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Abstract
We construct the space of valuations on a quasi-Polish space in terms of the characterization
of quasi-Polish spaces as spaces of ideals of a countable transitive relation. Our construction is
closely related to domain theoretical work on the probabilistic powerdomain, and helps illustrate
the connections between domain theory and quasi-Polish spaces. Our approach is consistent with
previous work on computable measures, and can be formalized within weak formal systems, such as
subsystems of second order arithmetic.
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1 Introduction

Quasi-Polish spaces [2] are a class of well-behaved countably based sober spaces that includes
Polish spaces, ω-continuous domains, and countably based spectral spaces. They can be
interpreted via Stone-duality as the spaces of models of countably axiomatized propositional
geometric theories [12, 1]. In [7] another characterization of quasi-Polish spaces was presented
that is a natural generalization of the notion of an abstract basis for ω-continuous domains [8].
In this paper we use this latter characterization to extend domain theoretical work on
probabilistic powerdomains to the study of valuations on quasi-Polish spaces.

Valuations are a substitute for Borel measures which are used in the denotational semantics
of probabilistic programming languages [14] and in computable approaches to measure theory,
probability theory, and randomness [19, 13, 18]. See R. Heckmann’s excellent paper [11] for
more on the theory of valuations, spaces of valuations, and integration1. Every valuation on
a quasi-Polish space can be extended to a Borel measure [5], and this extension is unique if
the valuation is locally finite [3]. Conversely, it is easy to see that the restriction of a Borel
measure to the open sets is a valuation. Thus, in particular, there is a bijection between
probabilistic valuations and probabilistic Borel measures on quasi-Polish spaces.

The main result in this paper is a construction of the space of valuations on a quasi-Polish
space as a space of ideals of a transitive relation on a countable set (Theorem 13). Our
construction is closely related to domain theoretical work on the probabilistic powerdomain
(see [14] and [8, Section IV-9]). Along with the constructions of the upper and lower
powerspaces of quasi-Polish spaces as spaces of ideals given in [4], our results demonstrate
how some domain theoretic results generalize well to quasi-Polish spaces (see also [6] for
more on the upper and lower powerspaces of quasi-Polish spaces).

1 The valuations in this note correspond to the Scott-continuous valuations in [11].
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9:2 Constructing the Space of Valuations of a Quasi-Polish Space as a Space of Ideals

An immediate corollary of our construction is that the space of valuations on a quasi-Polish
space is again a quasi-Polish space, although this already follows from well-known results. A
locale theoretic proof easily follows from S. Vickers’ geometricity result in [20, Proposition 5]
by using R. Heckmann’s characterization of quasi-Polish spaces as countably presented
locales [12]. A proof based on quasi-metrics, at least for the case of subprobabilistic valuations,
follows from J. Goubault-Larrecq’s work on continuous Yoneda-complete quasi-metric spaces
in [9, Section 11] and his characterization of quasi-Polish spaces in [10, Theorem 8.18].
Independently, the first proof we found (which we presented at the Domains XII conference in
August 2015) was largely based on M. Schröder’s work in [19] on the space of (probabilistic)
measures within the cartesian closed category QCB0. That proof starts with the observation
that the QCB0 exponential SSX is quasi-Polish whenever X is2, then uses the cartesian closed
structure of QCB0 to show that Y SX is quasi-Polish whenever X and Y are, and finally
observes that M. Schröder’s construction of the space of valuations on X can be obtained as
the equalizer of the continuous functions ℓ, r : RSX

+ → R+ × RSX ×SX

+ defined as:

ℓ(ν) =
〈
ν(∅), λ⟨U, V ⟩.ν(U) + ν(V )

〉
, and

r(ν) =
〈
0, λ⟨U, V ⟩.ν(U ∪ V ) + ν(U ∩ V )

〉
.

It follows that the space of valuations is quasi-Polish because the space of extended reals R+
is quasi-Polish and the category of quasi-Polish spaces is closed under countable limits.

