
Simulation by Rounds of Letter-To-Letter
Transducers
Antonio Abu Nassar #

Computer Science Department, Technion, Haifa, Israel

Shaull Almagor #

Computer Science Department, Technion, Haifa, Israel

Abstract
Letter-to-letter transducers are a standard formalism for modeling reactive systems. Often, two
transducers that model similar systems differ locally from one another, by behaving similarly, up to
permutations of the input and output letters within “rounds”. In this work, we introduce and study
notions of simulation by rounds and equivalence by rounds of transducers. In our setting, words
are partitioned to consecutive subwords of a fixed length k, called rounds. Then, a transducer T1 is
k-round simulated by transducer T2 if, intuitively, for every input word x, we can permute the letters
within each round in x, such that the output of T2 on the permuted word is itself a permutation of
the output of T1 on x. Finally, two transducers are k-round equivalent if they simulate each other.

We solve two main decision problems, namely whether T2 k-round simulates T1 (1) when k is
given as input, and (2) for an existentially quantified k.

We demonstrate the usefulness of the definitions by applying them to process symmetry: a setting
in which a permutation in the identities of processes in a multi-process system naturally gives rise
to two transducers, whose k-round equivalence corresponds to stability against such permutations.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Concurrency; Theory of computation → Abstraction

Keywords and phrases Transducers, Permutations, Parikh, Simulation, Equivalence

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.3

Related Version Full Version: https://arxiv.org/abs/2105.01512

Funding Shaull Almagor : European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 837327.

1 Introduction

Reactive systems interact with their environment by receiving inputs, corresponding to the
state of the environment, and sending outputs, which describe actions of the system. Finite-
state reactive systems are often modeled by transducers – finite-state machines over alphabets
ΣI and ΣO of inputs and outputs, respectively, which read an input letter in ΣI , and respond
with an output in ΣO. Such transducers are amenable to automatic verification of certain
properties (e.g., LTL model-checking), and are therefore useful in practice. Nonetheless,
modeling complex systems may result in huge transducers, which make verification procedures
prohibitively expensive, and makes understanding the constructed transducers difficult.

A common approach to gain a better understanding of a transducer (or more generally,
any system) is simulation [19], whereby a transducer T1 is simulated by a “simpler” transducer
T2 in such a way that model checking is easier on T2, and the correctness of the desired
property is preserved under the simulation. Usually, “simpler” means smaller, as in standard
simulation [19] and fair simulation [13], but one can also view e.g., linearization of concurrent
programs [14] as a form of simulation by a simpler machine.

© Antonio Abu Nassar and Shaull Almagor;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonio@cs.technion.ac.il
mailto:shaull@cs.technion.ac.il
https://orcid.org/0000-0001-9021-1175
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://arxiv.org/abs/2105.01512
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Simulation by Rounds of Letter-To-Letter Transducers

In this work, we introduce and study new notions of simulation and of equivalence for
transducers, based on k-rounds: consider an input word x ∈ Σ∗

I whose length is k ·R for some
k,R > 0. We divide the word into R disjoint infixes of length k, called k-rounds. We then
say that two words x, x′ ∈ ΣkR

I are k-round equivalent, denoted x′ ≍k x, if x′ is obtained
from x by permuting the letters within each round of x. For example abcabc and cbaacb are
3-round equivalent. We now say that a transducer T1 is k-round simulated by a transducer
T2, denoted T1 ≺k T2, if for every1 input x ∈ ΣkR

I we can find some input x′ ≍k x, such that
the outputs of T1 on x and T2 on x′, denoted y, y′ respectively, are also equivalent: y′ ≍k y.
Intuitively, T1 ≺k T2 means that every behaviour of T1 is captured by T2, up to permutations
within each k-round.

The benefit of k-round simulation is twofold: First, it may serve as an alternative
simulation technique for reducing the state space while maintaining the correctness of certain
properties. Second, we argue that k-round simulation is in and of itself a design concern.
Indeed, in certain scenarios we can naturally design a transducer T2 that performs a certain
task in an ideal, but not realistic, way, and we want to check that an existing design, namely
T1, is simulated by this ideal. In particular, this is useful when dealing with systems that
naturally work in rounds, such as schedulers (e.g., Round Robin, cf. Example 3), arbiters,
and other resource allocation systems.

We start with an example demonstrating both benefits.

▶ Example 1. Consider a monitor M for the fairness of a distributed system with 10 processes
P = {1, . . . , 10}. At each timestep, M receives as input the ID of the process currently
working. The monitor then verifies that in each round of 10 steps, every process works
exactly once. As long as this holds, the monitor keeps outputting safe, otherwise error.

M can be modeled by a transducer T1 that keeps track of the set of processes that have
worked in the current round. Thus, the transducer has at least 210 states, as it needs to keep
track of the subset of processes that have been seen.

It is not hard to see that T1 is 10-round simulated by an “ideal” transducer T2 which
expects to see the processes in the order 1, . . . , 10. This transducer needs roughly 10 states,
as it only needs to know the index of the next process it expects to see.

Now, suppose we want to verify some correctness property which is invariant to permuta-
tions of the processes within each 10-round, such as “if there is no error, then Process 3
works at least once every 20 steps”. Then we can verify this against the much smaller T2. ⌟

The notion of k-round simulation arises naturally in the setting of process symmetry. There,
the input and output alphabets are ΣI = 2I and ΣO = 2O respectively, where I = {i1, . . . , im}
and O = {o1, . . . , om} represent signals corresponding to m processes. Process symmetry
addresses the scenario where the identities of the processes may be scrambled. For example,
if the input {i1, i2} is generated, the system might actually receive an input {i7, i4}. A
system exhibits process symmetry if, intuitively, its outputs are permuted in a similar way to
the inputs. Unfortunately, deterministic systems that are process symmetric are extremely
naive, as process symmetry is too restrictive for them. While this can be overcome using
probabilistic systems, as studied by the second author in [1], it is also desirable to find
a definition that is suited for deterministic systems. As we show in Section 6, k-round
simulation provides such a definition.

The main contributions of this work are as follows. We introduce the notion of k-round
simulation and k-round equivalence, and define two decision problems pertaining to them:
in fixed round simulation we need to decide whether T1 ≺k T2 for a given value of k, and

1 Our formal definition allows to also restrict the input to some regular language Λ ⊆ Σ∗
I , see Section 3.



A. Abu Nassar and S. Almagor 3:3

in existential round simulation we need to decide whether there exists some value of k for
which T1 ≺k T2 holds. In fact, we consider a somewhat more elaborate setting, by also
allowing the inputs to T1 to be restricted to some regular language Λ. We solve the first
problem by reducing it to the containment of two nondeterministic automata. For the
second problem, things become considerably more difficult, and the solution requires several
constructions, as well as tools such as Presburger Arithmetic and Parikh’s theorem. In
addition, we demonstrate the usefulness of the definitions in relation to process symmetry.

Related Work. Simulation relations between systems are a well studied notion. We refer
the reader to [7, Chapter 13] and references therein for an exposition. The connection of our
notion with standard simulation is only up to motivation, as our measure is semantic and
does not directly relate to the state space.

Technically, our work is closely related to commutative automata [4] and jumping auto-
mata [10, 18] – models of automata capable of reading their input in a discontinuous manner,
by jumping from one letter to another. Indeed, our notion of round simulation essentially
allows the simulating transducer to read the letters within rounds in a discontinuous manner.
This similarity is manifested implicitly in Section 5.2, where we encounter similar structures
as e.g., [15] (although the analysis here has a different purpose).

Finally, the initial motivation for this work comes from process symmetry [1, 6, 9, 16, 17].
We demonstrate the connections in depth in Section 6.

