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Abstract
Subgraph detection has recently been one of the most studied problems in the CONGEST model of
distributed computing. In this work, we study the distributed complexity of problems closely related
to subgraph detection, mainly focusing on induced subgraph detection. The main line of this work
presents lower bounds and parameterized algorithms w.r.t structural parameters of the input graph:

On general graphs, we give unconditional lower bounds for induced detection of cycles and
patterns of treewidth 2 in CONGEST. Moreover, by adapting reductions from centralized
parameterized complexity, we prove lower bounds in CONGEST for detecting patterns with a
4-clique, and for induced path detection conditional on the hardness of triangle detection in the
congested clique.

On graphs of bounded degeneracy, we show that induced paths can be detected fast in CONGEST
using techniques from parameterized algorithms, while detecting cycles and patterns of treewidth
2 is hard.

On graphs of bounded vertex cover number, we show that induced subgraph detection is easy
in CONGEST for any pattern graph. More specifically, we adapt a centralized parameterized
algorithm for a more general maximum common induced subgraph detection problem to the
distributed setting.

In addition to these induced subgraph detection results, we study various related problems in the
CONGEST and congested clique models, including for multicolored versions of subgraph-detection-like
problems.
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15:2 Beyond Distributed Subgraph Detection

1 Introduction

Subgraph detection is one of the most studied problems in the CONGEST and congested
clique models of distributed computing [23, 16, 33, 25, 26, 29, 28, 15, 14]. The complexity of
distributed subgraph detection is understood for many pattern graphs – for example, in the
CONGEST model, tight bounds are known for path [33, 26] and odd cycle detection [33, 25],
and it is known that pattern graphs requiring almost quadratic time exist [28]. However,
unresolved questions remain about the exact complexity of, e.g., triangle detection in either
CONGEST or congested clique, and even cycle detection in CONGEST.

In this work, we look at the closely related induced subgraph detection problem, which
has so far not received any attention in the distributed setting. In particular, we aim to
understand the complexity of induced subgraph detection for common pattern graphs, such
as paths and cycles, as well as how the situation contrasts with the non-induced case. It
is well known that in the centralized setting, induced subgraph detection is generally more
difficult than non-induced subgraph detection, so one would expect that situation is the same
also in the distributed setting.

1.1 Background and setting

Before presenting our results, we start by discussing the wider context of distributed subgraph
detection problems. As mentioned above, we work in the CONGEST and congested clique
models of distributed computing, and use G and n to denote the input graph and the number
number of nodes in the input graph, respectively.

In the paper, we mostly consider subgraph detection and induced subgraph detection
problems; we are given a pattern graph H with k nodes, known to all nodes in G, and the
task is to decide if the input graph G contains H as a subgraph or an induced subgraph;
more precisely, any node v that is part of an admissible copy of H should report that the
input is a yes-instance.

Fixed-parameter tractability. Subgraph and induced subgraph detection problems can be
viewed as parameterized problems; such problems are studied in centralized setting under the
field of parameterized complexity [20]. A parameterized problem is defined by the input and
a problem parameter k – formally, a (complexity) parameter k is a mapping from the input
instance to natural numbers. The basic question of centralized parameterized complexity
is to understand which problems are fixed-parameter tractable, i.e. have algorithms with
running time f(k)|x|O(1), where f is an arbitrary function and x is the binary encoding of the
input instance. For example, k-cycle detection can be viewed as a parameterized problem.

Similarly, one can consider fixed-parameter tractability in the distributed setting. The
strictest definition is to ask which problems have distributed algorithm where the running
time depends only on the parameter k [43, 10]. However, this arguably does not capture all
fixed-parameter tractability phenomena in distributed models – e.g. k-cycle detection cannot
be solved in f(k) rounds for any function f in the CONGEST model.

A more general perspective is to ask what is the smallest function T such that a parameter-
ized problem can be solved in f(k) ·T (n) rounds, for some function f : N → N. Several results
of this type are known for subgraph detection problems; for example, k-cycle detection can be
solved in O(k2kn) rounds in the CONGEST model [33, 26], and in 2O(k)n0.158 rounds in the
congested clique model [16], though these bounds are not tight for even-length cycles [15, 28].
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Parameters and graph structure. For subgraph and induced subgraph detection problems,
the natural complexity parameter is the number of nodes k in the pattern graph. However,
parameterized complexity frequently studies other complexity parameters – for our purposes,
the most relevant are structural graph parameters, in particular degeneracy d(G), treewidth
tw(G), and vertex cover number τ(G) (see Section 2 for the precise definitions). While
bounded degeneracy (equivalently, bounded arboricity) [7, 33, 8] has been studied in the
distributed setting, bounded treewidth and bounded vertex cover number less so.

Given a structural parameter p, we can consider the complexity of subgraph or induced
subgraph detection parameterized either by the structural parameter p(G) of the input graph,
or by the structural parameter p(H) of the pattern graph. Note that we have

d(G) ≤ tw(G) ≤ τ(G) .

For parameters p1 and p2 with p1(G) ≤ p2(G), upper bounds w.r.t. parameter p2 imply
upper bounds w.r.t. parameter p1, and lower bounds w.r.t. parameter p1 imply lower bounds
w.r.t. parameter p2.

