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Abstract
First-order logic (FO) can express many algorithmic problems on graphs, such as the independent
set and dominating set problem parameterized by solution size. On the other hand, FO cannot
express the very simple algorithmic question whether two vertices are connected. We enrich FO with
connectivity predicates that are tailored to express algorithmic graph properties that are commonly
studied in parameterized algorithmics. By adding the atomic predicates connk(x, y, z1, . . . , zk) that
hold true in a graph if there exists a path between (the valuations of) x and y after (the valuations of)
z1, . . . , zk have been deleted, we obtain separator logic FO + conn. We show that separator logic can
express many interesting problems such as the feedback vertex set problem and elimination distance
problems to first-order definable classes. Denote by FO + connk the fragment of separator logic that
is restricted to connectivity predicates with at most k + 2 variables (that is, at most k deletions).
We show that FO + connk+1 is strictly more expressive than FO + connk for all k ≥ 0. We then
study the limitations of separator logic and prove that it cannot express planarity, and, in particular,
not the disjoint paths problem. We obtain the stronger disjoint-paths logic FO + DP by adding the
atomic predicates disjoint-pathsk[(x1, y1), . . . , (xk, yk)] that evaluate to true if there are internally
vertex-disjoint paths between (the valuations of) xi and yi for all 1 ≤ i ≤ k. Disjoint-paths logic can
express the disjoint paths problem, the problem of (topological) minor containment, the problem of
hitting (topological) minors, and many more. Again we show that the fragments FO + DPk that
use predicates for at most k disjoint paths form a strict hierarchy of expressiveness. Finally, we
compare the expressive power of the new logics with that of transitive-closure logics and monadic
second-order logic.
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1 Introduction

Logic provides a very elegant way of formally describing computational problems. Fagin’s
celebrated result in 1974 [11] established that existential second-order logic captures the
complexity class NP. Fagin thereby provided a machine-independent characterization of
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34:2 First-Order Logic with Connectivity Operators

a complexity class and initiated the field of descriptive complexity theory. Many other
complexity classes were later characterized by logics in this theory. Today it remains one of
the major open problems whether there exists a logic capturing PTime.

In 1990 Courcelle proved that every graph property definable in monadic second-order
logic (MSO) can be decided in linear time on graphs of bounded treewidth [7]. This theorem
has a much more algorithmic (rather than a complexity-theoretic) flavor, in the sense that,
from a logical description of a problem, it derives an algorithmic approach on how to
solve it on certain graph classes. Grohe in his seminal survey coined the term algorithmic
meta-theorem for such theorems that provide general conditions on a problem and on the
input instances that, when satisfied, imply the existence of an efficient algorithm for the
problem [17]. Courcelle’s theorem for MSO was extended to graph classes with bounded
cliquewidth [8] and it is known that these are essentially the most general graph classes on
which efficient MSO model-checking [15, 21] is possible. MSO is a powerful logic that can
express many important algorithmic properties on graphs. With quantification over edges, we
can for example express the existence of a Hamiltonian path, the existence of a fixed minor or
topological minor, the disjoint paths problem, and many deletion problems. For a property Π,
the task in the Π-deletion problem is to find in a given graph G a minimum-size subset S
of V (G) such that the graph G − S obtained from G by removing S has the property Π.
Important examples of Π-deletion problems are the feedback vertex set problem, the odd
cycle transversal problem, or the problem of hitting all minors or topological minors from a
given list F . Also, many elimination distance problems recently studied [5] in parameterized
algorithmics can be expressed in MSO. However, as we have seen, this expressiveness comes
at the price of algorithmic intractability already on very restricted graph classes. This cannot
be a surprise as e.g. the Hamiltonian path problem is NP-complete already on planar graphs
of maximum degree 3 [6].

First-order logic (FO) is much weaker than MSO and consequently, the model-checking
problem can be solved efficiently on much more general graph classes. FO model-checking is
fixed-parameter tractable on a subgraph-closed class C if and only if C is nowhere dense [18]
and a recent breakthrough result showed that it is fixed-parameter tractable on a class C of
ordered graphs if and only if C has bounded twin-width [3]. FO is weaker than MSO but it can
still express many important problems such as the independent set problem and dominating
set problem parameterized by solution size, the Steiner tree problem parameterized by the
number of Steiner vertices, and many more problems. On the other hand, first-order logic
cannot even express the algorithmically extremely simple problem of whether a graph is
connected. Also, the other algorithmic problems mentioned before are not expressible in FO,
even though some of them are fixed-parameter tractable on general graphs. For example,
we can efficiently test for a fixed minor or topological minor and solve the disjoint paths
problem [26]. Many Π-deletion problems are fixed-parameter tractable, see e.g. [9, 14, 25],
as well as many elimination distance problems [1, 12].

The fact that first-order logic can only express local properties is classically addressed by
adding transitive-closure or fixed-point operators, see e.g. [10, 16, 22]. Unfortunately, this
again comes at the price of intractable model-checking for very restricted graph classes. For
example, even the model-checking problem for the very restricted monadic transitive-closure
logic TC1 studied by Grohe [17], is AW[⋆]-hard on planar graphs of maximum degree at
most 3 [17, Theorem 7.3]. Also, these logics fall short of being able to express all of the
above mentioned algorithmic graph problems studied in recent parameterized algorithmics.

This motivates our present work in which we enrich first-order logic with basic connectivity
predicates. The extensions are tailored to express algorithmic graph properties that are
studied in recent parameterized algorithmics. We can add the atomic predicate conn0(x, y)
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that evaluates to true on a graph G if (the valuations of) x and y are connected in G. This
predicate easily generalizes to directed graphs but for simplicity, we work with undirected
graphs only. Of course, with this predicate we can express connectivity of graphs, however,
it falls short of expressing other interesting properties, e.g. it cannot express that a graph is
acyclic. We hence introduce more general predicates connk(x, y, z1, . . . , zk), parameterized by
a number k, that evaluate to true on a graph G if (the valuations of) x and y are connected
in G once (the valuations of) z1, . . . , zk have been deleted. The interplay of these predicates
with the usual nesting of first-order quantification makes the new logic FO + conn already
quite powerful. For example, we can express simple properties such as 2-connectivity by
∀z∀x∀y

(
x ̸= z ∧ y ≠ z → conn1(x, y, z)

)
. We can also express many deletion problems, such

as the feedback vertex set problem, and the elimination distance to bounded degree, and
more generally, elimination distance to any fixed first-order property.

We also point to the work of Mikołaj Bojańczyk [2], who independently introduced
FO + conn and proposed the name separator logic. He studied a variant of star-free expressions
for graphs and showed that these expressions exactly correspond to separator logic. We
follow his suggestion and thank Mikołaj for the discussion on separator logic.

