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Abstract
In the synthesis of distributed systems, we automate the development of distributed programs
and hardware by automatically deriving correct implementations from formal specifications. For
synchronous distributed systems, the synthesis problem is well known to be undecidable. For
asynchronous systems, the boundary between decidable and undecidable synthesis problems is a
long-standing open question. We study the problem in the setting of Petri games, a framework for
distributed systems where asynchronous processes are equipped with causal memory. Petri games
extend Petri nets with a distinction between system places and environment places. The components
of a distributed system are the players of the game, represented as tokens that exchange information
during each synchronization. Previous decidability results for this model are limited to local winning
conditions, i.e., conditions that only refer to individual components.

In this paper, we consider global winning conditions such as mutual exclusion, i.e., conditions
that refer to the state of all components. We provide decidability and undecidability results for
global winning conditions. First, we prove for winning conditions given as bad markings that it is
decidable whether a winning strategy for the system players exists in Petri games with a bounded
number of system players and one environment player. Second, we prove for winning conditions
that refer to both good and bad markings that it is undecidable whether a winning strategy for the
system players exists in Petri games with at least two system players and one environment player.
Our results thus show that, on the one hand, it is indeed possible to use global safety specifications
like mutual exclusion in the synthesis of distributed systems. However, on the other hand, adding
global liveness specifications results in an undecidable synthesis problem for almost all Petri games.
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1 Introduction

The synthesis problem probes whether there exists an implementation for a formal specification
and derives such an implementation if it exists. This approach automates the creation of
systems. Engineers can think on a more abstract level about what a system should achieve
instead of how the system should achieve its goal. The synthesis problem for a system
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20:2 Global Winning Conditions in Synthesis of Distributed Systems with Causal Memory

consisting of one component interacting with its environment is often encoded as a two-player
game with complete observation between the system player and the environment player (cf.
[24, 4, 2, 7, 29, 25, 23]). The system player tries to satisfy the winning condition of the game
while the environment player tries to violate it. A winning strategy for the system player is
a correct implementation as it encodes the system’s reaction to all environment behaviors.

The synthesis problem for distributed systems aims to derive a correct implementation
for every concurrent component of a distributed system. Each component can interact
with its environment. Distributed systems can be differentiated depending on whether the
components progress synchronously or asynchronously. For synchronous distributed systems,
the synthesis problem is well known to be undecidable, as observed by Pnueli and Rosner [34].
For asynchronous distributed systems with causal memory, the boundary between decidable
and undecidable synthesis problems is a long-standing open question [30, 15]. For the
synthesis of asynchronous distributed systems, the memory model changes compared to the
two-player game and the number of players increases to encode the different components of
the system. In distributed systems, components observe only their local surroundings. This
can be encoded by causal memory [16, 27, 17]: Two players share no information while they
run concurrently; during every synchronization, however, they exchange their entire local
histories, including all of their previous synchronizations with other players.

In this paper, we consider reactive systems, i.e., the components continually interact
with their environment. Control games [17] based on asynchronous automata [39] and Petri
games [15] are formalisms for the synthesis of asynchronous distributed reactive systems with
causal memory. We focus on Petri games. Here, several system players play against several
environment players in a Petri net. Tokens represent players and places either belong to the
system or to the environment, resulting in a distribution of system and environment players.
Deciding the existence of a winning strategy for the system players is EXPTIME-complete
for Petri games with a bounded number of system players, one environment player, and bad
places as local winning condition [15]. This also holds for Petri games with a bounded number
of environment players, one system player, and bad markings as global winning condition [14].
Local winning conditions cannot express global properties like mutual exclusion.

We consider global winning conditions and contribute decidability and undecidability
results regarding the synthesis of asynchronous distributed reactive systems with causal
memory. In the first part of this paper, we prove that it is decidable whether a winning
strategy for the system players exists in Petri games with a bounded number of system
players, one environment player, and bad markings as global winning condition. Bad markings
are a safety winning condition in the sense that they define markings as bad that the system
players have to avoid in order to win the Petri game. Decidability is achieved by a reduction
to a two-player game with complete observation and a Büchi winning condition. In the
two-player game, it is encoded that transitions with the environment player fire as late as
possible, i.e., transitions without the environment player fire before transitions with it. This
order of transitions encodes causal memory [15]. For every sequential play of the two-player
game, we need to check that no bad marking is reached for the different orders of fired
concurrent transitions. The causal history of system players can grow infinitely large. We
show that the finite causal history of each system player until its last synchronization with
the environment player can be stored finitely and suffices to find bad markings.

In the second part of this paper, we investigate whether global winning conditions beyond
bad markings are decidable. We report on two undecidability results to further underline the
significance of our decidability result: We prove that it is undecidable whether a winning
strategy exists for the system players in Petri games with at least two system players, one
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environment player, and good and bad markings as winning condition. For this winning
condition, no bad marking should be reached until a good marking is reached, which can be
expressed in linear-time temporal logic (LTL) [33]. Notice that it is not required to terminate
in a good marking. Good markings can be used to simulate the undecidable synchronous
setting of Pnueli and Rosner [34] in the asynchronous setting of Petri games. This is realized
by identifying executions as good if players deviate too much from the synchronous setting.
Next, we prove that it is undecidable whether a winning strategy exists for the system
players in Petri games with good markings and at least three players, out of which one is
an environment player and each of the other two can change between being a system and
an environment player. Good markings are a liveness winning condition in the sense that
they define markings as good, one of which the system players have to reach in order to
win the Petri game. Here, bad markings from the first undecidability result are encoded by
repeatedly changing all players to environment players. With these results, we obtain an
overview regarding decidability and undecidability for global winning conditions.

Related Work. A formal connection exists between Petri games and control games [17]
based on asynchronous automata [39]: Petri games can be translated into control games
and vice versa, at an exponential blow-up in each direction [1]. This translates decidability
in acyclic communication architectures [17], originally obtained for control games, to Petri
games, and decidability in single-process systems [14], originally obtained for Petri games, to
control games. Further decidability results exist for control games with acyclic communication
architectures [31]. Decidability has also been obtained for restrictions on the dependencies of
actions [16] or on the synchronization behavior [26, 27] and for decomposable games [19].

The decidability result of this paper does not transfer to control games because the
translation in [1] produces Petri games with as many system and environment players as
there are processes in the control game. The undecidability results of this paper transfer to
control games. System players in Petri games correspond to processes with only controllable
actions in control games; environment players correspond to processes with only uncontrollable
actions [1]. Bad markings from the first undecidability result can be simulated by additional
uncontrollable actions for all processes preventing the reaching of good markings afterward.

