Planar Realizability via Left and Right Applications

Haruka Tomita
Research Institute for Mathematical Sciences, Kyoto University, Japan

—— Abstract

We introduce a class of applicative structures called bi-BDl-algebras. Bi-BDl-algebras are generaliza-
tions of partial combinatory algebras and BCl-algebras, and feature two sorts of applications (left
and right applications). Applying the categorical realizability construction to bi-BDl-algebras, we
obtain monoidal bi-closed categories of assemblies (as well as of modest sets). We further investigate
two kinds of comonadic applicative morphisms on bi-BDI-algebras as non-symmetric analogues
of linear combinatory algebras, which induce models of exponential and exchange modalities on
non-symmetric linear logics.

2012 ACM Subject Classification Theory of computation — Categorical semantics

Keywords and phrases Realizability, combinatory algebra, monoidal bi-closed category, exponential
modality, exchange modality

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.35

Funding Haruka Tomita: This work was supported by JST ERATO Grant Number JPMJER1603,
Japan.

Acknowledgements I would like to thank Masahito Hasegawa for a lot of helpful discussions and
comments. I am also grateful to Naohiko Hoshino for useful advice. Thanks also to anonymous

reviewers for their helpful feedback.

1 Introduction

Categorical realizability gives us a useful method to construct categorical models of various
logics and programming languages from simple structures called applicative structures. The
most well known is the case of partial combinatory algebras (PCAs), which are an important
class of applicative structures. From a PCA A, we can construct Cartesian closed categories
(CCCs) Asm(A) and Mod(A) and a realizability topos RT(A) [11].

The structures of such categories obtained by realizability depend on the structures of
applicative structures. Thus, assuming other conditions to applicative structures than being
PCAs, we can obtain other categorical structures and use them to model other kinds of
languages. A well known case is a class of applicative structure called BCl-algebras, which
induces a symmetric monoidal closed structure on Asm(A) and Mod(A) [1, 2]. While
PCAs correspond to the untyped lambda calculus by the combinatory completeness property,
BCl-algebras correspond to the untyped linear lambda calculus.

These two cases for PCAs and BCl-algebras are useful to give various models based
on CCCs and symmetric monoidal closed categories (SMCCs). On the other hand, the
categorical realizability giving rise to non-symmetric categorical structures has not been
investigated much. In our previous work [14], several classes of applicative structures that
induce certain non-symmetric categorical structures were introduced. The BI(—)®-algebra
is one of such classes. A Bl(—)®-algebra A induces the structure of closed multicategories
on Asm(A) and Mod(A), and corresponds to the untyped planar lambda calculus by
combinatory completeness. Here, the planar lambda calculus is the restricted linear lambda
calculus that consists of linear lambda terms whose orders of bound variables can not be freely
exchanged. The name “planar” comes from the fact that planar lambda terms correspond to
graphically planar maps [16, 15].

© Haruka Tomita;
37 licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 35; pp. 35:1-35:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2022.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2

Planar Realizability via Left and Right Applications

The (non-symmetric) closed multicategories obtained from Bl(—)®-algebras can be used for
modeling non-symmetric implicational linear logic. However, to model richer non-symmetric
logics, we additionally want to express non-symmetric tensor products and it is natural
to try to get non-symmetric monoidal closed categories by categorical realizability. Unlike
the symmetric case, it is a quite subtle problem to realize non-symmetric tensor products.
When we try to realize tensor products by Bl(—)®-algebras in the same way as PCAs and
BCl-algebras, we notice that realizers for unitors and associators induces the C-combinator
and the tensor products inevitably become symmetric (and the BI(—)®-algebra is forced to
be a BCl-algebra).

This difficulty can be understood by polymorphic encoding. In Asm(.A) for a BCl-algebra
A = (JA],-), realizers for an element z; ® x2 of X3 ® Xy are A*z.(z - a1 - a3), where a; are
realizers of x; respectively. The form of the realizer corresponds to that X; ® X5 is expressed
as VT.(X; — Xy — T) — T for symmetric cases. Whereas, for non-symmetric cases,
X1 ® X5 is expressed as VT'.(T o— X5 o— X;) — T and we need to distinguish two kinds of
implications —o and o—. In an applicative structure like a Bl(—)®-algebra, elements acting
as functions always receive elements acting as arguments from the right side and thus the
corresponding types may express only one of — and o—.

Conversely, if elements acting as functions can receive elements acting as arguments
from both left and right side, we may construct realizers for non-symmetric tensor products.
In this paper, we introduce a new structure called bi-BDl-algebra, which has two kinds of
applications. These two applications correspond to —o and o— respectively and we can realize
non-symmetric monoidal structures in Asm(A) and Mod(A) on a bi-BDl-algebra A.

Two applications of a bi-BDl-algebra are closely related to each other via its components
5, 5, (—)<1 and (—)D, which are introduced in order to let bi-BDl-algebras have certain
combinatory completeness property. Thanks to these constructs, for a bi-BDI-algebra A,
Asm(A) and Mod(A) consequently become monoidal bi-closed categories. Recall that
monoidal bi-closed categories are monoidal categories with two kinds of adjunctions
(X®-)4 (X - —)and (—®Y) 4 (— o—Y). Natural transformations relating these
adjunctions indeed have realizers. In particular, the natural isomorphism
X —o (Y o= Z) 2 (X —o Y) o— Z is realized by D and D.

Furthermore, by the relationship between two applications of bi-BDl-algebras, bi-BDI-
algebras can be seen as a non-symmetric generalization of BCl-algebras even though bi-
BDl-algebras have additional applications that BCl-algebras do not have. We can reduce a
bi-BDl-algebra to a BCl-algebra by assuming certain element expressing symmetry.

In this paper, we further investigate two sorts of modalities on non-symmetric linear
logics using bi-BDI-algebras. The linear exponential modality ! allows linear logics to copy
and discard arguments [5]. Categorical realizability for the !-modality was introduced
in [1], which uses an endomorphism on a BCl-algebra with several extra elements. In
[8], the endomorphisms are generalized to total relations with certain conditions, which
are generalizations of adjoint pairs between BCl-algebras and PCAs. The generalized
endomorphisms give rise to comonads on categories of assemblies (or modest sets), and
the comonads model !-modalities. While originally linear exponential comonads are models
of I-modalities on linear logics with symmetric tensor products, later, linear exponential
comonads for non-symmetric linear logics were also investigated [7]. Just as for the symmetric
case, we can obtain comonads modeling -modalities on non-symmetric linear logics by certain
endomorphisms on bi-BDl-algebras. The endomorphisms are generalizations of adjoint pairs
between bi-BDI-algebras and PCAs.

The exchange modality introduced in [9] allows non-symmetric linear logics to exchange
arguments. A categorical model for the logic with the exchange modality is given by a
monoidal adjunction between a monoidal bi-closed category and an SMCC, called a Lambek

H. Tomita

adjoint model. We obtain such an adjunction as a co-Kleisli adjunction on categories of
assemblies (or modest sets) by the similar way for !-modalities. An adjoint pair between a
bi-BDl-algebra and a BCl-algebra gives rise to an endomorphism inducing a Lambek adjoint
model.

