
Spatial Existential Positive Logics for Hyperedge
Replacement Grammars
Yoshiki Nakamura #

Tokyo Institute of Technology, Japan

Abstract
We study a (first-order) spatial logic based on graphs of conjunctive queries for expressing (hyper-
)graph languages. In this logic, each primitive positive (resp. existential positive) formula plays a role
of an expression of a graph (resp. a finite language of graphs) modulo graph isomorphism. First, this
paper presents a sound- and complete axiomatization for the equational theory of primitive/existential
positive formulas under this spatial semantics. Second, we show Kleene theorems between this logic
and hyperedge replacement grammars (HRGs), namely that over graphs, the class of existential
positive first-order (resp. least fixpoint, transitive closure) formulas has the same expressive power
as that of non-recursive (resp. all, linear) HRGs.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Existential positive logic, spatial logic, Kleene theorem

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.30

Related Version Full Version: https://yoshikinakamura.bitbucket.io/papers/ep_for_graph

Funding This work was supported by JSPS KAKENHI Grant Number JP21K13828.

Acknowledgements We would like to thank the anonymous reviewers for their useful comments.

1 Introduction

Existential positive (EP) formulas are first-order formulas that are built up from atomic
predicates, equality (=), top (tt), bottom (ff), conjunction (∧), disjunction (∨), and existential
quantifier (∃). In particular, primitive positive (PP) formulas are EP formulas without ff
nor ∨. PP formulas are semantically equivalent to conjunctive queries [1], which are at
the core of query languages in database theory. In this paper, we focus on the (hyper-
)graphs of conjunctive queries (a.k.a. natural models of conjunctive queries) [11][12, Fig.
1], which were introduced to characterize the semantical equivalence of conjunctive queries
[11, Lemma 13][28] as follows: two PP formulas are semantically equivalent if and only if
their graphs are homomorphically equivalent. For example, the graph of the PP formula
∃z.a(x, z)∧ a(z, y)∧b(x, z, y) is the following:

a a

b
1 2 1 2

1 2 3
x y . This characterization

can be generalized to EP formulas by using finite sets of graphs (see, e.g., [40, Sect. 2.6]).
In this paper, turning our attention to the correspondence between primitive positive

logics and (hyper-)graphs, we study PP/EP formulas as graph/graph-language expressions.
To this end, we introduce a spatial semantics (like that of graph logic [10] or separation
logic [35, 38]), which is based on graphs of conjunctive queries, called GI-semantics. The
semantics enables us to study graphs and graph languages through logical formulas in a
natural way. The remarkable difference from classical semantics is the following (cf. the
above): two PP formulas are equivalent under GI-semantics if and only if their graphs are
(graph-)isomorphically equivalent. While the equational theory of PP/EP formulas under
GI-semantics is subclassical, some formula transformations under classical semantics, in logic
and database theory, still work under GI-semantics.

© Yoshiki Nakamura;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nakamura.yoshiki.ny@gmail.com
https://orcid.org/0000-0003-4106-0408
https://doi.org/10.4230/LIPIcs.CSL.2022.30
https://yoshikinakamura.bitbucket.io/papers/ep_for_graph
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

Our first contribution is to present a sound- and complete axiomatization of the equational
theory of PP/EP formulas under GI-semantics. Furthermore, we extend EP with the least-
fixpoint operator and the transitive closure operator (see, e.g., [20, Sect. 8]), denoted by
EP(LFP) and EP(TC), respectively. They can express possibly infinite graph languages. Our
second contribution is to show that each of the logics above has the same expressive power
as some class of hyperedge replacement grammar (HRG) [25, 36] (see also [19]), which is a
generalization of context-free word grammar from words to graphs, as follows.

▶ Theorem 1. Under GI-semantics, for every graph language G (closed under isomorphism):
(1) Some EP formula recognizes G iff some non-recursive HRG recognizes G (i.e., G is finite

up to isomorphism). In particular, some PP formula recognizes G iff some deterministic
and non-recursive HRG recognizes G (i.e., G is a singleton up to isomorphism).

(2) Some EP(LFP) formula recognizes G iff some HRG recognizes G.
(3) Some EP(TC) formula recognizes G iff some linear HRG recognizes G.
This theorem is an analogy of Kleene theorem [27], that over words, for every language L:
some regular word grammar (or equivalently, non-deterministic finite automaton) recognizes L
if and only if some regular expression recognizes L. Such an equivalence between expressions
and grammars/automata like Kleene theorem has also been widely studied for many other
language classes (e.g., context-free word languages [29], ω-regular word languages [31], regular
tree languages [13, Theorem 2.2.8], language classes over some specific graph classes [30, 6, 5]).
To our knowledge, the Kleene theorem for HRGs and linear HRGs (namely, some syntax
having the same expressive power) has not yet been investigated, whereas logical or algebraic
characterizations are known, e.g., [3, 15].

Related work. This paper uses PP formulas as graph expressions and uses EP(LFP) formulas
as graph language expressions. There also are some expressions for (bounded treewidth)
graphs (or relational structures), e.g., HR-algebra [3, 16], SP-terms [34], 2p-algebra [14, 18],
graphical (string diagrammatic) conjunctive queries [4]. As for the completeness result
of PP (Theorem 19), Bauderon and Courcelle [3] have already presented a syntax and a
complete axiomatization for graphs modulo isomorphism. However, our completeness proof
(essentially [3] also) would have a sufficiently simple strategy relying on the transformation
for obtaining conjunctive-queries from primitive positive formulas (under classical semantics);
this is a reason that our expressions are based on logical formulas.

As for characterizing language classes by classical logics, it dates back to Büchi-Elgot-
Trakhtenbrot Theorem [8, 9, 21, 43] (see also [23]), which states that over words, monadic
second-order logic has the same expressive power as the class of regular expressions. See [16,
Theorem 7.51][15] for a logical characterization of HRGs, by using monadic second-order
logic as a graph transducer. However, the characterization presented in this paper uses
logical formulas as graph-language expressions.

Also, the number of variables in formulas has a deep connection with the treewidth [39, 26]
of (hyper-)graphs (or relational structures), which is a parameter indicating how much a
graph is similar to a tree. It was mentioned in [28, Remark 5.3] that under the classical
semantics, for every relational structure of treewidth k, its conjunctive query is semantically
equivalent to an PP(k+1)(0) formula. Here, PPk(l) denotes the set of PP formulas using at
most k variables and at most l free variables. In particular, it is shown in [32] that under the
classical semantics, PP3(2) has the same expressive power as the primitive positive calculus
of relations, which is a fragment of Tarski’s calculus of relations [41]. In [14, 18], a sound-
and complete axiomatization is presented for 2p-algebra, which is intuitively the primitive
positive calculus of relations under GI-semantics. In connection with them, it would be
interesting to present a sound- and complete axiomatization of the equational theory of
PPk(l) formulas under GI-semantics, but it still remains open.

Y. Nakamura 30:3

Outline. Section 2 presents preliminaries. Section 3 introduces GI-semantics. Section 4
presents an axiomatization of the equational theory under GI-semantics for PP/EP formulas.
Section 5 (and 3) shows Kleene theorems between spatial existential positive logic and HRGs
(Theorem 1(1)–(3)). Section 6 concludes this paper.

2 Preliminaries

We write N (resp. N+) for the set of all non-negative (resp. positive) integers. For l, r ∈ N, we
write [l, r] for the set {i ∈ N | l ≤ i ≤ r}. In particular, we write [n] for [1, n]. The cardinality
of a set A is denoted by #(A). For an equivalence relation ∼ on a set X, the quotient set of
X by ∼ is denoted by X/∼ and the equivalence class of an element x w.r.t. ∼ is denoted by
[x]∼. For sets X1 and X2, the disjoint union X1 ⊎X2 is defined by {⟨i, a⟩ | i ∈ [2], a ∈ Xi}.
We denote by a⃗ = ⟨a1, . . . , an⟩ (also denoted by a1 . . . an or ⟨ai⟩ni=1) a finite sequence. The
length |⃗a| of a⃗ is n. We denote by Occ(⃗a) the set {a1, . . . , an}. We say that a sequence a⃗
is a permutation of a set A if Occ(⃗a) = A and the elements of a⃗ are pairwise distinct. We
denote by Perm(A) the set of all permutations of a set A. We denote by A∗ (resp. Ak) the
set of all finite sequences (resp. sequences of length k) over a set A. Also, we denote by ιn
(or just by ι if n is obvious) the sequence ⟨1, 2, . . . , n⟩. An alphabet A is a possibly infinite
set. A (finite-set-)typed alphabet A is an alphabet with a function tyA (or written ty for
simplicity) from A to finite sets. In particular we say that a symbol a in A is ordinal-typed if
tyA(a) = [k] for some k ∈ N. The arity of a in A is k, denoted by arA(a) (or just by ar(a)).

