
Strongly Linearizable Linked List and Queue
Steven Munsu Hwang 1 !

University of Calgary, Canada

Philipp Woelfel !

University of Calgary, Canada

Abstract
Strong linearizability is a correctness condition conceived to address the inadequacies of linearzability
when using implemented objects in randomized algorithms. Due to its newfound nature, not many
strongly linearizable implementations of data structures are known. In particular, very little is
known about what can be achieved in terms of strong linearizability with strong primitives that are
available in modern systems, such as the compare-and-swap (CAS) operation.

This paper kick-starts the research into filling this gap. We show that Harris’s linked list and
Michael and Scott’s queue, two well-known lock-free, linearizable data structures, are not strongly
linearizable. In addition, we give modifications to these data structures to make them strongly
linearizable while maintaining lock-freedom. The algorithms we describe are the first instances of
non-trivial, strongly linearizable data structures of their type not derived by a universal construction.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Strong linearizability, compare-and-swap, linked list, queue, lock-freedom

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.28

Funding We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC) under Discovery Grant RGPIN-2019-04852, and the Canada Research Chairs
program.

1 Introduction and Related Work

Linearizability [9] is the correctness condition of choice for asynchronous shared memory
algorithms. Intuitively, it requires that an operation on a concurrent object appears to
take effect instantaneously at some point (the linearization point) between the operation’s
invocation and response. Arranging the operations by these points must result in a sequential
history that is valid respective to the object’s specification. Due to this notion of “taking
effect at a point in time”, linearizability was considered to be practically equivalent to
atomicity. In fact, atomic and linearizable objects can be interchanged without altering the
worst-case behaviour of an algorithm [9]. Importantly, linearizability has been proven to be
a local property [9]. Informally, a property is local if the system satisfies the property given
that each object used by the system satisfies the property. Linearizability is also composable,
meaning that a linearizable object implemented using atomic objects is still linearizable
when the atomic objects are replaced with linearizable ones. These two properties make
linearizability desirable for modular programming.

Unfortunately, linearizability is not as suitable for use in randomized algorithms: Golab,
Higham and Woelfel [5] showed that the probability distributions over the set of outcomes
can change when atomic objects are replaced with linearizable ones.

They proposed strong linearizability, which when satisfied maintains the same probability
distribution over the set of outcomes as with atomic objects, under a strong adaptive adversary.
In fact, strong linearizability is sufficient and necessary for that. Strong linearizability
demands that future events do not change the linearization points of the past. Strong

1 Corresponding author

© Steven Munsu Hwang and Philipp Woelfel;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s35@uwaterloo.ca
mailto:woelfel@ucalgary.ca
https://doi.org/10.4230/LIPIcs.OPODIS.2021.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Strongly Linearizable Linked List and Queue

linearizability is also local and composable [5], further motivating the search for such
implementations.

Until now, most work on strong linearizability assumed that processes communicate only
using atomic (read/write) registers. Helmi, Higham and Woelfel [7] have shown that essentially
no non-trivial object has a deterministic wait-free strongly linearizable implementation from
single-writer registers. Using multi-writer registers, a number of strongly linearizable lock-free
algorithms have been devised, such as bounded max-registers [7], counters [2] and single-writer
snapshots [2, 12]. On the other hand, for none of these objects, strongly linearizable wait-free
implementations exist [2].

The impossibility result of wait-free consensus [3, 10] established that atomic read/write
registers are too weak to solve fundamental shared memory problems. Even simple data
structures, such as queues or stacks, have no lock-free linearizable algorithms [8]. On the
other hand, so-called universal constructions, such as Herlihy’s [8], show that n-process
consensus objects can be used to obtain wait-free linearizable implementations of any type
with a deterministic sequential specification. In fact, Herlihy’s universal construction is even
strongly linearizable [5].

Almost all of today’s systems provide strong synchronization primitives, such as atomic
compare-and-swap, which allows wait-free solutions to the consensus problem for arbitrary
many processes. Therefore, all types with a deterministic sequential specification have
wait-free strongly linearizable implementations (using the universal construction). But the
universal construction is not practical, as it is neither space nor time efficient.

Employing strong synchronization primitives (most commonly compare-and-swap), many
efficient linearizable solutions to fundamental data structure problems have been devised.
But it is generally not known whether these data structures are also strongly linearizable,
and thus whether they can safely be used in randomized algorithms against a strong adaptive
adversary.

Essentially no efficient strongly linearizable implementations are known for fundamental
data structures that require strong synchronization primitives (or at least it is not known,
whether existing linearizable implementations are also strongly linearizable). This paper aims
to kick-start the research needed to fill this gap. We investigate two well known standard
data structures: Harris’s linked list [6], and Michael and Scott’s queue [11]. Both algorithms
use compare-and-swap objects, and are linearizable and lock-free. We show that they are
not strongly linearizable (see Section 3 for Harris’s linked list and Section 5 for Michael and
Scott’s queue). We then show that relatively simple modifications to these data structures
yield strong linearizability (see Sections 4 and 6 respectively).

1.1 Other Related Work
As mentioned earlier, most non-trivial results on strong linearizability assume that processes
cannot perform strong atomic operations (only atomic reads and writes are permitted). An
exception is a recent randomized implementation of a double-compare-and-swap (DCAS)
object from compare-and-swap objects [4], which uses as a build block (and implements) a
strongly linearizable restricted DCAS object. Moreover, Attiya, Castañeda, and Hendler [1]
proved that wait-free strongly linearizable implementations of stacks and queues from
“readable” base objects, require that these base objects have consensus number infinity.

2 Preliminaries

We consider a distributed shared memory system with n processes communicating through
shared objects. Each shared object has a type, which outlines a set of operations, and is
defined by a sequential specification, a set of valid sequences of operations. An operation



S. M. Hwang and P. Woelfel 28:3

op consists of an invocation event, denoted inv(op), and possibly a matching response event
denoted rsp(op).

A transcript is a sequence of invocation and response events of operations. For transcripts
T and Y , we denote T ◦ Y as the concatenation of the two transcripts. A projection of a
transcript T onto a process p is denoted T |p, and is the sequence of invocation and response
events by p in T . A projection of T onto an object O, denoted as T |O, is the sequence
of invocation and response events of operations in T performed on O. An operation op

is complete in some transcript T if T contains its invocation and matching response. A
transcript is complete if every operation in the transcript is complete. In a transcript, an
operation op is atomic if rsp(op) immediately follows inv(op). An object O is atomic if every
operation on O in any transcript is atomic. On the other hand, an object O is implemented
if each operation op on O is a method using other implemented or base objects (objects
provided by the system). Formally, a method is associated with a sequence of operations
such that when op is called, the sequence of operations are executed.

A transcript T defines a happens before order T−→ for operations op1, op2 ∈ T , where
op1

T−→ op2 if and only if rsp(op1) occurs before inv(op2) in T . Note that this is a partial
order.

A history is a transcript where for every process p, every operation in H|p is atomic. A
history S is sequential if every operation in S is atomic. A sequential history S is valid if and
only if for any object O, H|O is in the sequential specification of the type of O. For every
incomplete operation in H, if either the operation is discarded, or a response is appended,
we obtain a complete history H ′ called a completion of H.