The rest of this paper is structured as follows. In Section 2, we recall some basic
notions and results in categorical realizability. Also we recall three classes of applicative
structures: PCAs, BCl-algebras and Bl(—)®-algebras, which induce CCCs, SMCCs and
closed multicategories respectively. In Section 3, we introduce bi-BDl-algebras and the
corresponding lambda calculus. We show that bi-BDl-algebras can be seen as a generalization
of BCl-algebras and that bi-BDI-algebras induce monoidal bi-closed categories. In Section 4,
we construct models of linear exponential modalities and exchange modalities by categorical
realizability. In Section 5, we discuss related work. Finally, in Section 6, we summarize
contents of this paper.

Basic knowledge of category theory and the lambda calculus is assumed.

2 Background

2.1 Applicative structures and categories of assemblies

First we recall some basic concepts of the categorical realizability. Notations and definitions
in this subsection are from [11].

» Definition 1. A partial applicative structure A is a pair of a set |A| and a partial binary
operation (x,y) — x -y on |A|. When the binary operation of A is total, we say A is a total
applicative structure.

Application associates to the left, and we often omit - and write it as juxtaposition. For
instance, xz(yz) denotes (x - z) - (y - z). In the sequel, we use two notations | and ~. The
down arrow means “defined.” For instance, for a partial applicative structure (|A[,), zy |
means that x - y is defined. “~” denotes the Kleene equality, which means that if the one
side of the equation is defined then the other side is also defined and they are equal.

» Definition 2. Let A be a partial applicative structure.
(i) An assembly on A is a pair X = (|X|, ||-|| x), where | X| is a set and ||| i is a function
sending x € | X| to a non-empty subset ||z|| of |A|.
(ii) For assemblies X and Y, a map of assemblies f: X — Y is a function f : | X| — |V
such that there exists an element r € |A| realizing f. Here “r realizes f” or “r is a
realizer of f” means that Vx € |X|, Va € ||z|/y, ral and ra € || f(z)]]y -

If we assume two extra conditions on a partial applicative structure, we can construct
two kinds of categories from assemblies and maps of assemblies.

» Definition 3. Let A be a partial applicative structure satisfying that:

1. |A| has an element | such that for any x € |A|, Ix | and Ix = x;

2. for any ri,re € |A|, there exists r1,2 € |A| such that for any x € |A|, r12x ~ r1(r2x).
Then we construct categories as follows:

(i) The category Asm(A) of assemblies on A consists of assemblies on A as its objects
and maps of assemblies as its maps. Identity maps and composition maps are the same
as those of Sets.

(ii) When an assembly X satisfies Vr,y € | X|, z #y = ||zl x N|lyllx =0, we say that X is
a modest set on A. The category Mod(.A) of modest sets on A is the full subcategory
of Asm(A) whose objects are modest sets on A.

35:3

CSL 2022

35:4

Planar Realizability via Left and Right Applications

Asm(A) and Mod(A) are indeed categories. For any assembly (|X|,|-||) on A, the

identity function on |X| is realized by |. Given two maps of assemblies X Ly % 7 realized
by ry and ry respectively, the composition function go f : | X| — |Z] is realized by ry .

The categorical structure of Asm(.A) and Mod(.A) depends on A. When we assume some
conditions on A, Asm(.A) and Mod(.A) have certain corresponding categorical structures.
In the following three subsections, we introduce three classes of applicative structures:
PCAs, BCl-algebras and BI(—)®-algebras, which induce Cartesian closed categories (CCCs),
symmetric monoidal closed categories (SMCCs) and closed multicategories respectively.

2.2 PCAs and Cartesian closed categories

In this subsection, we recall a well-known class of partial applicative structures called partial
combinatory algebras (PCAs). PCAs correspond to the lambda calculus and assemblies on a
PCA form a CCC. These results are from [11].

» Definition 4. A PCA is a partial applicative structure A which contains two elements S
and K satisfying:

¥x,y € |A|, Kx |, Kxy | and Kxy = x;

Vx,y,z € |A|, Sx |}, Sxy | and Sxyz ~ xz(yz).

» Example 5. Suppose infinite supply of variables x,vy, z,.... Untyped lambda terms are
terms constructed from the following six rules:
(identity) I'-M AFN application F, =M abstraction
vk T.AL MN Cpplieon TF g ag rtrection
Dz,y AFM axy-M "M)
— 1P "7 (exchan — 279 7" (contraction ———————— (weakening)
Ly,z, A M (exchange) T,z + M[z/y (: et M e

Here, in the application rule, I' and A are sequences of distinct variables and contain no
common variables. In the contraction rule, M[z/y] denotes the term obtained by substituting
x for all free y in M. In the weakening rule, x is a variable not contained in I'.

Note that abstraction rules are only applied to the rightmost variables. In order to apply
the abstraction rule to a variable in a different position, we need to use exchange rules and
move the variable to the rightmost place.

We define f-equivalence relation =g on lambda terms as the congruence of the relation
(Az.M)N ~ M[N/z]. Untyped lambda terms modulo =g form a PCA. The underlying set
of the PCA consists of S-equivalence classes of untyped closed lambda terms (i.e., lambda
terms with no free variables) and the application is defined as that of lambda terms. In this
example, Aryz.xz(yz) is the representative of S and Axy.x is the representative of K.

PCAs are closely related to the untyped lambda calculus through the property called
combinatory completeness as in Proposition 7.

» Definition 6. Let A be a partial applicative structure. A polynominal over A is a syntactic
expression generated by variables, elements of |A| and applications. For polynominals M and
N over A, M ~ N means that M[a1/x1,...,an/%n] = Na1/x1,...,an/xy] holds in A for any
ai,...,an € |A|, where {x1,...,x,} contains all the variables of M and N.

» Proposition 7 (combinatory completeness for PCAs). Let A be a PCA and M be a polynom-
inal over |A|. For any variable x, there exists a polynominal M’ such that the free variables
of M’ are the free variables of M excluding x and M'a ~ M|[a/z] for all a € |A|. We write
Nx.M for such M'.

H. Tomita

Proof. We define A*x.M by induction on the structure of M as follows: A*z.x := SKK;
M.y =Ky (when z # y); N*a.MN :=S(*x.M)(A*z.N). <

For the special case of the above proposition, any closed lambda term is S-equivalent to
some term constructed from Azyz.zz(yz) and Azy.z only using applications.

Although conditions of PCAs are simple, categorical structures induced by PCAs are
quite strong and useful.

» Proposition 8. Let A be a PCA. Then Asm(A) and Mod(A) are Cartesian closed and
reqular.

The detailed proof is in [11]. What is important here is how to realize products and
exponents by PCAs. Cartesian closed structures in Asm(A) and Mod(A) are defined as
follows. The terminal object is ({*},|-||1), where ||x||; := |A|. For objects X and Y, the

product is (| X| x Y], |l-llxxy), where |[(z,y)||xxy := {N\z.zaa’ | a € ||z||x, a’ € |lylly}-
Projection maps are realized by K and A*zy.y. For objects X and Y, the exponent is defined
as (Homasm(a)(X,Y), [|-lyx), where | f||yx := {r | rrealizes f}. The evaluation map

ev: X x YX =Y is realized by A*z.z(\ uv.vu).

