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Abstract
We show that the first-order theory of Sturmian words over Presburger arithmetic is decidable.
Using a general adder recognizing addition in Ostrowski numeration systems by Baranwal, Schaeffer
and Shallit, we prove that the first-order expansions of Presburger arithmetic by a single Sturmian
word are uniformly ω-automatic, and then deduce the decidability of the theory of the class of
such structures. Using an implementation of this decision algorithm called Pecan, we automatically
reprove classical theorems about Sturmian words in seconds, and are able to obtain new results
about antisquares and antipalindromes in characteristic Sturmian words.
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1 Introduction

It has been known for some time that, for certain infinite words c = c0c1c2 · · · over a finite
alphabet Σ, the first-order logical theory FO(N, <,+, 0, 1, n 7→ cn) is decidable. In the
case where c is a k-automatic sequence for k ≥ 2, this is due to Büchi [5], although his
original proof was flawed. The correct statement appears, for example, in Bruyère et al. [4].
Although the worst-case running time of the decision procedure is truly formidable (and
non-elementary), it turns out that an implementation can, in many cases, decide the truth of
interesting and nontrivial first-order statements about automatic sequences in a reasonable
length of time. Thus, one can easily reprove known results, and obtain new ones, merely by
translating the desired result into the appropriate first-order statement φ and running the
decision procedure on φ. For an example of the kinds of things that can be proved, see, for
example, Goč, Henshall, and Shallit [6].
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24:2 Decidability for Sturmian Words

More generally, the same ideas can be used for other kinds of sequences defined in terms
of some numeration system for the natural numbers. Such a numeration system provides a
unique (up to leading zeros) representation for n as a sum of terms of some other sequence
(sn)n≥1. If the sequence c = c0c1c2 · · · can be computed by a finite automaton taking the
representation of n as input, and if further, the addition of represented integers is computable
by another finite automaton, then once again the first-order theory FO(N, <,+, 0, 1, n 7→ cn)
is decidable. This is the case, for example, for the so-called Fibonacci-automatic sequences
in Mousavi, Schaeffer, and Shallit [14] and the Pell-automatic sequences in Baranwal and
Shallit [3].

More generally, the same kinds of ideas can handle Sturmian words. For quadratic
numbers, this was first observed by Hieronymi and Terry [9]. In this paper we extend
those results to all Sturmian characteristic words. Thus, the first-order theory of Sturmian
characteristic words is decidable. As a result, many classical theorems about Sturmian words,
which previously required intricate proofs, can be proved automatically by a theorem-prover
in a few seconds. As examples, in Section 7 we reprove basic results such as the balanced
property and the subword complexity of these words.

Let α, ρ ∈ R be such that α is irrational. The Sturmian word with slope α and
intercept ρ is the infinite {0, 1}-word cα,ρ = cα,ρ(1)cα,ρ(2) · · · such that for all n ∈ N

cα,ρ(n) = ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋ − ⌊α⌋.

When ρ = 0, we call cα,0 the characteristic word of slope α. Sturmian words and their
combinatorical properties have been studied extensively. We refer the reader to the survey
by Berstel and Séébold [12, Chapter 2]. Note that cα,ρ can be understood as a function from
N to {0, 1}. Let L be the signature1 of the first-order logical theory FO(N, <,+, 0, 1) and let
Lc denote the signature obtained by adding a single unary function symbol c to L. Now let
Nα,ρ be the Lc-structure (N, <,+, 0, 1, n 7→ cα,ρ(n)), where we expand Presburger arithmetic
by a Sturmian word interpreted as a unary function. The main result of this paper is the
decidability of the theory of the collection of such expansions. Set Irr := (0, 1) \ Q. Let
Ksturmian := {Nα,ρ : α ∈ Irr, ρ ∈ R}, and let Kchar := {Nα,0 : α ∈ Irr}.

▶ Theorem A. The first-order logical theories2 FO(Ksturmian) and FO(Kchar) are decidable.

So far, decidability was only known for individual FO(Nα,ρ), and only for very particular
α. By [9] the logical theory FO(Nα,0) is decidable when α is a quadratic irrational3. Moreover,
if the continued fraction of α is not computable, it can be seen rather easily that FO(Nα,0)
is undecidable.

Theorem A is rather powerful, as it allows to automatically decide combinatorial state-
ments about all Sturmian words. Consider the Lc-sentence φ

∀p (p > 0) →
(

∀i ∃j j > i ∧ c(j) ̸= c(j + p)
)
.

We observe that Nα,ρ |= φ if and only if cα,ρ is not eventually periodic. Thus the decision
procedure from Theorem A allows us to check that no Sturmian word is eventually periodic.
Of course, it is well-known that no Sturmian word is eventually periodic, but this example
indicates potential applications of Theorem A. We outline some of these in Section 7.

1 In model theory this is usually called (or identified with) the language of the theory. However, here this
conflicts with the convention of calling an arbitrary set of words a language.

2 Given a signature L0 and a class K of L0-structures, the first-order logical theory of K is defined as the
set of all L0-sentences that are true in all structures in K. This theory is denoted by FO(K).

3 A real number is quadratic if it is the root of a quadratic equation with integer coefficients.
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We not only prove Theorem A, but instead establish a vastly more general theorem of
which Theorem A is an immediate corollary. To state this general result, let Lm be the
signature of FO(R, <,+,Z), and let Lm,a be the extension of Lm by a unary predicate. For
α ∈ R>0, we let Rα denote Lm,a-structure (R, <,+,Z, αZ). When α ∈ Q, it has long been
known that FO(Rα) is decidable (arguably due to Skolem [19]). Recently this result was
extended to quadratic numbers.

▶ Fact 1 (Hieronymi [7, Theorem A]). Let α be a quadratic irrational. Then FO(Rα) is
decidable.

See also Hieronymi, Nguyen and Pak [8] for a computational complexity analysis of
this decision procedure. The proof of Fact 1 establishes that if α is quadratic, then Rα is
an ω-automatic structure; that is it can be represented by Büchi automata. Since every
ω-automatic structure has a decidable first-order theory, so does Rα. See Khoussainov
and Minnes [10] for a survey on ω-automatic structures. The key insight needed to prove
ω-automaticity of Rα is that addition in the Ostrowski-numeration system based on α is
recognizable by a Büchi automaton when α is quadratic. See Section 2 for a definition of
Ostrowski numeration systems.

As observed in [7], there are examples of non-quadratic irrationals α such that Rα has
an undecidable theory and hence is not ω-automatic. However, in this paper we show
that the common theory of the Rα is decidable. Let K denote the class of Lm,a-structures
{Rα : α ∈ Irr}.

▶ Theorem B. The theory FO(K) is decidable.

Indeed, we will even prove a substantial generalization of Theorem B. For each Lm,a-
sentence φ, we set Mφ := {α ∈ Irr : Rα |= φ}. Let Irrquad be the set of all quadratic
irrational real numbers in Irr. Define M = (Irr, <, (Mφ)φ, (q)q∈Irrquad) to be the expansion
of the dense linear order (Irr, <) by predicates for Mφ for each Lm,a-sentence φ, and constant
symbols for each quadratic irrational real number in Irr.

▶ Theorem C. The theory FO(M) is decidable.

Observe that Fact 1 and Theorem B follow immediately from Theorem C. We outline how
Theorem B implies Theorem A. Note that for every irrational α, the structure Rα defines
the usual floor function ⌊·⌋ : R → Z, the singleton {α} and the successor function on αZ.
Hence Rα also defines the set {(ρ, αn, cα,ρ(n)) : ρ ∈ R, n ∈ N}. From the definability of
{α}, we have that the function from αN to {0, α} given by αn 7→ αcα,ρ(n) is definable in
Rα. Thus the Lc-structure (αN, <,+, 0, α, αn 7→ αcα,ρ(n)) can be defined in Rα, and this
definition is uniform in α. Since the former structure is Lc-isomorphic to Nα,ρ, we have that
for every Lc-sentence φ there is an Lm,a-formula ψ(x) such that

φ ∈ FO(Ksturmian) if and only if ∀x ψ(x) ∈ FO(K) and
φ ∈ FO(Kchar) if and only if ψ(0) ∈ FO(K).

Even Theorem C is not the most general result we prove. Its statement is more technical and
we postpone it until Section 6. However, we want to point out that we can add predicates for
interesting subsets of Irr to M without changing the decidability of the theory. Examples of
such subsets are the set of all α ∈ Irr such that the terms in the continued fraction expansion
of α are powers of 2, or the set of all α ∈ Irr such that the terms in the continued fraction
expansion of α are not in some fixed finite set. This means we can not only automatically
prove theorems about all characteristic Sturmian words, but also prove theorems about
all characteristic Sturmian words whose slope is one of these sets. There is a limit to this
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24:4 Decidability for Sturmian Words

technique. If we add a predicate for the set of all α ∈ Irr such that the terms of continued
fraction expansion of α are bounded, or add a predicate for the set of elements in Irr whose
continued fractions have strictly increasing terms, then our method is unable to conclude
whether the resulting structure has a decidable theory. See Section 6 for a more precise
statement about what kind of predicates can be added.