In Section 3 we study the expressive power of separator logic. We give examples on
properties expressible with separator logic as well as proofs that certain properties, such
as planarity and in particular the disjoint paths problem, are not expressible in separator
logic. We show that (k + 2)-connectivity of a graph cannot be expressed with only connk

predicates and conclude that the restricted use of these predicates induces a natural hierarchy
of expressiveness.

Using the notion of block decompositions together with known model-checking results, one
can show that model-checking for formulas using only conn1 predicates is fixed-parameter
tractable on nowhere dense classes of graphs. Hence, we can evaluate very simple connectivity
queries in formulas without an increase in the complexity of the model-checking problem
on subgraph-closed graph classes. On the other hand, when we allow conn2 predicates,
there are some simple graph classes that do not exclude a topological minor, and on which
model-checking becomes AW[⋆]-hard. In this paper, we do not go into the details of model-
checking, but in a companion paper [24], we prove that in fact model-checking for FO + conn
is fixed-parameter tractable on graph classes that exclude a topological minor.

The fact that planarity and the disjoint paths problem cannot be expressed in separator
logic motivates us to define an even stronger logic that can express these properties. The
atomic predicate disjoint-pathsk[(x1, y1), . . . , (xk, yk)] evaluates to true if and only if there
are internally vertex-disjoint paths between (the valuations of) xi and yi for all 1 ≤ i ≤ k.
Connectivity of x and y can be tested by disjoint-paths1[(x, y)]. More generally, the so
obtained disjoint-paths logic FO + DP strictly extends separator logic. With this more
powerful logic, we can test if a graph contains a fixed minor or topological minor, and in
particular, test for planarity. In combination with first-order quantification, we can also
express many Π-deletion problems such as the problem of hitting all minors or topological
minors from a given list F . On the other hand, we cannot express the odd cycle transversal
problem, as we cannot even express bipartiteness of a graph. We study the expressive power
of FO + DP in Section 4. Among other results, we prove that again an increase in the number
of disjoint paths in the predicates leads to an increase in expressive power.

Note that while it would be desirable to be able to express bipartiteness, which is
equivalent to 2-colorability, it is not desirable to express general colorability problems, as
we aim for logics that are tractable on planar graphs and beyond, while the 3-colorability
problem is NP-complete on planar graphs. This example shows again that it is a delicate
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balance between expressiveness and tractability and it will be a challenging and highly
interesting problem in future work to find the right set of predicates to express even more
algorithmic graph properties while at the same time having tractable model-checking. Until
now the complexity of the model-checking problem for FO + DP has remained elusive and
will be a very interesting problem in future work.

We conclude the paper in Section 5 with a comparison between the newly introduced
logics and more established ones, like MSO and transitive-closure logics.

2 Preliminaries

Graphs. In this paper we deal with finite and simple undirected graphs. Let G be a graph.
We write V (G) for the vertex set of G and E(G) for its edge set. For a set X ⊆ V (G) we
write G[X] for the subgraph of G induced by X and G − X for the subgraph induced by
V (G) \X. For a singleton set {v} we write G− v instead of G− {v}. A path P in G is a
subgraph on distinct vertices v1, . . . , vt with {vi, vi+1} ∈ E(P ) for all 1 ≤ i < t and a path P
is said to connect its endpoints v1 and vt. Two paths are internally vertex-disjoint if and
only if every vertex that appears in both paths is an end point of both paths. The graph G

is connected if every two of its vertices are connected by a path. It is k-connected if G has
more than k vertices and G − X is connected for every subset X ⊆ V (G) of size strictly
smaller than k. A cycle C in G is a subgraph on distinct vertices v1, . . . , vt, t ≥ 3, with
{vt, v1} ∈ E(C) and {vi, vi+1} ∈ E(C) for all 1 ≤ i < t. An acyclic graph is a forest and a
connected acyclic graph is a tree.

A graph H is a minor of G, denoted H ≼ G, if for all v ∈ V (H) there are pairwise
vertex-disjoint connected subgraphs Gv of G such that whenever {u, v} ∈ E(H), then there
are x ∈ V (Gu) and y ∈ V (Gv) with {x, y} ∈ E(G). The graph H is a topological minor
of G, denoted H ≼top G, if for all v ∈ V (H) there is a distinct vertex xv in G and for all
{u, v} ∈ E(H) there are internally vertex-disjoint paths Puv in G with endpoints xu and xv.
A graph is planar if and only if it does not contain K5, the complete graph on 5 vertices,
and K3,3, the complete bipartite graph with two partitions of size 3, as a minor.

Logic. In this work we deal with structures over purely relational signatures. A (purely
relational) signature is a collection of relation symbols, each with an associated arity. Let σ
be a signature. A σ-structure A consists of a non-empty set A, the universe of A, together
with an interpretation of each k-ary relation symbol R ∈ σ as a k-ary relation RA ⊆ Ak. For
a subset X ⊆ A we write A[X] for the substructure induced by X. A partial isomorphism
between σ-structures A and B is an isomorphism between A[X] and B[Y ] for some subset
X ⊆ A of the universe A of A and some subset Y ⊆ B of the universe B of B.

We assume an infinite supply Var of variables. First-order formulas are built from the
atomic formulas x = y, where x and y are variables, and R(x1, . . . , xk), where R ∈ σ is a
k-ary relation symbol and x1, . . . , xk are variables, by closing under the Boolean connec-
tives ¬, ∧ and ∨, and by existential and universal quantification ∃x and ∀x. A variable x not
in the scope of a quantifier is a free variable. A formula without free variables is a sentence.
The quantifier rank qr(φ) of a formula φ is the maximum nesting depth of quantifiers in φ.
We write FOσ[q] for the set of all FO σ-formulas of quantifier rank at most q, or simply FO[q]
if σ is clear from the context. A formula without quantifiers is called quantifier-free.
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If A is a σ-structure with universe A, then an assignment of the variables in A is a
mapping ā : Var → A. We use the standard notation (A, ā) |= φ(x̄) or A |= φ(ā) to indicate
that φ is satisfied in A when the free variables x̄ of φ have been assigned by ā. We refer e.g.
to the textbook [22] for more background on first-order logic.

3 Separator logic

In this section, we study the expressive power of separator logic FO + conn. Formally,
we assume that σ is a signature that does not contain any of the relation symbols connk

for all k ≥ 0, and that it does contain a binary relation symbol E, representing an edge
relation. We assume that E is always interpreted as an irreflexive and symmetric relation
and connectivity will always refer to this relation. We let σ + conn := σ ∪ {connk : k ≥ 0},
where each connk is a (k + 2)-ary relation symbol.

▶ Definition 3.1. The formulas of (FO + conn)[σ] are the formulas of FO[σ + conn]. We
usually simply write FO + conn, when σ is understood from the context.