Paper organization. In Section 2 we present some basic definitions used throughout the
paper. In Section 3 we introduce k-round simulation and equivalence, define the relevant
decision problems, and study some fundamental properties of the definitions. In Section 4
we solve fixed round simulation, while developing some technical tools and characterizations
that are reused later. Section 5 is our main technical result, where we develop a solution
for existential round simulation. In particular, in Section 5.1 we give an overview of the
solution, before going through the technical details in Section 5.2. In Section 5.3 we give
lower bounds for the existential setting. In Section 6 we use round simulation to obtain a
definition of process symmetry for deterministic transducers. Finally, in Section 7, we discuss
some variants and open problems.

Due to lack of space, some proofs are omitted and can be found in the full version.

2 Preliminaries

Automata. A deterministic finite automaton (DFA) is A = ⟨Σ, Q, q0, δ, F ⟩, where Q is a
finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → Q is a transition function, and
F ⊆ Q is the set of accepting states.

The run of A on a word w = σ0 · σ2 · · ·σn−1 ∈ Σ∗ is a sequence of states q0, q1, . . . , qn

such that qi+1 = δ(qi, σi) for all 0 ≤ i < n. The run is accepting if qn ∈ F . A word w ∈ Σ∗

is accepted by A if the run of A on w is accepting. The language of A, denoted L(A),
is the set of words that A accepts. We also consider nondeterministic automata (NFA),
where δ : Q × Σ → 2Q. Then, a run of A on a word w ∈ Σ∗ as above is a sequence of
states q0, q1, . . . , qn such that qi+1 ∈ δ(qi, σi) for all 0 ≤ i < n. The language of A is defined
analogously to the deterministic setting. We denote by |A| the number of states of A.

As usual, we denote by δ∗ the transition function lifted to words. For states q, q′ and
w ∈ Σ∗, we write q w−→A q′ if q′ ∈ δ∗(q, w). That is, if there is a run of A from q to q′ while
reading w.

CSL 2022



3:4 Simulation by Rounds of Letter-To-Letter Transducers

An NFA A can be viewed as a morphism from Σ∗ to the monoid BQ×Q of Q × Q

Boolean matrices, where we associate with a letter σ ∈ Σ its type τA(σ) ∈ BQ×Q defined
by (τA(σ))q,q′ = 1 if q σ−→A q′, and (τA(σ))q,q′ = 0 otherwise. We extend this to Σ∗ by
defining, for a word w = σ1 · · ·σn ∈ Σ∗, its type as τA(w) = τA(σ1) · · · τA(σn) where the
concatenation denotes Boolean matrix product. It is easy to see that (τA(w))q,q′ = 1 iff
q

w−→A q′.

Transducers. Consider two sets ΣI and ΣO, representing Input and Output alphabets,
respectively. A ΣI/ΣO transducer is T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩ where Q, q0 ∈ Q, and δ : Q×
ΣI → Q are as in a DFA, and ℓ : Q → ΣO is a labelling function. For a word w ∈ Σ∗

I , consider
the run ρ = q0, . . . , qn of T on a word w. We define its output ℓ(ρ) = ℓ(q1) · · · ℓ(qn) ∈ Σ∗

O,
and we define the output of T on w to be T (w) = ℓ(ρ). Observe that we ignore the labelling
of the initial state in the run, so that the length of the output matches that of the input.

For a transducer T and a state s, we denote by T s the transducer T with initial state s.

Words and Rounds. Consider a word w = σ0 · · ·σn−1 ∈ Σ∗. We denote its length by |w|,
and for 0 ≤ i ≤ j < |w|, we define w[i : j] = σi · · ·σj . For k > 0, we say that w is a k-round
word if |w| = kR for some R ∈ N. Then, for every 0 ≤ r < R, we refer to w[rk : r(k+ 1) − 1]
as the r-th round in w, and we write w = γ0 · · · γR−1 where γr is the r-th round. We
emphasize that k signifies the length of each round, not the number of rounds.

In particular, throughout the paper we consider k-round words (x, y) ∈ (Σk
I × Σk

O)∗. In
such cases, we sometimes use the natural embedding of (Σk

I × Σk
O)∗ in (ΣI × ΣO)∗ and in

Σ∗
I × Σ∗

O, and refer to these sets interchangeably.

Parikh Vectors and Permutations. Consider an alphabet Σ. For a word w ∈ Σ∗ and
a letter σ ∈ Σ, we denote by #σ(w) the number of occurrences of σ in w. The Parikh
map2 P : Σ∗ → NΣ maps every word w ∈ Σ∗ to a Parikh vector P(w) ∈ NΣ, where
P(w)(σ) = #σ(w). We lift this to languages by defining, for L ⊆ Σ∗, P(L) = {P(w) : w ∈ L}.

For p ∈ NΣ (in the following we consistently denote vectors in NΣ by bold letters) we
write |p| =

∑
σ∈Σ p(σ). In particular, for a word w ∈ Σ∗ we have |P(w)| = |w|.

By Parikh’s Theorem [21], for every NFA A we have that P(L(A)) is a semilinear set,
namely a finite union of sets of the form {p + λ1s1 + . . .+ λ1sm : λ1, . . . , λm ∈ N} where
p, s1, . . . , sm ∈ Nd (and the translation is effective).

Consider words x, y ∈ Σ∗, we say that x is a permutation of y if P(x) = P(y) (indeed, in
this case y can be obtained from x by permuting its letters). Note that in particular this
implies |x| = |y|.

3 Round Simulation and Round Equivalence

Consider two k-round words x, y ∈ ΣkR with the same number of rounds R, and denote their
rounds by x = α0 · · ·αR−1 and y = β0 · · ·βR−1. We say that x and y are k-round equivalent,
denoted x ≍k y (or x ≍ y, when k is clear from context)3, if for every 0 ≤ r < R we have
that P(αr) = P(βr). That is, x ≍ y iff the r-th round of y is a permutation of the r-th
round of x, for every r. Clearly ≍ is indeed an equivalence relation.

2 We use NΣ rather than N|Σ| to emphasize that the vector’s indices are the letters in Σ.
3 Conveniently, our symbol for round equivalence is a rounded equivalence.



A. Abu Nassar and S. Almagor 3:5

▶ Example 2 (Round-equivalence for words). Consider the words x = abaabbabbbaa and
y = baabbaabbaba over the alphabet Σ = {a, b}. Looking at the words as 3-round words, one
can see in Table 1 that the 3-rounds in y are all permutations of those in x, which gives
x ≍3 y. However, looking at x, y as 4-round words, the number of occurrences of b already
in the first 4-round of x and of y is different, so x ̸≍4 y, as illustrated in Table 2. ⌟

Table 1 x and y are 3-round equivalent.

x aba abb abb baa
y baa bba abb aba

Table 2 x and y are not 4-round equivalent.

x abaa bbab bbaa
y baab baab baba

Let ΣI and ΣO be input and output alphabets, let Λ ⊆ Σ∗
I be a regular language, and let

k > 0. Consider two ΣI/ΣO transducers T1 and T2. We say that T2 k-round simulates T1
restricted to Λ, denoted T1 ≺k,Λ T2, if for every k-round word x ∈ Λ there exists a k-round
word x′ ∈ Σ∗

I such that x ≍k x
′ and T1(x) ≍k T2(x′).

Intuitively, T1 ≺k,Λ T2 if for every input word x ∈ Λ, we can permute each k-round of x
to obtain a new word x′, such that the k-rounds of the outputs of T1 on x and of T2 on x′

are permutations of each other. Note that the definition is not symmetric: the input x for T1
is universally quantified, while x′ is chosen according to x. We illustrate this in Example 4.