For Petri games with several system and environment players, bounded synthesis is a
semi-decision procedure to find winning strategies for the system players [8, 22, 21]. Bounded
synthesis and the reduction for bad places are implemented in the tool AdamSYNT [13, 9, 18].

2 Motivating Example

We introduce the intuition behind Petri games and bad markings with the example in Fig. 1.
There, we search for a strategy for two power plants, which should react to the energy
production of renewable sources based on the weather forecast. A Petri game differentiates
the places of a Petri net as system places (depicted in gray) and as environment places
(depicted in white). For example, p is a system place whereas forecast is an environment
place. The players of a Petri game are represented by tokens. The type of the place, where a
token is residing, dictates whether the token represents a system or an environment player.

After transition sunny fires to indicate a sunny forecast, there are two system players in
place p (each representing one power plant) and one environment player in place s. Causal
memory implies that both system players know what the weather forecast predicts. They
do not know whether the actual energy production is high (indicated by sh firing) or low
(indicated by sl firing) producing three or two units of energy in place w. Nevertheless, each
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Figure 1 Two power plants observe if sunny, cloudy, or rainy weather is forecast. Depending
on the actual weather, renewable sources produce up to three units of energy. The power plants
produce one or two units of energy each and have to maintain the total energy production between
four and five units of energy as all final markings with different energy production are bad markings.

power plant has to decide whether to produce two or one unit of energy in place k by ph or pl

firing. The two power plants should produce together with the renewable sources either four
or five units of energy. Therefore, any final marking resulting in a different energy production
is a bad marking, i.e., the set of bad markings is {M : P → N | (M(k) + M(w) < 4 ∨
M(k) + M(w) > 5) ∧ ∃x ∈ {s′, c′, r′} : (M(x) = 1 ∧ ∀y ∈ P \ {x, k, w} : M(y) = 0)}. The
second conjunct ensures the marking being final by requiring that the only environment
player is in one of the three environment places s′, c′, and r′ and the system players are only
in system places k and w. We assume that players always choose one of their successors. In
Sec. 4, the finer notion of strategies being deadlock-avoiding is presented.

A winning strategy for the system players produces one unit of energy at both power plants
for a sunny forecast, two units of energy at one power plant and one unit of energy at the
other for a cloudy forecast, and two units of energy at both power plants for a rainy forecast.
The specification is expressible with the local winning condition of bad places by having
transitions from each bad marking leading to a bad place. This is only so as the example
has no infinite behavior. For Petri games with infinite behavior and one environment player,
the global winning condition of bad markings can specify losing behavior between players
without requiring their synchronization which is impossible for local winning conditions.

3 Petri Nets

A Petri net [32, 37] N = (P, T , F , In) consists of the disjoint finite sets of places P and of
transitions T , the flow relation F as multiset over (P×T )∪(T ×P), and the initial marking In
as multiset over P. For a place p, the precondition is the set pre(p) = {t ∈ T | F(t, p) > 0}
and the postcondition is the set post(p) = {t ∈ T | F(p, t) > 0}. For a transition t, the
precondition is the multiset over P defined by pre(t)(p) = F(p, t) for all p ∈ P and the
postcondition is the multiset over P defined by post (t)(p) = F(t, p) for all p ∈ P. States of
Petri nets are represented by multisets over P, called markings. A marking M puts M(p)
tokens in every place p ∈ P. A transition t is enabled in a marking M if pre(t) ⊆ M . If no
transition is enabled in a marking M , then M is called final. An enabled transition t can fire in
a marking M resulting in the successor marking M ′ = M −pre(t)+post (t) (written M [t⟩M ′).
For markings M and M ′, we write M [t0, . . . , tn−1⟩M ′ if there exist markings M0, . . . , Mn

such that M0 = M , Mn = M ′, and Mi[ti⟩Mi+1 for 0 ≤ i < n. The set of reachable markings
of N is defined as R(N ) = {M | ∃n ∈ N, t0, . . . , tn−1 ∈ T : In[t0, . . . , tn−1⟩M}. A net N ′ is a
subnet of N (written N ′ ⊑ N ) if P ′ ⊆ P , T ′ ⊆ T , In′ = In, and F ′ = F ↾ (P ′×T ′)∪(T ′×P ′).
We enforce In′ = In to maintain all players when later defining strategies for Petri games.
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We call elements in P ∪T nodes. For nodes x and y, we write x⋖y if x ∈ pre(y). With ≤,
we denote the reflexive, transitive closure of ⋖. The causal past of x is past(x) = {y | y ≤ x}.
Nodes x and y are causally related if x ≤ y∨y ≤ x. They are in conflict (written x ♯ y) if, for a
place p ∈ P , there are distinct transitions t1, t2 ∈ post (p) with t1 ≤ x∧t2 ≤ y. Node x is in self-
conflict if x ♯ x. We call x and y concurrent if they are neither causally related nor in conflict.

An occurrence net is a Petri net where the pre- and postcondition of transitions are
sets, the initial marking coincides with places without ingoing transitions, other places have
exactly one ingoing transition, no infinite path starting from any given node and following the
inverse flow relation exists, and no transition is in self-conflict. A homomorphism maps nodes
from N1 to N2 preserving the type of nodes and the pre- and postcondition of transitions.

A branching process [5, 28, 6] describes parts of possible behaviors of a Petri net. We use
the individual token semantics [20]. A branching process of a Petri net N is a pair ι = (N ι, λι)
where N ι is an occurrence net and λι : Pι ∪ T ι → P ∪ T is a homomorphism from N ι to N
that is injective on transitions with the same precondition. Intuitively, whenever a node can
be reached on two distinct paths in a Petri net N , it is split up in the branching process of N .
λι labels the nodes of N ι with the original nodes of N . The injectivity condition avoids
additional unnecessary splits. The unfolding ιU = (N U , λU ) of N is a maximal branching
process: Whenever there is a set of pairwise concurrent places C such that λU [C] = preN (t)
for some transition t ∈ T , then there exists t′ ∈ T U with λU (t′) = t and preU (t′) = C.

4 Petri Games and Büchi Games

A Petri game [15, 14] is a tuple G = (PS , PE , T , F , In, W). The places of the underlying Petri
net N = (P, T , F , In) are partitioned into system places PS and environment places PE . We
call tokens on system places system players and tokens on environment places environment
players. The game is played by firing transitions in N . Players synchronize when a joint
transition fires. Intuitively, a strategy controls the behavior of system players by deciding
which transitions to allow. Environment players are uncontrollable and transitions only
dependent on environment players cannot be restricted. The winning condition is given by W
as the set of bad places PB ⊆ P , bad markings MB ⊆ R(N ), or good markings MG ⊆ R(N )
or the pair of disjoint sets of good and bad markings (MG, MB) ∈ P (R(N ))×P (R(N )). We
depict Petri games as Petri nets and color system places gray and environment places white.
A Petri game has a bounded number of system players and one environment player if, for a
bound k ∈ N, every system place contains at most k tokens for all reachable markings of N
and the sum of tokens in all environment places is exactly one for all reachable markings of N .