For a σ-structure A, an assignment ā and an FO + conn formula φ(x̄), we define
the satisfaction relation (A, ā) |= φ(x̄) as for first-order logic, where an atomic predic-
ate connk(x, y, z1, . . . , zk) is evaluated as follows. Assume that the universe of A is A

and let G = (A,EA) be the graph on vertex set A and edge set EA. Then (A, ā) models
connk(x, y, z1, . . . , zk) if and only if ā(x) and ā(y) are connected in G− {ā(z1), . . . , ā(zk)}.

Note in particular that if ā(x) = ā(zi) or ā(y) = ā(zi) for some i ≤ k, then
(A, ā) ̸|= connk(x, y, z1, . . . , zk).

We write FO + connk for the fragment of FO + conn that uses only connℓ predicates
for ℓ ≤ k. The quantifier rank of an FO + conn formula is defined as for plain first-order
logic. For structures A with universe A and ā ∈ Am and B with universe B and b̄ ∈ Bm,
we write (A, ā) ≡conn (B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + conn formulas, that
is, for all φ(x̄) we have A |= φ(ā) ⇔ B |= φ(b̄). Similarly, we write (A, ā) ≡connk

(B, b̄) and
(A, ā) ≡connk,q

(B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + connk formulas and the same
FO + connk formulas of quantifier rank at most q, respectively.

3.1 Expressive power of separator logic

We now give examples of properties that are expressible with separator logic.

▶ Example 3.2. Connectivity is expressible in FO + conn0 by the formula

∀x∀y
(
conn0(x, y)

)
.

More generally, for every non-negative integer k, (k+ 1)-connectivity can be expressed by
the formula

∀x∀y∀z1 . . . ∀zk

( ∧
1≤i≤k

(x ̸= zi ∧ y ̸= zi) → connk(x, y, z1, . . . , zk)
)
.

CSL 2022



34:6 First-Order Logic with Connectivity Operators

▶ Example 3.3. We can express that there exists a cycle by

∃x∃y
(
E(x, y) ∧ ∃z

(
conn1(z, x, y) ∧ conn1(z, y, x)

))
,

hence, that a graph is acyclic by the negation of that formula. We write ψacyclic for that
formula. We can express that a graph is a tree by stating that it is connected and acyclic.

We can conveniently express deletion problems by relativizing formulas as follows. For
a formula φ that does not contain z as a free variable write del(z)[φ] for the formula
obtained from φ by recursively replacing every subformula ∃xψ by ∃x(x ̸= z ∧ ψ), every
subformula ∀xψ by ∀x(x ̸= z → ψ) and every atomic formula connk(x, y, z1, . . . , zk) by
connk+1(x, y, z1, . . . , zk, z). Then (A, ā) |= del(z)[φ] if and only if (A − ā(z), ā) |= φ, where
A − ā(z) denotes the substructure induced on the universe of A without ā(z).

▶ Example 3.4. We can state the existence of a feedback vertex set of size k by

∃z1del(z1)[· · · [∃zkdel(zk)[ψacyclic] . . .].

We can of course use the same principle to express any Π-deletion problem that is
FO + conn expressible.

We can also, much more generally, express many elimination distance problems.

▶ Example 3.5. The elimination distance to a class C of graphs measures the number
of recursive deletions of vertices needed for a graph G to become a member of C . More
precisely, a graph G has elimination distance 0 to C if G ∈ C , and otherwise elimination
distance at most k + 1 if in every connected component of G we can delete a vertex such
that the resulting graph has elimination distance at most k to C . Elimination distance was
introduced by Bulian and Dawar [5] in their study of the parameterized complexity of the
graph isomorphism problem and has recently obtained much attention in the literature, see
e.g. [1, 4, 13, 19, 20, 23].

Again, we define auxiliary notation. We write comp(x) for the connected component of
(the valuation of) x. For a formula φ we write φ[comp(x)] for the formula obtained from φ by
recursively replacing all subformulas ∃yψ by ∃y(conn0(x, y) ∧ ψ) and all subformulas ∀yψ by
∀y(conn0(x, y) → ψ). Then (A, ā) |= φ[comp(x)] if and only if (A[comp(ā(x))], ā) |= φ, where
A[comp(ā(x))] denotes the substructure induced on the connected component of ā(x).

Now assume C is a first-order definable class, say defined by a formula ψC . Then
elimination distance 0 to C is defined by ed0 = ψC . If edk has been defined, then we can
express elimination distance k + 1 to C by the formula

edk+1 := edk ∨ ∀x
(
∃y del(y)[edk]

)[comp(x)]
.

Our final example concerns the expressive power of separator logic on finite words
and finite trees. By the classical result of Büchi, a language on words is regular if and
only if it is definable in MSO. Here, words are represented as finite structures over the
vocabulary of the successor relation and unary predicates representing the letters of the
alphabet. When considering first-order logic on strings, it makes a big difference whether
one considers word structures over the successor relation or over its transitive closure, the
order relation. Languages definable by FO over the order relation are exactly the star-free
languages (see e.g. [22, Theorem 7.26]), while languages definable by FO over the successor
relation are exactly the locally threshold testable languages [27, Theorem 4.8]. Similarly,
MSO on trees can define exactly the tree regular languages (defined via tree automata,
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see [22, Theorem 7.30]), while FO can only define a proper subclass of the regular tree
languages when the ancestor-descendant or even only the parent-child relation is present.
This background was also the motivation of Bojańczyk, who studied a variant of star-free
expressions for graphs and showed that these expressions exactly correspond to separator
logic [2]. In our example, we show that separator logic on rooted trees has exactly the
same expressive power as first-order logic in the presence of the ancestor-descendant relation.
Let us write FO[<] for the latter logic. On the other hand, we treat a rooted tree as a
graph-theoretic tree with an additional unary predicate marking the root. In the degenerate
case, we treat a word as a path, where one of the endpoints is marked by a unary predicate
as the smallest vertex (the beginning of the word).

▶ Example 3.6. On rooted trees (and similarly on words) FO + conn collapses to FO + conn1
and has exactly the same expressive power as FO[<] over trees with the ancestor-descendant
relation. We show first that connk(x, y, z1, . . . , zk) can be expressed in FO[<]. For this,
we need to ensure that x and y are not equal to any zi and that no zi lies on the
unique path between x and y in the tree. We can define the vertices on the unique path
between x and y by first defining the least common ancestor of x and y by the formula
lca(x, y, z) = z ≤ x∧z ≤ y∧¬∃z′(z < z′ ∧z′ ≤ x∧z′ ≤ y). If z is the least common ancestor
of x and y, it remains to state that none of the zi lies either between x and z or between y

and z, which is done by the formula ∃z
(
lca(x, y, z) ∧

∧
1≤i≤k ¬(z ≤ zi ≤ x ∨ z ≤ zi ≤ y)

)
.

Conversely, we show that we can define with FO + conn1 the ancestor-descendant relation
in rooted trees. Assume the root is marked by the unary symbol R. Then x < y is equivalent
to ∃r

(
R(r) ∧ conn1(x, r, y) ∧ ¬conn1(y, r, x)

)
.

