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Abstract
The emergence of systems with non-volatile main memory (NVRAM) increases the need for persistent
concurrent objects. Of specific interest are recoverable implementations that, in addition to being
robust to crash-failures, are also detectable. Detectability ensures that upon recovery, it is possible
to infer whether the failed operation took effect or not and, in the former case, obtain its response.

This work presents two recoverable detectable Fetch&Add (FAA) algorithms that are self-
implementations, i.e, use only a fetch&add base object, in addition to read/write registers. The
algorithms target two different models for recovery: the global-crash model and the individual-crash
model. In both algorithms, operations are wait-free when there are no crashes, but the recovery
code may block if there are repeated failures. We also prove that in the individual-crash model,
there is no implementation of recoverable and detectable FAA using only read, write and fetch&add
primitives in which all operations, including recovery, are lock-free.
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1 Introduction

Systems with byte-addressable non-volatile main memory (NVRAM ) combine the perform-
ance benefits of conventional main memory with the durability of secondary storage. The
emergence of commerical systems with NVRAM increased the interest in the crash-recovery
model, in which failed processes may be resurrected after they crash. For this model, the
goal is to design recoverable concurrent objects (also called persistent or durable): Objects
that are made robust to crash-failures by allowing operations to recover from such failures.

Persistent objects were hand-crafted for specific data structures, e.g., [15,26,28,29]. Other
work introduces general mechanisms to port existing algorithms and make them persistent,
e.g., by using transactional memory [6, 9, 24, 27], universal constructions [5, 8, 10], or for
specific families of algorithms [4,11,13]. These transformations rely on strong primitives such
as compare&swap, while their non-persistent counterparts may use only weaker primitives, in
terms of their level in the consensus hierarchy [21].

An alternative approach is to design persistent self-implementations, in which a recoverable
operation is implemented by using non-recoverable instances of the same primitive operation,
possibly with additional reads and writes on shared variables. Self-implementations can
be used to implement high-level persistent objects by plugging them within existing object
implementations. A recoverable implementations is detectable [15] if, in addition to being
robust to crash-failures, it ensures that it is possible to infer, upon recovery, whether the
failed operation took effect or not and, in the former case, obtain its response.
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29:2 Recoverable and Detectable Fetch&Add

For example, a detectable compare&swap (CAS) was used in a CAS-based generic
transformation that makes algorithms recoverable [4]. Detectable self-implementations were
presented in prior works for read, write, test&set, and CAS objects [2, 4]. An important
primitive, which is useful in several data structures, is fetch&add, whose consensus number
is two, i.e., it allows exactly two processes to solve consensus [21].

Our Contributions. This paper presents two detectable self-implementations of Fetch&Add
(FAA). The first algorithm is for the global-crash model, where the whole system crashes
and a single process is responsible for the recovery of all failed operations. The second
algorithm is for the individual-crash model, where some processes may crash while others
might not, and each process is responsible for restoring its own state in a consistent manner.
However, recovering processes may have to wait for other processes to make progress with
their operations or with their recovery code, and may never complete if such progress does not
occur. We also prove that in the individual-crash model, there is no lock-free implementation
of recoverable FAA objects from read, write and fetch&add primitives. In other words,
for every detectable self-implementation of an FAA object in this model, either the FAA
operation or the recovery code is not lock-free.

Our implementations satisfy nesting-safe recoverable linearizability (NRL) [2]. NRL was
originally defined for the individual-crash model, and we extend it to the global-crash model.
NRL implies that, following recovery, an implemented (higher-level) recoverable operation is
able to complete its invocation of a base-object operation and obtain its response.

Related Work. The notion of detectability was presented in [14, 15]. A strict version of
detectability, named nesting-safe recoverable linearizability (NRL), was formally defined by [2].
It requires that each process complete its operation and obtain its response before invoking
another operation even when it incurs crash-failures. There are NRL self-implementations of
recoverable read, write, test&set and compare&swap [2]. In a sense, FAA is a more complex
object since, in most cases, an FAA operation has a unique place in history where it must
be linearized, and its response is also unique based on this linearization point. Unlike
FAA, in compare&swap and test&set we have more freedom in choosing where to linearize
operations. For example, we can linearize a test&set operation that returns 1 at any point
after the first operation in the linearization order. Tracking this unique linearization point of
every crashed FAA operation and restoring the response based on it is the core challenge
of our self-implementations. It is known that there is no wait-free self-implementation of a
detectable test&set object [2]. Both this proof and our impossibility proof for FAA employ
valency arguments that rely on the loss of response values incurred by processes following
crash-failures.