Graphs. In the following, we define graphs (with ports) and graph languages.
▶ Definition 2 (graph). Given a typed alphabet A and a finite set τ , an A-labelled graph
G of type τ is a tuple ⟨V G, EG, labG, vertG,portG⟩, where V G is a finite set of vertices,
EG is a finite set of (hyper-)edges, labG : EG → A is a function denoting the label of
each edge, vertG(e) : tyG(e) → V G is a function denoting the vertices of each edge, and
portG : ty(G) → V G is a function denoting the ports of G. Here, ty(G) ≜ τ and tyG ≜
tyA ◦labG.
▶ Example 3. Let A = {a,b, c} with type tyA = {a 7→ [2],b 7→ [3], c 7→ [2]}. Let
G = ⟨{v1, v2, v3}, {e1, e2}, {e1 7→ a, e2 7→ b}, {e1 7→ λi ∈ [2].vi, e2 7→ {1 7→ v1, 2 7→ v1, 3 7→
v3}}, λi ∈ [3].vi⟩ and let H = ⟨{v1, v2}, {e}, {e 7→ c}, {e 7→ {1 7→ v2, 2 7→ v1}}, λi ∈ [2].vi⟩
be A-labelled graphs (of type [3] and of type [2], respectively), where v1, v2, v3, e1, e2 are
pairwise distinct. Their graphical representations are in Figure 1a and 1b, respectively.

a

a

b

1 2
12

3

1 2

3

(a) G.
a
c

12
1 2

(b) H.

a

b

c
1 2

12
3

12
1 2

3

(c) G⊗H.
a
c

2 1
1

3
2

(d) H[3 := v1]. a

a
a
c

12
4

(e) H[f4/12].

a
c

b

2 1

12
3

1 2

3

(f) G[H/e1].

a a
c

b

1 2
12

3

2 1
1 2

3

(g) G⊙2,1 H. a

Figure 1 Examples of graphs and operations on graphs.

Later (e.g., in Example 12), for binary edges and ports, we often use a to denote
a1 2 for symbols a of the type [2] and use to denote 1 2. Also, for unlabelled

non-hyper graphs, let AE ≜ {E} with tyAE = {E 7→ [2]} and we use to denote E .

CSL 2022

30:4 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

We denote by GRτA the set of all A-labelled graphs of type τ . An (A-labelled) graph
language G (of type τ) is a subset of GRτA. Given a system S (e.g., HRGs, EP formulas, . . .)
over A (that defines a graph language G(E) for every E in S), we say that G is recognized
by S if there exists some element E in S such that G = G(E).

▶ Definition 4 (homomorphism, isomorphism). Let G,H ∈ GRτA be graphs. A pair h =
⟨hV, hE⟩ of hV : V G → V H and hE : EG → EH is a homomorphism from G to H if (1)
labG = labH ◦ hE, (2) vertH(hE(e))(x) = hV(vertG(e)(x)), and (3) portH = hV ◦ portG. In
particular, h is an isomorphism if both hV and hE are bijective. We say that G and H are
isomorphic, written G ∼= H if there exists an isomorphism between G and H.

In this paper, we will only focus on ∼=-closed (i.e., if G ∈ G and G ∼= H, then H ∈ G) graph
languages. We denote by G∼= the minimal ∼=-closed graph language including G.

Some operations on graphs. In the following, we present some primitive operations on
graphs. See Figure 1c-1g for graphical examples of Definition 5-8. In GI-semantics, ∗ uses
glueing, ∃ uses forgetting, LFP uses hyperedge replacing, TC uses concatenating.

▶ Definition 5 (glueing). Let G1 ∈ GRτA and G2 ∈ GRυA. Let G1 ⊗G2 ∈ GRτ∪υ
A be the graph

such that V G1⊗G2 = (V G1 ⊎ V G2)/≃, EG1⊗G2 = EG1 ⊎ EG2 , labG1⊗G2(⟨k, e⟩) = labGk(e),
vertG1⊗G2(⟨k, e⟩)(x) = [vertGk(e)(x)]≃, and portG1⊗G2(x) = [portGk(x)]≃. Here, ≃ is the
minimal equivalence relation such that for every x ∈ τ ∩ υ, ⟨1,portG1(x)⟩ ≃ ⟨2,portG2(x)⟩.

▶ Definition 6 (labelling/forgetting/renaming). Let G ∈ GRτA. For a vertex v ∈ V G, a variable
z ̸∈ τ , and a variable x ∈ τ , we define the graphs G[z := v] ∈ GRτ∪{z}

A , G[f/x] ∈ GRτ\{x}
A ,

G[z/x] ∈ GR(τ\{x})∪{z}
A by G[z := v] ≜ ⟨V G, EG, labG, vertG,portG ∪{z 7→ v}⟩, G[f/x] ≜

⟨V G, EG, labG, vertG,portG \{x 7→ portG(x)}⟩, G[z/x] ≜ G[f/x][z := portG(x)].

We write G[y1 . . . yn/x1 . . . xn] for G[z1/x1] . . . [zn/xn][y1/z1] . . . [yn/zn], where z1 . . . zn is a
sequence of fresh variables. For a sequence z1 . . . zn of pairwise distinct variables, we write
G[z1 . . . zn := v1 . . . vn] for G[z1 := v1] . . . [zn := vn].

▶ Definition 7 (hyperedge replacing). Let G ∈ GRτA. For an edge e ∈ EG and a graph
H ∈ GRtyG(e)

A , let G[H/e] ∈ GRτA be the graph ((G \ e)[z⃗ := vertG(e)(x1) . . . vertG(e)(xn)]⊗
H[z⃗/x1 . . . xn])[f . . . f/z⃗], where G \ e denotes the graph G in which the edge e has been
removed. Here, x1 . . . xn ∈ Perm(ty(H)), and z⃗ is a sequence of fresh variables.

We write G[H1 . . . Hn/e1 . . . en] for G[H1/e1][H2 . . . Hn/⟨1, e2⟩ . . . ⟨1, en⟩] if n ≥ 1, and G if
n = 0.

▶ Definition 8 (concatenating). Let G ∈ GRτA and H ∈ GRυA. Let x⃗ ∈ ty(G)k and y⃗ ∈
ty(H)k be sequences of pairwise distinct elements, where k ≥ 1. Then, let G ⊙x⃗y⃗ H ∈
GR(τ\Occ(x⃗))∪(υ\Occ(y⃗))

A be the graph (G[z⃗/x⃗] ⊗ H[z⃗/y⃗])[f . . . f/z⃗], where z⃗ is a sequence of
fresh variables.

Finally, we list some basic equations in the following.

▶ Proposition 9. (1) G1 ⊗ (G2 ⊗ G3) ∼= (G1 ⊗ G2) ⊗ G3; (2) G ⊗ H ∼= H ⊗ G; (3)
(H1 ⊗ H2)[G/⟨1, e⟩] ∼= H1[G/e] ⊗ H2; (4) G[z/x][H/e] ∼= G[H/e][z/x]; (5) G[z/x] ⊗ H ∼=
(G⊗H)[z/x] if x ̸∈ ty(H).

Y. Nakamura 30:5

Hyperedge Replacement Grammars. In the following, we present the definition of hyperedge
replacement grammars (HRGs).

▶ Definition 10 (e.g., [19]). A hyperedge replacement grammar (HRG) H over a typed
alphabet A is a tuple ⟨XH ,RH , SH ⟩, where XH is a finite typed alphabet disjoint with A for
(non-terminal) labels, RH is a finite set of pairs r = ⟨X,G⟩ (written X ← G) of X ∈ XH

and G ∈ GRty(X)
A∪X H for rewriting rules, and SH ∈ XH denotes the source label.

We also define the graph languages of HRGs as follows.

▶ Definition 11 (cf. [19, Sect. 2.3.2]). For an HRG H = ⟨X ,R, S⟩ over a typed alphabet A,
the binary relation ⊢H ⊆

⋃
X∈X GRty(X)

A ×{X} is defined as the least ∼=-closed (i.e., if G ∼= H

and G ⊢H X, then H ⊢H X) relation closed under the following rule: If X ← G ∈ R, then
H1 ⊢H labG(e1) . . . Hn ⊢H labG(en)

G[H1 . . . Hn/e1 . . . en] ⊢H X
. The graph language is defined by: G(H) ≜ {G ∈ GRty(S)

A |

G ⊢H S}.

For an HRG H , we say that H is linear [36, Definition 3] if for every rule X ← G ∈ RH , the
number of non-terminal labels occurring in G is at most one. We say that H is (n-)recursive
if there exist rules X0 ← G0, . . . , Xn ← Gn ∈ RH such that Xi occurs in Gi−1 for i ∈ [0, n]
where n ∈ N and G−1 denotes Gn.

▶ Example 12. Let H be the HRG over AE, defined by tyX H = {S 7→ [0], X 7→ [2]},
RH = {(S), (E), (s), (p)}, and SH = S, where each rule in RH is as follows:

(S) S ← X (E) X ← (s) X ← X X (p) X ← X

X

Then, G(H) is the set of all (directed) series-parallel graphs [24], e.g., ∈ G(H) is

shown by:
(E)

⊢H X

(E)
⊢H X

(E)
⊢H X (s)

⊢H X (p)
⊢H X

(S)
⊢H S

.

3 Existential Positive Logics under GI-Semantics

In this section, we introduce the syntax and a spatial semantics of our existential positive
logics. Let A be an ordinal-typed alphabet, V1 be a countably infinite set of first-order
variables, and V2 be an ordinal-typed set of second-order variables, where for every k ∈ N+,
the number of second-order variables of arity k is countably infinite. Here, A, V1, and V2 are
disjoint. For τ ⊆ V1 and X ⊆ A ∪ V2, we define FmlτX as the least set closed under the rules
as follows.1

⊤ ∈ Fml∅X x = y ∈ Fml{x,y}
X

†1
Xx⃗ ∈ FmlOcc(x⃗)

X

φ ∈ FmlτX ψ ∈ FmlυX
φ ∗ ψ ∈ Fmlτ∪υ

X

φ ∈ Fmlτ∪{x}
X †2

∃x.φ ∈ FmlτX

ff ∈ FmlτX

φ ∈ FmlτX ψ ∈ FmlτX
φ ∨ ψ ∈ FmlτX

φ ∈ FmlOcc(x⃗)
X ∪{X}

†3
[LFPx⃗,Xφ]y⃗ ∈ FmlOcc(y⃗)

X

φ ∈ FmlOcc(x⃗y⃗)
X †4

[φ]+x⃗y⃗u⃗w⃗ ∈ FmlOcc(u⃗w⃗)
X

†1: X ∈ X and arX (X) = |x⃗|. †2: x ̸∈ τ . †3: ar(X) = |x⃗| = |y⃗| ≥ 1. x⃗ and y⃗ are sequences of pairwise
distinct variables. †4: |x⃗| = |y⃗| = |u⃗| = |w⃗| ≥ 1. x⃗y⃗ and u⃗w⃗ are sequences of pairwise distinct variables.

