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Abstract
The study of quantitative risk in security systems is often based around complex and subtle
mathematical ideas involving probabilities. The notations for these ideas can pose a communication
barrier between collaborating researchers even when those researchers are working within a similar
framework.

This paper describes the use of geometrical representation and reasoning as a way to share ideas
using the minimum of notation so as to build intuition about what kinds of properties might or
might not be true. We describe a faithful geometrical setting for the channel model of quantitative
information flow (QIF) and demonstrate how it can facilitate “proofs without words” for problems
in the QIF setting.
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1 Introduction

The analysis of security- and privacy vulnerabilities continues to be a challenging and
important problem. Most practitioners acknowledge that online activity will never be
absolutely safe, and so rigorous scrutiny on the basis of models and proof has a significant
role to play in explaining and evaluating the severity of the threats that remain. But
understanding risk is generally a fraught process: not only must it contend with opinions
about what constitutes risky behaviour, but understanding must necessarily accommodate
“invisible” extrinisic influences. For example nothing about the four digit integer 6174 suggests
that it would be risky to send it in an email unless we find out that it is someone’s PIN and
could therefore put their life’s savings in jeopardy. 1

Assuming that evaluating the impact of risk in a given scenario is something that is still a
useful thing to do, the following questions arise. Can we provide quantitative measurements
that provide some sense of severity of a discovered vulnerability? How can we elaborate
qualitative explanations for any numerical measurements of vulnerability that we might
compute? How can we advance and share our knowledge of security and privacy defences
when those explanations can be highly technical and abstract?

1 Actually 6174 turns out to have a very curious intrinsic property of being invariant under Kaprekar’s
operation.

© Natasha Fernandes, Annabelle McIver, and Carroll Morgan;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Geometry for Quantitative Information Flow

In this paper we describe our experience of addressing those questions using geometrical
visualisations of the Quantitative Information Flow (QIF) framework [1]. Our development
of this style of “geometrical reasoning” came about through a collaboration between teams
who were working on the similar problems in quantification of security risks, using (as it
turned out) the same basic mathematical principles, but with very different notations and
somewhat differing objectives. We discovered that using visualisations helped enormously
in sharing mathematical ideas and building intuition amongst the team members. The
visualisations helped confirm facts that we knew in various forms, and enabled us not only
to refute conjectures we thought might be true, but also to suggest to us conjectures that we
had not discovered for ourselves when we were using purely formal notations. Subsequent
rigorous proof was then able to remove the geometrical hunch, providing new theorems in
privacy (described below) [8].

Thus a completely unexpected benefit of our “geometry of risk” was its facilitation of
“notation-free” communication of fundamental but complex ideas providing summaries of
proof steps in the form of geometrical constructions. Equipped with a sense of certainty
endowed by the geometry allowed us to formulate and prove formally new theorems thus
advancing our understanding of QIF and how it could be used in security and privacy. In
this we find we are in agreement with Henri Poincaré’s insights on the benefit of pictorial
representations to promote intuition and communication of complex mathematical ideas
between scientitsts:

“I have already had occasion to insist on the place intuition should hold in the
teaching of the mathematical sciences. Without it young minds could not make a
beginning in the understanding of mathematics; they could not learn to love it and
would see in it only a vain logomachy; above all, without intuition they would never
become capable of applying mathematics. But now I wish before all to speak of the
role of intuition in science itself. If it is useful to the student, it is still more so to the
creative scientist.”

Extract from Intuition and Logic in mathematics appearing in La valeur de la
science, Henri Poincaré, 1905.

1.1 Related work
There are many examples in mathematics of visualisations used to provide explanation and
insight for formal reasoning. The earliest instance is of course Euclid’s elements for reasoning
about spacial relationships; Oliver Byrne’s 1847 treatise [3] is a masterful account of how
diagrams can be used optimally to convey complex geometrical ideas. Roger Nelsen’s Proofs
without words [11] promotes the use of visualisations to explain mathematical ideas in a
range of topics from algebra to calculus, and theorems about sequences and series. And one
of the shortest papers ever written consisted essentially of two figures, as the explanation of
a mathematical result [6].