2.3 BCl-algebras and symmetric monoidal closed categories

In this subsection we recall another class of applicative structures called BCl-algebra. BCI-
algebras are related to linear structures whereas PCAs are not. The results given below are
from [2, 8§].

» Definition 9. A BCl-algebra is a total applicative structure A which contains three elements
B, C and | such that for any x,y,z € |A|, Bxyz = x(yz), Cxyz = xzy and Ix = x.

» Example 10. Untyped linear lambda terms are untyped lambda terms constructed without
using weakening and contraction rules, i.e., untyped lambda terms whose each variable
appears just once. Untyped linear lambda terms modulo =g form a BCl-algebra. Here
Azyz.x(yz), Avyz.zzy and Ax.x are the representatives of B, C and | respectively.

» Proposition 11 (combinatory completeness for BCl-algebras). Let A be a BCl-algebra and
M be a polynominal over |A|. For any variable x appearing exactly once in M, there exists
a polynominal N*x.M such that the free variables of X*xz.M are the free variables of M
excluding x and (N*xz.M)a = Mla/x] for all a € | A|.

Proof. We define *z.M by induction on the structure of M as follows:
Nez.x = |
C(*z.M)N FV(M
ey JCOBMN (@€ V()
BM(A*x.N) (x € FV(N))

<

For the special case of the above proposition, any closed linear lambda term is S-equivalent
to some term constructed from Azxyz.z(yz), Azyz.xzy and Az.x only using applications.

Since BCl-algebras are related to the linear lambda calculus, categorical structures of
assemblies on BCl-algebras are also linear ones.

» Proposition 12. Let A be a BCl-algebra. Then Asm(A) and Mod(A) are SMCCs.

The monoidal structure in Asm(.A) are defined as follows: The unit object is ({*}, |-||1),
where ||*||; := {I}. For objects X and Y, the tensor product is defined as (|X| x|V, |- xov),
where ||(z,9)||xgy = {A*z.2aa’ | a € ||z||x, a’ € ||ly|ly}. Realizers for natural isomorphisms

35:5

CSL 2022

35:6

Planar Realizability via Left and Right Applications

follows by the combinatory completeness. For instance, the associator a : (X®Y)® 7 = X ®
(Y ® Z) is realized by Mw.w(Aw'r.w’ (A pg. (A u.up(A*v.vgr)))). The monoidal structures
of Mod(A) are not the same as Asm(A), since X ® ¥ may not be a modest set even if
X and Y are modest. We can define the monoidal structures of Mod(.A) by the monoidal
adjunction associated with Mod(A) being a reflective fullsubcategory of Asm(A). (See
Section 3 in [8].)

2.4 BI(—)"-algebras and closed multicategories

In this subsection we give another class of applicative structure called Bl(—)®-algebras. They
are generalizations of BCl-algebras by excluding C that expresses exchanging arguments.
BI(—)®-algebras are related to non-symmetric linear structures. These results are from [14].

» Definition 13. We say that a total applicative structure A is a BI(—)®-algebra iff it contains
B, | and a® for each a € | A|, where a® is an element of | A| such that a®x = xa for all x € |A|.

Like PCAs and BCl-algebras, BI(—)®-algebras are related to a part of the untyped lambda
calculus, which is called the planar lambda calculus.

» Example 14. Untyped planar lambda terms are untyped lambda terms constructed without
using weakening, contraction nor exchange rules. Untyped closed planar lambda terms
modulo =g form a Bl(—)®-algebra. Here Azyz.z(yz) and Az.x are the representatives of
B and |. Given a representative M of a, Axz.xM is also a closed planar term and is the
representative of a®.

» Proposition 15 (combinatory completeness for BI(—)®-algebras). Let A be a Bl(—)°-algebra
and M be a polynominal over |A|. For the rightmost variable x, which has to appear exactly
once in M, there exists a polynominal N*x.M such that the free variables of *x.M are the
free variables of M in the same order excluding x and (*z.M)a = Ma/z] for all a € | A].

Proof. We define *x.M by induction on the structure of M as follows:
Nezox = |
N N {BN'(/*x.M) (x € FV(M))
BM(A*z.N) (x € FV(N))
Note that for A*x. M N, x is the rightmost free variable in M N. Therefore, if z is in F'V (M),
N has no free variables and N°® can be defined. <

For the special case of the above proposition, any closed planar lambda term is (-
equivalent to some term constructed from Azyz.x(yz) and Az.x using applications and the
unary operation (—)*: M +— Az.zM.

BI(—)®-algebras are related to the planar lambda calculus, that is, a fragment of the
linear lambda calculus without symmetry. Therefore, categorical structures of assemblies on
BI(—)®-algebras also are non-symmetric and linear.

» Proposition 16. For a BI(—)*-algebra A, Asm(A) and Mod(A) are closed multicategories.

Here closed multicategories are one of generalizations of categories with objects expressing
internal hom [12]. What we need to refer here is that closed multicategories are generalization
of monoidal closed categories and they not generally have tensors. When we try to construct
realizers for tensor products in Asm(.A) as we did in Proposition 8 and Proposition 12
(Jr @yl :== {A*z.zad’ | a € ||z|,a" € |ly||}), we notice that realizers for associators and
unitors do not generally exist. Even if we assume these realizers in a BI(—)®-algebra, we can

H. Tomita

construct an element acting as C from these realizers. Take an assembly X as | X| := |A|
and ||a||x := {a}. Assuming that the unitor X — I ® X has a realizer r, rxz = zIx holds
for any x and z. Let C" := XM zz.rx(Bz) and C := A zy.C'z(B(C'y)). Then C satisfies the
axiom of the C-combinator and thus A inevitably becomes a BCl-algebra.

2.5 Applicative morphisms

In this subsection, we recall the notion of applicative morphisms from [11]. In [11], applicative
morphisms are defined not for arbitrary applicative structures but only for PCAs. However,
the same definition makes sense for a large class of applicative structures including PCAs,
BCl-algebras and BI(—)®-algebras.

In this subsection, let A and B range over PCAs and Bl(—)*®-algebras.

» Definition 17. An applicative morphism v : A — B is a total relation from |A| to
|B| such that there is a realizer r, € |B| of v satisfying that for any x,x" € |A], y € yx
and y’ € vx', ryy' € v(xx') holds whenever xx' |. (We often write such a condition as
() () € A0,

» Definition 18. For two applicative morphisms v, : A — B, v = § iff there exists an
element r € |B| called realizer of v < & such that ry € 0x for any x € |A| and y € yx.

By the preorder <, we can define adjunctions and comonads on applicative structures.

» Definition 19. For applicative morphisms v: A — B and 6 : B — A, v is a right adjoint
of 6 iff oy =ida andidg =X yod. We often write these settings as (6 4~): A — B.

» Definition 20. We say an applicative morphism v : A — A is a comonadic applicative
morphism when A has two element e and d such that e(yx) C {x} and d(yx) C vy(yx) for
any x € |Al.