3.2 The limits of separator logic
We now study the limits of separator logic and show that planarity cannot be expressed in
FO + conn. Slightly abusing notation let us also write FO + connk for the properties that
are expressible in FO + connk. We show that there is a strict hierarchy of expressiveness:
FO + conn0 ⊊ FO + conn1 ⊊ FO + conn2 ⊊ . . . These results are based on an adaptation of
the standard Ehrenfeucht-Fraïssé game (EF game), which is commonly used in the study of
the expressive power of first-order logic.

Ehrenfeucht-Fraïssé Games. The Ehrenfeucht-Fraïssé game is played by two players called
Spoiler and Duplicator. Given two structures A and B, Spoiler’s aim is to show that the
structures can be distinguished by first-order logic (with formulas of a given quantifier rank),
while Duplicator wants to prove the opposite. The q-round EF game proceeds in q rounds,
where each round consists of the following two steps.
1. Spoiler picks an element a ∈ A or an element b ∈ B.
2. Duplicator responds by picking an element of the other structure, that is, she picks a

b ∈ B if Spoiler chose a ∈ A, and she picks an a ∈ A if Spoiler chose b ∈ B.

After q rounds, the game stops. Assume the players have chosen ā = a1, . . . , aq and
b̄ = b1, . . . , bq. Then Duplicator wins if the mapping ai 7→ bi for all 1 ≤ i ≤ q is a partial
isomorphism of A and B. We write for short ā 7→ b̄ for this mapping. Otherwise, Spoiler
wins. We say that Duplicator wins the q-round EF game on A and B if she can force a win
no matter how Spoiler plays. We then write A ≃q B.

▶ Theorem 3.7 (Ehrenfeucht-Fraïssé, see e.g. [22, Theorem 3.18]). Let A and B be two
σ-structures where σ is purely relational. Then A ≡q B if and only if A ≃q B.

CSL 2022
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The EF game for FO naturally extends to separator logic. The (connk,q)-game is played
just as the q-round EF game, but the winning condition is changed as follows. If in q rounds
the players have chosen ā = a1, . . . , aq and b̄ = b1, . . . , bq, then Duplicator wins if
1. the mapping ā 7→ b̄ is a partial isomorphism of A and B, and
2. for every ℓ ≤ k and every sequence (i1, . . . , iℓ+2) of numbers in {1, . . . , q} we have

A |= connℓ(ai1 , . . . , aiℓ+2) ⇐⇒ B |= connℓ(bi1 , . . . , biℓ+2).

Otherwise, Spoiler wins. We say that Duplicator wins the (connk,q)-game on A and B if
she can force a win no matter how Spoiler plays. We then write A ≃connk,q

B.
By following the lines of the proof of the classical Ehrenfeucht-Fraïssé Theorem we can

prove the following theorem.

▶ Theorem 3.8. Let A and B be two σ-structures where σ is purely rational (and contains a
binary relation symbol E that is interpreted on both structures as an irreflexive and symmetric
relation). Then A ≡connk,q

B if and only if A ≃connk,q
B.

The next theorem exemplifies the use of the (connk,q)-game.

▶ Theorem 3.9. Planarity is not expressible in FO + conn.

v1,1 v2,1

v1,2 v2,2

v1,n v2,n

g−3 g−2

g−1 g0

(a) Gq

v′
1,1 v′

2,1

v′
1,2 v′

2,2

v′
1,n v′

2,n

h−3 h−2

h−1h0

(b) Hq

Figure 1 Planarity is not expressible in FO + conn.

Proof. Assume planarity is expressible by a sentence φ of FO + connk of quantifier rank q.
Without loss of generality, we may assume that k ≤ q, as otherwise, we have repetitions in
the connk predicates that can be avoided by using connℓ predicates for ℓ < k. Let Gq and Hq

be defined as shown in Figure 1, where n = 2q+1. Then, Gq is planar but Hq embeds only in
a surface of genus one (into the Möbius strip, which cannot be embedded into the plane).
We show that Gq ≃connk,q

Hq, contradicting the assumption that φ must distinguish Gq

and Hq. In fact, we prove an even stronger statement by giving Spoiler four free moves
g−3 = v1,1, g−2 = v2,1, g−1 = v1,n and g0 = v2,n in Gq and forcing Duplicator to respond
with the vertices h−3 = v′

1,1, h−2 = v′
2,1, h−1 = v′

2,n and h0 = v′
1,n in Hq. Note the twist in

the last two vertices. These extra moves are helpful to define Duplicator’s winning strategy.
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We define the x-distance of two nodes vi,j and vk,ℓ as dx(vi,j , vk,ℓ) = |i − k| and the
y-distance as dy(vi,j , vk,ℓ) = |j − ℓ|. Note that the y-distance is not the distance in the
graphs, e.g. dy(g−3, g−1) = 2q+1 − 1, even though g−3 and g−1 are adjacent in Gq.

Assume now that the first i moves have been made in the game and the players have
selected the vertices ḡ = (g−3, . . . , g0, g1, . . . , gi) in Gq (where g1, . . . , gi were freely chosen
by the players), and h̄ = (h−3, . . . , h0, h1, . . . , hi) in Hq (where h1, . . . , hi were freely chosen
by the players). We prove by induction that Duplicator can play in such a way that after
round i of the (connk,q)-game the following conditions hold for all −3 ≤ j, ℓ ≤ i:
1. if gj = vx,y, then hj = v′

x′,y, that is, corresponding pebbles are in the same row, and in
particular dy(gj , gℓ) = dy(hj , hℓ), and

2. if dy(gj , gℓ) ≤ 2q−i, then dx(gj , gℓ) = dx(hj , hℓ).

These conditions together with the first four extra moves imply that the mapping ḡ 7→ h̄

is a partial isomorphism of Gq and Hq. Let us show that also for every 0 ≤ ℓ ≤ k and every
sequence (i1, . . . , iℓ+2) of numbers in {−3, . . . , i} we have Gq |= connℓ(gi1 , . . . , giℓ+2) if and
only if Hq |= connℓ(hi1 , . . . , hiℓ+2). Assume Gq |= connℓ(gi1 , . . . , giℓ+2), that is, gi1 and gi2

are connected after the deletion of gi3 , . . . , giℓ+2 , say by a path P = vx1,y1 . . . vxm,ym , where
vx1,y1 = gi1 and vxm,ym

= gi2 . Then there are no gij1
= vx,y and gij2

= vx′,y′ (for j1, j2 ≥ 3)
with y = y′ = yi and x ̸= x′ for some 2 ≤ i ≤ m − 1 (this would block a row along which
the path goes, which is not possible) and no gij1

= vx,y and gij2
= vx′,y′ (for j1, j2 ≥ 3)

with yi = y = y′ − 1 = yi+1 − 1 and x ̸= x′ for some 2 ≤ i ≤ m − 1 (this would block a
“diagonal” of which the path contains at least one vertex, which is not possible). By the
first condition of the invariant there are no hij1

= vx,y and hij2
= vx′,y′ (for j1, j2 ≥ 3) with

y = y′ = yi and x ̸= x′ for some 2 ≤ i ≤ m− 1 and by the second condition of the invariant
there are no hij1

= vx,y and hij2
= vx′,y′ (for j1, j2 ≥ 3) with yi = y = y′ − 1 = yi+1 − 1 and

x ̸= x′ for some 2 ≤ i ≤ m− 1. Now, if P ′ = v′
x1,y1

. . . v′
xm,ym

is not a path from hi1 to hi2

after the deletion of hi3 , . . . , giℓ+2 , it is possible to reroute the path by switching the row
appropriately, as the hij

never block a complete row or a diagonal, as shown above. The
case Hq |= connℓ(hi1 , . . . , hiℓ+2) is symmetrical.

