenever U ∈ υ, it follows that f−1(U) ∈ τ . The function f is open if f(V ) is open whenever V
is open, and f is a homeomorphism if f is continuous, open and bijective. It is well known (and
not hard to check) that f is continuous iff cτf

−1(A) ⊆ f−1cυ(A) for any A ⊆ Y . By unfolding
the definition of the closure operator, this becomes f−1(A)∪dτf

−1(A) ⊆ f−1(A)∪f−1dυ(A),
or equivalently, dτf

−1(A) ⊆ f−1(A) ∪ f−1dυ(A). We thus arrive at the following definition.

▶ Definition 7. Let ⟨X, ρX⟩ and ⟨Y, ρY ⟩ be derivative spaces. We say that f : X → Y

is continuous if for all A ⊆ Y , ρXf
−1(A) ⊆ f−1(A) ∪ f−1ρY (A). We say that f is a

homeomorphism if it is bijective and ρXf
−1(A) = f−1ρY (A).

It is worth checking that these definitions coincide with their standard topological
counterparts.
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▶ Lemma 8. If ⟨X, τ⟩, ⟨Y, υ⟩ are topological spaces with Cantor derivatives dτ and dυ

respectively, and f : X → Y , then
1. if f is continuous as a function between topological spaces, it is continuous as a function

between derivative spaces, and
2. if f is a homeomorphism as a function between topological spaces, it is a homeomorphism

as a function between derivative spaces.

We are particularly interested in the case where X = Y , which leads to the notion of
dynamic derivative system.

▶ Definition 9. A dynamic derivative system is a triple S = ⟨X, ρ, f⟩, where ⟨X, ρ⟩ is a
derivative space and f : X → X is continuous. If f is a homeomorphism, we say that S is
invertible.

If S = ⟨X, ρ, f⟩ is such that ρ = dτ for some topology τ , we say that S is a dynamic
topological system and identify it with the triple ⟨X, τ, f⟩. If ρ = ↓< for some weakly transitive
relation <, we say that S is a dynamic Kripke frame and identify it with the triple ⟨X,<, f⟩.

It will be convenient to characterise dynamic Kripke frames in terms of the relation <.

▶ Definition 10 (monotonicity and weak monotonicity). Let ⟨W,<⟩ be a derivative frame. A
function f : W → W is monotonic if w < v implies f(w) < f(v), and weakly monotonic if
w < v implies f(w) ⊑ f(v).

The function f is persistent if it is a bijection and for all w, v ∈ W , w < v if and only
if f(w) < f(v). We say that a Kripke frame is invertible if it is equipped with a persistent
function.

▶ Lemma 11. If ⟨W,<⟩ is a derivative frame and f : W → W , then
1. if f is weakly monotonic then it is continuous with respect to ↓<, and
2. if f is persistent then it is a homeomorphism with respect to ↓<.

Our goal is to reason about various classes of dynamic derivative systems using the logical
framework defined in the next section.

3 Dynamic Topological Logics

In this section we discuss dynamic topological logic in the general setting of dynamic derivative
systems. Given a non-empty set PV of propositional variables, the language L◦

♢ is defined
recursively as follows:

φ ::= p | φ ∧ φ | ¬φ | ♢φ | #φ,

where p ∈ PV. It consists of the Boolean connectives ∧ and ¬, the temporal modality #, and
the modality ♢ for the derivative operator with its dual □ := ¬♢¬. The interior modality
may be defined by ⊡φ := φ ∧ □φ.

▶ Definition 12 (semantics). A dynamic derivative model (DDM) is a quadruple M =
⟨X, ρ, f, ν⟩ where ⟨X, ρ, f⟩ is a dynamic derivative system and ν : PV → ℘(X) is a valuation
function assigning a subset of X to each propositional letter in PV. Given φ ∈ L◦

♢, we define
the truth set ∥φ∥ ⊆ X of φ inductively as follows:

∥p∥ = ν(p);
∥¬φ∥ = X \ ∥φ∥;
∥φ ∧ ψ∥ = ∥φ∥ ∩ ∥ψ∥;

∥♢φ∥ = ρ(∥φ∥);
∥#φ∥ = f−1(∥φ∥).

We write M, x |= φ if x ∈ ∥φ∥, and M |= φ if ∥φ∥ = X. We may write ∥ · ∥M or ∥ · ∥ν

instead of ∥ · ∥ when working with more than one model or valuation.

CSL 2022



19:6 Dynamic Cantor Derivative Logic

We define other connectives (e.g. ∨,→) as abbreviations in the usual way. The fragment
of L◦

♢ that includes only ♢ will be denoted by L♢. Since our definition of the semantics
applies to any derivative space and a general operator ρ, we need not differentiate in our
results between d-logics, logics based on closure semantics and logics based on relational
semantics. Instead, we indicate the specific class of derivative spaces to which the result
applies.