A nice characteristic of the construction we give in this paper is that it can be formalized
within relatively weak formal systems. For example, our approach is related to C. Mummert’s
formalization of general topology within subsystems of second order arithmetic [15, 16, 17]3.

2 Main result

We let R+ denote the positive extended reals (i.e., [0, ∞]) with the Scott-topology induced
by the usual order. Given a topological space X, we let O(X) denote the lattice of open
subsets of X with the Scott-topology.

▶ Definition 1 (Valuations). Let X be a topological space. A valuation on X is a continuous
function ν : O(X) → R+ satisfying:
1. ν(∅) = 0, and (strictness)
2. ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ). (modularity)

The space of valuations on X is the set V(X) of all valuations on X with the weak topology,
which is generated by subbasic opens of the form

⟨U, q⟩ := {ν ∈ V(X) | ν(U) > q}

with U ∈ O(X) and q ∈ R+ \ {∞}.

In this paper we will only consider the whole space of valuations V(X), but it is straight-
forward to modify our results for the subspaces of V(X) consisting of probabilistic valuations
(i.e., valuations satisfying ν(X) = 1) and sub-probabilistic valuations (i.e., valuations satisfying
ν(X) ≤ 1).

2 See [6] for a proof. The S here is the Sierpinski space, and the space O(O(X)) defined in [6] is
homeomorphic to the QCB0 exponential object SS

X

when X is quasi-Polish.
3 Note that C. Mummert’s MF-spaces are in general Π1

1-complete spaces, whereas quasi-Polish spaces
correspond to the Π0

2-level of the Borel hierarchy. This explains why Π1
1 − CA0 is required to prove

MF-spaces are closed under Gδ-subsets, whereas our construction of Π0
2-subspaces of quasi-Polish spaces

in Theorem 3 of [4] can be done within ACA0.
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Quasi-Polish spaces were introduced in [2]. In this paper we will define them using the
following equivalent characterization from [7] (see also [4]).

▶ Definition 2. Let ≺ be a transitive relation on N. A subset I ⊆ N is an ideal (with respect
to ≺) if and only if:
1. I ̸= ∅, (I is non-empty)
2. (∀a ∈ I)(∀b ∈ N) (b ≺ a ⇒ b ∈ I), (I is a lower set)
3. (∀a, b ∈ I)(∃c ∈ I) (a ≺ c & b ≺ c). (I is directed)

The collection I(≺) of all ideals has the topology generated by basic open sets of the form
[n]≺ = {I ∈ I(≺) | n ∈ I}. A space is quasi-Polish if and only if it is homeomorphic to I(≺)
for some transitive relation ≺ on N.

We often apply the above definition to other countable sets with the implicit assumption
that it has been suitably encoded as a subset of N.

Fix a transitive relation ≺ on N for the rest of this section. Let B be the (countable) set
of all partial functions r :⊆ N → Q>0 such that dom(r) is finite, where Q>0 is the set of
rational numbers strictly larger than zero.

▶ Definition 3. Define the transitive relation ≺V on B as r ≺V s if and only if∑
b∈F

r(b) <
∑

c∈↑F ∩dom(s)

s(c)

for every non-empty F ⊆ dom(r), where ↑F = {c ∈ N | (∃b ∈ F ) b ≺ c}.

Transitivity of ≺V follows from the transitivity of ≺. Note that if dom(r) = ∅ then
r ≺V s for every s ∈ B. We will sometimes use the fact that if r ≺V s and b ∈ dom(r) then
there is c ∈ dom(s) with b ≺ c.

▶ Definition 4. Define fV : V(I(≺)) → I(≺V ) and gV : I(≺V ) → V(I(≺)) as

fV (ν) =
{

r ∈ B

∣∣∣∣∣∑
b∈F

r(b) < ν(
⋃

b∈F

[b]≺) for every non-empty F ⊆ dom(r)
}

,

gV (I) = λU.
∨ ∑

b∈dom(r)

r(b)

∣∣∣∣∣∣ r ∈ I and
⋃

b∈dom(r)

[b]≺ ⊆ U

 .