Given an adjoint pair of applicative morphisms (6) : A — B, we obtain a comonadic
applicative morphism (6 o) : A — A. e is given as a realizer of § oy < id4 and d is given
as rs(dr), where rs is a realizer of § and r is a realizer of idg < v o0 4d.

Any applicative morphism v : A — B gives rise to a functor v, : Asm(A) — Asm(B).

Furthermore, any adjoint pair (§ 4+) : A — B gives rise to an adjunction §, = 7x.

» Definition 21. For an applicative morphism v : A — B, v, : Asm(A) — Asm(B) is the
functor sending an object (| X|,|-lx) to (|X],7|-llx) and sending a map f: X =Y to the
same function.

The realizer of v, f exists in r,(yrs), where r, and ry are realizers of v and f respectively.

» Proposition 22. An adjoint pair of applicative morphisms (§ 4~) : A — B gives rise to
an adjunction 6, 4 v, : Asm(A) — Asm(B).

The unit and counit are realized by the realizers of idg < yod and oy < id 4 respectively.

For a comonadic applicative morphism 7 : A — A, 7, is a comonad on Asm(A). The
counit is realized by e and the comultiplication is realized by d.

This subsection can be summarized as follows. PCAs and BI(—)®-algebras form a preorder
enriched category and Asm(—) extends to a 2-functor from this 2-category to the 2-category
of categories of assemblies (on PCAs and BI(—)®-algebras). Details for the 2-functor Asm(—)
(for PCAs) are in Section 2.2 of [11].

35:7

CSL 2022

35:8

Planar Realizability via Left and Right Applications

» Remark 23. Given an applicative morphism 7 : A — B, we can not generally obtain a functor
7« : Mod(A) — Mod(B) as the same for categories of assemblies, since ||z||x N||z||x =0
does not imply y(||z]x) Ny(||#’||x) = ® and 7. X may not be in Mod(B). However, for
a comocadic applicative morphism 7 : A — A, 7, can be restricted to an endofunctor on
Mod(A). Indeed, for a modest set X, if a € (v|z||x) N (7||#'||x) then ea € ||| x N|z'||x
and thus z = 2’. Just like for Asm(A), the 7, is a comonad on Mod(A).

3 Bi-BDl-algebras and monoidal bi-closed categories

As we said in Section 2.4, it is difficult to construct non-symmetric monoidal structure on
Asm(A) by BI(—)*-algebras in the same way as BCl-algebras and PCAs. We need some
major modification on the definition of realizers of tensor products in Asm(A).

Here we introduce a new class of applicative structures called bi-BDl-algebras, which are
very different from classes of applicative structures we have seen so far since bi-BDI-algebras
contain two sorts of applications. We use the two applications to realize tensor products
while avoiding intrusion of C-combinators.

3.1 Bi-BDl-algebras and the bi-planar lambda calculus

First we introduce a variant of the lambda calculus that we call the bi-planar lambda calculus
here, which contains two sides of applications and abstractions’.

» Definition 24. Bi-planar lambda terms are constructed by the following rules:

(identity) F,Il‘M ioht abstracti I,Fl—M . .

R — e A abstraction —— (left abstraction
zhe TF (Mez)) T (ws M) /
L-M é FN (right application) LM é FN (left application)

A M®ON IAFMGN

Here is none of weakening, contraction nor exchange rules.

Although bi-planar lambda terms seem very different from ordinary lambda terms, when
we construct terms only using identity, right application and right abstraction rules, they are
planar lambda terms. In this case M © N denotes MN and (M <z) denotes \x.M.

For the sake of clarity, we classify right and left by red and blue. That is, we write each
of them as MO N, (M<x), NQM and (x—M).

» Definition 25. We define a relation —g on bi-planar lambda terms as the congruence of
the following relations:

(right B-reduction) (M+«x)O N —5 M[N/z]

(left B-reduction) N G (x—M) —5 M[N/x]

The bi-planar lambda calculus consists of bi-planar lambda terms and the reflexive,
symmetric and transitive closure of —3 as the equational relation =g.

Basic properties about — g, such as the confluence and the strongly normalizing property,
can be shown in the same way as the proof for the linear lambda calculus.

! The terminology left and right abstractions corresponds to left and right closed structures of monoidal
categories: (X ® =) 4 (X — —) and (- Q®Y) 4 (— Y.

H. Tomita

» Remark 26. The bi-planar lambda calculus is essentially not a new concept, since it often

appears as the Curry-Howard corresponding calculus with the Lambek calculus (cf. [9]).

However, note that unlike the calculus corresponding to the Lambek calculus, the bi-planar
lambda calculus is based on untyped setting. The reason why we use a less-standard notation
is to shorten the length of the realizers and to make them easier to read.

Next we introduce the notion of bi-BDI-algebra, which corresponds to the bi-planar
lambda calculus. In order to express the bi-planar lambda calculus by an algebraic structure,
the structure is not enough to have two sides of applications, but also need some conditions
for relating these two applications. In bi-BDI-algebras, D, D, ()" and (—)" express such
conditions.

» Definition 27. We say a total applicative structure A = (|A|,0) is a bi-BDl-algebra
when there is an additional total binary operation @ on |A| and |A| contains several special
elements:
B € | A| such that ((BD
B € | A| such that z (_'(
D € |A| such that x«l\((
D € | A| such that (z@ (y(
T |A| such that TOx = x for any x € |A\
1 € |A| such that xQT = x for any x € | Al.
For each a € |A|, a” € |A| such that (a")Dx = xQa for any x € | Al.
For each a € |A|, a" € | A| such that x@(a”) = aDx for any x € | Al.

®)

) for any x,y,z € |A|.
Vx for any x,y,z € |Al.
)z for any x,y,z € |Al.
) for any x,y,z € |AJ.

We call © and @ as right application and left application respectively. In the sequel, we
use O as a left-associative operation and often omit unnecessary parentheses, while we do
not omit parentheses for Q.

As can be seen from the definition, though the left application is an extra component in
a bi-BDl-algebra, the conditions required for left and right applications are dual. We often
write A = (| A, ©, @) as a bi-BDl-algebra A = (| A, ©) with the left application @,

» Remark 28. Here we deal with bi-BDl-algebras only as total applicative structures while we
can define partial bi-BDl-algebras. Given a partial bi-BDI-algebra A, we always can extend
A to a total bi-BDI-algebra A’ by adding an extra element expressing “undefined.” Then
Asm(A) is a full subcategory of Asm(A’). The same discussion for partial BCl-algebras is
in Remark 1 of [8].

» Example 29. Closed bi-planar lambda terms modulo =g form a bi-BDI-algebra. For
instance, (((x© (yD z)<z)<y)«x), (((xr—(xQy) D z)<z)<y) and (z+—M O x) are the rep-
resentative of B, D and M".

Combinatory completeness holds for bi-BDl-algebras and the bi-planar lambda calculus.