The geometry underlying the study of Quantitative Information Flow first appeared
in Alvim [1]; this also includes Morgan’s “overlapping triangles” demonstration that the
at-least-as-secure-as partial order on information-flow channels is not (alas) a lattice as well.
Fernandes’ application of geometrical ideas to study universally-optimal utility mechanisms
for differential privacy appears in [8].

In this paper therefore we emphasise the role played by geometrical ideas in supporting
the communication via “proofs without words” for quantifying security and privacy risks
using quantitative information flow.



N. Fernandes, A. McIver, and C. Morgan 2:3

2 Quantitative Information Flow Basics

The informal idea of a secret is that it is something about which there is some uncertainty,
and the greater the uncertainty the more difficult it is to discover exactly what the secret
is. For example, one’s 4-digit PIN should be kept secret, but if the last two digits are
discovered to be 7 and 4, then it becomes much easier to guess the rest of it. That is, when
any information about a secret becomes available to an observer (often referred to as an
adversary) the uncertainty is reduced, allowing the property, or even exact value of the secret,
to be more accurately inferred. When that happens, we say that information (about the
secret) has leaked.

Quantitative Information Flow (QIF) makes the above intuition mathematically precise.
Given a range of possible secret values of (finite) type X , we model a secret as a discrete
probability distribution of type DX , because it ascribes “probabilistic uncertainty” to the
secret’s exact value. Given some distribution π:DX , we write πx for the probability that π

assigns to x: X , with the idea that the more likely it is that the real value is some specific
x, then the closer πx will be to 1. Usually the uniform distribution over X models a secret
which could equally well take any one of the possible values drawn from its type and we
might say that, beyond the existence of the secret, nothing else is known. There could, of
course, be many reasons for using some other distribution: for example if the secret were the
height of an individual then a normal distribution might be more realistic. In any case, once
we have a secret, we are interested in analysing whether an algorithm, or protocol, that uses
it might leak some information about it. To do that we define a measure for uncertainty,
and use it to compare the uncertainty of the secret before and after executing the algorithm.
If we find that the two measurements are different then we can say that there has been an
information leak.

The idea of measuring security risk in terms of quantitative information flow (and that
name) was pioneered by Clarke et al. [4]. That and other early QIF analyses of information
leaks in computer systems [5, 4] used Shannon entropy [12] to measure uncertainty because
it captures the idea that more uncertainty implies “more secrecy” – and indeed the uniform
distribution corresponds to maximum Shannon entropy (corresponding to maximum “Shannon
uncertainty”). More recent treatments have shown however that Shannon entropy is not
always the best way to measure uncertainty in security contexts: precisely because of its
beautiful generality, it might not model scenarios relevant to the goals of a particular
adversary. Indeed there are some circumstances where a Shannon analysis actually gives
a more favourable assessment of security than is actually warranted, when the adversary’s
motivation is taken into account [13].

Alvim et al. [2] proposed a notion of uncertainty, more general than Shannon, based
on “gain functions”. In this paper we will use the equivalent formulation of loss functions. 2

A loss function measures a secret’s uncertainty according to how it affects an adversary’s
actions within his context. We write W for a (usually finite) set of actions available to an
adversary corresponding to an “attack scenario” where the adversary tries to infer something
(e.g. some property, but perhaps its actual value) about the secret. For a given secret x: X ,
an adversary’s choice of action w: W results in the adversary’s losing something beneficial
to his objective. That loss can vary depending on the adversary’s action (w) and the exact
value of the secret (x). The more effective is the adversary’s choice in how to act, the more
he is able to overcome any uncertainty concerning the secret’s value.

2 Shannon Entropy is a special case: it can be defined using a loss function.
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▶ Definition 1. Given a type X of secrets, a (real valued) loss function ℓ: W×X →R is such
that ℓ(w, x) determines the loss to an adversary if he chooses w and the secret is x.

A simple example of a loss function is br (for “Bayes Risk”, as explained below), where
W := X so that the available actions are simply “guess the value of x”, and thus 3

br(w, x) := 0 if w=x else 1 . (1)

For this scenario, the adversary’s goal is to determine the exact value of the secret, so
he loses nothing if he correctly guesses the value of a secret (a good outcome for him), and
otherwise he loses $1 (bad).