An interpreted history Γ(T ) can be derived from a transcript detailing an algorithm
execution using an implemented object O. It is obtained by iterating through all p, and
removing all events by p after inv(op) and not after its matching response rsp(op) for any
operation op by p. Intuitively, the interpreted history consists of invocation and response
events of ”high level” operations in T ; all intermediate steps for methods are removed from
the transcript. For a set of transcripts T , Γ(T ) = {Γ(T ) | T ∈ T }.

Consider H ′, a completion of a history H. A linearization [9] of H ′ is a sequential history
S satisfying all of the following:

All operations in H ′ are in S.
For all operations op1 and op2 in H, if op1

H′

−−→ op2, then op1
S−→ op2.

S is valid.

For an implementation of a shared object to be linearizable, every possible history on the
object must have a linearizable completion. A function f , mapping each history H from a
set H of histories to a linearization f(H) of H, is called linearization function for the set H.

Given a transcript T , if an event e is the t-th element of T , then we say that e occurs at
time t in T , or that timeT (e) = t. If e is not present in T , then we define timeT (e) = ∞.
For an atomic operation am in a transcript T , we say that am occurs at timeT (rsp(am)).
If an implemented operation op performs an atomic operation on line x of the method
corresponding to the operation, we refer to this atomic operation as opx. If op is complete
in a transcript T , then by timeT (opx), we refer to the last time at which opx is executed
during op.

Linearizability can also be expressed through linearization points. Consider a transcript T ,
and a linearizable object O. A linearization point function pt for O maps op ∈ Γ(T |O) to ∞
or a time in T such that
1. pt(op) ∈ [timeT (inv(op)), timeT (rsp(op))], and
2. there is a valid sequential history S of Γ(T |O) where for all op1, op2 ∈ S, if op1

S−→ op2
then pt(op1) ≤ pt(op2). (This property ensures that S preserve the happens-before-order

OPODIS 2021



28:4 Strongly Linearizable Linked List and Queue

of T . It is possible to have pt(op1) = pt(op2): this simply means that op1 and op2 can
appear in S in either relative order without violating the happens-before-order.)

We call pt(op) the linearization point of op. Intuitively, this is the point in time where
operation op ”appears” to take effect. For a set of transcripts T , the prefix closure of T
is the set containing all prefixes of transcripts in T . We denote the prefix closure of T as
close(T ). A function f : T → T ′, where T and T ′ are sets of transcripts, is prefix preserving
if for any two transcripts T, Y ∈ T where T is a prefix of Y , f(T ) is a prefix of f(Y ).

A function f is a strong linearization [5] function for a set of transcripts T if:
f is a linearization function for Γ(close(T )), and
f is prefix preserving.

An implemented object O is strongly linearizable if and only if the set of transcripts on O

has a strong linearization function.
A method of an implemented object is lock-free if it guarantees that if a process executing

a method takes infinitely many steps, then infinitely many method calls finish within a finite
number of steps. An object is lock-free if every operation on the object is lock-free. An
implemented object is wait-free if every method call terminates after taking finitely many
steps.

Our algorithms use an atomic compare-and-swap object, which has an operation denoted
as CAS. The operation takes two arguments: old and new. If the value of the object is
equal to old, then the operation overwrites the value of the object to new. Otherwise, the
operation has no effect. In addition, the object also allows reads and writes.

3 Harris’s linked list is not strongly linearizable

Nodes in Harris’s linked list implementation have the following fields: key and succ. Field
key stores the value of the node, and is taken as the argument by the node’s constructor.
Once set, the value of key never changes for a particular node. The successor field, succ, is
a CAS object which contains next, the next node in the list, and marked, a boolean value
to indicate whether the node has been “logically deleted”. A node is marked before being
excised (“physically deleted”) from the linked list. As a shorthand, we access different parts
of the succ field of a node v by v.next or v.marked. The successor field is initialized to
(null, false).

There are two shared variables Head and Tail, which represent the head and tail sentinel
nodes of the list. Head has a key value of −∞, and the Tail has a key value of ∞. Initially,
Head and Tail are the only nodes in the linked list, where Head.succ = (Tail, false) and
Tail.succ = (null, false).

The sequential specification of the linked list we consider is as follows. The linked list
consists of three methods: delete, insert and find. All three operation return a boolean
value to designate whether the operation has failed or succeeded. The nodes are sorted by
their keys, and all keys in the linked list are unique. An insert operation fails if the key
being inserted is already in the linked list, and otherwise it succeeds. Likewise, a delete

operation fails if the key being deleted is not in the linked list. The return value of find

indicates whether a key is in the linked list.
Harris’s linked list uses helper function search(search_key), which returns nodes left

and right with the following guarantees: at some point in time during the execution of
search,
1. left.key < search_key ≤ right.key,
2. left and right are unmarked and



S. M. Hwang and P. Woelfel 28:5

3. left.next = right.
The search method is used to locate the nodes of interest for each operation of the linked
list. For example, a successful insert adds a new node between left and right returned
by search. It is also used to verify existence of keys in the linked list. Since the keys are
in sorted order, at points in time when the search conditions are met, left contains the
largest key less than search_key and right contains the smallest key less than or equal to
search_key. If right.key = search_key then the linked list contains search_key at a point
in time when the search conditions held; if right.key ̸= search_key, then the linked list does
not contain search_key at such a point in time. These are precisely the points when find,
a failed delete and a failed insert should linearize.

Recall that, intuitively, strong linearizability requires that future events do not affect the
linearization order of the past. That is, events that occur after a linearization point should
not affect the position of that linearization point in a history. However, at the point in time
when the search conditions hold, Harris’s linked list does not guarantee which nodes will be
returned by search. In other words, if time t is when the search conditions are true, it is
possible to change the history after t (i.e. change the ”future”) such that search(search_key)
returns a different pair of nodes, which can change the response of the operation invoking
search. This suggests that the linked list is not strongly linearizable. By altering the response
of an operation through future events, the linearization order of the past will likely need to
change to maintain validity. We use this observation in our proof of Lemma 1.

Note that a successful insert linearizes when a new node is inserted by a successful CAS
on line 61. Likewise, a successful delete linearizes when a node is marked by a successful
CAS on line 45. These linearization points are already strongly linearizable; events that
occur after a CAS cannot influence whether the CAS succeeds. Thus our modifications in
the next section focus on the search function.

▶ Lemma 1. The linked list implementation by Harris (Figure 1) is not strongly linearizable.

A full proof of the lemma is provided in Appendix A. The high level idea is as follows.
Let f be a linearization function for the linked list. We denote nodei as the node

containing key i, inp(x) as a transcript of an insert of key x by process p and delp(x) as a
transcript of a delete of key x by p.

Consider the following transcripts for processes p and q:

S = inp(3) ◦ (delq(2) to the first execution of line 15) ◦ inp(2)
T1 = S ◦ delp(3) ◦ (delq(2) from line 16 to completion)
T2 = S ◦ (delq(2) from line 16 to completion)

Note that in S, the search(2) call in delq(2) will return Head and node3 if node3 is unmarked
when line 16 is executed. Otherwise, search will restart.