A strategy for G is a branching process σ = (N σ, λσ) of N satisfying justified refusal: If
there is a set of pairwise concurrent places C in N σ and a transition t ∈ T with λσ[C] =
preN (t), then there either is a transition t′ ∈ T σ with λσ(t′) = t and C = preσ(t′) or there
is a system place p ∈ C ∩ (λσ)−1[PS ] with t ̸∈ λσ[postσ(p)]. Justified refusal enforces that
only system places can prohibit transitions based on their causal past: From every situation
in the game, a transition possible in the underlying net is either in the strategy or there is a
system place that never allows it. A strategy is a restriction of possible transitions in the
Petri game because it is a branching process which describes subsets of the behavior of a
Petri net. We further require σ to be deterministic: For every reachable marking M of σ

and system place p ∈ M , there is at most one transition from postσ(p) enabled in M . Notice
that postσ(p) can contain more than one transition as long as at most one of them is enabled
in the same reachable marking. This allows that the environment player decides between
different branches of the Petri game and the system player later on reacts to every decision.

CSL 2022
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A strategy is deadlock-avoiding if, for every final, reachable marking M in the strategy,
λσ[M ] is final as well. A strategy σ is winning for bad places W = PB if it is deadlock-avoiding
and no reachable marking in σ contains a place corresponding to a bad place. A strategy σ is
winning for bad markings W = MB if it is deadlock-avoiding and no reachable marking in σ

corresponds to a bad marking. One branching process ι1 = (N 1, λ1) is a subprocess of another
ι2 = (N 2, λ2) if N 1 ⊑ N 2 and λ1 = λ2 ↾ (P1 ∪ T 1). A play π = (N π, λπ) is a subprocess of a
strategy σ = (N σ, λσ) with ∀p ∈ Pπ : |post (p)| ≤ 1. It is maximal if, for each set of pairwise
concurrent places C in N π with C = preσ(t) for some t ∈ T σ, a place p ∈ C and a transition
t′ ∈ T π exist with t′ ∈ postπ(p). A complete firing sequence of a play π is a possibly infinite
sequence of fired transitions such that each transition of π occurs. A strategy σ is winning for
good markings W = MG if, for all complete firing sequences t0t1t2 . . . of all maximal plays π

of σ with M0 = Inπ and M0[t0⟩M1[t1⟩M2[t2⟩ . . ., there exists i ≥ 0 with λπ[Mi] ∈ MG. A
strategy σ is winning for good and bad markings W = (MG, MB) if, for all complete firing
sequences t0t1t2 . . . of all maximal plays π of σ with M0 = Inπ ∧ M0[t0⟩M1[t1⟩M2[t2⟩ . . .,
there exists i ≥ 0 with λπ[Mi] ∈ MG ∧ ∀0 ≤ j < i : λπ[Mj ] /∈ MB. Terminating in a final
marking as winning condition is different from reaching a good marking as players are not
required to terminate in a good marking and can reach a bad marking afterward.

A Büchi game has two players: Player 0 represents the system, Player 1 the environment.
Both act on complete information about the game arena and the play so far. To win, Player 0
has to ensure that an accepting state is visited infinitely often. A winning strategy for
Player 0 corresponds to a correct implementation of the encoded synthesis problem. Deciding
the existence of a winning strategy can be done in polynomial time [3].

Formally, a Büchi game G = (V, V0, V1, I, E, F ) consists of the finite set of states V

partitioned into the disjoint sets of states V0 of Player 0 and of states V1 of Player 1, the
initial state I ∈ V , the edge relation E ⊆ V × V , and the set of accepting states F ⊆ V . We
assume that all states in a Büchi game have at least one outgoing edge. A play is a possibly
infinite sequence of states which is constructed by letting Player 0 choose the next state from
the successors in E whenever the game is in a state from V0 and by letting Player 1 choose
otherwise. An initial play is a play that starts from the initial state. A play is winning
for Player 0 if it visits at least one accepting state infinitely often. Otherwise, the play is
winning for Player 1. A strategy for Player 0 is a function f : V ∗ · V0 → V that maps plays
ending in states of Player 0 to one possible successor according to E. A play conforms to a
strategy f if all successors of states in V0 are chosen in accordance with f . A strategy f is
winning for Player 0 if all initial plays that conform to f are winning for Player 0.

5 Decidability in Petri Games with Bad Markings

We present a reduction from Petri games with a bounded number of system players, one
environment player, and bad markings to Büchi games. In the following, we give an intuition
for the main concepts of the reduction, before presenting the structure of the Büchi game in
the remainder of this section. More details are in [12] and a running example is in Fig. 2.

Petri games use unfoldings, which can be of infinite size, to encode the causal memory
of players. By contrast, Büchi games have two players with complete information and a
finite number of states. To overcome these differences when encoding Petri games, states
in the corresponding Büchi games consist of a representation of the current marking and
some additional information. Edges in the Büchi game mostly correspond to a transition
firing in the Petri game. We say that a transition fires in the Büchi game when it fires in the
encoded Petri game. Concurrency between transitions in the Petri game is encoded by having
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most possible interleavings in the Büchi game. Some interleavings are left out to encode
causal memory of the players in Petri games: Causal memory is simulated in Büchi games
by transitions with an environment place in their precondition firing as late as possible at
mcuts [15]. An mcut is a situation in the Petri game where all system players have progressed
maximally, i.e., the environment player can choose between all remaining possible transitions.
Mcuts can only be defined for Petri games with at most one environment player. Player 1 in
the Büchi game makes decisions only at states corresponding to mcuts.

We make two key additions to ensure that the idea of firing transition with the envir-
onment player only at mcuts can be lifted from local winning conditions to global winning
conditions: First, we add backward moves to detect bad markings and nondeterministic
decisions. Intuitively, backward moves allow us to rewind transitions with only system players
participating. They are realized by each system player remembering its history until its last
synchronization with the environment player. In every state of the Büchi game, it is checked
whether the backward moves of all system players allow us to rewind the game in such a way
that a bad marking is reached or a nondeterministic decision is found.