In order to keep with the familiar axioms of modal logic, it is convenient to discuss the
semantics of □. Accordingly, we define the dual of the derivative, called the co-derivative.

▶ Definition 13 (co-derivative). Let ⟨X, ρ⟩ be a derivative space. For each S ⊆ X we define
ρ̂(S) := X\ρ(X\S) to be the co-derivative of S.

The co-derivative satisfies the following properties, where A,B ⊆ X:
1. ρ̂(X) = X;
2. A ∩ ρ̂(A) ⊆ ρ̂ρ̂(A);
3. ρ̂(A ∩B) = ρ̂(A) ∩ ρ̂(B).

It can readily be checked that for any dynamic derivative model ⟨X, ρ, f, ν⟩ and any
formula φ, ∥□φ∥ = ρ̂(∥φ∥). The co-derivative can be used to define the standard interior of
a set, given by i(A) = A ∩ ρ̂(A) for each A ⊆ X. This implies that U ⊆ ρ̂(U) for each open
set U , but not necessarily ρ̂(U) ⊆ U . Next, we discuss the systems of axioms that are of
interest to us. Let us list the axiom schemes and rules that we will consider in this paper:

Taut := All propositional tautologies
K := □(φ → ψ) → (□φ → □ψ)
T := □φ → φ

w4 := φ ∧ □φ → □□φ

L := □(□φ → φ) → □φ

4 := □φ → □□φ

Next¬ := ¬#φ ↔ #¬φ

Next∧ := #(φ ∧ ψ) ↔ #φ ∧ #ψ
C := #φ ∧ #□φ → □#φ
H := □#φ ↔ #□φ

MP := φ φ → ψ

ψ

Nec□ := φ

□φ

Nec# := φ

#φ

The “base modal logic” over L♢ is given by

K := Taut + K + MP + Nec□,

but we are mostly interested in proper extensions of K. Let Λ,Λ′ be logics over languages L
and L′. We say that Λ extends Λ′ if L′ ⊆ L and all the axioms and rules of Λ′ are derivable
in Λ. A logic over L♢ is normal if it extends K. If Λ is a logic and φ is a formula, Λ + φ is
the least extension of Λ which contains every substitution instance of φ as an axiom.

We then define wK4 := K + w4, K4 := K + 4, S4 := K4 + T and GL := K4 + L. These
logics are well known and characterise certain classes of topological spaces and Kripke frames
which we review below. In addition, for a logic Λ over L♢, ΛF is the logic over L◦

♢ given by2

ΛF := Λ + Next¬ + Next∧ + Nec#.

This simply adds axioms of linear temporal logic to Λ, which hold whenever # is interpreted
using a function. Finally, we define ΛC := ΛF + C and ΛH := ΛF + H, which as we will see
correspond to derivative spaces with a continuous function or a homeomorphism respectively.
The following is well known and dates back to McKinsey and Tarski [21].

2 Logics of the form ΛF correspond to dynamical systems with a possibly discontinuous function. We will
not discuss discontinuous systems in this paper; see [1] for more information.
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▶ Theorem 14. S4 is the logic of all topological closure spaces, the logic of all transitive,
reflexive derivative frames, and the logic of the real line with the standard closure.

The logic K4 includes the axiom □p → □□p, which is not valid over the class of all
topological spaces. The class of spaces satisfying this axiom is denoted by TD, defined as
the class of spaces in which every singleton is the result of an intersection between an open
set and a closed set. Moreover, Esakia showed that this is the logic of transitive derivative
frames [9].

▶ Theorem 15. K4 is the logic of all TD topological derivative spaces, as well as the logic
of all transitive derivative frames.

Many familiar topological spaces, including Euclidean spaces, satisfy the TD property,
making K4 central in the study of topological modal logic. A somewhat more unusual class
of spaces, which is nevertheless of particular interest to us, is the class of scattered spaces.

▶ Definition 16 (scattered space). A topological space ⟨X, τ⟩ is scattered if for every S ⊆ X,
S ⊆ d(S) implies S = ∅.

This is equivalent to the more common definition of a scattered space where a topological
space is called scattered if every non-empty subset has an isolated point. Scattered spaces
are closely related to converse well-founded relations. Below, recall that ⟨W,<⟩ is converse
well-founded if there is no infinite sequence w0 < w1 < . . . of elements in W .

▶ Lemma 17. If ⟨W,<⟩ is an irreflexive frame, then ⟨W, τ<⟩ is scattered iff < is converse
well-founded.

▶ Theorem 18 (Simmons [24] and Esakia [7]). GL is the logic of all scattered topological
derivative spaces, as well as the logic of all converse well-founded derivative frames and the
logic of all finite, transitive, irreflexive derivative frames.