Here transcripts T1 and T2 have the same prefix (the ”past”) S, with the only difference
(in the ”future”) being that T1 has delp(3) before q finishes delq(2). In T2, when delq(2)
continues to completion, node3 is unmarked and is returned as right. Thus delq(2) fails
in T2 (search_key < right.key), and must be ordered before inp(2) in f(T2) to preserve
validity. However in T1, delp(3) marks node3 and the search(2) call in delq(2) restarts its
traversal. Eventually search(2) returns Head and node2. In this case, delq(2) succeeds and
delq(2) must be ordered after inp(2) in f(T1) to preserve validity. Then f cannot be a strong
linearization function since delq(2) must be ordered before inp(2) for f(S) to be a prefix of
f(T1), but then f(S) is not a prefix of f(T2). Transcript S is a prefix of both T1 and T2, but
f(S) is not a prefix of f(T2) in this case.

OPODIS 2021



28:6 Strongly Linearizable Linked List and Queue

Function search(search_key):
1 search_again
2 while true do
3 curr ← Head
4 (curr_next, curr_marked) ←

Head.succ
5 repeat
6 if not curr_marked then
7 left ← curr
8 left_next ← curr_next
9 curr ← curr_next

10 if curr = Tail then
11 break
12 (curr_next, curr_marked) ←

curr.succ
13 until curr_marked or curr.key <

search_key
14 right ← curr
15 if left_next = right then
16 if right ̸= Tail and

right.succ.marked then
17 goto search_again
18 else
19 return (left, right)

20 if left.succ.CAS(left_next, right) then
21 if right ̸= Tail and

right.succ.marked then
22 goto search_again
23 else
24 return (left, right)

Function find(search_key):
32 left, right ← search (search_key)
33 if right = Tail or right.key ̸= search_key

then
34 return false
35 else
36 return true

Function delete(search_key):
38 while true do
39 left, right ← search (search_key)
40 if right = Tail or right.key ̸=

search_key then
41 return false
42 end
43 (right_next, right_marked) ←

right.succ
44 if not right_marked then
45 if right.succ.CAS((right_next,

false), (right_next, true)) then
46 break
47 end
48 end
49 end
50 if not left.succ.CAS((right, false),

(right_next, false)) then
51 left, right ← search (right.key)
52 end
53 return true

Function insert(search_key):
54 new_node ← new Node(search_key)
55 while true do
56 left, right ← search (search_key)
57 if right ̸= Tail and right.key =

search_key then
58 return false
59 end
60 new_node.succ ← (right, false)
61 if left.succ.CAS((right, false),

(new_node, false)) then
62 return true
63 end
64 end

Figure 1 Harris’s Linked List.

4 A strongly linearizable linked list

In this section we describe modifications to Harris’s linked list to yield a strongly linearizable
variant. The modified algorithm (Figure 2) uses the same node object as in Harris’s algorithm.
In addition, the list elements are still sorted by their keys, and the list uses Head and Tail

sentinels in the same manner as the original.
The largest modification can be seen in the search method. The changes guarantee

different search conditions: at the last shared memory step when executing search,
1. left.key ≤ search_key < right.key,
2. left is unmarked, and
3. left.next = right.



S. M. Hwang and P. Woelfel 28:7

Recall that in Harris’s list the condition guaranteed that left.key < search_key ≤ right.key

and that right is also unmarked. Similar to Harris’s implementation, if left is returned with
left.key = search_key, then the linked list contains search_key when the search conditions
are true; if left.key < search_key then the linked list does not contain search_key when
the search conditions are true.

Since search can only exit on line 74, the last shared memory step in search is either line 67
or line 77, when curr.succ is read. If search exits, we know that left.key ≤ search_key <

right.key (by line 72) and this was true at the last shared memory step (since key does not
change). In addition, we know that left = curr was unmarked at the last shared memory step
(by line 73), and that right = curr_next was adjacent to left. Thus the search conditions
are true. Observe that at every execution of line 67 or line 77, it is known whether it is
the last shared memory step; when curr.succ is read, all values used in the exit conditions
for search are known. Thus, events after the last shared of memory step of search do not
influence which nodes are returned. This is the crux of why the new implementation is
strongly linearizable.

The other methods are nearly identical to Harris’s counterparts; the methods check
whether a key is in the linked list by looking at the left node. One noteworthy change is
that SLdelete no longer attempts to excise the marked node. This is because left is now
the node to delete, and the predecessor of left is not readily available to “swing” the pointer
to right.

We define the following terms to use in the proofs below. Let T be a transcript containing
operations on O, an implementation of the algorithm in Figure 2. At time t, we say that
a node v is reachable if either v = Head, or there exists a reachable node u such that
u.next = v. A node v is pre-inserted if it was initialized in line 88 of SLinsert, but has not
been an argument of a successful CAS operation in line 94.

For a transcript T containing operations on O, we say that at time t, the interpreted
value of O is the sorted sequence of keys of all unmarked, reachable nodes excluding Head

and Tail. Intuitively, the interpreted value describes the keys that are currently “in” the
linked list. To prove strong linearizability, we will show that any operation that linearizes at
time t should behave as if it is acting on a linked list with the keys in the interpreted value
at t (Lemmas 7- 9). In addition, we show that the interpreted value at time t is consistent
with the operations that have linearized before t (Lemma 10).

For the proof of strong linearizability, we assume without loss of generality that an
operation op responds at the time of its last shared memory operation, i.e. if line x of op

is the last shared memory operation, timeT (opx) = rsp(op). Note that the response of an
operation is uniquely determined by the time of its last shared memory operation.

We define the function pt(op) for any operation op in a transcript T on a linked list
outlined in Figure 2 in the following way:

1. If op is a successful SLinsert operation, then pt(op) is the time at which the CAS
operation in SLinsert succeeds. That is, pt(op) = timeT (op61).

2. If op is a successful SLdelete operation, then pt(op) is the time at which the CAS
operation in SLdelete succeeds. That is, pt(op) = timeT (op45).

3. If op is a failed SLinsert or SLdelete, or an SLfind operation, then pt(op) = rsp(op)
(i.e. at its last shared memory step).

4. Otherwise, op is pending in T and pt(op) = ∞.

OPODIS 2021



28:8 Strongly Linearizable Linked List and Queue

Function search(search_key):
65 while true do
66 curr ← Head
67 (curr_next, curr_marked) ←

Head.succ
68 while true do
69 if not curr_marked then
70 start ← curr
71 start_next ← curr_next
72 if curr.key ≤ search_key <

curr_next.key then
73 if not curr_marked then
74 return (curr, curr_next)
75 break
76 curr ← curr_next
77 (curr_next, curr_marked) ←

curr.succ
78 while curr_marked do
79 curr ← curr_next
80 (curr_next, curr_marked) ←

curr.succ
81 start.succ.CAS((start_next, false),

(curr, false))

Function SLinsert(search_key):
88 new_node ← Node(search_key)
89 while true do
90 left, right ← search(search_key)
91 if left.key = search_key then
92 return false
93 new_node.succ ← (right, false)
94 if left.succ.CAS((right, false),

(new_node, false)) then
95 return true

Function SLdelete(search_key):
96 while true do
97 left, right ← search(search_key)
98 if left.key ̸= search_key then
99 return false

100 if left.succ.CAS((right, false), (right,
true)) then

101 return true

Function SLfind(search_key):
102 left, right ← search(search_key)
103 if left.key ̸= search_key then
104 return false
105 else
106 return true

Figure 2 A Strongly linearizable linked list.

For any complete SLinsert, SLdelete or SLfind operation op, note that pt(op) corres-
ponds to the execution of an atomic operation in op. Thus if op1, op2 ∈ T , pt(op1) ̸=
∞, pt(op2) ̸= ∞ and op1 ̸= op2, then pt(op1) ̸= pt(op2). Also note that pt(op) ∈
[timeT (inv(op)), timeT (rsp(op))].