» Proposition 30 (Combinatory completeness for bi-BDlI-algebras). Let A be a bi-BDl-algebra.
We define a polynominal over A as a syntactic expression generated by variables, elements of
|A| and left and right applications of A. Suppose a polynominal M over A and the rightmost
variable x appears only once in M. There exists a polynominal M’ such that the free variables
of M’ are the free variables of M excluding x and M'Da = M'[a/x] for any a € |A|.
write (M<+x) for such M'. Also, if the leftmost variable x appears only once in M, there
exists a polynominal M'" such that the free variables of M" are the free variables of M
excluding = and aG M" = M"[a/z] for any a € |A|. We write (z—M) for such M".

35:9

CSL 2022

35:10 Planar Realizability via Left and Right Applications

Proof. We define (z— M) by induction on the structure of M.
(z—z) =1

(z—(NQM)) := {E

For the case x € FV (M
1

M)G((NG(T@D)) GB) (ze FV(M))
N)@ (M GQB) (x € FV(N))
), x is the leftmost free variable of N @M. Hence N contains no
variables and (N @ (1@ 5))D can be defined.
o (MDN)) 1= {(5 (ng))BﬁJ\jq (x € FV(M))
(xz—=N)Q((M")@B) (z€ FV(N))
For the case z € FV(N), z is the leftmost free variable of M © N. Hence M contains no
variables and M" can be defined.
The case of the right abstractions (M+z) is given in the same way, with all the left and
right constructs exchanged. |

—

It immediately follows that for any bi-BDl-algebra (].A4], T), (§), the applicative structure
(JA],0) is a BI(—)®-algebra since a® can be defined as (z 0 a<z).
We can show that the left application of a bi-BDI-algebra is unique up to isomorphism.

» Proposition 31. Suppose that A; = (|A|,©, Q1) and Ay = (|A|, D, Qy) are bi-BDI-algebras.
Then (|A],©1) and (|A], ©2) are isomorphic as applicative structures, where x©,;y = yQ; z.

To the end of this subsection, we additionally give an example of a bi-BDI-algebra.

» Example 32. Take an ordered group (G, -, e, <). Let T be the set of terms ¢ constructed
as follows:

tu=glto—t|t—t (g€q).

We define a function |-| : T — G by induction: |g| := g, |[t1 o ta] := |t1] - [t2| ™! and
[tz —o t1] == [t2] 71 - [ta]-

Let T be the powerset of {t € T' | e < |¢|}. Then T forms a bi-BDl-algebra.

For M,N € T, MON :={t; | 3ty € N, (t; o— t3) € M}.

For M,N € T, NQOM := {t; | 3ty € N, (ts — t1) € M}.

B = {((t1 o= t3) o— (ta o— t3)) o— (t1 o— ta) | t1, 12,13 € T}, dual for B.

E) = {((tl —o tz) O—tg) o— (tl —0 (tg o— t3)) | t1,12,t3 € T}, dual for [_5

T:= {t1 — t1 | t1 € T}, same for I.

For M € T, M< := {t; o—to | (t2 —o t1) € M}, same for M".

The construction of this example is the same one as that for a Bl(—)®-algebra in Section 6
of [14], which is based on a reflexive object of a pivotal category Comod(G) introduced in [6].

3.2 Bi-BDIl-algebras and BCl-algebras

In this subsection, we show that bi-BDl-algebras can be seen as non-commutative gener-
alizations of BCl-algebras. First, we show that the BCl-algebra is a special case of the
bi-BDl-algebra.

» Proposition 33. Let B = (|B|,-) be a BCl-algebra. When we take two binary operations @
and © by yQr =0y :=z-y, (|B],9,Q) is a bi-BDl-algebra.

Proof. B satisfies axioms for B and B. | satisfies axioms for | and |. C satisfies axioms for
D and D. x satisfies axioms for x* and x". >

H. Tomita

Conversely, not all bi-BDI-algebras are BCl-algebras. Indeed, the bi-planar lambda
calculus is not a BCl-algebra. Here we show that when one of the left/right applicative
structures of a bi-BDI-algebra is a BCl-algebra, so is the other applicative structure and
moreover they coincide.

» Proposition 34. Let A = (|A], D), ‘G‘) be a bi-BDl-algebra. Take an applicative structures
A = (JA], lh>’) by x0'y ;= y@Gx. Then A is a BCl-algebra iff A" is a BCl-algebra. Moreover,
in such a case, these BCl-algebras are isomorphic as applicative structures.

3.3 Bi-BDl-algebras and monoidal bi-closed categories

Now we show the main result that bi-BDl-algebras induce monoidal bi-closed categories. For
a bi-BDl-algebra A = (| A, D, @), Asm(A) is constructed by considering A as an applicative
structure (|4}, D).

» Proposition 35. For a bi-BDl-algebra A, Asm(A) is a monoidal bi-closed category.

Proof. (Sketch)
For objects X and Y, the underlying set of X ® Y is | X| x |Y|. Realizers are defined as
lz @yl :={(z—z0a0a") [a € |z]x,a" € [yly}-

For f: X - X'and g: Y — Y’, the map f ® g is a function sending 2 ® y to f(z) ® g(y).

The realizer for f ® g is ((((z—2 T)(rf Dp)D (rg Dq))+q)p) Qwew).

The underlying set of the unit object I is a singleton {*}. The realizer is ||*||; := {1}.
The left unitor [: I ® X — X sends * ® x to x, whose realizer is (T ’(_l:wHw) The realizer
of IV is (252010 z)x).

For objects X and Y, the underlying set of X — Y is the set of maps from X to Y.

£l :=={re |A| | a@r e | f(z)|y for any = € |X| and a € ||z|x}. This set is not empty
since (ry)” is in the set for a realizer ry of f.

For f: X' - Xandg:Y — Y, f —o gisa function sending a map h: X — Y to a map
gohof:X" —Y' The realizer for f —o g is ((z3r, 0 ((r; D x)Qw))¢w).

The evaluation map ev : X ® (X —Y) — Y sends 2 ® f to f(x). The realizer is
(2 Quvéw)eiz) Quew).

For any map f: X ® Z — Y, there exists a unique map g : Z — X — Y which satisfies

evo (idy ® g) = f. This g is given as a function sending z to a function z — f(z ® z).

The realizer of g is ((zsrp O (t—tDz D 2))<z2).

For objects X and Y, the underlying set of Y o— X is the set of maps from X to Y.

IfIl := {r | r is a realizer of f}. <

Here what important is the way to take realizers of tensor products. We take the realizers
as ||z @yl = {(z—~2z0a0a’) | a € ||z|/x,a" € |ly|ly}, while we would take (2D aDa'+z) if
we define in the same way as Proposition 8 and Proposition 12.

» Remark 36. Take an object A := (A, ||-]|), where ||a|| := {a}. If we assume Asm(A) is an
SMCC and the natural transformation for the symmetry sends ® y to y ® x, then there is a
realizer r for the symmetry A® A — A® A, which satisfies r0 (z-5z0a0a’) = (z-3z0a’ Da)
for arbitrary a,a’ € |A]. Then we have = (1 Q(ro (zz 0z 0y))<y)<a), which make
A a BCl-algebra. Hence, when A is a bi-BDI-algebra and not a BCl-algebra, Asm(A4) is not
an SMCC (as long as we try to take the symmetry map in the natural way).