Second, we add the so-called NES-case to handle system players playing infinitely without
synchronizing with the environment player directly in the Büchi game. The abbreviation
NES stands for no more environment synchronization and is necessary when some system
players play infinitely but without synchronization with the environment player. In [15],
this situation is called the type-2 case and can be handled as a preprocessing step, because
only the local winning condition of bad places is considered. This is impossible for the
global winning condition of bad markings considered in this paper. Throughout this paper,
the NES-case can be disregarded by adding the restriction that each system player either
terminates or synchronizes infinitely often with the environment player.

For the NES-case, every system player has a three-valued flag. As long as the system
player will terminate or will synchronize with the environment player in the future, the
flag should be set to negative NES-status. When system players can play infinitely without
synchronizing with the environment player, they should set their flags to positive NES-status.
After the NES-case, participating system players obtain an ended NES-status, which excludes
them from the remaining Büchi game. A positive NES-status triggers the NES-case. Here, the
system players with positive NES-status have to prove that they can play infinitely without
synchronizing with the environment player. Therefore, the usual order of all transitions
without the environment player being possible until reaching an mcut is interrupted. Instead,
only system players with positive NES-status are considered until their proof of playing
infinitely without the environment player is successful. If the system players with positive
NES-status make a mistake in their proof, then Player 0 immediately loses the Büchi game.

5.1 States and Initial State in the Büchi Game
Decision tuples represent players of the Petri game in states in the Büchi game. A decision
tuple for a player consists of an identifier, a position, a NES-status, a decision, and a
representation of the last mcut. The identifier uniquely determines the player. The position
gives the current place of the player. System players with negative NES-status false claim
that they will terminate or fire a transition with an environment place in its precondition and
are not part of the NES-case. In the NES-case, system players go from positive NES-status
true to ended NES-status end as described previously.

The decision is either ⊤ or the set of allowed transitions by the player. For system
players, ⊤ indicates that a decision for a set of allowed transitions is missing and has to
be chosen. The representation of the last mcut encodes the last known position of the
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({(0, forecast, false, {sunny, cloudy, rainy}, 0)}, ∅, []7)
v0 . . .

. . .

({(0, s, false, {sh, sl}, 0),
(1, p, false, ⊤, 1),

(2, p, false, ⊤, 1)}, ∅, []7)

v1
. . .

. . .

. . .
({(0, s, false, {sh, sl}, 0),

(1, p, false, {pl}, 1),
(2, p, false, ∅, 1)}, ∅, []7)

v2

({(0, s, false, {sh, sl}, 0), (1, k, false, ∅, 1),
(2, p, false, ∅, 1)}, ∅, [({(1, p, false, {pl}, 1)},

{(1, k, false, ∅, 1)})], []6)

v3

({(0, s′, false, ∅, 0), (1, k, false, ∅, 1),
(2, p, false, ∅, 1), (3, w, false, ∅, 2),

(4, w, false, ∅, 2), (5, w, false, ∅, 2)}, ∅,
[({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})], []6)

v5

({(0, s′, false, ∅, 0), (1, k, false, ∅, 1), (2, p, false, ∅, 1), (3, w, false, ∅, 2),
(4, w, false, ∅, 2)}, ∅, [({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})], []6)

v4

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, p, false, {pl}, 1)}, ∅, []7)

v6

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, p, false, {ph, pl}, 1)}, ∅, []7)

v7

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, p, false, {ph}, 1)}, ∅, []7)

v8

({(0, s, false, {sh, sl}, 0),
(1, k, false, ∅, 1),

(2, p, false, {pl}, 1)}, ∅,
[({(1, p, false, {pl}, 1)},
{(1, k, false, ∅, 1)})], []6)

v9

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),
(2, k, false, ∅, 1)}, ∅,

[({(2, p, false, {pl}, 1)},
{(2, k, false, ∅, 1)})], []6)

v10

({(0, s, false, {sh, sl}, 0),
(1, k, false, ∅, 1),

(2, p, false, {ph}, 1)}, ∅,
[({(1, p, false, {pl}, 1)},
{(1, k, false, ∅, 1)})], []6)

v11

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, k, false, ∅, 1), (3, k, false, ∅, 1)}, ∅,
[({(2, p, false, {ph}, 1)},

{(2, k, false, ∅, 1), (3, k, false, ∅, 1)})], []6)

v12

({(0, s, false, {sh, sl}, 0), (1, k, false, ∅, 1), (2, k, false, ∅, 1)},
∅, [({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})],

[({(2, p, false, {pl}, 1)}, {(2, k, false, ∅, 1)})], []5)

v13

({(0, s, false, {sh, sl}, 0), (1, k, false, ∅, 1), (2, k, false, ∅, 1),
(3, k, false, ∅, 1)}, ∅, [({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})],
[({(2, p, false, {ph}, 1)}, {(2, k, false, ∅, 1), (3, k, false, ∅, 1)})], []5)

v14

({(0, s′, false, ∅, 0),
(1, k, false, ∅, 1),
(2, k, false, ∅, 1),
(3, w, false, ∅, 2),
(4, w, false, ∅, 2),
(5, w, false, ∅, 2)},
∅, ⟨BM as in v13⟩)

v15

({(0, s′, false, ∅, 0),
(1, k, false, ∅, 1),
(2, k, false, ∅, 1),
(3, w, false, ∅, 2),
(4, w, false, ∅, 2)},
∅, ⟨BM as in v13⟩)

v16

({((0, s′, false, ∅, 0), (1, k, false, ∅, 1),
(2, k, false, ∅, 1), (3, k, false, ∅, 1),

(4, w, false, ∅, 2), (5, w, false, ∅, 2)},
∅, ⟨BM as in v14⟩)

v17

({(0, s′, false, ∅, 0), (1, k, false, ∅, 1),
(2, k, false, ∅, 1), (3, k, false, ∅, 1),
(4, w, false, ∅, 2), (5, w, false, ∅, 2),

(6, w, false, ∅, 2)},
∅, ⟨BM as in v14⟩)

v18

FN

FB

Figure 2 Part of the Büchi game for the Petri game in Fig. 1 is given. States of Player 0 are gray,
states of Player 1 white. Most states are labeled for identification. Double squares are accepting
states. Changes from previous states are blue for decision tuples and green for backward moves.

environment player. There can be at most as many different such positions as there are
system players. Thus, a number suffices to identify the last known mcut. Let maxS be the
maximal number of system players in the Petri game which are visible at the same time.
The set of system decision tuples is DS = {(id, p, b, T, K) | id, K ∈ {1, . . . , maxS} ∧ p ∈
PS ∧ b ∈ {false, true, end} ∧ (T = ⊤ ∨ T ⊆ post (p))}, the set of environment decision tuples
is DE = {(0, p, false, post (p), 0) | p ∈ PE}, and the set of all decision tuples is D = DS ∪ DE .