The proof of Theorem C follows closely the proof from [7] of the ω-automaticity of Rα

for fixed quadratic α. Here we show that the construction of the Büchi automata needed
to represent Rα is actually uniform in α. See Abu Zaid, Grädel, and Reinhardt [20] for a
systematic study of uniformly automatic classes of structures. Deduction of Theorem C from
this result is then rather straightforward. The key ingredient to establish the ω-automaticity
of Rα is an automaton that can perform addition in Ostrowski-numeration systems. By
[9] there is an automaton that recognizes the addition relation for α-Ostrowski numeration
systems for fixed quadratic α. So for a fixed quadratic number, there exists a 3-input
automaton that accepts the α-Ostrowski representations of all triples of natural numbers
x, y, z with x + y = z. In order to prove Theorem C, we need a uniform version of such
an adder. This general adder is described in Baranwal, Schaeffer, and Shallit [2]. There a
4-input automaton is constructed that accepts 4-tuples consisting of an encoding of a real
number α and three α-Ostrowski representations of natural numbers x, y, z with x+ y = z.
See Section 4 for details.

As mentioned above, an implementation of the decision algorithm provided by Theorem
A can be used to study Sturmian words. We created a software program called Pecan [15]
that includes such an implementation. Pecan is inspired by Walnut [13] by Mousavi, an
automated theorem-prover for deciding properties of automatic words. The main difference is
that Walnut is based on finite automata, while Pecan uses Büchi automata. In our setting it
is more convenient to work with Büchi automata instead of finite automata, since the infinite
families of words we want to consider – like Sturmian words – are indexed by real numbers.
Section 7 provides more information about Pecan and contains further examples how Pecan
is used prove statements about Sturmian words. Pecan’s implementation is discussed in more
detail in [16].

2 Preliminaries

Throughout, i, j, k, ℓ,m, n are used for natural numbers. Let X,Y be two sets and Z ⊆ X×Y .
For x ∈ X, we let Zx denote the set {y ∈ Y : (x, y) ∈ Z}. Similarly, given a function
f : X × Y → W and x ∈ X, we write fx for the function fx : Y → W that maps y ∈ Y to
f(x, y).

Given a (possibly infinite word) w over an alphabet Σ, we write wi for the i-th letter of
w, and w|n for w1 · · ·wn. We write |w| for the length of w. We denote the set of infinite
words over Σ by Σω. If Σ is totally ordered by an ≺, we let ≺lex denote the corresponding
lexicographic order on Σω. Letting u, v ∈ Σω, we also write u ≺colex v if there is a maximal i
such that ui ̸= vi, and ui < vi for this i. Note that while ≺lex is a total order on Σω, the
order ≺colex is only a partial order. However, for a given σ ∈ Σ, the order ≺colex is a total
order on the set of all words v ∈ Σω such that vj is eventually equal to σ.

A Büchi automaton (over an alphabet Σ) is a quintuple A = (Q,Σ,∆, I, F ) where
Q is a finite set of states, Σ is a finite alphabet, ∆ ⊆ Q × Σ × Q is a transition relation,
I ⊆ Q is a set of initial states, and F ⊆ Q is a set of accept states.

Let A = (Q,Σ,∆, I, F ) be a Büchi automaton. Let σ ∈ Σω. A run of σ from p is an
infinite sequence s of states in Q such that s0 = p, (sn, σn, sn+1) ∈ ∆ for all n < |σ|. If p ∈ I,
we say s is a run of σ. Then σ is accepted by A if there is a run s0s1 · · · of σ such that
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{n : sn ∈ F} is infinite. We call this run an accepting run. We let L(A) be the set of words
accepted by A. There are other types of ω-automata with different acceptance conditions,
but in this paper we only consider Büchi automata.

Let Σ be a finite alphabet. We say a subset X ⊆ Σω is ω-regular if it is recognized by
some Büchi automaton. Let u1, . . . , un ∈ Σω. We define the convolution c(u1, . . . , un) of
u1, . . . , un as the element of (Σn)ω whose value at position i is the n-tuple consisting of the
values of u1, . . . , un at position i. We say that X ⊆ (Σω)n is ω-regular if c(X) is ω-regular.

▶ Fact 2. The collection of ω-regular sets is closed under union, intersection, complementa-
tion and projection.

Closure under complementation is due to Büchi [5]. We refer the reader to Khoussainov
and Nerode [11] for more information and a proof of Fact 2. As consequence of Fact 2, we have
that for every ω-regular subset W ⊆ (Σω)m+n the set {s ∈ (Σω)m : ∀t ∈ (Σω)n (s, t) ∈ W}
is also ω-regular.

2.1 ω-regular structures
Let U = (U ;R1, . . . , Rm) be a structure, where U is a non-empty set and R1, . . . , Rm are
relations on U . We say U is ω-regular if its domain and its relations are ω-regular.

Büchi’s theorem [5] on the decidability of monadic second-order theory of one successor
immediately gives the following well-known fact.

▶ Fact 3. Let U be an ω-regular structure. Then the theory FO(U) is decidable.

In this paper, we will consider families of ω-regular structures that are uniform in the
following sense. Fix m ∈ N and a map ar : {1, . . . ,m} → N. Let Z be a set and for z ∈ Z

let Uz be a structure (Uz;R1,z, . . . , Rm,z) such that Ri,z ⊆ U
ar(i)
z . We say that (Uz)z∈Z is a

uniform family of ω-regular structures if
{(z, y) : y ∈ Uz} is ω-regular,
{(z, y1, . . . , yar(i)) : (y1, . . . , yar(i)) ∈ Ri,z} is ω-regular for each i ∈ {1, . . . ,m}.

From Büchi’s theorem, we immediately obtain the following.

▶ Fact 4. Let (Uz)z∈Z be a uniform family of ω-regular structures, and let φ be a formula
in the signature of these structures. Then the set {(z, u) : z ∈ Z, u ∈ Uz, Uz |= φ(u)} is
ω-regular, and the theory FO({Uz : z ∈ Z}) is decidable.

Proof. When φ is an atomic formula, the statement follows immediately from the definition
of a uniform family of ω-regular structures and the ω-regularity of equality. By Fact 2, the
statement holds for all formulas. ◀

2.2 Binary representations
For k ∈ N>1 and b = b0b1b2 · · · bn ∈ {0, 1}∗, we define [b]k :=

∑n
i=0 bik

i. For N ∈ N we say
b ∈ {0, 1}∗ is a binary representation of N if [b]2 = N .

Throughout this paper, we will often consider infinite words over the (infinite) alphabet
{0, 1}∗. Let [·]2 : ({0, 1}∗)ω → Nω be the function that maps u = u1u2 · · · ∈ ({0, 1}∗)ω to
[u1]2[u2]2[u3]2 · · · We will consider the following different relations on ({0, 1}∗)ω.
Let u, v ∈ ({0, 1}∗)ω. We write u <lex,2 v if [u]2 is lexicographically smaller than [v]2. We
write u <colex,2 v if there is a maximal i such that [ui]2 ̸= [vi]2, and [ui]2 < [vi]2. Note that
while <lex,2 is a total order on ({0, 1}∗)ω, the order <colex,2 is only a partial order. However,
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24:6 Decidability for Sturmian Words

<colex,2 is a total order on the set of all words v ∈ ({0, 1}∗)ω such that [v]j is eventually 0.
Let u = u1u2 · · · , v = v1v2 · · · ∈ ({0, 1}∗)ω. Let k be minimal such that [uk]2 ≠ [vk]2. We
write u <alex,2 v if either k is even and [uk]2 < [vk]2, or k is odd and [uk]2 > [vk]2.

2.3 Ostrowski representations
We now introduce Ostrowski representations based on the continued fraction expansions of
real numbers. We refer the reader to Allouche and Shallit [1] and Rockett and Szüsz [18] for
more details. A finite continued fraction expansion [a0; a1, . . . , ak] is an expression of
the form

a0 + 1

a1 + 1

a2 + 1
. . . + 1

ak

For a real number α, we say [a0; a1, . . . , ak, . . . ] is the continued fraction expansion of
α if α = limk→∞[a0; a1, . . . , ak] and a0 ∈ Z, ai ∈ N>0 for i > 0. In this situation, we write
α = [a0; a1, . . . ]. Every irrational number has precisely one continued fraction expansion. We
recall the following well-known fact about continued fractions.