We next prove a few lemmas which will be used to show that fV and gV are continuous
inverses of each other.

▶ Lemma 5. If I ∈ I(≺V ), r ∈ I, and A ⊆ dom(r), then r|A ∈ I, where r|A is the partial
function obtained by restricting the domain of r to A.

Proof. Since I is directed there is s ∈ I with r ≺V s. Then clearly r|A ≺V s hence r|A ∈ I

because I is a lower set. ◀

▶ Definition 6. Define the transitive binary relation ≺U on Pfin(N) (the set of finite subsets
of N) as F ≺U G if and only if (∀n ∈ G) (∃m ∈ F ) m ≺ n.

We write K(X) for the space of saturated compact subsets of X (see [6]).

▶ Lemma 7 (Lemma 9 & Theorem 10 of [4]). Given J ∈ I(≺U ), the set

gU (J) = {I ∈ I(≺) | (∀F ∈ J)(∃m ∈ I) m ∈ F}

is in K(I(≺)). Furthermore, for any S ⊆ N, gU (J) ⊆
⋃

b∈S [b]≺ if and only if there is finite
F ⊆ S with F ∈ J .

CSL 2022



9:4 Constructing the Space of Valuations of a Quasi-Polish Space as a Space of Ideals

▶ Lemma 8. If I ∈ I(≺V ) and r ∈ I, then there exists s ∈ I with r ≺V s and dom(r) ≺U

dom(s).

Proof. Choose any t ∈ I with r ≺V t. Let s be the restriction of t to have dom(s) = {c ∈
dom(t) | (∃b ∈ dom(r)) b ≺ c}. Clearly r ≺V s and dom(r) ≺U dom(s), and Lemma 5 implies
s ∈ I. ◀

▶ Lemma 9. Assume I ∈ I(≺V ) and r ∈ I. Then there exists K ∈ K(I(≺)) such that
K ⊆

⋃
b∈dom(r)[b]≺, and

For any finite F ⊆ N, if K ⊆
⋃

b∈F [b]≺, then there is s ∈ I with r ≺V s and F ≺U dom(s)
and K ⊆

⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺.

Proof. Fix I ∈ I(≺V ) and r ∈ I. Using Lemma 8, we can find a ≺V -ascending sequence
(ri)i∈N in I with r = r0 and dom(ri) ≺U dom(ri+1) for each i ∈ N. Then J = {F ∈ Pfin(N) |
(∃i ∈ N) F ≺U dom(ri)} is in I(≺U ), hence K = gU (J) ∈ K(I(≺)) and K ⊆

⋃
b∈dom(r)[b]≺

by Lemma 7 and the fact that dom(r) ∈ J . Assume F ⊆ N is finite and K ⊆
⋃

b∈F [b]≺.
Then F ∈ J by Lemma 7, hence F ≺U dom(ri) for some i ∈ N. Since ≺U is transitive, we
can assume without loss of generality that i > 0. Setting s = ri, we have s ∈ I and r ≺V s

and F ≺U dom(s), and since dom(s) ∈ J it follows from Lemma 7 that K ⊆
⋃

c∈dom(s)[c]≺.
The claim

⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺ follows from F ≺U dom(s). ◀

▶ Lemma 10. Let D ⊆ N be finite, and let P+(D) be the set of non-empty subsets of D.
Define

UG =
⋂

b∈G

[b]≺

VG = UG ∩
⋃

b∈D\G

[b]≺

for each G ∈ P+(D). Let P ⊆ P+(D) be an upper set (i.e., if F ∈ P and F ⊆ G ⊆ D then
G ∈ P ). If ν ∈ V(I(≺)) and ν(UG) < ∞ for each G ∈ P , then

∑
G∈P

(ν(UG) − ν(VG)) = ν

( ⋃
G∈P

UG

)
.

