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Abstract
We extend the Soft Linear Logic of Lafont with a new kind of modality, called parallel. Contractions
on parallel modalities are only allowed in the cut and the left ⊸ rules, in a controlled, uniformly
distributive way. We show that SLL, extended with this parallel modality, is sound and complete
for PSPACE. We propose a corresponding typing discipline for the λ-calculus, extending the STA
typing system of Gaboardi and Ronchi, and establish its PSPACE soundness and completeness. The
use of the parallel modality in the cut-rule drives a polynomial-time, parallel call-by-value evaluation
strategy of the terms.
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Introduction

Implicit Complexity aims at providing purely syntactical, machine independent criteria on
programs, in order to ensure they respect some complexity bounds upon execution. In
the context of functional programming, the use of tailored proof systems, and subsequent
type systems for λ-calculus, has been very successful: using subsystems of Linear Logic [8],
several proof systems have been proposed, where cut-elimination has a bounded complexity.
Consequently, under the Curry-Howard isomorphism, type systems for λ-calculus based on
these logics have been proposed, where β-normalization of the typed terms follows the same
complexity bounds. Such results include, among many others, Bounded Linear Logic [10, 14]
and Light Linear Logic [9, 2] for polynomial time computation, and Stratified Bounded Affine
Logic [17, 15] for logarithmic space computations. Our interest in this paper lies in the
Soft Linear Logic of Lafont [13], which proposes a simple and elegant approach for ensuring
polynomial time bounds by controlling contractions on exponential formulas, and in the
subsequent type systems for polynomial time λ-calculus [1, 7, 5].

At this point, it is relevant to note that the complexity classes captured thus far are all
sequential, deterministic in essence. While Soft Linear Logic type systems have been extended
to express the classes NP and PSPACE [6], it is important to note that the construction relies
on Soft Type Assignment (STA), a deterministic, sequential polynomial time type system, by
extending the λ-calculus with an additional construct (if then else), for which an ad hoc,
alternating polynomial time evaluation strategy is imposed - the core of the language retaining
its sequential polynomial time evaluation. While being indeed extensionally complete for
PSPACE, this approach lacks intensionality: many natural algorithms, that are easily
computable in parallel, are hardly expressible in this setting. Let us take as simple example
the numerical evaluation of a balanced, arithmetic expression on bounded integer values. In
order to compute it in alternating polynomial time with the (if then else) defined in [6],
one would need to express the value of all bits of the result as boolean expressions on the bits
of the input numbers, and use the alternating evaluation of the (if then else) construct
to speed up the parallel computation time - not quite a practical method. Furthermore,
this approach is no longer doable in real world functional programming languages, where
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26:2 Parallelism in Soft Linear Logic

integers are given as a base type, and arithmetical operations as unitary functions of the
language. Our approach, on the other hand, extends very naturally to such programs: indeed,
our complexity bounds still hold in this context, and the encodings used in Lemma 27 and
Theorem 28 can seamlessly be used to encode uniform families of algebraic formulae, or
algebraic circuits, of polynomial depth, provided the base type for numbers (be they integers
or floating numbers, or even real or complex numbers) and for the algebraic basic operations
are given in the typing context.

A reason why these approaches are all essentially sequential, deterministic is that they
use the typing discipline to control the amount of resources the calculus uses (e.g. by
controlling contractions on exponentials), not the way these resources are distributed along
the computation. In order to truly denote parallel computation in a functional programming
language, our proposal here is to use a parallel, call-by-value evaluation strategy for the
λ-calculus: in an application, both terms can be normalized in parallel, before the substitution
of the redex takes place. If both terms share the same normalization time bound, the parallel
evaluation strategy is efficient. Note that in first order functional programming, this is already
the approach used by Leivant and Marion [16] with their safe recursion with substitutions:
using sequential resource bounds from Ptime Safe Recursion [3], and a parallel call-by-
value evaluation strategy, the authors characterize the class FPAR (Parallel polynomial
time), which coincides with PSPACE. This approach has also been later on extended to
sub-polynomial complexity classes [12, 4, 11]. For higher order functional programming, we
rely on the Curry-Howard isomorphism: ensuring an homogeneous computation time on
the parallel evaluation of both arguments of an application amounts to ensuring that both
premises of a cut-rule share a homogeneous bound on the resource usage in the corresponding
type system.

In order to achieve this, we can no longer rely on the usual linear cut-rule. We propose
therefore a modification of the linear cut-rule, that internalizes a controlled number of
contractions on some formulas, that are uniformly distributed among the premises. These
formulas are decorated with a dedicated modality, called parallel modality. This approach is
applied here on the Soft Type Assignment (STA) of Gaboardi and Ronchi [7], in order to
propose a sound and complete type system for PSPACE, with a truly parallel evaluation
strategy.

Of course, breaking linearity in the cut-rule comes with a price: while proof nets for this
logic are still definable, the additional bureaucracy needed to deal with the side condition of
the cut-rule makes them much less meaningful than those for simpler logical systems such as
MLL or SLL.

The paper is organized as follows. Section 1 recalls the Soft Linear Logic rules, introduces
the parallel modality �, and the modified, parallel (cut) rules, yielding the system PSLL.
Cut-elimination for PSLL is also shown. Section 2 provides a parallel, polynomial time
normalization bound. Section 3 extends STA with the rules of PSLL, yielding PSTA. A
parallel polynomial time call-by-value strategy for PSTA is described. FPAR completeness
of PSTA is proven in Section 4.

1 Parallel Soft Linear Logic

1.1 Soft Linear Logic

Let us recall the SLL rules of Lafont [13], in its intuitionistic fashion. In the following, !Γ
stands for a multiset of formulae of the form !F , and (A)n stands for n copies of a formula A.
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(Id)
U ⊢ U

Γ ⊢ U ∆, U ⊢ V (cut)Γ, ∆ ⊢ V

Γ, U ⊢ V (⊸ R)Γ ⊢ U ⊸ V

Γ ⊢ U V, ∆ ⊢ Z (⊸ L)Γ, U ⊸ V, ∆ ⊢ Z
Γ ⊢ A Γ ⊢ B (&R)Γ ⊢ A&B

Γ, A ⊢ V (&L1)Γ, A&B ⊢ V

Γ, B ⊢ V (&L2)Γ, A&B ⊢ V
Γ ⊢ U (∀R)Γ ⊢ ∀αU

Γ, U [V/α] ⊢ Z
(∀L)Γ, ∀αU ⊢ Z

Γ ⊢ U (sp)!Γ ⊢!U
Γ, (U)n ⊢ V n ≥ 0

(m), of rank nΓ, !U ⊢ V

where, in the (∀R)-rule, there is no free occurrence of α in Γ. SLL proofs (of a given degree)
normalize in polynomial time. Let the rank of a proof be the maximal rank of its (m) rules,
and its degree the maximal nesting of its (sp) rules:

▶ Theorem 1 ([13]). A SLL proof of rank n and degree d normalizes in nd steps.

