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Abstract
In this paper, we focus on graph class identification problems in the population protocol model. A
graph class identification problem aims to decide whether a given communication graph is in the
desired class (e.g. whether the given communication graph is a ring graph). Angluin et al. proposed
graph class identification protocols with directed graphs and designated initial states under global
fairness [Angluin et al., DCOSS2005]. We consider graph class identification problems for undirected
graphs on various assumptions such as initial states of agents, fairness of the execution, and initial
knowledge of agents. In particular, we focus on lines, rings, k-regular graphs, stars, trees, and
bipartite graphs. With designated initial states, we propose graph class identification protocols for
k-regular graphs and trees under global fairness, and propose a graph class identification protocol
for stars under weak fairness. Moreover, we show that, even if agents know the number of agents n,
there is no graph class identification protocol for lines, rings, k-regular graphs, trees, or bipartite
graphs under weak fairness, and no graph class identification for lines, rings, k-regular graphs, stars,
trees, or bipartite graphs with arbitrary initial states.
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1 Introduction

The population protocol model is an abstract model for low-performance devices, introduced
by Angluin et al. [4]. In this model, a network, called population, consists of multiple devices
called agents. Those agents are anonymous (i.e., they do not have identifiers), and move
unpredictably (i.e., they cannot control their movements). When two agents approach, they
are able to communicate and update their states (this communication is called an interaction).
By a sequence of interactions, the system proceeds a computation. In this model, there are
various applications such as sensor networks used to monitor wild birds and molecular robot
networks [24].

In this paper, we study the computability of graph properties of communication graphs in
the population protocol model. Concretely, we focus on graph class identification problems
that aim to decide whether the communication graph is in the desired graph class. In
most distributed systems, it is essential to understand properties of the communication
graph in order to design efficient algorithms. Actually, in the population protocol model,
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13:2 Population Protocols for Graph Class Identification Problems

efficient protocols are proposed with limited communication graphs (e.g., ring graphs and
regular graphs) [2, 6, 16, 17]. In the population protocol model, the computability of the
graph property was first considered in [3]. In [3], Angluin et al. proposed various graph
class identification protocols with directed graphs and designated initial states under global
fairness. Concretely, Angluin et al. proposed graph class identification protocols for directed
lines, directed rings, directed stars, and directed trees. Moreover, they proposed graph
class identification protocols for other graphs such as 1) graphs having degree bounded by
a constant k, 2) graphs containing a fixed subgraph, 3) graphs containing a directed cycle,
and 4) graphs containing a directed cycle of odd length. However, there are still some open
questions such as “What is the computability for undirected graphs?” and “How do other
assumptions (e.g., initial states, fairness, etc.) affect the computability?” In this paper, we
answer those questions. That is, we clarify the computability of graph class identification
problems for undirected graphs under various assumptions such as initial states of agents,
fairness of the execution, and an initial knowledge of agents. More concretely, in this paper,
we consider the problems with designated or arbitrary initial states, under global or weak
fairness, and with the number of agents n, the upper bound P of the number of agents, or
no knowledge. The assumption of initial states bears on the requirement of initialization
and the fault-tolerant property. To execute a protocol with designated initial states, it
is necessary to initialize all agents. Alternatively, a protocol with arbitrary initial states
does not need to initialize agents. This implies that, even if agents transition to incorrect
states by transient faults, the protocol can recover to desired configurations. Fairness is an
assumption of interaction patterns. Intuitively, global fairness guarantees that, if a reachable
configuration can occur infinitely often, the reachable configuration actually occurs infinitely
often. On the other hand, weak fairness only guarantees that interactions occur infinitely
often between each pair of adjacent agents. The initial knowledge is given to agents for
helping the agents solve the problem. The initial knowledge enables us to construct efficient
protocols although it may be difficult to know the knowledge in some situations.

In the population protocol, researchers also considered other assumptions such as symme-
try and randomness (deterministic or non-deterministic). In this paper, we consider only
deterministic asymmetric protocols. Note that, with designated initial states under global
fairness, there is a transformer that transforms an asymmetric protocol into a symmetric
protocol by assuming additional states [13]. Although we deal only with asymmetric protocols,
we can transform most of our asymmetric protocols to symmetric protocols by applying this
transformer.

We remark that some protocols in [3] for directed graphs can be easily extended to
undirected graphs with designated initial states under global fairness (see Table 1). Concretely,
graph class identification protocols for directed lines, directed rings, and directed stars can
be easily extended to protocols for undirected lines, undirected rings, and undirected stars,
respectively. In addition, the graph class identification protocol for bipartite graphs can be
deduced from the protocol that decides whether a given graph contains a directed cycle of
odd length. This is because, if we replace each edge of an undirected non-bipartite graph
with two opposite directed edges, the directed non-bipartite graph always contains a directed
cycle of odd length. On the other hand, the graph class identification protocol for directed
trees cannot work for undirected trees because the protocol uses a property of directed trees
such that in-degree (resp., out-degree) of each agent is at most one on an out-directed tree
(resp., an in-directed tree). Note that agents can identify trees if they understand the graph
contains no cycle. However, the graph class identification protocol for graphs containing a
directed cycle in directed graphs cannot be used to identify a (simple) cycle in undirected
graphs. This is because, if we replace an undirected edge with two opposite directed edges,
the two directed edges compose a directed cycle.
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Table 1 The number of states to solve the graph class identification problems. n is the number
of agents and P is an upper bound of the number of agents.

Model Graph Properties
Initial states Fairness Initial knowledge Line Ring Bipartite Tree k-regular Star

Designated
Global

n O(1)† O(1)† O(1)† O(1)* O(k log n)* O(1)†
P O(1)† O(1)† O(1)† O(1)* O(k log P )* O(1)†

None O(1)† O(1)† O(1)† O(1)* – O(1)†

Weak n Unsolvable* O(n)*
P /None Unsolvable*

Arbitrary Global/Weak n/P /None Unsolvable*
* Contributions of this paper †Deduced from Angluin et al. [3]

Our Contributions

In this paper, we clarify the computability of graph class identification problems for undirected
graphs under various assumptions. Recall that we consider only deterministic asymmetric
protocols. A summary of our results is given in Table 1. Under global fairness, we propose
two graph class identification protocols. One is a graph class identification protocol for trees
with designated initial states. This protocol works with constant number of states even if no
initial knowledge is given. The other is a graph class identification protocol for k-regular
graphs with designated initial states and the initial knowledge of the upper bound P of the
number of agents. On the other hand, under weak fairness, we show that there exists no
graph class identification protocol for lines, rings, k-regular graphs, stars, trees, or bipartite
graphs even if the upper bound P of the number of agents is given. In the case where the
number of agents n is given, we propose a graph class identification protocol for stars and
prove that there exists no graph class identification protocol for lines, rings, k-regular graphs,
trees, or bipartite graphs. With arbitrary initial states, we prove that there is no protocol for
lines, rings, k-regular graphs, stars, trees, or bipartite graphs. In this paper, because of space
constraints, we omit the details of protocols and some proofs (see the full version in [26]).