In the above proposition, we choose © to give Asm(.A). However, it does not matter
even if we choose Q.

35:11

CSL 2022

35:12

Planar Realizability via Left and Right Applications

» Proposition 37. Let A = (\ALT)’&) be a bi-BDl-algebra. If we take an applicative
structures A' = (|A],0') for £0'y := yQa, then Asm(A) and Asm(A’) are isomorphic
as categories. Moreover, Asm(A) is monoidally isomorphic to Asm(A") with the reversed
tensor products.

We can also show Mod(.A) is a monoidal bi-closed category for a bi-BDlI-algebra A.
However, we cannot take tensor product as Asm(.A) since X ® Y in Asm(A) may not be a
modest set even if X and Y are modest. We use a functor 7" that is the left adjoint of the
inclusion functor i : Mod(A) < Asm(A). T sends an assembly (|X]|,||-||x) to a modest set
(1Z1,1I-llz). Here |Z] := |X|/ =, where the relation = is the transitive closure of ~ defined as
z~ ' e |z]|x N2’ x # 0. The realizers of |Z| are ||z]|z := U, ¢, [|#]x. T sends a map
f of Asm(A) to the canonical one of Mod(.A), whose realizers are those of f. We define
the tensor product X in Mod(A) as X XY :=T(iX ® iY). By using the same realizers in
the proof of Proposition 35, we can prove that this X makes Mod(.A) a monoidal bi-closed
category. The same discussion for BCl-algebras is in [8] and the more general discussion
about monoidal structures of reflective subcategories (for symmetric cases) is in [3].

» Proposition 38. Mod(A) is a monoidal bi-closed category for a bi-BDl-algebra A.
To end of this subsection, we give a property about morphisms between bi-BDI-algebras.

» Proposition 39. For bi-BDI-algebras (|Ay|, 01, G1) and (|Aa|, D2, Ga) and an applicative
morphism 7y : (|A1], ©1) = (| Az|, D2), 7« : Asm(A;) = Asm(Asz) is a laz monoidal functor.

» Remark 40. +. is not generally oplax monoidal since neither realizers for 7,/; — I3 nor
V(X ®1Y) = 7:(X) @2 7.(Y) exist.

4 Realizability models for modalities

In this section we relate our non-symmetric categorical realizability to the standard real-
izability based on BCl-algebras and PCAs. Our approach is similar to the case of linear
combinatory algebras (LCAs) which relate BCl-algebras and PCAs. An LCA consists of a
BCl-algebra A, an endofunction ! : | A| — | A| and several kinds of elements, such that the
functor !, on Asm(A) (or Mod(.A)) becomes a linear exponential comonad on the SMCC [1].
While ! in an LCA is a function, in [8], ! is generalized to a total relation and the generalized
LCAs are called relational linear combinatory algebras (rLCAs). We can obtain an rLCA
from an adjoint pair between a BCl-algebra and a PCA.

The same construction can be applied to bi-BDl-algebras. That is, we can reformulate
rLCAs for bi-BDlI-algebras (Here we call ezp-rPLCAs), and adjoint pairs between bi-BDI-
algebras and PCAs induce exp-rPLCAs. Using exp-rPLCAs, we get models of -modalities
on non-symmetric multiplicative intuitionistic linear logic (MILL).

Also, we can obtain models for exchange modalities relating non-symmetric linear logics
and symmetric MILL. A model of the logic with the exchange modality is given as a monoidal
adjunction between an SMCC and a monoidal bi-closed category [9]. We can construct the
model from a comonadic applicative morphism with certain conditions (Here we call an
exch-rPLCA), and an adjoint pair between a bi-BDl-algebra and a BCl-algebra induces an
exch-rPLCA.

4.1 Realizability models for !-modalities on non-symmetric linear logics

Linear exponential comonads on non-symmetric monoidal categories are investigated in [7],
which model !-modalities on non-symmetric MILL.

H. Tomita

» Definition 41. A linear exponential comonad ! on a (non-symmetric) monoidal category
C is a monoidal comonad on C such that the induced monoidal structure of the category of
Eilenberg-Moore coalgebras is Cartesian.

The above characterization is by Theorem 5 of [7]. However, originally linear exponential
comonads are defined explicitly in [7] as tuples which consists of a monoidal comonad ! on C
and monoidal natural transformations ex :!X — I and dx !X —=!X®!X satisfying several
conditions.

In this subsection, we generalize rLCAs to the non-symmetric case and show they give
rise to linear exponential comonads.

» Definition 42. An exponential relational planar linear combinatory algebra (exp-rPLCA)
consists of a bi-BDl-algebra A = (|A|,D, @) and a comonadic applicative morphism (!,e,d)
on (JA], D) which satisfies the following.

There is k € |A| such that kDxD (ly) C {x} for any x,y € |A|.

There is w € | A| such that wox 0 (ly) € x0 (ly) 0 (ly) for any x,y € |A|.

» Proposition 43. For an exp-rPLCA (A,!), L. is a linear exponential comonad on Asm(A).

This proposition is proven by giving realizers for natural transformations associated
with a linear exponential comonad. ex : !,.X — I sending x to x has a realizer kT
dx : 1, X — L, X ®1,X sending x to x ® x has a realizer WB<((ZHZBI'B Y)Yy)x).

Although now we get a linear exponential comonad !, on Asm(.A), at this point it has
not been concluded that we get linear-non-linear models (i.e., monoidal adjunctions between
monoidal closed categories and CCCs) by categorical realizability since we have not shown
that the co-Kleisli adjunction between Asm(A) and Asm(A), is monoidal. In order to
show that the co-Kleisli adjunction is indeed monoidal, it is enough to show that Asm(.A)
has Cartesian products. (It follows from Proposition 3 in [7].)

» Proposition 44. For an exp-rPLCA (A,!), Asm(A) has Cartesian products, and thus the
co-Kleisli adjunction between Asm(A) and a CCC Asm(A), is monoidal.

The proof is almost the same as the proof of Proposition 12 of [8]. For instance, we
take ||(z,y)| = {(z—20 (w—wDuDv)Da) | Ip,3q, u € Ip, v € g, pOa € |z|x and
gDa € |ylly} as realizers for Cartesian product. Here note that the Cartesian product
X xY is a modest set when X and Y are modest. Hence the above proposition for Asm(.A)
can be shown similarly for Mod(.A). (See Remark 23 for restricting !, to Mod(.A).)

» Proposition 45. For an exp-rPLCA (A,!), !\ is a linear exponential comonad on Mod(A).
Furthermore, Mod(A) has Cartesian products and thus the co-Kleisli adjunction between
Mod(A) and Mod(A), is monoidal.

Next, we show that an adjoint pair between a bi-BDI-algebra and a PCA gives rise to an
exp-rPLCA. First, note that it does not matter which application we choose when we take
an adjoint pair, as shown in the next proposition.