SLL is also complete for the class FP: inputs of size n are encoded with proofs of rank n,
degree 1, and programs running in time O(nd) by proofs of degree d. Applying a program
on an input amounts to performing a (cut) of the two proof derivations.

1.2 Parallel Modalities
PSLL is built upon SLL. An additional modality, called the parallel modality �, is introduced,
with corresponding elimination rules. Finally, the (sp), and the (cut) and (⊸ L)-rules are
modified to accommodate this new modality, implementing the controlled contractions and
homogeneous distribution of � formulas on the premises of the cut, as follows.

Polarities

Let us define as usual inductively the polarity of a sub-formula in an intuitionistic sequent
Γ ⊢ V . Polarities are either positive or negative, one being the opposite of the other.

1. in Γ ⊢ V , every occurrence of a formula F in Γ is negative, and V is positive.
2. If F is ∀αA, !A or �A, the polarity of A is the polarity of F .
3. If F is ANB, the polarity of A and the polarity of B are the polarity of F .
4. If F is A ⊸ B, the polarity of A is the opposite of the polarity of F , and the polarity of

B is the polarity of F .

In the sequel we only admit �A sub-formulas with negative polarities in a sequent. An
immediate consequence is that no � modality can appear in a cut formula, since a cut-formula
has both a positive and a negative occurrence in a proof tree.

Rules for Parallel Modalities

(�W ) (weakening) and (�D) (dereliction) rules eliminate the � modality, (�sp) (soft pro-
motion for the ! modality) and (�ax) replace the linear (sp) and (Id) rules. Contraction
for the � modality is not dealt with a dedicated rule, but is instead internalized in the side
condition of the modified (cut) rule, as detailed in the next section.

Γ ⊢ B (�W )
Γ, �A ⊢ B

Γ, A ⊢ B (�D)
Γ, �A ⊢ B

�∆, Γ, ⊢ U
(�sp)

�∆, !Γ ⊢!U
(�ax)

�Γ, A ⊢ A

where (�ax), is derivable from (Id) and (�W ), and used for convenience only.

CSL 2022



26:4 Parallelism in Soft Linear Logic

1.2.1 (�Cut) and (� ⊸) Rules
Contraction for parallel formulas is internalized into the PSLL (�cut)-rule and (� ⊸ L)-rule,
in a controlled fashion. As for the usual (cut) and (⊸ L)-rules in linear logic, linear and
exponential formulas are linearly distributed among the two premises. Denote by ⊊ the strict
inclusion relation on multisets. The (binary) (�cut) and (� ⊸ L) rules are the following.

�∆1, Γ1 ⊢ A1 �∆2, Γ2, A1 ⊢ A2 (�cut)
�∆, Γ1, Γ2 ⊢ A2

�∆1, Γ1 ⊢ A1 �∆2, Γ2, A2 ⊢ A3 (� ⊸ L)
�∆, Γ1, A1 ⊸ A2, Γ2 ⊢ A3

These two rules hold under the side condition SP : (�∆1 ⊊ �∆, �∆2 ⊊ �∆). The
(�cut)- rule has the principal cut-formula A1 and the cut-pair of premises the pair (�∆1, Γ1 ⊢
A1) → (�∆2, Γ2, A1 ⊢ A2). The (� ⊸ L) rule has the principal ⊸-formula A1 ⊸ A2 and
the ⊸-pair of premises the pair (�∆1, Γ1 ⊢ A1) → (�∆2, Γ2, A2 ⊢ A3).

In a proof tree consisting only in (n − 1) binary linear (cut)-rules, these (cut)-rules can
be freely permuted, and a generalized, n-ary linear (cut)-rule can be derived. The non-linear
distribution of parallel modalities in PSLL breaks this isomorphism: permuting two binary
(�cut)-rules may come in conflict with the side condition �∆i ⊊ �∆. A similar remark can
be made for ⊸ L rules as well. Since we want a uniform bound on the parallel normalization
of the premises, we define a n-ary parallel (cut)-rule, exemplified in Example 5, as a parallel
extension of the linear one, where the side condition for � modalities is adapted accordingly.

▶ Definition 2 (n-ary (cut/ ⊸ L) rule). We define the following n-ary (cut/ ⊸ L)-rule,
together with its cut-pairs and ⊸-pairs, and principal formulae. To each cut-pair (respectively
⊸-pair) corresponds one principal cut-formula (resp. ⊸-formula).

The following rule Γ1 ⊢ A1 Γ2 ⊢ A2 · · · Γd ⊢ Ad R : (cut/ ⊸ L)Γ, Λ ⊢ Ad
is either a bin-

ary (⊸ L) or a binary (cut)-rule, or a n-ary rule obtained by several of the following proof
tree (cut/ ⊸ L)-merge rewriting steps:

T1 · · ·
T2 · · · Tn R1Tt · · · Tm R2Γ, Λ ⊢ Ad

→
T1 · · · T2 · · · Tn · · · Tm

RΓ, Λ ⊢ Ad

provided the ⊸ principal formulae of R1 are not sub-formulae of any principal formulae of
R2 corresponding Tt.

The multiset of ⊸ (respectively (cut)) principal formulae of R is then the union of those
of R1 and R2.

The cut - and ⊸-pairs of R are obtained from the union of those of R1 and R2 with the
following update procedure: whenever Tt belongs to a ⊸ or cut-pair of premises Tt → Tw

( respectively Tw → Tt) of R2, with corresponding principal formula F belonging to one of
the premises Tv of R1, the pair Tt → Tw (resp. Tw → Tt) is replaced by Tv → Tw (resp.
Tw → Tv), with the same corresponding principal formula.

We derive from this linear n-ary (cut/ ⊸ L) rule its parallel version (�,⊸ cut) as follows.