1 We adopt the spatial conjunction symbol ∗ instead of ∧.

CSL 2022

30:6 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

We often use parentheses in ambiguous situations. We say that φ is a formula over
A of type τ if φ ∈ FmlτA. Note that, for a technical reason, ff has any type τ . We use
FV1(φ)/FV2(φ) (resp. BV1(φ)/BV2(φ)) to denote the set of first-/second-order free (resp.
bound) variables of φ, and use Vl(φ) to denote the set FVl(φ) ∪ BVl(φ) for l = 1, 2. The set
PPτA (resp. EPτA, EP(LFP)τA, EP(TC)τA) is defined as the set of all φ ∈ FmlτA such that φ is
generated from the rules for ⊤, =, Xx⃗, ∗, and ∃. (resp. the rules for PP with ff and ∨, the
rules for EP with LFP, the rules for EP with TC). Note that some syntax restrictions exist,
e.g., ⊤∨Xx ̸∈ FmlτX for any X and τ . They are for simplifying the definition of GI-semantics.

For notational simplicity, we denote by ∗ni=1 φi (similarly for
∨n
i=1 φi) the formula

(∗n−1
i=1 φi) ∗ φn if n ≥ 1 and the formula ⊤ if n = 0, by x1 . . . xn = y1 . . . yn the formula
∗ni=1 xi = yi, by ∃x1 . . . xn.φ the formula ∃x1.∃x2. . . .∃xn.φ, and by φ[y1 . . . yn/x1 . . . xn]
the formula φ in which each free variable xi occurring in φ has been replaced with yi where
i ∈ [n]. A formula φ is atomic if φ forms ⊤, x = y, or Xx⃗. Explicitly, we may use φ̃ to
denote an atomic formula. We use atomic formulas to denote atomic graphs as follows.

▶ Definition 13. For a finite set τ , let Gτ
⊤ ≜ ⟨τ, ∅, ∅, ∅, λx ∈ τ .x⟩. For an atomic formula

φ̃, we define the graph Gφ̃ by: G⊤ ≜ G∅
⊤, Gx=y ≜ ⟨{v}, ∅, ∅, ∅, λz ∈ {x, y}.v⟩, and GXx⃗ ≜

⟨Occ(x⃗), {e}, {e 7→ X}, {e 7→ λi ∈ ty(X).xi}, λy ∈ Occ(x⃗).y⟩.

For example, G[3]
⊤ , Gx=y, and GXxxy are as follows, where x ̸= y:

a G[3]
⊤ = 1 2 3 Gx=y = x y GXxxy = X1

2 3x y a

In the following, we define a spatial semantics for graph languages, called GI-semantics.2
Note that for every φ, if G |=GI φ, then ty(G) is determined to FV1(φ).

▶ Definition 14 (GI-semantics). The binary relation |=GI ⊆
⋃
τ⊆V1; X ⊆A∪V2

GRτX × FmlτX is
defined as the least ∼=-closed relation closed under the rules in Figure 2.

(At)
Gφ̃ |=GI φ̃

G |=GI φ H |=GI ψ
(∗)

G⊗H |=GI φ ∗ ψ

⟨Gi |=GI φ⟩ni=1 (TC) †1
(G1 ⊙y⃗x⃗ · · · ⊙y⃗x⃗ Gn)[u⃗w⃗/x⃗y⃗] |=GI [φ]+x⃗y⃗u⃗w⃗

G |=GI φ
(∃)

G[f/x] |=GI ∃x.φ
G |=GI φi

(∨) †2
G |=GI φ1 ∨ φ2

H |=GI φ ⟨Gi |=GI [LFPx⃗,Xφ]ι⟩ni=1 (LFP) †3
H[G1 . . . Gn/e⃗

H
X][y⃗/x⃗] |=GI [LFPx⃗,Xφ]y⃗

†1: n ∈ N+. †2: i ∈ [2]. †3: n ∈ N and e⃗HX denotes a permutation of all the X-labelled edges in H.

Figure 2 Definition of GI-semantics.

The graph language of φ is defined by G(φ) ≜ {G | G |=GI φ}. We say that φ and ψ are
graph-isomorphically equivalent (GI-equivalent), written φ ∼=GI ψ if G(φ) = G(ψ).

▶ Example 15. Let G ≜ x y and φ ≜ x = y ∗ ∃z.Exz ∗ Ezy. Then, G |=GI φ is shown by:

(At)
x y |=GI x = y

(At)
x z |=GI Exz

(At)
yz |=GI Ezy

(∗)
x yz |=GI Exz ∗ Ezy

(∃)
x y |=GI ∃z.Exz ∗ Ezy

(∗)
x y |=GI x = y ∗ ∃z.Exz ∗ Ezy

.

We will generalize this example in Definition 16, for expressing any graphs by PP formulas.

2 See [33, Appendix A] for an alternative definition. Here, we adopt this style for extending to Definition 27.

Y. Nakamura 30:7

3.1 PP/EP formulas as graph/finite-graph-language expressions
In this subsection, we show that PP (resp. EP) formulas under GI-semantics play a role as
graph expressions (resp. finite graph language expressions).

▶ Definition 16. Let G be a graph, x⃗ = x1 . . . xk ∈ Perm(ty(G)), v⃗ = v1 . . . vn ∈ Perm(V G),
and e⃗ = e1 . . . em ∈ Perm(EG). Let φx⃗,v⃗,e⃗G (or written φG if they are not important) be the
following PP formula, where zv1 , . . . , zvn are fresh variables:

∃zv1 . . . zvn .(
k∗
i=1

zportG(xi) = xi) ∗ (
m∗
i=1

labG(ei) zvertG(ei)(1) . . . zvertG(ei)(arG(ei))).

Also, for a finite sequence G⃗ = G1 . . . Gn of graphs, let φG⃗ be the EP formula
∨n
i=1 φGi .

Then, G(φG) = {G}∼= and G(φG⃗) = Occ(G⃗)∼=. By using them, the following holds.

▶ Proposition 17 (Theorem 1(1)). For every graph language G closed under isomorphism:
(1): G is singleton up to isomorphism iff some PP formula recognizes G. (2): G is finite up
to isomorphism iff some EP formula recognizes G.

Proof. (1)(2)(⇒): By using φG and φG⃗, respectively. (1)(2)(⇐): By a straightforward
induction on the structure of PP (resp. EP) formulas. ◀

▶ Remark 18. Indeed, GI-semantics characterizes the graphs of PP formulas [11] (see also
[12, Figure 1]), namely, for every PP formula φ, G |=GI φ iff G is isomorphic to the graph of
φ. Thus, two PP formulas are GI-equivalent iff their graphs are isomorphically equivalent.

4 An Axiomatization of the Equational Theory of PP/EP

This section presents an axiomatization of the equational theory under GI-semantics (i.e.,
the binary relation ∼=GI) of PP/EP formulas. Given an ordinal-typed alphabet A, we define
the binary relation ≃ ⊆

⋃
τ⊆V1

EPτA × EPτA as the minimal relation closed under the rules
in Figure 3.3 Inference rules consist of the rules for equivalence relation and the rules for
“α-equivalence” (see, e.g., [37, Sect. 4.1.] for λ-calculus).

Inference rules:

φ ≃ φ
φ ≃ ψ
ψ ≃ φ

φ ≃ ψ ψ ≃ ρ
φ ≃ ρ

φ ≃ φ′ ψ ≃ ψ′

φ ∗ ψ ≃ φ′ ∗ ψ′

φ[z/x] ≃ ψ[z/y]
†1

∃x.φ ≃ ∃y.ψ
φ ≃ φ′ ψ ≃ ψ′

φ ∨ ψ ≃ φ′ ∨ ψ′

Axioms:
(=1) x = y ≃ y = x (=2) x = x ∗ φ ≃ φ (=3) x = y ∗ φ[x/z] ≃ x = y ∗ φ[y/z] (=4) ∃x.x = y ≃ y = y

(∗1) φ ∗ (ψ ∗ ρ) ≃ (φ ∗ ψ) ∗ ρ (∗2) φ ∗ ψ ≃ ψ ∗ φ (∗3) φ ∗ ⊤ ≃ φ (∃1) ∃x.∃y.φ ≃ ∃y.∃x.φ
(∃2) (∃x.φ) ∗ ψ ≃ ∃x.φ ∗ ψ (∨1) φ ∨ (ψ ∨ ρ) ≃ (φ ∨ ψ) ∨ ρ (∨2) φ ∨ ψ ≃ ψ ∨ φ (∨3) φ ∨ ff ≃ φ

(∨4) φ ∨ φ ≃ φ (∨5) ∃x.φ ∨ ψ ≃ (∃x.φ) ∨ (∃x.ψ) (∨6) φ ∗ (ψ ∨ ρ) ≃ (φ ∗ ψ) ∨ (φ ∗ ρ) (ff) ff ∗ φ ≃ ff
†1 : z is a fresh variable.

Figure 3 An axiomatization of the equational theory under GI-semantics of PP/EP formulas.