Let T be the set of all transcripts on an implementation of the algorithm in Figure 2. For
all T ∈ T , define a sequential history f(T ) such that for all op1, op2 ∈ Γ(T ) with pt(op1) ̸= ∞
and pt(op2) ̸= ∞, op1

f(T )−−−→ op2 if and only if pt(op1) < pt(op2). By the above observation
that two different operations map to different times by pt, the history f(T ) is unambiguous.

The following four claims show that the invariants (e.g. the linked list is always sorted)
maintained by Harris’s implementation hold for the modified implementation as well. The
proofs of these lemmas are postponed to Appendix B.

▶ Lemma 2. A marked node’s succ field never changes.

▶ Lemma 3. Keys are strictly sorted; For any two nodes v1 and v2, if v1.next = v2 then
v1.key < v2.key.

▶ Corollary 4. The linked list never contains duplicate keys.

▶ Lemma 5. All unmarked, not pre-inserted nodes are reachable.

▶ Lemma 6. Consider a search call that returns and let t be the last time line 67 or line 77
is executed. If curr.key < search_key < curr_next.key at t, then the interpreted value does
not contain search_key at t. Otherwise, if curr.key = search_key, the interpreted value
contains search_key at t.



S. M. Hwang and P. Woelfel 28:9

Proof. Since search returns, curr_marked = false was read on time t. Suppose curr.key <

search_key < curr_next.key. Since curr is unmarked at t, by Lemma 5, it is reachable
and curr_next is also reachable. To show a contradiction, suppose that search_key is in
the interpreted value at time t. Consider the sequence of nodes

v1, . . . , vk, vk+1, . . . vm

where v1 = Head, vk = curr, vk+1 = curr_next, vm = Tail and vi.next = vi+1 for all
i < m. The sequence contains all reachable nodes at time t, thus i /∈ {k, k + 1} exists such
that vi.key = search_key. However, if such an i existed then the linked list is not strictly
sorted and Lemma 3 is violated.

Now suppose that curr.key = search_key. Then the interpreted value at t contains
search_key since curr is unmarked. ◀

▶ Lemma 7. A SLfind(k) operations fails if and only if the interpreted value does not
contain k at pt(SLfind(k)).

Proof. A SLfind fails if left.key ̸= search_key, and we know that either left.key =
search_key or left.key < search_key < right.key. Then at pt(SLfind(k)) the interpreted
value does not contain k by Lemma 6.

For the converse, SLfind succeeds if left.key = search_key. Similar to above, Lemma
6 implies that the interpreted value contains k at pt(SLfind(k)). ◀

▶ Lemma 8. A SLdelete(k) = op operation fails if and only if the interpreted value does
not contain k at pt(op).

Proof. When op fails, by the same reasoning as in the proof of Lemma 7, the interpreted
value does not contain k at pt(op).

Suppose op succeeds, meaning pt(op) = timeT (op100), and the CAS on line 100 succeeds.
This implies that left is unmarked at time(op100), therefore left.key is in the interpreted
value at this time. Since left.key = k, the interpreted value contains k. ◀

▶ Lemma 9. An SLinsert(k) = op operation fails if and only if the interpreted value contains
k at pt(op).

Proof. When op fails, by the same reasoning as in the proof of Lemma 7, the interpreted
value contains k at pt(op).

Suppose op succeeds, meaning pt(op) = time(op94), and the CAS on line 94 succeeds.
This implies that left.succ = (right, false) at time(op94), therefore both left and right are
reachable at this time. By Lemma 2 the interpreted value does not contain k. ◀

▶ Lemma 10. The interpreted value contains k at time t if and only if there exists a successful
insert SLinsert(k) = opin such that pt(opin) < t and no successful delete SLdelete(k) = opdel

exists such that pt(opin) < pt(opdel) < t.

Proof. Suppose opin with pt(opin) < t exists such that no delete opdel exists with pt(opin) <

pt(opdel) < t. By Lemma 5, the interpreted value contains k after pt(opin). To show a
contradiction, suppose that the interpreted value at t does not contain k. A node is not in
the interpreted value if it is not reachable, or it is marked. However, only marked nodes are
unreachable (when it is not pre-inserted), thus the node containing k must have been marked
between pt(opin) and t. However, nodes are only ever marked when the CAS on line 100
succeeds, with left.key = k. Such a successful CAS corresponds to a opdel operation with
pt(opin) < pt(opdel) < t, yielding a contradiction.

OPODIS 2021



28:10 Strongly Linearizable Linked List and Queue

To show the converse, first suppose that no successful SLinsert(k) = opin operation
exists such that pt(opin) < t in T . It is clear that the interpreted value does not contain k

at t by parsing the code; the only method which initializes a new node with search_key is
SLinsert, and only a successful CAS on line 94 will make the node reachable. Now suppose
that there exists a successful opdel such that pt(opin) < pt(opdel) < t for any successful
SLinsert(k) operation opin. At pt(opdel), a reachable, unmarked node with key k is marked.
There is only one such node at pt(opdel) by Corollary 4. To show a contradiction, suppose
that at t, the interpreted value contains k; a reachable, unmarked node with key k exists.
The interpreted value does not contain k immediately after pt(opdel), thus a new node was
inserted by a successful CAS in SLinsert in (pt(opdel), t). However, such a CAS corresponds
to a successful SLinsert operation with search_key = k. ◀

▶ Theorem 11. The linked list implementation in Figure 2 is strongly linearizable; f is a
linearization function for O, and f is prefix preserving.

Proof. For an operation op on O, Lemmas 7, 8 and 9 show that op responds in a way that
is consistent with the interpreted value of O at pt(op). By Lemma 10, at any pt(op), the
interpreted value contains k if and only if a successful SLinsert(k) linearized before pt(op)
with no successful SLdelete(k) that linearized between pt(op) and the insert. Therefore,
f(T ) is a linearization of the interpreted history Γ(T ).

Consider step t of T and operation op ∈ Γ(T ) where pt(op) = t. Then
1. operation op is a successful SLinsert operation and t is when a successful CAS on line 94

is executed
2. operation op is a successful SLdelete operation and t is when a successful CAS on line 100

is executed
3. operation op is either a SLfind operation, a failed SLinsert operation, or a failed

SLdelete operation and t is when op last executes line 67 or line 77. It is completely
determined by step t whether t is the last execution of line 67 or line 77; all values used in
the exit condition of search on lines 72 and 73 are known by t. Furthermore, the values
used in the exit conditions for a failed SLinsert (line 98) and a failed SLdelete (line 91)
are known by t.

At step t it is determined what operation op satisfies pt(op) = t. Therefore, if S is a
prefix of T , then f(S) is a prefix of f(T ). ◀

We prove that the algorithm in Figure 2 is lock-free. For any operation op, op finishes
within a finite number of steps after pt(op). Therefore, it suffices to show that if a process
p takes infinitely many steps during a method call, then infinitely many operations have
linearized.

The succ field of a reachable node is only changed by a CAS operation. We will call
such successful CAS operations an update to the linked list. Note that the CAS in search

may succeed, but if start_next = curr then start.succ does not change and this is not an
update. A successful CAS in search is an update if marked nodes were made unreachable
by the operation. Thus the number of updates by search is upperbounded by the number
of marked nodes, i.e. the number of successful SLdelete that have linearized. A successful
SLinsert does a single update, and unsuccessful SLinsert and SLdelete do not update the
linked list.