▶ Definition 3 (n-ary (�,⊸ cut) rule). A n-ary (�,⊸ cut) rule is

�∆1, Γ1 ⊢ A1 �∆2, Γ2 ⊢ A2 · · · �∆d, Γd ⊢ Ad (�,⊸ cut)
�∆, Γ, Λ ⊢ Ad

where the side condition SP : ∀i = 1, · · · , d, �∆i ⊊ �∆ holds, and the linear rule instance

Γ1 ⊢ A1 Γ2 ⊢ A2 · · · Γd ⊢ Ad (cut/ ⊸ L)Λ, Γ ⊢ Ad

holds as per Definition 2, with corresponding pairs of premises and principal formulae.
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The following Lemma follows from the intuitionistic nature of the PSLL sequents, and
will play a role in our elimination strategy.

▶ Lemma 4. The cut-pairing relation on the premises of a (�, cut/ ⊸ L) rule R defines a
forest structure F (R), called the pairing forest of the (�, cut/ ⊸ L), on the premises of R;
the edges of the pairing forest are the cut-pairs of the rule.

▶ Example 5. A tree of linear (⊸ L) and (cut) rules is

Γ1 ⊢ A1

Γ2 ⊢ A2 Γ3, A2 ⊢ U (cut)Γ2, Γ3 ⊢ U

Γ4 ⊢ A3 Γ5, A1, A3, V ⊢ W (cut)Γ4, Γ5, A1, V ⊢ W (⊸ L)Γ2, Γ3, Γ4, Γ5, U ⊸ V, A1 ⊢ W (cut)Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

The corresponding 5-ary linear (cut/ ⊸ L) rule is

Γ1 ⊢ A1 Γ2 ⊢ A2 Γ3, A2 ⊢ U Γ4 ⊢ A3 Γ5, A1, A3, V ⊢ W (cut,⊸ L)Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

A corresponding 5-ary (�,⊸ cut) rule, with �-formulae satisfying the side condition, is

�F, Γ1 ⊢ A1 �G, Γ2 ⊢ A2 Γ3, A2 ⊢ U �G, Γ4 ⊢ A3 �F, Γ5, A1, A3, V ⊢ W

�F, �G, Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

The cut-pairs are
(�F, Γ1 ⊢ A1) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula A1,
(�G, Γ2 ⊢ A2) → (Γ3, A2 ⊢ U) with principal formula A2, and
(�G, Γ4 ⊢ A3) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula A3,

which defines the pairing forest, with two roots (�F, Γ5, A1, A3, V ⊢ W ) and (Γ3, A2 ⊢ U).
The ⊸-pair is (Γ3, A2 ⊢ U) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula U ⊸ V .

We now define PSLL by the rules (�ax), (⊸ R), (∀R), (∀L), (&R), (&Li), (m) (�sp),
(�W ), (�D) and (�,⊸ cut).

A PSLL proof Π is said to be in normal form if it contains no cut: more precisely,
no (�,⊸ cut)-rule in Π admits any cut-pair of premises. Cut-elimination in this context
amounts to rewrite the proof into a new equivalent proof in normal form. The cut-elimination
procedure stems on the usual one for SLL, with some refinements.

1.3 Parallel Cut Elimination
▶ Lemma 6. Sequent calculus rules preserve the polarities of subformulae.

The proof is straightforward. This allows us to state the following rule commutation result.

▶ Lemma 7.
1. A (�,⊸ cut) rule (R1), with premise Γ ⊢ V commutes with any non (�,⊸ cut), non

(�W ), non (�D), non (�sp) rule (R2) with conclusion Γ ⊢ V , provided the principal
formula of (R2) is not a sub-formula of any principal formula of (R1) with respect to the
premise Γ ⊢ V .

2. A (�W ) or a (�D) rule (R1), with premise Γ ⊢ V commutes with any non (�ax) rule
(R2) with conclusion Γ ⊢ V , provided the principal formula of (R2) is not a subformula
of the principal formula of (R1).

CSL 2022



26:6 Parallelism in Soft Linear Logic

3. A non (�,⊸ cut), non (�sp) rule (R1) with premise Γ ⊢ V commutes with any non
(�,⊸ cut), non (�sp) rule (R2) with conclusion Γ ⊢ V , provided the principal formula of
(R2) is not a sub-formula of the principal formula of (R1).

▶ Proposition 8. PSLL enjoys cut elimination.

Proof. Let Π be a PSLL proof and R be a (�,⊸ cut) rule in Π with cut-pair (S = Γ ⊢
A, T = Λ, A ⊢ V ). Since the cut formula A may not contain any � modality, the commutation
rules of Lemma 7 allow us to rewrite Π into an equivalent proof Π′, where S is conclusion of
a right rule with principal formula A, and T conclusion of a left rule with principal formula
A. The cut-elimination cases are then the following, where, for all cases but (�Sp), (m),
the other premises of the rule are left unchanged, and omitted. Side conditions as well are
omitted, but it is straightforward to see that they are preserved. The modification induced
by each of the elimination cases below on the pairing forest is also detailed.

Rules (⊸ L),(⊸ R)
�∆1, Γ, B ⊢ C

(⊸ R)
�∆1, Γ ⊢ B ⊸ C

�∆3, Φ ⊢ B �∆4, Λ, C ⊢ V
(� ⊸ L)

�∆2, Φ, Λ, B ⊸ C ⊢ V
(�,⊸ cut)

�∆, Γ, Φ, Λ ⊢ V

reduces to �∆1, Γ, B ⊢ C �∆3, Φ ⊢ B �∆4, Λ, C ⊢ V
(�,⊸ cut)

�∆, Γ, Φ, Λ ⊢ V
.

In the pairing forest, the premise �∆1, Γ ⊢ B ⊸ C is replaced by �∆1, Γ, B ⊢ C,
the premise �∆2, Φ, Λ, B ⊸ C ⊢ V by �∆4, Λ, C ⊢ V , and a cut-pair (�∆3, Φ ⊢ B) →
(�∆1, Γ, B ⊢ C) is added.

Rule (�ax)
(�ax)

�∆1, B ⊢ B �∆2, Γ, B ⊢ V
(�,⊸ cut)

�∆, Γ, B ⊢ V

when no other premise exists, reduces to �∆2, Γ, B ⊢ V
(�W ∗),

�∆, Γ, B ⊢ V
, Where (�W )∗ stands

for several applications of the (�W ) rule.
Similarly,

Π1 · · ·
(�ax)

�∆1, B ⊢ B Πt · · · � ∆2, Γ, B ⊢ V · · · Πn (�,⊸ cut)
�∆, Γ, B ⊢ V

reduces to Π1 · · · Πt · · · �∆2, Γ, B ⊢ V · · · Πn (�,⊸ cut)
�∆, Γ, B ⊢ V

.