Aside from its topological interpretation, the logic GL is of particular interest as it is
also the logic of provability in Peano arithmetic, as was shown by Boolos [3]. Meanwhile,
logics with the C and H axioms correspond to classes of dynamical systems.

▶ Lemma 19.
1. If Λ is sound for a class of derivative spaces Ω, then ΛC is sound for the class of dynamic

derivative systems ⟨X, ρ, f⟩, where ⟨X, ρ⟩ ∈ Ω and f is continuous.
2. If Λ is sound for a class of derivative spaces Ω, then ΛH is sound for the class of dynamic

derivative systems ⟨X, ρ, f⟩, where ⟨X, ρ⟩ ∈ Ω and f is a homeomorphism.

The above lemma is easy to verify from the definitions of continuous functions and
homeomorphisms in the context of derivative spaces (Definition 7).

3.1 Prior Work
The study of dynamic topological logic originates with Artemov, Davoren and Nerode, who
observed that it is possible to reason about dynamical systems within modal logic. They
introduced the logic S4C and proved that it is decidable, as well as sound and complete for
the class of all dynamic closure systems (i.e. dynamic derivative systems based on a closure
space). Kremer and Mints [18] considered the logic S4H, and also showed it to be sound
and complete for the class of dynamic closure systems where f is a homeomorphism.

The latter also suggested adding the “henceforth” operator, ∗, from Pnueli’s linear
temporal logic (LTL) [23], leading to the language we denote by L◦∗

♢ . The resulting
trimodal system was named dynamic topological logic (DTL). Kremer and Mints offered

CSL 2022



19:8 Dynamic Cantor Derivative Logic

an axiomatisation for DTL, but Fernández-Duque proved that it is incomplete; in fact,
DTL is not finitely axiomatisable [11]. Fernández-Duque also showed that DTL enjoys a
natural axiomatisation when extended with the tangled closure [13]. In contrast, Konev et
al. established that DTL over the class of dynamical systems with a homeomorphism is
non-axiomatisable [17].

3.2 The tangled closure on scattered spaces
Our interest in considering the class of scattered spaces within dynamic topological logic is
motivated by results of Fernández-Duque [13]. He showed that the set of valid formulas of
L◦∗
♢ over the class of all dynamic closure systems is not finitely axiomatisable. Nevertheless,

he found a natural (yet infinite) axiomatisation by introducing the tangled closure and adding
it to the language of DTL [10]. Here, we use the more general tangled derivative, as defined
by Goldblatt and Hodkinson [14].

▶ Definition 20 (tangled derivative). Let ⟨X, d⟩ be a derivative space and let S ⊆ ℘(X).
Given A ⊆ X, we say that S is tangled in A if for all S ∈ S, A ⊆ d(S ∩A). We define the
tangled derivative of S as

S∗ :=
⋃

{A ⊆ X : S is tangled in A}.

The tangled closure is then the special case of the tangled derivative where d is a closure
operator. Fernández-Duque’s axiomatisation is based on the extended language L◦∗

♢∗ . This
language is obtained by extending L◦∗

♢ with the following operation.

▶ Definition 21 (tangled language). We define L◦∗
♢∗ by extending the recursive definition of

L◦∗
♢ in such a way that if φ1, . . . , φn ∈ L◦∗

♢∗ , then ♢∗{φ1, . . . , φn} ∈ L◦∗
♢∗ . The semantic clauses

are then extended so that on any model M,

∥♢∗{φ1, . . . , φn}∥ = {∥φ1∥, . . . , ∥φn∥}∗.

The logic DGL is an extension of GLC that includes the temporal operator ∗. Unlike
the complete axiomatisation of DTL that requires the tangled operator, in the case of DGL,
we should be able to avoid this and use the original spatial operator ♢ alone. This is due to
the following:

▶ Theorem 22. Let X = ⟨X, τ⟩ be a scattered space and {φ1, . . . , φn} a set of formulas.
Then

♢∗{φ1, . . . , φn} ≡ ⊥.

This leads to the conjecture that the axiomatic system of Kremer and Mints [18], combined
with GL, will lead to a finite axiomatisation for DGL. While such a result requires techniques
beyond the scope of the present work, the completeness proof we present here for GLC is an
important first step. Before proving topological completeness for this and the other logics
we have mentioned, we show that they are complete and have the finite model property for
their respective classes of dynamic derivative frames.

4 The Canonical Model

The first step in our Kripke completeness proof will be a fairly standard canonical model
construction. A maximal Λ-consistent set (Λ-MCS) w is a set of formulas that is Λ-consistent,
i.e. w ̸⊢Λ ⊥, and every set of formulas that properly contains it is Λ-inconsistent.
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Given a logic Λ over L◦
♢, let MΛ

c = ⟨Wc,<c, gc, νc⟩ be the canonical model for Λ, where
1. Wc is the set of all Λ-MCSs;
2. w <c v iff for all formulas φ, if □φ ∈ w, then φ ∈ v;
3. gc(w) = {φ : #φ ∈ w};
4. νc(p) = {w : p ∈ w}.