Elsewhere the great utility and expressivity of loss functions for measuring various attack
scenarios relevant to security –far beyond just guessing the secret’s value – have been
thoroughly explored [1]. Given a loss function we define the uncertainty of a secret in DX
relative to the scenario the loss function describes: it is the minimum average loss to an
adversary. More explicitly, for each action w, the adversary’s average loss relative to some
distribution π of the secret is

∑
x∈X ℓ(w, x)×πx; thus his minimum average loss is the action

that yields that minimal average.

▶ Definition 2. Let ℓ: W×X →R be a loss function, and π:DX be a secret. The uncertainty
Uℓ[π] of the secret wrt. ℓ is given by

Uℓ[π] := min
w: W

∑
x: X

ℓ(w, x)×πx .

For a secret π:DX , the uncertainty wrt. the loss function br is Ubr[π]:= 1− maxx: X πx,
that is the deficit of the maximum probability assigned by π to possible values of x. The
adversary’s best strategy for optimising his loss would therefore be to choose the value x that
corresponds to the maximum probability under π. This uncertainty Ubr is called Bayes’ Risk.

We now define a mechanism to be an abstract model of a protocol or algorithm that uses
secrets. As the mechanism executes we assume that there are a number of observables, that
is outputs it might produce, that can depend on the actual value of the secret it is processing:
we write Y for the type of those observables. The model of the mechanism therefore assigns
a probability that y: Y might be observed given that the secret is x. Such observables could
be sample timings in a timing analysis in cryptography, for example.

▶ Definition 3. A mechanism is a stochastic channel 4 C: X ×Y → [0, 1]. The value Cxy is
the probability that y is observed given that the secret is x.

Given a (prior) secret π:DX and mechanism C we write π▷C for the joint distribution
in D(X ×Y) defined

(π▷C)xy := πx×Cxy .

For each y: Y, the marginal probability that y is observed is py :=
∑

x: X (π▷C)xy. 5

For each observable y, the corresponding posterior probability of the secret is the condi-
tional π|y in DX defined (π|y)x := (π▷C)xy/py . 6

3 We write := for “is defined to be”.
4 “Stochastic” means that the rows sum to 1, i.e. that

∑
y: Y Cxy = 1 for each x.

5 Equivalently that is
∑

x
πxCxy.

6 We assume for convenience that when we write py the terms C, π and y are understood from the context.
Notation suited for formal calculation would need to incorporate C and π explicitly.
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Given a prior secret π and mechanism C, it’s clear that the entry πx×Cxy of the joint
distribution π▷C is the probability that the actual secret value is x and the observation is y.
That joint distribution contains two important pieces of information, which we single out:
the probability py of observing y and the corresponding posterior π|y which represents the
adversary’s updated view about the uncertainty of the secret’s value. If the uncertainty of
the posterior increases, then information about the secret has leaked and a rational adversary
might use it to decrease his loss by changing how he acts, i.e. by altering his choice of action
w. The adversary’s average overall loss, taking the observations into account, is defined
to be the average posterior uncertainty (i.e. the average loss of each posterior distribution,
weighted according to their respective marginals):

Uℓ[π▷C] :=
∑
y∈Y

py×Uℓ[π|y] , where py and π|y are defined at Def. 3. (2)

The “rationality” of the adversary is inside the Uℓ, expressed by the minw: W there (Def. 2).

2.1 Hyper-distributions summarise the risk
In the above model the key structure used to compute the posterior loss is [π▷C] – which
can be represented (more abstractly) as a hyper-distribution, that is a distribution of type
D2X where the outer probability is py, the marginal probability of an observation and the
inner distribution is the posterior corresponding to that y.

An advantage of that abstraction is that there is then a partial order on D2X which
allows the robust comparison of channels wrt. their information flow properties. It is the
relation (⊑), defined

▶ Definition 4. Let C, D be channels. We say that C ⊑ D if for all loss functions ℓ and
prior distributions π we have Uℓ[π▷C] ≤ Uℓ[π▷D].