In the pairing forest, the premise �∆1, B ⊢ B is removed, and the paths in the forest are
shortened accordingly, if necessary.

Rules (�sp), (m)

S1, · · · , Sk

�∆1, Γ ⊢ B
(�sp)

�∆1, !Γ ⊢!B
�∆2, Λ, Bn ⊢ V

(m)
�∆2, Λ, !B ⊢ V

(�,⊸ cut)
�∆, !Γ, Λ ⊢ V

reduces to
Sn

1 , · · · , Sn
k � ∆1, Γ ⊢ B · · · �∆1, Γ ⊢ B �∆2, Λ, Bn ⊢ V

(�,⊸ cut)
�∆, Γn, Λ, ⊢ V

(m)∗
�∆, !Γ, Λ ⊢ V
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Where S1, · · · , Sk are the premises of the (�,⊸ cut) belonging to the pairing tree rooted in
�∆1, !Γ ⊢!B, and Sn

1 , · · · , Sn
k are n copies of these premises. Then, in the pairing forest, the

tree rooted in�∆1, !Γ ⊢!B is copied n times, and the pair (�∆1, !Γ ⊢!B) → (�∆2, Λ, !B ⊢ V )
is replaced by n pairs (�∆1, Γ ⊢ B) → (�∆2, Λ, Bn ⊢ V ), one connected to each of the copies
above.

Rules (∀L), (∀R)
�∆1, Γ ⊢ U

(∀R)
�∆1, Γ ⊢ ∀αU

�∆2, Λ, U [V/α] ⊢ V
(∀L)

�∆2, Λ, ∀αU ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V

reduces to �∆1, Γ ⊢ U [V/α] �∆2, Λ, U [V/α] ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V
.

Rules (&L), (&R)
�∆1, Γ ⊢ A �∆1Γ ⊢ B

(&R)
�∆1, Γ ⊢ A&B

�∆2, Λ, A ⊢ V
(&L1)

�∆2, Λ, A&B ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V

reduces to �∆1, Γ ⊢ A �∆2, Λ, A ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V
, and, of course, the cut elimina-

tion rule for (&L2), (&R) follows a similar pattern.
In each of the cases above, for each path in the pairing forest modified by the elimination

case, the sum of the sizes of the sequents labelling the vertices along that path decreases
strictly. As a consequence, the procedure terminates in a finite number of steps. ◀

2 Complexity Bounds

Let us now show that the contraction discipline ensures that PSLL admits cut-elimination in
parallel polynomial time. The bounds are actually more straightforward than for SLL.

▶ Definition 9. Let Π be a PSLL proof, with conclusion sequent S = Γ ⊢ V . We define
The size |S| of S is the number of connectives in S.
The size |Π| of Π is the number of nodes in the proof-tree.
The depth of a node R in Π is the length of the path from S to R in Π; the depth d(Π) of
Π is the maximal depth of its nodes.
The rank r(Π) of Π is the maximal rank of its (m) rules.
The degree d(f) of a formula f is the maximal nesting of its ! modalities. The degree d(S)
of a sequent S is the maximal degree of its formulas. The degree d(Π) of a proof is the
maximal degree of its sequents.

PSLL proofs have bounded depth, and bounded number of (cut)-rules.

▶ Lemma 10. Let Π be a PSLL cut-free proof, of rank n, with conclusion sequent S of degree
d. The depth of Π is then bounded by O(|S|.nd).

▶ Lemma 11. Let Π be a PSLL proof, of rank n, with conclusion sequent S of degree d.
Then, on any path from S to an axiom in Π, there are at most O(|S|.nd) (�,⊸ cut)-rules
with cut-pairs of premises.

Combining these two lemmas, we obtain a bound on the depth of PSLL proofs.

CSL 2022



26:8 Parallelism in Soft Linear Logic

▶ Lemma 12. Let Π be a PSLL proof, of rank n and degree d, with conclusion sequent S.Let
M be the maximal size of its cut-formulas. Then, the depth of Π is O(M.|S|.n2d).

▶ Lemma 13. Let R be a (�,⊸ cut) rule with cut-pairs (S1 = Γ1 ⊢ A1) → S, · · · , (St =
Γt ⊢ At) → S and cut-formulae A1, · · · , At. Assume moreover that

each of the proof trees with conclusion Si, for i = 1, · · · , t, ends with the PSLL rule with
right principal formula Ai, and
the proof tree with conclusion S ends with the t PSLL rules with left principal formula
Ai, for i = 1, · · · , t.

Then, the cut-elimination steps of Proposition 8 for the cut-pairs (S1, S), · · · , (St, S) can be
performed in parallel.

Proof. The cut-elimination steps of Proposition 8 act on distinct left sub-formulae of S, and
distinct premises (other than S) of the (�,⊸ cut) rule R. ◀

▶ Definition 14 (Parallel elimination of an innermost cut). Le Π be a PSLL proof. A (�,⊸ cut)
rule R with cut-pairs is innermost in Π if there is no other (�,⊸ cut) rule with cut-pairs
along any path from R to the axioms of Π.

Let R be an innermost (�,⊸ cut) rule in Π, and F (R) be the pairing forest. The parallel
elimination of R is then the following procedure:
1. For any premise S = Λ ⊢ B of R root in F (R), with cut-pairs (S1 = Γ1 ⊢ A1, S), · · · , (St =

Γt ⊢ At, S), perform the rule permutations of Lemma 7 such that S is conclusion of a
proof tree with deep most rules the left rules with principal formulae A1, · · · , At, and

2. perform the rule permutations of Lemma 7 such that, for i = 1, · · · , t, Si is conclusion of
a proof tree ending with a right rule with principal formula Ai.

3. perform in parallel the cut-elimination steps of Lemma 13 for all cut-pairs (Si, S) for all
roots S in F (R).

4. if R has at least one cut-pair left, go to step 1.

▶ Definition 15 (Innermost parallel cut-elimination). Let Π be a PSLL proof. The Innermost
parallel cut-elimination procedure consists in applying in parallel, for all its innermost cuts,
their parallel elimination, until no (�,⊸ cut) rule with cut-pairs remains.