▶ Lemma 12. The search method is lock-free.

We prove this lemma in Appendix B.



S. M. Hwang and P. Woelfel 28:11

▶ Theorem 13. The linked list implementation in Figure 2 is lock-free.

Proof. It is clear that since search is lock-free by Lemma 12, SLfind is lock-free.
Without loss of generality, consider a SLdelete execution that lasts at least k iterations

(of the loop in SLdelete). For every iteration, left.key ̸= search_key and the CAS in
SLdelete must have failed. However left.succ = (right, false) when last read in search.
Thus an update occurred between when left.succ was read and CAS failed. Then at least
k/2 successful SLinsert or SLdelete have linearized. This implies that if infinitely many
steps are taken by a process executing SLdelete, then infinitely many successful SLinsert

or SLdelete have linearized. ◀

5 Michael and Scott’s queue is not strongly linearizable

Michael and Scott’s queue [11] is a linked list based algorithm. The node object consists of
two fields; value and next, where next is a pair containing a node (the next node in the
linked list) and a sequence number. The value contains the element that was enqueued, and
the next field is a CAS object. The queue maintains Head and Tail CAS objects which are
both initialized to (vdummy, 0), where vdummy is a dummy node. The sequence numbers are
present to prevent the ABA problem, but for brevity we will commonly refer to Head, Tail

and the next field as if they refer to nodes, instead of a node-sequence number pair.
At a high level, enqueued elements are appended to the Tail, and the Head is set to

Head.next to dequeue elements. The Head refers to the last element that was dequeued
(hence the dummy node) to simplify cases when the queue is empty. The queue also prevents
Tail from lagging behind Head. This ensures that freeing a dequeued node (by the call to
free on line 130) does not corrupt the data structure.

The linearization point of enqueue is when a new node is successfully appended to the
list (at CAS success on line 113). For a successful dequeue, it is when Head changes to
Head.next (line 129); for a failed dequeue it is when null was found when reading start.next

(line 121).
The linearization points for enqueue and successful dequeue are already strong linear-

ization points; similar to successful insert and delete for Harris’s implementation, they
correspond to to a successful CAS, after which the methods return. However, the lineariz-
ation point of a failed dequeue operation is not a strong linearization point. If Head was
changed between the execution of line 121 (the linearization point) and line 122, then the
dequeue restarts and may no longer fail. Similar to a failed delete in Harris’s linked list,
events after the linearization point can change the response of the operation. We have only
examined one particular linearization point for a failed dequeue, but this observation can be
extended to prove that the implementation is not strongly linearizable similar to the proof of
Lemma 1. We postpone the proof the next lemma to Appendix C.

▶ Lemma 14. Michael and Scott’s queue (Figure 3) is not strongly linearizable.

6 A strongly linearizable queue

As previously stated, Michael and Scott’s queue is not strongly linearizable only because the
linearization point for a failed dequeue is not strongly linearizable. The problem was that
because of the condition on line 122, events after the linearization point could change the
response of a failed dequeue operation.

OPODIS 2021



28:12 Strongly Linearizable Linked List and Queue

Function enqueue(x):
107 node ← new Node(x)
108 while true do
109 (end, endc) ← Tail
110 (next, nextc) ← end.next
111 if (end, endc) = Tail then
112 if next = null then
113 if end.next.CAS((next, nextc),

(node, nextc + 1)) then
114 break
115 else
116 Tail.CAS((end, endc), (next,

endc + 1))

117 Function dequeue():
118 while true do
119 (start, startc) ← Head
120 (end, endc) ← Tail
121 (next, nextc) ← start.next
122 if (start, startc) = Head then
123 if start = end then
124 if next = null then
125 return false
126 Tail.CAS((end, endc), (next,

endc+1))
127 else
128 value ← next.value
129 if Head.CAS((start, startc),

(next, startc+1)) then
130 free(start)
131 return true

Figure 3 Michael and Scott’s lock-free queue.

A simple modification that will yield a strong linearizable queue is to remove the condition
on line 122. The linearization point remains the same; it is when null is read on line 121.
Intuitively, if null is read then start refers to the last node, and so should Head and Tail

(thus start = end). This means that the method commits to failing exactly when null is read,
and at this point the queue is empty (recall that Head points to the last element dequeued).
Not checking whether Head changed since its last read (line 122) will not corrupt the queue
since if Head changed, the CAS on line 129 will fail. In our proof that the algorithm in
Figure 4 is strongly linearizable, we disregard line 157 (the free function call). Thus, if the
method exits on line 158, the CAS on line 156 is the last shared memory operation. Calling
free does not affect strong linearizability. For the proofs below, we assume that no ABAs
occur due to our use of sequence numbers. Let T be a transcript containing operations on
O, an implementation of the queue. We define whether a node is reachable identically as
with the linked list; a node is reachable at time t if it can be obtained by traversing the

Function dequeue():
146 while true do
147 (start, startc) ← Head
148 (end, endc) ← Tail
149 (next, nextc) ← start.next
150 if start = end then
151 if next = null then
152 return false
153 Tail.CAS((end, endc), (next, endc+1))
154 else
155 value ← next.value
156 if Head.CAS((start, startc), (next, startc+1)) then
157 free(start) // ignored in the proof of strong linearizability
158 return true

Figure 4 Dequeue operation of a strongly linearizable lock-free queue.



S. M. Hwang and P. Woelfel 28:13

sequence of nodes from Head (let no node be reachable if Head = null). We say that Head

(or Tail) is incremented if Head = (v, _) is changed to (v.next, _), where v is a node, and
v.next ̸= null. Suppose at time t, we have the following sequence of nodes

v1, . . . , vk

where Head = v1, vi−1.next = vi for i ∈ {2, . . . , k} and vk.next = null. The sequence is well
defined if Head ̸= null, (guaranteed by Lemma 16). We define the interpreted value of O at
time t as the following sequence of numbers:

v2.value, . . . , vk.value.

Once again, we assume without loss of generality an operation op responds at its last
shared memory operation.

The linearization function pt(op) for an operation op in T on an implementation of the
queue in Figure 4 (with enqueue from Figure 3 is defined as follows:
1. If op is an enqueue operation, then pt(op) is the time at which the CAS on line 113

succeeds.
2. If op is a dequeue operation, then pt(op) is the first time at which null is read on line 149

or the CAS on line 156 succeeds.
3. Otherwise, op did not perform its last shared memory step and pt(op) = ∞.
Let T be the set of all transcripts on an implementation of the queue in Figure 4. For
all T ∈ T , we define a sequential history f(T ) that orders operations according to pt, and
excludes all operations op with pt(op) = ∞. That is, for pt(op1) ̸= ∞ and pt(op2) ̸= ∞,
op1, op2 ∈ T , op1

f(T )−−−→ op2 if and only if pt(op1) < pt(op2). Again, f(T ) is unambiguous
since for every operation op ∈ Γ(T ) such that pt(op) ̸= ∞, the step of T at pt(op) is performed
by op.

The following two lemmas describe invariants of the queue which are used to argue strong
linearizability. Their proofs can be found in Appendix D.

▶ Lemma 15. Tail is always reachable.

▶ Lemma 16. Head is never null, and is only ever incremented.