Proof. The proof is by induction on the size of P . It is trivial when P = ∅, so assume P is a
non-empty upper set and that the lemma holds for all upper sets of size strictly less than P .
If F is any minimal element of P , then

VF =
⋃

b∈D\F

UF ∪{b}

=
⋃

G∈P \{F }

UF ∪G

= UF ∩
⋃

G∈P \{F }

UG,

so the induction hypothesis and modularity yields
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∑
G∈P

(ν(UG) − ν(VG)) = ν(UF ) − ν(VF ) +
∑

G∈P \{F }

(ν(UG) − ν(VG))

= ν(UF ) − ν

UF ∩
⋃

G∈P \{F }

UG

+ ν

 ⋃
G∈P \{F }

UG


= ν

( ⋃
G∈P

UG

)
. ◀

▶ Lemma 11. fV is well-defined and continuous.

Proof. We first show that fV (ν) ∈ I(≺V ) for each ν ∈ V(I(≺)).
1. (fV (ν) is non-empty). The partial function with empty domain is in fV (ν).
2. (fV (ν) is a lower set). Assume r ≺V s ∈ fV (ν). Let F ⊆ dom(r) be non-empty, and define

G = ↑F ∩ dom(s). Since b ≺ c implies [c]≺ ⊆ [b]≺ it follows that
⋃

c∈G[c]≺ ⊆
⋃

b∈F [b]≺.
Then∑

b∈F

r(b) <
∑
c∈G

s(c) (because r ≺V s)

< ν(
⋃

c∈G

[c]≺) (because s ∈ fV (ν))

≤ ν(
⋃

b∈F

[b]≺) (because ν is monotonic),

hence r ∈ fV (ν).
3. (fV (ν) is directed). Our proof is related to the series of lemmas leading up to Theorem IV-

9.16 in [8]. Assume r0, r1 ∈ fV (ν). For each i ∈ {0, 1} and non-empty F ⊆ dom(ri) fix
some real number βi

F satisfying

∑
b∈F

ri(b) < βi
F < ν

(⋃
b∈F

[b]≺

)
,

and set

β = min
{

βi
F −

∑
b∈F ri(b)∑

b∈F ri(b)

∣∣∣∣ i ∈ {0, 1} & ∅ ≠ F ⊆ dom(ri)
}

.

Then α = 1/ (1 + β/2) satisfies 0 < α < 1 and is such that

∑
b∈F

ri(b) < αν

(⋃
b∈F

[b]≺

)

for each i ∈ {0, 1} and non-empty F ⊆ dom(ri) (see Lemma IV-9.11 (iii) of [8]). Set
M = 1 +

∑
b∈dom(r0) r0(b) +

∑
b∈dom(r1) r1(b), and D = dom(r0) ∪ dom(r1). Let UG and

VG be defined as in Lemma 10 for each non-empty G ⊆ D.
We define a finite set h(G) ⊆ N and a function sG : h(G) → Q> for each non-empty
G ⊆ D as follows. If ν(UG) = ν(VG) then let h(G) = ∅ and let sG be the empty function.
Otherwise, the set

C = {c ∈ N | (∀b ∈ D) [b ≺ c ⇐⇒ b ∈ G]}

CSL 2022



9:6 Constructing the Space of Valuations of a Quasi-Polish Space as a Space of Ideals

is non-empty because ν(UG) > ν(VG) implies there is some ideal containing G which is
not in VG. If there is some c ∈ C with ν([c]≺) = ∞, then set h(G) = {c} and define
sG : h(G) → Q> as sG(c) = M . If no such c ∈ C exists, then let (ci)i∈N be an enumeration
of C and define

pi = ν([ci]≺) − ν

(
[ci]≺ ∩

(⋃
k<i

[ck]≺ ∪ VG

))
.