Golab [16] defined recoverable consensus and revised the consensus hierarchy in the
presence of crash-recovery failures, for both the individual-crash model and the global-crash
model. (Recall that the wait-free consensus hierarchy [21] ranks shared objects according
to the maximum number of processes that can use them to solve consensus; fetch&add and
test&set are at level 2 of the hierarchy.) Golab showed that test&set drops to level 1 for the
individual-crash model, if the number of crashes is unbounded. Our impossibility result can
be adapted to prove an analogous result for fetch&add.

Other correctness conditions were suggested for shared objects that tolerate crash-recovery
failures. Strict linearizability [1] treats the crash of a process as a response, either successful
or unsuccessful, to the interrupted operation. Persistent atomicity [20] is similar to strict
linearizability, but allows an operation interrupted by a failure to take effect before the next
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invocation of the same process, possibly after the failure. Both conditions ensure that the
state of an object is consistent after a crash. Recoverable linearizability [5] ensures object
implementations can be composed, but may compromise program order following a crash.
They also present a universal construction using compare&swap in the individual-crash model.

In the recoverable mutual exclusion problem (RME) [18], processes may undergo individual
crashes during the execution of a mutual exclusion protocol. This paper also presents an RME
algorithm using only reads and writes whose remote memory references (RMRs) complexity is
logarithmic in the number of processes, n. There is an RME algorithm for the cache-coherent
(CC) model [17], using fetch&store and compare&swap, which incurs O( log N

log log N ) RMRs. An
RME algorithm with the same asymptotic RMR complexity was proposed for the distributed
shared memory (DSM) and CC models [25]; it uses fetch&store. There is also an RME
algorithm using only compare&swap and fetch&increment, with constant amortized RMR
complexity [7]. In the global crash model, RME can be solved in a constant number of
RMRs [19].

2 Model of Computation

We consider a system with N processes, p0, . . . , pN−1, which communicate by applying atomic
primitive operations (also called primitives) to shared base objects; the primitives applied
are read, write and fetch&add. All shared base objects are non-volatile. The state of each
process comprises its program counter and local variables; all local variables are volatile.1 A
configuration consists of the states of all processes and the values of all shared base objects.
Two configurations C1 and C2 are indistinguishable to a set of processes P , denoted C1

P∼ C2,
if every process in P has the same state in C1 and C2, and all shared objects hold the same
values in C1 and C2. The state of the system changes when processes take steps, each of
which is a local computation followed by an atomic operation on one shared object (ordinary
step), a crash step, or a recovery step.

Base objects and primitives are used to implement more complex objects, by specifying
an algorithm for each operation of the implemented object using primitives on base objects.
In this work, we implement a recoverable Fetch&Add (FAA) object that is detectable. The
sequential specification of fetch&add contains all sequences of FAA(v) operations in which
each operation returns the sum of the arguments of all preceding FAA operations. We refer
to the recoverable detectable operation that is implemented as Fetch&Add, while fetch&add
is the primitive operation supported by the system, which can be applied to non-volatile
variables.

An execution α is an alternating sequence of configurations and steps that follow the
algorithm. An execution α is crash-free if it contains no crash steps, and hence, also no
recovery steps. If a step s is possible in a configuration C at the end of a finite execution α,
then the sequence obtained by appending s to α is also an execution, denoted α ◦ s, whose
final configuration is denoted C ◦ s. Let α be an execution ending in configuration C and let
p be a process. If p’s last step in α is a crash step, then the only step by p that is possible in
C is a recovery step.

1 We assume the simple mode of shared caches, where updates to the persistent shared base objects
are immediate. There are standard ways to port algorithm from this model to more realistic models
capturing existing architectures [23].
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29:4 Recoverable and Detectable Fetch&Add

Process i invokes an operation Op on an object with an invocation step, and it completes
with a response step, in which Op’s response is stored to a local (volatile) variable of process
i. The return value is lost if process i crashes, unless process i writes it to a non-volatile
variable before the crash, thereby persisting it. An operation Op is pending if it is invoked
but not yet completed; each process has at most one operation pending.

We consider two models of recovery from crashes. In the individual crash model, at any
point during an execution, each process can incur a crash that resets all its local variables to
arbitrary values, but preserves the values of shared non-volatile variables. Recovery is done
by the same crashed process, so each recoverable operation, Op, is associated with a recovery
function, Op.RECOVER. In the global crash model, at any point during the execution,
a global crash can occur that resets all local variables of all processes, but preserves the
values of shared non-volatile variables. The recovery is done by a single process that is
responsible for recovering all processes. In this case, we have a global RECOVER function;
once RECOVER completes, processes can resume their execution.