▶ Lemma 17. Suppose the interpreted value of the queue is (x1, . . . , xk) at a CAS call on
line 113. Let t be the time at which this CAS call occurs. If the CAS call succeeds, then the
interpreted value immediately after t is (x1, . . . , xk, value), where value is the argument of
enqueue.

Proof. Suppose the CAS operation on line 113 succeeds, meaning end.next = null at t. By
Corollary 23, Tail.next is also null when it was assigned to end. Since Tail is only ever
incremented, and Tail.next = null up until the CAS operation, Tail and end refer to the
same node at t. By Lemma 15 end is a reachable node. Since end.next = null, end is the
last reachable node by Observation 24. Thus the interpreted value immediately after t is
(x1, . . . , xk, value). ◀

▶ Lemma 18. Suppose that at time t, start.next = null is read on line 121. Then the
interpreted value of the queue at t is empty.

Proof. This follows immediately from Lemma 16 and Corollary 23; since start.next = null

and Head is only ever incremented, Head cannot have changed between when it was assigned
to start and when start.next was read. ◀

OPODIS 2021



28:14 Strongly Linearizable Linked List and Queue

▶ Lemma 19. If start.next = null was read on line 149 then start = end.

Proof. As seen in the proof of Lemma 18, Head and start reference the same node when
start.next = null was read. Since Tail is always reachable (Lemma 15) and Head references
the last reachable node, Tail references the same node as Head during the execution of
lines 147 and 148. Thus when Tail is read on line 148, it references the same node as
start. ◀

▶ Lemma 20. Suppose at time t the interpreted value of the queue is (x1, . . . , xk), and a
successful CAS on line 156 is executed. Then immediately after time t, the interpreted value
of the queue is x2, . . . , xk.

Proof. By Lemma 16, upon CAS success the Head changes to head.next. ◀

▶ Theorem 21. The queue in Figure 3 but with the dequeue function from Figure 4 is
strongly linearizable and lock-free.

Proof. Michael and Scott showed that their queue (in particular enqueue) is lock-free [11].
The only method that was changed is dequeue, and the only change was the removal of
a condition which could have caused another iteration of the loop. Thus dequeue is still
lock-free.

We now show that the queue is strongly linearizable. For an enqueue and a successful
dequeue on O, Lemmas 17 and 20 ensure that both operations modify the interpreted value
appropriately at their linearization points. Lemma 18 guarantees that for a failed dequeue,
the interpreted value is empty at its linearization point. Thus, f(T ) is a linearization of the
interpreted history Γ(T ).

Consider a step t of T and an operation op ∈ Γ(T ) where pt(op) = t. Then
1. operation op is an enqueue operation and t is when a successful CAS on line 113 is

executed
2. operation op is a dequeue operation and t is when a successful CAS on line 156 is executed
3. operation op is a dequeue operation and t is when null is read on line 149. Notice that

by Lemma 19, reading null guarantees that op will fail.

At step t it is determined what operation op satisfies pt(op) = t. Therefore, if S is a
prefix of T , then f(S) is a prefix of f(T ). ◀

7 Discussion

We proved that Harris’s linked list and Michael and Scott’s queue, two well-known lock-free
data structures, are not strongly linearizable. We have carefully analyzed where the strong
linearizability breaks, and gave modifications to derive strongly linearizable variants.

An observation we made on the original data structures is that an operation exists
such that the response of the operation was not determined by the time of its linearization
point. Using this observation, we constructed transcripts where events after an operation’s
linearization point changed the linearization order of the past. It is currently unknown
whether such observations directly imply that a data structure is not strongly linearizable.

Simple modifications addressing these operations were given but the proofs of strong
linearizability were non-trivial. The minor changes required gives hope for future work on
deriving strongly linearizable data structures.

We hope that our insights can be used to develop techniques either for determining whether
other linearizable implementations are strongly linearizable, or to derive strongly linearizable
implementations from linearizable ones. For example, interpreted values have been used



S. M. Hwang and P. Woelfel 28:15

to great effect in this paper and by others [4, 12] in proving whether implementations are
strongly linearizable, albeit in an ad-hoc manner. A future direction could be to formalize
the concept of interpreted values, then develop techniques around it.

References
1 H. Attiya, A. Castañeda, and D. Hendler. Nontrivial and universal helping for wait-free queues

and stacks. Journal of Parallel and Distributed Computing, 121:1–14, 2018.
2 O. Denysyuk and P. Woelfel. Wait-freedom is harder than lock-freedom under strong lineariz-

ability. In International Symposium on Distributed Computing, pages 60–74, 2015.
3 M.J. Fischer, N.A. Lynch, and M. Paterson. Impossibility of distributed consensus with one

faulty process. Journal of the Association for Computing Machinery, 32(2):374–382, 1985.
doi:db/journals/jacm/FischerLP85.html,10.1145/3149.214121.

4 G. Giakkoupis, M.J. Giv, and P. Woelfel. Efficient randomized DCAS. In Proceedings of the
53rd Symposium on Theory of Computing, pages 1221–1234. ACM, 2021.

5 W. Golab, L. Higham, and P. Woelfel. Linearizable implementations do not suffice for
randomized distributed computation. In Proceedings of the 43rd Symposium on Theory of
Computing, pages 373–382, New York, NY, USA, 2011. Association for Computing Machinery.

6 T.L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of the
15th International Conference on Distributed Computing, pages 300–314, Berlin, Heidelberg,
2001. Springer-Verlag.

7 M. Helmi, L. Higham, and P. Woelfel. Strongly linearizable implementations: possibilities
and impossibilities. In Proceedings of the 2012 ACM symposium on Principles of Distributed
Computing, pages 385–394, 2012.

8 M.P. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991.

9 M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

10 M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing research, 4:163–183, 1987.

11 M.M. Michael and M.L. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 267–275, New York, NY, USA, 1996. Association for Computing
Machinery.

12 S. Ovens and P. Woelfel. Strongly linearizable implementations of snapshots and other types.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, pages 197–206. ACM, 2019.

A Proofs of claims from Section 3

▶ Lemma 1. The linked list implementation by Harris (Figure 1) is not strongly linearizable.

Proof. We denote nodei as the node containing key i, inp(x) as a transcript of an insert of
key x by process p and delp(x) as a transcript of a delete of key x by p.

Consider the following transcripts for processes p and q:

S = inp(3) ◦ (delq(2) to the first execution of line 15) ◦ inp(2)
T1 = S ◦ delp(3) ◦ (delq(2) from line 16 to completion)
T2 = S ◦ (delq(2) from line 16 to completion)

To show a contradiction, assume that the algorithm is strongly linearizable. Then there
exists a strong linearization function f for {S, T1, T2}. In S, the insert of 3 happens before
every other operation, thus inp(3) is the first operation in f(S). Either delq(2) is ordered

OPODIS 2021

https://doi.org/db/journals/jacm/FischerLP85.html, 10.1145/3149.214121


28:16 Strongly Linearizable Linked List and Queue

before inp(2) in f(S), or it is not. We consider both cases below. For delq(2), we can see
from tracing the code that during its execution up to line 15, node3 is assigned to right.

Suppose delq(2) linearizes prior to inp(2) in S. Then we have

f(S) = inp(3) ◦ delq(2) ◦ inp(2).