3 We assume that the left- and right-hand side formulas have an identical type. This restriction implicitly
implies the following: when their graph languages are not empty, x ̸∈ FV1(ψ) in (∃2), x ∈ FV1(φ) in
(=2), and y ̸= x in (=4), respectively. Also, note that we can use (ff) even if ty(φ) ̸= ∅, because ff has
any type.

CSL 2022

30:8 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

▶ Theorem 19. The system in Figure 3 is sound and complete for the equational theory
under GI-semantics of PP/EP formulas, that is, for every φ,ψ ∈ EPτA, φ ≃ ψ iff φ ∼=GI ψ.

In the next subsection, we prove this theorem. The following is a proof sketch.

Proof Sketch of Theorem 19. The soundness is straightforward. For completeness, we show
by using the rules in Figure 3 that we can transform each formula into a normal form in
two steps: (1) transform each EP formula into a disjunctive normal form of PP formulas; (2)
transform each PP formula into a formula of the form φG in Definition 16.

4.1 Proof of Theorem 19

▶ Proposition 20. (1): φx⃗1,v⃗1,e⃗1
G ≃ φx⃗2,v⃗2,e⃗2

G . (2): If there is an isomorphism h from G

to H, then φx1...xk,v1...vn,e1...em
G ≃ φx1...xk,h

V(v1)...hV(vn),hE(e1)...hE(em)
H . (3): If G ∼= H, then

φx⃗1,v⃗1,e⃗1
G ≃ φx⃗2,v⃗2,e⃗2

H .

Proof. (1): By permutating names using (∗1)(∗2) for x⃗1 and x⃗2, (∃1) for v⃗1 and v⃗2, (∗1)(∗2)
for e⃗1 and e⃗2, respectively. (2): Since they are the same up to variable names. (3): By
(2)(1). ◀

Hereafter in this section, relying on this proposition, we write φx⃗,v⃗,e⃗G as φG, for simplicity.

▶ Lemma 21. For every PP formula φ: (1): Let x ∈ FV1(φ) and y ≠ x. Then, ∃x.x = y∗φ ≃
φ[y/x]. (2): Let z1 . . . zn ∈ Perm(FV1(φ)), k ∈ N, and f, g : [k]→ [n] be maps. Let ∼ be the
minimal equivalence relation on [n] such that for every i ∈ [k], f(i) ∼ g(i) and let I1 . . . Im be
a permutation of all the quotient classes of [n] w.r.t. ∼. Then, ∃z1 . . . zn.(∗ki=1 zf(i) = zg(i))∗
φ ≃ ∃zI1 . . . zIm .φ[z[1]∼ . . . z[n]∼/z1 . . . zn]. Here, zI1 , . . . , zIm are pairwise distinct variables.

Proof. (1): ∃x.x = y ∗ φ ≃(=3) ∃x.x = y ∗ φ[y/x] ≃(∃2) (∃x.x = y) ∗ φ[y/x] ≃(∃5) y =
y ∗ φ[y/x] ≃(=2) φ[y/x]. (2): By induction on k. Case k = 0. ∃z1 . . . zn.⊤ ∗ φ ≃(∗2)(∗3)
∃z1 . . . zn.φ ≃ ∃z{1} . . . z{n}.φ[z{1} . . . z{n}/z1 . . . zn]. Case k ≥ 1. Then,

∃z1 . . . zn.(
k∗
i=1

zf(i) = zg(i)) ∗ φ ≃(∗1) ∃z1 . . . zn.(
k−1∗
i=1

zf(i) = zg(i)) ∗ (zf(k) = zg(k) ∗ φ)

≃ ∃zI′
1
. . . zI′

m′
.z[f(k)]∼′ = z[g(k)]∼′ ∗ φ[z[1]∼′ . . . z[n]∼′/z1 . . . zn]

(∼′ and I ′
1 . . . I

′
m′ are the ones obtained by I.H. w.r.t. k − 1.)

(Here, we assume without loss of generality by (∃1) that zI′
m′

= z[f(k)]∼′ .)

≃ ∃zI′
1
. . . zI′

m
.φ[z[1]∼′ . . . z[n]∼′/z1 . . . zn][z[g(k)]∼′/z[f(k)]∼′]

(Apply (=2) if [f(k)]∼′ = [g(k)]∼′ and (1) if [f(k)]∼′ ̸= [g(k)]∼′ .)
(Here, m = m′ for (=2) and m = m′ − 1 for (1).)

≃ ∃zI1 . . . zIm .φ[z[1]∼ . . . z[n]∼/z1 . . . zn].
(They are the same up to variable names.) ◀

▶ Lemma 22. For every PP formula φ, if G |=GI φ, then φ ≃ φG.

Y. Nakamura 30:9

Proof. By induction on the structure of PP formulas. Case φ ≡ ⊤. By φG⊤ ≡ ⊤∗⊤ ≃(∗3) ⊤.
Case φ ≡ x = x. By φGx=x ≃(∗3) ∃z.z = x ≃(=4) x = x. Case φ ≡ x = y where x ̸= y.
By φGx=y ≃(∗3) ∃z.z = x ∗ z = y ≃Lemma 21(1) x = y. Case φ ≡ a(xf(1), . . . , xf(n)) where
f : [n]→ [k] is a surjective map for some k. Then,

φGa(xf(1),...,xf(n)) ≡ ∃zk . . . z1.(
k∗
i=1

zi = xi) ∗ a(zf(1), . . . , zf(n))

≃Lemma 21(1) . . . ≃Lemma 21(1) a(zf(1), . . . , zf(n))[x1 . . . xk/z1 . . . zk] ≡ φ.

Case φ ≡ φ1 ∗φ2. Let G1 and G2 be such that G ∼= G1⊗G2, G1 |=GI φ1, G2 |=GI φ2. By I.H.,
φ1 ≃ φG1 and φ2 ≃ φG2 . We denote them by φG1 ≡ ∃z1 . . . zn′ .∗k′

i=1 zg1(i) = xi ∗∗m′

i=1 φ̃i

and φG2 ≡ ∃zn′+1 . . . zn.∗ki=1 zg2(i) = xi ∗ ∗mi=m′+1 φ̃i, respectively. Here, g1 : [k′] → [n′]
and g2 : [k]→ [n] are some maps. We assume, without loss of generality that z1, . . . , zn are
pairwise distinct and k′ ≤ k (by swapping G1 and G2 appropriately using (∗2)). Then,

φ ≃I.H. φG1 ⊗ φG2

≃(∃1)(∃2)(∗1)(∗2) ∃z1 . . . zn.(
k′∗
i=1

zg1(i) = xi) ∗ (
k∗
i=1

zg2(i) = xi) ∗ (
m∗
i=1

φ̃i)

≃(∗1)(∗2)(=3) ∃z1 . . . zn.(
k′∗
i=1

zg1(i) = zg2(i)) ∗ (
k∗
i=1

zg2(i) = xi) ∗ (
m∗
i=1

φ̃i)

≃Lem. 21(2) ∃zI1 . . . zIm .(
k∗
i=1

z[g2(i)]∼ = xi) ∗ (
m∗
i=1

φ̃i[[z1]∼ . . . [zn]∼/z1 . . . zn]) ≃ φG1⊗G2

Here, ∼ and I1 . . . Im the ones obtained from Lemma 21(2). Case φ ≡ ∃y.φ1. Let G1
be such that G ∼= G1[f/y] and G1 |= φ1. By I.H., φ1 ≃ φG1 . We denote it by φG1 ≡
∃z1 . . . zn.∗ki=1 zg(i) = xi ∗∗mi=1 φ̃i. Here, g : [k]→ [n] is a map, and we assume, without
loss of generality that y, z1, . . . , zn are pairwise distinct. Then, y = xl for some l ∈ [k]
(note y ∈ FV1(φ1)). We assume, without loss of generality by (∗1)(∗2) that y = xk. Then,
φ ≃I.H. ∃y.φG1 ≃(∃1)(=1) Lem. 21(1) ∃z1 . . . zn.(∗k−1

i=1 zg(i) = xi) ∗ (∗mi=1 φ̃i) ≃ φG. ◀

Proof of Theorem 19 for PP formulas. Assume ψ ∼=GI ρ. By Proposition 17(1), G(ψ) =
G(ρ) = {G}∼= for some G. Then, ψ ≃Lemma 22 φG ≃Lemma 22 ρ. ◀

In the following, we consider EP formulas.

▶ Lemma 23. If {G1, . . . , Gn}
∼= = {H1, . . . ,Hm}

∼=, then φ⟨Gi⟩ni=1
≃ φ⟨Hi⟩mi=1

.

Proof. By the assumption, let f : [n]→ [m] be a map such that Gi ∼= Hf(i) for every i ∈ [n].
Then, φ⟨Gi⟩ni=1

≡
∨n
i=1 φGi ≃Prop. 20

∨n
i=1 φHf(i) ≃(∨1)(∨2)(∨4)

∨m
i=1 φHi ≡ φ⟨Hi⟩mi=1

. ◀

▶ Lemma 24. For all φ ∈ EPτA, there exists some ⟨φi⟩ni=1 ∈ (PPτA)∗ such that φ ≃
∨n
i=1 φi.

Proof. By induction on the structure of φ. Case φ ≡ ff. By letting n = 0. Case φ ≡ φ̃. By
letting n = 1. Case φ ≡ φ(1) ∗φ(2). For l ∈ [2], let ⟨φ(l)

i ⟩
nl
i=1 be the one obtained by I.H. w.r.t.