Using modularity and a simple inductive argument, we have

∑
i≤n

pi = ν(
⋃
i≤n

[ci]≺) − ν

⋃
i≤n

[ci]≺ ∩ VG


= ν(

⋃
i≤n

[ci]≺ ∪ VG) − ν(VG)

for each n ∈ N. Since UG =
⋃

i∈N[ci]≺ ∪ VG and ν is Scott-continuous, there is n0 ∈ N
with(

1 + α

2

) ∑
i≤n0

pi ≥ α(ν(UG) − ν(VG))

if ν(UG) < ∞, and(
1 + α

2

) ∑
i≤n0

pi ≥ M

if ν(UG) = ∞. Define

h(G) = {ci | i ≤ n0 & pi > 0}

and define sG : h(G) → Q> so that sG(ci) is a positive rational satisfying(
1 + α

2

)
pi ≤ sG(ci) < pi.

Since h(G) ∩ h(G′) ̸= ∅ implies G = G′, there is s ∈ B with

dom(s) =
⋃

{h(G) | G ⊆ D}

satisfying s(c) = sG(c) for the unique G ⊆ D with c ∈ h(G). From the construction of s,
if F ⊆ h(G) is non-empty then∑

c∈F

s(c) < ν(
⋃

c∈F

[c]≺) − ν(
⋃

c∈F

[c]≺ ∩ VG). (1)

Furthermore, if h(G) ̸= ∅, then ν(UG) < ∞ implies

α (ν(UG) − ν(VG)) ≤
∑

c∈h(G)

s(c), (2)

and ν(UG) = ∞ implies

M ≤
∑

c∈h(G)

s(c). (3)
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To show s ∈ fV (ν), we must prove
∑

c∈F s(c) < ν(
⋃

c∈F [c]≺) for each non-empty
F ⊆ dom(s). This clearly holds when F = {c} is a singleton. Next, assume it holds for
all sets of size less than or equal to n, and let F be a set of size n + 1. We can assume
ν(
⋃

c∈F [c]≺) < ∞, since otherwise the claim is trivial. Let G ⊆ D be a set of minimal size
satisfying F ∩ h(G) ̸= ∅. This implies that either F \ h(G) is empty or else it satisfies the
induction hypothesis. Furthermore, for any c ∈ F \ h(G) there is G′ ⊆ D with c ∈ h(G′),
and since the minimality of G implies G′ ̸⊆ G, there is b ∈ G′ \ G with b ≺ c, which
implies UG ∩ [c]≺ ⊆ VG. Therefore,∑

c∈F

s(c) =
∑

c∈F ∩h(G)

sG(c) +
∑

c∈F \h(G)

s(c)

< ν(
⋃

c∈F ∩h(G)

[c]≺) − ν(
⋃

c∈F ∩h(G)

[c]≺ ∩ VG) + ν(
⋃

c∈F \h(G)

[c]≺)

(by (1) and the induction hypothesis)

≤ ν(
⋃

c∈F ∩h(G)

[c]≺) − ν(
⋃

c∈F ∩h(G)

[c]≺ ∩
⋃

c∈F \h(G)

[c]≺)

+ ν(
⋃

c∈F \h(G)

[c]≺)

(because UG ∩ [c]≺ ⊆ VG for each c ∈ F \ h(G))

= ν(
⋃

c∈F

[c]≺),

which proves s ∈ fV (ν).
Finally, we must show r0 ≺V s and r1 ≺V s. Fix i ∈ {0, 1} and non-empty F ⊆ dom(ri).
Set P = {G ⊆ D | G ∩ F ≠ ∅} and note that ↑F ∩ dom(s) =

⋃
G∈P h(G). If ν(UG) < ∞

for each G ∈ P , then using (2) and the fact that G ̸= G′ implies h(G) ∩ h(G′) = ∅,
we have∑

c∈↑F ∩dom(s)

s(c) ≥
∑
G∈P

α(ν(UG) − ν(VG))

= αν

( ⋃
G∈P

UG

)
(by Lemma 10)

= αν

(⋃
b∈F

[b]≺

)
>
∑
b∈F

ri(b).