One component of the processes’ state is Seq[N ]. For each process i, Seq[i] holds the
sequence number of its current FAA operation. Before an FAA operation is invoked, Seq[i] is
incremented by 1 by the process (or the system), externally to the operation itself. This is
essential in our model for determining, upon recovery, the progress made by FAA operations
before the crash. It has been proved [3] that detectable algorithms must keep auxiliary state,
provided from outside the operation, either by the system or by the caller of the operation
via arguments or a non-volatile variable accessible by them. This auxiliary state is used to
infer where the failure occurred.

We say that an operation op1 precedes another operation op2 in the real-time order of an
execution α, if op1 completes before op2 is invoked. Informally, a crash-free execution α is
linearizable [22] if we can order all completed operations, as well as a subset of the pending
operations, in a way that preserves the real-time order of the operations, and the return
values respect the sequential specification of the Fetch&Add object.

An execution α satisfies nesting-safe recoverable linearizability (NRL) if the execution
obtained by removing all crash and recovery steps from α is linearizable. NRL implies
detectability [15], namely, a recovering operation has an appropriate response.

In our algorithms, the operations are wait-free, i.e., the execution of an operation by a
process that does not incur a crash (global or individual) is guaranteed to complete in a
finite number of its steps, regardless of the steps or crashes of other processes. An algorithm
is lock-free if, whenever a set of processes take a sufficient number of steps and none of them
crashes, then it is guaranteed that one of them will complete its operation.

3 FAA Implementation in the Global-Crash Model

Our algorithm implements a recoverable detectable FAA operation sing a fetch&add base
object of unbounded size. An FAA operation receives, as its single argument, a value val
that should be added to the global unbounded counter. FAA atomically adds val and returns
the previous value of the counter.

The challenge in implementing a recoverable and detectable FAA operation is that some
return values may be lost upon a crash, if they were not persisted. Such operations may
have already affected the global counter, i.e., the return values of other operations. Upon
recovery, it is necessary to figure out the return values of incomplete operations so that
all operations (completed and pending) can be linearized. For example, in Figure 1, all
operations, including pending ones, must be linearized after the system recovers from the
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Figure 1 Challenges in detectable FAA implementation. We use the notation op = F AA(V1) : V2

to denote an F AA invocation with argument V1 that returns V2 as its response. An empty V2 means
that op is pending when the crash occurs.

crash. This is because all of them succeeded in adding their argument to the counter, and
thus, have impacted other operations. Note that p0’s pending operation must be linearized
right before the first operation of p1 that is affected by it. On the other hand, we can choose
where to linearize the pending operations of p2 and p3, as long as they are linearized before
the operation of p4, which is affected by both. We track and identify this information using
a combination of sequence numbers and vector timestamps, as explained next.

Each FAA operation by a process has a strictly increasing sequence number; thus, it is
uniquely identified by the pair ⟨process id, sequence number⟩. Linearizing FAA operations
is facilitated with a global unbounded fetch&add base object. This object holds a vector
timestamp with the sequence numbers of the last FAA operation of each process. Each
FAA operation updates this object, and obtains a timestamp that precisely tracks the FAA
operations affecting it. This tracking allows to ensure consistency with completed operations
whose arguments were already added to the implemented counter. Since sequence numbers
are unbounded, the fetch&add base object is unbounded as well.

The algorithm also uses two arrays: the first holds details of each FAA operation and the
other helps to persist the operation and ensure consistency during recovery.

An FAA operation has three stages: it is first announced in the first array; then, its
sequence number is updated at the fetch&add base object; finally, its vector timestamp,
which can be used to compute its return value, is persisted in the second array.

Recovery is done by a single process, which is responsible for determining the return
values of all operations that were pending when the crash occurred, depending on which
stage they were at. If the operation did not modify the base fetch&add object, its return
value indicates that it should be re-executed. If the operation wrote to the second array, it
has been persisted and its return value is known. The main challenge is to determine the
return value of an operation that modified the base fetch&add object but did not persist
its return value in the second array. To handle these operations, the recovery process first
orders the persisted operations, and then finds a place to insert each of these operations, so
that its return value is consistent with the return values of the persisted operations.

3.1 Shared Data Structures
The algorithm maintains a global array Seq[N ] holding the sequence numbers of the current
FAA operation of each process, all initially zero.

The Res[N ] array is used only in case of a crash, and it holds return values for all
processes after the recovery ends; ⊥ indicates that the FAA operation did not take effect
and should be re-executed. All components in Res[N ] are initially ⊥.