Related Works

The population protocol model was proposed by Angluin et al. [4]. While they mainly studied
the computability of the model in the paper, subsequent works studied various problems
(e.g., leader election [1, 11, 18, 21], counting [7, 8, 12, 22], majority [5, 10, 20], etc) under
different assumptions (e.g., fairness assumption [7, 8], initial states of agents [6, 9], and initial
knowledge of agents [14, 25]).

Although those problems are usually considered with complete communication graphs
(i.e., every pairwise interaction can occur), some researchers proposed efficient protocols with
limited communication graphs (e.g., ring graph, regular graph, etc.) [2, 6, 16, 17]. More
concretely, Angluin et al. proposed a protocol that constructs a spanning tree with regular
graphs [6]. Chen et al. proposed self-stabilizing leader election protocols with ring graphs [16]
and regular graphs [17]. Alistarh et al. showed that protocols for complete graphs (including
the leader election protocol, the majority protocol, etc.) can be simulated efficiently in
regular graphs [2].

For graph class identification problems, after Angluin et al. studied some solvabilities [3],
Chatzigiannakis et al. studied solvabilities for directed graphs with some properties on the
mediated population protocol model [15], where the mediated population protocol model is an
extension of the population protocol model. In this model, a communication link (on which
agents interact) has a state. Agents can read and update the state of the communication
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13:4 Population Protocols for Graph Class Identification Problems

link when agents interact on the communication link. In [15], they proposed graph class
identification protocol for some graphs such as 1) graphs having degree bounded by a constant
k, 2) graphs in which the degree of each agent is at least k, 3) graphs containing an agent such
that in-degree of the agent is greater than out-degree of the agent, 4) graphs containing a
directed path of at least k edges, etc. Since Chatzigiannakis et al. proposed protocols for the
mediated population protocol model, the protocols cannot work in the population protocol
model. As impossibility results, they showed that there is no graph class identification
protocol that decides whether the given directed graph has two edges (u, v) and (v, u) for
two agents u and v, or whether the given directed graph is weakly connected.

As another perspective of communication graphs, Michail and Spirakis proposed a net-
work constructors model that is an extension of the mediated population protocol [23]. The
network constructors model aims to construct a desired graph on the complete commu-
nication graph by using communication links with two states. Each communication link
only has active or inactive state. Initially, all communication links have inactive state. By
activating/deactivating communication links, the protocol of this model constructs a desired
communication graph that consists of agents and activated communication links. In [23],
they proposed protocols that construct spanning lines, spanning rings, spanning stars, and
regular graphs. Moreover, by relaxing the number of states, they proposed a protocol that
constructs a large class of graphs.

2 Definitions

2.1 Population Protocol Model
A communication graph of a population is represented by a simple undirected connected
graph G = (V, E), where V represents a set of agents, and E ⊆ V × V is a set of edges
(containing neither multi-edges nor self-loops) that represent the possibility of an interaction
between two agents (i.e., only if (a, b) ∈ E holds, two agents a ∈ V and b ∈ V can interact).

A protocol P = (Q, Y, γ, δ) consists of a finite set Q of possible states of agents, a finite
set of output symbols Y , an output function γ : Q→ Y , and a set of transitions δ from Q×Q

to Q×Q. Output symbols in Y represent outputs as the results according to the purpose of
the protocol. Output function γ maps a state of an agent to an output symbol in Y . Each
transition in δ is denoted by (p, q)→ (p′, q′). This means that, when an agent a in state p

interacts with an agent b in state q, their states become p′ and q′, respectively. We say that
such a is an initiator and such b is a responder. When a and b interact as an initiator and a
responder, respectively, we simply say that a interacts with b. Transition (p, q)→ (p′, q′) is
null if both p = p′ and q = q′ hold. We omit null transitions in the descriptions of protocols.
Protocol P = (Q, Y, γ, δ) is deterministic if, for any pair of states (p, q) ∈ Q×Q, exactly one
transition (p, q)→ (p′, q′) exists in δ. Recall that we consider only deterministic protocols in
this paper.

A configuration represents a global state of a population, defined as a vector of states of
all agents. A state of agent a in configuration C is denoted by s(a, C). Moreover, when C

is clear from the context, we simply use s(a) to denote the state of agent a. A transition
from configuration C to configuration C ′ is denoted by C → C ′, and means that, by a single
interaction between two agents, configuration C ′ is obtained from configuration C. For
two configurations C and C ′, if there exists a sequence of configurations C = C0, C1, . . .,
Cm = C ′ such that Ci → Ci+1 holds for every i (0 ≤ i < m), we say C ′ is reachable from C,
denoted by C

∗−→ C ′.
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An execution of a protocol is an infinite sequence of configurations Ξ = C0, C1, C2, . . .

where Ci → Ci+1 holds for every i (i ≥ 0). An execution Ξ is weakly-fair if, for any adjacent
agents a and a′, a interacts with a′ and a′ interacts with a infinitely often1. An execution Ξ
is globally-fair if, for each pair of configurations C and C ′ such that C → C ′, C ′ occurs
infinitely often when C occurs infinitely often. Intuitively, global fairness guarantees that,
if configuration C occurs infinitely often, then any possible interaction in C also occurs
infinitely often. Then, if C occurs infinitely often, C ′ satisfying C → C ′ occurs infinitely
often, and we can deduce that C ′′ satisfying C ′ → C ′′ also occurs infinitely often. Overall,
with global fairness, if a configuration C occurs infinitely often, then every configuration C∗

reachable from C also occurs infinitely often.
In this paper, we consider three possibilities for an initial knowledge of agents: the number

of agents n, the upper bound P of the number of agents, and no knowledge. Note that the
protocol depends on this initial knowledge. When we explicitly state that an integer x is
given as the number of agents, we write the protocol as Pn=x. Similarly, when we explicitly
state that an integer x is given as the upper bound of the number of agents, the protocol is
denoted by PP =x.