It can easily be verified that wK4C defines the class of all weakly transitive Kripke
models with a weakly monotonic map. Moreover, K4C defines the class of all transitive
Kripke models with a weakly monotonic map. We call these models wK4C models and
K4C models respectively.

▶ Lemma 23. If Λ extends wK4C, then the canonical model for Λ is a wK4C model. If Λ
extends K4C, then the canonical model of Λ is a K4C model.

It is a well-known fact that the transitivity axiom □p → □□p is derivable in GL (see [25]).
Therefore, GLC extends the system K4C. The proofs of the following two lemmas are
standard and can be found for example in [2].

▶ Lemma 24 (existence lemma). Let Λ be a normal modal logic and let MΛ
c = ⟨Wc,<c, gc, νc⟩.

Then, for every w ∈ Wc and every formula φ in Λ, if ♢φ ∈ w then there exists a point
v ∈ Wc such that w <c v and φ ∈ v.

▶ Lemma 25 (truth lemma). Let Λ be a normal modal logic. For every w ∈ Wc and every
formula φ in Λ,

MΛ
c , w |= φ iff φ ∈ w.

▶ Corollary 26. The logic wK4C is sound and complete with respect to the class of all
weakly monotonic dynamic derivative frames, and K4C is sound and complete with respect
to the class of all weakly monotonic, transitive dynamic derivative frames.

5 A finitary accessibility relation

One key ingredient in our finite model property proof will be the construction of a “finitary”
accessibility relation <Φ on the canonical model. This accessibility relation will have the
property that each point has finitely many successors, yet the existence lemma will hold for
formulas in a prescribed finite set Φ.

We define the <c-cluster C(w) for each point w ∈ Wc as

C(w) = {w} ∪ {v : w <c v <c w}.

▶ Definition 27 (φ-final set). A set w is said to be a φ-final set (or point) if w is an MCS,
φ ∈ w, and whenever w <c v and φ ∈ v, it follows that v ∈ C(w).

Let us write ⊑c for the reflexive closure of <c. It will be convenient to characterise ⊑c in
the canonical model syntactically. Recall that ⊡φ := φ ∧ □φ.

▶ Lemma 28. If Λ extends wK4C and w, v ∈ Wc, then w ⊑c v if and only if whenever
⊡φ ∈ w, it follows that ⊡φ ∈ v.

We are now ready to prove the main result of this section regarding the existence of the
finitary relation <Φ.
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▶ Lemma 29. Let Λ extend wK4C and Φ be a finite set of formulas closed under subformulas.
There is an auxiliary relation <Φ on the canonical model of Λ such that:

(i) <Φ is a subset of <c;
(ii) For each w ∈ W , the set <Φ(w) is finite;
(iii) If ♢φ ∈ w ∩ Φ, then there exists v ∈ W with w <Φ v and φ ∈ v;
(iv) If w <c v <c w then <Φ (w) ⊆ ⊑Φ (v);
(v) <Φ is weakly transitive. Moreover, if Λ extends K4C then <Φ is transitive, and if Λ

extends GLC then <Φ is irreflexive.

6 Stories and Φ-morphisms

In this subsection we show that the logics wK4C, K4C and GLC have the finite model
property by constructing finite models and truth preserving maps from these models to the
canonical model.

If < is a weakly transitive relation on A, ⟨A,<⟩ is tree-like if whenever a ⊑ c and b ⊑ c,
it follows that a ⊑ b or b ⊑ a. We will use labelled tree-like structures called moments to
record the “static” information at a point; that is, the structure involving <, but not f .

▶ Definition 30 (moment). A Λ-moment is a structure m = ⟨|m|,<m, νm, rm⟩, where ⟨|m|,<m⟩
is a finite tree-like Λ frame with a root rm, and νm is a valuation on |m|.

In order to also record “dynamic” information, i.e. information involving the transition
function, we will stack up several moments together to form a “story”. Below,

⊔
denotes a

disjoint union.

▶ Definition 31 (story). A story (with duration I) is a structure S = ⟨|S|,<S, fS, νS, rS⟩
such that there are I < ω, moments Si = ⟨|Si|,<i, νi, ri⟩ for each i ≤ I, and functions
(fi)i<I such that:
1. |S| =

⊔
i≤I |Si|;

2. <S=
⊔

i≤I <i;
3. νS(p) =

⊔
i≤I νi(p) for each variable p;

4. rS = r0;
5. fS = IdI ∪

⊔
i<I fi with fi : |Si| → |Si+1| being a weakly monotonic map such that

fi(ri) = ri+1 for all i < I (we say that fi is root preserving), and IdI is the identity on
|SI |.

r1 r2 rIr0
fS

<
S

Figure 1 An example of a GL-story. The squiggly arrows represent the relation <S while the
straight arrows represent the function fS. Each vertical slice represents a GL-moment. In the case
of other types of stories, we may also have clusters besides singletons.
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We often omit the subindices m or S when this does not lead to confusion. We may also
assign different notations to the components of a moment, so that if we write m = ⟨W,<, ν, x⟩,
it is understood that W = |m|, < = <m, etc.