We now show that Duplicator can maintain this invariant throughout the game. For
the initial configuration i = 0, the conditions are obviously fulfilled for −3 ≤ j, ℓ ≤ 0.
Corresponding pebbles are in the same row and note that dy(gj , gℓ) = 2q+1 − 1, for
j ∈ {−3,−2} and ℓ ∈ {−1, 0} and analogously for hj and hℓ.

For the induction step, suppose that the conditions are fulfilled so far and that Spoiler is
making his (i+ 1)-move in Gq (the case of Hq is symmetrical). We may assume that Spoiler
does not choose a vertex that was chosen before, say Spoiler picks gi+1 = v_,a. Duplicator
must choose hi+1 = v′

_,a with the same y-coordinate. We have to make sure that she can
choose the vertex with that y-coordinate satisfying the second condition. Let gj = v_,b and
gℓ = v_,c with −3 ≤ j, ℓ ≤ i be such that b ≤ a ≤ c and there is no other gk = v_,d with
b < d < c. Intuitively, gj is the lowest pebble that was placed above (or in the same row
as) gi+1, while gk is the highest pebble that was placed below (or in the same row as) gi+1.
There are two cases:
1. dy(gj , gℓ) ≤ 2q−i: Then by hypothesis, dx(hj , hℓ) = dx(gj , gℓ) and dy(hj , hℓ) = dx(gj , gℓ).

Here, Duplicator chooses the unique hi+1 = v′
_,a such that dx(hj , hi+1) = dx(gj , gi+1),

and we have dx(hℓ, hi+1) = dx(gℓ, gi+1).
2. dy(gj , gℓ) > 2q−i: Then dy(hj , hℓ) > 2q−i and there are three possibilities:

dy(gj , gi+1) ≤ 2q−(i+1): Then dy(gℓ, gi+1) > 2q−(i+1), and Duplicator chooses
hi+1 = v′

_,a such that dx(hj , hi+1) = dx(gj , gi+1). Hence, dy(hℓ, hi+1) > 2q−(i+1).
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dy(gℓ, gi+1) ≤ 2q−(i+1): Then dy(gj , gi+1) > 2q−(i+1). Similarly to the previous case,
Duplicator chooses hi+1 = v′

_,a such that dx(hℓ, hi+1) = dx(gℓ, gi+1). Consequently,
dy(hj , hi+1) > 2q−(i+1).
dy(gj , gi+1) > 2q−(i+1) and dy(gℓ, gi+1) > 2q−(i+1): Here, Duplicator can choose
hi+1 = v′

1,a or hi+1 = v′
2,a as she wants. We get that dy(hj , hi+1) ≥ 2q−(i+1) and

dy(hℓ, hi+1) ≥ 2q−(i+1).

Thus, in all cases, the conditions are fulfilled and Duplicator wins the (connk,q)-game on
Gq and Hq. Hence, planarity is not definable in FO + conn. ◀

As a graph is planar if and only if it excludes K5 and K3,3 as (topological) minors and
we will show that this can be expressed using disjoint paths predicates, we conclude that the
disjoint paths predicate cannot be expressed with FO + conn.

▶ Corollary 3.10. The disjoint paths problem cannot be expressed in FO + conn.

The proof of the next theorem is deferred to the next section, as it is a consequence of
the fact that the even stronger logic FO + DP cannot express bipartiteness (Theorem 4.7).

▶ Theorem 3.11. Bipartiteness cannot be expressed in FO + conn.

Finally, we show that the FO+connk hierarchy is strict by proving that (k+2)-connectivity
cannot be expressed by FO+connk. On the other hand, (k+2)-connectivity can be expressed
by FO + connk+1 (Example 3.2).

▶ Theorem 3.12. (k + 2)-connectivity cannot be expressed by FO + connk. In particular,
the FO + connk hierarchy is strict, that is, FO + conn0 ⊊ FO + conn1 ⊊ . . .

Proof. Let k be an integer. For every integer q, we choose two graphs Gq and Hq such that:
Gq is connected,
Hq is not connected, and
Gq ≃q Hq.

This is possible, as connectivity is not first-order definable and ≃q has only finitely many
equivalence classes.

Then, we define the graph Gk
q (resp. Hk

q ) as the disjoint union of Gq (resp. Hq) and Kk+1,
a clique of size k+ 1, and connect the vertices of the clique with all vertices of Gq (resp. Hq),
that is, we add the additional edges such that (x, y) ∈ E(Gk

q ) (resp. (x, y) ∈ E(Hk
q )) if

x ∈ Gq (resp. x ∈ Hq) and y ∈ Kk+1. Obviously, Gk
q is (k + 2)-connected (the deletion of

any k + 1 vertices cannot disconnect Gk
q ), while Hk

q is not (k + 2)-connected (the deletion of
the copy of Kk+1 disconnects Hk

q ).
The same argument shows that every connk(x, y, z1, . . . , zk) can be expressed by an

atomic plain first-order formula: in both graphs (the valuations of) x and y are not connected
after the deletion of (the valuations of) z1, . . . , zk if and only if x or y is equal to one of the zi.
Hence, to prove Gk

q ≃connk,q
Hk

q it suffices to prove Gk
q ≃q H

k
q , and this finishes the proof.

▷ Claim 3.13. For all integers q, k we have Gk
q ≃q H

k
q .

Proof. The following is obviously a winning strategy for Duplicator in the q-round EF game
on Gk

q and Hk
q . If Spoiler plays a pebble in the subgraph Gq or Hq, Duplicator can respond

by a pebble in the subgraph Hq or Gq according to the winning strategy of Duplicator in
the EF game on Gq and Hq. Otherwise, if Spoiler picks a pebble in the subgraph Kk+1 of
Gk

q or Hk
q , Duplicator can respond by a pebble in the subgraph Kk+1 of the other graph Hk

q

or Gk
q . ◁

This concludes the proof of Theorem 3.12. ◀
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4 Disjoint-paths logic

In this section, we study the expressive power of disjoint-paths logic FO + DP. We again
fix a signature σ that does not contain the symbol disjoint-pathsk for any k ≥ 1 and that
does contain a binary (edge) relation symbol E. The disjoint paths predicates will always
refer to this relation. We let σ + disjoint-paths := σ ∪ {disjoint-pathsk : k ≥ 1}, where each
disjoint-pathsk is a 2k-ary relation symbol.