2.2 Graph Properties and Graph Class Identification Problems

We define graph properties treated in this paper as follows:
A graph G satisfies property tree if there is no cycle on graph G.
A graph G = (V, E) satisfies property k-regular if the degree of every agent in V is k.
A graph G satisfies property star if G is a tree with one internal agent and n− 1 leaves.
A graph G = (V, E) satisfies property bipartite if V can be divided into two disjoint and
independent sets U and W (i.e., U

⋂
W = ∅ holds and there is no edge connecting two

agents in U or W ).
A graph G = (V, E) satisfies property line if E = {(v0, v1), (v1, v2), (v2, v3), . . .,
(vn−1, vn)} for V = {v1, v2, . . . vn}.
A graph G = (V, E) satisfies property ring if the degree of every agent in V is 2.

Let gp be an arbitrary graph property. The gp identification problem aims to decide whether
a given communication graph G satisfies property gp. In the gp identification problem, the
output set is Y = {yes, no}. Recall that the output function γ maps a state of an agent to an
output symbol in Y (i.e., yes or no). A configuration C is stable if C satisfies the following
conditions: There exists yn ∈ {yes, no} such that 1) ∀a ∈ V : γ(s(a, C)) = yn holds, and 2)
for every configuration C ′ such that C

∗−→ C ′, ∀a ∈ V : γ(s(a, C ′)) = yn holds.
An execution Ξ = C0, C1, C2, . . . solves the gp identification problem if Ξ includes a

stable configuration Ct that satisfies the following conditions.
1. If a given graph G = (V, E) satisfies graph property gp, ∀a ∈ V : γ(s(a, Ct)) = yes holds.
2. If a given graph G = (V, E) does not satisfy graph property gp, ∀a ∈ V : γ(s(a, Ct)) = no

holds.

1 We use this definition only for the lower bound under weak fairness. For the upper bound, we use a
slightly weaker assumption. We show that our proposed protocol for weak fairness works if, for any
adjacent agents a and a′, a and a′ interact infinitely often (i.e., it is possible that, for any interaction
between some adjacent agents a and a′, a becomes an initiator and a′ never becomes an initiator). Note
that, in the protocol, if a transition (p, q) → (p′, q′) exists for p ̸= q, a transition (q, p) → (q′, p′) also
exists.
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13:6 Population Protocols for Graph Class Identification Problems

A protocol P solves the gp identification problem under weak fairness (resp., under global
fairness) if every weakly-fair execution (resp., every globally-fair execution ) of protocol P
solves the gp identification problem.

3 Graph Class Identification Protocols

3.1 Tree Identification with No Initial Knowledge under Global Fairness
In this section, we give a tree identification protocol with 18 states and designated initial
states under global fairness (see the pseudocode in the appendix and the full version in [26]).

The basic strategy of the protocol is as follows. Initially agents think that the graph
is a tree, and, if they detect a cycle, they confirm that the graph is not a tree. To detect
a cycle, first, agents elect one leader token, one right token, and one left token. Initially,
all agents have right tokens. When two agents with right tokens interact, agents make one
of the right tokens transition to a left token. Similarly, when two agents with left tokens
interact, agents make one of the left tokens transition to a leader token. When two agents
with leader tokens interact, agents delete one of the leader tokens. Agents carry these tokens
on a graph by interactions as if each token moves freely on the graph. Thus, by the above
behaviors, eventually agents elect one leader token, one right token, and one left token.

Agents behave as if the leader token has an opinion (tree/non-tree), and agents follow
the opinion (this opinion is hereinafter referred to as “decision”). Initially the leader token
has the decision such that the graph is a tree (i.e., there is no cycle). Since the leader token
moves freely on the graph and we assume global fairness, the leader token visits all agents
infinitely often. Thus, eventually all agents will know the decision of the leader token.

Agents reset the decision of the leader token if agents notice that the token election is
not yet over. Concretely, when two agents with leader tokens interact and delete one of the
leader token, agents reset the decision of the remaining leader token. By this behavior, all
agents virtually reset their decision because each agent follows the decision of the leader
token. Hence, when agents complete the token election, all agents (and the leader token)
virtually reset their decision. Now, we explain that, after the token election, agents correctly
detect a cycle and the leader token make a correct decision.

After the election, agents repeatedly execute a trial to detect a cycle by using the tokens.
The trial starts when an agent with the leader token places the right token and the left token
to two adjacent agents x and y, respectively. During the trial, x and y hold the right token
and the left token, respectively. To detect a cycle, agents use the right token and the left
token as a single landmark. The right token and the left token correspond to a right side and
a left side of the landmark, respectively. If agents can carry the leader token from the right
side of the landmark to the left side of the landmark without passing through the landmark,
the trial succeeds.

From now, we explain the behaviors of the trial in more details. An image of the trial is
shown in Figure 1, where Lse, Lr, Ll, Lt

r, and Lt
l represent tokens (we will show the details

later). To begin with, we explain the start of the trial (the first and second steps of Figure 1).
To start the trial, agents place the left token and the right token next to each other. To
distinguish between a moving token and a placed token, we use a trial mode. Agents regard
right and left tokens in a trial mode as placed tokens. An Lt

r token (resp., an Lt
l token)

represents the right token (resp., the left token) in the trial mode. An Lr token (resp., an Ll

token) represents the right token (resp., the left token) in a non-trial mode. An Lse token
represents the leader token.
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Detect a cycle

Figure 1 An image of the trial.

More concretely, agents start the trial as follows. When an agent x having the Ll token
interacts with an agent y having the leader token, agents make the Ll token transition to
an Lt

l token, and they exchange their tokens (the first step of Figure 1). Then, if agent x

having the leader token interacts with an agent having the Lr token, agents make the Lr

token transition to an Lt
r token, and they exchange their tokens (the second step of Figure 1).

By above behaviors, agents place an Lt
r token next to the Lt

l token, and a trial of the cycle
detection starts.

After that, agents try to carry the leader token to agent y without passing through agent
x (the third step of Figure 1). To do this, agents try to carry the leader token to an agent
having the Lt

l token. Note that the left and right tokens can move even while agents carry
the leader token. However, if they move, they transition to the non-trial mode. Thus, if an
agent having the leader token interacts with an agent having the Lt

l token, agents confirm
that the Lt

l token is still placed at y (the fourth step of Figure 1). Then, to confirm that the
Lt

r token is also still placed at x, agent y having the leader token tries to interact with an
agent having the Lt

r token. Since the right token may move and the leader token may pass
through agent x without meeting the right token, this confirmation is necessary. If agents
succeed both confirmations, agents succeed the trial and decide that there is a cycle (the fifth
step of Figure 1). Hence, in the case, the leader token makes a decision that the given graph
is not a tree, and the decision is conveyed to all agents. Since each token moves freely on
the graph and we assume global fairness, agents perform the trial on any place (i.e., agents
place the left token and the right token on any adjacent agents). Thus, if there is a cycle,
eventually agents decide that the given graph is not a tree. Recall that initially all agents
think that the given graph is a tree. Hence, unless the trial succeeds, all agents continue to
think that the given graph is a tree.