If T1 ≺k,Λ T2 and T2 ≺k,Λ T1 we say that T1 and T2 are k-round equivalent restricted to Λ,
denoted T1 ≡k,Λ T2. In the special case where Λ = Σ∗

I (i.e., when we require the simulation
to hold for every input), we omit it from the subscript and write e.g., T1 ≺k T2.

▶ Example 3 (Round Robin). We consider a simple version of the Round Robin scheduler
for three processes P = {0, 1, 2}. In each time step, the scheduler outputs either a singleton
set containing the ID of the process whose request is granted, or an empty set if the process
whose turn it is did not make a request. Depending on the ID i ∈ {0, 1, 2} of the first process,
we model the scheduler as a 2P/2P transducer Ti =

〈
2P , 2P , Q, q(i−1)%3, δ, ℓ

〉
depicted in

Figure 1, where % is the mod operator, Q = {q0, q1, q2, q
′
0, q

′
1, q

′
2}, δ(qi, σ) = q(i+1)%3 if

i+ 1 ∈ σ and δ(qi, σ) = q′
(i+1)%3 otherwise, ℓ(qi) = {i} and ℓ(q′

i) = ∅.

q0/0 q1/1 q2/2

q′
0/∅ q′

1/∅ q′
2/∅

1

¬1

2

¬2

0
¬0

1

¬1

2

¬2

0
¬0

Figure 1 The transducer Ti for Round Robin, initial state omitted. The input letters σ and ¬σ

mean all input letters from 2P that, respectively, contain or do not contain σ. The labels are written
in red on the states, singleton brackets omitted (e.g., 1 means {1}).

Technically, the initial state changes the behaviour of Ti significantly (e.g.
T0({0}{2}{1}) = {0}∅∅ whereas T1({0}{2}{1}) = ∅{2}∅). Conceptually, however, chan-
ging the initial state does not alter the behaviour, as long as the requests are permuted
accordingly. This is captured by round equivalence, as follows.

CSL 2022



3:6 Simulation by Rounds of Letter-To-Letter Transducers

We argue that, if we allow reordering of the input letters, then the set of processes whose
requests are granted in each round is independent of the start state. This is equivalent to
saying T0 ≡k Tj for j ∈ {1, 2}, which indeed holds: if j = 1 then we permute all rounds of
the form σ0σ1σ2 to σ1σ2σ0, and similarly if j = 2 then we permute all rounds to σ2σ0σ1. It
is easy to see that the run of Ti on the permuted input grants outputs that are permutations
of the output of T0 on the non-permuted input. ⌟

▶ Example 4 (Round simulation is not symmetric). Consider the ΣI/ΣO transducers T1 and T2
over the alphabet ΣI = {a, b} and ΣO = {0, 1}, depicted in Figure 2. We claim that T1 ≺2 T2

1 0

0 1

1
b

a a

b

a, b

a

b

a, b

0 1

0 1

0
b

a a

b

a, b

a

b

a, b

Figure 2 Transducers T1 (left) and T2 (right) illustrate the asymmetry in the definition of round
equivalence (see Example 4).

but T2 ̸≺2 T1. Starting with the latter, observe that T2(ab) = 00, but T1(ab) = T1(ba) = 01.
Since 00 ̸≍2 01, we have T2 ̸≺2 T1.

We turn to show that T1 ≺2 T2. Observe that for every input word of the form x ∈
(ab+ba)m, we have T1(x) = (01)m, and x ≍2 (ba)m. So in this case we have that T2((ba)m) =
(10)m ≍2 (01)m. Next, for x ∈ (ab+ba)m ·bb·w for some w ∈ Σ∗

I we have T1(x) = (01)m011|w|

and x ≍2 (ba)m · bb · w, for which T2((ba)m · bb · w) = (01)m101|w| ≍2 T1(x). The case where
x ∈ (ab+ ba)m · aa · w is handled similarly. We conclude that T1 ≺2 T2. ⌟

Round simulation and round equivalence give rise to the following decision problems:
In fixed round simulation (resp. fixed round equivalence) we are given transducers T1, T2,
an NFA for the language Λ, and k > 0, and we need to decide whether T1 ≺k,Λ T2 (resp.
whether T1 ≡k,Λ T2).
In existential round simulation (resp. existential round equivalence) we are given trans-
ducers T1, T2 and an NFA for the language Λ, and we need to decide whether there exists
k > 0 such that T1 ≺k,Λ T2 (resp. T1 ≡k,Λ T2).

In the following we identify Λ with an NFA (or DFA) for it, as we do not explicitly rely on
its description.

We start by showing that deciding equivalence (both fixed and existential) is reducible,
in polynomial time, to the respective simulation problem.

▶ Lemma 5. Fixed (resp. existential) round equivalence is reducible in polynomial time to
fixed (resp. existential) round simulation.

Proof. First, we can clearly reduce fixed round equivalence to fixed round simulation: given
an algorithm that decides, given T1, T2, Λ and k > 0, whether T1 ≺k,Λ T2, we can decide
whether T1 ≡k,Λ T2 by using it twice to decide whether both T1 ≺k,Λ T2 and T1 ≺k,Λ T2 hold.

A slightly more careful examination shows that the same approach can be taken to reduce
existential round equivalence to existential round simulation, using the following observation:
if T1 ≺k,Λ T2, then for every m ∈ N it holds that T1 ≺mk,Λ T2. Indeed, we can simply group
every m rounds of length k and treat them as a single mk-round.



A. Abu Nassar and S. Almagor 3:7

Now, given an algorithm that decides, given T1, T2 and Λ, whether there exists k > 0 such
that T1 ≺k,Λ T2, we can decide whether T1 ≡k,Λ T2 by using the algorithm twice to decide
whether there exists k1 such that T1 ≺k1,Λ T2 and k2 such that T1 ≺k2,Λ T2 hold. If there
are no such k1, k2, then clearly T1 ̸≡k,Λ T2. However, if there are such k1, k2, then by the
observation above we have T1 ≡k1k2,Λ T2 (we can also take lcm(k1, k2) instead of k1k2). ◀

By Lemma 5, for the purpose of upper-bounds, we focus henceforth on round simulation.

4 Deciding Fixed Round Simulation

In this section we show decidability of fixed round simulation (and, by Lemma 5, fixed round
equivalence). The tools we develop will be used in Section 5 to handle the existential variant.

Let ΣI and ΣO be input and output alphabets. Consider two ΣI/ΣO transducers T1 and
T2, and let Λ ⊆ Σ∗

I and k > 0. In order to decide whether T1 ≺k,Λ T2, we proceed as follows.
First, we cast the problem to a problem about deterministic automata. Then, we translate
k-rounds into letters, by working over the alphabets Σk

I and Σk
O. We construct an NFA,

dubbed the permutation closure, for each transducer T , that captures the behaviour of T on
words and their permutations. Intuitively, the NFA takes as input a word (x, y) ∈ (Σk

I ×Σk
O)∗,

guesses a round-equivalent word x′ ≍ x, and verifies that T (x′) ≍ T (x). We then show that
round-simulation amounts to deciding the containment of these NFAs. We now turn to give
the details of the construction.

The Trace DFA. Consider a transducer T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩, we define its trace DFA
Tr(T ) = ⟨ΣI × ΣO, Q ∪ {q⊥}, q0, η,Q⟩ where for q ∈ Q and (σ, σ′) ∈ ΣI × ΣO we define
η(q, (σ, σ′)) = δ(q, σ) if T q(σ) = σ′ and η(q, (σ, σ′)) = q⊥ otherwise. q⊥ is a rejecting sink.