That is, if D refines C then we can be sure that the adversary always loses no less with D

than with C in any scenario that can be defined by some π and ℓ of the correct type: that is,
for a defender D is at least as secure as C. As we noted above, Shannon Entropy is a special
case of an ℓ-uncertainty – but with infinitely many actions– and we call its loss function se,
so that Shannon entropy is Use.

2.2 Reasoning geometrically
The basic model of QIF – set out mathematically above – turns out to have an appealing
geometrical interpretation, one that we can use to visualise the relationships between channels
and also loss functions. The first step is to visualise hyper-distributions using a barycentric
representation of DX [1][chapter 12]. Recall from §2.1 above that a hyper-distribution is of
type D2X , equivalently D(DX ) or a “distribution of distributions”. The “inner D” defines
what we call “inners”, distribution on X directly, that correspond to posteriors associated
with the observations – and when X is finite the inners are (non-negative) 1-summing vectors
in R|X |. Thus a hyper-distribution corresponds to a convex sum of 1-summing vectors. The
“outer D” is the “outer” that gives the marginal probabilities associated with each inner, the
weights in that convex sum.

Suppose first that X := {xa, xb} and that u:DX is the uniform prior. As explained above
u corresponds to a 1-summing vector, so that as expected in this case u:= (1/2, 1/2). Here
the first component is the probability that the secret is xa and the second component is the

CSL 2022
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xa xb

3/8 5/8

prior

!1 !2

inner inner

the distribution “certainly xa” the distribution “certainly xb”

barycentric representation of distributions on X = {xa,xb}

The inners are produced by a channel acting on the prior.

The dots’ sizes indicate the inners’ respective outer probabilities.

The barycentric representation of D{xa, xb} is the horizontal line between xa and xb (corres-
ponding to the 1-summing vectors (1, 0) and (0, 1)). The two inners are labelled δ1 and δ2 with
their positions relative to the xa(xb) labels corresponding to the probabilities δ1

xa
(δ1

xb
) and

δ2
xa

(δ2
xb

). The outers are indicated as the relative distance between the δ’s and their weighted
average to obtain the original prior u.

Figure 1 Barycentric representation of [u ▷ C].

probability that the secret is xb – since u is uniform, those probabilities are the same. Next let
the observations Y:= {y1, y2} be and consider the channel C ∈ X ×Y , and its corresponding
hyper-distribution [u▷C] when the prior is u.

C :=
( y1 y2

xa
1/2 1/2

xb
1/4 3/4

)
[u▷C] :=

3/8 5/8

xa
2/3 2/5

xb
1/3 3/5

As we can see, the inners (i.e. posteriors) are δ1:= (2/3, 1/3) and δ2:= (2/5, 3/5), and their
corresponding “outers” the marginal probabilities 3/8, 5/8.

Since X has only two elements, the barycentric representation of DX is one-dimensional,
running from distribution “certainly xa” at left to “certainly xb” at right, as in Fig. 1. A
point on that line represents a linear combination of those two extremes, and the larger
the probability the distribution assigns to xa, say, the closer its representing point is to
the left-hand side. This barycentric representation therefore locates inners δ1,2 on that
horizontal line, with for example δ1 lying closer to the left-hand side because it assigns
greater probability to xa.

Fig. 1 also shows the prior (as a point in the middle of the line, because it’s uniform),
and the points representing δ1,2 are given sizes corresponding to the outers associated with
them. If linearly combined with those sizes as coefficients, they will give the prior at the
position shown (and with “size” 1). That is a property of the construction [π▷C] for any
prior π (uniform or not) and channel C.

Next, given a loss function ℓ we can plot its associated uncertainty Uℓ(π) on the vertical
axis above the barycentric representation, and in fact (for all ℓ) it will determine a concave
and continuous curve there. Fig. 2 also shows an uncertainty Uℓ as a function from inners
to reals. Here a particular loss ℓ(w, ·) becomes a tangent to the curve Uℓ, and therefore
the curve shown is the envelope of all those w-determined tangents. Locating δ1, δ2 on the
(horizontal) barycentric axis, we can easily read off Uℓ[δ1] and Uℓ[δ2] as the height of the
curve Uℓ above them.
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The barycentric axis is the horizontal labelled xa, xb, and the inners (posteriors) of [u▷C] are
indicated as δ1, δ2. The circles’ sizes represent their respective outer (i.e. marginal) probabilities.
The curve denotes Uℓ as a function of points (distributions) on the horizontal barycentric axis.
Thus Uℓ[δ1]) is the height of the vertical line from δ1 up to the curve Uℓ.