In T1, p completes delp(3) before q finishes its delete. Note that while p executes delp(3), q

takes no steps. By the post-conditions of search, node3 is assigned to right on line 39 of
delp(3). This right will fail the if condition on the next line. During the execution of S, no
node is marked, and right.next does not change after its insertion. Thus, the if condition on
line 44 is satisfied during the execution of delp(3). For the same reason, delp(3) will succeed
its CAS call on line 45, and node3 is marked. Therefore, when q resumes its execution of
delq(2), right (node3) will be marked. The condition on line 15 succeeds, and q restarts
search.

From the post-conditions of search, line 56 of inp(2) assigns Tail to right, which will
fail the if condition on line 57. No shared memory operations have completed between p’s
execution of lines 56 and 61, thus the CAS call on line 61 will succeed, and inp(2) will
succeed (return true). Therefore, when q executes another search, right = node2, and the
CAS will succeed on line 45, thus delq(2) will succeed.

From our assumption that f is strongly linearizable, if delq(2) linearizes before inp(2) in
S, then delq(2) also linearizes before inp(2) in T1. We have,

f(T1) = inp(3) ◦ delq(2) ◦ inp(2) ◦ delp(3).

However, this sequential history is not valid since delq(2) succeeds when no node in the
linked list contains 2. This contradicts the assumption that delq(2) linearizes before inp(2).

Now suppose that delq(2) does not linearize before inp(2) in S; either delq(2) linearizes
after inp(2) in S, or it does not linearize in S. That is,

f(S) = inp(3) ◦ inp(2) ◦ delq(2) or f(S) = inp(3) ◦ inp(2).

No delete operation occurs in T2 other than delq(2), thus when q continues delq(2), it fails
the if condition on line 15 and returns node3 as right. The search key (2) and the key of
right_node (3) are different, and delq(2) returns false.

From our assumption that f is strongly linearizable, if f(S) = inp(3) ◦ inp(2) ◦ delq(2),
then f(T2) = inp(3) ◦ inp(2) ◦ delq(2). Otherwise, since delq(2) is complete in T2, delq(2)
linearizes in T2 but not in S. Since delq(2) still linearizes after inp(2) in T2, f(T2) is the
same as above. However, this sequential history is not in the sequential specification; a delete

method fails when the key being deleted is in the linked list. This contradicts the assumption
that delq(2) does not linearize before inp(2) in S.

Both cases contradict the assumption that f is a strong linearization function. Therefore,
no strong linearization function can be defined over {S, T1, T2}, and Harris’s linked list
implementation is not strongly linearizable. ◀

B Proofs of claims from Section 4

▶ Lemma 2. A marked node’s succ field never changes.

Proof. A succ field is only changed by the three CAS operations and on line 94. It is clear
that none of the three CAS operations will succeed if a node is marked. A node when
constructed is by default unmarked, and when changed on line 94 it is left unmarked. Thus
new_node on line 94 is always unmarked when it changes. ◀



S. M. Hwang and P. Woelfel 28:17

▶ Lemma 3. Keys are strictly sorted; For any two nodes v1 and v2, if v1.next = v2 then
v1.key < v2.key.

Proof. Initially, there are only Head and Tail where Head.key < Tail.key, thus the lemma
is true. The next field of a node is only ever altered on lines 94 and 95 in SLinsert, and on
line 86 in search. We show that if the lemma is true before each of the listed operations,
then it is true after the operation. For the lines corresponding to CAS operations, we assume
that the call succeeds since otherwise no change takes place.

Consider an SLinsert operation. The search call return only if left.key ≤ search_key <

right.key. Line 94 is executed if left.key ̸= search_key, thus left.key < search_key <

right.key. Then we have that after line 94, new_node.next = right and new_node.key =
search_key < right.key. Furthermore, if the CAS on line 95 succeeds, left.next =
new_node and we have already established that left.key < search_key = new_node.key.

For the CAS in search, consider the sequence of nodes

v1, v2, . . . , vk

where v1 = start, vk = curr at the execution of the CAS, and vi+1 is vi.next when it was
read on line 67, 80 or 84. The sequence is well defined since curr is set to curr_next after
curr.succ is read. After the CAS succeeds, start.next = curr. Since we assume that the
lemma is true before the CAS succeeds, v1.key < vk.key, thus it is still maintained. ◀

▶ Corollary 4. The linked list never contains duplicate keys.

Proof. If it contained duplicate keys Lemma 3 is violated. ◀

▶ Lemma 5. All unmarked, not pre-inserted nodes are reachable.

Proof. Reachability is only affected by the CAS on line 95, when a node is inserted, and on
line 86, when start.next is changed to curr.

At the CAS success on line 95, left is unmarked, and is thus reachable. The next field
of left is new_node, hence new_node is reachable. The node right is still reachable since
new_node.next = right. For the CAS in search, we want to show that no unmarked node
exists “between” start and curr on line 86. Again consider the sequence of nodes

v1, v2, . . . , vk

where start = v1, vk = curr and vi+1 is the node seen when vi.next is read. Note that for
1 < i < k, vi was seen to be marked when vi−1.next was read. Thus by Lemma 2, such vi

are marked at the execution of the CAS. We show that at the CAS execution, vi.next = vi+1
for all 1 ≤ i < k, proving that all nodes “between” start and curr are all marked.

Note that start_next = v2; when v1 was assigned to start, curr_next = v2 was assigned
to start_next (line 71). At CAS execution, start_next = start.next since it succeeds, so
v1.next = v2 at this time. For all other vi, vi.next = vi+1 at the CAS success since after
vi.succ has been read (and was seen to be marked), it cannot change by Lemma 2. ◀

▶ Lemma 12. The search method is lock-free.

Proof. Consider the first inner loop in search. After every iteration of the loop, curr advances
down the linked list by one node. For every search_key, Head.key < search_key <

Tail.key. The linked list is strictly sorted by their keys, and Tail is always reachable. Thus
the exit condition on line 72 is always met before Tail is assigned to curr. Consider an

OPODIS 2021



28:18 Strongly Linearizable Linked List and Queue

execution of the loop that lasts more than k iterations. At iteration k, the variable curr is
not Tail, and curr has advanced down the linked list k times. Since initially the linked list
consists only of Head and Tail, at least k SLinsert operations have linearized.

Now consider the second inner loop in search. After every iteration of the loop, curr

advances down the linked list by one node. The Tail node is unmarked, thus by the time
curr = Tail, the exit condition of the loop is met. By similar reasoning as above, if the loop
execution lasts more than k iterations, then at least k successful SLinsert have linearized.

Finally, consider the outer loop execution that lasts at least k > 2 iterations. For
clarity, we denote the node assigned to variable x on iteration j as xj . For an iteration
i < k, suppose that the CAS on line 81 86 fails; start.succ ̸= (start_next, false). Then
start.succ was modified by an update between the CAS execution and when start.succ

was read on line 67 or 77. Now suppose that the CAS succeeds. Observe that on line 81,
start.key ≤ search_key < curri.key, and at this point start is unmarked and therefore
reachable; no reachable node with key between start.key and curri.key exists. However on
iteration i + 1, when line 73 is executed to exit from the first inner loop, curri+1 is marked.
One of the following updates must have occurred between the CAS on iteration i and when
curri+1.marked was read:
1. starti was marked, or
2. A node v with start.key ≥ v.key < search_key was inserted.
Otherwise, curri+j = starti, starti is unmarked and search_key < curr_nexti+1.key,
meaning that search should return on iteration i. An update occurred for all cases, thus for
k iterations of the outer loop, k updates occurred. For k updates, at least k/2 successful
SLinsert or SLdelete operations have linearized. Then we have that if a process takes
infinitely many steps (infinitely many iterations of any loop) while executing the search

function, then infinitely many successful SLinsert or SLdelete operations have linearized. ◀

C Proofs of claims from Section 5

▶ Lemma 14. Michael and Scott’s queue (Figure 3) is not strongly linearizable.