The innermost parallel cut-elimination procedure ensures that the blow-up of the (�,⊸
cut) rules remains under control:

▶ Lemma 16. Let Π be a PSLL proof with conclusion S, degree d, and rank n. Let M be
the maximal size of its cut-formulae and w the maximal indegree of its pairing forests. Then,
the maximal indegree of the pairing forests of any proof Π′ derived from Π by an innermost
parallel partial evaluation is bounded by O(w.nd + M).

▶ Lemma 17. Let Π be a PSLL proof with conclusion S, degree d, and rank n. Let M be
the maximal size of its cut-formulae, and h the maximal height of its pairing forests. The
parallel elimination of an innermost cut takes at most O(M.h) parallel steps.

Proof. For each of the elimination steps of Proposition 8, for each path in the pairing forest
containing the cut-pair eliminated by this step, the sum of the sizes of the cut-formulae along
the path strictly decreases, hence the result. ◀

We now have a parallel, polynomial time cut-elimination procedure:

▶ Theorem 18. Let Π be a PSLL proof, of rank n and degree d, with conclusion sequent
S. Let M be the maximal size of its cut-formulae, and h the maximal height of its pairing
forests. Then, an innermost parallel cut-elimination strategy takes O(|S|.M.h.n2d) steps.
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Proof. By Lemma 12, the depth of the proof-tree is at most O(M.|S|.n2d): this bounds
applies therefore for the overall parallel time needed to parse the proof-tree and reach all
innermost (�,⊸ cut)-rules. These innermost (�,⊸ cut) rules belong to different branches
of the proof tree: they can therefore be eliminated safely in parallel. Each of these parallel
elimination steps takes at most O(M.h) steps.

By Lemma 11, the number of (�,⊸ cut)-rules with cut-pairs on any path in the proof
tree is bounded by O(|S|.nd): this bounds the number of times one needs to fully eliminate
the innermost (�,⊸ cut)-rules, hence the overall bound. ◀

Note that, in Theorem 18, we have only counted the number of parallel cut-elimination
steps. Lemma 16 ensures moreover that, for each of these cut-elimination steps, the number
of rule permutations needed to compute it is also polynomially bounded.

▶ Example 19. Let us consider the following derivation proof, corresponding to the application
of a function to two arguments, of types A and B respectively, in a curryfied fashion, with
atomic resulting type C. Since the strategy is innermost, the four premises in the tree are
conclusions of (cut)-free derivation trees.

�∆1, Γ, A, B ⊢ C
(⊸ R)

�∆1, Γ, A ⊢ B ⊸ C
(⊸ R)

�∆1, Γ ⊢ A ⊸ B ⊸ C

�∆3, Φ ⊢ A

�∆5, Λ ⊢ B �∆6, Θ, C ⊢ C
(� ⊸ L)

�∆4, Λ, Θ, B ⊸ C ⊢ C
(� ⊸ L)

�∆2, Φ, Λ, Θ, A ⊸ B ⊸ C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

One parallel (�cut) elimination step exhibits the application of the first argument, of type A,

�∆1, Γ, A, B ⊢ C
(⊸ R)

�∆1, Γ, A ⊢ B ⊸ C �∆3, Φ ⊢ A

�∆5, Λ ⊢ B �∆6, Θ, C ⊢ C
(� ⊸ L)

�∆4, Λ, Θ, B ⊸ C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

And a second one exhibits the application of the second argument, of type B.

�∆1, Γ, A, B ⊢ C �∆3, Φ ⊢ A �∆5, Λ ⊢ B � ∆6, Θ, C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

The premise �∆6, Θ, C ⊢ C is the root of the pairing forest, and the atomic type C is
eliminated first.

�∆1, Γ, A, B ⊢ C �∆3, Φ ⊢ A �∆5, Λ ⊢ B
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

Finally, the two arguments types A and B are then eliminated in parallel, with elimination
steps corresponding to the substitution of the corresponding values in the function term in
the Curry-Howard isomorphism, as detailed in the next section.

3 A Parallel Polynomial Time Type Assignment for λ-calculus

3.1 Parallel Soft Types
We take insipiration from the STA type assignment of Gaboardi and Ronchi [7]. We add the
parallel modalities in a restricted way, as follows.
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▶ Definition 20 (Parallel Soft types (PSTA)). In the following, α, β, etc stand for base type
variables, A, B, C, etc stand for types with linear output, and σ, τ , etc stand for PSTA
types. PSTA types are given by the following grammar:

A, B, C := α | σ ⊸ A | ∀αA | A&B

σ, τ, ρ, µ, ν := A | !σ | � σ

A PSTA Typing context is a set of type assignments x : σ, where x is a variable and σ a
PSTA type. A PSTA Typing judgment is Γ ⊢ M : σ, where Γ is a PSTA Typing context, M

is a λ-term, and σ is a PSTA type.

3.2 Typing Rules
Our PSTA typing rules are the following.

(�Id)
�∆, x : A ⊢ x : A

�∆, Γ ⊢ M : σ
(�Sp)

�∆, !Γ ⊢ M : !σ
Γ ⊢ M : A (∀R)Γ ⊢ M : ∀αA

Γ, x0 : τ, · · · , xn : τ ⊢ M : σ (m)
Γ, x : !τ ⊢ M [x/x0, · · · , x/xn] : σ

Γ ⊢ M : σ1 Γ ⊢ M : σ2 (NR)Γ ⊢ M : σ1Nσ2

Γ, x : A[B/α] ⊢ M : σ
(∀L)Γ, x : ∀αA ⊢ M : σ

Γ, x1 : τ ⊢ M : σ (�D)
Γ, x : �τ ⊢ M [x/x1] : σ

Γ, x1 : τ1 ⊢ M : σ (NL1)
Γ, x : τ1Nτ2 ⊢ M [x/x1] : σ

Γ, x2 : τ2 ⊢ M : σ (NL2)
Γ, x : τ1Nτ2 ⊢ M [x/x2] : σ

Γ, x : σ ⊢ M : A (⊸ R)Γ ⊢ λx.M : σ ⊸ A

�∆1, Γ ⊢ M : τ �∆2, Λ, x : τ ⊢ N : σ
(�cut)

�∆, Γ, Λ, ⊢ N [M/x] : σ

Γ ⊢ M : σ (�W )
Γ, x : �τ ⊢ M : σ

�∆1, Γ ⊢ M : τ �∆2, Λ, x : A ⊢ N : σ
(� ⊸ L)

�∆, Γ, Λ, y : τ ⊸ A ⊢ N [yM/x] : σ

As exemplified in the subject reduction property, typing an application term (MN) is
done with the (� ⊸ L) rule. In the typing rules above, we also add the following side
conditions:

Parallel types occur only with negative polarity in the typing judgments,
In rules (�cut) and (� ⊸ L), the domain of contexts Γ and Λ are disjoint, and finally
In rules (�cut) and (� ⊸ L), the side condition SP : �∆1 ⊊ �∆, �∆2 ⊊ �∆ holds.