OPODIS 2021
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Figure 2 The organization of W : Process 0’s assigned bits, 0 and N , store 11(2), while process
N − 1’s assigned bits, N − 1 and 2N − 1, store 10(2).

The TotalContrib[N ][∞] array stores the intermediate sums of contributions of each
process. TotalContrib[i][k] holds the sum of the additions of all FAA operations executed
by process i until and including the k-th operation. All components in TotalContrib[i] are
initially zero.

▶ Definition 1. A vector timestamp (VTS) holds N sequence numbers, one for each process.
V TS1 ≺ V TS2 if V TS2 is larger than or equal to V TS1 in each component and V TS1 ̸=
V TS2. Two V TSs are comparable if one of them is larger than the other, in the ≺ order.

Each FAA op by process i has an associated V TSop, indicating the sequence numbers
of the FAA operations that precede it: V TSop[j] is the sequence number of the last FAA
operation by process j that precedes op.

An OpVTS[N ][∞] array stores the persistence information of operations of each process.
OpVTS[i][k] holds the VTS associated with process i’s k-th FAA operation; all components
in OpVTS[i] are initially ⊥.

These data structures are accessed only with read and write primitives: process i reads
and writes only the i-th component of each of them, while the recovery process reads and
writes all the components.

The base fetch&add object. The algorithm uses an unbounded-size register W that is
accessed by all processes with fetch&add primitives. W holds for each process i the sequence
number of the last FAA operation process i executed. W ’s value is numeric and is changed
with fetch&add. Since the sequence numbers stored in W are unbounded, they are stored
and manipulated as follows (see Figure 2):

The sequence number of process i is stored in bits k ∗N + i, k ∈ [0,∞). To increment its
sequence number in W , process i has to add a value that will set and clear corresponding
bits, considering the previous stored value, so the new value is stored correctly in i’s bits. For
example, assume process 0’s bits store 101(2), i.e, bits 0 and 2N are set. After the increment,
process 0’s bits should store 110(2) so bitN should be set and bit 2N should be cleared,
which is done by applying fetch&add with argument 2N − 22N .2.

Process i uses two functions to manipulate W :
ReadVTS: applies W.faa(0) in order to read W ’s content and returns a V TS of the N

sequence numbers stored in it.
IncrementSeqAndGetVTS: increments process i’s sequence number stored in W using a

single primitive atomic fetch&add. The function returns a V TS out of the previous value
of W returned by the fetch&add.

2 Although the number of bits assigned in W to each process is unbounded, the number of bits that are
actually used by process i can be determined according to the value of Seq[i]
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3.2 Code Description
The pseudo code appears in Algorithm 1. Recall that Seq[i] is incremented by 1, before
the FAA operation is invoked. Process i starts an FAA operation by reading its prior total
contribution, until the previous operation (Line 2). In Line 3, it declares the new operation
by storing the new total contribution in TotalContrib[i][Seq[i]]; this value is the sum of
prevTotalContrib and val, the argument of the current FAA operation by process i. In Line 4,
process i’s sequence number stored in W is incremented using IncrementSeqAndGetVTS,
which returns a vector, V TS, of N sequence numbers. These sequence numbers indicate,
for each process, the last FAA operation prior to process i’s operation ⟨i, Seq[i]⟩. Line 5
stores V TS in OpVTS[i][Seq[i]], thereby persisting the operation. Finally, the FAA operation
returns ComputeVal(V TS). As shown in Algorithm 1, ComputeVal with argument V TS sums
TotalContrib[p][V TS[p]], for all processes p, i.e., p’s total contribution until and including
the operation whose sequence number is stored in V TS[p].

▶ Definition 2. An operation is invisible if it did not perform the fetch&add primitive in
Line 4. An invisible operation does not update its sequence number in W and does not affect
other processes. An operation is effective if it performed the fetch&add primitive in Line 4,
and updated its sequence number in W . An effective operation is persisted if it performed
Line 5, so its VTS is persisted and its return value can be calculated based on it.

Incrementing Seq[i] before an FAA operation is invoked allows to distinguish, during
recovery, between an invisible operation that was just invoked and a prior persisted operation.