Tr(T ) captures the behaviour of T in that L(Tr(T )) = {(x, y) ∈ (ΣI × ΣO)∗ : T (x) = y}.

The Permutation-Closure NFA. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let
k > 0. We obtain from N an NFA Permk(N ) =

〈
Σk

I × Σk
O, S, s0, µ, F

〉
where the alphabet is

Σk
I × Σk

O, and the transition function µ is defined as follows. For a letter (α, β) ∈ Σk
I × Σk

O

and a state s ∈ S, we think of (α, β) as a word in (ΣI × ΣO)∗. Then we have

µ(s, (α, β)) =
⋃

{η∗(s, (α′, β′)) : P(α′) = P(α) ∧ P(β) = P(β′)}. (1)

That is, upon reading (α, β), Permk(N ) can move to any state s′ that is reachable in N
from s by reading a permutation of α, β (denoted α′, β′). Recall that for two words x, x′

we have that x ≍k x′ if for every two corresponding k-rounds α, α′ in x and x′ we have
P(α) = P(α′). Thus, we have the following.

▶ Observation 6. L(Permk(N )) = {(x, y) ∈ Σ∗
I × Σ∗

O : ∃x′ ≍k x, y′ ≍k y, (x′, y′) ∈
L(N ) ∧ |x| = |y| = kR for some R ∈ N}

Since the transition function of Permk(N ) is only defined using permutations of its input
letters, we have the following property, which we refer to as permutation invariance:

▶ Observation 7 (Permutation Invariance). For every state s ∈ S and letters (α, β), (α′, β′) ∈
Σk

I × Σk
O, if P(α) = P(α′) and P(β) = P(β′) then µ(s, (α, β)) = µ(s, (α′, β′)).

Given a transducer T , we apply the permutation closure to the trace DFA of T . In
order to account for Λ ⊆ Σ∗

I , we identify it with Λ ⊆ Σ∗
I × Σ∗

O by simply ignoring the ΣO

component. We remind that Λ denotes both a language and a corresponding DFA or NFA.

CSL 2022



3:8 Simulation by Rounds of Letter-To-Letter Transducers

▶ Lemma 8. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1)∩Λ)

(where the intersection is obtained by the product NFA) and Ak
2 = Permk(Tr(T2)), then

L(Ak
1) = {(x, y) ∈ Σ∗

I × Σ∗
O : ∃x′ ≍k x, T1(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N ∧ x′ ∈ Λ}.

L(Ak
2) = {(x, y) ∈ Σ∗

I × Σ∗
O : ∃x′ ≍k x, T2(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N}.

Proof. Recall that Tr(T ) accepts a word (x′, y′) iff T (x′) = y′. The claim then follows from
Observation 6, by replacing the expression y ≍ y′ ∧ (x′, y′) ∈ L(Tr(T )) with the equivalent
expression T (x′) ≍k y. ◀

We now reduce round simulation to the containment of permutation-closure NFAs.

▶ Lemma 9. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1)∩Λ)

and Ak
2 = Permk(Tr(T2)), then, T1 ≺k,Λ T2 iff L(Ak

1) ⊆ L(Ak
2).

Proof. For the first direction, assume T1 ≺k,Λ T2, and let (x, y) ∈ L(Ak
1). By Lemma 8, x

and y are k-round words, and there exists a word x′ ∈ Λ such that x ≍ x′ and T1(x′) ≍ y.
Since T1 ≺k,Λ T2, then applying the definition on x′ yields that there exists a k-round word
x′′ such that x′ ≍ x′′ and such that T1(x′) ≍ T2(x′′). Since ≍ is an equivalence relation, it
follows that x ≍ x′′ and T2(x′′) ≍ y, so again by Lemma 8 we have (x, y) ∈ L(Ak

2).
Conversely, assume L(Ak

1) ⊆ L(Ak
2), we wish to prove that for every k-round word x ∈ Λ

there exists a word x′ such that x ≍ x′ and T1(x) ≍ T2(x′). Let x ∈ Λ be a k-round word, and
let y = T1(x), then clearly (x, y) ∈ L(Ak

1) ⊆ L(Ak
2) (since x ≍ x, T1(x) = y ≍ y and x ∈ Λ).

By Lemma 8, there exists x′ such that x ≍ x′ and T2(x′) ≍ y = T1(x), so T2(x′) ≍ T1(x),
thus concluding the proof. ◀

▶ Remark 10. The proof of Lemma 9 can be simplified by using instead of Ak
1 , the augment-

ation of Tr(T1) ∩ Λ to k-round words. However, such a DFA is not permutation invariant,
which is key to our solution for existential round simulation. Since this simplification does
not reduce the overall complexity, we use a uniform setting for both solutions.

Lemma 9 shows that deciding fixed round equivalence amounts to deciding containment
of NFAs. By analyzing the size of the NFAs, we obtain the following.

▶ Theorem 11. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is in PSPACE.

Proof. Let Ak
1 = Permk(Tr(T1) ∩ Λ) and Ak

2 = Permk(Tr(T2)). By Lemma 9, deciding
whether T1 ≺k,Λ T2 amounts to deciding whether L(Ak

1) ⊆ L(Ak
2). Looking at the dual

problem, recall that for two NFAs N1,N2 we have that L(N1) ̸⊆ L(N2) iff there exists
w ∈ L(N2) \ L(N1) with |w| ≤ |N1| · 2|N2| (this follows immediately by bounding the size of
an NFA for L(N1) ∩ L(N2)). Thus, we can decide whether L(Ak

1) ⊆ L(Ak
2) by guessing a

word w over Σk
I × Σk

O of single-exponential length (in the size of Ak
1 and Ak

2), and verifying
that it is accepted by Ak

1 and not by Ak
2 .

Observe that to this end, we do not explicitly construct Ak
1 nor Ak

2 , as their alphabet
size is exponential. Rather, we evaluate them on each letter of w based on their construction
from T . At each step we keep track of a counter for the length of w, a state of Ak

1 , and a set
of states of Ak

2 . Since the number of states in Ak
1 and Ak

2 is the same as that of T1 and T2,
this requires polynomial space.

By Savitch’s theorem we have that coNPSPACE = PSPACE, and the proof is concluded.
◀



A. Abu Nassar and S. Almagor 3:9

⊤ ⊤⊤

⊥
ac b, d

b

a, c, d

d

a, b, c

Figure 3 The transducer T1

in the proof of Theorem 12.

q

q0,0

q0,1

q1,0

q1,1

0
0

1
1

q

⊤
qa

⊤
qb

⊤
qc

⊤
qd

⊤
q0,0

⊤
q0,1

⊤
q1,0

⊤
q1,1

a

b

c

d

b

a

d

c

Figure 4 Every state and its 4 transitions in N (left) turn
into 8 transitions in T2 (right). All transitions not drawn in the
right figure lead to q⊥, a sink state labelled ⊥.

We now give a PSPACE-hardness lower bound, thus concluding the problem is PSPACE-
complete. By Lemma 5, we give a stronger lower bound already for round-equivalence.4

▶ Theorem 12. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2, is
PSPACE-hard, even for k = 2 and for a fixed Λ (given as a 4-state DFA).

Proof sketch. We show a reduction from the universality problem for NFAs over alphabet
{0, 1} where all states are accepting and the degree of nondeterminism is at most 2, to
round-equivalence with k = 2 and with Λ given as a DFA of constant size. See the full
version for a proof of PSPACE-hardness of the former problem, and for the full reduction.

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and
σ ∈ {0, 1}.