▶ Fact 5. Let α = [a0; a1, . . . ], α′ = [a′
0; a′

1, . . . ] ∈ R be irrational. Let k ∈ N be minimal
such that ak ̸= a′

k. Then α < α′ if and only if
k is even and ak < a′

k, or
k is odd and ak > a′

k.

For the rest of this subsection, fix a positive irrational real number α ∈ (0, 1) and let
[a0; a1, a2, . . . ] be the continued fraction expansion of α. Let k ≥ 1. A quotient pk/qk ∈ Q is
the k-th convergent of α if pk ∈ N, qk ∈ Z, gcd(pk, qk) = 1 and pk

qk
= [a0; a1, . . . , ak]. Set

p−1 := 1, q−1 := 0 and p0 := a0, q0 := 1. The convergents satisfy the following equations for
n ≥ 1:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

The k-th difference βk of α is defined as βk := qkα− pk. We use the following facts
about k-th differences: for all n ∈ N
1. βn > 0 if and only if n is even,
2. β0 > −β1 > β2 > −β3 > β4 > . . . , and
3. −βn = an+2βn+1 + an+4βn+3 + an+6βn+5 + . . . .

We now recall a numeration system due to Ostrowski [17].

▶ Fact 6 ([18, Ch. II-§4]). Let X ∈ N. Then X can be written uniquely as

X =
N∑

n=0
bn+1qn (1)

where 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 whenever bn+1 = an+1.

For X ∈ N satisfying (1) we write X = [b1b2 · · · bnbn+1]α and call the word b1b2 · · · bn+1
an α-Ostrowski representation of X. This representation is unique up to trailing zeros. Let
X,Y ∈ N and let b1b2 · · · bn+1 and c1c2 · · · cn+1 be α-Ostrowski representations of X and
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Y respectively. Since Ostrowski representations are obtained by a greedy algorithm, one
can see easily that X < Y if and only if b1b2 · · · bn+1 is co-lexicographically smaller than
c1c2 · · · cn+1.

We now introduce a similar way to represent real numbers, also due to Ostrowski [17].
Let Iα be the interval

[
⌊α⌋ − α, 1 + ⌊α⌋ − α

)
.

▶ Fact 7 (cp. [18, Ch. II.6 Theorem 1]). Let x ∈ Iα. Then x can be written uniquely as

∞∑
k=0

bk+1βk, (2)

where bk ∈ Z with 0 ≤ bk ≤ ak, and bk−1 = 0 whenever bk = ak,(in particular, b1 ̸= a1), and
bk ̸= ak for infinitely many odd k.

For x ∈ Iα satisfying (2) we write x = [b1b2 · · · ]α and call the infinite word b1b2 · · ·
the α-Ostrowski representation of x. This is closely connected to the integer Ostrowski
representation. Note that for every real number there a unique element of Iα such that that
their difference is an integer. We define fα : R → Iα to be the function that maps x to x− u,
where u is the unique integer such that x− u ∈ Iα.

▶ Fact 8 ([7, Lemma 3.4]). Let X ∈ N be such that
∑N

k=0 bk+1qk is the α-Ostrowski
representation of X. Then fα(αX) =

∑∞
k=0 bk+1βk is the α-Ostrowski representation of

fα(αX), where bk+1 = 0 for k > N .

Since βk > 0 if and only if k is even, the order of two elements in Iα can be determined
by the Ostrowski representation as follows.

▶ Fact 9 ([7, Fact 2.13]). Let x, y ∈ Iα with x ̸= y and let [b1b2 · · · ]α and [c1c2 · · · ]α be the
α-Ostrowski representations of x and y. Let k ∈ N be minimal such that bk ̸= ck. Then
x < y if and only if

(i) bk+1 < ck+1 if k is even;
(ii) bk+1 > ck+1 if k is odd.

3 #-binary coding

In this section, we introduce #-binary coding. Fix the alphabet Σ# := {0, 1,#}. Let H∞
denote the set of all infinite Σ#-words in which # appears infinitely many times. Clearly
H∞ is ω-regular.

Let C# : ({0, 1}∗)ω → H∞ map an infinite word b = b1b2b3 · · · over {0, 1}∗ to the infinite
Σ#-word #b1#b2#b3# · · · We note that the map C# is a bijection. Let u = u1u2u3 · · · , v =
v1v2v3 · · · ∈ Σω

#. We say u and v are aligned if for all i ∈ N ui = # if and only if vi = #.
This defines an ω-regular equivalence relation on Σω

#. We denote this equivalence relation by
∼#. The following fact follows easily.

▶ Fact 10. The following sets are ω-regular:
{(u, v) ∈ H2

∞ : u ∼# v and C−1
# (u) <lex,2 C

−1
# (v)},

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <colex,2 C
−1
# (v)},

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <alex,2 C
−1
# (v)}.
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24:8 Decidability for Sturmian Words

3.1 #-binary coding of continued fractions

We now code the continued fraction expansions of real numbers as infinite Σ#-words.

▶ Definition 11. Let α ∈ (0, 1) be irrational such that [0; a1, a2, . . . ] is the continued fraction
expansion of α. Let u = u1u2 · · · ∈ ({0, 1}∗)ω such that ui ∈ {0, 1}∗ is a binary representation
of ai for each i ∈ Z≥0. We say that C#(u) is a #-binary coding of the continued fraction
of α.

Let R be the set of elements of Σω
# of the form (#(0|1)∗1(0|1)∗)ω. Obviously, R is

ω-regular.

▶ Lemma 12. Let w ∈ R. Then there is a unique irrational number α ∈ [0, 1] such that w is
a #-binary coding of the continued fraction of α.

The proof of Lemma 12 is in Appendix A. For w ∈ R, let α(w) be the real number given
by Lemma 12. When v = (v1, . . . , vn) ∈ Rn, we write α(v) for (α(v1), . . . , α(vn)).

Even though continued fractions are unique, their #-binary codings are not, because
binary representations can have trailing zeroes. This ambiguity is required in order to
properly recognize relationships between multiple numbers, as one of the numbers involved
may require more bits in a coefficient than the other(s). Occasionally we need to ensure
that all possible representations of a given tuple of numbers are contained in a set. For this
reason, we introduce the zero-closure of subsets of Rn.

▶ Definition 13. Let X ⊆ Rn. The zero-closure of X is {u ∈ Rn : ∃v ∈ X α(u) = α(v)}.

▶ Lemma 14. Let X ⊆ Rn be ω-regular. Then the zero-closure of X is also ω-regular.

The essence of the proof is that trailing zeroes are the only way that #-binary codings
of the same number can differ. The details of proof are technical and can be found in
Appendix A.

▶ Lemma 15. The set {(w1, w2) ∈ R2 : w1 ∼# w2 and α(w1) < α(w2)} is ω-regular.

Proof. Let w1, w2 ∈ R be such that w1 ∼# w2. By Fact 5 we have that α(w1) < α(w2) if
only C−1

# (w1) <alex,2 C
−1
# (w2). Thus ω-regularity follows from Fact 10. ◀

▶ Lemma 16. Let a ∈ [0, 1) be a quadratic irrational. Then {w ∈ R : α(w) = a} is
ω-regular.

Proof. The continued fraction expansion of a is eventually periodic. Thus there is an
eventually periodic u ∈ ({0, 1}∗)ω such that C#(u) is a #-binary coding of the continued
fraction of a. The singleton set containing an eventually periodic string is ω-regular. It
remains to expand this set to contain all representations via Lemma 14. ◀

▶ Lemma 17. The set {w ∈ R : α(w) < 1
2 } is ω-regular.

Proof. Let α(w) = [0; a1, a2, . . . ]. It is easy to see that α(w) < 1
2 if and only if a1 > 1. Thus

we need only check that a1 ≠ 1. The set of w ∈ R for which this true is just R \ Y , where
Y ⊆ Σω

# is given by the regular expression #10∗(#(0 ∪ 1)∗)ω. ◀
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3.2 #-Ostrowski-representations
We now extend the #-binary coding to Ostrowski representations.

▶ Definition 18. Let v, w ∈ (Σ#)ω, let x = x1x2x3 · · · ∈ Nω and let b = b1b2b3 · · · ∈
({0, 1}∗)ω be such that w = C#(b) and [bi]2 = xi for each i.

For N ∈ N, we say that w is a #-v-Ostrowski representation of X if v and w are
aligned and x is an α(v)-Ostrowski representation of N .
For c ∈ Iα(v), we say that w is a #-v-Ostrowski representation of c if v and w are
aligned and x is an α(v)-Ostrowski representation of c.