Otherwise, there is G ∈ P with ν(UG) = ∞, so (3) implies∑
c∈↑F ∩dom(s)

s(c) ≥ M >
∑
b∈F

ri(b).

This completes the proof that fV (ν) is directed.
It only remains to show that fV is continuous. Fix r ∈ B. For each F ⊆ dom(r) define
WF =

⋃
b∈F [b]≺ and qF =

∑
b∈F r(b), and set D = {F ⊆ dom(r) | F ̸= ∅}. Then

fV (ν) ∈ [r]≺V
if and only if

ν ∈
⋂

F ∈D

⟨WF , qF ⟩,

hence fV is continuous. ◀

CSL 2022



9:8 Constructing the Space of Valuations of a Quasi-Polish Space as a Space of Ideals

▶ Lemma 12. gV is well-defined and continuous.

Proof. We first show that ν = gV (I) is a valuation for each I ∈ I(≺V ).
1. ν(∅) = 0: Assume U ∈ O(I(≺)) and ν(U) > 0. Then there is r0 ∈ I and b0 ∈ dom(r0)

such that [b0]≺ ⊆ U and 0 < r0(b0). Since I is directed, there is an infinite sequence
r0 ≺V r1 ≺V · · · in I. Since b0 ∈ dom(r0) and r0 ≺V r1, there is b1 ∈ dom(r1) with
b0 ≺ b1. Similarly, there must be b2 ∈ dom(r2) with b1 ≺ b2. This yields an infinite
sequence b0 ≺ b1 ≺ · · · , hence {c ∈ N | (∃i ∈ N) c ≺ bi} is an element of [b0]≺ ⊆ U .
Therefore, U ̸= ∅.

2. ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ): We first show ν(U) + ν(V ) ≤ ν(U ∪ V ) + ν(U ∩ V ).
Let r, s ∈ I be such that (∀b ∈ dom(r)) [b]≺ ⊆ U and (∀b ∈ dom(s)) [b]≺ ⊆ V . Set

pr =
∑

b∈dom(r)

r(b), ps =
∑

b∈dom(s)

s(b).

Let t ∈ I be a ≺V -upper bound of r and s. Let

Dr = {c ∈ dom(t) | (∃b ∈ dom(r)) b ≺ c},

Ds = {c ∈ dom(t) | (∃b ∈ dom(s)) b ≺ c}.

Note that c ∈ Dr ∩ Ds implies [c]≺ ⊆ U ∩ V . Set

q0 =
∑

c∈Dr\Ds

t(c), q1 =
∑

c∈Ds\Dr

t(c), q2 =
∑

c∈Dr∩Ds

t(c).

Then r ≺V t implies pr ≤ q0 + q2 and s ≺V t implies ps ≤ q1 + q2. Furthermore, using
the fact t ∈ I, Lemma 5, and the definition of ν, we obtain ν(U ∪ V ) ≥ q0 + q1 + q2 and
ν(U ∩ V ) ≥ q2, hence pr + ps ≤ ν(U ∪ V ) + ν(U ∩ V ). It follows that ν(U) + ν(V ) ≤
ν(U ∪ V ) + ν(U ∩ V ).
Next we show ν(U ∪ V ) + ν(U ∩ V ) ≤ ν(U) + ν(V ). Let r, s ∈ I be such that (∀b ∈
dom(r)) [b]≺ ⊆ U ∪ V and (∀b ∈ dom(s)) [b]≺ ⊆ U ∩ V . Let K ⊆