The average of the inners δ1 and δ2 weighted according to their respective outer probabilities in
[u▷C] yields the prior u again; but the (same) average of the expected losses is Uℓ[u▷C], whose
value is the height of the vertical line from the prior u (in this case) to the line joining the two
points on the Uℓ curve.

Figure 2 Barycentric representation of uncertainties and loss functions.

With all that done, it is easy to compute Uℓ[u▷C] as that same weighted average of the
heights of Uℓ above them: and that is done geometrically by connecting those two points on
Uℓ[u▷C] with a straight line, and noting its height above the prior. That is, we simply take
the weighted average 3/8×Uℓ[δ1] + 5/8×Uℓ[δ2], which is depicted on the figure as the point at
which the vertical line from u meets the line joining the uncertainties at Uℓ[δ1,2].

Because Uℓ is concave, we now have a “proof without words” [11] of the well known
Jensen’s inequality. 7 8

7 For more than two inners, the same “proof” generalises; but the combinations have to be done two-by-two.
8 As has been noted by many authors, a “proof without words” is not a proof. We use it here to mean

that it is a suggestion for a proof strategy – of course the actual proof must be demonstrated with
appropriate words.
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The barycentric representation of distributions over three values {xa, xb, xc} is a (two-
dimensional) triangle, rather than a straight line as it was in Fig. 2 above when X
had just two values: it’s always one dimension smaller than the size of X , because the
constraint that the probabilities sum to 1 loses one degree of freedom.

Figure 3 Barycentric representations on three points.

In the following sections we use pictures and constructions given above as a way to build
and share intuition about the behaviour of channels. Our demonstrations can be thought
of as providing hints to explain a complex argument; here we suppress the accompanying
formal arguments leaving the constructions as “proofs with very few words”.

3 Some QIF proofs without many words

3.1 Refinement seen geometrically
In Def. 4 the refinement partial order is defined between hyper-distributions, that the loss
with respect to any uncertainty must increase. But the Coriaceous Theorem [10] gives
an equivalent geometric definition. One hyper – an (outer) distribution over (its inner)
distributions – is a refinement of another just when the more refined’s inners can be realised
as a weighted merge of the less refined’s inners. In Fig. 2 for example, the hyper represented
by the two smaller dots can be refined to another – to many others – by “carving off”
pieces of the inners and merging them according to their respective weights. 9 And the
proof of the Coriaceous Theorem is itself inspired geometrically, because it relies on the
Separating-Hyperplane Lemma, where the convex region represents the more refined hyper,
and the separating plane’s normal gives the coefficients of the loss function that satisfies the
original Def. 4.

The geometric view tells us immediately that a more-refined hyper’s inners must lie
(non-strictly) within the convex hull of the less-refined hyper, and helps us (in §3.2) to see –
again geometrically – whether the refinement partial order is a lattice. The following stronger
fact (requiring a full proof) allows us to make stronger geometric arguments [1].

9 In the extreme case, they can be refined to the singleton hyper whose sole inner is the original prior, as
illustrated by the arrows in that figure.
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Figure 4 Two triangular hypers ∆1,2 on X = {xa, xb, xc}.

▶ Lemma 5. Let the (finite) state space X have N elements, and let some hyper ∆ have
N linearly independent inners. Then any other hyper ∆′ all of whose inners lie within the
convex hull of ∆ (and that is derived from the same prior) is a refinement of ∆, no matter
how many inners ∆′ might have.

The original “qualitative” Lattice of Information [9] is (by its very title) a lattice; but in
the quantitative case (here), it turns out that it is not a lattice.

3.2 The refinement order is not a lattice
In Fig. 3 we show how our barycentric representation of distributions appears when X is
{xa, xb, xc}, no longer a line but now an equilateral triangle, shown in grey at the bottom.
We will reason about hypers in that triangle.