We let Av denote the set of all words w ∈ Σω
# such that w is a #-v-Ostrowski representation

of some c ∈ Iα(v), and similarly, by Afin
v the set of all words w ∈ Σω

# such that w is a
#-v-Ostrowski representation of some N ∈ N.

▶ Lemma 19. The sets

Afin := {(v, w) : v ∈ R,w ∈ Afin
v }, and A := {(v, w) : v ∈ R,w ∈ Av}.

are ω-regular. Moreover, Afin ⊆ A.

The straightforward proof is in Appendix A.

▶ Definition 20. Let v ∈ R. We define Zv : Afin
v → N to be the function that maps w to the

natural number whose #-v-Ostrowski representation is w.
Similarly, we define Ov : Av → Iα(v) to be the function that maps w to the real number whose
#-v-Ostrowski representation is w.

▶ Lemma 21. Let v ∈ R. Then Zv : Afin
v → N and Ov : Av → Iα(v) are bijective.

The proof is in Appendix A.

▶ Definition 22. Let v ∈ R. We write 0v for Z−1
v (0), and 1v for Z−1

v (1).

▶ Lemma 23. The relations 0∗ = {(v,0v) : v ∈ R} and 1∗ = {(v,1v) : v ∈ R} are
ω-regular.

▶ Lemma 24. Let s ∈ Afin
v . Then α(v)Zv(s) −Ov(s) ∈ Z and

Ov(1v) =
{
α(v) if α(v) < 1

2 ;
α(v) − 1 otherwise.

Again, proofs of these lemmas are in Appendix A.

▶ Lemma 25. The sets

≺fin := {(v, s, t) ∈ Σ3
# : s, t ∈ Afin

v ∧ Zv(s) < Zv(t)},
≺ := {(v, s, t) ∈ Σ3

# : s, t ∈ Av ∧Ov(s) < Ov(t)}

are ω-regular.

Proof of Lemma 25. For ≺fin, first recall that for X,Y ∈ N and α irrational, we have
X < Y if and only if the α-Ostrowski representation of X is co-lexicographically smaller than
the α-Ostrowski representation of Y . Therefore, we need only recognize co-lexicographic
ordering on the list of coefficients, with each coefficient ordered according to binary. This
follows immediately from Fact 10.

For ≺, note that by Fact 9 the usual order on real numbers corresponds to the alternating
lexicographic ordering on real Ostrowski representations. Therefore, we need only recognize
the alternating lexicographic ordering on the list of coefficients, with each coefficient ordered
according to binary. This follows immediately from Fact 10. ◀
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We consider Rn as a topological space using the usual order topology. For X ⊆ Rn, we
denote its topological closure by X.

▶ Corollary 26. Let W ⊆ (Σn+1
# )∗ ω-regular be such that W ⊆ {(v, s1, . . . , sn) ∈ (Σn+1

# )∗ :
s1, . . . , sn ∈ Av}. Then the following set is also ω-regular:

W := {(v, s1, . . . , sn) ∈ (Σn+1
# )∗ : s1, . . . , sn ∈ Av ∧ (Ov(s1), . . . , Ov(sn)) ∈ O(Wv)}.

Proof. Let (v, s1, . . . , sn) ∈ (Σn+1
# )∗ be such that s1, . . . , sn ∈ Av. Let Xi = Ov(si). By the

definition of the topological closure, we have that (X1, . . . , Xn) ∈ O(Wv) if and only if for all
Y1, . . . Yn, Z1, . . . , Zn ∈ R with Yi < Xi < Zi for i = 1, . . . , n there are X ′ = (X ′

1, . . . , X
′
n) ∈

O(Wv) such that Yi < X ′
i < Zi for i = 1, . . . , n. Thus by Lemma 25, (v, s1, . . . , sn) ∈ W if

and only if for all t1, . . . tn, u1, . . . , un ∈ Av with ti ≺ si ≺ ui, there are s′ = (s′
1, . . . , s

′
n) ∈ Wv

such that ti ≺ s′
i ≺ Zi for i = 1, . . . , n. The latter condition is ω-regular by Fact 2. ◀

4 Recognizing addition in Ostrowski numeration systems

The key to the rest of this paper is a general automaton for recognizing addition of Ostrowski
representations uniformly. We will prove the following.

▶ Theorem 27. The set ⊕fin := {(v, s1, s2, s3) : s1, s2, s3 ∈ Afin
v ∧Zv(s1)+Zv(s2) = Zv(s3)}

is ω-regular.

Proof. In [2, Section 3] the authors generate an automaton A over the alphabet N4 such
that a finite word (d1, x1, y1, z1)(d2, x2, y2, z2) · · · (dm, xm, ym, zm) ∈ (N4)∗ is accepted by A
if and only if there are dm+1, . . . ∈ N and x, y, z ∈ N such that for α = [0; d1, d2, . . . ] we have
[x1x2 . . . xm]α = x, [y1y2 . . . ym]α = y, [z1z2 . . . zm]α = z, and x+ y = z.

We now describe how to adjust the the automaton A for our purposes. The input
alphabet will be Σ4

# instead of N4. The new automaton will take four inputs w, s1, s2, s3,
where s1, s2, s3 ∈ Afin

w . We can construct this automaton as follows:
1. Begin with the automaton A from [2].
2. Add an initial state that transitions to the original start state on (#,#,#,#). This will

ensure that the first character in each string is #.
3. Replace each transition in the automaton with a sub-automaton that recognizes the

corresponding relationship between w, s1, s2, s3 in binary. As an example, one of the
transitions in Figure 3 of [2] is given as “−di + 1,” meaning that it represents all
cases where, letting wi, s1i, s2i, si3 be the ith letter of w, s1, s2, s3 respectively, we have
s3i − s1i − s2i = −wi + 1. This is an affine and hence an automatic relation. Thus it can
be recognized by a sub-automaton.

4. The accept states in the resulting automaton are precisely the accept states from the
original automaton.

The resulting automaton recognizes ⊕fin. ◀

The automaton constructed above has 82 states. Using our software Pecan, we can
formally check that this automaton recognizes the set in Theorem 27. Following a strategy
already used in Mousavi, Schaeffer, and Shallit [14, Remark 2.1] we check that our adder
satisfies the standard recursive definition of addition on the natural numbers; that is for all
x, y ∈ N

0 + y = y

s(x) + y = s(x+ y)
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where x, y ∈ N and s(x) denotes the successor of x in N. The successor function on N can be
defined using only < as follows:

s(x) = y if and only if (x < y) ∧ (∀z (z ≤ x) ∨ (z ≥ y)).

Thus in Pecan we define bco_succ(a,x,y) as
bco_succ (a,x,y) := bco_valid (a,x) ∧ bco_valid (a,y) ∧ bco_leq (x,y)
∧ ¬bco_eq (x,y) ∧ ∀z. bco_valid (a,z) => ( bco_leq (z,x) ∨ bco_leq (y,z))

where bco_eq recognizes {(x, y) : x = y}, bco_leq recognizes {(x, y) : x ≤colex y}, and
bco_valid recognizes Afin. We now confirm that our adder satisfies the above equations using
the following Pecan code:
Let x,y,z be ostrowski (a).
Theorem (" Addition base case (0 + y = y).", {

∀a. ∀x,y,z. bco_zero (x) => ( bco_adder (a,x,y,z) ⇔ bco_eq (y,z))
}).
Theorem (" Addition inductive case (s(x) + y = s(x + y)).", {

∀a. ∀x,y,z,u,v. ( bco_succ (a,u,x) ∧ bco_succ (a,v,z))
=> ( bco_adder (a,x,y,z) ⇔ bco_adder (a,u,y,v))

}).

In the above code bco_adder recognizes ⊕fin, bco_zero recognizes 0∗, and bco_succ recognizes
{(v, x, y) : x, y ∈ Afin

v , Zv(x) + 1 = Zv(y)}. Pecan confirms both statements are true. This
proves Theorem 27 modulo correctness of Pecan and the correctness of the implementations
of the automata for bco_eq, bco_leq, bco_valid and bco_zero. For more details about Pecan,
see Section 7.

Using Corollary 26 we can extend the automaton in Theorem 27 to an automaton for
addition modulo 1 on Iα. The details are in Appendix B.

▶ Lemma 28. The set ⊕ := {(v, s1, s2, s3) : s1, s2, s3 ∈ Av ∧ Ov(s1) + Ov(s2) ≡
Ov(s3) (mod 1)} is ω-regular. Moreover, ⊕fin ⊆ ⊕.

5 The uniform ω-regularity of Rα

In this section, we turn to the question of the decidability of the logical first-order theory
of Rα. Recall that Rα := (R, <,+,Z, αZ) for α ∈ R. The main result of this section is the
following:

▶ Theorem 29. There is a uniform family of ω-regular structures (Dv)v∈R such that Dv ≃
Rα(v) for each v ∈ R.