The RECOVER function is executed by a single process. In Line 10, it collects all
persisted operations in persistedOps. These are the operations whose V TSs appear in
OpVTS. Then, it creates an order, L0, of persistedOps according to the order of their VTSs
(Line 11). Note that the VTSs of persisted operations are comparable. The main loop
(Line 13) recovers the last operation of each process p, depending on its type; The sequence
number of the operation, seqp, is read from W , using ReadVTS(W)[p] (Line 14). If seqp is
smaller than Seq[p] (Line 15), then process p did not execute the fetch&add in Line 4 before
the crash. Thus, opp = ⟨p, Seq[p]⟩ is invisible and should be re-executed. Otherwise (Line 17),
if V TS is in OpVTS[p][seqp], then process p executed Line 5 and persisted its operation by
storing the corresponding V TS in OpVTS[p][seqp]. In this case, ComputeVal is applied to
the corresponding V TS in order to compute the return value. We note that processes that
did not invoke any FAA operation before the crash, with Seq[p] == 0, are skipped. The
remaining case is when the operation is effective but non-persisted. In this case, RECOVER
extends the order created in the previous iteration of the loop (initially, L0) by inserting the
operation into it. This is done with InsertOperationIntoOrder, explained next.

The function InsertOperationIntoOrder gets an operation opp = ⟨p, seqp⟩ to insert, L0,
the ordering of persisted operations,and Lk−1, the ordering after the previous effective
non-persisted operation was inserted. The function finds the barrier of opp, which is the
smallest operation in L0 that follows opp, i.e., with V TSbarrier[p] = seqp. The function
creates Lk by placing opp as the immediate predecessor of its barrier; if no such barrier
operation exists, then opp is placed at the end of Lk−1 to create Lk. This ensures consistency
with the persisted operations.

In Lines 25-30, the function derives the V TS corresponding to opp from its immediate
predecessor in Lk. If there is no immediate predecessor, then opp is the first operation
that applied fetch&add to W , and V TSp is defined as all zeros (Line 26). Otherwise,
let opt = ⟨t, seqt⟩ be the immediate predecessor. The function sets V TSp to be opt’s
corresponding vector time stamp, OpVTS[t][seqt], except that its t-th component is set to
seqt, indicating that opp is the immediate successor of opt. In Line 30, the function persists
V TSp in OpVTS[p][seqp], to safeguard against future crashes, and returns Lk.

OPODIS 2021
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Algorithm 1 Recoverable detectable FAA, for the global-crash model.

1: procedure FAA(val) ▷ executed by process i

2: prevTotalContrib ← TotalContrib[i][Seq[i]-1]
3: TotalContrib[i][Seq[i]] ← prevTotalContrib + val ▷ Store current total contrib
4: V TS ← IncrementSeqAndGetV TS(W, i)
5: OpVTS[i][Seq[i]]← VTS ▷ Store V T S

6: return ComputeVal(VTS) ▷ Compute return value

7: procedure ComputeV al(V TS)
8: return

∑
process p TotalContrib[p][V TS[p]]

9: procedure RECOVER() ▷ executed by recovery process
10: persistedOps← all operations whose V TSs appear in OpVTS
11: L0 ← persistedOps ordered according to their V TSs
12: prevOrder ← L0
13: for p from 0 to N − 1 do
14: seqp ← ReadV TS(W )[p]
15: if seqp < Seq[p] then ▷ invisible operation
16: Res[p] = ⊥
17: else if OpVTS[p][seqp] ̸=⊥ then ▷ persisted operation
18: Res[p] = ComputeVal(OpVTS[p][seqp])
19: else ▷ effective but non-persisted operation
20: prevOrder ← InsertOperationIntoOrder(⟨p, seqp⟩, L0, prevOrder)
21: Res[p] = ComputeVal(OpVTS[p][seqp])
22: procedure InsertOperationIntoOrder(⟨p, seqp⟩, L0, Lk−1)
23: barrier ← smallest operation in L0 such that V TSbarrier[p] = seqp

24: Insert ⟨p, seqp⟩ as the immediate predecessor operation to barrier in Lk−1 to get Lk.
If there is no such barrier, append ⟨p, seqp⟩ at the end of the order to get Lk.

25: ⟨t, seqt⟩ ← immediate predecessor operation to ⟨p, seqp⟩ in Lk

26: if ⟨t, seqt⟩ =⊥⊥⊥ then V TSp ← all N components are zeros
27: else
28: V TSp = OpVTS[t][seqt]
29: V TSp[t] = seqt

30: OpVTS[p][seqp]← V TSp

31: return Lk



L. Nahum, H. Attiya, O. Ben-Baruch, and D. Hendler 29:9

Figure 3 Linearization construction. L0 orders op2, op3, op6; L1 is obtained by adding op1; L2 is
obtained by adding op5; L3 is obtained by adding op4.