Lower bounds and reductions. The standard technique for proving unconditional CONGEST
lower bounds is by reduction from communication complexity problems, most often using
families of lower bound graphs [42, 25, 17, 1, 30, 21] (see Section 2). By contrast, reductions
between problems are less useful in the CONGEST model, as the model can implement only
very limited reductions efficiently.

However, there are still uses for reductions in distributed complexity theory, which we
will apply in this work. First, in the congested clique, sub-polynomial round reductions can
be used to establish relative complexities of problems [34]. Second, as noted by Bacrach et
al. [6], centralized reductions can be used to transform families of lower bound graphs for
one problem into families of lower bound graphs for a second problem.

1.2 Results: induced subgraph detection on general graphs

First, we consider the hardness of induced subgraph detection on general graphs. We show
that for common pattern graphs, the induced version of the problem is at least as hard as
the non-induced version, and in many cases harder.

Unconditional lower bounds. We start with unconditional lower bounds for induced
subgraph detection in CONGEST; see Table 1 for a summary of these results.

For cycles of length at least 6, we show that the induced cycle detection problem requires
at least O(n/ log n) rounds in the CONGEST model. The result follows from a combination
of the existing lower bound construction for odd-length cycles, and a new construction for
induced even cycles. By comparison, the existing lower bounds for non-induced subgraph
detection in CONGEST are Ω(n1/2/ log n) for even cycle detection [33], and Ω(n/ log n) for
odd cycle detection excluding triangles [25]; it is also known that even cycles can be detected
in O(nδ) time, for δ < 1 that depends on the length of the cycle [28].

We also prove that there are pattern graphs for which induced subgraph detection (and
also non-induced detection) requires near-quadratic time in CONGEST, in similar spirit at
the hard pattern graphs for non-induced subgraph detection presented by Fischer et al. [28].
Moreover, we show that these pattern graphs can be constructed to have treewidth 2; contrast
this with the centralized setting, where low-treewidth patterns are easy to detect [5].

OPODIS 2021
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Table 1 Lower bounds on general graphs. Improved lower bounds of Le Gall and Miyamoto [36]
are independent and concurrent work (see main text.)

Problem Bound

Induced 2k-cycle (k ≥ 3) Ω(n/ log n) Section 3.3
Induced H-detection

· any H with 4-clique Ω(n1/2/ log n) Section 3.2
· some H with tw(H) = 2† Ω(n2−ε) Section 3.4

Multicolored k-cycle (k ≥ 4) Ω(n/ log n) Section 4.2
Multicolored induced path of length k (k ≥ 6) Ω(n/ log n) Section 4.2

Induced k-cycle (k ≥ 4) Ω̃(n) [36]
Induced k-cycle (k ≥ 8) Ω̃(n2−Θ(1/k)) [36]

†holds for any ε > 0, for some H that is chosen depending ε

Table 2 Bounds w.r.t. structural graph parameters. Results attributed to [33] follow directly
from the proofs in that work, but are not stated in that work for induced subgraphs.

Problem Bound

Induced k-tree† 2O(kd(G))kk + O(log n) Section 5
(Induced) H-detection, Ω(n1−ε) holds for d(G) = 2 Section 5.2

some H with tw(H) = 2‡

(Induced) k-cycle (k ≥ 6) Ω(n1/2/ log n) holds for d(G) = 2 [33]
Induced 4-cycle O(d(G) + log n) [33]
Induced 5-cycle O(d(G)2 + log n) [33]

MCIS 2O(τ2) τ = τ(G) + τ(H) Section 6
Induced subgraph 2O((τ(G)+k)2) Section 6

†randomized algorithm, can be derandomized with extra assumptions and worse running time
‡holds for any ε > 0, for some H that is chosen depending ε

Unconditional lower bounds: recent independent work. After submitting this paper, we
learned about the independent and concurrent work of Le Gall and Miyamoto [36], which
gives lower bounds for induced cycle detection and diamond listing. In particular, they show
that detecting induced k-cycles requires Ω̃(n) rounds for any k ≥ 4, and Ω̃(n2−Θ(1/k)) rounds
for any k ≥ 8. These results subsume our lower bounds for induced cycle and treewidth-2
subgraph detection.

Reductions. Next, we turn our attention to conditional lower bounds for problems where
standard CONGEST lower bound techniques do not immediately yield unconditional lower
bounds. See Figure 1 for a summary of these results.

We adapt a centralized reduction of Dalirrooyfard et al. [22] between clique and indepen-
dent set detection and induced subgraph detection. Specifically, they show that detecting
an induced subgraph H that contains a k-clique (k-independent set) is as hard detecting
k-clique (k-independent set, resp.). We show that this reduction can also be implemented in
the congested clique model.
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It follows that detecting induced paths of length at least 5 in either the CONGEST or
congested clique model is at least as hard triangle detection in the congested clique model,
and more generally, detecting paths of length at least 2k −1 in CONGEST or congested clique
is as hard as detecting k-cliques in the congested clique. By comparison, the best known
upper bounds in the congested clique are O(n0.158) for triangle detection [16], and O(n1−1/k)
for k-clique detection [23]; while no lower bounds for the congested clique model are known,
improving over the O(n0.158)-round matrix multiplication based triangle detection would
have major implications for distributed algorithms. However, it is worth noting that induced
paths of length 2 can be detected in O(1) rounds in CONGEST, in contrast to triangles (see
Appendix A).