Moreover, we also define a generalized (�,⊸ cut) rule similar to that of PSLL, with the
appropriate nesting of substitutions for all (cut) and ⊸ pairs of terms.

These rules being literal translations of that of PSLL, the rule permutations, and (cut)-
elimination steps of PSLL apply to PSTA.

The grammar of our types, and the typing rules, together with the side conditions above,
ensure that sharing does not occur in our typing system. More precisely, we have

▶ Proposition 21. Let Π be a typing derivation with conclusion Γ ⊢ M : !σ. Then, the
context Γ is �∆, !Λ.

A corollary of Proposition 21 is

▶ Corollary 22. Any typing derivation with conclusion �∆, !Γ ⊢ M : !σ ends with a (�Sp),
(m), (�D), (�W ) or a (�cut). Moreover, in this context, the rules (m), (�D), and (�W )
can be commuted to the top (since the premise needs to have a modal context as well), and
the derivation can w.l.o.g. be considered to end with a (�Sp) or a (�cut)-rule.
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From the absence of sharing, we derive

▶ Proposition 23. PSTA enjoys the subject reduction property: if Γ ⊢ M : σ and M →β M ′,
then Γ ⊢ M ′.

Proof. By structural induction on the cut-type σ of the term λy.P in the redex (λy.P Q).
The terms M and M ′ can be written as M = N [(x Q)/z][λy.P/x] and M ′ = N [P [Q/y]/z].
Two cases arise:
1. σ = τ → A. The derivation is

�∆1, Γ1, y : τ ⊢ P : A

�∆1, Γ1 ⊢ λy.P : τ → A

�∆3, Γ2, ⊢ Q : τ �∆4, Γ3, z : A ⊢ N : σ
(� ⊸ L)

�∆2, Γ2, Γ3, x : τ → A ⊢ N [(x Q)/z] : σ
(�cut)

�∆, Γ1, Γ2, Γ3 ⊢ N [(x Q)/z][λy.P/x] : σ

Cut elimination yields then the following derivation tree

�∆1, Γ1, y : τ ⊢ P : A �∆3, Γ2, ⊢ Q : τ �∆4, Γ3, z : A ⊢ N : σ
(�cut)

�∆, Γ1, Γ2, Γ3 ⊢ N [P [Q/y]/z] : σ

which proves the subject reduction property. If σ = ∀ατ or σ = τNτ ′, the cut-elimination
steps eventually reduce to the case above.

2. σ =!τ . By Proposition 21, and modulo rule permutations the derivation is

�∆1, Γ1 ⊢ λy.P : τ
(�Sp)

�∆1, !Γ1 ⊢ λy.P : !τ
�∆2, Γ2, · · · xi : τ · · · ⊢ N [· · · (xi Q)/zi · · · ] : σ

(m)
�∆2, Γ2, x : !τ ⊢ N [(x Q)/z1, · · · , (x Q)/zn] : σ

(�cut)
�∆, !Γ1,; Γ2 ⊢ N [(x Q)/z1, · · · , (x Q)/zn][λy.P/x] : σ

Cut elimination yields then the following derivation tree

n copies︷ ︸︸ ︷
· · · � ∆1, Γ′

i ⊢ λy.Pi : τ · · · �∆2, Γ2, · · · xi : τ · · · ⊢ N [· · · (xi Q)/zi · · · ] : σ
(�cut)

�∆, Γ′
1, · · · , Γ′

n, Γ2 ⊢ N [(x1Q)/z1, · · · , (xnQ)/zn][λy.P1/x1, · · · , λy.Pn/xn] : σ
(m)

�∆, !Γ1, Γ2 ⊢ N [(x1 Q)/z1, · · · , (xn Q)/zn][λy.P1/x1, · · · , λy.Pn/xn] : σ

and the induction hypothesis applies to the n cut-types τ . ◀

3.3 A Parallel, Polynomial Time Evaluation Strategy
▶ Theorem 24. Let T be a λ-term, typable in PSTA.Then, T normalizes in polynomial
parallel time.

Proof. The proof follows from Theorem 18: cut-elimination in parallel polynomial time, and
subject-reduction, induce a parallel polynomial number of β-reduction steps for the term.
The overall complexity bound is however a bit more subtle: while PSTA type derivations
have exponential size and polynomial depth, the corresponding right-hand side λ-terms may
have syntactic trees of exponential depth as well. Performing the substitutions for each
β-reduction step in parallel polynomial time requires then to use an appropriate, polynomial
space representation of the terms: the explicit representation is clearly unsuitable.

Let us first introduce some definitions and observations.
Let T be a λ-term. Its Böhm-like tree B(T ) is defined as follows:

1. If T is a variable x, B(T ) is a single vertex labelled with x.
2. If T is an abstraction λx.U , B(T ) is obtained adding B(U) as a leftmost child of a root

labelled with λx.
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3. If T is an application UV , B(T ) is obtained by adding B(V ) as a new rightmost child of
the root of B(U).

Clearly, a Böhm-like tree B(T ) uniquely defines a term T . Therefore, in the sequel we identify
the two notions, and focus on the computation of the Böhm-like tree of the normal-form of a
given term.

Let T be a λ-term, typable in PSTA with a typing derivation Π. We define the pseudo-
derivation D(Π) associated to Π as the tree obtained from Π by removing all right-hand side
λ-terms (while keeping the corresponding type).

Then, the following observations hold.
1. In each typing judgment in Π (and therefore in D(Π)), the typing context contains type

assignments for variable terms only.
2. Erasing the variable names in the contexts of D(Π) (while keeping the corresponding

types) yields a PSLL proof L(Π), with types as formulae,
3. All right-hand side λ-terms in Π are uniquely determined by D(Π), and finally,
4. The variable type assignments in D(Π) are preserved by the subject-reduction property:

If T1 is a λ-term with PSTA type derivation Π1 , T1 →β T2, and Π2 is the type derivation
of T2 obtained by the subject reduction steps of Proposition 23, then the variable type
assignments in D(Π1) and D(Π2) coincide.