Then, RECOVER applies ComputeVal to OpVTS[p][seqp], in order to compute the return
value. Notice that there are at most N effective non-persisted operations, at most one for
each process. The function recovers the processes from 0 to N − 1. By Line 24, effective
non-persisted operations with the same barrier are ordered in an ascending order of their
processes’ ids. Moreover, after the function finds the place for such operation, it builds its
corresponding V TS based on the V TS of its immediate predecessor. This implies that the
V TS of the immediate predecessor operation is already written when we use it.

In Lines 16, 18 and 21, the function saves the return values of each process in the Res

array so when the processes resume, they can read their correct return values. If Res[i] ==⊥
then the process should re-execute the FAA operation, i.e., proceed from Line 2. Otherwise,
Res[i] holds the correct return value for process i.

▶ Example 3. Consider the execution of Figure 1, ending with a crash. Assume all pending
operations are effective and non-persisted. Figure 3 illustrates the order of the operations build
by the RECOVER procedure, as follows. L0 orders the persisted operations {op2, op3, op6}
(empty circles). The effective non-persisted operations op1, op5, op4 which are represented
by squares, executed by processes p0, p2, p3, respectively, are considered in the order of
their processes’ identifiers. The barrier of op1 is op2, so op1 (filled square) is placed as op2’s
immediate predecessor to obtain L1. Next, the barrier of op5 is op6, so op5 (squares pattern)
is placed as op6’s immediate predecessor to obtain L2. Finally, op6 is also the barrier of
op4, so op4 (stripes pattern) is placed as op6’s new immediate predecessor with op5 as its
immediate predecessor to obtain L3. Note that operations with the same barrier could be
linearized arbitrarily, and we chose to follow an ascending order of process’ ids.

By Figure 1, the return values of op2, op3, op6 are 1, 3, 15, respectively. op1’s return value
is 0, as it is the first operation applied to the fetch&add object. op5’s return value is 6, which
is the sum of the return value of its predecessor op3 and op3’s contribution, that is, the sum
of the contributions of all op5’s preceding operations. op4’s return value is 11, which is the
sum of the return value of its predecessor op5 and op5’s contribution.

3.3 Correctness Proof
Let α be a crash-free execution of Algorithm 1. Each effective operation has an associated
V TS. We order V TSs by coordinate-wise comparison as defined in Definition 1.

▶ Lemma 4. The V TSs of two effective operations are comparable; furthermore, this order
respects the order in which the corresponding operations executed the atomic fetch&add in
Line 4, and hence, their real-time order.

Proof. The lemma follows from the atomicity of the fetch&add performed in Line 4 and
from the fact that each process executing Line 4 increments its sequence number stored in
W by 1. Thus, every time Line 4 is executed, exactly one sequence number in W is changed
and increased. That is, every time Line 4 is executed, the returned V TS is larger than its
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29:10 Recoverable and Detectable Fetch&Add

immediate predecessor in exactly one component. Thus, comparing two V TSs, at least one
component is larger than the other and all other components are larger or equal. Therefore
they are comparable. Furthermore, the V TS of an operation op2 that executes Line 4 after
another operation op1 is larger than the V TS of op1 by the ≺ order. Consequently, ≺
respects the execution’s real-time order. ◀

We linearize the effective operations in α according to their V TSs. Call this order L.
Since all persisted operations are effective, they are linearized. Non-effective operations, i.e.,
invisible operations, are omitted and not linearized.

▶ Lemma 5. The return values in L respect the sequential specification of Fetch&Add, i.e.,
they are the sum of the arguments of all preceding operations.

Proof. Let op′ be an effective operation and let V TSop′ be its associated V TS. The proof is
by induction on the position of op′ in L. The base case is that op′ is the smallest operation
in the order, i.e, is the first FAA operation that executed Line 4 on W . Therefore, all
components in V TSop′ , returned in Line 4, are zeros. For each i, TotalContrib[i][0] = 0
by the initialization of TotalContrib. Therefore, ComputeVal returns 0, which respects the
sequential semantics of Fetch&Add because initially, the value of the implemented object is 0.

Assume the lemma holds for all operations smaller than op′ in L. Assume operation op
is the immediate predecessor operation to op′ in L. Thus, by induction this implies that
resop = ComputeV al(V TSop) respects the sequential semantics of Fetch&Add. The previous
value of the implemented object, before operation op is performed, is resop. Assume op is
executed by process i, therefore by executing Line 4, i’s sequence number is incremented by
1. Therefore, V TSop′ [i] is larger than V TSop[i] by 1 and equals to the sequence number of
op, seqi. All other components are equal. For each process p, let contribp and contrib

′

p be
the total contributions of p, as functions ComputeV al(V TSop) and ComputeV al(V TSop′)
considered in their calculation, respectively. For each p ̸= i, contribp = contrib

′

p. For i,
TotalContrib[i][seqi] = TotalContrib[i][seqi−1]+valop, therefore, contrib

′

i = contribi +valop.
Therefore, ComputeV al(V TSop′) equals resop plus the new value was added by op.