▶ Theorem 1. There exists a protocol with constant states and designated initial states that
solves the tree identification problem under global fairness.

3.2 k-regular Identification with Knowledge of P under Global Fairness
In this subsection, we give a k-regular identification protocol with O(k log P ) states and
designated initial states under global fairness (see the pseudocode in the appendix and the
full version in [26]).

The basic strategy of the protocol is as follows. First, agents elect a leader token. In
this protocol, agents with leader tokens leave some information in agents. To keep only the
information that is left after completion of the election, we introduce level of an agent. If an
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agent at level i has the leader token, we say that the leader token is at level i. Agents with
leader tokens leave the information with their levels. Before agents complete the election of
leader tokens, agents keep increasing their levels, and agents discard the information with
smaller levels when agents increase their levels. When agents complete the election of leader
tokens, the agent with the leader token is the only agent that has the largest level. Then, all
agents eventually converge to the level. We guarantee that the maximum level of agents is
⌊log P ⌋. Since agents discard the information with smaller levels, agents virtually discard
any information that was left before agents complete the election. From now on, we consider
configurations after agents elect a leader token and discard any outdated information.

Now, we explain how the protocol solves the k-regular identification problem by using
the leader token. First, an agent with the leader token examines whether its degree is at
least k, and whether its degree is at least k + 1. If the agent confirms that its degree is at
least k but does not confirm that its degree is at least k + 1, then the agent thinks that its
degree is k. Since the leader token moves freely on the graph and we assume global fairness,
eventually each agent confirms whether its degree is k. The agent with the leader token
examines whether its degree is at least k as follows: An agent a with the leader token checks
whether a can interact with k different agents. To check it, agent a with the leader token
marks adjacent agents and counts how many times a has marked. Concretely, when agent
a having the leader token interacts with an agent b, agent a marks agent b by making b

change to a marked state. Agent a counts how many times a interacts with an agent having
a non-marked state (hereinafter referred to as “a non-marked agent”). If agent a having the
leader token interacts with k non-marked agents successively, a decides that a can interact
with k different agents (i.e., its degree is at least k).

If an agent confirms that its degree is at least k, the agent stores this information locally.
To do this, we introduce a variable loca at agent a: Variable loca ∈ {yes, no}, initialized
to no, represents whether the degree of agent a is at least k. If loca = yes holds, agent a

thinks that its degree is at least k. If an agent a confirms that its degree is at least k, agent
a makes loca transition from no to yes.

Next, we show how agents decide whether the graph is k-regular. In this protocol, first an
agent with the leader token decides whether the graph is k-regular, and then the decision is
conveyed to all agents by the leader token. We use variable rega at agent a for the decision:
Variable rega ∈ {yes, no}, initialized to no, represents the decision of the k-regular graph. If
rega = yes holds for agent a, then γ(sa) = yes holds. If rega = no holds, then γ(sa) = no

holds. Whenever an agent a with the leader token makes loca transition to yes, agent a

makes rega transition to yes. If an agent a with the leader token finds an agent b such that
locb = no or its degree is at least k + 1, agents reset rega to no. Note that, since all agents
follow the decision of the leader token, this behavior practically resets reg of each agent. If
there is such agent b, agent a with the leader token eventually finds agent b since the leader
token moves freely on the graph. Hence, if the graph is not k-regular, reg of the leader token
(i.e., rega such that agent a has the leader token) transitions to no infinitely often. On the
other hand, if the graph is k-regular, eventually loca of each agent a transitions from no to
yes. Let us consider a configuration where loc of each agent other than an agent x is yes

and locx is no. After the configuration, when agent x makes locx and regx transition to yes,
agent x has the leader token (i.e., reg of the leader token transitions to yes). Hence, since
there is no agent such that its loc is no or its degree is at least k + 1, reg of the leader token
never transitions to no afterwards and thus reg of the leader token converges to yes. Thus,
since agents convey the decision of the leader token to all agents, eventually all agents make
a correct decision.
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▶ Remark. We have introduced the level of agents to reset all agents virtually. In the case of
tree identification, only the leader token needs to be reset because, after the leader token
is reset, the leader token is not affected by incorrect information (the decision of agent in
this case). On the other hand, in the case of k-regular identification, all agents need to be
reset because, even after the leader token is reset, the leader token is affected by incorrect
information (the value of loc in this case). More concretely, the leader token has to refer to
variable loc of agent in order to understand whether all agents have been examined. Hence,
since agents may store an incorrect value in loc, the leader token may make a wrong decision
unless the agents are reset.

To count the degree, agents require O(k) states, and the maximum level of agents is
⌊log P ⌋. Hence, the protocol works with O(k log P ) states.

▶ Theorem 2. If the upper bound P of the number of agents is given, there exists a protocol
with O(k log P ) states and designated initial states that solves the k-regular identification
problem under global fairness.

When the number of agents n is given, the protocol works even if the maximum level is
⌊log n⌋. Thus, we have the following theorem.

▶ Theorem 3. If the number of agents n is given, there exists a protocol with O(k log n)
states and designated initial states that solves the k-regular identification problem under global
fairness.

3.3 Star Identification with Knowledge of n under Weak Fairness
In this subsection, we give a star identification protocol with O(n) states and designated
initial states under weak fairness (see the pseudocode in the appendix and the full version
in [26]). In this protocol, the number of agents n is given. Since a given graph is a star if
n ≤ 2 holds, we consider the case where n is at least 3.

The basic strategy of the protocol is as follows. Initially, each agent thinks that the
given graph is not a star. First, agents elect an agent with degree two or more as a central
agent (i.e., an agent that connects to all other agents in the star graph). Then, by counting
the number of agents adjacent to the central agent, agents examine whether there is a star
subgraph in the given graph such that the subgraph consists of n agents. Concretely, if the
central agent confirms by counting that there are n− 1 adjacent agents, agents confirm that
there is the subgraph. In this case, agents think that the given graph is a star. Then, if two
agents other than the central agent interact, agents decide that the graph is not a star. If
such an interaction does not occur, agents continue to think that the given graph is a star.

To count n− 1 agents adjacent to the central agents, agents require O(n) states. Hence,
the protocol works with O(n) states.