We construct two transducers T1 and T2 over input and output alphabets ΣI = {a, b, c, d}
and ΣO = {⊤,⊥} and Λ ⊆ Σ∗

I , such that L(N ) = {0, 1}∗ iff T1 ≡2,Λ T2.
Set Λ = (ab+ cd)∗. Intuitively, our reduction encodes {0, 1} over {a, b, c, d} by identifying

0 with ab and with ba, and 1 with cd and with dc. Then, T1 (Figure 3) keeps outputting ⊤
for all inputs in Λ, thus mimicking a universal language in {0, 1}∗. We then construct T2
so that every nondeterministic transition of N on e.g., 0 is replaced by two deterministic
branches on ab and on ba (see Figure 4). Hence, when we are allowed to permute ab and ba
by round equivalence, we capture the nondeterminism of N . The outputs in T2 are all ⊤,
except a sink state q⊥ labelled ⊥, which is reached upon any undefined transition (including
transitions from states of N that do not have an outgoing 0 or 1 transition).

We show that L(N ) = {0, 1}∗ iff T1 ≡2,Λ T2, by showing that T2 ≺2,Λ T1 always holds,
and that for the converse, namely T1 ≺2,Λ T2, permuting an input word w ∈ Λ essentially
amounts to choosing an accepting run of N on the corresponding word in {0, 1}∗. ◀

▶ Corollary 13. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is PSPACE-complete.

5 Deciding Existential Round Simulation

We turn to solve existential round simulation. That is, given T1, T2 and Λ, we wish to decide
whether there exists k > 0 such that T1 ≺k,Λ T2. By Lemma 9, this is equivalent to deciding
whether there exists k > 0 such that L(Ak

1) ⊆ L(Ak
2), as defined therein.

4 The reduction in Lemma 5 is a Turing reduction. Nonetheless, our PSPACE-hardness proof actually
explicitly shows the hardness of both simulation and equivalence.

CSL 2022



3:10 Simulation by Rounds of Letter-To-Letter Transducers

5.1 Intuitive Overview

We start with an intuitive explanation of the solution and its challenges. For simplicity,
assume for now Λ = Σ∗

I , so it can be ignored. The overall approach is to present a small-model
property for k: in Theorem 14, the main result of this section, we give an upper bound on
the minimal k > 0 for which T1 ≺k T2. In order to obtain this bound, we proceed as follows.
Observe that for a transducer T and for 0 < k ≠ k′ the corresponding permutation closure
NFAs Permk(Tr(T )) and Permk′(Tr(T )) are defined on the same state space, but differ by
their alphabet (Σk

I × Σk
O vs Σk′

I × Σk′

O ). Thus, by definition, these NFAs form infinitely many
distinct automata. Nonetheless, there are only finitely many possible types of letters (indeed,
at most |BQ×Q| = 2|Q|2). Therefore, there are only finitely many type profiles for NFAs
(namely the set of letter types occurring in the NFA), up to multiplicities of the letter types.

Recall that by Lemma 9, we have that T1 ≺k T2 iff L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))).
Intuitively, one could hope that if Permk(Tr(Ti)) and Permk′(Tr(Ti)) have the same type profile,
for each i ∈ {1, 2}, then L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))) iff L(Permk′(Tr(T1))) ⊆
L(Permk′(Tr(T2))). Then, if one can bound the index k after which no further type profiles
are encountered, then the problem reduces to checking a finite number of containments.

Unfortunately, this is not the case, the reason being that the mapping of letters induced
by the equal type profiles between Permk(Tr(T1)) and Permk′(Tr(T1)) may differ from the
one between Permk(Tr(T2)) and Permk′(Tr(T2)), and thus one cannot translate language
containment between the two pairs. We overcome this difficulty, however, by working from
the start with product automata that capture the structure of both T1 and T2 simultaneously,
and thus unify the letter mapping.

We are now left with the problem of bounding the minimal k after which all type profiles
have been exhausted. In order to provide this bound, we show that for every type profile,
the set of indices in which it occurs is semilinear. Then, by finding a bound for each type
profile, we attain the overall bound. The main result of this section is the following.

▶ Theorem 14. Given transducers T1, T2 and Λ, we can effectively compute K0 > 0 such
that if T1 ≺k,Λ T2 for some k ∈ N, then T1 ≺k′,Λ T2 for some k′ ≤ K0.

Which by Lemma 9 immediately entails the following.

▶ Corollary 15. Existential round simulation is decidable.

We prove Theorem 14 in Section 5.2, organized as follows. We start by lifting the
definition of types in an NFA to Parikh vectors, and show how these relate to the NFA
(Lemma 16). We then introduce Presburger Arithmetic and its relation to Parikh’s theorem.
In Lemma 17 we show that the set of Parikh vectors that share a type τ is definable in
Presburger arithmetic, which provides the first main step towards our bound.

We then proceed to define the “redundant products”, which are the product automata
mentioned above, that serve to unify the types between T1 and T2. In Observations 18 and 19
we formalize the connection of these products to the transducers T1, T2. We then define
the type profiles mentioned above, and prove in Lemma 20 that they exhibit a semilinear
behaviour. Finally, in Lemma 21 we prove that when two redundant-product automata have
the same type profile, then the containment mentioned above can be shown. We conclude by
combining these results to obtain Theorem 14.



A. Abu Nassar and S. Almagor 3:11

5.2 Proof of Theorem 14

Type Matrices of Parikh Vectors. Consider the alphabet Σk
I × Σk

O for some k > 0. Recall
that by Observation 7, permutation closure NFAs are permutation invariant, and from
Section 2, the type of a word in an NFA is the transition matrix it induces. In particular, for
permutation-invariant NFAs, two letters (α, β), (α′, β′) ∈ Σk

I × Σk
O with P(α) = P(α′) and

P(β) = P(β′) have the same type.
Following this, we now lift the definition of types to Parikh vectors. Consider an NFA

N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let p ∈ NΣI ,o ∈ NΣO be Parikh vectors with |p| = |o| = k.
We define the type τN (p,o) ∈ BS×S to be τPermk(N )(α, β) where (α, β) ∈ Σk

I × Σk
O are such

that P(α) = p and P(β) = o. By permutation invariance, this is well-defined, i.e. is
independent of the choice of α and β.

Note that the definition of types is “non-uniform”, since we use different automata to
extract the type of words of different length. We obtain a more uniform description as follows
(see the full version for the proof).

▶ Lemma 16. In the notations above, for every s1, s2 ∈ S, we have that (τN (p,o))s1,s2 = 1
iff there exist (α, β) ∈ Σk

I × Σk
O with P(α) = p and P(β) = o such that s1

(α,β)−→ N s2.

Presburger Arithmetic. The first ingredient in the proof of Theorem 14 is to characterize
the set of Parikh vectors whose type is some fixed matrix τ ∈ BQ×Q. For this characterization,
we employ the first-order theory of the naturals with addition and order Th(N, 0, 1,+, <,=),
commonly known as Presburger Arithmetic (PA). We do not give a full exposition of PA,
but refer the reader to [12] (and references therein) for a survey. In the following we briefly
cite the results we need.

For our purposes, a PA formula φ(x1, . . . , xd), where x1, . . . , xd are free variables, is
evaluated over Nd, and defines the set {(a1, . . . , ad) ∈ Nd : (a1, . . . , ad) |= φ(x1, . . . , xd)}.
For example, the formula φ(x1, x2) := x1 < x2 ∧ ∃y.x1 = 2y defines the set {(a, b) ∈ N2 :
a < b ∧ a is even}.

A fundamental result about PA states that the definable sets in PA are exactly the
semilinear sets. In particular, by Parikh’s theorem we have that for every NFA A, P(L(A))
is PA definable. In fact, by [22], one can efficiently construct a linear-sized existential PA
formula for P(L(A)). We can now show that the set of Parikh vectors whose type is τ is
PA definable.