Recall that a p-morphism between Kripke models is a type of map that preserves validity.
It can be defined in the context of dynamic derivative frames as follows:

▶ Definition 32 (dynamic p-morphism). Let M = ⟨WM,<M, gM⟩ and N = ⟨WN,<N, gN⟩ be
dynamic derivative frames. Let π : WM → WN. We say that π is a dynamic p-morphism if
w <M v implies that π(w) <N π(v), π(w) <N u implies that there is v =M w with π(v) = u,
and π ◦ gM = gN ◦ π.

It is then standard that if π : WM → WN is a surjective, dynamic p-morphism, then any
formula valid on M is also valid on N. However, our relation <Φ will allow us to weaken
these conditions and still obtain maps that preserve the truth of (some) formulas.

▶ Definition 33 (Φ-morphism). Fix a logic Λ and let MΛ
c = ⟨Wc,<c, gc, νc⟩ and S be a story

of duration I. A map π : |S| → Wc is called a dynamic Φ-morphism if for all x ∈ |S| the
following conditions are satisfied:
1. x ∈ νS(p) ⇐⇒ p ∈ π(x);
2. If x ∈ |Si| for some i < I, then gc(π(x)) = π(fS(x));
3. If x <S y then π(x) <c π(y);
4. If π(x) <Φ v for some v ∈ Wc, then there exists y ∈ |S| such that x <S y and v = π(y).
If we drop condition 2, we say that π is a Φ-morphism.

We now show that a dynamic Φ-morphism π preserves the truth of formulas of suitable
#-depth, where the latter is defined as usual in terms of nested occurrences of # in a
formula φ.

▶ Lemma 34 (truth preservation). Let S be a story of duration I and x ∈ |S0|. Let π be a
dynamic Φ-morphism to the canonical model of some normal logic Λ over L◦

♢. Suppose that
φ ∈ Φ is a formula of #-depth at most I. Then φ ∈ π(x) iff x ∈ ∥φ∥S.

We will next demonstrate that for every point w in the canonical model, there exists a
suitable moment m and a Φ-morphism mapping m to w. In order to do this, we define a
procedure for constructing new moments from smaller ones.

▶ Definition 35 (moment construction). Let Λ ∈ {wK4,K4,GL} and C ′ ∪ {x} ⊆ C(x) for
some x in the canonical model MΛ

c . Let a⃗ = ⟨am⟩m<N be a sequence of moments. We define
a structure n =

(
a⃗

C′

)
x

as follows:
1. |n| = C ′ ⊔

⊔
m<N |am|;

2. y <n z if either
y, z ∈ C ′, Λ ̸= GL and y <c z,
y ∈ C ′ and z ∈ |am| for some m, or
y, z ∈ |am| and y <am

z for some m;
3. νn(p) = {x ∈ C ′ : x ∈ νc(p)} ⊔

⊔
m<N νam

(p);
4. rn = x.

▶ Lemma 36. Given Λ ∈ {wK4C,K4C,GLC}, for all w ∈ Wc there exists a Λ-moment
m and a Φ-morphism π : |m| → Wc such that π(rm) = w.
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Proof sketch. We prove the stronger claim that there is a moment m and a map π : |m| → Wc
that is a p-morphism on the structure (Wc,<Φ). We will say that π is a p-morphism with
respect to <Φ. Let <1

Φ be the strict <Φ successor, i.e. w <1
Φ v iff w <Φ v and ¬(v <Φ w).

Since <1
Φ is converse well-founded, we can assume inductively that for each v such that

w <1
Φ v, there is a moment mv and a p-morphism πv : |mv| → Wc with respect to <Φ that

maps the root of mv to v. Accordingly, we define a moment

m =
(

{mv : v =1
Φ w}

CΦ(w)

)
w

.

It is not difficult to verify that m thus defined is a Λ-moment.
Next we define a map π : |m| → Wc as

π(x) =
{
x if x ∈ CΦ(w),
πv(x) if x ∈ |mv|.

The map π can be shown to be a p-morphism for <Φ. Hence m is a Λ-moment and π is a
Φ-morphism such that π(rm) = w, as required. ◀

We next define the notions of pre-Φ-morphism and quotient moment that will be essential
for the rest of the proof.

▶ Definition 37 (pre-Φ-morphism, Λ-bottom). Let m be a moment and π : |m| → Wc. We
say that x ∈ |m| is at the Λ-bottom for Λ ∈ {wK4,K4,GL} if

Λ ̸= GL and π(x) ∈ C(π(rm)), or
Λ = GL and for all y <m x, π(y) = π(x).