▶ Theorem 4. There exists a protocol with O(n) states and designated initial states that
solves the star identification problem under weak fairness if the number of agents n is given.

4 Impossibility Results

4.1 A Common Property of Graph Class Identification Protocols for
Impossibility Results

In this subsection, we present a common property that holds for protocols with designated
initial states under weak fairness.
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Figure 2 An example of graphs G and G′.

With designated initial states under weak fairness, we assume that a protocol P solves
some of the graph class identification problems. From now, we show that, with P, there
exists a case where agents cannot distinguish between some different connected graphs. Note
that P has no constraints for an initial knowledge (i.e., for some integer x, P is Pn=x, PP =x,
or a protocol with no initial knowledge). Because of space constraints, we omit the details of
the proof (see the full version in the [26]).

▶ Lemma 5. Let us consider a communication graph G = (V, E), where V = {v1, v2, v3,
. . ., vn}. Let G′ = (V ′, E′) be a communication graph that satisfies the following, where
V ′ = {v′

1, v′
2, v′

3, . . ., v′
2n}.

E′ = {(v′
x, v′

y), (v′
x+n, v′

y+n) ∈ V ′×V ′ | (vx, vy) ∈ E}∪ {(v′
1, v′

z+n), (v′
1+n, v′

z) ∈ V ′×V ′ |
(v1, vz) ∈ E} (Figure 2 shows an example of the graphs).

Let Ξ be a weakly-fair execution of P with G. If there exists a configuration C of Ξ after
which ∀v ∈ V : γ(s(v)) = yn ∈ {yes, no} holds, there exists an execution Ξ′ of P with G′

such that there exists a configuration C ′ of Ξ′ after which ∀v′ ∈ V ′ : γ(s(v′)) = yn holds.

Proof. (Proof sketch) With G′, we consider a particular weakly-fair execution Ξ′. In Ξ′,
agents repeat the following four sub-executions: 1) agents v′

1, v′
2, . . ., v′

n behave similarly
to Ξ, 2) agents v′

1+n, v′
2+n, . . ., v′

2n behave similarly to Ξ, 3) agent v′
1+n and agents v′

2, v′
3

. . ., v′
n behave similarly to Ξ by joining v′

1+n instead of v′
1, and 4) agent v′

1 and agents v′
2+n,

v′
3+n . . ., v′

2n behave similarly to Ξ by joining v′
1 instead of v′

1+n. Since v′
1 (resp., v′

1+n) can
join interactions instead of v′

1+n (resp., v′
1) by the definition of G and G′, this execution is

possible. Clearly, in Ξ′, the decision of each agent is the same as the decision of agent in Ξ.
Therefore, the lemma holds. ◀

4.2 Impossibility with Knowledge of P under Weak Fairness
For the purpose of the contradiction, we assume that, for an integer x, there exists a protocol
PP =x that solves some of the graph class identification problems with designated initial
states under weak fairness. We can apply Lemma 5 to PP =x because we can apply the
same protocol PP =x to both G and G′ in Lemma 5. Clearly, we can construct G and G′ in
Lemma 5 such that, for any of properties line, ring, tree, k-regular, and star, G is a graph
that satisfies the property, and G′ is a graph that does not satisfy the property. Therefore,
we have the following theorem.

▶ Theorem 6. Even if the upper bound of the number of agents is given, there exists no
protocol that solves the line, ring, k-regular, star, or tree identification problem with the
designated initial states under weak fairness.
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Note that, in Theorem 6, the bipartite identification problem is not included. However,
we show later that there is no protocol that solves the bipartite identification problem even
if the number of agents is given.

4.3 Impossibility with Knowledge of n under Weak Fairness

In this subsection, we show that, even if the number of agents n is given, there exists no
protocol that solves the line, ring, k-regular, tree, or bipartite identification problem with
designated initial states under weak fairness.

Case of Line, Ring, k-regular, and Tree

First, we show that there exists no protocol that solves the line, ring, k-regular, or tree
identification problem. Concretely, we show that there is a case where a line graph and a ring
graph are not distinguishable. To show this, first we give some notations. Let G = (V, E)
be a line graph with four agents, where V = {v1, v2, v3, v4} and E = {(v1, v2), (v2, v3),
(v3, v4)}. Let G′ = (V ′, E′) be a ring graph with four agents, where V ′ = {v′

1, v′
2, v′

3, v′
4} and

E′ = {(v′
1, v′

2), (v′
2, v′

3), (v′
3, v′

4), (v′
4, v′

1)}. Let s0 be an initial state of agents. Let us consider
a transition sequence T = (s0, s0) → (sa1 , sb1), (sb1 , sa1) → (sb2 , sa2), (sa2 , sb2) → (sa3 ,
sb3), (sb3 , sa3)→ (sb4 , sa4), . . .. Since the number of states is finite, there are i and j such
that sai

= saj
, sbi

= sbj
, and i < j hold. Let sa and sb be states such that sa = sai

= saj

and sb = sbi
= sbj

hold.
Because of space constraints, we omit the details of the proof (see the full version in

the [26]). The proof sketch is as follows: We construct a particular execution Ξ with G such
that the decision of each agent converges to yn ∈ {yes, no}. In Ξ, agents repeat the following
three sub-executions: 1) agents v1 and v2 interact repeatedly until v1 and v2 obtain sa and
sb, respectively, 2) agents v3 and v4 interact repeatedly until v3 and v4 obtain sa and sb,
respectively, and 3) v3 and v2 interact repeatedly until v3 and v2 obtain sa and sb again,
respectively. Next, we construct a particular execution Ξ′ with G′. In Ξ′, agents repeat the
following four sub-executions: 1) agents v′

1 and v′
2 interact repeatedly until v′

1 and v′
2 obtain

sa and sb, respectively, 2) agents v′
3 and v′

4 interact repeatedly until v′
3 and v′

4 obtain sa

and sb, respectively, 3) v′
3 and v′

2 interact repeatedly until v′
3 and v′

2 obtain sa and sb again,
respectively, and 4) v′

1 and v′
4 interact repeatedly until v′

1 and v′
4 obtain sa and sb again,

respectively. From the definition of sa and sb, we can construct those executions such that
the executions satisfy weak fairness and agents converge to the decision yn.

▶ Lemma 7. There exists a weakly-fair execution Ξ′ of P with G′ such that ∀v′ ∈ V ′ :
γ(s(v′)) = yn holds in a stable configuration of Ξ′.