Moreover, the reduction allows us to lift the Ω(n1/2/ log n) CONGEST lower bound of
Czumaj and Konrad [21] for 4-clique detection to induced and non-induced detection of any
pattern graph H that contains a 4-clique.

Multicolored problems. Finally, we consider multicolored versions of subgraph detection
tasks. In multicolored (induced) H-detection, we are given a labelling of the input graph G

with k colors, and the task is to find a (induced) copy of H that contains exactly one node
of each color. Multicolored versions of problems have proven to be useful starting points
for reductions in fixed-parameter complexity, and algorithms for a multicolored version of a
problem can often be turned into an algorithm for the standard version via color-coding [5].

We observe that multicolored versions of k-clique and k-independent set are closely related
to their standard versions in the distributed setting, by adapting the simple centralized
reductions to distributed setting (see Figure 1). We then prove unconditional lower bounds
of Ω(n/ log n) in CONGEST for multicolored versions of k-cycle detection, for k ≥ 4, and
for detection of induced paths of length k, for k ≥ 6. These results imply that color-coding
algorithms cannot be used directly to improve the state of the art for these problems – for
comparison, note that k-cycle detection can be solved in CONGEST in o(n/ log n) rounds for
even k, non-induced multicolored paths can be detected in O(1) round in CONGEST, and we
have no unconditional lower bounds for induced path detection.

1.3 Results: induced subgraph detection with structural parameters
Next, we consider subgraph and induced subgraph detection tasks w.r.t. structural graph
parameters. We focus on the degeneracy d(G) and the vertex cover number τ(G) of the
input graph as the parameters in this section. See Table 2 for a summary of the results.

Bounded degeneracy. We show that induced subgraph detection for any tree on k nodes
can be solved in time 2O(kd(G))kk + O(log n) rounds in CONGEST. As with the prior results
on non-induced path, tree and cycle detection algorithms in CONGEST, this upper bound is
based on centralized fixed-parameter algorithms, in this case using color-coding and random
separation techniques [4, 13].

On the lower bounds side, we show that there are treewidth 2 pattern graphs that require
near-linear time to detect as induced and non-induced subgraphs in CONGEST on input
graphs of degeneracy d(G) = 2, via a slight modification of the proof for the general case
discussed above. Note that any fixed pattern graph can be detected in O(n) rounds when
degeneracy is bounded, by having all nodes gather their distance-k neighborhood.

For cycles, we note that results of Korhonen and Rybicki [33] can be easily seen to imply
that detecting induced k-cycles for k ≥ 6 requires at least Ω(n1/2/ log n) rounds to detect
in CONGEST on graphs of degeneracy d(G) = 2, as well as that induced 4-cycles can be
detected in O(d(G) + log n) rounds, and induced 5-cycles in O(d(G)2 + log n) rounds.

OPODIS 2021
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Figure 1 Relationships between problems in CONGEST and congested clique. Results hold for any
sufficiently large constant k. Upper bound indicates an Õ(nδ) round algorithm for the problem for
specified δ; lower bound family indicates that there is a lower bound family giving Ω̃(nδ) lower bound
for the problem for specified δ; algorithmic reduction from P1 to P2 indicates that an algorithm
solving P2 in O(nδ) rounds implies the existence of an algorithm solving P1 in Õ(nδ) rounds, for
any δ > 0, and lower bound reduction from P1 to P2 indicates that a lower bound family giving
Ω(nδ) lower bound for P1 implies the existence of a lower bound family giving Ω̃(nδ) lower bound
for P2 for any δ > 0. Notation Õ and Ω̃ hides polylogarithmic factors in n, as well as factors only
depending on k, as we assume k to be constant.

Bounded vertex cover number. For a more restrictive parameter than degeneracy, we
consider induced subgraph detection parameterized by the vertex cover number τ(G) of the
input graph. More precisely, we show a more general problem of maximum common induced
subgraph (MCIS) can be solved fast; in this problem, we are given two graphs G = (VG, EG)
and H = (VH , EH) as input, and the task is to find the maximum-size graph G∗ such that
G∗ appears as induced subgraph of both G and H. In the distributed setting, we assume
that G is the input graph, and the second graph H is known to every node.

In more detail, we show that a centralized branching algorithm from MCIS of Abu-Khzam
et al. [3] can be implemented in 2O((τ(G)+τH)2) rounds, i.e. without dependence on n, in
the CONGEST model. This immediately implies that induced subgraph detection for any
pattern graph H on k nodes can also be solved in 2O((τ(G)+k)2) rounds.

1.4 Additional related work

Centralized subgraph and induced subgraph detection. Subgraph detection has been
widely studied in the centralized parameterized setting. Fixed-parameter algorithms, pa-
rameterized by the number of nodes k of the pattern graph, are known for example for
paths [38, 5, 45, 11], trees [5], even cycles [46], odd cycles [5], and patterns of constant
treewidth [5]. By contrast, k-clique detection is known to be W[1]-hard, suggesting that it
does not have a fixed-parameter algorithm [24].