We will refer to “Λ-bottom” simply as “bottom” when this does not lead to confusion.
We say that π : |m| → Wc is a pre-Φ-morphism if it fulfils conditions 1 and 4 of a

Φ-morphism (Definition 33), and x <m y implies that either π(x) <c π(y) or x, y are at the
bottom.

▶ Definition 38 (quotient moment). Let Λ ∈ {wK4C,K4C,GLC}. Let m be a Λ-moment
and π : |m| → Wc be a pre-Φ-morphism. We define x ∼ y if either x = y, or x, y are at the
bottom and π(x) = π(y). Given y ∈ |m| we set [y] = {z : z ∼ y}.

The quotient moment m/π of m and its respective map [π] : |m/π| → Wc are defined as
follows, where x, y ∈ |m|:
(a) |m/π| = {[x] : x ∈ |m|};
(b) [x] <m/π [y] iff one of the following conditions is satisfied:

x, y are at the bottom, π(x) <c π(y), and Λ ̸= GLC;
x is at the bottom and y is not at the bottom;
x, y are not at the bottom and x <m y;

(c) νm/π(p) = {[x] : x ∈ νm(p)};
(d) rm/π = [rm];
(e) [π]([x]) = π(x).

The quotient moment and its respective map hold some essential properties for the
derivation of this section’s main result. The idea is that by constructing a Λ-moment m
with an associated pre-Φ-morphism π, we get that m/π is still a Λ-moment, but now [π] is a
proper Φ-morphism. The next few results make this intuition precise.

▶ Lemma 39. For Λ ∈ {wK4,K4,GL}, if m is any Λ-moment and π : |m| → Wc is a
pre-Φ-morphism, then m/π is a Λ-moment and [·] : |m| → |m/π| is weakly monotonic and
root-preserving.
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▶ Proposition 40. If m is a moment and π : |m| → Wc is a pre-Φ-morphism, then the map
[π] is a well-defined Φ-morphism.

Using these properties, we can prove the existence of an appropriate story that maps to
the canonical model. This is based on the following useful lemma:

▶ Lemma 41. Fix Λ ∈ {wK4C,K4C,GLC} and let MΛ
c = ⟨Wc,<c, gc, νc⟩. Let m be a

Λ-moment and suppose that there exists a Φ-morphism π : |m| → Wc. Then, there exists a
moment n, a weakly monotonic map f : |m| → |n|, and a Φ-morphism ρ : |n̂| → Wc such that
gc ◦ π = ρ ◦ f .

Proof. We proceed by induction on the height of m. Let C be the cluster of rm and let
a⃗ = ⟨an⟩n<N be the generated sub-models of the immediate strict successors of rm; note
that each an is itself a moment of smaller height. By the induction hypothesis, there
exist moments ⟨a′

n⟩n<N , root-preserving, weakly monotonic maps fn : |an| → |a′
n|, and Φ-

morphism ρn : |a′
n| → Wc such that gc ◦ πn = ρn ◦ fn. Moreover, for each v =Φ gc(rm), by

Lemma 36 there are bv and a Φ-morphism ρv : |bv| → Wc mapping the root of bv to v. Let
D = gcπ(C) ∪CΦ(gc(x)), and let n̂ =

(
a⃗∗b⃗
D

)
gc(w). It is not difficult to verify that the maps ρv

can be used to define a pre-Φ-morphism ρ̂ from n̂ to Wc. Let

f̂(w) =
{
gc(w) if w ∈ C,

fn(w) if w ∈ |an|.

It is easy to see that f̂ : |m| → |n̂| is weakly monotonic and satisfies gc ◦ π = ρ̂ ◦ f̂ . Setting
n = n̂/ρ̂, f = [f̂ ] and ρ = [ρ̂], Proposition 40 implies that n, f and ρ have the desired
properties. ◀

▶ Proposition 42. Fix Λ ∈ {wK4C,K4C,GLC}. Given I < ω and w ∈ Wc, there is a
story S of duration I and a dynamic Φ-morphism π : |S| → Wc with w = π(rS).

Proof. Proceed by induction on I. For I = 0, this is essentially Lemma 36. Otherwise, by
the induction hypothesis, assume that a story Ŝ of depth I and dynamic p-morphism π̂

exist. By Lemma 41, there is a moment SI+1, map fI : |SI | → |SI+1|, and Φ-morphism
πI+1 : |SI+1| → Wc commuting with fI . We define S by adding SI+1 to Ŝ in order to
obtain the desired story. ◀

It follows that any satisfiable formula is also satisfiable on a finite story, hence satisfiable
on a finite model, yielding the main result of this section.

▶ Theorem 43. The logics wK4C, K4C and GLC are sound and complete for their
respective class of finite dynamic Λ-frames.