▶ Example 1. In Fig. 2, a branch of the Büchi game for the Petri game in Fig. 1 is shown.
States with decision tuples with positive NES-status are omitted because no infinite behavior
occurs. The initial state v0 has one decision tuple for the environment player in place forecast
and empty information for the NES-case and the backward moves. After Player 1 plays the
edge for transition sunny firing, state v1 with three decision tuples is reached. The decision
tuples for the two system players in place p have ⊤ as decision. There are 16 combinations
of decisions by the two system players, out of which four are shown. The first system player
always allows transition pl and the second system player allows no transition in v2, only one
of the two transitions pl and ph in v6 and v8, or both transitions in v7.

Almost all states in the Büchi game contain decision tuples and additional information
for the NES-case and for backward moves. The states in the Büchi game are defined as
V = VBN ∪ D × (PS → {0, . . . , k}) × (B∗)maxS with VBN = {FB , FN }. Finite winning and
losing behavior in the Petri game is represented in the Büchi game by the two unique states
FB and FN in VBN . A decision marking is a set of decision tuples corresponding to a
reachable marking in the Petri game such that each identifier occurs at most once. D is
the set of all such decision markings. The next element stores the underlying multiset over
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e1
s1 q1

e2

s2

q2

e3 s3
q3

t1
t2

t3

t4

C1

C2

C3

(a) The mcuts of the unfolding are C1, C2, and C3.

e1 s1

e2

s3

s2

s7

s6 t4

t3

s4 s5

s8 s9

t1 t2

t5t6 t7

(b) Markings containing s2 and s7 are bad markings.

Figure 3 Two Petri games illustrate mcuts, backward moves, and the NES-case.

system places of the decision marking from the start of the NES-case restricted to system
players with positive NES-status. In the NES-case, repeating this multiset proves that the
system players with positive NES-status can play infinitely without firing a transition with
an environment place in its precondition. This element is the empty multiset if not in the
NES-case. More details are in Sec. 5.5. B : P (DS) × P (DS) is the set of backward moves to
detect states corresponding to a bad marking or a nondeterministic decision. The remaining
elements are maxS sequences of backward moves. Each identifier in a decision tuple maps to
the position of a sequence of backward moves. More details are in Sec. 5.4.

The initial state in the Büchi game has as many decision tuples with unique identifier,
NES-status false, ⊤ as decision, and last mcut 1 as there are tokens in system places in In of
the Petri game and one decision tuple with identifier 0, NES-status false, the postcondition
of pE as decision, and last mcut 0 for the one environment place pE with one token in In.
The other parts are the empty multiset or the empty sequence of backward moves.

5.2 States of Player 0, States of Player 1, and Accepting States
Causal memory in Petri games is encoded in Büchi games by letting Player 0 fix the
decisions of allowed transitions for system players as early as possible and having Player 1
fire transitions with an environment place in their precondition as late as possible at mcuts.
Cuts are markings in unfoldings. An mcut is a cut where all enabled transitions have an
environment place in their precondition, i.e., all system players progressed maximally on
their own. With Fig. 3a, we illustrate mcuts. The initial cut {e1, s1, q1} is not an mcut as the
enabled transition t2 has only the system place q1 in its precondition. After t2 fires, the cut
C1 = {e1, s1, q2} is an mcut as the only enabled transition t1 has environment place e1 in its
precondition. Analog arguments lead to {e2, s2, q2} not being an mcut and C2 = {e2, s3, q2}
being an mcut. The final cut C3 = {e3, s3, q3} is an mcut as there are no enabled transitions.

A decision marking D in the states in the Büchi game corresponds to an mcut when no ⊤
and no positive NES-status are part of D and every transition with only system places in its
precondition is not enabled or not allowed by a participating system player in D. A state in
the Büchi game can correspond to an mcut although the cut in the unfolding of the Petri
game is not an mcut as the decisions of the system players in the Büchi game can disallow
transitions. States of Player 1 are FB , FN , and states corresponding to an mcut. States of
Player 0 are all other states. Accepting states are FB and states corresponding to an mcut.

▶ Example 2. The Petri game from Fig. 1 has {forecast}, {{e, k : i} | e ∈ {s, c, r}∧2 ≤ i ≤ 4},
and {{s′, w : ws′ , k : i}, {c′, w : wc′ , k : i}, {r′, w : wr′ , k : i} | 2 ≤ ws′ ≤ 3 ∧ 1 ≤ wc′ ≤ 2 ∧ 0 ≤
wr′ ≤ 1 ∧ 2 ≤ i ≤ 4} as mcuts, i.e., the initial cut, cuts where the power plants produced
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energy while the energy production by renewable sources was not selected, and all final,
reachable cuts. In the Büchi game in Fig. 2, the eight states v0, v3, and v13 to v18 of Player 1
have decision markings that correspond to an mcut. For states v0, v13, and v14, all enabled
transitions have an environment place in their precondition. For states v15 to v18, each
decision marking corresponds to a final cut. The decision marking of state v3 corresponds to
an mcut as the second system player in p decided to not allow any of its outgoing transitions.

5.3 Edges in the Büchi Game
Edges in the Büchi game mostly connect states V = (D, MT 2, BM 1, . . . , BM maxS

) and
V ′ = (D′, M ′

T 2, BM ′
1, . . . , BM ′

maxS
) where D is a decision marking, MT 2 is a marking, and

BM 1, . . . , BM maxS
are as many sequences of backward moves as the maximum number maxS

of system players in the Petri game. There are five sets of edges TOP, SYS , NES , MCUT ,
and STOP. In the following description of the five sets of edges, not mentioned elements of
the connected states stay the same. The formal definitions can be found in [12].
(1) Edges from TOP occur from states where at least one decision tuple in D has ⊤ as

decision. To obtain D′, Player 0 replaces each ⊤ in the decision tuples of system players
with a set of allowed transitions and can change the NES-status of decision tuples for
system players from false to true. The underlying marking of decision tuples with positive
NES-status true is stored in M ′

T 2 when a NES-status changes.
(2) Edges from SYS occur from states where all decision tuples in D have negative NES-status

and at least one transition with only system places in its precondition is enabled and
allowed by the decision tuples in D. To get D′, Player 0 simulates one such transition t

firing by removing decision tuples Dpre for the precondition of t and adding decision
tuples Dpost for the postcondition of t. For Dpost, the last mcut of all participating
players is the maximum of their previous values and Player 0 picks the decisions and can
change the NES-status as in (1). Marking M ′

T 2 is obtained as in (1). Backward move
(Dpre,Dpost) is added to BM id of all participating players with identifier id to get BM ′

id .
(3) Edges from NES are the NES-case and occur from states where a decision tuple in D

has positive NES-status. To obtain D′, Player 0 fires a transition as in (2) but only from
decision tuples with positive NES-status resulting in new decision tuples with positive
NES-status. This includes the storage of backward moves. The NES-case is successful
if the marking MT 2 is reached again and all players in it moved. Then, decision tuples
with NES-status true are set to NES-status end and M ′

T 2 becomes the empty marking.
(4) Edges from MCUT occur from states where all enabled and allowed transitions have an

environment place in their precondition. To get D′, Player 1 fires one such transition.
Decision tuples for the precondition of the transition are removed, decision tuples for the
postcondition are added. Added decision tuples for system players have NES-status false,
⊤ as decision, an empty sequence of backward moves, and the highest last mcut. As
backward moves store the past of system players until their last mcut, backward moves
for system players that are part of the transition are removed. If backward moves become
never applicable by firing the transition, they are removed from the successor state.