Theorem 29 then hinges on the following lemma.

▶ Lemma 30. There is a uniform family of ω-regular structures (Ca)a∈R such that Ca ≃
([−α(a),∞), <,+,N, α(a)N) for each a ∈ R.

The proof of Lemma 30 is a uniform version of the argument given in [7] that also fixes
some minor errors of the original proof. By Lemma 10 and Theorem 27, we already know
that Zv : (Afin

v ,≺fin
v ,⊕fin

v ) → (N, <,+) is an isomorphism for every v ∈ R. As our eventual
goal also requires us to define the set αN, it turns out to be much more natural to instead
use the isomorphism α(v)Zv : (Afin

v ,≺fin
v ,⊕fin

v ) → (α(v)N, <,+) and recover Z. We do so by
following the argument in [7]. The full proof is availabe in Appendix C.

Proof of Theorem 29. We just observe that ([−α,∞), <,+,N, αN) defines (in a matter
uniform in α) an isomorphic copy of Rα. Now apply Lemma 30. ◀
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6 Decidability results

We are now ready to prove the results listed in the introduction. We first recall some
notation. Let Lm be the signature of the first-order structure (R, <,+,Z), and let Lm,a be
the extension of Lm by a unary predicate. For α ∈ R>0, let Rα denote the Lm,a-structure
(R, <,+,Z, αZ). For each Lm,a-sentence φ, we set Rφ := {v ∈ R : Rα(v) |= φ}.

▶ Theorem 31. Let φ be an Lm,a-sentence. Then Rφ is ω-regular.

Proof. By Theorem 29 there is a uniform family of ω-regular structures (Dv)v∈R such that
such that Dv ≃ Rα(v) for each v ∈ R. Then Rφ = {v ∈ R : Dv |= φ}. This set is ω-regular
by Fact 4. ◀

Let N = (R; (Rφ)φ, (X)X⊆Rn ω-regular) be the relational structure on R with the relations
Rφ for every L-sentences φ and X ⊆ Rn ω-regular. Because N is an ω-regular structure,
the theory of N is decidable.

We now proceed towards the proof of Theorem C. Recall that Irr := (0, 1) \ Q.

▶ Definition 32. Let X ⊆ Irrn. Let XR be defined by

XR := {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) ∈ X}

We say X is recognizable modulo ∼# if XR is ω-regular.

▶ Lemma 33. The collection of sets recognizable modulo ∼# is closed under Boolean
operations and coordinate projections.

Proof. Let X,Y ⊆ Irr be recognizable modulo ∼#. It is clear that (X ∩ Y )R = XR ∩ YR.
Thus X ∩ Y is recognizable modulo ∼#. Let Xc be Irrn \ X, the complement of X. For ease
of notation, set E := {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn}. Then

(Xc)R = {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) /∈ X}
= E ∩ {(v1, . . . , vn) ∈ Rn : (α(v1), . . . , α(vn)) /∈ X}
= E ∩ {(v1, . . . , vn) ∈ Rn : (α(v1), . . . , α(vn)) /∈ X ∨ ¬(v1 ∼# v2 ∼# · · · ∼# vn)}
= E ∩ (Rn \XR).

This set is ω-regular, and hence Xc is recognizable modulo ∼#.
For coordinate projections, it is enough to consider projections onto the first n−1 coordin-

ates. Let n > 0 and let π be the coordinate projection onto first n− 1 coordinates. Observe
that π(X) = {(α1, . . . , αn−1) ∈ Rn−1 : ∃αn ∈ R (α1, . . . , αn−1, αn) ∈ X}. Thus π(X)R is
equal to {(v1, . . . , vn−1) ∈ Rn−1 : v1 ∼# · · · ∼# vn−1 ∧ ∃αn : (α(v1), . . . , α(vn−1), αn) ∈ X}.
Note that v 7→ α(v) is a surjection R↠ (0, 1) \ Q. Thus π(X)R is also equal to:

{(v1, . . . , vn−1) ∈ Rn−1 : v1 ∼# · · · ∼# vn−1 ∧ ∃vn : (α(v1), . . . , α(vn)) ∈ X}.

Unfortunately, this set is not necessarily equal to π(XR). There might be tuples
(v1, . . . , vn−1) such that no vn can be found, because it would require more bits in one
of its coefficients than v1, . . . , vn−1 have for that coefficient. But π(XR) always contains
some representation of α(v1), . . . , α(vn−1) with the appropriate number of digits. We need
only ensure that removal of trailing zeroes does not affect membership in the language. Thus
π(X)R is just the zero-closure of π(XR). Thus π(X)R is ω-regular by Lemma 14. ◀
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▶ Theorem 34. Let X1, . . . , Xn be recognizable modulo ∼# by Büchi automata A1, . . . ,An,
and let Q be the structure (Irr; X1, . . . ,Xn). Then the theory of Q is decidable.

Proof. By Lemma 33 every set definable in Q is recognizable modulo ∼#. Moreover, for
each definable set Y the automaton that recognizes Y modulo ∼#, can be computed from the
automata A∞, . . . ,A\. Let ψ be a sentence in the signature of Q. Without loss of generality,
we can assume that ψ is of the form ∃x χ(x). Set Z := {a ∈ Irrn : Q |= χ(a)}. Observe
that Q |= ψ if and only if Z is non-empty. Note for every a ∈ Irrn there are v1, . . . , vn ∈ R

such that v1 ∼# v2 ∼# · · · ∼# vn and (α(v1), . . . , α(vn)) = a. Thus Z is non-empty if and
only if {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) ∈ Z} is non-empty.
Thus to decide whether Q |= ψ, we first compute the automaton B that recognizes Z modulo
∼#, and then check whether the automaton accepts any word. ◀

We are now ready to prove Theorem C; that is decidability of the theory of the structure
M = (Irr, <, (Mφ)φ, (q)q∈Irrquad), where Mφ is defined for each Lm,a-formula as Mφ :=
{α ∈ Irr : Rα |= φ}.

Proof of Theorem C. We just need to check that the relations we are adding are all recog-
nizable modulo ∼#. By Lemma 15 the ordering < is recognizable modulo ∼#. By Lemma
16, the singleton {q} is is recognizable modulo ∼# for every q ∈ Irrquad. Since Mφ = α(Rφ),
recognizability of Mφ modulo ∼# follows from Theorem 31. ◀

We can add to M a predicate for every subset of Irrn that is recognizable modulo ∼#,
and preserve the decidability of the theory. The reader can check that examples of subsets of
Irr recognizable modulo ∼# are the set of all α ∈ Irr such that the terms in the continued
fraction expansion of α are powers of 2, the set of all α ∈ Irr such that the terms in the
continued fraction expansion of α are in (or are not in) some fixed finite set, and the set of
all α ∈ Irr such that all even (or odd) terms in their continued fraction expansion are 1.

7 Automatically Proving Theorems about Sturmian Words

We have created an automatic theorem-prover based on the ideas and the decision algorithms
outlined above, called Pecan [15]. We use Pecan to provide proofs of known and unknown
results about characteristic Sturmian words. We begin by giving automated proofs for
several classical result result about Sturmian words. We refer the reader to [12] for more
information and traditional proofs of these results.

In the following, we assume that a ∈ R and i, j, k, n,m, p, s are a-Ostrowski representations.
This can be expressed in Pecan as

Let a ∈ bco_standard .
Let i,j,k,n,m,p,s ∈ ostrowski (a).

We write ca,0(i) as $C[i] in Pecan.

▶ Theorem 35. Characteristic Sturmian words are balanced and aperiodic.

Proof of Theorem 35. To show that a characteristic Sturmian word cα,0 is balanced, note
that it is sufficient to show that there is no palindrome w in cα,0 such that 0w0 and
1w1 are in cα,0 (see [12, Proposition 2.1.3]). We encode this in Pecan as follows. The
predicate palindrome(a,i,n) is true when ca,0[i..i + n] = ca,0[i..i + n]R. The predicate
factor_len(a,i,n,j) is true when ca,0[i..i+ n] = ca,0[j..j + n].
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Theorem (" Balanced ", {
∀a. ¬(∃i,n. palindrome (a,i,n) ∧

(∃j. factor_len (a,i,n,j) ∧ $C[j-1] = 0 ∧ $C[j+n] = 0) ∧
(∃k. factor_len (a,i,n,k) ∧ $C[k-1] = 1 ∧ $C[k+n] = 1))

}).

Pecan takes 321.73 seconds to prove the theorem.
Encoding the property that a word is eventually periodic is straightforward:

eventually_periodic (a, p) :=
p > 0 ∧ ∃n. ∀i. if i > n then $C[i] = $C[i+p]

The resulting automaton has 4941 states and 35776 edges, and takes 117.78 seconds to
build. We then state the theorem in Pecan, which confirms the theorem is true.