As a consequence, the following reduction strategy holds: from a λ-term T with PSTA
typing derivation Π, perform the innermost parallel cut-elimination strategy on L(Π), while
keeping the variable type assignments given by D(Π). The observations above ensure that
the pseudo derivation D(Π′) thus obtained is that of the typing derivation Π′ of the normal
form T ′ of T . The additional information stored in the contexts of D(Π′) (the variable
names) takes polynomial space (polynomially many variable names among an exponential
number of possible names), and the reduction can be performed in parallel polynomial time.
It remains to show how to compute the normal form T ′ from its pseudo-derivation D(Π′), in
parallel polynomial time. We do this by actually computing a succinct representation of its
Böhm-like tree B(T ′).

Let D(Π) be the pseudo-derivation of a PSTA derivation Π, with corresponding term
T with Böhm-like tree B(T ). A first observation is the following: For any typing judgment
Γ ⊢ t : σ in Π, if the explicit substitution [M/x] (respectively [yM/x]) occurs in t, then there
exists a judgment Γ′ ⊢ M : σ′ above in Π. Since Π has polynomial depth, and polynomial
indegree by Lemma 16, the substitution term M can then be described in polynomial space
by the path from the conclusion of Π to this typing judgment Γ′ ⊢ M : σ′.

For each typing judgment Γ ⊢ t : σ in Π, we associate to the right-hand term the following:
1. the path p from the conclusion of Π to this judgment, and
2. the list s(p) of explicit substitutions occurring along p, computed as follows:

assume p chooses the rightmost premise N in a (�,⊸ cut) rule R (i.e. the premise p′

s.t. R has no (cut) or ⊸-pair p′ → p′′): this cut-rule introduces a polynomial number
of substitutions [Mi/xi] (or [yiMi/xi]) in its conclusion term. Then, we add to s(p)
the pairs (pi, xi) (or (yipi, xi)), where pi is the path to the corresponding premise with
right hand term Mi.
assume p passes through a (m) (�D) or (NLi). Then, we add to s(p) the pairs (x, xi).

Clearly, for a path p, the list s(p) has polynomial size, and can be computed in polynomial
time. Now, for a given path p, the computation of the corresponding vertex v(p) in B(T )
proceeds co-recursively on D(Π) as follows:

if p is conclusion of a (�ax) rule, v(p) is a leaf in B(T ), with label x.
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if p is conclusion of a (�Sp), (∀R), (∀L), (�W ) or (NR) rule, with premise p′, then v(p)
is v(p′).
if p is conclusion of a (m), (�D) or (NLi) rule with premise p′, two cases arise:

1. v(p′) is labelled xi: then, (x/xi) belongs to s(p). In that case v(p) is labelled x, and
its successors are those of v(p′).

2. otherwise, v(p) is v(p′).
if p is conclusion of a (⊸ R) rule with premise p′, v(p) is an inner node labelled λx, with
left successor node p′.
if p is conclusion of a (�,⊸ cut)-rule R: let p′ be its rightmost premise. Then, three
cases arise:

1. v(p′) is labelled x, (p′′, x) belongs to s(p′): then, v(p) is obtained from v(p′′) by adding
to its root the successor vertices of v(p′).

2. v(p′) is labelled x, (yp′′, x) belongs to s(p′): then, v(p) is a vertex labelled y, with
right successor v(p′′).

3. otherwise, v(p) is v(p′).
Performing the procedure above in parallel for all paths in D(Π) provides then a succinct
description of B(T ) in parallel polynomial time. ◀

4 Completeness of PSTA

We now prove that PSTA is complete for the class FPAR of functions computable in parallel,
polynomial time. In order to do so, we first encode parallel, polynomial time recursive
functions with substitutions, à la Leivant and Marion [16], and then use them to simulate
the computation of a P-uniform family of boolean circuits of polynomial depth. Extending
these encodings to the setting of algebraic complexity amounts then simply to replace the
base type B by a base type for the underlying algebraic structure (e.g. real numbers), and
to provide the type of the algebraic constants and operations in the typing context.

First, PSTA captures (obviously) STA.

▶ Lemma 25. Let Π be a SLL proof of degree d and rank n, with conclusion Γ ⊢ A of size s.
Let WΠ be its weight, as defined in [13]. Then, any path in from the conclusion of Π to an
axiom contains at most s + WΠ(1) (⊸ L) rules, and at most WΠ(1).nd (cut) rules.

▶ Corollary 26. Let Π be a SLL proof of degree d and rank n, with conclusion Γ ⊢ A of size
s. Then, there exists a PSLL proof Π′ with conclusion ∆, Γ ⊢ A, of degree d and rank n.

Proof. Take ∆ =!d � A1, . . . , !d � Ak, with k = WΠ(1) + s, for any A1, · · · , Ak. ◀

An immediate consequence is that all λ-terms typable in STA are also typable in PSTA,
with the same rank and degree. As a consequence, following [7], Theorem 19, we immediately
have that PSTA is complete for FPTIME. This allows us to prove its FPAR completeness
more easily. Denote by B the STA (hence PSTA) type for booleans, L the STA type for
binary strings, and N the STA type for Church Integers.

The following lemma allows us to encode some sort of polynomial recursion with substi-
tutions a la Leivant and Marion [16] in PSTA.

▶ Lemma 27. Assume we have the following sequential, polynomial time functions, with
PSTA type derivations:

op with derivation Πop with conclusion Γop ⊢ op : L ⊸ L ⊸ L ⊸ L.
s1 and s2 with derivation Πi, for i ∈ {1, 2}, with conclusion Γi ⊢ si : L ⊸ L.
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and, for any univariate polynomial P of degree d, a function P , encoding the church
integer P (|L|) for a binary list L, with derivation ΠP with conclusion ΓP ⊢ P :!dL ⊸ N.

We now consider the following recursive function with substitutions, on binary lists: f(v) =
op(v, f(s1(v)), f(s2(v))). Moreover, we assume that on any input v, the recursive computation
of f reaches a fixed point after P (|v|) steps. Then, f(v) is PSTA definable with degree d.