φ(l). If n1 = 0 or n2 = 0, then φ ≃(∗2)(ff) ff. Otherwise, φ ≃(∨1)(∨2)(∨6)
∨n1
i=1

∨n2
j=1(φ(1)

i ∗φ
(2)
j)

(and apply (∨1)(∨2)). Case φ ≡ φ(1) ∨φ(2). Let ⟨φi⟩n
′

i=1 and ⟨φi⟩ni=n′+1 be the ones obtained
by I.H. w.r.t. φ(1) and φ(2), respectively. Then, φ ≃(∨1)(∨2)(∨3)

∨n
i=1 φi. Case φ ≡ ∃x.φ(1).

Let ⟨φ(1)
i ⟩ni=1 be the one obtained by I.H. w.r.t. φ(1). If n = 0, then φ ≡ ∃x.ff ≃(ff)

∃x.ff ∗ ff ≃(∃2) (∃x.ff) ∗ ff ≃(∗2)(ff) ff. Otherwise, φ ≡ ∃x.
∨n
i=1 φ

(1)
i ≃(∨5)

∨n
i=1 ∃x.φ

(1)
i . ◀

CSL 2022

30:10 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

▶ Lemma 25. For every EP formula φ and finite sequence G⃗ s.t. G(φ) = Occ(G⃗)∼=, φ ≃ φG⃗.

Proof. By φ ≃Lemma 24
∨n
i=1 φi ≃Lemma 22

∨n
i=1 φGi ≃Lemma 23 φG⃗. Here, for each i ∈ [n],

φi is a PP formula and Gi is a graph such that Gi |=GI φi. ◀

Proof of Theorem 19 for EP formulas. Assume ψ ∼=GI ρ. Let G⃗ be a finite sequence such
that G(ψ) = G(ρ) = Occ(G⃗)∼=. Then, ψ ≃Lemma 25 φG⃗ ≃Lemma 25 ρ. ◀

5 Kleene Theorems Between EPs and HRGs

In this section, we show that EP(LFP) (resp. EP(TC)) has the same expressive power as
the class of HRGs (resp. linear HRGs). To this end, we introduce term (formula) rewriting
systems [2] (FRSs) and show the equivalence above via FRSs. Intuitively, FRSs play the
same role as finite automata with transitions labelled by regular expressions [7] (so-called
extended finite automata) in translating finite automata into regular expressions.4

5.1 Formula Rewriting Systems (FRSs)
▶ Definition 26. A formula rewriting system (FRS[C]) F over an ordinal-typed alphabet A
is a tuple ⟨XF ,RF , sF ⟩, where XF is an ordinal-typed alphabet disjoint with A for denoting
(non-terminal) labels, RF is a finite set of pairs r = ⟨Xx⃗, φ⟩ (written Xx⃗← φ) of a strictly
atomic XF -formula Xx⃗ and a C

Occ(x⃗)
A∪X F -formula φ for denoting rewriting rules, and sF is

a strictly atomic XF -formula for denoting the source formula. Here, for an ordinal-typed
alphabet X , we say that φ is a strictly atomic X -formula if φ is of the form Xx⃗, where
X ∈ X and the elements of x⃗ are pairwise distinct.

▶ Definition 27. For an FRS[C] F = ⟨X ,R, s⟩ over an ordinal-typed alphabet A, the binary
relation |=GI

F ⊆
⋃
τ⊆V1; X ⊆A∪V2

GRτX × FmlτX is defined as the least ∼=-closed relation closed
under all the rules of |=GI (in Definition 14) and the following rule: If Xx⃗ ← φ ∈ R,
then G |=GI

F φ[y⃗/x⃗]
G |=GI

F Xy⃗
. We write G |=GI F for G |=GI

F s. The graph language of F is defined by

G(F) ≜ {G | G |=GI F}.

▶ Example 28 (cf. Example 12). Let F be the FRS[PP] over AE, defined by tyX F = {S 7→
[0], X 7→ [2]}, RF = {(S), (E), (s), (p)}, sF = S, where each rule in RF is as follows:

(S) S← ∃xy.Xxy (E) Xxy ← Exy (s) Xxy ← ∃z.Xxz ∗Xzy (p) Xxy ← Xxy ∗Xxy

Then, G(F) is the set of all series-parallel graphs. For example, |=GI F is shown by:5

(At)
x y |=GI

F Exy
(E)

x y |=GI
F Xxy

(go to the lower right)
x y |=GI

F Xxy
(∗)

x y |=GI
F Xxy ∗Xxy

(p)
x y |=GI

F Xxy
(S)

|=GI
F S

(At)
x z |=GI

F Exz
(E)

x z |=GI
F Xxz

(At)
z y |=GI

F Ezy
(E)

z y |=GI
F Xzy

x y |=GI
F ∃z.Xxz ∗Xzy (s)

x y |=GI
F Xxy

.

In general, the following proposition is immediate from the translations between graphs and
PP formulas in Proposition 17(1). Also, we use linear/(n-)recursive for FRS[PP]s in the
same manner as for HRGs.

4 FRS[C] is essentially the same as positive Datalog [20, Section 9] if C is the class of conjunctive queries.
5 Double line denotes that 0 or more rules are applied in the place.

Y. Nakamura 30:11

▶ Proposition 29. For every G, some HRG (resp. linear HRG) recognizes G iff some FRS[PP]
(resp. linear FRS[PP]) recognizes G.

An FRS F is deterministic if for every X ∈ XF , the number of rules of the form Xx⃗← φ is
at most one. In Example 28, we can put together the three rules for X as follows in FRS[EP]:

(S) S ← ∃xy.Xxy (X) Xxy ← (Exy) ∨ (Xxy ∗Xxy) ∨ (∃z.Xxz ∗Xzy).

▶ Proposition 30. For every G, (i) some FRS[PP] recognizes G iff (ii) some deterministic
FRS[EP] recognizes G iff (iii) some FRS[EP] recognizes G.

Proof. (i) ⇒ (ii): By the same argument as above. (ii) ⇒ (iii): Trivial. (iii) ⇒ (i): By
replacing each rule Xx⃗← φ with Xx⃗← ψ1, . . . , Xx⃗← ψn. Here, ψ1, . . . ψn are PP formulas
such that φ ∼=GI

∨n
i=1 ψi (Lemma 24). ◀

The following are useful properties of hyperedge replacing and glueing.

▶ Proposition 31. For every FRS[EP(LFP)] F : (1): If there is a derivation tree that shows
G |=GI

F φ from the assumptions ⟨Hi |=GI
F ψi⟩ni=1 and H1, . . . ,Hn don’t contain any FV2(φ)-

labelled edges and have an ordinal type, then there exist some G′ and e1 . . . en such that
G ∼= G′[H1 . . . Hn/e1 . . . en]. (2): If there is a derivation tree that shows G[H1 . . . Hn/e⃗] |=GI

F
φ from the assumptions ⟨Hi |=GI

F ψi⟩ni=1 and H1, . . . ,Hn, H
′
1, . . . ,H

′
n don’t contain any

FV2(φ)-labelled edges and have an ordinal type, then there is a derivation tree that shows
G[H ′

1 . . . H
′
n/e⃗] |=GI

F φ from the assumptions ⟨H ′
i |=GI

F ψi⟩ni=1. For every FRS[EP(TC)] F :
(3): If there is a derivation tree that shows G |=GI

F φ from H |=GI
F ψ and ty(H)∩BV1(φ) = ∅,

then there exist some G′ such that G ∼= G′ ⊗ H. (4): If there is a derivation tree that
shows G ⊗H |=GI

F φ from G′ ⊗H |=GI
F ψ, ty(H) ∩ BV1(φ) = ∅, ty(H ′) ∩ BV1(φ) = ∅, and

ty(H) = ty(H ′), then there is a derivation tree that shows G⊗H ′ |=GI
F φ from G′⊗H ′ |=GI

F ψ.

Proof Sketch. By a straightforward induction on the structure of the derivation tree using
Proposition 9. See [33, Appendix B] for more details. ◀

5.2 Equivalence of EP(LFP) formulas and HRGs (Theorem 1(2))
In the following, by using Proposition 29 and 30, we show that EP(LFP) has the same
expressive power as (deterministic) FRS[EP].

From EP(LFP) formulas to FRS[EP]s. We say that an EP(LFP) formula φ is simple if (a)
all the second-order variables X occurring in the form [LFPx⃗,X(φ)]y⃗ are pairwise distinct, (b)
x⃗ = y⃗ = ι for each subformula of the form [LFPx⃗,X(φ)]y⃗, and (c) x⃗ = ι for each subformula
of the form Xx⃗. This restriction simplifies the translation and the proof.

▶ Lemma 32. Every EP(LFP) formula φ has a GI-equivalent simple EP(LFP) formula.

Proof Sketch. For (a), rename variables appropriately. For (b)(c), use the following transla-
tions, respectively: [LFPx⃗,X(φ)]y⃗ ⇝ ∃z⃗.z⃗ = y⃗ ∗ ∃ι.ι = z⃗ ∗ [LFPι,X(∃z⃗.z⃗ = ι ∗ ∃x⃗.x⃗ = z⃗ ∗ φ)]ι
and Xx⃗⇝ ∃z⃗.z⃗ = x⃗ ∗ ∃ι.ι = z⃗ ∗Xι. Here, z⃗ is a sequence of fresh variables. ◀

Let z⃗• be a map from each EP(LFP) formula φ to a permutation z⃗φ of FV1(φ). Figure 4
gives a translation from a simple EP(LFP) formula φ into an FRS[EP] Fφ = ⟨Xφ,Rφ, sφ⟩.6

6 This translation is essentially the same as the translation from existential fixpoint logic to Datalog, see,
e.g., [20, Theorem 9.1.4]. The only difference is the semantics.