Theorem (" Aperiodic ", {
∀a. ∀p. if p > 0 then ¬eventually_periodic (a, p)

}) .

◀

Let w ∈ {0, 1}∗. We let w denote the {0, 1}-word obtained by replacing each 1 in w

by 0 and each 0 in w by 1. A word w ∈ {0, 1}∗ is an antisquare if w = vv for some
v ∈ {0, 1}∗. We define AO : (0, 1) \ Q → N ∪ {∞} to map an irrational α to the maximum
order of any antisquare in cα,0 if such a maximum exists, and to ∞ otherwise. We let
AL : (0, 1) \ Q → N ∪ {∞} map α to the maximum length of any antisquare in cα,0 if such a
maximum exists and ∞ otherwise. Note that AL(α) = 2AO(α).

We let wR denote the reversal of a word w. We say a word w is a palindrome if w = wR.
A word w ∈ {0, 1}∗ is an antipalindrome if w = wR. We set AP : (0, 1) \ Q → N ∪ {∞}
to be the map that takes an irrational α to the maximum length of any antipalindrome in
cα,0 if such a maximum, and to ∞ otherwise. We will use Pecan to prove that AO(α), AL(α)
and AP (α) are finite for every α. While the quantities AO(α), AP (α) and AL(α) can be
arbitrarily large, we prove the new results that the length of the Ostrowski representations
of these quantities is bounded, independent of α.

Let α ∈ (0, 1) be irrational and N ∈ N. Let |N |α denote the length of the α-Ostrowski
representation of N , that is the index of the last nonzero digit of α-Ostrowski representation
of N , or 0 otherwise.

▶ Theorem 36. For every irrational α ∈ (0, 1),

|AO(α)|α ≤ 4, |AP (α)|α ≤ 4, |AL(α)|α ≤ 6, AO(α) ≤ AP (α) ≤ AL(α) = 2AO(α).

There are irrational numbers α, β ∈ (0, 1) such that AO(α) = AP (α) and AP (β) = AL(β).

Proof. Using Pecan, we create automata which compute AO, AP , and AL:

AO(α, n) := has_antisquare(α, n) ∧ ∀m.has_antisquare(α,m) =⇒ m ≤ n

AP (α, n) := has_antipalindrome(α, n) ∧ ∀m.has_antipalindrome(α,m) =⇒ m ≤ n

AL(α, n) := has_antisquare_len(α, n) ∧ ∀m.has_antisquare_len(α,m) =⇒ m ≤ n

We build automata recognizing α-Ostrowski representations of at most 4 and 6 nonzero
digits, called has_4_digits(n) and has_6_digits(n). Then we use Pecan to prove all the
parts of the theorem by checking the following statement.
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Theorem ("(i), (ii), (iii), and (iv)", {
∀a. has_4_digits (max_antisquare(a)) ∧

has_4_digits ( max_antipalindrome (a)) ∧
has_6_digits (max_antisquare_len(a)) ∧
max_antisquare(a) <= max_antipalindrome (a) ∧
max_antipalindrome (a) <= max_antisquare_len(a)

}).

We also use Pecan to find examples of the equality: when α = [0; 3, 3, 1], we have AO(α) =
AP (α) = 2, and when α = [0; 4, 2, 1], we have AP (α) = AL(α) = 2. ◀

▶ Theorem 37. For every irrational α ∈ (0, 1), all antisquares and antipalindromes in cα,0
are either of the form (01)∗ or of the form (10)∗.

Proof. We begin by creating a predicate called is_all_01 stating that a subword cα,0[i..i+n]
is of the form (01)∗ or (10)∗. We do this simply stating that cα,0[k] ̸= cα,0[k + 1] for all k
with i ≤ k < i+ n− 1.

is_all_01(a,i,n) :=
∀k. if i <= k ∧ k < i+n-1 then $C[k] ̸= $C[k+1]

We can now directly state both parts of the theorem; Pecan proves both in 76.1 seconds.

Theorem ("All antisquares are of the form (01)^* or (10)^* ", {
∀a. ∀i,n. if antisquare(a,i,n) then is_all_01(a,i,n)
}).

Theorem ("All antipalindromes are of the form (01)^* or (10)^* ", {
∀a. ∀i,n. if antipalindrome(a,i,n) then is_all_01(a,i,n)
}).

◀
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(Step 3) For every pair p, q of states of A for which p has a run to q on a word of the form
(0, . . . , 0)m(#, . . . ,#) for some m, we add a transition from state p to a new state ν(p, q)
on (#, . . . ,#), and for every transition out of state q, we create a copy of the transition
that starts at state ν(p, q) instead. If any original run from state p to state q passes
through a final state, we make ν(p, q) a final state.

(Step 4) Denote the resulting automaton by A′ and its set of states by Q′.

We now show that L(A′) is the zero-closure of X. We first show that the zero-closure is
contained in L(A′). Let v ∈ X and w ∈ R be such that α(v) = α(w). Let b = b1b2 · · · , c =
c1c2 ∈ ({0, 1}∗)ω such that C#(b) = v and C#(c) = w. Since α(v) = α(w), we have that
[bi]2 = [ci]2 for i ∈ N. Therefore, for each i ∈ N, the words bi and ci only differ by trailing
zeroes. Let s = s1s2 · · · ∈ Qω be an accepting run of v on A. We now transfer this run into
an accepting run s′ = s′

1s
′
2 · · · of w on A′. For i ∈ N, let y(i) be the position of the i-th

(#, . . . ,#) in v and let z(i) be the position of the i-th (#, . . . ,#) in w. For each i ∈ N, we
define a sequence s′

z(i)+1 · · · s′
z(i+1) of states of A′ as follows:

1. If |ci| = |bi|, then ci = bi. We set

s′
z(i)+1 · · · s′

z(i+1) := sy(i)+1 · · · sy(i+1).

2. If |ci| > |bi|, then ci = bi(0, . . . , 0)|ci|−|bi|. We set

s′
z(i)+1 · · · s′

z(i+1)

:= sy(i)+1 · · · sy(i+1)−1 µ(sy(i+1)−1, sy(i+1)) · · ·µ(sy(i+1)−1, sy(i+1)︸ ︷︷ ︸
(|ci|−|bi|)-times

sy(i+1)

Thus the new run follows the old run up to sy(i+1)−1 and then transitions to one of the
newly added states in the Step 2. It loops on (0, . . . , 0) for |ci| − |bi| − 1-times before
moving to sy(i+1).

3. If |ci| < |bi|, then bi = ci(0, . . . , 0)|bi|−|ci|. We set

s′
z(i)+1 · · · s′

z(i+1) := sy(i)+1 · · · sy(i)+|ci|ν(sy(i)+|ci|, sy(i+1))

The new run utilizes one of the newly added (#, . . . ,#) transitions and corresponding
states added in Step 3.

The reader can now easily check that s′ is an accepting run of w on A′.
We now show that L(A′) is contained in the zero-closure of X. We prove that the only

accepting runs on A′ are based on accepting runs on A with trailing zeroes either added or
removed. Let w = w1w2 · · · ∈ L(A′) and let c = c1c2 · · · ∈ ({0, 1}∗)ω be such that C#(c) = w.
Let s′ = s′

1s
′
2 · · · ∈ Q′ω be an accepting run of w on A′. We construct v ∈ X and a run

s = s1s2 · · · ∈ Qω of w2 on A such that α(v) = α(w) and s is an accepting run of v. We
start by setting v := w1w2 · · · and s := s′

1s
′
2 · · · . For each i ∈ N, we replace wi in v and s′

i

in s as follows:
1. If s′

i ∈ Q, then we make no changes to s′
i and wi.

2. If s′
i = µ(p, q) for some p, q ∈ Q, we delete the s′

i in s and delete wi in v.
3. If si = ν(p, q) for some p, q ∈ Q, then we replace

(a) s′
i by a run t = t1 · · · tn+1 of (0, . . . , 0)n(#, ...,#) from p to q, and

(b) wi by (0, . . . , 0)n(#, ...,#).
If ν(p, q) is a final state of A′, we choose t such that it passed through a final state of A.

It is clear that the resulting s is in Qω. The reader can check s is an accepting run of v on
A and that α(v) = α(w). Thus w is in the zero-closure of X. ◀
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Proof of Lemma 19. The statement that Afin ⊆ A, follows immediately from the definitions
of Afin and A and Fact 8. It is left to establish the ω-regularity of the two sets.