▶ Lemma 17. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and a type τ ∈ BS×S, then the
set {(p,o) ∈ NΣI × NΣO : τN (p,o) = τ} is PA definable.

Proof. Let τ ∈ BS×S , and consider a Parikh vector (p,o) ∈ NΣI × NΣO with k = |p| = |o|.
By Lemma 16, we have that τN (p,o) = τ iff the following holds for every s1, s2 ∈ S: we
have τs1,s2 = 1 iff there exists a letter (α, β) ∈ Σk

I × Σk
O such that P(α) = p,P(β) = o, and

s1
(α,β)−→ N s2.
Consider s1, s2 ∈ S and define N s1

s2
to be the NFA obtained from N by setting the initial

state to be s1 and a single accepting state s2. Then, we have s1
(α,β)−→ N s2 iff (α, β) ∈ L(N s1

s2
).

Thus, τN (p,o) = τ iff for every s1, s2 ∈ S we have that τs1,s2 = 1 iff there exist a word
(α, β) with P(α′) = p and P(β′) = o such that (α, β) ∈ L(N s1

s2
). Equivalently, we have

τN (p,o) = τ iff for every s1, s2 ∈ S we have that τs1,s2 = 1 iff (p,o) ∈ P(L(N s1
s2

)).

CSL 2022



3:12 Simulation by Rounds of Letter-To-Letter Transducers

By Parikh’s Theorem, for every s1, s2 ∈ S we can compute a PA formula ψs1,s2 such that
(p,o) |= ψs1,s2 iff (p,o) ∈ P(L(N s1

s2
)). Now we can construct a PA formula Ψτ such that

τN (p,o) = τ iff (p,o) |= Ψτ , as follows:

Ψτ :=
∧

s1,s2 : τs1,s2 =1
ψs1,s2 ∧

∧
s1,s2 : τs1,s2 =0

¬ψs1,s2 .

Finally, observe that Ψτ defines the set in the premise of the lemma, so we are done. ◀

The Redundant Product Construction. As mentioned in Section 5.1, for the remainder
of the proof we want to reason about the types of Permk(Tr(T1) ∩ Λ) and Permk(Tr(T2))
simultaneously. In order to so, we present an auxiliary product construction.

Let T1, T2 be transducers, Λ ⊆ Σ∗
I be given by an NFA, and let D1 = Tr(T1) ∩ Λ and

D2 = Tr(T2). We now consider the product automaton of D1 and D2, and endow it with
two different acceptance conditions, capturing that of D1 and D2, respectively. Formally, for
i ∈ {1, 2}, denote Di =

〈
ΣI × ΣO, Si, s

i
0, ηi, Fi

〉
, then the product automaton is defined as

Bi =
〈
ΣI × ΣO, S1 × S2, (s1

0, s
2
0), η1 × η2, Gi

〉
, where G1 = F1 ×Q2 and G2 = Q1 × F2, and

η1 × η2 denotes the standard product transition function, namely η1 × η2((s1, s2), (σ, σ′)) =
(η1(s1, (σ, σ′)), η2(s2, (σ, σ′))). Thus, Bi tracks both D1 and D2, but has the same acceptance
condition as Di. This seemingly “redundant” product construction has the following important
properties, which are crucial for our proof:

▶ Observation 18. In the notations above, we have the following:
1. L(B1) = L(D1) and L(B2) = L(D2).
2. For every letter (σ, σ′) ∈ ΣI × ΣO, we have τB1(σ, σ′) = τB2(σ, σ′).

Indeed, Item 1 follows directly from the acceptance condition, and Item 2 is due to the
identical transition function of B1 and B2.

By Observation 6, L(Permk(Di)) depends only on L(Di). We thus have the following.

▶ Observation 19. For every k > 0 we have L(Permk(B1)) = L(Permk(Tr(T1) ∩ Λ)) and
L(Permk(B2)) = L(Permk(Tr(T2))).

Type Profiles. We now consider the set of types induced by the redundant product con-
structions B1 and B2 on Parikh vectors of words of length k. By Item 2 of Observation 18,
it’s enough to consider B1.

For k > 0, we define the k-th type profile of B1 to be Υ(B1, k) = {τB1(P(α),P(β)) :
(α, β) ∈ Σk

I × Σk
O}, i.e., the set of all types of Parikh vectors (p,o) with |p| = |o| = k that are

induced by B1. Clearly there is only a finite number of type profiles, as Υ(B1, k) ⊆ BS′×S′ ,
where S′ is the state space of B1. Therefore, as k increases, after some finite K0, every
distinct type profile will have been encountered. We now place an upper bound on K0.

▶ Lemma 20. We can effectively compute K0 > 0 such that for every k > 0 there exists
k′ ≤ K0 with Υ(B1, k

′) = Υ(B1, k).

Proof. Consider a type τ , and let Ψτ be the PA formula constructed as per Lemma 17 for the
NFA B1. Observe that for a Parikh vector (p,o) and for k > 0, the expression |p| = |o| = k

is PA definable. Indeed, writing p = (x1, . . . , x|ΣI |) and q = (y1, . . . , y|ΣO|), the expression is
defined by x1 + . . .+ x|ΣI | = k ∧ y1 + . . .+ y|ΣO| = k.



A. Abu Nassar and S. Almagor 3:13

Let T ⊆ BS′×S′ be a set of types (i.e., a potential type profile). We define a PA formula
ΘT (z) over a single free variable z such that k |= ΘT (z) iff Υ(B1, k) = T , as follows.

ΘT (z) =
(

∀p,o, |p| = |o| = z →
∨

τ∈T

Ψτ (p,o)
)

∧

(∧
τ∈T

∃p,o, |p| = |o| = z ∧ Ψτ (p,o)
)

Intuitively, ΘT (z) states that every Parikh vector (p,o) with |p| = |o| = z has a type within
T , and that all the types in T are attained by some such Parikh vector.

By [11, 3], we can effectively determine, for every T , whether ΘT (z) is satisfiable and
if it is, find a witness MT such that MT |= ΘT (z). By doing so for every set T ⊆ BS′×S′ ,
we can set K0 = max{MT : ΘT (z) is satisfiable}. Then, for every k > K0 if Υ(B1, k) = T ,
then T has already been encountered at MT ≤ K0, as required. ◀

The purpose of the bound K0 obtained in Lemma 20 is to bound the minimal k for which
T1 ≺k,Λ T2, or equivalently L(Permk(B1)) ⊆ L(Permk(B2)) (by Lemma 9 and Observation 19).
This is captured in the following.

▶ Lemma 21. Let 0 < k ̸= k′ such that Υ(B1, k
′) = Υ(B1, k), then L(Permk(B1)) ⊆

L(Permk(B2)) iff L(Permk′(B1)) ⊆ L(Permk′(B2)).

Proof. By the symmetry between k and k′, it suffices to prove w.l.o.g. that if L(Permk(B1)) ⊆
L(Permk(B2)), then L(Permk′(B1)) ⊆ L(Permk′(B2)).

Assume the former, and let w = (x′, y′) ∈ L(Permk′(B1)), where (x′, y′) ∈ (Σk′

I × Σk′

O )∗,
and we denote (x′, y′) = (α′

1, β
′
1) · · · (α′

n, β
′
n) with (α′

j , β
′
j) ∈ Σk′

I × Σk′

O for every 1 ≤ j ≤ n.
Since Υ(B1, k

′) = Υ(B1, k), there is a mapping φ that takes every letter (α′
j , β

′
j) in

w (over Σk′

I × Σk′

O ) to a letter (αj , βj) ∈ Σk
I × Σk

O that has same type in Permk(B1), so
that we can find (x, y) = (α1, β1) · · · (αn, βn) such that for every 1 ≤ j ≤ n we have
τB1(P(αj),P(βj)) = τB1(P(α′

j),P(β′
j)).