Fig. 4 shows two hypers ∆1,2 (green and red resp.) over a state space X = {xa, xb, xc}.
They are both generated from the uniform prior (1/3, 1/3, 1/3), shown as a black dot at the
centre of the barycentric triangle, and each of the hypers is a (smaller) equilateral triangle
itself, having three inners (each) all three with outer probability 1/3. All refinements of ∆1

must lie within the green triangle; and all refinements of ∆2 must lie within the red triangle;
and so all refinements of both must lie within the yellow hexagon.

And so from Lem. 5 we know that any hyper (with the same prior) in the yellow hexagon
must refine both ∆1,2, because they have only three inners (each).

Now consider three more hypers, each with only two inners (each with outer 1/2), named
∆3,4,5 as shown in Fig. 5. Each of ∆3,4,5 is a refinement of each of ∆1,2, as noted just above,
which fact we write compactly as ∆1,2 ⊑ ∆3,4,5. We show (after the following lemma) that
there is no hyper ∆ satisfying

∆1,2 ⊑ ∆ ⊑ ∆3,4,5 . (3)

▶ Lemma 6. If hypers ∆′, ∆′′ (with the same prior) lie (non-strictly) within the yellow
hexagon of Fig. 5, and ∆′ ⊑ ∆′′, then the outer probability of any of the (six) hexagon vertices
in ∆′′ cannot exceed the outer probability of that same vertex in ∆′. 10

That is because refinement interpolates inners, and interpolation of any inners of ∆′

(which, remember, are non-strictly within the hexagon) cannot increase the outer of one of
the hexagon’s vertices, because the hexagon is convex and its vertices are its extreme points.

10 If some vertex of the hexagon is not “actually” one of the inners of the hyper considered, we just consider
its outer to be zero.
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Figure 5 Three more two-inner hypers ∆3,4,5 on X = {a, b, c}.

Now from Lem. 6 we have immediately that there is no ∆ satisfying (3), because any ∆
that refines both ∆1,2 must lie within the hexagon; and by Lem. 6 if ∆ additionally is refined
by all of ∆3,4,5 then the outer of ∆ at all six vertices be at least 1/2, impossible because those
outers must sum to 1.

And so (⊑) on X = {xa, xb, xc} is not a lattice: for both the join ∆1 ⊔ ∆2 and the meet
∆3 ⊓ ∆4 ⊓ ∆5, if they existed, would as ∆ satisfy (3) – which Lem. 6 showed was impossible.
And so neither exists.

3.3 Channel composition is not idempotent. . . unless it is deterministic
Channel composition (or parallel) composition is defined to be the channel obtained by
independent executions of two channels, taking both their observations into account.

▶ Definition 7. Let C: X ×Y → [0, 1], D: X ×Z → [0, 1]. The parallel composition
C∥D: X ×(Y×Z) → [0, 1] of C, D is defined as the product space of observations which
are now drawn from Y×Z:

(C∥D)x(yz):= Cxy×Dxz .

Landauer [9] showed that parallel composition of deterministic channels are idempotent;
this suggests the question of whether parallel composition more generally is idempotent. Can
it be the case that C∥C = C when C is not deterministic?

We show that C∥C ̸= C for properly probabilistic channels by the geometric constructions
shown in Fig. 2 and Fig. 6. First Fig. 2 shows that whatever the prior π, when a properly
probabilistic channel with two observations is applied to it, there will be two inners, averaging
to the original channel. But now Fig. 6 shows how to apply that construction twice: first C is
applied tp the original prior, yielding two inners δ1,2 and then, because of the independence,
D is now applied to each of δ1,2, where these new corresponding inners average to the δ’s.

Using now the uncertainty Uℓ we can visualise how the information flow must be different
between C and C ∥ D: we apply the construction in Fig. 2 twice, each time averaging: first
to compute Uℓ[δ1,2 ▷D] must be strictly less than each of Uℓ[δ1,2]; and then again to show
that Uℓ[π▷(C∥D)]. Our question is now answered by setting D to C.
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The expected loss for [π▷C∥D] is determined by applying the construction from Fig. 2 twice.
First [π▷C] is represented by its two inners δ1,2 which average to π; then the same construction
is applied to [δ1 ▷D] and [δ2 ▷D] as shown. The average Uℓ[δ1 ▷D] and Uℓ[δ2 ▷D] are then weighted
averages as described in Fig. 2. The expected loss Uℓ[π▷C∥D] is then computed by averaging
those averages.