For (1): Let B ⊇ Afin be the set of all pairs (v, w) such that v ∈ R and v ∼# w. Note
that B is ω-regular. Let (v, w) ∈ B. Since v and w have infinitely many # characters and
are aligned, there are unique a = a1a2 · · · , b = b1b2 · · · ∈ ({0, 1}∗)ω such that C#(a) = v,
C#(b) = w and |ai| = |bi| for each i ∈ N. Then by Fact 6, (v, w) ∈ Afin if and only if
(a) b has finitely many 1 characters;
(b) b1 <colex a1;
(c) bi ≤colex ai for all i > 1;
(d) if bi = ai, then bi−1 = 0.

It is easy to check that all four conditions are ω-regular.
For (2): As above, let (v, w) ∈ B. Since v and w have infinitely many # characters and

are aligned, there are unique a = a1a2 · · · , b = b1b2 · · · ∈ ({0, 1}∗)ω such that C#(a) = v,
C#(b) = w and |ai| = |bi| for each i ∈ N. Then by Fact 7, (v, w) ∈ A if and only if
(e) b1 <colex a1;
(f) bi ≤colex ai for all i > 1;
(g) if bi = ai, then bi−1 = 0;
(h) bi ̸= ai for infinitely many odd i.

Again, it is easy to see that all for conditions are ω-regular. ◀

Proof of Lemma 21. We first consider injectivity. By Fact 6 and Fact 7 a number in N or
in Iα(v) only has one α(v)-Ostrowski representation. So we need only explain why such a
representation will only have one encoding in Afin

v (respectively Av). This follows from the
uniqueness of binary representations up to the length of the representation, and from the
fact that the requirement of having the # characters aligned with v determines the length of
each binary-encoded coefficient.

For surjectivity we need only explain why an α(v)-Ostrowski representation can always
be encoded into a string in Afin

v (respectively Av). It suffices to show that the requirement of
having the # characters aligned with v will never result in needing to fit the binary encoding
of a number into too few characters, i.e. that it will never result in having to encode a natural
number n in binary in fewer than 1 + ⌊log2 n⌋ characters. Since the function 1 + ⌊log2 n⌋ is
monotone increasing, we can encode any natural number below n in k characters if we can
encode n in binary in k characters. However, by Fact 6 and Fact 7, the coefficients in an
α(v)-Ostrowski representation never exceed the corresponding coefficients in the continued
fraction for α(v), i.e. bn ≤ an. ◀

Proof of Lemma 23. Recognizing 0∗ is trivial, as the Ostrowski representations of 0 are of
the form 0 · · · 0 for all irrational α. Thus 0∗ is just the relation

{(v, w) : v ∈ R,w is v with all 1 bits replaced by 0 bits}.

This is clearly ω-regular.
We now consider 1∗. Let α = [0; a1, a2, . . . ] be an irrational number. If a1 > 1, the

α-Ostrowski representations of 1 are of the form 10 · · · 0. If a1 = 1, the α-Ostrowski
representations of 1 are of the form 010 · · · 0. Thus, in order to recognize 1∗, we only need
to be able to recognize if a number in binary representation is 0, 1, or greater than 1. Of
course, this is easily done on a Büchi automaton. ◀
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Proof of Lemma 24. By Fact 8, Ov(s) = fα(α(v)Zv(s)). Thus

α(v)Zv(s) −Ov(s) = α(v)Zv(s) − fα(α(v)Zv(s)),

which is an integer by the definition of f . By the definition of 1v and by Fact 8, we
know Ov(1v) = fα(α) is the unique element of Iα(v) that differs from α(v) by an integer.
If 0 < α(v) < 1

2 , then −α(v) < α(v) < 1 − α(v). Thus in this case, α(v) ∈ Iα(v) and
Ov(1v) = α(v). When 1

2 < α(v) < 1, then −α < α− 1 < 1 − α. Therefore α(v) − 1 ∈ Iα(v)
and Ov(1v) = α(v) − 1. ◀

B Proofs from Section 3

Proof of Lemma 28. First, let v, s1, s2, s3 be such that s1, s2, s3 ∈ Afin
v . We claim that on

this domain, (s1, s2, s3) ∈ ⊕v if and only if (s1, s2, s3) ∈ ⊕fin
v . By Fact 8 we know that for all

s ∈ Afin
v

α(v)Zv(s) −Ov(s) ≡ 0 (mod 1). (3)

Let (s1, s2, s3) ∈ ⊕fin
v . Then by (3)

Ov(s3) ≡ α(v)Zv(s3) (mod 1)
= α(v)Zv(s1) + α(v)Zv(s2)
≡ Ov(s1) +Ov(s2) (mod 1).

Thus (s1, s2, s3) ∈ ⊕v.
Now suppose that (s1, s2, s3) ∈ ⊕v. Then by (3) and the definition of ⊕, we obtain that

α(v)Z(s1) + α(v)Z(s2) ≡ α(v)Z(s3) (mod 1). However, then α(v)(Z(s1) +Z(s2) −Z(s3)) ≡
0 (mod 1). Since α is irrational, we obtain Z(s1)+Z(s2)−Z(s3) = 0. Thus (s1, s2, s3) ∈ ⊕fin

v .

Thus for each v ∈ R, we have ⊕v ∩ (Afin
v )3 = ⊕fin

v . Let v ∈ R. We observe that the set
Ov(Afin

v ) is dense in Ov(Av). Since addition is continuous, it follows that Ov(⊕fin
v ) is dense

in Ov(⊕v). Since the graph of a continuous function is closed, the topological closure of
Ov(⊕fin

v ) is Ov(⊕v). Thus ⊕ is ω-regular by Corollary 26. ◀

C Proofs from Section 4

In this section we present the proof of Lemma 30. We first state and prove three lemmas
used in the proof.

▶ Lemma 38. Let v ∈ R, and let t1, t2, t3 ∈ Av be such that t1 ⊕v t2 = t3. Then

Ov(t1) +Ov(t2) =


Ov(t3) + 1 if 0v ≺v t1 and t3 ≺v t2;
Ov(t3) − 1 if t1 ≺v 0v and t2 ≺v t3;
Ov(t3) otherwise.

Proof. For ease of notation, let α = α(v), and set xi = Ov(ti) for i = 1, 2, 3. By definition
of ⊕v, we have that x1, x2, x3 ∈ Iα(v) with x1 + x2 ≡ x3 (mod 1). Note that ti ≺v tj if and
only if xi < xj .

We first consider the case that 0 < x1 and x3 < x2. Thus x1 + x2 > 1 − α. Note that

−α = 1 − α− 1 < x1 + x2 − 1 < (1 − α) + (1 − α) − 1 = 1 − 2α < 1 − α.

Thus x1 + x2 − 1 ∈ Iα and x3 = x1 + x2 − 1.

CSL 2022



24:20 Decidability for Sturmian Words

Now assume that x1 < 0 and x2 < x3. Then x1 + x2 < −α, and therefore

1 − α > x1 + x2 + 1 ≥ (−α) + (−α) + 1 = (1 − α) − α > −α.

Thus x1 + x2 + 1 ∈ Iα and hence x3 = x1 + x2 + 1.
Finally consider that 0, x1 are ordered the same way as x2, x3. Since x1 + x2 ≡ x3

(mod 1), we know that |x1 −0| and |x3 −x2| differ by an integer k. If k > 0, would imply that
one of these differences is at least 1, which is impossible within the interval Iα. Therefore
x1 − 0 = x3 − x2 and hence x3 = x1 + x2. ◀

For i ∈ N, set iv := 1v ⊕ · · · ⊕ 1v︸ ︷︷ ︸
i times

.

▶ Lemma 39. The set F := {(v, s) ∈ Afin : Zv(s)α(v) < 1} is ω-regular, and for each
(v, s) ∈ F

Ov(s) =
{
α(v)Zv(s) if (α(v) + 1)Zv(s) < 1;
α(v)Zv(s) − 1 otherwise.

Proof. By Lemma 17, we can first consider the case that α(v) > 1
2 . In this situation, Fv is

just the set {0v,1v}, and hence obviously ω-regular.
Now assume that α(v) < 1

2 . Let w be the ≺fin
v -minimal element of Afin

v with w ≺v 0v.
We will show that

Fv = {s ∈ Afin
v : s ⪯fin

v w}.

Then ω-regularity of F follows then immediately.
Let n ∈ N be maximal such that nα(v) < 1. It is enough to show that Zv(w) = n. By

Lemma 24, Ov(1v) = α(v). Hence 1α(v), 2α(v), . . . , (n−1)α(v) ∈ Iα(v), but nα(v) > 1−α(v).
Then for i = 1, . . . , n− 1

Ov(iv) = iα(v), Ov(nv) = nα(v) − 1 < 0.