⋃
b∈dom(r)[b]≺ be as

in Lemma 9. Since K is compact and K ⊆ U ∪ V , there exists a finite set F ⊆ N
with K ⊆

⋃
b∈F [b]≺ and such that each b ∈ F satisfies [b]≺ ⊆ U or [b]≺ ⊆ V . Apply

Lemma 9 to get t ∈ I with r ≺V t and F ≺U dom(t) and K ⊆
⋃

c∈dom(t)[c]≺ ⊆⋃
b∈dom(r)[b]≺. Next let u ∈ I be a ≺V -upper bound of t and s. By restricting the

domain of u if necessary, we can assume that (dom(t) ∪ dom(s)) ≺U dom(u), hence every
c ∈ dom(u) satisfies [c]≺ ⊆ U or [c]≺ ⊆ V . Let u0 be the restriction of u to have domain
dom(u0) = {b ∈ dom(u) | [b]≺ ⊆ U}, and let u1 be the restriction of u to have domain
dom(u1) = {b ∈ dom(u) | [b]≺ ⊆ V }. Note that u0 and u1 are both in I by Lemma 5,
and that dom(u) = dom(u0) ∪ dom(u1). Then using the fact that r ≺V u and s ≺V u,
we have∑

b∈dom(r)

r(b) +
∑

b∈dom(s)

s(b) ≤
∑

c∈dom(u)

u(c) +
∑

c∈dom(u0)∩dom(u1)

u(c)

=
∑

c∈dom(u0)

u0(c) +
∑

c∈dom(u1)

u1(c)

≤ ν(U) + ν(V ).

Therefore, ν(U ∪ V ) + ν(U ∩ V ) ≤ ν(U) + ν(V ).
3. ν is a continuous function: Assume U ∈ O(I(≺)) and q ∈ Q>0 and ν(U) > q. Since I(≺)

is consonant (see [6]), it suffices to find K ∈ K(I(≺)) such that K ⊆ U and ν(W ) > q

whenever W is an open set containing K. By definition of gV (I), there must be r ∈ I
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such that (∀b ∈ dom(r)) [b]≺ ⊆ U and
∑

b∈dom(r) r(b) > q. Now let K ∈ K(I(≺)) be
as in Lemma 9. Then K ⊆ U , and if K ⊆ W then there is s ∈ I with r ≺V s and
K ⊆

⋃
c∈dom(s)[c]≺ ⊆ W , hence q <

∑
c∈dom(s) s(c) ≤ ν(W ).

It only remains to show that gV is continuous. Assume gV (I) ∈ ⟨U, q⟩. Then there is r ∈ I

satisfying (∀b ∈ dom(r)) [b]≺ ⊆ U and q <
∑

b∈dom(r) r(b). Then I ∈ [r]≺V
⊆ g−1

V (⟨U, q⟩),
hence gV is continuous. ◀

▶ Theorem 13. V(I(≺)) and I(≺V ) are homeomorphic (via fV and gV ).

Proof. It only remains to show that fV and gV are inverses of each other.
To show that gV ◦ fV is the identity function, it suffices to show that gV (fV (ν)) ∈ ⟨U, q⟩

if and only if ν ∈ ⟨U, q⟩ for each ν ∈ V(I(≺)) and each subbasic open ⟨U, q⟩. If gV (fV (ν)) ∈
⟨U, q⟩, then there must be r ∈ fV (ν) with q <

∑
b∈dom(r) r(b) and

⋃
b∈dom(r)[b]≺ ⊆ U . This

implies that dom(r) ̸= ∅, and using the definition of fV we obtain q <
∑

b∈dom(r) r(b) <

ν(
⋃

b∈dom(r)[b]≺) ≤ ν(U), hence ν ∈ ⟨U, q⟩. Conversely, if ν ∈ ⟨U, q⟩ then since ν is continuous
there exist b0, . . . , bn ∈ N such that

⋃
i≤n[bi]≺ ⊆ U and q < ν(

⋃
i≤n[bi]≺). If ν([bi]≺) = ∞

for some i ≤ n, then the partial function r defined as dom(r) = {bi} and r(bi) = q + 1 is in
fV (ν), which implies gV (fV (ν)) ∈ ⟨U, q⟩. Otherwise ν([bi]≺) < ∞ for each i ≤ n, so define

mi = ν([bi]≺) − ν
(
[bi]≺ ∩

⋃
j<i

[bj ]≺
)
.