▶ Definition 4.1. The formulas of (FO + DP)[σ] are the formulas of FO[σ + disjoint-paths].
We usually simply write FO + DP, when σ is understood from the context.

For a σ-structure A, an assignment ā and an FO + DP formula φ(x̄), we define the
satisfaction relation (A, ā) |= φ(x̄) as for first-order logic, where an atomic predicate
disjoint-pathsk[(x1, y1), . . . (xk, yk)] is evaluated as follows. Assume that the universe of A
is A and let G = (A,EA) be the graph on vertex set A and edge set EA. Then (A, ā) models
disjoint-pathsk[(x1, y1), . . . , (xk, yk)] if and only if in G there exist k internally vertex-disjoint
paths P1, . . . , Pk, where Pi connects ā(xi) and ā(yi).

As previously mentioned, it is natural to consider these predicates for both undirected
and directed graphs. We will, however, in this work only study the undirected case.

We write FO + DPk for the fragment of FO + DP that uses only disjoint-pathsℓ predicates
for ℓ ≤ k. The quantifier rank of an FO + DP formula is defined as for plain first-order
logic. For structures A with universe A and ā ∈ Am and B with universe B and b̄ ∈ Bm,
we write (A, ā) ≡DP (B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + DP formulas, that is,
for all φ(x̄) we have A |= φ(ā) ⇔ B |= φ(b̄). Similarly, we write (A, ā) ≡DPk

(B, b̄) and
(A, ā) ≡DPk,q

(B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + DPk formulas and the same
FO + DPk formulas of quantifier rank at most q, respectively.

4.1 Expressive power of disjoint-paths logic
We now study the expressive power of disjoint-paths logic.

▶ Observation 4.2. FO + conn ⊆ FO + DP because connk(x, y, z1, . . . , zk) is equivalent to
disjoint-pathsk+1[(x, y), (z1, z1), . . . , (zk, zk)] ∧

∧
i≤k

(zi ̸= x ∧ zi ̸= y).

Moreover, the inclusion is strict because planarity is not expressible in FO + conn as seen
in Corollary 3.10. We show that planarity and in fact the property that a graph contains a
fixed (topological) minor can be expressed in FO + DP.

▶ Example 4.3. For every fixed graph H, there is an FO + DP formula φtop
H such that

G |= φtop
H if and only if H ≼top G.

Let n,m, ℓ respectively be the number of vertices, edges, and isolated vertices in H. Let
x1, . . . xn be n variables. Let e1, . . . , em be the list of edges of H, and let vjs

and vjt
be the

two endpoints of ej . Finally, let vi1 , . . . , viℓ
be the isolated vertices of H. Then,

φtop
H := ∃x1, . . . xn

( ∧
i̸=j

xi ̸= xj ∧

disjoint-paths[(xe1s
, xe1t

), . . . (xems
, xemt

), (xi1 , xi1), . . . (xiℓ
, xiℓ

)]
)
.

▶ Example 4.4. For every fixed graph H, there is an FO + DP formula φH such that
G |= φH if and only if H ≼ G. This is because, for every graph H, there exists a finite family
of graphs H1, . . . ,Hℓ such that H ≼ G if and only if there is an i ≤ ℓ such that Hi ≼top G.
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This family can be obtained by considering all possibilities of replacing every branch set
representing a vertex of H of degree d ≥ 3 with a tree with at most d leaves and hardcoding
their shapes by disjoint paths.

▶ Example 4.5. Planarity can be expressed in FO + DP. This is a corollary of the previous
example, using the formula φplanar := ¬φK5 ∧ ¬φK3,3 .

4.2 The limits of disjoint-paths logic
We now study the limits of disjoint-paths logic and show that bipartiteness cannot be
expressed in FO + DP. We also show that the hierarchy on (FO + DPk)k≥1 is strict. These
results are based again on an adaptation of the standard Ehrenfeucht-Fraïssé game.

The (DPk,q)-game is played just as the q-round EF game, but the winning condition is
changed as follows. If in q rounds the players have chosen ā = a1, . . . , aq and b̄ = b1, . . . , bq,
then Duplicator wins if

1. the mapping ā 7→ b̄ is a partial isomorphism of A and B, and
2. for every ℓ ≤ k and every sequence (i1, . . . , i2ℓ) of numbers in {1, . . . , q} we have

A |= disjoint-paths[(ai1 , ai2), . . . , (ai2ℓ−1 , ai2ℓ
)]

⇐⇒ B |= disjoint-paths[(bi1 , bi2), . . . , (bi2ℓ−1 , bi2ℓ
)].

Otherwise, Spoiler wins. We say that Duplicator wins the (DPk,q)-game on A and B if
she can force a win no matter how Spoiler plays. We then write A ≃DPk,q

B.
By following the lines of the proof of the classical Ehrenfeucht-Fraïssé Theorem we can

prove the following theorem.

▶ Theorem 4.6. Let A and B be two σ-structures where σ is purely rational (and contains a
binary relation symbol E that is interpreted on both structures as an irreflexive and symmetric
relation). Then A ≡DPk,q

B if and only if A ≃DPk,q
B.

▶ Theorem 4.7. Bipartiteness is not definable in FO + DP.

Proof. Let q be an integer, and let G be a cycle graph with 2q vertices and H a cycle graph
with 2q + 1 vertices. Then, G is bipartite because it has an even number of vertices, and H

is not bipartite because it has an odd number of vertices. We want to show that G ≃DPk,q
H

by induction over q.
We define the distance d(x, y) of two vertices x and y as the length of the shortest path

between x and y.
Let ḡ = (g1, . . . , gi) be the first i moves in G and similarly h̄ = (h1, . . . , hi) the first i

moves in H. We can prove by induction that Duplicator can play in such a way that after
round i of the (DPk,q)-game the following conditions hold for all j, ℓ ≤ i:
1. If d(gj , gℓ) < 2q−i+1, then d(gj , gℓ) = d(hj , hℓ).
2. If d(gj , gℓ) ≥ 2q−i+1, then d(hj , hℓ) ≥ 2q−i+1.
3. The pebbles are placed in G and H with the same “circular order”.
By the first two conditions, the partial isomorphism ḡ 7→ h̄ can be ensured. Furthermore,
the third condition implies that the second condition for Duplicator’s win is also satisfied.

The base case i = 1 of the induction is trivial because d(g1, g1) = d(h1, h1) = 0.
For the induction step, suppose that G ≃DPk,i

H holds and Spoiler is making his (i+1)-st
move in G. The case of H is equivalent.