This respects the sequential semantics of Fetch&Add because the value of the implemented
object before op′ is applied to it is its value immediately before op is applied to it plus the
value added by op. ◀

Let α′ be an execution that ends with a global crash. The VTS of any persisted operation
appears in OpVTS . Let L0 be the sequence of all persisted operations, ordered according to
their VTSs.

Next consider the last FAA operation of each process. If it is invisible, we assign the
return value ⊥. If it is persisted, we assign the return value computed by ComputeVal on
its associated VTS. Finally, for an effective operation that is non-persisted, we find a place
among the persisted operations and extend L0. Since each process has at most one effective
non-persisted operation, we can consider them by the order of their ids. Finding a place for
the k-th effective non-persisted operation yields Lk which extends Lk−1.

Given Lk−1, let op = ⟨i, seqi⟩ be the k-th effective non-persisted operation. The barrier
of op is the smallest operation in L0 that follows op, i.e., V TSbarrier[i] = seqi. op is inserted
right before its barrier in Lk−1, to get Lk. If there is no such operation, op is appended at
the end of Lk−1 to get Lk. Let L be the final linearization, after all effective non-persisted
operations were inserted. A simple induction on k proves the next claim:

▷ Claim 6. Let op be the effective non-persisted operation that is inserted in Lk. Its
immediate predecessor in Lk stays the same in L.
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We compute the return values of effective non-persisted operation, based on the return
value of the operation linearized immediately before them and its associated VTS, as follows:
assume op′ is an effective non-persisted operation and let op be its immediate predecessor
executed by process i. The return value of op′ is ComputeVal(V TSop′) while V TSop′ equals
V TSop except for the i-th component in which V TSop′ [i] = seqi, the sequence of op.

▷ Claim 7. Let op be a persisted operation ordered in L0. The operations preceding op in
L are consistent with its stored V TSop. That is, an operation of some process p precedes op
in L if and only if its sequence number is smaller than or equal to V TSop[p].

▶ Lemma 8. The return values in L satisfy the sequential specification of Fetch&Add.

Proof. The proof is by induction on the position of every effective operation op′ in L; note
that non-effective operations are not linearized in L.

Consider the operations in L; the base case is that op′ is the first operation in L. If
op′ is persisted, the V TS associated with op′ was stored in OpVTS before the crash. By
Claim 7, for each persisted op′, the operations preceding op′ in L are consistent with its
stored V TSop′ . That is, the return value of op′, which is ComputeVal(V TSop′) is the sum of
the arguments of all preceding operations in L.

Otherwise, op′ is non-persisted without preceding operations. By Line 26, all components
in V TSop′ are zeros. For every i, TotalContrib[i][0] = 0 by the initialization and ComputeVal
returns 0, respecting the sequential specification of Fetch&Add.

Assume the lemma holds for all operations that appear in L before op′. If op′ is
persisted, then the lemma holds as in the base case. Otherwise, let operation op executed
by process t be the operation immediately preceding op′ in L. By Claim 6, it is the
same immediate predecessor that was used to build V TSop′ . By the assumption, resop =
ComputeV al(V TSop) satisfies the lemma. The previous value of W before op was resop. By
the construction in Lines 28-29, V TSop and V TSop′ differ in the t-th component. V TSop[t] <

V TSop′ [t] = seqt, the sequence number of op. Thus, ComputeVal(V TSop′) takes for each
process k ̸= t, the same total contribution as ComputeV al(V TSop) and for t, takes the total
contribution of operation ⟨t, seqt⟩. The latter is equal to the total contribution of operation
⟨t, seqt−1⟩ plus valop. That is, ComputeV al(V TSop′) equals resop plus the argument added
by op. This respects the sequential specification because the value of W before op′ should be
the value before op plus the value added by op. ◀

▶ Theorem 9. Algorithm 1 implements a recoverable detectable FAA in the global-crash
model using only read, write and fetch&add primitive operations, and satisfies NRL.

Complexity. In a crash-free execution, an FAA operation executes one fetch&add operation,
a constant number of writes and O(N) reads from shared memory during the ComputeVal
function. The algorithm can be modified to store the total contribution values in W , using a
similar encoding scheme. This would allow to read all contributions using a single shared
memory access, yielding an FAA implementation with O(1) crash-free complexity.