CSL 2022

30:12 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

Fφ̃ ≜ ⟨{Sφ}, {sφ ← φ̃}, Sφz⃗φ⟩ F∃x.ψ ≜ ⟨{Sφ} ∪ Xψ, {sφ ← ∃x.sψ} ∪ Rψ, Sφz⃗φ⟩
Fψ•ρ ≜ ⟨{Sφ} ∪ Xψ ∪ Xρ, {sφ ← sψ • sρ} ∪ Rψ ∪Rρ, Sφz⃗φ⟩ (• ∈ {∗,∨})
F[LFPι,X(ψ)]ι ≜ ⟨{Sφ, X} ∪ Xψ, {sφ ← Xι, Xι← sψ} ∪ Rψ, Sφz⃗φ⟩

Figure 4 A translation from EP(LFP) formulas into (deterministic) FRS[EP]s.

▶ Lemma 33. For every simple EP(LFP) formula φ, G(φ) = G(Fφ).

Proof. G |=GI φ⇒ G |=GI
Fφ sφ: By induction on the size of the derivation tree of G |=GI φ.

The only nontrivial case is when the last derivation rule is (LFP). Let φ = [LFPι,X(ψ)]ι (by
the condition (b)) and let G ∼= H[G1 . . . Gn/e1 . . . en] be such that H |=GI ψ and Gi |=GI φ

for i ∈ [n]. By I.H., H |=GI
Fψ sψ. Its derivation tree forms the left-hand side in the following

(by the condition (c)). Also for i ∈ [n], by I.H., Gi |=GI
Fφ sφ, so by the construction of Fφ,

(♡-i) Gi |=GI
Fφ Xι. Then, G |=GI

Fφ sφ is shown by the right-hand side tree (Proposition 31(2)).

GXι |=GI
Fψ Xι . . . GXι |=GI

Fψ Xι

..... (♠)

H |=GI
Fψ sψ

⇝

..... (♡-1)

GXι[G1/e] |=GI
Fφ Xι . . .

..... (♡-n)

GXι[Gn/e] |=GI
Fφ Xι

..... (♠)

H[G1 . . . Gn/e1 . . . en] |=GI
Fφ sψ

(sφ ← Xι)(Xι← sψ)
H[G1 . . . Gn/e1 . . . en] |=GI

Fφ sφ

.

G |=GI
Fφ sφ ⇒ G |=GI φ: By induction on the size of the derivation tree of G |=GI

Fφ sφ. We
do a case analysis on the structure of φ. The only nontrivial case is when φ = [LFPι,X(ψ)]ι.
The derivation tree of G |=GI

Fφ sφ should form the right-hand side above, where the rule
for X is not applied in (♠). Note that G ∼= H[G1 . . . Gn/e1 . . . en] for some H and e1 . . . en
(Proposition 31(1)). Then, from the derivation tree, we can obtain the derivation tree of the
form on the left-hand side above (Proposition 31(2)). Thus by I.H., H |=GI ψ. Also by using
(♡-i), Gi |=GI

Fφ sφ, and thus by I.H., Gi |=GI φ. Hence, G |=GI φ. ◀

Proof of Theorem 1(2)⇒. By Lemma 32 and 33 (with Proposition 29 and 30). ◀

From FRS[EP]s to EP(LFP) formulas. This part is shown by folding non-terminal labels
for a given deterministic FRS[EP] as follows: for non-0-recursive labels X, replace each
occurrence of X with the formula corresponding to X in the rule; for 0-recursive labels, use
the LFP. Note that by Proposition 30, from an FRS[EP], we can obtain a deterministic one.

▶ Lemma 34. Every deterministic FRS[EP(LFP)] has a GI-equivalent EP(LFP) formula.

Proof. Let F = ⟨X ,R, Sz⃗⟩. Let #n(F) ≜ #(X \ {S}) and #r(F) be the number of 0-
recursive labels in F . We prove by induction on the pair ⟨#n(F),#r(F)⟩. Case #n(F) =
#r(F) = 0. Let R = {Sx⃗← ψ}. Then, G(F) = G(ψ[z⃗/x⃗]). Case #n(F) > #r(F). Then,
there exists a non-0-recursive label X0 ∈ X \ {S}. Let X0x⃗0 ← ψ0 ∈ R. Let F ′ ≜ ⟨X \
{X0}, {Xx⃗← ψ[ψ0[−/x⃗0]/X0−] | Xx⃗← ψ ∈ R, X ̸= X0}, Sz⃗⟩, where ψ[ψ0[−/x⃗0]/X0−]
denotes the formula ψ in which each X0y⃗ has been replaced with ψ0[y⃗/x⃗0]. Then, G(F) =
G(F ′) because there is a trivial transformation between derivation trees of F and those
of F ′. Also by I.H., there exists an EP(LFP) formula φ such that G(F ′) = G(φ). Hence,
G(F) = G(φ). For the other case (i.e., #r(F) ≥ 1), there exists a 0-recursive labelX0 ∈ X . Let

Y. Nakamura 30:13

X0x⃗0 ← ψ0 ∈ R. Let F ′ ≜ ⟨X , {Xx⃗← ψ ∈ R | X ̸= X0}∪{X0x⃗0 ← [LFPx⃗0,X0(ψ0)]x⃗0}, Sz⃗⟩.
Then, G(F) = G(F ′) because there exists a transformation between derivation trees of F ′

and those of F in the same manner as the proof of Lemma 33. Also by I.H., there exists an
EP(LFP) formula φ such that G(F ′) = G(φ). Hence, G(F) = G(φ). ◀

Proof of Theorem 1(2)⇐. By Lemma 34 (with Proposition 29 and 30). ◀

5.3 Equivalence of EP(TC) formulas and linear HRGs (Theorem 1(3)).
In the following, by using Proposition 29 and 30, we show that EP(TC) has the same
expressive power as the class of linear FRS[PP].

From EP(TC) formulas to linear FRS[PP]s. We say that an EP(TC) formula φ is simple
if all the variables x occurring in the form ∃x.ψ, the variables in x⃗y⃗u⃗w⃗ occurring in the form
[φ]+x⃗y⃗u⃗w⃗, and the free variables in φ are pairwise distinct. As with Lemma 32, from a given
EP(TC) formula, we can obtain a GI-equivalent simple one by renaming variables and using
the following translation: [φ]+x⃗y⃗u⃗w⃗ ⇝ ∃z⃗.z⃗ = u⃗w⃗ ∗ [φ[z⃗′/x⃗y⃗]]+z⃗′ z⃗. Here, elements of z⃗ and z⃗′

are fresh variables. Furthermore, the following holds.

▶ Lemma 35. Every EP(TC) formula φ has a GI-equivalent simple EP(TC) formula of the
form ∃z0.φ0 or ⊤ ∨ ∃z0.φ0.

Proof. If FV1(φ) ̸= ∅, then φ ∼=GI ∃z0.z0 = x ∗ φ, where x ∈ FV1(φ) and z0 is a fresh
variable. Otherwise, let

∨n
i=1 φi be a disjunctive normal form of φ, where each φi is a

prenex normal form EP(TC) formula. Let ρi ≡ ∃z0.ψi if φi is of the form ∃x.ψi and ρi ≡ ⊤
otherwise (note that then φi ≡ ⊤ should because FV1(φi) = ∅). Note that φi ∼=GI ρi. Let
l1 . . . lm be the subsequence of ιn such that for each i ∈ [n], i ∈ {l1, . . . , lm} iff ρi ̸≡ ⊤. If
m < n, then φ ∼=GI ⊤∨

∨m
j=1 ∃z0.ψlj (∼=GI ⊤∨ ∃z0.

∨m
j=1 ψlj). Otherwise, φ ∼=GI

∨n
i=1 ∃z0.ψi

(∼=GI ∃z0.
∨n
i=1 ψi). Hence, it has been proved. ◀

Let z⃗ be a sequence of pairwise distinct variables. For a simple EP(TC) formula φ such that
V1(φ) ⊆ Occ(z⃗), we define the linear FRS[PP] Ḟφ = ⟨Xφ,Rφ, sφ⟩ (we may explicitly write
Ḟ z⃗φ = ⟨X z⃗φ,Rz⃗φ, sz⃗φ⟩) in Figure 5. Our construction is based on Thompson’s construction [42]
and the product construction (in translating regular expressions into finite automata), but is
generalized for first-order variables.

Ḟφ̃ ≜ ⟨{Sφ, Tφ}, {Sφz⃗ ← φ̃ ∗ Tφz⃗}, Sφz⃗⟩

Ḟ∃x.ψ ≜ ⟨{Sφ, Tφ} ∪ Xψ, {Sφz⃗ ← x = x ∗ ∃x.Sψ z⃗, Tψ z⃗ ← Tφz⃗} ∪ Rψ, Sφz⃗⟩

Ḟψ∗ρ ≜ ⟨{Sφ, Tφ} ∪ (Xψ ×Xρ), {Sφz⃗ ← ⟨Sψ, Sρ⟩z⃗, ⟨Tψ, Tρ⟩z⃗ ← Tφz⃗} ∪

{r[⟨−, Y ⟩/−] | r ∈ Rψ, Y ∈ Xρ} ∪ {r[⟨X,−⟩/−] | r ∈ Rρ, X ∈ Xψ}, Sφz⃗⟩†1

Ḟψ∨ρ ≜ ⟨{Sφ, Tφ} ∪ Xψ ∪ Xρ, {Sφz⃗ ← Sψ z⃗, Sφz⃗ ← Sρz⃗, Tψ z⃗ ← Tφz⃗, Tρz⃗ ← Tφz⃗} ∪ Rψ ∪Rρ, Sφz⃗⟩

Ḟ[ψ]+
x⃗y⃗
u⃗w⃗ ≜ ⟨{Sφ, Tφ} ∪ Xψ, {Sφz⃗ ← x⃗y⃗ = x⃗y⃗ ∗ ∃x⃗.x⃗ = u⃗ ∗ ∃y⃗.Sψ z⃗} ∪

{Tψ z⃗ ← x⃗y⃗ = x⃗y⃗ ∗ ∃x⃗.x⃗ = y⃗ ∗ ∃y⃗.Sψ z⃗, Tψ z⃗ ← y⃗ = w⃗ ∗ Tφz⃗} ∪ Rψ, Sφz⃗⟩

†1: r[⟨−, Y ⟩/−] (resp. r[⟨X,−⟩/−]) is the rule r in which each X (resp. Y) has been replaced with ⟨X,Y ⟩.