Proof. Following a similar encoding in [6], each recursion step in the computation of f is
encoded by the following function Step = λh.λv.op v (h (s1 v)) (h (s2 v)). Let L2 = (L ⊸
L) ⊸ L ⊸ L, and Γ = Γop, Γ1, Γ2, (X : �A)2, h : �(L ⊸ L), v : �L Then, Step admits a
PSTA proof derivation ΠStep with conclusion Γ ⊢ Step : L2.

Indeed, ΠStep is

Aop A1 A2 As1 As2 AV1 AV2 Astep (�cut)
Γ, h : L ⊸ L, v : L ⊢ op v (h (s1 v)) (h (s2 v)) : L

(⊸ R)2
Γ ⊢ Step : L2

where Aop is Πop

Γop ⊢ op : L ⊸ L ⊸ L ⊸ L
, Ai is Πi

Γi ⊢ si : L ⊸ L
,

Asi is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, ti : L ⊸ L, v : L ⊢ ti v : L
(�D)

X : �A, ti : L ⊸ L, v : �L ⊢ ti v : L
,

AV1 is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, h : L ⊸ L, v : L ⊢ h v : L
(�D)2

X : �A, h : �L ⊸ L, v : �L ⊢ h v : L
,

AV2 is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, h : L ⊸ L, v : L ⊢ h v : L
,

and Astep is

(�Id)
V1 : L ⊢ V1 : L (�Id) · · ·

x1 : L ⊢ x1 : L (�Id)
x3 : L ⊢ x3 : L (�,⊸ cut)

X : �A, V1 : L, V2 : L, V3 : L, op : L ⊸ L ⊸ L ⊸ L ⊢ op V1 V2 V3 : L

The value f(v) is reached after P (|v|) recursion steps. It is given by Value v, where
Value = λv.((P v) Step λy.y) v). Let Γ′ = Γop, Γ1, Γ2, (X : �A)5, h : �(L ⊸ L), v :
�L, ΓP , v :!dL. Then, Value admits a PSTA proof derivation ΠValue with conclusion Γ′ ⊢
Value : L ⊸ L. Indeed, let L3 = (!L2 ⊸ L2). Recall that N = ∀α!(α ⊸ α) ⊸ α ⊸ α and
consider the following proof derivations.

ΠP v:
ΠP

ΓP ⊢ P :!dL ⊸ N

(�Id)
v :!dL ⊢ v :!dL

(�Id)
x :!dL ⊢ x :!dL (� ⊸ L)

x : �A, P :!dL ⊸ N, v :!dL ⊢ P v : N
(�cut)

(x : �A)2, ΓP , v :!dL ⊢ P v : N
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Πs:

ΠP v !ΠStep

!Step :!L2 ⊢!Step :!L2 x :!L2 ⊢ x :!L2
(� ⊸ L)

X : �A, (P v) : L3, !Step :!L2 ⊢ P v Step : L2
(∀L)

X : �A, (P v) : N, !Step :!L2 ⊢ P v Step : L2
(�cut)

Γop, Γ1, Γ2, (X : �A)3, h : �(L ⊸ L), v : �L, ΓP , v :!dL ⊢ P v Step : L2

Πsl:

Πs

λy.y : L ⊸ L ⊢ λy.y : L ⊸ L f : L ⊸ L ⊢ f : L ⊸ L (� ⊸ L)
X : �A, P v Step : L2 ⊢ P v Step λy.y : L ⊸ L

(�cut)
Γop, Γ1, Γ2, (X : �A)4, h : �(L ⊸ L), v : �L, ΓP , v :!dL ⊢ P v Step λy.y : L ⊸ L

and finally ΠValue:

Πsl

v : L ⊢ v : L z : L ⊢ z : L (� ⊸ L)
X : �A, P v Step λy.y : L ⊸ L, v : L ⊢ (P v Step λy.y)v : L

(�cut)
Γ′, v : L ⊢ (P v Step λy.y)v : L

(⊸ R)
Γ′ ⊢ Value : L ⊸ L

◀

▶ Theorem 28. PSTA is complete for FPAR.

Proof. Using the usual encodings for binary strings, booleans, integers and pairs, we use
Lemma 27 to prove our completeness result. Let g be a function computed in FPAR. For
the sake of simplicity let us assume that g outputs a single boolean. Then, there exists a
P -uniform family C of succinctly described boolean circuits, of polynomial depth, computing
g. More precisely, there exist a univariate polynomial p, and polynomial time functions and,
or, node, input, s1 and s2 such that:

On any input x = x1, · · · , xn of size n, g(x1, · · · , xn) is computed by a boolean circuit
Cn of depth p(n), with output node t.
For each node s in Cn, there exists a binary list ns, encoding a path from t to s in Cn, of
length less than p(n). Each node will be identified by these paths (there may be several
paths for a given node).
and(x, y) (respectively or(x, y), resp. not(x, y)) is true if the path y encodes a and (resp.
or, resp. not) node of C|x|, and false otherwise.
input(x, y) is (xi, true) if y encodes the ith input node of C|x|, and (0, false) otherwise.
s1(y) = 0.y encodes a path to the left parent of the node encoded by y, if it exists.
s2(y) = 1.y encodes a path to the right parent of the node encoded by y, if it exists.

Define now f(x, y) = op(x, y, f(x, s1(y)), f(x, s1(y))), where y denotes a path in C|x|, and
op(x, y, v1, v2) computes, using the functions defined above, the boolean value of the node y

in C|x|, provided v1 and v2 are the boolean values of its two parents nodes. Then, Lemma 27
applies: f is definable in PSTA, and recursively computes the value of all nodes in C|x|. The
output g(x) is then given by f(x, ϵ), where ϵ is the empty binary list. ◀

5 Concluding Remarks

In this paper we have only investigated one of the many possible choices for the way the
parallel (�,⊸ cut) rule allows contraction on � formulas, and allows its distribution among
the premises of the cut, and we have applied this approach to one example (STA) of linear
typing system. Among the questions now worth investigating are the following: Is it possible
to tune differently the side condition of the (�,⊸ cut)-rule to capture other complexity
classes? Such obvious candidates are the classes NCi, which we could hope to capture
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by taking a fully linear (�,⊸ cut)-rule (for ensuring sequential polynomial time), with an
additional side condition ensuring parallel polylogarithmic time cut-elimination. Is it also
possible to use this approach on type systems capturing other sequential complexity classes,
for instance Logspace [17, 15], and to obtain other interesting results?
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