Note that the modularity of ν implies mi = ν(
⋃

j≤i[bj ]≺) − ν(
⋃

j<i[bj ]≺), hence a simple
inductive argument yields

∑
i≤n mi = ν(

⋃
i≤n[bi]≺), which is strictly larger than q. Let G =

{i | mi > 0}. Then there exists r ∈ B with dom(r) = {bi | i ∈ G} and (∀i ∈ G) r(bi) < mi

and q <
∑

b∈dom(r) r(b). If F ⊆ G is non-empty, then

∑
i∈F

r(bi) <
∑
i∈F

mi =
∑
i∈F

ν([bi]≺) − ν
(
[bi]≺ ∩

⋃
j<i

[bj ]≺
)

≤
∑
i∈F

ν([bi]≺) − ν
(
[bi]≺ ∩

⋃
j<i
j∈F

[bj ]≺
) = ν

(⋃
i∈F

[bi]≺

)
.

Thus, r ∈ fV (ν) and q <
∑

b∈dom(r) r(b), hence gV (fV (ν)) ∈ ⟨U, q⟩.
Next we show that fV (gV (I)) = I for each I ∈ I(≺V ). By unwinding the definitions

of fV and gV , we have r ∈ fV (gV (I)) if and only if for every non-empty F ⊆ dom(r)
there is s ∈ I such that

⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺ and

∑
b∈F r(b) <

∑
c∈dom(s) s(c). Thus,

given any r ∈ I, by Lemma 8 there is s ∈ I with r ≺V s and dom(r) ≺U dom(s), hence⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺ and

∑
b∈F r(b) <

∑
c∈dom(s) s(c), which implies r ∈ fV (gV (I)).

Therefore, I ⊆ fV (gV (I)).
To prove fV (gV (I)) ⊆ I, fix any r ∈ fV (gV (I)). Then for every non-empty F ⊆ dom(r)

there is sF ∈ I such that
⋃

c∈dom(sF )[c]≺ ⊆
⋃

b∈F [b]≺ and
∑

b∈F r(b) <
∑

c∈dom(sF ) sF (c).
Using Lemma 9, we can assume that F ≺U dom(sF ). Let s ∈ I be a ≺V -upper bound of all
of the sF . Then for any non-empty F ⊆ dom(r), we have∑

b∈F

r(b) <
∑

c∈↑F ∩dom(sF )

sF (c) (by choice of sF )

<
∑

c∈↑F ∩dom(s)

s(c) (because sF ≺V s and ≺ is transitive).

Therefore r ≺V s, hence r ∈ I because I is a lower-set. It follows that fV (gV (I)) ⊆ I, which
completes the proof that fV (gV (I)) = I. ◀

CSL 2022



9:10 Constructing the Space of Valuations of a Quasi-Polish Space as a Space of Ideals

We remark that the homeomorphisms fV and gV are computable in the sense of TTE [21]
when ≺ is computably enumerable, and therefore our approach is consistent with previous
work on computable measures in [19, 13, 18]. The computability of fV is obvious. For gV ,
note that for any U ∈ O(I(≺)) and any A ⊆ N satisfying U =

⋃
a∈A[a]≺, Lemma 9 implies

gV (I)(U) =
∨ ∑

c∈dom(s)

s(c)

∣∣∣∣∣∣ s ∈ I & (∀c ∈ dom(s))(∃a ∈ A) a ≺ c

 ,

which shows that gV is computable.
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