Figure 5 Definition of linear FRS[PP] Ḟφ.

CSL 2022

30:14 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

▶ Lemma 36. For every simple EP(TC) formula φ and every G ∈ GRτA (where φ ∈ FmlτA),
G |=GI φ iff there is a derivation tree that shows G⊗GOcc(z⃗)

⊤ |=GI
Ḟ z⃗
φ

Sφz⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tφz⃗.

Proof. ⇒: By induction on the structure of φ. The essential case is when φ = [ψ]+x⃗y⃗u⃗w⃗.
Let G ∼= (G1 ⊙y⃗x⃗ . . . ⊙y⃗x⃗ Gn)[u⃗w⃗/x⃗y⃗] be such that Gi |=GI ψ for i ∈ [n]. For notational
simplicity, let G[i,n] ≜ Gi ⊙y⃗x⃗ . . . ⊙y⃗x⃗ Gn[w⃗/y⃗] for i ∈ [n]. Note that G ∼= G[1,n][u⃗/x⃗] and
G[i,n] ∼= (Gi ⊗ G[i+1,n][y⃗/x⃗])[f . . . f/y⃗]. For each i ∈ [n], by I.H., there is a derivation tree
(♣-i) that shows Gi⊗GOcc(z⃗)

⊤ |=GI
Ḟ z⃗
ψ

Sψ z⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
ψ

Tψ z⃗. Then, we obtain a derivation

tree that shows G⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sφz⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tφz⃗ by concatenating (♣-1)-(♣-n)
using Proposition 31(4) as follows.

(go to the lower right)

G[2,n][y⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗

..... (♣-1)

G1 ⊗G[2,n][y⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sψ z⃗

G[1,n][u⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sφz⃗

. . .

(go to the lower right)

Gy⃗=w⃗ ⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗

..... (♣-n)

Gn ⊗Gy⃗=w⃗ ⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sψ z⃗

G[n,n][y⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗

GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tφz⃗

Gy⃗=w⃗ ⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗
.

⇐: By induction on the structure of φ. We do case analysis on the structure of φ. The
essential case is when φ = [ψ]+x⃗y⃗u⃗w⃗. Then, the derivation tree should be of the form like the
above (by using Proposition 31(3)), where the rules for Tψ are not applied in each (♣-i). Then
by Proposition 31(4), each (♣-i) also shows Gi ⊗GOcc(z⃗)

⊤ |=GI
Ḟ z⃗
ψ

Sψ z⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
ψ

Tψ z⃗.
By I.H., Gi |=GI ψ. Thus, G |=GI φ. ◀

▶ Lemma 37. Every simple EP(TC) formula of the form ∃z0.φ0 or ⊤ ∨ ∃z0.φ0 has a
GI-equivalent linear FRS[PP].

Proof. We only write the case of ∃z0.φ0 (the case of ⊤∨∃z0.φ0 is shown in the same way). Let
us recall the linear FRS[PP] Ḟ z⃗φ0

= ⟨X z⃗φ0
,Rz⃗φ0

, sz⃗φ0
⟩ in Figure 5, where z⃗′z0 ∈ Perm(FV1(φ0)),

z⃗′′ ∈ Perm(BV1(φ0)), and z⃗ = z⃗′z0z⃗
′′. Let F̄ be the linear FRS[PP] ⟨{S} ∪ X z⃗φ0

, {Sz⃗′ ←
∃z0.Sφ0 z⃗

′z0 . . . z0, Tφ0 z⃗ ← z⃗ = z⃗} ∪ Rz⃗φ0
, Sz⃗′⟩. Then, G[f/z0] |=GI ∃z0.φ0 iff G |=GI φ0 iff

there exists a derivation tree that shows G⊗Gz⃗
⊤ |=GI

Ḟ z⃗
φ0

Sφ0 z⃗ from Gz⃗
⊤ |=GI

Ḟ z⃗
φ0

Tφ0 z⃗ (Lemma

36) iff there exists a derivation tree that shows G |=GI
Ḟ z⃗
φ0

Sφ0 z⃗
′z0 . . . z0 from Gz⃗

⊤ |=GI
Ḟ z⃗
φ0

Tφ0 z⃗

(because the name differences in the part z⃗′′ do not affect to the construction of the derivation
tree by z⃗′′ ∈ Perm(BV1(φ0))) iff G[f/z0] |=GI

F̄ Sz⃗′. Hence, G(F̄) = G(∃z0.φ0). ◀

Proof of Theorem 1(3)⇒. By Lemma 35 and 37 (with Proposition 29 and 30). ◀

From linear FRS[PP]s to EP(TC) formulas. This part is shown by generalizing the state
elimination method in finite automata theory for linear FRS[PP]s. To this end, we introduce
the following class based on transitions in finite automata. We say that an FRS[EP(TC)] F
is FA-linear if (a) there is a non-terminal label T (denoted by TF) not equivalent to SF such
that the label T has the single rule Tx⃗ ← x⃗ = x⃗; and (b) for every pair of X ∈ XF \ {T}
and Y ∈ XF , there is exactly one rule of the form Xx⃗ ← ∃y⃗.ψ ∗ Y y⃗ (we denote this ψ
by φF

X,Y x⃗y⃗; note that ψ does not have non-terminal labels), where the elements of x⃗y⃗ are
pairwise distinct.

▶ Lemma 38. Every linear FRS[PP] has a GI-equivalent FA-linear FRS[EP].

Y. Nakamura 30:15

Proof. For the condition (a), we introduce a fresh non-terminal label T and introduce
the rule Tx⃗ ← x⃗ = x⃗. For the condition (b), for each rule Xx⃗ ← φ, if φ does not have
non-terminal labels, then we replace the rule with Xx⃗ ← ∃z⃗.(z⃗ = x⃗ ∗ φ) ∗ Tz⃗, where z⃗ is
a sequence of fresh variables. Otherwise, let Y be the non-terminal label and transform
the PP formula φ into a GI-equivalent formula of the form ∃z⃗.φ′ ∗ Y u⃗ by taking its prenex
normal form and reordering the inner formulas appropriately. Then, transform it into the
following formula: ∃y⃗.(∃z⃗.y⃗ = u⃗ ∗ φ′) ∗ Y y⃗, where y⃗ is a sequence of fresh variables. Next,
for each pair ⟨X,Y ⟩, let ⟨Xx⃗i ← ∃y⃗i.ψi ∗ Y y⃗i⟩ni=1 be a permutation of all the rules of the
form Xx⃗← ∃y⃗.ψ ∗ Y y⃗. Without loss of generality, we can assume that x⃗1y⃗1 = · · · = x⃗ny⃗n
(so we denote it by x⃗y⃗) by renaming variables. Then, replace these rules with the single rule
Xx⃗← ∃y⃗.(

∨n
i=1 ψi) ∗ Y y⃗. ◀

Finally, we present a translation from FA-linear FRS[EP]s into EP(TC) formulas.

▶ Lemma 39. Every FA-linear FRS[EP(TC)] F has a GI-equivalent EP(TC) formula.

Proof. By induction on #(XF). If XF = {SF , TF}, then F is denoted by ⟨{SF , TF}, {SF z⃗ ←
∃x⃗.φ ∗ TF x⃗, TF x⃗ ← x⃗ = x⃗}, sF ⟩. Thus, F is GI-equivalent to the EP(TC) formula ∃x⃗.φ ∗
x⃗ = x⃗ (∼=GI ∃x⃗.φ). Otherwise, there exists Y0 ∈ XF \ {SF , TF}. We define F ′ ≜ ⟨XF \
{Y0}, {Xx⃗ ← ∃z⃗.(φF

X,Z x⃗z⃗ ∨ ∃y⃗.φF
X,Y0

x⃗y⃗ ∗ ∃y⃗′.[φF
Y0,Y0

y⃗y⃗′]∗y⃗y⃗′ y⃗y⃗′ ∗ φF
Y0,Z

y⃗′z⃗) ∗ Zz⃗ | X,Z ∈
XF \ {Y0}, X ̸= TF} ∪ {TF x⃗← x⃗ = x⃗}, sF ⟩, where elements of x⃗z⃗y⃗y⃗′ are pairwise distinct.
Here, [φ]∗x⃗y⃗u⃗w⃗ abbreviates the formula u⃗ = w⃗ ∨ [φ]+x⃗y⃗u⃗w⃗. Then, the FA-linear FRS[EP(TC)]
F ′ is GI-equivalent to F because there are transformations between derivation trees of F
and those of F ′ in the same manner as the proof of Lemma 36. By I.H., F ′ has some
GI-equivalent EP(TC) formula φ. Thus by using this φ, it has been proved. ◀

Proof of Theorem 1(3)⇐. By Lemma 38 and 39 (with Proposition 29 and 30). ◀

6 Conclusion

We have presented a perspective on graph languages via logical formulas by introducing
GI-semantics. We have presented an axiomatization of the equational theory of PP/EP
formulas under GI-semantics, and we have shown that several classes of existential positive
logic formulas under GI-semantics have the same expressive power as those of HRGs. One
future work is to find some axiomatization or some proof system of the (in)equational theory
of EP(TC), or EP(LFP). Another possible future work is to study some classes of (bounded
treewidth) graph languages by considering syntactic fragments, e.g., for finding decidable (or
tractable) fragments of graph language problems. It would also be interesting to extend this
logic to higher-order fixpoint logic (for a graph extension of higher-order grammars [17, 22]).