By the definition of the type of a Parikh vector, we have that

τPermk(B1)(αj , βj) = τB1(P(αj),P(βj)) = τB1(P(α′
j),P(β′

j)) = τPermk′ (B1)(α′
j , β

′
j).

In particular, since the type of a word is the concatenation (i.e., Boolean matrix product)
of its underlying letters, we have that τPermk(B1)(x, y) = τPermk′ (B1)(x′, y′). Since (x′, y′) ∈
L(Permk′(B1)), it follows that also (x, y) ∈ L(Permk(B1)). Indeed, (τPermk′ (B1)(x′, y′))s1

0,s1
f

= 1
where s1

0 and s1
f are an initial state and an accepting state of Permk′(B1), respectively. But

the equality of the types implies that (τPermk(B1)(x, y))s1
0,s1

f
= 1 as well, so Permk(B1) has an

accepting run on (x, y).
By our assumption, L(Permk(B1)) ⊆ L(Permk(B2)), so (x, y) = φ(w) ∈ L(Permk(B2)),

or equivalently, φ(w) ∈ L(Permk(B2)). We now essentially reverse the arguments above,
but with B2 instead of B1. However, this needs to be done carefully, so that the mapping
of letters lands us back at (x′, y′), and not a different word. Thus, instead of finding a
Parikh-equivalent word, we observe that for every 1 ≤ j ≤ n, we also have

τPermk(B2)(αj , βj) = τB2(P(αj),P(βj)) = τB2(P(α′
j),P(β′

j)) = τPermk′ (B2)(α′
j , β

′
j),

This follows from Item 2 in Observation 18 and the fact that the permutation construction
depends only on the transitions (and not on accepting states, which are the only difference
between B1 and B2).

Thus, similarly to the arguments above, we have that (x′, y′) ∈ L(Permk′(B2)), and the
mapping applied is in fact the the inverse map φ−1, where φ−1(φ(w)) = w. We conclude
that L(Permk′(B1)) ⊆ L(Permk′(B2)), as required.

The mapping is illustrated in Figure 5. ◀

CSL 2022



3:14 Simulation by Rounds of Letter-To-Letter Transducers

Permk′(B1) Permk′(B2)

Permk(B1) Permk(B2)

w ∈

φ(w) ∈
φ(w) ∈

φ
−1 (φ(w)) ∈

φ φ−1

⊆

Figure 5 A diagram for the proof structure of Lemma 21.

Combining Lemmas 20 and 21, we can effectively compute K0 such that if L(Ak
1) ⊆ L(Ak

2)
for some k, then this holds for some k < K0. Finally, using Lemma 9, this concludes the
proof of Theorem 14.
▶ Remark 22 (Complexity Results for Theorem 14 and Corollary 15). Let n be the number
of states in T1 × T2. Observe that the formula Ψτ constructed in Lemma 17 comprises a
conjunction of O(n2) PA subformulas, where each subformula is either an existential PA
formula of length O(n), or the negation of one. Then, the formula ΘT in Lemma 20 consists of
a universal quantification, nesting a disjunction over |T | formulas of the form Ψτ , conjuncted
with |T | existential quantifications, nesting a single Ψτ each. Overall, this amounts to a
formula of length |T | ≤ 2n2 , with alternation depth 3. 5

Using quantifier elimination [8, 20], we can obtain a witness for the satisfiability of ΘT of
size 4-exponential in n2. Then, finding the overall bound K0 amounts to 22n2

calls to find
such witnesses. Finally, we need K0 oracle calls to Lemma 9 in order to decide existential
simulation, and since K0 may have a 4-exponential size description, this approach yields a
whopping 5 - EXP algorithm. This approach, however, does not exploit any of the structure
of ΘT . See Section 7 for additional comments.

5.3 Lower Bounds for Existential Round Simulation
The complexity bounds in Remark 22 are naively analyzed, and we leave it for future work
to conduct a more in-depth analysis. In this section, we present lower bounds to delimit the
complexity gap. Note that there are two relevant lower bounds: one on the complexity of
deciding round simulation, and the other on the minimal value of K0 in Theorem 14.

We start with the complexity lower bound, which applies already for round equivalence.

▶ Theorem 23. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2 for
any k, is PSPACE-hard, even for a fixed Λ (given as a 5-state DFA).

Proof sketch. We present a similar reduction to that of Theorem 12, from universality of
NFAs (see the full version). In order to account for the unknown value of k, we allow padding
words with a fresh symbol #, which is essentially ignored by the transducers. ◀

Next, we show that the minimal value for K0 can be exponential in the size of the given
transducers (in particular, of T2). See the full version for the complete details.

▶ Example 24 (Exponential round length). Let p1, p2, . . . , pm be the first m prime numbers.
We define two transducers T1 and T2 over input and output alphabet P = {1, . . . ,m}, as
depicted in Figure 6 for m = 3. Intuitively, T1 reads input w ∈ Λ = (1 · 2 · · ·m)∗ and simply
outputs w, whereas T2 works by reading a letter i ∈ P, and then outputting i for pi steps
(while reading pi arbitrary letters) before getting ready to read a new letter i.

5 Alternation depth is usually counted with the outermost quantifier being existential, which is not the
case here, hence 3 instead of 2.



A. Abu Nassar and S. Almagor 3:15

In order for T2 to k-round simulate T1, it must be able to output a permutation of
(1 · 2 · · ·m)∗. In particular, the number of 1’s, 2’s, etc. must be equal, so k must divide every
prime up to pm, hence it must be exponential in the size of T2.

s3/3

s1/1

s2/2

1

2

3

s1
2 s2

2 s3
2

s1
1 s2

1

s1
3 s2

3 s3
3 s4

3 s5
3

1
2

3

P

ε
P P

ε
P P P P

ε

Figure 6 The transducers T1 (left) and T2 (right) for m = 3 in Example 24. The ε-edge from a
state spi

i to s0 in T2 mean that the transition function from state spi
i behaves identically as from s0.

6 From Process Symmetry to Round Equivalence

As mentioned in Section 1, our original motivation for studying round simulation comes from
process symmetry. We present process symmetry with an example before introducing the
formal model. Recall the Round Robin (RR) scheduler from Example 3. There, at each time
step, the scheduler receives as input the IDs of processes in P = {0, 1, 2} that are making a
request, and it responds with the IDs of those that are granted (either a singleton {i} or ∅).

In process symmetry, we consider a setting where the identities of the processes may
be permuted. This corresponds to the IDs representing e.g., ports, and the processes not
knowing which port they are plugged into. Thus, the input received may be any permutation
of the actual identities of the processes. Then, a transducer is process symmetric, if the
outputs are permuted similarly to the inputs. For example, in the RR scheduler, the output
corresponding to input {1, 2}{3}{3} is {1}∅{3}. However, if we permute the inputs by
swapping 1 and 3, the output for {3, 2}{1}{1} is ∅∅∅, so RR is not process symmetric.

In [1], several definitions of process symmetry are studied for probabilistic transducers.
In the deterministic case, however, process symmetry is a very strict requirement. In order
to overcome this, we allow some wriggle room, by letting the transducer do some local order
changes in the word that correspond to the permutation. Thus, e.g., if we were allowed to
rearrange the input {3, 2}{1}{1} to {1}{1}{3, 2}, then the output becomes {1}∅{3}, and
once we apply the inverse permutation, this becomes {3}∅{1}. This, in turn, can be again
rearranged to obtain the original output (i.e., without any permutation) {1}∅{3}. In this
sense, the scheduler is “locally stable” against permutations of the identities of processes.