(5) Edges from STOP occur from states with no transition enabled or corresponding to losing
behavior. They replace other outgoing edges for losing behavior. States corresponding
to termination lead to the winning state FB . States corresponding to a deadlock but not
termination lead to the losing state FN . If backward moves detect a bad marking or a
nondeterministic decision, the state leads to FN . In the NES-case, a synchronization
of decision tuples with positive and negative NES-status or a deadlock or vanishing
of decision tuples with positive NES-status leads to FN . Decision tuples with positive
NES-status can vanish when transitions with empty postcondition fire.
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▶ Example 3. In Fig. 2, outgoing edges of state v1 are in TOP. Outgoing edges of
states v2, v6, and v8 to v12 are in SYS . Outgoing edges of states v0, v3, v13, and v14 are in
MCUT . Other edges are in STOP. No edges in NES exist in the depicted part. Outgoing
edges of states v4 and v5 represent the deadlock of the second system player in p disallowing
both outgoing transitions while only they are enabled. The outgoing edge of state v7 encodes
a nondeterministic decision of the second system player, which allows two enabled transitions.
Such a decision is only useful if another player ensures that at most one of the transitions
becomes enabled. Outgoing edges of states v15 to v17 represent termination. The outgoing
edge of state v18 represents a bad marking for six produced units of energy.

When, as in our construction, (I) Player 0 immediately resolves ⊤ to the decisions of
system players, (II) Player 0 decides which transitions with only system places in their
precondition fire following the decisions of system players, and (III) Player 1 decides as late
as possible at mcuts which transitions with an environment place in their precondition fire
following the decisions of system players, then the corresponding Büchi games encode causal
memory [15]. Allowed transitions with only system places in their precondition fire in an
order determined by Player 0 until an mcut is reached. There, Player 1 decides for the
environment player which allowed transition to fire. Afterward, this process repeats itself.

5.4 Backward Moves in the Büchi Game
In the Büchi game, Player 0 can avoid markings by picking the firing order for transitions
with only system places in their precondition. In Fig. 3b, the two system players in s2
and s3 are reached after t1 fires. One can fire t3, the other t4. This results in the firing
sequences t1t3t4 and t1t4t3. If s2 and s7 are in a bad marking, then Player 0 can decide
for edges corresponding to the first firing sequence and the bad marking is missed. We
introduce backward moves to avoid such problems. A backward move is a pair of decision
markings. It stores the change to the decision tuples by edges from SYS and NES . For every
such edge from V = (D, MT 2, BM 1, . . . , BM maxS

) to V ′ = (D′, M ′
T 2, BM ′

1, . . . , BM ′
maxS

), we
obtain Dpre and Dpost with D′ = (D \ Dpre) ∪ Dpost and add backward move (Dpre,Dpost) to
the end of BM id of all participating players with identifier id.

For every state V ′ in the Büchi game, it is checked with backward moves if V ′ is losing due
to a bad marking or a nondeterministic decision. The decision marking D′ and all decision
markings that are reachable via backward moves are checked. Therefore, it is checked whether
backward moves (Dpre,Dpost) are applicable to D′, i.e., whether Dpost ⊆ D′ and (Dpre,Dpost)
is the last backward move of all participating players. In this case, the backward move is
removed from the end of the sequences of backward moves of all participating players and
D = (D′ \ Dpost) ∪ Dpre results from the application of the backward move. The underlying
marking of D is checked to not be a bad marking and D is checked to have only deterministic
decisions. This is repeated recursively from D for all applicable backward moves until no
backward move is applicable. If a decision marking corresponding to a bad marking or a
nondeterministic decision is detected, the current state V ′ only has an edge to FN .

The identifier of players in decision tuples is used to map the decision tuple to the
corresponding sequence of backward moves, i.e., for each system player in the Petri game,
the Büchi game collects a sequence of backward moves. Edges from MCUT empty the
sequence of backward moves of decision tuples when their system place is in the precondition
of the fired transition. This removal can make backward moves not applicable because some
participating players do not have the backward move as their last one anymore.
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The sequence of backward moves can grow infinitely long when system players play
infinitely without the environment player and without the NES-case. This would result in
a Büchi game with infinitely many states. To avoid this, the Büchi game becomes losing
for Player 0 when it plays in a way that corresponds to a strategy with a variant of useless
repetitions [19] for the system players in the Petri game. Our variant of useless repetitions
identifies the repetition of a loop consisting only of transitions without the environment
player in their precondition such that the last mcut of the system players does not change,
i.e., the system players repeat a loop in which they do not exchange any new information
about the environment player. Thus, winning strategies have to avoid playing a useless
repetition more than once between the successor of an mcut and the next mcut. This can be
achieved either by continuing to the next mcut or by setting some players to NES-status
true and completing the NES-case, i.e., playing infinitely without the environment player.

▶ Example 4. In Fig. 2, we include the collection of backward moves. State v13 represents
each power plant producing one unit of energy after a sunny weather forecast. It is reached
from state v6 either via state v9 or v10 depending on which power plant produces energy first.
State v13 has a backward move for each power plant: ({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})
and ({(2, p, false, {pl}, 1)}, {(2, k, false, ∅, 1)}). Because the three markings {s, k : 2} (under-
lying marking of v13), {s, p, k} (applying one backward move), and {s, p : 2} (applying both
backward moves) are no bad markings and all decisions are deterministic, state v13 continues
with edges for the transitions of the environment place s instead of having an edge to FN .

5.5 Encoding the NES-Case Directly in the Büchi Game
We handle the NES-case where system players play infinitely without firing a transition
with an environment place in its precondition directly in the Büchi game as players in the
NES-case might be in a bad marking. This is in contrast to the reduction for bad places [15].