Note that, even if the number of agents is given, Lemma 7 holds because |V | = |V ′| = 4
holds in the lemma. In Lemma 7, G is a line graph and a tree graph whereas G′ is neither a
line graph nor a tree graph. Furthermore, G′ is a ring graph and a 2-regular graph whereas
G is neither a ring graph nor a 2-regular graph. Hence, by Lemma 7, there is no protocol
that solves the line, ring, tree, or k-regular identification problem, and thus we have the
following theorem.

▶ Theorem 8. Even if the number of agents n is given, there exists no protocol that solves
the line, ring, k-regular, or tree identification problem with designated initial states under
weak fairness.
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Figure 3 Graphs G, G′, and G′′.

Case of Bipartite

Next, we show that there exists no protocol that solves the bipartite identification problem.
For the purpose of the contradiction, we assume that there exists a protocol Pn=6 that solves
the bipartite identification problem with designated initial states under weak fairness if the
number of agents 6 is given.

We define a ring graph G = (V, E) with three agents, a ring graph G′ = (V ′, E′) with 6
agents, and a graph G′′ = (V ′′, E′′) with 6 agents as follows:

V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v1)}.
V ′ = {v′

1, v′
2, v′

3, v′
4, v′

5, v′
6} and E′ = {(v′

1, v′
2), (v′

2, v′
6), (v′

6, v′
4), (v′

4, v′
5), (v′

5, v′
3),

(v′
3, v′

1)}.
V ′′ = {v′′

1 , v′′
2 , v′′

3 , v′′
4 , v′′

5 , v′′
6} and E′′ = {(v′′

x , v′′
y ), (v′′

x+n, v′′
y+n) ∈ V ′′ × V ′′ | (vx, vy) ∈

E} ∪ {(v′′
1 , v′′

5 ), (v′′
1 , v′′

6 ), (v′′
4 , v′′

2 ), (v′′
4 , v′′

3 )}.
Figure 3 shows graphs G, G′, and G′′.

From now, we show that there exists an execution Ξ′′ of Pn=6 with G′′ such that all
agents converge to yes whereas G′′ does not satisfy bipartite. To show this, we first show
that, in any execution Ξ of Pn=6 with G (i.e., the protocol for 6 agents is applied to a
population consisting of 3 agents), all agents converge to yes. To prove this, we borrow the
proof technique in [19]. In [19], Fischer and Jiang proved the impossibility of leader election
for a ring graph.

▶ Lemma 9. In any weakly-fair execution Ξ of Pn=6 with G, all agents converge to yes.
That is, in Ξ, there exists Ct such that ∀v ∈ V : γ(s(v, Ci)) = yes holds for i ≥ t.

Proof sketch. For Ξ, we construct an execution Ξ′ of Pn=6 with G′ such that v′
1, v′

2, and v′
3

behave similarly to v1, v2, and v3 in Ξ, respectively, and v′
4, v′

5, and v′
6 also behave similarly

to v1, v2, and v3 in Ξ, respectively. Note that agents v′
1, v′

2, and v′
3 and agents v′

4, v′
5, and v′

6
operate in parallel. Since v′

2 (resp., v′
5) is not adjacent to v′

3 (resp., v′
6), v′

2 (resp., v′
5) cannot

interact with v′
3 (resp., v′

6). When v′
2 (resp., v′

5) should interact with v′
3 (resp., v′

6), v′
2 (resp.,

v′
5) interacts with v′

6 instead of v′
3 (resp., v′

3 instead of v′
6). Since v′

2 and v′
5 (resp., v′

3 and v′
6)

behave similarly to v2 (resp., v3), v′
2 and v′

5 (resp., v′
3 and v′

6) have the same state. Hence,
even if v′

2 (resp., v′
5) interacts with v′

6 instead of v′
3 (resp., v′

3 instead of v′
6), v′

2 and v′
3 (resp.,

v′
5 and v′

6) can transition similarly to v2 and v3.
In Ξ′, since the number of agents is given correctly, a stable configuration exists. Hence,

since G′ is a bipartite graph, all agents converge to yes in Ξ′. This implies that all agents
converge to yes even in Ξ. ◀

Now, we show that there exists execution Ξ′′ of Pn=6 with G′′ such that all agents
converge to yes. We show this by applying Lemma 5 to protocol Pn=6 and graphs G and
G′′. Graphs G and G′′ satisfy the condition of G and G′ in Lemma 5, and the protocol Pn=6
satisfies the condition of protocol P in Lemma 5. Thus, we can apply Lemma 5 to protocol
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Pn=6 and graphs G and G′′. By applying Lemma 5, since all agents converge to yes in an
execution of Pn=6 with G by Lemma 9, there exists a weakly-fair execution Ξ′′ of Pn=6 with
G′′ in which all agents converge to yes.

▶ Lemma 10. With the designated initial states, there exists a weakly-fair execution Ξ′′ of
Pn=6 with G′′ such that ∀v′′ ∈ V ′′ : γ(s(v′′)) = yes in a stable configuration.

Graph G′′ does not satisfy bipartite. Thus, from Lemma 10, Pn=6 is incorrect. Therefore,
we have the following theorem.

▶ Theorem 11. Even if the number of agents n is given, there exists no protocol that solves
the bipartite identification problem with the designated initial states under weak fairness.

4.4 Impossibility with Arbitrary Initial States
In this subsection, we show that, even if the number of agents n is given, there exists no
protocol that solves the line, ring, k-regular, star, tree, or bipartite identification problem
with arbitrary initial states under global fairness.

For the purpose of the contradiction, we assume that there exists a protocol P that solves
some of the above graph class identification problems with arbitrary initial states under
global fairness if the number of agents n is given. From now, we show that there are two
executions Ξ and Ξ′ of P such that the decision of all agents in the executions converges to
the same value whereas Ξ and Ξ′ are for graphs G and G′(̸= G), respectively.

▶ Lemma 12. Let G = (V, E) and G′ = (V ′, E′) be connected graphs that satisfy the following
condition, where V = {v1, v2, v3, . . ., vn} and V ′ = {v′

1, v′
2, v′

3, . . ., v′
n}.

For some edge (vα, vβ) in E, E′ = {(v′
x, v′

y) ∈ V ′ × V ′ | (vx, vy) ∈ E}\{(v′
α, v′

β)}.
If there exists a globally-fair execution Ξ of P with G such that ∀v ∈ V : γ(s(v)) = yn ∈ {yes,
no} holds in a stable configuration of Ξ, there exists a globally-fair execution Ξ′ of P with G′

such that ∀v′ ∈ V ′ : γ(s(v′)) = yn holds in a stable configuration of Ξ′.