Figure 6 Construction for C∥D in 2 dimensions using Shannon Entropy.
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We note finally that this geometric construction assumes that the inners in [π▷C] are
spread either side of π. This does not happen when C is deterministic i.e. does not have any
values except 1’s and 0’s. For deterministic channels, the secrets are separated into equivalence
classes and the information flow yields exactly which class a secret is in. Geometrically this
means that when the support of an inner δ lies entirely within an equivalent class the inners
[δ▷C] are actually δ.

3.4 Which is better, the Laplace- or Geometric mechanism for
implementing differential privacy?

Figure 7 The Laplace (continuous pdf) and Geometric (discrete lines) noise mechanisms.

Differential privacy [7] is a technique for for providing individuals’ data some measure
of privacy when that data is shared through e.g. a query (to the database containing it).
The idea is that rather than reporting the result of a raw query, instead some random noise
(chosen according to a parameter ϵ) is added to the result and the noisy answer is then
reported. Different methods of adding random noise have different properties of course – and
those that are in keeping with the spirit of differential privacy can guarantee to make similar
query results “indistinguishable in output” so that in practice an observer cannot tell apart
the outputs of inputs that are already similar (in the raw), even when those raw results are
distinguishable enough to risk a privacy breach.

Two popular methods of randomisation are based on the Geometric and Laplace probability
distributions leading to the definition of the corresponding Geometric and Laplace mechanisms.
Given the output of a query is some number d (consisting of e.g. the count of data entries
satisfying a condition, or some average value) instead of outputting the raw d, the Geometric
mechanism would output d+c where c is distributed according to a geometric distribution;
similarly the Laplace mechanism would output d+e where e is distributed according to the
Laplace distribution. The two different methods of randomisation are depicted in Fig. 7.

Interestingly, although they have broadly similar shapes ( Fig. 7) albeit the Laplace gives
a continuous“probability density function” and the Geometric a discrete number of outputs,
there is no obvious way to compare the properties of these mechanisms in terms of how
their privacy properties work. Perhaps they leak the same, or entirely different amounts
of information when used as randomisers. It turns out that when viewed in terms of QIF
channels we find that, for the same ϵ parameter we can say definitively that the Geometric
mechanism leaks more information than does the Laplace mechanism, and thus the Laplace
mechanism is strictly more private.
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Our proof with very few words in illustrated in Fig. 8 which depicts the barycentric visu-
alisation of the hyper-distributions corresponding to the Geometric- and Laplace mechanisms
when applied to three secret values (i.e. potential raw query results) and represented as QIF
channels. As explained above, the inners of the corresponding hyper-distributions can be
located as points on the plane in three dimensions. Curiously we see that the Geometric
mechanism produces three inners (orange dots in Fig. 8) which are linearly independent
because they do not lie on a line. Even more curiously the inners from the Laplace mechan-
ism (blue dots in Fig. 8) lie within the convex hull of the Geometric’s inners, and therefore
by Lem. 5 the Laplace perforce refines the Geometric, which from Def. 4 means that the
Geometric mechanism always leaks more information about the secret than does the Laplace
mechanism. This observation, discovered purely by this visualisation led to the fully formal
proof of universal optimality of the Laplace mechanism for continuous inputs [8].

The Geometric mechanism on 3 secrets parametrised by ϵ consists of 3 linearly independent
posteriors (orange). The Laplace mechanism parametrised by the same ϵ (and on the same
domain) consists of the blue posteriors sitting on the edges – ie. in the convex hull – defined
by the Geometric posteriors. It follows that the Laplace mechanism is a refinement of the
Geometric mechanism.

Figure 8 Construction of Geometric (orange) and Laplace (blue) hypers in 3 dimensions.

4 Conclusions

In this paper we have demonstrated how to use geometrical ideas to explain complex ideas
within the framework of quantitative information flow. Although they do not represent full
formal proofs of these results they have proved to be useful for sharing ideas between different
groups of collaborators and therefore in developing the field.
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