In the Büchi game, Player 0 has to reach an accepting state infinitely often in order to win
the game. Only FB and states corresponding to an mcut are accepting states. Transitions
with only system places in their precondition are fired between successors of mcuts and the
following mcut. Thus, if the system players can fire transitions with only system places in
their precondition infinitely often, eventually a useless repetition is reached which is losing.
To overcome this, we give Player 0 the possibility to change the NES-status for decision
tuples of system players from negative to positive. The underlying marking of this change
is stored and afterward only transitions from decision tuples with positive NES-status can
be fired. Firing these transitions maintains the positive NES-status for new decision tuples.
Instead of firing infinitely many transitions, the NES-case is ended if the stored marking is
reached again and all players in the marking have moved. In this case, the NES-status of all
decision tuples with positive NES-status is changed to ended NES-status and the Büchi game
continues with the remaining decision tuples with negative NES-status. The requirement
to move is necessary as otherwise too many players could get ended NES-status. Decision
tuples with ended NES-status are maintained as backward moves can be applicable to them,
i.e., backward moves store the NES-status and allow us to reverse it in search for a bad
marking. We can thus ensure that continuing with the case where all decision tuples have
negative NES-status avoids bad markings that span the NES-case.

Player 0 has to disclose decision tuples with positive NES-status if system players fire
infinitely many transitions with only system places in their precondition. Otherwise, they lose
the game as no accepting state is reached infinitely often. It is losing if system players with
positive and negative NES-status synchronize, if players with positive NES-status deadlock,
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if one such player is not moved and the marking from the start of the NES-case is repeated, if
all such players vanish, or if another marking is repeated. Notice that at most one NES-case
is necessary per branch in the strategy tree of the Büchi game. For a safety winning condition,
possible NES-cases after the first successful one can simply terminate.

▶ Example 5. A Petri game with necessary NES-case in the encoding Büchi game is shown in
Fig. 3b. After Player 0 allows transition t2 and Player 1 fires it, a state is reached where the
decision tuples for s4 and s5 can be set to positive NES-status by Player 0. After transitions
t5, t6, and t7 fire, the marking {s4, s5} is repeated and the NES-case is successful, proving
that t5, t6, and t7 can fire infinitely often.

5.6 Decidability Result
We analyze the properties of the constructed Büchi game. Detailed proofs are in [12].

▶ Lemma 6 (From Büchi game to Petri game strategies). If Player 0 has a winning strategy
in the Büchi game, then there is a winning strategy for the system players in the Petri game.

Proof Sketch. From the tree Tf representing the winning strategy f for Player 0 in the
Büchi game, we inductively build a winning strategy σ for the system players in the Petri
game. Each cut in σ is associated with a node in Tf , transitions are added following the edges
in Tf , and the associated cut is updated if needed. This strategy σ for the system players in
the Petri game is winning as it visits equivalent cuts to the reachable states in f . ◀

▶ Lemma 7 (From Petri game to Büchi game strategies). If the system players have a winning
strategy in the Petri game, then there is a winning strategy for Player 0 in the Büchi game.

Proof Sketch. We skip unnecessary NES-cases and useless repetitions in the winning
strategy σ for the system players in the Petri game. We replace ⊤ based on the post-
condition of system places, disclose necessary NES-cases, fire enabled transitions with only
system places in their precondition in an arbitrary but fixed order between states after an
mcut and the next mcut, and add all options at mcuts. This strategy for Player 0 in the
Büchi game is winning as it visits equivalent states to the reachable cuts in σ. ◀

▶ Theorem 8 (Game solving). For Petri games with a bounded number of system players,
one environment player, and bad markings, the question of whether the system players have
a winning strategy is decidable in 2-EXPTIME. If a winning strategy for the system players
exists, it can be constructed in exponential time.

Proof Sketch. The complexity is based on the double exponential number of states in the
Büchi game and polynomial solving of Büchi games. There are exponentially many states in
the size of the Petri game to represent decision tuples and each of these states has to store
sequences of backward moves of at most exponential length in the size of the Petri game.
This transfers to the size of the winning strategy because it can be represented finitely. ◀

▶ Remark 9. In the presented construction, Player 0 in the Büchi game decides both the
decisions of the system players in the Petri game and the order in which concurrent transitions
with only system places in their precondition are fired. The question might arise whether
it is possible that Player 1 representing the environment determines the order in which
concurrent transitions with only system places in their precondition are fired. This is not
possible because the system players can make different decisions depending on the order of
transitions decided by the environment player. We present a detailed counterexample where
this change would result in a different winner of a Petri game in the full version [12].
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6 Undecidability in Petri Games with Good Markings

We prove that it is undecidable if a winning strategy exists for the system players in Petri
games with at least two system and one environment player and good and bad markings by
enforcing an undecidable synchronous setting in Petri games. For this winning condition, no
bad marking should be reached until a good marking is reached, which can be expressed
in LTL. Notice also that, after a good marking has been reached, it is allowed to reach a
bad marking. Afterward, we prove that it is undecidable if a winning strategy exists for the
system players in Petri games with only good markings and at least three players, out of
which one is an environment player and each of the other two changes between system and
environment player. Bad markings from the previous result are encoded by system players
repeatedly changing to environment players and back. More details can be found in [12].
The underlying main idea of the first construction is also used in other settings [26, 34, 36].

6.1 Petri Game for the Post Correspondence Problem
We recall that a strategy σ is winning for good and bad markings W = (MG, MB) if,
for all complete firing sequences t0t1t2 . . . of all maximal plays π of σ with M0 = Inπ ∧
M0[t0⟩M1[t1⟩M2[t2⟩ . . ., there exists i ≥ 0 with λπ[Mi] ∈ MG ∧ ∀0 ≤ j < i : λπ[Mj ] /∈ MB.
The undecidability proof uses the Post correspondence problem [35]. The Post correspondence
problem (PCP) is to determine, for a finite alphabet Σ and two finite lists r0, r1, . . . , rn and
v0, v1, . . . , vn of non-empty words over Σ, if there exists a non-empty sequence i1, i2, . . . , il ∈
{0, 1, . . . , n} such that ri1ri2 . . . ril

= vi1vi2 . . . vil
. This problem is undecidable.

To simulate the PCP in a Petri game, we use one environment and two system players.
The three players are independent as they cannot communicate with each other. Each system
player outputs a solution to the PCP. By firing a transition, a player outputs the label of the
transition. The output of the first system player is i1ri1τi2ri2τ . . . ilril

τ#1 and the output
of the second one is j1vj1τj2vj2τ . . . jmvjm

τ#2 for i1, . . . , il, j1, . . . , jm ∈ {0, 1, . . . n}. Both
system players output indices followed by the word from the index position of the respective
list and τ , and end symbol #1 or #2 at the end of the sequence. Words ri for i ∈ {i1, . . . , il}
and vj for j ∈ {j1, . . . , jm} are output letter-by-letter. A correct solution to the PCP fulfills
l > 0, m > 0, l = m, i1 = j1, i2 = j2, . . . , il = jm, and ri1ri2 . . . ril

= vj1vj2 . . . vjm
.