Induced subgraph detection, on the other hand, is W[1]-hard even for paths of length k [19].
Any induced or non-induced subgraph on k nodes can be detected in nωk/3+O(1) time, where
ω < 2.3729 is the matrix multiplication exponent, due to a classical result of Nešetřil and
Poljak [39].
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Distributed subgraph detection. As mentioned above, distributed subgraph detection has
also received attention in the distributed setting recently. In CONGEST, non-trivial upper
bounds are known e.g. for path and tree detection [33, 26], cycle detection [29, 33, 28] and
clique detection [14]. Likewise, lower bounds have been studied for cycle detection [25, 33]
and cliques [21], and pattern graphs requiring near-quadratic time are known to exist [28].
Triangle detection remains a particularly interesting open question––the best known upper
bound is n1/3+o(1) rounds [18], but no lower bounds are known.

In the congested clique, triangles can be detected in O(n0.158) rounds and odd k-cycles
in 2O(k)n0.158 rounds using fast matrix multiplication [16]. Even cycles can be detected
even faster, in O(k2) rounds for k = O(log n) [15]. Moreover, any induced or non-induced
subgraph detection for k-node patterns can be solved in O(n1−2/k) rounds in congested
clique [23].

Distributed parameterized complexity. Parameterized distributed algorithms have ap-
peared implicitly in many of the above-mentioned subgraph detection works, and recently
Ben-Basat et al. [10] and Siebertz and Vigny [43] have explicitly studied aspects of distributed
parameterized complexity. In terms of structural parameters, maximum degree is a standard
parameter in distributed setting, and algorithms parameterized degeneracy has been studied
for various problems and models [9, 7, 31]. Recently, Li [37] has show that the treewidth
of the input graph can be approximated in Õ(D) rounds in CONGEST, and many classical
optimization problems that are fixed-parameter tractable w.r.t. treewidth can be solved in
Õ

(
tw(G)O(tw(G))D

)
rounds in CONGEST, where Õ hides polylogarithmic factors in n.

2 Preliminaries

Degeneracy. A graph G is called d-degenerate if every induced subgraph of G has a vertex
of degree at most d. The minimum number d for which G is d-generate is called degeneracy
of G, denoted by d(G). It is easy to see that every d-degenerate graph admits an acyclic
orientation such that the out-degree of each vertex is at most d.

Vertex cover number. A vertex cover of G is a subset of vertices S ⊆ V (G) such that every
edge in E(G) is incident with at least one vertex in S. The vertex cover number τ(G) of G

is the minimum size of a vertex cover of G.

Treewidth. A tree decomposition of a graph G = (V, E) is a pair (X, T ), where X =
{X1, X2, . . . , Xm} is a collection of subsets of V and T is a tree on {1, 2, . . . , m}, such that
1.

⋃m
i=1 Xi = V ,

2. for all edges e ∈ E there exist i with e ⊆ Xi

3. for all i, j and k, if j is on the (unique) path from i to k in T , then Xi ∩ Xk ⊆ Xj .
The width of a tree-decomposition (X, T ) is defined as maxi |Xi| − 1. The treewidth of a
graph G is the minimum width over all possible tree decompositions of G. Connected graphs
of treewidth 1 are trees, and connected graphs of treewidth 2 are series-parallel graphs (see
e.g. [12].)

Lower bound families. For unconditional lower bounds in the CONGEST model, we use the
standard framework of reducing from two-party communication complexity. Let f : {0, 1}2k →
{0, 1} be a Boolean function. In the two-party communication game on f , there are two
players who receive a private k-bit string x0 and x1 as input, and the task is to have at least
one of the players compute f(x) = f(x0, x1).

OPODIS 2021
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The template for these reductions is captured by families of lower bound graphs:

▶ Definition 1 (e.g. [25, 30, 1]). Let fn : {0, 1}2k(n) → {0, 1} and C : N → N be functions and
Π a graph predicate. Suppose there is n0 such that for any n ≥ n0 and all x0, x1 ∈ {0, 1}k(n)

there exists a (weighted) graph G(n, x0, x1) satisfying the following properties:
1. G(n, x0, x1) satisfies Π if and only if fn(x0, x1) = 1,
2. G(n, x0, x1) = (V0 ∪ V1, E0 ∪ E1 ∪ S), where

a. V0 and V1 are disjoint and |V0 ∪ V1| = n,
b. Ei ⊆ Vi × Vi for i ∈ {0, 1},
c. S ⊆ V0 × V1 is a cut and has size at least C(n), and
d. subgraph Gi = (Vi, Ei) only depends on i, n and xi, i.e., Gi = Gi(n, xi).

We then say that F = (G(n))n∈I is a family of lower bound graphs, where

G(n) = {G(n, x0, x1) : x0, x1 ∈ {0, 1}k(n)} .

Deterministic communication complexity CC(f) of a function f is the maximum number
of bits the two players need to exchange in the worst case, over all deterministic protocols
and input strings, in order to compute f(x0, x1). Randomized communication complexity
RCC(f) is the worst-case complexity of protocols which compute f with probability at least
2/3 on all inputs.