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

1998. doi:10.1017/cbo9781139172752.
3 Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathematical

Systems Theory, 20(1):83–127, 1987. doi:10.1007/BF01692060.
4 Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical Conjunctive Queries. In 27th

EACSL Annual Conference on Computer Science Logic (CSL ’18), volume 119, pages 13:1–13:23.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.13.

CSL 2022

https://doi.org/10.1017/cbo9781139172752
https://doi.org/10.1007/BF01692060
https://doi.org/10.4230/LIPIcs.CSL.2018.13

30:16 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

5 Francis Bossut, Max Dauchet, and Bruno Warin. A Kleene Theorem for a Class of Planar
Acyclic Graphs. Information and Computation, 117(2):251–265, 1995. doi:10.1006/inco.
1995.1043.

6 Paul Brunet and Damien Pous. Petri automata. Logical Methods in Computer Science, 13(3),
2017. doi:10.23638/LMCS-13(3:33)2017.

7 Janusz A. Brzozowski and Edward J. McCluskey. Signal Flow Graph Techniques for Sequential
Circuit State Diagrams. IEEE Transactions on Electronic Computers, EC-12(2):67–76, 1963.
doi:10.1109/PGEC.1963.263416.

8 J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960. doi:10.1002/malq.
19600060105.

9 J. Richard Büchi. On a Decision Method in Restricted Second Order Arithmetic. In Interna-
tional Congress on Logic, Methodology, and Philosophy of Science 1960, pages 1–11. Stanford
University Press, 1962.

10 Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A Spatial Logic for Querying Graphs.
In International Colloquium on Automata, Languages, and Programming (ICALP ’02), pages
597–610. Springer Verlag, 2002. doi:10.1007/3-540-45465-9_51.

11 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In 9th annual ACM symposium on Theory of computing (STOC ’77),
pages 77–90. ACM Press, 1977. doi:10.1145/800105.803397.

12 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theoretical
Computer Science, 239(2):211–229, 2000. doi:10.1016/S0304-3975(99)00220-0.

13 Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications, 2007.
URL: http://www.grappa.univ-lille3.fr/tata.

14 Enric Cosme Llópez and Damien Pous. K4-free Graphs as a Free Algebra. In 42nd International
Symposium on Mathematical Foundations of Computer Science (MFCS ’17), pages 76:1–76::14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPICS.MFCS.2017.
76.

15 Bruno Courcelle and Joost Engelfriet. A Logical Characterization of the Sets of Hypergraphs
Defined by Hyperedge Replacement Grammars. Mathematical Systems Theory, 28(6):515–552,
1995.

16 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

17 Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science, 20(2):95–207,
1982. doi:10.1016/0304-3975(82)90009-3.

18 Christian Doczkal and Damien Pous. Treewidth-Two Graphs as a Free Algebra. In 43rd
International Symposium on Mathematical Foundations of Computer Science (MFCS ’18),
volume 117, pages 60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.MFCS.2018.60.

19 Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. Hyperedge Replacement Graph
Grammars. In Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 1: Foundations, chapter 2, pages 95–162. World Scientific, 1997. doi:10.1142/
9789812384720_0002.

20 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer Monographs in
Mathematics. Springer, 2 edition, 1995. doi:10.1007/3-540-28788-4.

21 Calvin C. Elgot. Decision Problems of Finite Automata Design and Related Arithmetics.
Transactions of the American Mathematical Society, 98(1):21, 1961. doi:10.2307/1993511.

22 Joost Engelfriet. Iterated stack automata and complexity classes. Information and Computation,
95(1):21–75, 1991. doi:10.1016/0890-5401(91)90015-T.

https://doi.org/10.1006/inco.1995.1043
https://doi.org/10.1006/inco.1995.1043
https://doi.org/10.23638/LMCS-13(3:33)2017
https://doi.org/10.1109/PGEC.1963.263416
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1007/3-540-45465-9_51
https://doi.org/10.1145/800105.803397
https://doi.org/10.1016/S0304-3975(99)00220-0
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.4230/LIPICS.MFCS.2017.76
https://doi.org/10.4230/LIPICS.MFCS.2017.76
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.4230/LIPIcs.MFCS.2018.60
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1007/3-540-28788-4
https://doi.org/10.2307/1993511
https://doi.org/10.1016/0890-5401(91)90015-T

Y. Nakamura 30:17

23 Joost Engelfriet and Vincent van Oostrom. Logical Description of Context-free Graph Lan-
guages. Journal of Computer and System Sciences, 55(3):489–503, 1997. doi:10.1006/jcss.
1997.1510.

24 David Eppstein. Parallel recognition of series-parallel graphs. Information and Computation,
98(1):41–55, 1992. doi:10.1016/0890-5401(92)90041-D.

25 Jerome Feder. Plex languages. Information Sciences, 3(3):225–241, 1971. doi:10.1016/
S0020-0255(71)80008-7.

26 Tomás Feder and Moshe Y. Vardi. Monotone monadic SNP and constraint satisfaction. In
25th annual ACM symposium on Theory of computing (STOC ’93), volume Part F1295, pages
612–622. ACM Press, 1993. doi:10.1145/167088.167245.

27 Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In Automata
Studies. (AM-34), pages 3–42. Princeton University Press, 1956.

28 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000. doi:10.1006/
jcss.2000.1713.

29 Haas Leiß. Towards Kleene Algebra with recursion. In 5th International Workshop on Computer
Science Logic (CSL ’91), pages 242–256. Springer, 1991. doi:10.1007/BFb0023771.

30 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theoretical Computer Science, 237(1-2):347–380, 2000. doi:10.1016/S0304-3975(00)00031-1.

31 Robert McNaughton. Testing and generating infinite sequences by a finite automaton. In-
formation and Control, 9(5):521–530, 1966. doi:10.1016/S0019-9958(66)80013-X.

32 Yoshiki Nakamura. Expressive Power and Succinctness of the Positive Calculus of Relations.
In 18th International Conference on Relational and Algebraic Methods in Computer Science
(RAMiCS ’20), volume 12062 of LNCS, pages 204–220. Springer, Cham, 2020. doi:10.1007/
978-3-030-43520-2_13.

33 Yoshiki Nakamura. A full version of this paper, 2021. URL: https://yoshikinakamura.
bitbucket.io/papers/ep_for_graph.

34 Mizuhito Ogawa, Zhenjiang Hu, and Isao Sasano. Iterative-free program analysis. In 8th ACM
SIGPLAN international conference on Functional programming (ICFP ’03), volume 8, pages
111–123. ACM Press, 2003. doi:10.1145/944705.944716.

35 Peter W. O’Hearn and David J. Pym. The Logic of Bunched Implications. Bulletin of Symbolic
Logic, 5(2):215–244, 1999. doi:10.2307/421090.

36 Theodosios Pavlidis. Linear and Context-Free Graph Grammars. Journal of the ACM,
19(1):11–22, 1972. doi:10.1145/321679.321682.

37 Andrew M. Pitts. Nominal Sets. Cambridge University Press, 2013. doi:10.1017/
CBO9781139084673.

38 David Pym. Resource semantics: logic as a modelling technology. ACM SIGLOG News,
6(2):5–41, 2019. doi:10.1145/3326938.3326940.

39 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

40 Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3):1–53,
2008. doi:10.1145/1379759.1379763.

41 Alfred Tarski. On the Calculus of Relations. The Journal of Symbolic Logic, 6(3):73–89, 1941.
doi:10.2307/2268577.

42 Ken Thompson. Programming Techniques: Regular expression search algorithm. Communica-
tions of the ACM, 11(6):419–422, 1968. doi:10.1145/363347.363387.

43 Boris A. Trakhtenbrot. Finite automata and the logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSSR, 140:326–329, 1961.

CSL 2022

https://doi.org/10.1006/jcss.1997.1510
https://doi.org/10.1006/jcss.1997.1510
https://doi.org/10.1016/0890-5401(92)90041-D
https://doi.org/10.1016/S0020-0255(71)80008-7
https://doi.org/10.1016/S0020-0255(71)80008-7
https://doi.org/10.1145/167088.167245
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1007/BFb0023771
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1007/978-3-030-43520-2_13
https://doi.org/10.1007/978-3-030-43520-2_13
https://yoshikinakamura.bitbucket.io/papers/ep_for_graph
https://yoshikinakamura.bitbucket.io/papers/ep_for_graph
https://doi.org/10.1145/944705.944716
https://doi.org/10.2307/421090
https://doi.org/10.1145/321679.321682
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1145/3326938.3326940
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.2307/2268577
https://doi.org/10.1145/363347.363387

	1 Introduction
	2 Preliminaries
	3 Existential Positive Logics under GI-Semantics
	3.1 PP/EP formulas as graph/finite-graph-language expressions

	4 An Axiomatization of the Equational Theory of PP/EP
	4.1 Proof of Theorem 19

	5 Kleene Theorems Between EPs and HRGs
	5.1 Formula Rewriting Systems (FRSs)
	5.2 Equivalence of EP(LFP) formulas and HRGs (Theorem 1(2))
	5.3 Equivalence of EP(TC) formulas and linear HRGs (Theorem 1(3)).

	6 Conclusion