7 Topological d-completeness

In this section we establish completeness results for classes of dynamic topological systems
with continuous functions. We begin with the logic GLC, simply because the topological
d-completeness for GLC is almost immediate, given that a GLC model is already a dynamic
derivative model based on a scattered space via the standard up-set topology.

▶ Theorem 44. GLC is the d-logic of all dynamic topological systems based on a scattered
space, and enjoys the finite model property for this class.
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In order to prove topological d-completeness for wK4C, we first provide a definition and
some generalisations of known results. We use similar constructions as in e.g. [9].

▶ Definition 45. Let F = ⟨W,<, g⟩ be a wK4C-frame and let W i and W r be the sets of
irreflexive and reflexive points respectively. We define a new frame F⊕ = ⟨W⊕,<⊕, g⊕⟩,
where
1. W⊕ = (W i × {0}) ∪ (W r × {0, 1});
2. (w, i) <⊕ (v, j) iff w < v and (w, i) ̸= (v, j);
3. g⊕(w, i) = (g(w), 0).

The following is standard [9] and easily verified.

▶ Proposition 46. If F = ⟨W,<, g⟩ is any dynamic derivative frame, then F⊕ is an irreflexive
dynamic derivative frame and π : W⊕ → W given by π(w, i) = w is a surjective, dynamic
p-morphism.

Proposition 46 allows us to obtain topological completeness from Theorem 43, as Lemma 6
tells us that irreflexive Kripke frames are essentially Cantor derivative spaces. We thus
obtain the following:

▶ Theorem 47. wK4C is the d-logic of all dynamic topological systems, and enjoys the
finite model property for this class.

Finally we turn our attention to K4C. Unlike the other two logics, K4C (or even K4)
does not have the topological finite model property, despite having the Kripke finite model
property. In the case of Aleksandroff spaces, the class TD is easy to describe.

▶ Lemma 48. The Aleksandroff space of a K4-frame F = ⟨W,<⟩ is TD if and only if < is
antisymmetric, in the sense that w < v < w implies w = v.

If we moreover want the Kripke and the d-semantics to coincide on F, we need < to be
irreflexive. Thus we wish to “unwind” F to get rid of all non-trivial clusters. The following
construction achieves this.

▶ Definition 49. Let F = ⟨W,<, g⟩ be a dynamic K4 frame. We define a new frame
F⃗ = ⟨W⃗ , <⃗, g⃗⟩, where

W⃗ is the set of all finite sequences (w0, . . . , wn), where wi < wi+1 for all i < n;
w <⃗ v iff w is a strict initial segment of v;
g⃗(w0, . . . , wn) is the subsequence of (g(w0), . . . , g(wn)), obtained by deleting every entry
that is equal to its immediate predecessor.

We moreover define a map π : W⃗ → W , where π(w0, . . . , wn) = wn.

In the definition of g⃗, note that g is only weakly monotonic, so it may be that, for instance,
g(w0) = g(w1); in this case, we include only one copy of g(w0) to ensure that g⃗(w) ∈ W⃗ .

▶ Proposition 50. If F = ⟨W,<, g⟩ is any dynamic K4 frame, then F⃗ is an antisymmetric and
irreflexive dynamic K4 frame. Moreover, π : W⃗ → W is a surjective, dynamic p-morphism.

Similar constructions have already appeared in e.g. [16]. From this we obtain the following:

▶ Theorem 51. K4C is the d-logic of the class of all dynamic topological systems based on
a TD space, as well as the d-logic of the class of all dynamic topological systems based on an
Aleksandroff TD space.
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8 Invertible Systems

Recall that if ⟨X, τ⟩ is a topological space and f : X → X is a function, then f is a
homeomorphism if it is a bijection and both f and f−1 are continuous.

Unlike in the continuous case, for logics with homeomorphisms, every formula is equivalent
to a formula where all occurrences of # are applied to atoms. More formally, we say that
a formula is in #-normal form if it is of the form φ(#k0p0, . . . ,#knpn), where φ(p0, . . . , pn)
does not contain #, the pi’s are variables, and the ki’s are natural numbers. It is readily
observed that the axiom H allows us to “push” all instances of # to the propositional level.
Thus we obtain the following useful representation lemma:

▶ Lemma 52. For every logic Λ and every formula φ, there is a formula φ′ in #-normal
form such that ΛH ⊢ φ ↔ φ′.

As we shall see shortly, ΛH inherits completeness and the finite model property almost
immediately from Λ. If X = ⟨X, ρX⟩ and Y = ⟨Y, ρY ⟩ are derivative spaces, then the
topological sum is defined as X ⊕ Y = (X ⊕ Y, ρX ⊕ ρY ), where X ⊕ Y is the disjoint union
of the two sets, and ρX ⊕ ρY is given by (ρX ⊕ ρY )A = ρX(A ∩ X) ∪ ρY (A ∩ Y ). We say
that a class Ω of derivative spaces is closed under sums if whenever A,B ∈ Ω, it follows that
A ⊕ B ∈ Ω.