So iv ⪰ 0v for i = 1, . . . , n, but nv ≺ 0v. Thus nv = w and Zv(w) = n. ◀

▶ Lemma 40. Let v ∈ R and t ∈ Afin
v . Then there is an s ∈ Fv and t′ ∈ Afin

v such that
t′ ⪯v 0 and t = t′ ⊕v s. In particular, Afin

v = {t ∈ Afin
v : t ⪯v 0v} ⊕v Fv.

Proof of Lemma 40. Let n ∈ N be maximal such that nα < 1. Let t ∈ Afin
v . We need to

find s ∈ Afin
v and u ∈ Fv such that t = s⊕fin

v v. We can easily reduce to the case that t ≻ 0v

and Zv(t) > n.
Let i ∈ {0, . . . , n} be such that 0 ≥ Ov(t) − iα > −α. Then let s ∈ Afin

v be such that
Zv(s) = Zv(t) − i. Note t = s⊕fin

v iv. Thus we only need to show that s ⪯ 0v.
To see this, observe that by Lemma 39

Ov(s) + αi ≡ Ov(s) +Ov(iv) ≡ Ov(t) (mod 1).

Since Ov(t) − iα(v) ∈ Iα(v), we know that Ov(s) = Ov(t) − iα(v) ≤ 0. Therefore Ov(s) ⪯
0v. ◀

Proof of Lemma 30. Define B ⊆ Afin to be {(v, s) ∈ Afin : s ⪯v 0v}. Clearly, B is
ω-regular. We now define ≺B and ⊕B such that for each v ∈ R, the structure (Bv,≺B

v ,⊕B
v )

is isomorphic to (N, <,+) under the map gv defined as gv(s) = α(v)Zv(s) −Ov(s).



P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz, and J. Shallit 24:21

We define ≺B to be the restriction of ≺fin to B. That is, for (v, s1), (v, s2) ∈ B we have

(v, s1) ≺B (v, s2) if and only if (v, s1) ≺fin (v, s2).

It is immediate that ≺B is ω-regular, since both B and ≺fin are ω-regular.
We define ⊕B as follows:

(v, s1) ⊕B (v, s2) =
{

(v, s1 ⊕v s2) if s1 ⊕fin
v s2 ⪯v 0v;

(v, s1 ⊕v s2 ⊕v 1v) otherwise.

We now show that gv(s1 ⊕B
v s2) = gv(s1) + gv(s2) for every s1, s2 ∈ Bv.

Let (v, s1), (v, s2) ∈ B. We first consider the case that s1 ⊕v s2 ⪯v 0v. By Lemma 38,
Ov(s1 ⊕v s2) = Ov(s1) +Ov(s2). Thus

gv(s1 ⊕B
v s2) = gv(s1 ⊕v s2)

= α(v)Zv(s1 ⊕v s2) −Ov(s1 ⊕v s2)
= αZv(s1) + αZv(s2) −Ov(s1) −Ov(s2)
= gv(s1) + gv(s2).

Now suppose that s1 ⊕v s2 ≻v 0v. Since −α(v) ≤ Ov(s1), Ov(s2) ≤ 0, we get that

1 − α(v) > Ov(s1) +Ov(s2) + α(v) ≥ −α(v).

Thus by Lemma 24,

Ov(s1 ⊕v s2 ⊕v 1v) = Ov(s1) +Ov(s2) + α(v).

We obtain

gv(s1 ⊕B
v s2) = gv(s1 ⊕v s2 ⊕v 1v)

= αZv(s1 ⊕v s2 ⊕v 1v) −Ov(s1 ⊕v s2 ⊕v 1v)
= α(v)

(
Zv(s1) + Zv(s2)

)
+ α(v) −Ov(s1) −Ov(s2) − α(v)

= gv(s1) + gv(s2).

Since s1 ≺v s2 if and only if Zv(s1) < Zv(s2), we get that gv is an isomorphism between
(Bv,≺B

v ,⊕B
v ) and (N, <,+).

Let C be defined by

{(v, s, t) ∈ (Σω
#)3 : (v, s) ∈ B ∧ (v, t) ∈ A}.

Clearly C is ω-regular. Let Tv : Cv → [−α(v),∞) ⊆ R map (s, t) 7→ gv(s) +Ov(t).
Note that Tv is bijective for each v ∈ R, since every real number decomposes uniquely

into a sum n+ y, where n ∈ Z and y ∈ Iv.
We define an ordering ≺C

v on Cv lexicographically: (s1, t1) ≺C
v (s2, t2) if either

Table 1 Definitions of sets used in the proof.

Name Definition
A {(v, w) : v ∈ R, w is a #-v-Ostrowski representation}

Afin {(v, w) : v ∈ R, w is a #-v-Ostrowski representation and eventually 0}
B {(v, s) ∈ Afin : s ⪯v 0v}
C {(v, s, t) : (v, s) ∈ B ∧ (v, t) ∈ A}
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s1 ≺B
v s2, or

s1 = s2 and t1 ≺v t2.
The set

{(v, s1, t1, s2, t2) : (s1, t1), (s2, t2) ∈ Cv ∧ (s1, t1) ≺C
v (s2, t2)}

is ω-regular. We can easily check that (s1, t1) ≺C
v (s2, t2) if and only if Tv(s1, t1) < Tv(s2, t2).

Let 0B be g−1
v (0) and 1B be g−1

v (1). Let ⊖B be the (partial) inverse of ⊕B. We define
⊕C for (s1, t1), (s2, t2) ∈ C as follows:

(s1, t1) ⊕C
v (s2, t2) =


(s1 ⊕B

v s2 ⊖B 1B , t1 ⊕v t2) if t1 ≺ 0v ∧ t2 ≺v t1 ⊕v t2;
(s1 ⊕B

v s2 ⊕B
v 1B , t1 ⊕v t2) if 0v ≺ t1 ∧ t1 ⊕v t2 ≺v t2;

(s1 ⊕B
v s2, t1 ⊕v t2) otherwise.

(Note that ⊕C is only a partial function, as the case where s1 = s2 = 0B and t1 ≺ 0v ∧ t2 ≺v

t1 ⊕v t2 is outside of the domain of ⊖B .) It is easy to check that ⊕C is ω-regular. It follows
directly from Lemma 38 that

Tv((s1, t1) ⊕C
v (s2, t2)) = Tv((s1, t1)) + Tv((s2, t2)).

Thus for each v ∈ R, the function Tv is an isomorphism between (Cv,≺C
v ,⊕C

v ) and
([−α(v),∞), <,+). To finish the proof, it is left to establish the ω-regularity of the fol-
lowing two sets:
1. {(v, s, t) ∈ C : Tv(s, t) ∈ N},
2. {(v, s, t) ∈ C : Tv(s, t) ∈ α(u)N}.

For (1), observe that the set T−1
v (N) is just the set {(s, t) ∈ Cv : t = 0v}.

For (2), consider the following two sets:
U1 = {(v, s, t) ∈ C : s = t},
U2 = {(v,0v, t) ∈ C : t ∈ Fv}.

Let 1C
v be T−1

v (1). Set

U := {(v, (s1, t1) ⊕c
v (0v, t2)) : (v, s1, t1) ∈ U1, (v,0v, t2) ∈ U2, t2 ⪰ 0}

∪ {(v, (s1, t1) ⊕c
v (0v, t2) ⊕ 1C

v ) : (v, s1, t1) ∈ U1, (v,0v, t2) ∈ U2, t2 ≺ 0}

The set U is clearly ω-regular, since both U1 and U2 are ω-regular. We now show that
Tv(U) = α(v)N.

Let (v, s, s) ∈ U1 and (v,0v, t) ∈ U2. If t ⪰ 0v, then by Lemma 39

Tv((s, s) ⊕C (0v, t)) = Tv(s, s) + Tv(0v, t)
= α(v)Zv(s) −Ov(s) +Ov(s) +Ov(t)
= α(v)Zv(s) + α(v)Zv(t) = α(v)Zv(s⊕v t).

Table 2 A list of the maps and their domains and codomains.

Map Domain Codomain
α R Irr

Ov Av Iα(v)

Zv Afin
v N

gv := α(v)Zv − Ov Bv N
Tv := gv + Ov Cv [−α(v), ∞) ⊆ R
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If t ≺ 0v, then by Lemma 39

Tv((s, s) ⊕C
v (0v, t) ⊕C

v 1C
v ) = Tv(s, s) + Tv(0v, t) + 1

= α(v)Zv(s) −Ov(s) +Ov(s) +Ov(t) + 1
= α(v)Zv(s) + α(v)Zv(t) = α(v)Zv(s⊕v t).

Thus Tv(U) ⊆ α(v)N. By Lemma 40, Tv(U) = α(v)N. ◀
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