We ensure that strategies for the two system players can only win by outputting the
same sequence of indices at both players. This permits to decide for these strategies if a
good marking is reached where both system players have output a correct solution. Using
the independence of the three players and depending on a choice by the environment player,
we either check the equality of the output sequences of indices or of the letter-by-letter
output sequences of words. Therefore, the strategy for the system players has to behave as if
both is tested. With good markings, we restrict the asynchronous setting of Petri games to
turn-taking firing sequences on the output indices or letters. Thus, we consider equivalent
firing sequences to the synchronous setting and can check the conditions for a correct solution
to the PCP after both system players have output the end symbol. With bad markings, we
identify when output indices or output letters do not match. System players can only output
the end symbol after outputting at least one index and word to ensure non-empty solutions.

6.2 Linear Firing Sequences via Good Markings
We use MOD-3 counters to restrict the asynchronous setting of Petri games to firing sequences
equivalent to the synchronous setting of Pnueli and Rosner [34, 38]. The main idea is that
we are just interested in runs where the first system player is only zero or one step ahead of
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Figure 4 The reachability graph for the two system players is depicted when only considering
either the values of their MOD-3 index counters or of their MOD-3 letter counters and differentiating
markings depending on if a good marking is reached before. Good markings are colored green. All
behavior after a good marking (including reaching a bad marking) is winning by definition. To
compare output indices or letters, only the specific firing sequence in white has to be considered.

the second system player. When the second system player is ahead of the first one or the
first system player is two or more steps ahead of the second one, then a good marking is
reached and the possible reaching of bad markings afterwards does not matter. Hence, bad
markings are only checked for runs where the first system player is zero or one step ahead of
the second system player until they reach a good marking for giving an answer to the PCP.

Formally, for each system player, we introduce two MOD-3 counters to count the number
of output indices and of output letters modulo three. When a player outputs an index, the
respective index counter is increased by one, and accordingly for output letters and the
letter counter. If a counter would reach value three, it is reset to zero. We define good
markings based on the two MOD-3 index counters and the two MOD-3 letter counters. In a
linear firing sequence for indices (letters), the two system players output the indices (letters)
alternately with the first system player preceding the second one at each turn. We ensure
that the environment player first decides that either the output indices or letters are checked
for equality. Afterward, a good marking is reached when a firing sequence is not a linear
firing sequence for indices or letters, depending on the decision by the environment player.

In Fig. 4, we visualize the reachability graph for the two system players when only
considering either the values of their MOD-3 counters for indices or letters. Markings are
differentiated in the reachability graph depending on if a good marking is reached before,
e.g., position (0 ∥ 1) does not lead to position (1 ∥ 1) as the path to (1 ∥ 1) does not include
a good marking. With linear firing sequences, we only consider firing sequences where the
first system player outputs the first index or letter before the second system player as the
opposite cases are good markings. For firing sequences not reaching a good marking, equality
of output indices or letters is checked at positions (0 ∥ 0), (1 ∥ 1), and (2 ∥ 2). Thereby,
equality of output indices or letters at the same position can be checked without storing all
outputs and it is ensured that solutions have the same length.

Notice that linear firing sequences for indices do not restrict the order in which the two
system players output letters between two indices, and vice versa. Also, we at least need
a MOD-3 counter. For a MOD-2 counter, the good marking (2 ∥ 0) is replaced by (0 ∥ 0),
implying that all firing sequences contain a good marking. A MOD-3 counter prevents that
one player overtakes the other. Thus, indices or letters at different positions are not compared,
i.e., output indices or letters at position (0 ∥ 3) (not modulo three) can be different.

6.3 Preventing Untruthful Termination
The good markings to only consider linear firing sequences introduce new possibilities for the
system players to be winning. These possibilities arise when the system players can enforce
all firing sequences to reach a good marking. They occur when a system player terminates
without the end symbol (#1 or #2) and are called untruthful termination. Untruthful
termination is prevented by letting the environment player decide which system player it
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believes to not terminate with the end symbol or that everything is okay. This decision
happens together with the initial choice of the environment player between checking equality
of indices or letters. Due to the independence of the players, each system player has to
behave as if the environment player is anticipating it to untruthfully terminate and has to
output the end symbol to avoid this. Therefore, no untruthful termination can occur.

6.4 Undecidability Results

A winning strategy exists in the Petri game iff there exists a solution to the instance of the
PCP. The only strategy with a chance to be winning for the two system players is to output
the same solution to the PCP and we can translate solutions between both cases. We obtain:

▶ Theorem 10. For Petri games with good and bad markings and at least two system and one
environment player, the question if the system players have a winning strategy is undecidable.

Bad markings can be encoded by system players repeatedly changing to environment players
and back. Players commit to transitions and then system players become environment players.
Environment players either follow the committed transition and fire a transition returning to
the respective system and environment players or fire a transition with all other environment
players after which no good markings are reachable to encode a bad marking. We obtain:

▶ Theorem 11. For Petri games with good markings and at least three players, out of
which one is an environment player and each of the other two changes between system and
environment player, the question if the system players have a winning strategy is undecidable.

7 Conclusion

We have investigated global winning conditions for the synthesis of asynchronous distributed
reactive systems with causal memory. The general decidability or undecidability of the
synthesis problem for these systems is a long-standing open question [30, 15]. We encode
the synthesis problem for these systems by Petri games. For global winning conditions, we
achieve a clear picture regarding decidability and undecidability.

From our decidability result and previous work [14], we obtain for bad markings as global
winning condition that the question of whether the system players have a winning strategy is
decidable for Petri games where the number of system players or the number of environment
players is at most one and the number of players of the converse type can be bounded by
some arbitrary number. For bad markings as global winning condition, this leaves the case
of Petri games with two or more system players and two or more environment players open.

From our undecidability results, we obtain for good markings as global winning condition
that the question of whether the system players have a winning strategy is undecidable for
Petri games with two or more system players and three or more environment players. For
good markings as global winning condition, this only leaves the corner case of Petri games
with at most one system player and at most two environment players open.

Thus, for the synthesis of asynchronous distributed reactive systems with causal memory,
global safety winning conditions are decidable for a large class of such systems, whereas
global liveness winning conditions are undecidable for almost all classes of such systems. In
the future, we plan to combine the decidability results for bad markings as global safety
winning condition with local liveness specifications per player as in Flow-LTL [10, 11].
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