» Proposition 46. Let A = (|A|,0, @) be a bi-BDl-algebra and B = (|B|,-) be a BCl-algebra.
Given an adjoint pair (§ 1) : (|A], D) — B, there is an adjoint pair (&' 4+') : (|A|,D') = B
for x0'y = y@Qu, such that ~v=+"and § =& as total relations.

» Proposition 47. Let A = (| A|, D, Q) be a bi-BDl-algebra and B = (|B|,-) be a PCA. For
an adjoint pair (6 1) : A — B, (0 o) forms an exp-rPLCA.

35:13

CSL 2022

35:14

Planar Realizability via Left and Right Applications

Proof. Let e and d be realizers associated with § o~y being a comonadic applicative morphism.
ke (2@ (e (rs06M Dy))<y)<x), where M € *z.(y1).

w e ((z@(eD(rs 06M D (dDy)))+y)«x), where M := XNz.ry - (ry-yN-2) -z and

N = (((t—tDubv) <) <u). <

Next, we give an example of an adjoint pair between a bi-BDI-algebra and a PCA. This
example is a planar variant of the untyped linear lambda calculus with ! [13].

» Example 48. Suppose infinite supply of variables x,y, z, Terms are defined grammat-
ically as follows:

Mu=g|MOM | MQM' | (M«x) | (M) | M | Na.M

Here z of (M<+x) (or (z—M)) is the rightmost (or leftmost) free variable of M, appears
exactly once in M and not in any scope of |. Take an equational relation on the terms as the
congruence of the three equational axioms (M<z) DN = M[N/z], NG (x>M) = M[N/z]
and (Mz.M)0 (IN) = M[N/z]. Let A be a set of equivalence classes of closed terms.
Then we obtain a bi-BDl-algebra A := (A, D, @) and a PCA B := (A,), where
M - N :=MOOIN. Here K and S exist in B as Mz Aly.z and Az AlyAz.2z0120 '(yB 12).
Take an applicative morphism v : A — B as the identity whose realizer is)\!x.)\!y.x@ Y.
Take 6 : B — A sending M to !M whose realizer is Alz.Aly.!(z0y). Then § 4 7.

4.2 Realizability models for exchange modalities

The Lambek calculus with the exchange modality and its categorical models are introduced
in [9]. Here by “Lambek calculus” we mean the non-symmetric MILL with left and right
implications. Its extension with the exchange modality is the commutative/non-commutative
(CNC) logic, which is a sequent calculus composed of two (commutative and non-commutative)
logics. Categorical models of CNC logics are given as monoidal adjunctions between monoidal
bi-closed categories and SMCCs, and are called Lambek adjoint models. As well as exp-
rPLCAs, we can define comonadic applicative morphisms giving rise to Lambek adjoint
models.

» Definition 49. An exchange relational planar linear combinatory algebra (exch-rPLCA)
consists of a bi-BDl-algebra A = (| A], D, Q) and a comonadic applicative morphism (£, e,d)
on A with ¢ € | A satisfying COxD (£y) D (€z) C x0 (£2) D (Ey) for any x,y,z € | A|.

» Proposition 50. For an exch-rPLCA (A,), the co-Kleisli category Asm(A)¢, is an SMCC

*

and the co-Kleisli adjunction is monoidal.

Proof (Sketch).
We define tensor products in Asm(A)e. as X @'Y := (| X| x |Y], |-||), where ||z @ y|| :=
{(z—2z0a0a’) | ae|z]x and ' € ||y|y}-
For f : X —» X and g : Y — Y in Asm(A),, f ® g sends (x,y)
to (f(x),9(y))- The realizer for f @ g is (MQ(eDw)«w), where M €
(220 (re D (€rp) D (D x)) D (re D (Erg) O (d D1y)))¢y <),
We define the unit object J in Asm(A)e, as ({*},[|-]|), where [|x| := {1}
The symmetry 0 : X ®' Y =Y ® X sends z ® y to y ® 2. The realizers for o and o~}
are (M @ (eDw)<w), where M :=T0 (((zr20yDa)iz)ey).
For objects X and Y, the underlying set of the linear exponent Y o— X is
Hompgma)(§&X,Y). || f| :== {r € |A] | r is the realizer of f}.

H. Tomita

For f: X' > Xandg:Y — Y’ in Asm(A)¢,, go— f sends amap h: {&X — Y in
Asm(A) to a map go (§,h) ody o (€.f) odxs from &X' to Y/ in Asm(A) (that is, a
map from X’ to Y’ in Asm(A)¢,), where dx : & X — §,.£.X is the comultiplication of
€.. The realizer for g o— f is ((ry© (r Dwb (dD (re ® (frf)@? (dDv))))+w)<w).

For any map f : Z ® X — Y in Asm(A)e,, there exists a unique
map g : Z — Y o— X in Asm(A),, which sends z to =z — f(z ® x).
The realizer of g is ((ry D (re© (re ©(EM)D(dD2)) D (dDx)))< z), where M =
((w—wD 20 z)¢x)<2).

The co-Kleisli functor &, : Asm(A)e, — Asm(A) is strong monoidal. Real-
izers for &J — I and & (X @ Y) — &LX @ LY in Asm(A) are e A

realizer for I — &.J is in (wD(€1)«w). A realizer for &X ® &Y —
(X @ Y) s in (((re© (reDEM D (dDx)) D (dDy)<y)+) Qwsw), where M :=
(222D O y)<y)<x). <

When we consider £, on Mod(A), we can not use the same definition of the tensor
product ®" as Asm(A),, since X ® Y may not be a modest set. We again use the functor
T that is the left adjoint of the inclusion functor i : Mod(A) — Asm(A) and define the
tensor product X K'Y in Mod(A), as T(iX ®' ¢Y). Then we can prove that Mod(A),,
becomes an SMCC with X in the same way as Proposition 50.

» Proposition 51. For an exch-rPLCA (A,§), the co-Kleisli category Mod(A)e, is an
SMCC and the co-Kleisli adjunction is monoidal.

Similar to exp-rPLCAs, we can obtain an exch-rPLCA from an adjoint pair.

» Proposition 52. Let A = (|A|,0, @) be a bi-BDl-algebra and B = (|B],-) be a BCl-algebra.
For an adjoint pair (6 4+): A— B, (§ o) forms an exch-rPLCA.

Proof. Let e and d be realizers associated with § o~y being a comonadic applicative morphism.
ce (((zQ(eD(rs0(rs MO (dDy)) 0 (dD 2)))+z)«y)<x), where M € XyXz.ry - (r, -
AN - z) -y and N := (((z—zD 20 y)+y)+z). <

» Example 53. Take an ordered group (G, -, e,<). Let T be the same set as in Example 32.
We get a BCl-algebra T’ as the powerset of {t € T' | e = |¢|}, where the application is the
same as the right application of 7 and C := {((t; o— t3) o— t3) o— ((t1 o—t3) o—t2) | |t;| = e}.

In Example 32, we get a bi-BDl-algebra 7. We obtain two applicative morphisms
v:T — T as a function M — {(to—1t) |t € M} and ¢ : T' — T as the identity function.
Here the realizer for v is {((t10—t1)o— (ta0—t2)) o— ((t; 0—ta) o— (t1 o—t2)) | t1,t2 € T} and the
realizer for § is {to—t |t € T'}. -y and ¢ form an adjoint pair, where the realizer for id < yo¢
is {to—(to—t) | e < |t|} and the realizer for doy < id is {((to—t)o— (to—t))o—(to—1t) | t € T'}.