If Spoiler picks gj for some j ≤ i, a pebble that was already played before, Duplicator can
choose hj , and the conditions are fulfilled by the induction hypothesis. Otherwise, Spoiler
picks a pebble gi+1 that wasn’t played before. Now we have to differentiate two cases:
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Figure 2 FO + DP hierarchy is strict.

1. There is only one other pebble that was already played, gj = g1, j ≤ i. Then, we can find
hi+1 such that d(h1, hi+1) = d(g1, gi+1).

2. gi+1 lies on the shortest path of gj and gℓ with j, ℓ ≤ i such that there is no other gn, n ≤ i

that lies on this path. Then, there are two possibilities:
d(gj , gℓ) < 2q−i+1: Then d(hj , hℓ) < 2q−i+1 and we can find hi+1 on the shortest path
of hj and hℓ such that d(hj , hi+1) = d(gj , gi+1) and d(hi+1, hℓ) = d(gi+1, gℓ).
d(gj , gℓ) ≥ 2q−i+1: Then d(hj , hℓ) ≥ 2q−i+1 and there are three cases:

a. d(gj , gi+1) < 2q−i: Then d(gi+1, gℓ) ≥ 2q−i and we can choose hi+1 on the shortest
path of hj and hℓ such that d(hj , hi+1) = d(gj , gi+1) and d(hi+1, hℓ) ≥ 2q−i.

b. d(gi+1, gℓ) < 2q−i: This case is similar to the previous one.
c. d(gj , gi+1) ≥ 2q−i and d(gi+1, gℓ) ≥ 2q−i: Since d(hj , hℓ) ≥ 2q−i+1, we can find hi+1

with d(hj , hi+1) ≥ 2q−i and d(hi+1, hℓ) ≥ 2q−i in the middle of the shortest path of
hj , and hℓ.

Thus, in all cases, the conditions are fulfilled. This completes the inductive proof. ◀

We now show that the hierarchy on (FO + DPk)k≥1 is strict.

▶ Lemma 4.8. For all integers k ≥ 1, 2k-connectivity is not expressible in FO + DPk.

Proof. Let k be an integer. For every integer q, we define two graphs Gq and Hq such that:
Gq is 2-connected,
Hq is 1-connected but not 2-connected, and
Gq ≃q Hq

For example, take Gq the cycle with 2q+1 many elements, together with an apex vertex,
while Hq is the disjoint union of two cycles with 2q many elements each, together with an
apex vertex (see Figure 2).

We then define Gk
q (resp. Hk

q ) as the lexicographical product of Gq (resp. Hq) with K2k,
the clique with 2k elements. More precisely, if Gq = (V,E), where V = {1, . . . , n}, then
Gk

q := (V ′, E′) where:
V ′ := {v1,1, . . . , v1,2k, . . . , vn,1, . . . , vn,2k}
E′ := {{vi,j , vi′,j′} : i = i′ ∨ (i, i′) ∈ E}.

One can view Gk
q as 2k copies of Gq on top of each other. Vertices are replaced by 2k-cliques,

and edges are replaced by (2k, 2k)-bicliques. A direct consequence of the definition is the
following equivalence.

▷ Claim 4.9. For all integers q, k, we have that Gk
q ≃q H

k
q .
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Proof. Duplicator’s strategy follows the one derived from Gq ≃q Hq. If Spoiler picks a vertex
vi,j ∈ Gk

q , then Duplicator can respond by choosing the vertex vi′,j ∈ Hk
q where vi′ ∈ Hq is

Duplicator’s respond to vi ∈ Gq. ◁

We then show that over Gk
q and Hk

q , the predicate disjoint-pathsk[ ] is always true and
therefore that, for these structures, (FO + DPk)[q] collapses to FO[q].

▷ Claim 4.10. For every integers q, k, for every k-tuples ā, b̄, we have that Gk
q and Hk

q both
model disjoint-pathsk[(a1, b1), . . . , (ak, bk)].

Proof. The proofs for Gk
q and Hk

q are identical, so we only do it for Gk
q . Remember that n is

the number of vertices in Gq. The idea is that each of the k paths uses at most two “copies”
of each vertex of Gq, hence 2k “copies” is enough for all paths to exists. For every i ≤ n, let
Bi := {vi,j : j ≤ 2k}, and Fi := {vi,j : j ≤ 2k ∧ vi,j ̸∈ ā ∧ vi,j ̸∈ b̄}. We call Bi the set
of vertices in position i, and Fi the free vertices in position i. We then compute each path,
starting with (a1, b1).

Let i, j, i′, j′ such that a1 = vi,j and b1 = vi′,j′ . If i = i′, then there is nothing to do as
a1 and b1 are neighbors. Otherwise, note that for every i′′ ≤ n, Fi′′ ̸= ∅, because there are
only 2k − 2 elements among a2, . . . , ak, b2, . . . , bk. Since Gq is a connected graph, there is
a path from i to i′. For every inner node i′′ of this path, we can select a vertex v ∈ Fi′′ .
We can therefore create a path in Gk

q from a1 to b1 where all inner vertices are free vertices.
We then remove these vertices from the sets of free vertices.

Let now 1 < ℓ ≤ k, and let i, j, i′, j′ such that aℓ = vi,j and bℓ = vi′,j′ . We assume that
the first ℓ− 1 paths have already been computed. Observe that here again, if i = i′ there is
nothing to do. Otherwise, we again have that for every i′′, Fi′′ is not empty. This is because
for every s ≤ k, the path from as to bs intersects Bi′′ at most twice (at most once for the inner
vertices, and twice when the two endpoints are both in position i′′). Therefore, we can select a
path in Gq from i to i′ and for each i′′ in this path, pick a vertex v ∈ Fi′′ . ◁

With Claim 4.10, we can replace formulas of (FO + DPk)[q] by formulas of FO[q]. Thanks
to Claim 4.9, Gk

q ≃q H
k
q , we conclude that Gk

q ≃DPk,q
Hk

q . So FO + DPk cannot express
2k-connectivity. Note that this bound is tight for these structures i.e. Gk

q ̸≃DPk+1,q
Hk

q . ◀

▶ Lemma 4.11. The FO + DPk hierarchy is strict, that is, FO + DP1 ⊊ FO + DP2 ⊊ . . .

Proof. Consider the structures in the proof of Lemma 4.8, which are indistinguishable in
FO + DPk. The following sentence of FO + DPk+1 distinguishes Gk

q and Hk
q :

∃a1 . . . ∃bk+1 ¬disjoint-pathsk+1[(a1, b1), . . . , (ak+1, bk+1)]

In Hk
q , pick i such that Hq \ i is not connected (i′ and i′′ two disconnected vertices). Then

pick aj = vi,j if j ≤ k, bj = vi,k+j if j ≤ k, and finally ak+1 = vi′,1, bk+1 = vi′′,1. Intuitively,
this means that the vertices vi,j are “blocked” for every j ≤ 2k by the first k paths and can
therefore not be used for the (k + 1)-st path such that this disjoint path does not exist.