Proof. Let Ξ = C0, C1, C2, . . . be a globally-fair execution of P with G such that ∀v ∈
V : γ(s(v)) = yn ∈ {yes, no} holds in a stable configuration Ct. For the purpose of the
contradiction, we assume that there exists no execution of P with G′ such that ∀v′ ∈ V ′ :
γ(s(v′)) = yn holds in a stable configuration.

Let us consider an execution Ξ′ = C ′
0, C ′

1, C ′
2, . . ., C ′

t′ , . . . of P with G′ such that, for
1 ≤ i ≤ n, s(v′

i, C ′
0) = s(vi, Ct) holds and C ′

t′ is a stable configuration. By the assumption,
∃v′

z ∈ V ′ : γ(s(v′
z, C ′

t′)) = yn′( ̸= yn) holds.
Next, let us consider an execution Ξ′′ = C ′′

0 , C ′′
1 , C ′′

2 , . . ., C ′′
t , . . . of P with G as follows:

For 0 ≤ i ≤ t, C ′′
i = Ci holds (i.e., agents behave similarly to Ξ).

For t < i ≤ t + t′, when v′
x interacts with v′

y at C ′
i−t−1 → C ′

i−t, vx interacts with vy at
C ′′

i−1 → C ′′
i . This is possible because E′ ⊂ E holds.

Since Ct is a stable configuration, C ′′
t is also a stable configuration and ∀v ∈ V : γ(s(v, C ′′

t )) =
yn holds. Since agents behave similarly to Ξ′ after C ′′

t , γ(s(vz, C ′′
t+t′)) = yn′ holds. This

contradicts the fact that C ′′
t is a stable configuration. ◀

We can construct a non-line graph, a non-ring graph, a non-star graph, a non-tree graph,
and a non-bipartite graph by adding an edge to a line graph, a ring graph, a star graph, a
tree graph, and a bipartite graph, respectively. Moreover, we can construct a k-regular graph
by adding an edge to some non-k-regular graph. From Lemma 12, there is a case where the
decision of all agents converges to the same value for each pair of graphs. Therefore, we have
the following theorem.

▶ Theorem 13. There exists no protocol that solves the line, ring, k-regular, star, tree, or
bipartite identification problem with arbitrary initial states under global fairness.
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5 Concluding Remarks

In this paper, we consider the graph class identification problems on various assumptions.
We have interesting open problems for future researches as follows:

What is the space complexity of k-regular identification problem under global fairness
with designated initial states and no initial knowledge.
What is the time complexity of graph class identification problems?
Are there some graph class identification protocols for other graph properties?
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A Pseudocode of Protocols

The descriptions of pseudocodes in this appendix are appeared in [26].

A.1 Tree Identification Protocol
Algorithm 1 shows the tree identification protocol in Subsection 3.1. The roles of the variables
at agent a in Protocol 1 are as follows.

LFa ∈ {Lse, Ll, Lr, Lt
se, Lt

se′ , Lse′ , Lt
l , Lt

r, ϕ}: Variable LFa, initialized to Lr, represents
a token held by agent a. If LFa is not ϕ, agent a has LFa token. There are three types
of tokens: a leader token (Lse, Lt

se, Lt
se′ , and Lse′), a left token (Ll and Lt

l), and a right
token (Lr and Lt

r). Ll, and Lr tokens are the tokens in non-trial modes. Lt
l and Lt

r

tokens represent the left token and the right token in the trial mode, respectively. Lt
se,

Lt
se′ , and Lse′ tokens represent a progress of a trial of the cycle detection. Lt

se token
represents that the left token has been placed. Lt

se′ token represents that the right token
has been placed. Lse′ token represents that the token confirms that the Lt

l token is still
placed on the certain agent. ϕ represents no token.

OPODIS 2021

https://doi.org/10.1007/978-3-642-16023-3_21
http://arxiv.org/abs/2111.05111


13:16 Population Protocols for Graph Class Identification Problems

trea ∈ {yes, no}: Variable trea, initialized to yes, represents a decision of the tree. If
trea = yes holds for agent a, then γ(sa) = yes holds (i.e., a decides that the given graph
is a tree). If trea = no holds, then γ(sa) = no holds (i.e., a decides that the given graph
is not a tree).

The protocol uses 18 states because the number of values taken by variable LFa is 9 and the
number of values taken by variable trea is 2.

Algorithm 1 A tree identification protocol (1/2).

Variables at an agent a:
LFa ∈ {Lse, Ll, Lr, Lt

se, Lt
se′ , Lse′ , Lt

l , Lt
r, ϕ}: Token held by the agent, initialized to

Lr.
trea ∈ {yes, no}: Decision of the tree, initialized to yes.

1: when agent a interacts with agent b do
{ The election of tokens }

2: if LFa, LFb ∈ {Lt
r, Lr} then

3: LFb ← Ll

4: else if LFa, LFb ∈ {Lt
l , Ll} then

5: LFb ← Lse

6: else if LFa, LFb ∈ {Lse, Lt
se, Lt

se′ , Lse′} then
7: LFa ← Lse, LFb ← ϕ

8: trea ← yes

{ Movement of tokens }
9: else if LFa ̸= ϕ ∧ LFb = ϕ then

10: if LFa ∈ {Lse, Lt
se, Lt

se′ , Lse′} then
11: treb ← trea

12: end if
13: if LFa = Lt

κ for κ ∈ {l, r} then
14: LFa ← Lκ

15: else if LFa = Lse′ ∨ LFa = Lt
se′ then

16: LFa ← Lse

17: end if
18: LFa ↔ LFb *

{ Decision }
19: else if LFa = Lse ∧ LFb = Ll then
20: LFa ← Lt

l , LFb ← Lse′

21: treb ← trea

22: else if LFa = Lse′ ∧ LFb = Lr then
23: LFa ← Lt

r, LFb ← Lt
se

24: treb ← trea

25: else if LFa = Lt
se ∧ LFb = Lt

l then
26: LFa ← Ll, LFb ← Lt

se′

27: treb ← trea

28: else if LFa = Lt
se′ ∧ LFb = Lt

r then
29: LFa ← Lr, LFb ← Lse

30: treb ← no

* p↔ q means that p and q exchange values.
▷ Continued on the next page
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Algorithm 1 A tree identification protocol (2/2).