We now turn to give the formal model. Consider a set of processes P = {1, . . . ,m} and
k > 0. For a permutation π of P (i.e. a bijection π : P → P) and a letter σ ∈ 2P , we obtain
π(σ) ∈ 2P by applying π to each process in σ. We lift this to words x ∈ (2P)∗ by applying
the permutation letter-wise to obtain π(x). A 2P/2P transducer T =

〈
2P , 2P , Q, q0, δ, ℓ

〉
is

k-round symmetric if for every permutation π of P for and every k-round word x ∈ (2P)∗

there exists a k-round word x′ ∈ (2P)∗ such that π(x) ≍k x
′ and π(T (x)) ≍k T (x′). We say

that T is k-round symmetric w.r.t. π if the above holds for a certain permutation π.
Here, too, we consider two main decision problems: fixed round symmetry (where k is

fixed) and existential round symmetry (where we decide whether there exists k > 0 for which
this holds). Observe that Λ = (2P)∗, and is hence ignored.

CSL 2022



3:16 Simulation by Rounds of Letter-To-Letter Transducers

From Round Symmetry to Round Simulation. In order to solve the decision problems
above, we reduce them to the respective problems about round symmetry. We start with the
case where the permutation π is given.

Given the transducer T as above, we obtain from T a new transducer T π which is
identical to T except that it acts on a letter σ ∈ 2P as T would act on π−1(σ), and it
outputs σ where T would output π−1(σ). Formally, T π =

〈
2P , 2P , Q, q0, δ

π, ℓπ
〉

where
δπ(q, σ) = δ(q, π−1(σ)) and ℓπ(q) = π(ℓ(q)). It is easy to verify that for every x ∈ (2P)∗

we have T π(x) = π(T (π−1(x))). As we now show, once we have T π, round symmetry is
equivalent to round simulation, so we can use the tools developed in Sections 4 and 5 to
solve the problems at hand (see the full version for the proof).

▶ Lemma 25. For a permutation π and k > 0, T is k-round symmetric w.r.t. π iff T π ≺k T .

Closure Under Composition. In order to deal with the general problem of symmetry under
all permutations, one could naively check for symmetry against each of the m! permutations.
We show, however, that the definition above is closed under composition of permutations
(see the full version for the proof).

▶ Lemma 26. Consider two permutations π, χ. If T π ≺k T and T χ ≺k T then T π◦χ ≺k T .

Recall that the group of all permutations of P is generated by two permutations: the
transposition (1 2) and the cycle (1 2 . . . m) [5]. By Lemma 26 it is sufficient to check
symmetry for these two generators in order to obtain symmetry for every permutation. Note
that for the existential variant of the problem, even if every permutation requires a different
k, by taking the product of the different values, we conclude that there is a uniform k for all
permutations. We thus have the following.

▶ Theorem 27. Both fixed and existential round symmetry are decidable. Moreover, fixed
round symmetry is in PSPACE.

Finally, the reader may notice that our definition of round symmetry w.r.t. π is not
commutative, as was the case with round symmetry v.s. round equivalence. However, when
we consider round symmetry w.r.t. to all permutations, the definition becomes inherently
symmetric, as a consequence of Lemma 26 (see the full version for the proof).

▶ Lemma 28. In the notations above, if T π ≺k T then T ≺k T π.

Thus, for symmetry, the notions of round simulation and round equivalence coincide.

7 Future Work

In this work, we introduced round simulation and provided decision procedures and lower
bounds (some with remaining gaps) for the related algorithmic problems.

Round simulation, and in particular its application to Round Symmetry, is only an
instantiation of a more general framework of symmetry, by which we measure the stability of
transducers under local changes to the input. In particular, we plan to extend this study
to other definitions, such as window simulation, where we use a sliding window of size k
instead of disjoint k-rounds, and Parikh round symmetry, where the alphabet is of the form
2P , and we are allowed not only to permute the letters in each round, but also to shuffle the
individual signals between letters in the round. In addition, the setting of infinite words is
of interest, where one can define ultimate simulation, requiring the simulation to only hold
after a finite prefix. Finally, other types of transducers may require variants of simulation,
such as probabilistic transducers, or streaming-string transducers [2].



A. Abu Nassar and S. Almagor 3:17

References
1 S. Almagor. Process symmetry in probabilistic transducers. In 40th International Conference

on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2020,
2020.

2 R. Alur. Expressiveness of streaming string transducers. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, 2010.

3 I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55(2):299–304, 1976.

4 J. A. Brzozowski and I. Simon. Characterizations of locally testable events. Discrete Mathem-
atics, 4(3):243–271, 1973.

5 P. J. Cameron et al. Permutation groups, volume 45. Cambridge University Press, 1999.
6 E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model

checking. Formal methods in system design, 9(1-2):77–104, 1996.
7 E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem, editors. Handbook of Model Checking.

Springer, 2018.
8 D. C Cooper. Theorem proving in arithmetic without multiplication. Machine intelligence,

7(91-99):300, 1972.
9 E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal methods in system

design, 9(1-2):105–131, 1996.
10 H. Fernau, M. Paramasivan, and M. L. Schmid. Jumping finite automata: characterizations

and complexity. In International Conference on Implementation and Application of Automata,
pages 89–101. Springer, 2015.

11 M.J. Fischer and M.O. Rabin. Super-exponential Complexity of Presburger Arithmetic. Project
MAC: MAC technical memorandum. Massachusetts Institute of Technology Project MAC,
1974. URL: https://books.google.co.il/books?id=ijoNHAAACAAJ.

12 C. Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82, 2018.
URL: https://dl.acm.org/citation.cfm?id=3242964.

13 T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc. 8th Conferance
on Concurrency Theory, volume 1243 of Lecture Notes in Computer Science, Warsaw, July
1997. Springer-Verlag.

14 M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 13–26, 1987.

15 S. Hoffmann. State complexity bounds for the commutative closure of group languages.
In International Conference on Descriptional Complexity of Formal Systems, pages 64–77.
Springer, 2020.

16 C. N. Ip and D. L. Dill. Better verification through symmetry. Formal methods in system
design, 9(1-2):41–75, 1996.

17 A. W. Lin, T. K. Nguyen, P. Rümmer, and J. Sun. Regular symmetry patterns. In International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 455–475.
Springer, 2016.

18 A. Meduna and P. Zemek. Jumping finite automata. International Journal of Foundations of
Computer Science, 23(07):1555–1578, 2012.

19 R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd Int. Joint
Conf. on Artificial Intelligence, pages 481–489. British Computer Society, 1971.

20 D. C. Oppen. A 222pn upper bound on the complexity of presburger arithmetic. Journal of
Computer and System Sciences, 16(3):323–332, 1978.

21 R. J. Parikh. On context-free languages. J. of the ACM, 13(4):570–581, 1966.
22 K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn clauses. In

International Conference on Automated Deduction, pages 337–352. Springer, 2005.

CSL 2022

https://books.google.co.il/books?id=ijoNHAAACAAJ
https://dl.acm.org/citation.cfm?id=3242964

	1 Introduction
	2 Preliminaries
	3 Round Simulation and Round Equivalence
	4 Deciding Fixed Round Simulation
	5 Deciding Existential Round Simulation
	5.1 Intuitive Overview
	5.2 Proof of Theorem 14
	5.3 Lower Bounds for Existential Round Simulation

	6 From Process Symmetry to Round Equivalence
	7 Future Work