Given a derivative space A = ⟨A, ρ⟩, we may write An instead of A⊕A⊕ . . .⊕A (n times),
and if A has domain A, we may identify the domain of An with An = A× {0, . . . , n− 1}. It
should be clear that if A ∈ Ω and Ω is closed under sums, then An ∈ Ω. Let (m)n denote
the remainder of m modulo n. We then define a dynamical structure A(n) = (An, f), where
f : An → An is given by f(w, i) = (w, (i+ 1)n).

▶ Lemma 53. Let Ω be a class of derivative spaces closed under sums. Then, if A ∈ Ω, it
follows that A(n) is an invertible dynamic derivative system based on an element of Ω.

For our proof of completeness, we need the notion of extended valuation.

▶ Definition 54. Let A = ⟨A, ρ⟩ be a derivative space. Let PV# be the set of all expressions
#ip, where i ∈ N and p is a propositional variable. An extended valuation on A is a relation
ν ⊆ PV# ×A.

If ν is an extended valuation on A, we define a valuation on A(n) so that for any variable
p and (w, i) ∈ An, (w, i) ∈ ν(n)(p) if and only if w ∈ ν(#ip).

▶ Lemma 55. Let A = ⟨A, ρ⟩ be any derivative space and ν be any extended valuation on
A. Let w ∈ A, i < n, and φ be any formula in #-normal form which has #-depth less than
n− i. Then, ⟨A(n), ν(n)⟩, (w, i) |= φ if and only if ⟨A, ν⟩, w |= φ.

It then readily follows that φ is consistent if and only if φ′ is consistent, which implies
that φ′ is satisfiable on Ω. This is equivalent to φ being satisfiable on the class of invertible
systems based on Ω. From this, we obtain the following general result.

▶ Theorem 56. Let Λ be complete for a class Ω of derivative spaces. Then, if Ω is closed
under sums, it follows that ΛH is complete for the class of invertible systems based on Ω.

▶ Corollary 57.

1. wK4H is sound and complete for
a. The class of all finite invertible dynamic wK4 frames.
b. The class of all finite invertible dynamic topological systems with Cantor derivative.
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2. K4H is sound and complete for
a. The class of all finite invertible dynamic K4 frames.
b. The class of all invertible, TD dynamic topological systems with Cantor derivative.

3. GLH is sound and complete for
a. The class of all finite invertible dynamic GL frames.
b. The class of all finite invertible, scattered dynamic topological systems with Cantor

derivative.

9 Conclusion

We have recast dynamic topological logic in the more general setting of derivative spaces
and established the seminal results for the {♢,#}-fragment for the variants of the standard
logics with the Cantor derivative in place of the topological closure. Semantics on the Cantor
derivative give rise to a richer family of modal logics than their counterparts based on closure.
This is evident in the distinction between e.g. the logics wKC and K4C, both of which
collapse to S4C when replaced by their closure-based counterparts. This line of research
goes hand in hand with recent trends that consider the Cantor derivative as the basis of
topological semantics [12, 19].

There are many natural problems that remain open. The logic S4C is complete for the
Euclidean plane. In the context of d-semantics, the logic of the Euclidean plane is a strict
extension of K4, given that punctured neighbourhoods are connected in the sense that they
cannot be split into two disjoint, non-empty open sets. Thus one should not expect K4C to
be complete for the plane. This raises the question: what is the dynamic d-logic of Euclidean
spaces in general, and of the plane in particular?

The d-semantics also poses new lines of inquiry with respect to the class of functions
considered. We have discussed continuous functions and homeomorphisms. Artemov et al.
[1] also considered arbitrary functions, and we expect that the techniques used by them
could be modified without much issue for d-semantics. On the other hand, in the setting of
closure-based logics, the logic of spaces with continuous, open maps that are not necessarily
bijective coincides with the logic of spaces with a homeomorphism. This is no longer true in
the d-semantics setting, as the validity of the H axiom requires injectivity. Along these lines,
the d-logic of immersions (i.e. continuous, injective functions) would validate the original
continuity axiom #□p → □#p. Thus there are several classes of dynamical systems whose
closure-based logics coincide, but are split by d-semantics.

Finally, there is the issue of extending our language to the trimodal language with the
“henceforth” operator. It is possible that the d-logic of all dynamic topological systems may
be axiomatised using the tangled derivative, much as the tangled closure was used to provide
an axiomatisation of the closure-based DTL. However, given that the tangled derivative is
made trivial on scattered spaces, we conjecture that the trimodal d-logic based on this class
will enjoy a natural, finite axiomatisation. The work presented here is an important first
step towards proving this.
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