▶ Theorem 2 (e.g. [25, 30, 1]). Let F be a family of lower bound graphs. Any algorithm
deciding Π on a graph family H containing

⋃
G(n) for all n ≥ n0 in the CONGEST model

with bandwidth b(n) needs Ω (CC(fn)/C(n)b(n)) and Ω (RCC(fn)/C(n)b(n)) deterministic
and randomized rounds, respectively.

We reduce from the two-player set disjointness function DISJn : {0, 1}2n → {0, 1}, defined
as DISJn(x0, x1) = 0 if and only there is i ∈ [n] such that x0(i) = x1(i) = 1. The
communication complexity of set disjointness is CC(DISJn) = Ω(n) and RCC(DISJn) =
Ω(n) [35, 41].

3 Induced subgraph detection on general graphs

3.1 Patterns with cliques and independent sets: framework
For the complexity results on detecting pattern graphs that contain large independent sets
or clique, we borrow the centralized reduction of of Dalirrooyfard et al. [22]. We present the
reduction here in full, as we will need to analyze its implementation in distributed setting.

We will start from instance G of s-clique detection. The reduction will transform G into
an instance of (induced) H-detection, where the pattern graph H contains a clique of size s,
while increasing the number of nodes by a small factor. We first need the following definition:

▶ Definition 3 ([22]). Let G = (V, E) be a graph. A family C ⊆ 2V is an s-clique cover if
1. for each s-clique K in G, there is a C ∈ C that contains the nodes of K, and
2. the induced subgraph G[C] is s-colorable for each C ∈ C.

We say that C is a minimum s-clique cover if all s-clique covers of G have at least |C| sets.

Note that if C is a minimum s-clique cover, all induced subgraphs G[C] for C ∈ C contain
an s-clique, and thus require exactly s colors to color.
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Reduction overview. Let G = (VG, EG) be the original graph and let H = (VH , EH) be the
pattern graph. Let C = {C1, C2, . . . , Ct} be a minimum s-clique cover of H. We construct a
graph G∗ as from the input graph G follows:

1. The node set VG∗ of G∗ consists of the following nodes:
a. For each i ∈ C1, there is a copy VG,i = VG × {i} of the node set of G.
b. For each j ∈ VH \ C1, there is a copy j∗ of the node j in G∗.

2. The edge set of G∗ is defined by the following rules:
a. Each VG,i is an independent set.
b. For each i, j ∈ C1 and v, u ∈ VG, we add edge between (v, i) and (u, j) if both

{i, j} ∈ EH and {v, u} ∈ EG.
c. For each i ∈ C1 and j ∈ VH \ C1 with {i, j} ∈ EH , we add edges between j∗ and all

nodes (v, i) for v ∈ VG.
d. For each i, j ∈ VH \ C1 with {i, j} ∈ EH , we add edge between i∗ and j∗.

Note that the graph G∗ has sn + |VH | nodes.

▶ Lemma 4 ([22]). If G has an s-clique, then G∗ has H as an induced subgraph, and if G∗

has H as a subgraph, then G has an s-clique. (� See full version.)

3.2 Patterns with cliques and independent sets: implications
Implementing the reduction in the congested clique. Let H be a pattern graph on k nodes
containing an s-clique. We now show that the reduction we gave above can be implemented
efficiently in the congested clique model.

Assume we have algorithm A for (induced) H-detection running in O(nδ) rounds in the
congested clique. We now show that we can implement the above reduction in the congested
clique to obtain an algorithm for detecting an s-clique, as follows:
1. Each node v ∈ VG simulates nodes (v, i) for i ∈ C1, as well as one node from VH .
2. Since the incident edges of (v, i) for i ∈ C1 and nodes in VH \ C1 in G∗ only depend on

the pattern graph H and on the edges incident to v in G, node v can construct the inputs
of its simulated nodes locally.

3. Nodes then simulate the execution of A on a congested clique with O(sn + k) = O(kn)
nodes. The running time of A on the simulated instance is O

(
(kn)δ

)
, and the simulation

incurs additional overhead of O(k2), for a total running time of O(k2δnδ).

Thus, we obtain the following:

▶ Theorem 5. Let H be a pattern graph with k nodes that has a clique of size s. Then if we
can solve H-detection or induced H-detection in the congested clique model in O(nδ) rounds,
we can find an s-clique in the congested clique in O(k2δnδ) rounds.

As an immediate corollary, we obtain a similar hardness result for induced subgraph
detection for pattern graphs with large independent set, by observing that we can simply
complement the pattern and input graphs. Note that this version only applies for induced
subgraph detection.

▶ Corollary 6. Let H be a pattern graph with k nodes that has an independent set of size s.
Then if we can solve induced H-detection in the congested clique model in O(nδ) rounds, we
can find an s-clique in the congested clique in O(k2δnδ) rounds.
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Induced path detection. Corollary 6 immediately implies a conditional lower bound for
induced path detection in the CONGEST model, as paths contain large independent sets:

▶ Corollary 7. Let k be fixed. If an induced 2k-edge path or an induced (2k + 1)-edge path
can be detected in O(nδ) rounds in the CONGEST model, then a k-clique can be detected in
O(nδ) rounds in the congested clique model. In particular, if an induced 4-edge path can
be detected in O(nδ) rounds in the CONGEST model, then triangles can be detected O(nδ)
rounds in the congested clique model.