Proof. Again, we denote nodei as a node containing value i. Similarly, deqp() as a transcript
of a dequeue operation by process p, and enqp(x) as a transcript of a enqueue operation of
value x by process p. For clarity, when tracing the execution of different processes, we denote
variable var from p’s execution varp.

Consider the following transcripts for processes p and q:

S = (deqp() to the first execution of line 121) ◦ enqq(1) ◦ enqq(2)
T1 = S ◦ deqq() ◦ (deqp() from line 122 to completion)
T2 = S ◦ (deqp() from line 122 to completion )

To show a contradiction, suppose that the algorithm is strongly linearizable with a strong
linearization function f over {S, T1, T2}. When we trace the execution outlined by S, vdummy

is assigned to startp and endp, and null is assigned to next (lines 119- 121). In addition,
enqq(1) and enqq(2) append their respective nodes to the linked list.

Now consider the rest of the execution in T1. The deqq() operation terminates successfully.
Head is assigned to startq and node2 is assigned to endq (thus startq ̸= endq). Head never
changed (Head = vdummy) thus the CAS on line 129 succeeds. When deqp() resumes its
execution, it fails the condition on line 122 (since Head was changed by deqq()) and restarts.



S. M. Hwang and P. Woelfel 28:19

During the next iteration of the loop, Head does not change, as q does not execute any
operations. In addition, startq = node1 and endq = node2 are read on lines 119-120. The
CAS on line 129 is therefore reached, and succeeds to change Head to node2.

For f(T1) to be a linearization of T1, deqp() cannot be ordered first. Otherwise, a dequeue

operation succeeded (as we saw when tracing the execution) when no enqueue operation
preceded before it. As S is a prefix of T1, for f(S) to be prefix-preserving, f(S) also cannot
start with deqp(). Now, we consider the transcript T2. Continuing from our tracing of S,
startp = vdummy and nextp = null. Head has yet to change (is still vdummy), thus the
condition on line 122 passes. The next two if statements (line 123-124) is also satisfied, and
the deqp() fails.

In order to preserve validity,

f(T2) = deqp() ◦ enqq(1) ◦ enqq(2).

Since f(S) is a prefix of f(T2) (S is a prefix of T2, and f is prefix-preserving, and S contains
complete operations enqq(1) and enqq(2),

f(S) = deqp() ◦ enqq(1) ◦ enqq(2).

However f(S) cannot start with deqp(), yielding a contradiction. ◀

D Proofs of claims from Section 6

▶ Observation 22. For a node v, if v.next ̸= null, then v.next does not change.

Proof. Initially, v.next = null. The next field of a node is only ever altered in enqueue

by a CAS in line 113. Such a CAS only succeeds if v.next = null, and after the CAS,
v.next ̸= null. ◀

▶ Corollary 23. For a node v, if v.next = null, then v.next never changed since v was
constructed.

Proof. Otherwise v.next was changed to a node u between v’s initialization and when
v.next = null. However by Lemma 22 v.next can never change back to null. ◀

▶ Observation 24. If node v is reachable and v.next = null, then v is the last reachable
node.

▶ Lemma 25. Tail is only ever incremented; if Tail = node, then Tail only ever changes
to node.next where node.next ̸= null.

Proof. Tail is only ever changed through CAS operations on lines 153 and 116. We show
that if such a CAS succeeds on either line, Tail is incremented.

For line 116, a successful CAS changes Tail from (end, endc) to (next, endc + 1), where
next ̸= null by the prior if condition. By Observation 22, at the time of CAS success,
end.next = (next, nextc). Next, we show that end.next = (next, nextc) on line 153. We
know that next ̸= null since the if condition on line 151 was not satisfied (otherwise the
method call would not reach line 153). By the if condition on line 150, start = end, meaning
start.next = end.next = next at CAS success (line 153) by Observation 22. ◀

▶ Observation 26. If Head changes from node v to node u, then v.next = u when Head

was changed.

OPODIS 2021



28:20 Strongly Linearizable Linked List and Queue

Proof. Head is only altered by a successful CAS on line 156, and it is changed to next.
Suppose the CAS operation succeeds and changes Head from v to u. Then, v was assigned
to start on line 147 and u ̸= null was assigned to next on line 149. By Observation 22,
v.next = u at the time of CAS success. ◀

▶ Lemma 15. Tail is always reachable.

Proof. Initially, Tail and Head refer to the same node. By induction, we show that the
lemma continues to hold even after Tail or Head is change by a successful CAS operation.
For every CAS operation that changes Tail or Head, suppose that Tail is reachable up until
the CAS operation. By Lemma 25, any time Tail changes it is changed to Tail.next. Since
Tail is reachable, Tail.next is also reachable. Thus, successful CAS operations on line 153
and 116 maintain the lemma.

We first prove that if the CAS on line 156 is reached, then next ̸= null. To show a
contradiction, suppose otherwise. By the induction hypothesis, Tail is reachable during
the execution of lines 147-148. By the assumption that next = null and Corollary 23,
start.next = null on lines 147-148 and start is the last node in the list in this duration. If
Head = start on line 148, then start is the last reachable node and start is assigned to end

on line 148 (since Tail is reachable at this line). Then dequeue exits on line 152 and line 156
is never reached, yielding a contradiction. Otherwise, Head ̸= start on line 148. Head must
have changed since its assigned to start, but Head ̸= null for Tail to be reachable. Then
we have that Head changed from start to a node u. However, this contradicts Lemma 26;
Head changed from start ̸= null to u ̸= null, but start.next = null ̸= u.

We now have that next ̸= null at the CAS operation on line 156. By Lemma 26, if the
CAS operation succeeds, then Head changes to Head.next. The only way such a change
can make Tail unreachable from Head is if Tail = Head at CAS success. To show a
contradiction, suppose that this is the case. For the CAS on line 156 to succeed, Head does
not change after it was assigned to start on line 147. Tail was assigned to end on line 148,
and start was evaluated to not equal end on line 150. The node pointed to by Tail must
have changed for Tail and Head to reference the same node at the CAS, but such a change
can only be an increment by Lemma 25. Thus Tail was unreachable from Head prior to the
CAS execution, which contradicts the inductive hypothesis. ◀

▶ Lemma 16. Head is never null, and is only ever incremented.

Proof. If Head was null, then Tail would be unreachable. Thus if Head changes, then it
changes from a node v to a node u. By Lemma 26, Head is then only ever incremented. ◀


	1 Introduction and Related Work
	1.1 Other Related Work

	2 Preliminaries
	3 Harris's linked list is not strongly linearizable
	4 A strongly linearizable linked list
	5 Michael and Scott's queue is not strongly linearizable
	6 A strongly linearizable queue
	7 Discussion
	A Proofs of claims from Section 3
	B Proofs of claims from Section 4
	C Proofs of claims from Section 5
	D Proofs of claims from Section 6