31: else if LFa ̸= ϕ ∧ LFb ̸= ϕ then
32: if LFab ∈ {Lse, Lt

se, Lt
se′ , Lse′} for ab ∈ {a, b} then

33: trea ← treab, treb ← treab

34: end if
35: if LFab = Lt

κ for ab ∈ {a, b} and κ ∈ {l, r} then
36: LFab ← Lκ

37: end if
38: if LFab = Lse′ ∨ LFab = Lt

se ∨ LFab = Lt
se′ for ab ∈ {a, b} then

39: LFab ← Lse

40: end if
41: LFa ↔ LFb

42: end if
43: end

A.2 k-regular Identification Protocol

Algorithm 2 shows the k-regular identification protocol in Subsection 3.2.
The roles of the variables at agent a in Protocol 2 are as follows.
LFa ∈ {L0, L1, . . ., Lk, ϕ, ϕ′}: Variable LFa, initialized to L0, represents states for a
leader token and marked agents. If LFa is neither ϕ nor ϕ′, agent a has a leader token.
In particular, if LFa = Li(i ∈ {0, 1, . . ., k}) holds, agent a has an Li token. Moreover,
LFa = Li represents that agent a has interacted with i different non-marked agents (i.e.,
agent a has at least i edges). If LFa = ϕ holds, agent a has no leader token. If LFa = ϕ′

holds, agent a has no leader token and a is marked by other agents.
levela ∈ {0, 1, 2, . . ., ⌊log P ⌋}: Variable levela, initialized to 0, represents the level of
agent a.
rega ∈ {yes, no}: Variable rega, initialized to no, represents the decision of the k-regular
graph. If rega = yes holds for agent a, then γ(sa) = yes holds. If rega = no holds, then
γ(sa) = no holds.

The protocol uses O(k log P ) states because the number of values taken by variable LFa is
k + 2, the number of values taken by variable levela is ⌊log P ⌋+ 1, and the number of values
taken by other variables (loca and rega) is constant.

A.3 Star Identification Protocol

Algorithm 3 shows the star identification protocol in Subsection 3.3.
The roles of the variables at agent a in Protocol 3 are as follows.
LFa ∈ {ϕ, ϕ′, l′, L2, L3, . . ., Ln−1}: Variable LFa, initialized to ϕ, represents a role of
agent a. LFa = Li means that a central agent a has marked i agents (i.e., agent a has at
least i edges). LFa = l′ means that a is a candidate of a central agent and is a marked
agent. LFa = ϕ means that agent a is a non-marked agent. LFa = ϕ′ means that agent
a is a marked agent. When LFa = x holds, we refer to a as an x-agent.
stara ∈ {yes, no, never}: Variable stara, initialized to no, represents a decision of a
star. If stara = yes holds, γ(sa) = yes holds (i.e., a decides that a given graph is a
star). If stara = no or stara = never holds, γ(sa) = no holds (i.e., a decides that a given
graph is not a star). stara = never means the stronger decision of no. If agent a with
stara = never interacts with agent b, starb transitions to never regardless of the value
of starb.
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Algorithm 2 A k-regular identification protocol.

Variables at an agent a:
LFa ∈ {L0, L1, . . ., Lk, ϕ, ϕ′}: States for a leader token and marked agents, initialized
to L0.
levela ∈ {0, 1, 2, . . ., ⌊log P ⌋}: States for the level of agent a, initialized to 0.
loca ∈ {yes, no}: States representing whether the degree of agent a is at least k, initialized
to no.
rega ∈ {yes, no}: Decision of the k-regular graph, initialized to no.

1: when agent a interacts with agent b do
⟨ The behavior when agents have the same level ⟩

2: if levela = levelb then
{ The election of leader tokens }

3: if LFa = Lx ∧ LFb = Ly (x, y ∈ {0, 1, 2, . . ., k}) then
4: levela ← levela + 1
5: LFa ← L0, LFb ← ϕ

6: rega ← no

7: loca ← no

{ Decision and movement of the token }
8: else if LFa = Lx ∧ LFb = ϕ (x ∈ {0, 1, 2, . . ., k − 2}) then
9: LFa ← Lx+1, LFb ← ϕ′

10: else if LFa = Lx ∧ LFb = ϕ′ (x ∈ {0, 1, 2, . . ., k}) then
11: LFa ← ϕ, LFb ← L0
12: regb ← rega

13: else if LFa = Lk−1 ∧ LFb = ϕ then
14: LFa ← Lk, LFb ← ϕ′

15: if loca = no then
16: rega ← yes

17: loca ← yes

18: end if
{ Reset of reg of the leader token (the degree of agent a is at least k + 1) }

19: else if LFa = Lk ∧ LFb = ϕ then
20: LFa ← L0, LFb ← ϕ′

21: rega ← no

22: end if
{ Reset of reg of the leader token (loca or locb is no) }

23: if loca = no ∨ locb = no then
24: rega ← no, regb ← no

25: end if
⟨ The behavior when agents have different levels ⟩

26: else if levela > levelb then
27: levelb ← levela
28: locb ← no

29: LFb ← ϕ

30: end if
31: end

The protocol is given in Algorithm 3. Algorithm 3 uses 3n + 3 states because the number of
values taken by variable LFa is n + 1 and the number of values taken by variable stara is 3.
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Algorithm 3 A star identification protocol.

A variable at an agent a:
LFa ∈ {ϕ, ϕ′, l′, L2, L3, . . ., Ln−1}: States that represent roles of agents, initialized to ϕ.
Li represents a central agent, l′ represents a candidate of the central agent, ϕ′ represents
a marked agent, and ϕ represents a non-marked agent.
stara ∈ {yes, no, never}: Decision of a star, initialized to no.

1: when agent a interacts with agent b do
⟨ The behavior when stara or starb is never ⟩

2: if stara = never ∨ starb = never then
3: stara ← never, starb ← never

⟨ The behaviors when stara ̸= never and starb ̸= never holds ⟩
4: else

{ The election of a central agent }
5: if LFa = ϕ ∧ LFb = ϕ then
6: LFa ← l′, LFb ← l′

7: else if LFa = l′ ∧ LFb = ϕ then
8: LFa ← L2, LFb ← ϕ′

{ Counting the number of adjacent agents by the central agent }
9: else if LFa = Li ∧ LFb = ϕ (2 ≤ i ≤ n− 2) then

10: LFa ← Li+1, LFb ← ϕ′

11: end if
12: if LFa = Ln−1 then
13: stara ← yes, starb ← yes

14: end if
{ Decision of never }

15: if LFa = ϕ′ ∧ LFb = ϕ′ then
16: stara ← never, starb ← never

17: else if LFa = ϕ′ ∧ LFb = l′ then
18: stara ← never, starb ← never

19: end if
{ Conveyance of yes }

20: if stara = yes ∨ starb = yes then
21: stara ← yes, starb ← yes

22: end if
23: end if
24: end
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