Patterns with cliques in CONGEST. As a further application of the reduction of Dalirrooy-
fard et al. [22], we can transform the unconditional lower bound of Czumaj and Konrad [21]
for 4-clique detection in CONGEST into a lower bound for induced subgraph detection for
any pattern containing a 4-clique.

▶ Lemma 8 ([21]). Let Π the graph predicate for existence of a 4-clique. There exists a
family of lower bound graphs for Π with fn = DISJΘ(n2) and C(n) = Θ(n3/2).

▶ Lemma 9. Let H be a pattern graph on k nodes that contains a 4-clique, and let Π the
graph predicate for existence of either induced or non-induced copy of H. Then there exists a
family of lower bound graphs for Π with fn = DISJΘ(n2) and C(n) = Θ(n3/2).

(� See full version.)

Theorem 2 and Lemma 9 now immediately imply the following:

▶ Theorem 10. Let H be a pattern graph that contains a 4-clique. Any CONGEST algorithm
solving either H-detection or induced H-detection needs at least Ω(n1/2/ log n) rounds.

3.3 Induced even cycle detection
We next prove an unconditional lower bound for induced even cycle detection in CONGEST.
Note that for induced odd cycles, one can easily verify that the construction of Drucker et
al. [25] immediately implies a Ω(n/ log n) lower bound.

▶ Lemma 11. Let k ≥ 3 be fixed, and let Π the graph predicate for existence of an induced 2k-
cycle. There exists a family of lower bound graphs for Π with fn = DISJΘ(n2) and C(n) = n.

(� See full version.)

Theorem 2 and Lemma 11 immediately imply the following:

▶ Theorem 12. Any CONGEST algorithm solving induced 2k-cycle detection for k ≥ 3 needs
at least Ω(n/ log n) rounds.

3.4 Induced subgraph detection for bounded treewidth patterns
Finally, we consider subgraph and induced subgraph detection for pattern graphs of low
treewidth. Recall that in centralized setting, a subgraph H with treewidth t can be detected
in time 2O(k)nt+1 log n [5], implying that detecting constant-treewidth subgraphs is fixed-
parameter tractable. However, in CONGEST model, turns out that pattern of treewidth 2
are already maximally hard.

Our construction for the hard pattern graph uses similar ideas as the hard non-induced
subgraph detection instances presented by Fischer et al. [28]. However, the pattern graphs
they use a fairly dense and have treewidth higher than 2.
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▶ Theorem 13. For any k ≥ 2, there exists a pattern graph Hk of treewidth 2 such that
CONGEST algorithm solving either Hk-detection or induced Hk-detection needs at least
Ω(n2−1/k) rounds.

Let k ≥ 2 be fixed. We construct the graph Hk as follows:
1. We start with four triangles A1, A2, B1 and B2 with nodes labelled by 1, 2 and 3.
2. Nodes 1 of A1 and A2 are connected by an edge, and nodes 1 of B1 and B2 are connected

by an edge.
3. Nodes 2 of A1 and B1 are connected with k disjoint paths of length 3. Likewise, Nodes 2

of A2 and B2 are connected with k disjoint paths of length 3.
The graph Hk is a series-parallel graph, and thus has treewidth 2 [12].

▶ Lemma 14. Let k ≥ 2 be fixed. There exists a family of lower bound graphs for Hk-detection
and induced Hk-detection with fn = DISJΘ(n2) and C(n) = Θ(n1/k). (� See full version.)

Theorem 13 now follows immediately by Theorem 2.

4 Multicolored problems

In the multicolored (induced) subgraph detection, we are given a pattern graph H on k nodes
and an input graph G with a (not necessarily proper) k-coloring, and the task is to find a
(induced) copy of H that is multicolored, i.e. a copy where all nodes have different colors.

4.1 Reductions

We first prove that the complexities of multicolored k-clique and k-independent set are closely
related to their standard versions also in the distributed setting. These results follow from
standard fixed-parameter reductions [40, 27].

▶ Theorem 15. If multicolored k-clique can be solved in T (n) rounds in CONGEST, then
k-clique can be solved O(k2T (kn)) rounds in CONGEST. If k-clique can be solved in T (n)
rounds in CONGEST, then multicolored k-clique can be solved T (n) rounds in CONGEST.
(� See full version.)

In the centralized setting, clique and independent set are equivalent, so the above
reductions work also for independent set. However, in the distributed setting, only one
direction works immediately, by essentially the same proof.

▶ Theorem 16. If multicolored k-independent set can be solved in T (n) rounds in CONGEST,
then k-independent set can be solved O(k2T (kn)) rounds in CONGEST.
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4.2 Lower bounds
Next, we prove some simple unconditional lower bounds for multicolored (induced) cycle
detection and multicolored induced path detection.

▶ Theorem 17. For any k ≥ 4, any CONGEST algorithm solving multicolored (induced)
k-cycle detection needs at least Ω(n/ log n) rounds. (� See full version.)