» Remark 54. The above construction can not be applied to exp-rPLCAs. No matter how we
take a powerset T, since MO N ©O@ = () for any M, N € Ty, Ty does not contain the element
acting as the K-combinator and thus cannot be a PCA.

5 Related work

In [15], the relationships between the planar lambda calculus and planar maps are investigated.
It is shown that we can generate rooted planar maps with orientations by combining a few
kinds of “imploid moves”, that corresponds to the combinatory completeness of BlI(—)*-
algebras and the planar lambda calculus. We may apply the correspondence between planar

35:15

CSL 2022

35:16

Planar Realizability via Left and Right Applications

lambda terms and rooted planar maps to our bi-planar lambda terms. Here the corresponding
rooted maps have two kinds of vertexes with two inputs and one output (or, two outputs
and one input) while rooted maps for planar lambda terms have one kind.

Although we use the word “Lambek calculus” as a variant of non-symmetric MILL with
left and right implications in this paper, the word “Lambek calculus” has various meanings
as logics. The basics about the Lambek calculus is in [10]. Our treatment in this paper is
from [9].

Conditions of bi-BDlI-algebras may look like “dual combinators” introduced in [4]. In
both of them, elements acting as functions can act to an argument from both left and right
sides. However, a dual combinatory logic has only one sort of application and the reductions
does not satisfy the confluence, whereas bi-BDI-algebras have two sorts of applications and
the confluence for the bi-planar lambda calculus holds.

Realizability for (symmetric) linear exponentials are introduced in [1] as LCAs and
generalized to rLCAs in [8]. Section 4.1 of this paper is the reformulations of some contents
of [8] to the planar case. The original definition of rLCA is described using not k and w but
<. We can also define exp-rPLCAs without using k nor w, however, we are not sure whether
we can define exch-rPLCAs without using c.

6 Conclusion

In this paper, we presented a new class of applicative structures called bi-BDl-algebras.
Bi-BDlI-algebras lie between Bl(—)®-algebras and BCl-algebras and correspond to the bi-
planar lambda calculus. Given a bi-BDl-algebra A, we obtain monoidal bi-closed categories
Asm(A) and Mod(A). We also introduced exp-rPLCAs and exch-rPLCAs which induce
categorical models for !-modalities and exchange modalities on non-symmetric logics. We can
get exp-rPLCAs from adjoint pairs between bi-BDl-algebras and PCAs, and exch-rPLCAs
from adjoint pairs between bi-BDI-algebras and BCl-algebras.

We conclude this paper by describing three issues for future work. First, while we have
shown that a bi-BDl-algebra A induces a monoidal bi-closed category Asm(A), it is not
clear whether being Asm(.A) a monoidal bi-closed category leads that A is a bi-BDI-algebra.
For some other classes, we can show such a proposition. For instance, being Asm(A) a
CCC/SMCC/closed multicategory leads that A is a PCA/BCl-algebra/Bl(—)®-algebra under
some natural conditions. (See Proposition 19 of [14] for the case of BI(—)®-algebras.)

Second, there are a few points that exp-rPLCA and exch-rPLCA do not behave in the
same way, and we would like to clarify them. As we said in the previous section, while
exp-rPLCA can be defined without using k nor w, we are not sure that exch-rPLCA can be
defined in such a style. Also, while an adjoint pair between a bi-BDI-algebra A and a PCA
B induce a monoidal adjunction between Asm(A) and Asm(B), the adjunction between
Asm(A’') and Asm(B’) induced from an adjoint pair between a bi-BDl-algebra A’ and a
BCl-algebra B’ is not generally monoidal.

Finally, we are yet to find more interesting concrete examples of bi-BDI-algebras and
adjoint pairs, which should be useful for investing non-commutative logics and their models
in a systematic way.

—— References

1 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of interaction and linear
combinatory algebras. Mathematical Structures in Computer Science, 12(5):625-665, 2002.

2 Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed
lambda-calculi. Annals of Pure and Applied Logic, 134(2-3):122-168, 2005.

H. Tomita

10

11

12

13

14

15

16

Brian Day. A reflection theorem for closed categories. Journal of pure and applied algebra,
2(1):1-11, 1972.

J Michael Dunn and Robert K Meyer. Combinators and structurally free logic. Logic Journal
of IGPL, 5(4):505-537, 1997.

Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1-101, 1987.

Masahito Hasegawa. A quantum double construction in Rel. Mathematical Structures in
Computer Science, 22(4):618-650, 2012.

Masahito Hasegawa. Linear exponential comonads without symmetry. Electronic Proceedings
in Theoretical Computer Science, 238:54—-63, 2016.

Naohiko Hoshino. Linear realizability. In International Workshop on Computer Science Logic,
pages 420-434. Springer, 2007.

Jiaming Jiang, Harley Eades III, and Valeria de Paiva. On the lambek calculus with an exchange
modality. In Thomas Ehrhard, Maribel Fernidndez, Valeria de Paiva, and Lorenzo Tortora
de Falco, editors, Proceedings Joint International Workshop on Linearity € Trends in Linear
Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018, volume 292
of EPTCS, pages 43-89, 2018.

Joachim Lambek. Deductive systems and categories II. standard constructions and closed
categories. In Category theory, homology theory and their applications I, pages 76—122. Springer,
1969.

John R Longley. Realizability toposes and language semantics. PhD thesis, University of
Edinburgh, 1995.

Oleksandr Manzyuk. Closed categories vs. closed multicategories. Theory and Applications of
Categories, 26(5):132-175, 2012.

Alex Simpson. Reduction in a linear lambda-calculus with applications to operational semantics.

In International Conference on Rewriting Techniques and Applications, pages 219-234. Springer,
2005.

Haruka Tomita. Realizability Without Symmetry. In 29th EACSL Annual Conference on
Computer Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 38:1-38:16. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2021.

Noam Zeilberger. A theory of linear typings as flows on 3-valent graphs. In Proceedings of the
38rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 919-928. ACM,
2018.

Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and
normal planar lambda terms. Log. Methods Comput. Sci., 11, 2015.

35:17

CSL 2022

	1 Introduction
	2 Background
	2.1 Applicative structures and categories of assemblies
	2.2 PCAs and Cartesian closed categories
	2.3 BCI-algebras and symmetric monoidal closed categories
	2.4 BI(-)^{bullet}-algebras and closed multicategories
	2.5 Applicative morphisms

	3 Bi-BDI-algebras and monoidal bi-closed categories
	3.1 Bi-BDI-algebras and the bi-planar lambda calculus
	3.2 Bi-BDI-algebras and BCI-algebras
	3.3 Bi-BDI-algebras and monoidal bi-closed categories

	4 Realizability models for modalities
	4.1 Realizability models for !-modalities on non-symmetric linear logics
	4.2 Realizability models for exchange modalities

	5 Related work
	6 Conclusion