Gk
q does not satisfy the formula because even if we “block” such a clique, there is still a

disjoint path connecting every pair of vertices because Gq is 2-connected. ◀

5 Connection to other logics

In this section, we compare the expressive power of the separator logic and the disjoint-paths
logic with monadic second-order logic and transitive-closure logic. Figure 3 depicts the
connections between these logics.
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5.1 Monadic second-order logic
Monadic second-order logic (MSO1) allows quantification over sets of vertices in addition to
the first-order quantifiers. It has a higher expressive power than first-order logic because for
example connectivity is expressible in MSO1 and every first-order formula can be expressed
with the first-order quantifiers. Connectivity is expressible by

∀R
((

∃xR(x) ∧ ∃x¬R(x)
)

→ ∃x∃y
(
R(x) ∧ ¬R(y) ∧ E(x, y)

))
By an extension of this formula, we can say that a given set S is connected:

conn-set(S) := ∀R
((
R ⊆ S ∧ ∃x R(x) ∧ ∃x (S(x) ∧ ¬R(x))

)
→ ∃x∃y

(
R(x) ∧ ¬R(y) ∧ S(y) ∧ E(x, y)

))
Furthermore, we can express the connectivity operators in MSO1. The connectivity

operator conn0(x, y) can be expressed by:

conn0(x, y) := ∀R
(
R(x) ∧ ∀v∀w

(
(R(v) ∧ E(v, w)) → R(w)

)
→ R(y)

)
and connk(x, y, z1, . . . , zk) using conn-set(S) by:

connk(x, y, z1, . . . , zk) := ∃S
(
conn-set(S) ∧ S(x) ∧ S(y) ∧

∧
i≤k

¬S(zi)
)
.

We can express the disjoint paths predicates disjoint-pathsk[(x1, y1), . . . , (xk, yk)] by:

∃S1, . . . , Sk

( ∧
i≤k

(
Si(xi) ∧ Si(yi) ∧ conn-set(Si)

)
∧

∧
i<j≤k

∀z
((
Si(z) ∧ Sj(z)

)
→

(
(z = xi ∨ z = yi) ∧ (z = xj ∨ z = yj)

)))
Since the disjoint paths operators are expressible in MSO1, FO + DP is included in MSO1.

This inclusion is strict because it is well-known that bipartiteness is expressible in MSO1:

∃R1∃R2

(
∀x

(
R1(x) ↔ ¬R2(x)

)
∧

∧
i≤2

∀x∀y
(
(Ri(x) ∧Ri(y)) → ¬E(x, y)

))
but we showed in Theorem 4.7 that bipartiteness is not expressible in FO + DP.

5.2 Transitive-closure logic
Transitive-closure logic TCi

j is the enrichment of first-order logic with the transitive-closure
operator [TCx̄,ȳφ(x̄, ȳ)] where x̄ and ȳ are tuples of length i and φ is a formula with at
most j free variables other than x̄ and ȳ.

Every FO + connk formula can be expressed in TC1
k because the connk operator can be

expressed with the help of the transitive-closure operator:

connk(x, y, z1, . . . , zk) = [TCv,wE(v, w)∧v ̸= z1 ∧ . . .∧v ̸= zk ∧w ̸= z1 ∧ . . .∧w ̸= zk](x, y)

In fact, TC1
k is more expressible than FO + connk, as it can express bipartiteness [17,

Example 7.2]. On the other hand, 2-connectivity can naturally be expressed in FO + conn1,
but presumably not in TC1

0.

▶ Conjecture 5.1. 2-connectivity cannot be expressed in TC1
0.
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FO FO + conn0 FO + conn1 . . . FO + connk

FO + DP1 FO + DP2 . . . FO + DPk+1

TC1
0 TC1

1
. . . TC1

k

MSO⊊ ⊊ ⊊ ⊊ ⊊

⊊

⊊

⊆ ⊆ ⊆

⊊ ⊊⊂? ⊊

⊊ ⊊ ⊊

≡ ⊊ ⊊

Figure 3 Connections between the logics.

6 Conclusion

We studied first-order logic enriched with connectivity predicates tailored to express al-
gorithmic graph properties that are commonly studied in contemporary parameterized
algorithmics. This yielded separator logic, which can query connectivity after the deletion of
a bounded number of elements, and disjoint-paths logic, which can express the disjoint-paths
problem. We demonstrated a rich expressiveness that arises from the interplay of these
predicates with the nested quantification of first-order logic. We also studied the limits of
expressiveness of these new logics.

In a companion paper, we studied the model-checking problem for separator logic and
proved that it is fixed-parameter tractable parameterized by formula size on classes of graphs
that exclude a fixed topological minor [24]. This yields a powerful algorithmic meta-theorem
for separator logic. On the other hand, while the disjoint-paths problem is fixed-parameter
tractable on general graphs [26], it is not clear that the model-checking problem for disjoint-
paths logic is fixed-parameter tractable beyond graphs of bounded treewidth. This remains
a challenging question for future work.

It will also be interesting to study other extensions of first-order logic that can express
further interesting algorithmic graph problems, such as reachability with regular paths queries.
This would, in the simplest case, allow to express bipartiteness and the odd cycle transversal
problem. On the other hand, it is very likely that with general regular paths queries, we will
get intractability beyond bounded treewidth graphs.

References
1 Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.

An FPT algorithm for elimination distance to bounded degree graphs. In 38th International
Symposium on Theoretical Aspects of Computer Science (STACS 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

2 Mikołaj Bojańczyk. Separator logic and star-free expressions for graphs. arXiv preprint, 2021.
arXiv:2107.13953.

3 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. arXiv preprint, 2021.
arXiv:2102.03117.

4 Jannis Bulian. Parameterized complexity of distances to sparse graph classes. Technical report,
University of Cambridge, Computer Laboratory, 2017.

5 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016.

6 Michael Buro. Simple amazons endgames and their connection to Hamilton circuits in cubic
subgrid graphs. In International Conference on Computers and Games, pages 250–261.
Springer, 2000.

http://arxiv.org/abs/2107.13953
http://arxiv.org/abs/2102.03117


N. Schirrmacher, S. Siebertz, and A. Vigny 34:17

7 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

8 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer Science & Business
Media, 2005.

11 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Com-
plexity of computation, 7:43–73, 1974.

12 Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An
algorithmic meta-theorem for graph modification to planarity and FOL. In 28th Annual
European Symposium on Algorithms, ESA 2020, pages 51:1–51:17, 2020.

13 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Parameterized complexity of
elimination distance to first-order logic properties. arXiv preprint, 2021. arXiv:2104.02998.

14 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Hitting
topological minors is FPT. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 1317–1326, 2020.
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