▶ Theorem 18. For any k ≥ 6, any CONGEST algorithm solving multicolored induced k-edge
path detection needs at least Ω(n/ log n) rounds. (� See full version.)

5 Induced subgraph detection on bounded degeneracy graphs

5.1 Induced tree detection
We start by giving a parameterized distributed algorithm for detecting induced trees, param-
eterized by the degeneracy d = d(G) of the input graph. This result is based on the random
separation algorithm of Cai et al. [13], adapted to distributed setting. For this result, we
assume for convenience that all nodes are given the parameter d as input; we discuss at the
end how to remove this dependence for the randomized version of the algorithm.

Preliminaries. Let G = (V, E) be a graph. We say that an orientation σ of the edges of G

is an α-bounded orientation, or simply α-orientation, if every node v ∈ V has out-degree at
most α in σ, and σ is acyclic. A graph G is d-degenerate if and only if has an d-orientation;
moreover, an O(d)-orientation can be computed fast in the CONGEST model:

▶ Lemma 19 ([7]). Let G be a d-degenerate graph, and let ε > 0. We can compute a
(2 + ε)d-orientation of G in O(log n) rounds in the CONGEST model, assuming d is known to
all nodes. If d is not known, we instead can compute a (4 + ε)d-orientation of G in O(log n)
rounds.

Multicolored induced trees with orientation. Let T be a tree on k nodes. We first to
show how to solve a specific multicolored version of induced T -detection, given an acyclic
orientation of G as input.

More precisely, let the graph G, let σ be an α-bounded orientation of G, and let χ : V →
{0, 1, . . . , k} be a (not necessarily proper) (k + 1)-coloring of G. Moreover, assume that the
tree T is labelled in a bottom-up manner with 1, 2, . . . , k with an arbitrary node as a root –
that is, the root has label k, and each node has a smaller label than their parent. We say
that an induced copy H of T in G is proper w.r.t σ and χ if the node in H corresponding
to node i in T has color i, and every node that is an out-neighbor of some node in H has
color 0.

▶ Lemma 20. Given a graph G = (V, E), an orientation σ of G, and a coloring χ as input,
we can find a proper induced copy of a tree T in O(k) rounds using O(1)-bit messages in
CONGEST model. (� See full version.)

Induced trees. Using Lemma 20 as a subroutine, we now show how to detect induced copies
of any tree T . We use random separation [13] and color-coding [5] techniques to reduce the
general problem to detection of proper induced copies of T .

▶ Theorem 21. Finding induced copy of a tree T on k nodes in a d-degenerate graph G

can be done in k2O(dk)kk + O(log n) rounds in the CONGEST model using a randomized
algorithm. (� See full version.)
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Derandomization. Finally, we note that the algorithms can be derandomized using standard
derandomization tools from fixed-parameter algorithms. Specifically, we use the derandom-
ization of Alon and Gutner [4] to avoid incurring extra O(log n) factor that would follow
from the original derandomization of Cai et al. [13].

▶ Theorem 22. Finding induced copy of a tree T on k nodes in a d-degenerate graph G can
be done in f(d, k) + O(log n) rounds in the CONGEST model using a deterministic algorithm
for some function f , assuming d is known to all nodes. (� See full version.)

Unknown degeneracy. The only part where the randomized algorithm uses the knowledge
of d(G) is for deciding how many repeats of the random coloring it performs; Lemma 19
can be used without knowing d(G). Without knowledge of d(G), nodes can determine the
largest out-degree in orientation σ in their radius-k neighborhood and use that as a proxy
for d(G) to determine how many repeats of the random coloring they should participate in;
it is easy to verify that this still retains the correctness of the algorithm. The only caveat is
that different nodes can terminate at different times, and cannot determine when all nodes
have terminated.

The deterministic algorithm, on the other hand, requires that all nodes know the degen-
eracy d(G), or the same upper bound for this value. While we can compute an O(κ(G))-
orientation σ for G in O(log n) rounds, all nodes do not necessarily learn the largest out-degree
in σ; indeed, one can trivially see that having all nodes learn d(G) requires Ω(D) rounds in
the worst case.

5.2 Induced subgraph detection for bounded treewidth patterns
We now show that with slight modification, the hard treewidth 2 patterns presented in
Section 3.4 can be adapted to bounded degeneracy setting. Recall that as mentioned in the
introduction, any pattern graph on k nodes can be detected in O(kd(G)n) rounds by having
all nodes gather full information about their distance-k neighborhood; thus, the following
lower bound is almost tight.

▶ Theorem 23. For any k ≥ 2, there exists a pattern graph Hk of treewidth 2 such
that CONGEST algorithm solving either H-detection or induced H-detection on graphs of
degeneracy 2 needs at least Ω(n1−1/k) rounds.

We use the same construction for k ≥ 2 for the pattern graph as in Lemma 13, but add
paths of length 5 instead of paths of length 3 between triangles A1 and B1, and triangles A2
and B2. Let us denote the resulting graph by H ′

k.

▶ Lemma 24. Let k ≥ 2 be fixed. There exists a family of lower bound graphs of degeneracy
2 for H ′

k-detection and induced H ′
k-detection with fn = DISJΘ(n) and C(n) = Θ(n1/k).

(� See full version.)
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6 Bounded vertex cover number and MCIS

Finally, we consider induced subgraph detection parameterized by vertex cover number τ(G).
Specifically, we show that a more general problem of maximum common induced subgraph
(MCIS) can be solved in constant rounds on graphs of constant vertex cover number, which
implies our results for induced subgraph detection.

Maximum common induced subgraph. In the centralized version of maximum common
induced subgraph, we are given graphs G = (VG, EG) and H = (VH , EH) as input, and the
task is to find the maximum-size graph G∗ such that G∗ appears as induced subgraph of
both G and H. More precisely, the output should be a function f : VG → VH ∪ {⊥} such that
for the set UG = {v ∈ VG : f(v) ̸= ⊥}, the function f restricted to UG is an isomorphism
between G[UG] and H[f(UG)].

In this section, we consider MCIS parameterized by the sum of the vertex cover numbers
τ(G) + τ(H). Note that when H is complete graph and |G| = |H|, the problem is equivalent
to maximum clique and hence NP-hard. It is W[1]-hard when parameterized by the solution
size k, and W[1]-hard parameterized by the size of a minimum vertex cover of only one of the
input graphs, even when restricted to bipartite graphs (see e.g. [2, 3] for more discussion).

Distributed MCIS. In the distributed version of the MCIS problem, the input graph
G = (VG, EG) is the communication network, and full information about the second input
graph H = (VH , EH) is given to every node as local input. Each node v needs to give a local
output f(v) ∈ VH ∪ {⊥} such that the global function f satisfies the conditions of MCIS
solution.

▶ Theorem 25. Solving the maximum common induced subgraph problem on communi-
cation graph G and target graph H can be done in 2O(τ2) rounds in the CONGEST model
deterministically, where τ = max(τ(G), τ(H)). (� See full version.)

Induced subgraph detection on bounded vertex cover number graphs. As an immediate
consequence of the MCIS algorithm, we obtain a parameterized distributed algorithm for
detecting an induced copy of H, for any pattern graph H, as a graph H on k nodes has
vertex cover number at most k.

▶ Theorem 26. Let H be a pattern graph on k nodes. Finding induced copy H can be done
in 2O((τ(G)+k)2) rounds in the CONGEST model deterministically.

7 Conclusions and open problems

A central takeaway of this work is that centralized parameterized complexity offers both
algorithmic techniques and perspectives for distributed computing. In particular, we believe
that the study of structural graph parameters is a valuable paradigm for understanding
sparse and structured networks in general. However, we note that there still remain open
research directions related to topics studied in this paper:

In terms of immediate open questions left by our work, we note that we currently do
not have any systematic results on separation between the hardness of induced and
non-induced subgraph detection for a given pattern H. For example, the induced cycle
detection lower bound of Le Gall and Miyamoto [36] gives a near-linear – or super-linear,
in case of even cycles – gap between induced and non-induced cycle detection, but it
would be interesting to explore similar results for other pattern graphs in systematic
fashion.
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More generally, we do not understand the complexity of subgraph detection type problems
in distributed setting as well as in the centralized setting. For example, the complexity
of k-independent set detection in CONGEST remains open, whereas in the centralized
setting, it is equivalent to k-clique – a correspondence that does not hold in CONGEST.
Besides degeneracy and vertex cover number, there are many other structural graph
parameters commonly studied in parameterized complexity – for example, feedback vertex
and edge sets, treewidth and pathwidth. Whereas Li [37] provides a framework for using
treewidth for global optimization problems, it does not directly imply results for local
problems such as subgraph detection; one might expect that considering something akin
to local treewidth of a graph would be more appropriate for local graph problems. A
secondary question is understanding what structural graph parameters are relevant from
the perspective of real-world networks.
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A Induced short paths

Induced paths with two edges can be detected in O(1) rounds, in contrast to the situation
with e.g. triangle detection. The proof follows the centralized algorithm of Vassilevska [44].

▶ Theorem 27. Given a graph G on n nodes, detecting an induced path of length 2 on G

can be done in O(1) rounds in the broadcast CONGEST model.
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Proof. As the first step, we assign a label ℓ(v) for each node as follows. First, each node
v ∈ V broadcast its identifiers to all its neighbors N(v), and then each node v picks the label
ℓ(v) to be the smallest identifier from the set that it received, or its own identifier if that is
smaller. The nodes then broadcast their label ℓ(v) and and their degree deg(v) to all their
neighbors.

Each node v then checks the following conditions, and reports that induced 2-path exists
if at least one of them is satisfied:
1. The exists a neighbor u ∈ N(v) with deg(v) ̸= deg(v).
2. There exists neighbors u, w ∈ N(v) with ℓ(u) ̸= ℓ(w).

For the correctness of the algorithm, we first observe that a graph does not contain an
induced 2-path if and only if each connected component is a clique. If none of the nodes
report an induced 2-path, then by conditions (a) and (b), each connected component is clique.
Likewise, if G consists of disjoint cliques, no node will report an induced 2-path. Finally, we
note that the algorithm takes 3 rounds in CONGEST. ◀
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