4 FAA Implementation in the Individual-Crash Model

In the individual-crash model, each process can crash individually without affecting executions
of other processes, and then it also recovers individually. Thus, a process may crash and
recover without the other processes being aware of this.

OPODIS 2021
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In addition to the data structures of Algorithm 1, we use the following data structures:
isInRecovery[N ] holds in the i-th entry the sequence number of the last operation during
whose execution process i crashed; all entries are initially 0. We also use mutex, an RME
lock implemented using only read and write primitives [18]. RME ensures that if process i

crashes while holding mutex, no other process can acquire the lock until i tries to acquire it
again; in this case i will succeed, i.e., mutex will still be held by i.

The pseudo code appears in Algorithm 2. FAA(val) is identical to the one for global
crashes (Algorithm 1) and is omitted. Process i manipulates W and the other data structures
using the same functions as in Section 3.1.

Algorithm 2 Recoverable Detectable FAA, for the individual-crash model.

32: procedure FAA.RECOVER(val) ▷ executed by process i
33: seqi ← ReadV TS(W )[i]
34: if seqi < Seq[i] then ▷ invisible operation
35: re-execute FAA(val)
36: else ▷ effective operation
37: isInRecovery[i] ← seqi

38: await(mutex.lock()) ▷ lock robust to failures
39: if OpVTS[i][seqi] ̸=⊥ then ▷ persisted operation
40: mutex.release()
41: return ComputeVal(OpVTS[i][seqi]) ▷ from Algorithm 1

42: recoveryW ← ReadVTS(W)
43: for k from 0 to N-1 do await(OpVTS[k][recoveryW[k]] ̸=⊥ or

isInRecovery[k] == recoveryW[k])
44: Ops ← all operations until sequence numbers in recoveryW .
45: persistedOps ← all operations in Ops, whose V TSs appear in OpVTS
46: L0 ← order persistedOps according to their V TSs
47: InsertOperationIntoOrder(⟨i, seqi⟩, L0, L0) ▷ from Algorithm 1
48: mutex.release()
49: return ComputeVal(OpVTS[i][seqi]) ▷ from Algorithm 1

FAA.RECOVER(val) is executed by each crashed process independently and includes
acquiring a lock. Thus, the algorithm must consider repeated crashes during FAA.RECOVER
of the same process such that a process that acquires the lock, crashes and then invokes
FAA.RECOVER again (possibly several times), will eventually release the lock at the end of
its recovery. Lines 33-35 have the same logic as Lines 14-16 in RECOVER() (Algorithm 1).
In Line 33, the function reads the sequence number of the last operation of process i, seqi,
from W using ReadVTS(W)[i]. In Line 34, the function checks if seqi is smaller than Seq[i].
If it is, process i did not execute the critical fetch&add inside IncrementSeqAndGetVTS
before crashing, implying opi = ⟨i, seqi⟩ is invisible and should be re-executed. Otherwise,
opi is effective and can be persisted or non-persisted. In Line 37, the function declares that
⟨i, seqi⟩ is in recovery by writing the sequence number of the current operation, seqi, in
isInRecovery[i]. Then, the process repeatedly attempts to acquire the mutex lock in Line 38
until it succeeds (if it ever does).

Once process i acquires mutex it proceeds to recover its operation opi. First, it checks
if opi is already persisted (Line 39). This may occur in two scenarios: either opi is a pure
persisted operation, that is, i crashed only after updating its V TS in OpVTS; or, opi was
an effective non-persisted operation but i has already recovered and persisted its VTS in
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OpVTS, but it crashed before returning, possibly while holding the lock. In both cases,
process i releases the lock and returns a response based on its VTS. Otherwise, the VTS
of opi is not persisted in OpVTS. The function reads W using ReadVTS and stores the
returned VTS in a local variable recoveryW [N ] consisting of N sequence numbers (Line 42).
recoveryW represents a value of W in a specific point in time. Process i treats recoveryW

similarly to how W is treated by the recovery code for the global-crash model and will order
opi according to it. In Line 43, process i waits until each process k persists the operation
with the sequence stored in recoveryW [k] or is in its recovery code on that operation. We
note that processes that did not invoke an FAA operation before the await condition, with
Seq[p] == 0, are skipped.

After the loop of Line 43 terminates, all operations in recoveryW are either persisted
or effective and non-persisted but in recovery. In Line 44, the function stores in the set
Ops, for each process, all its operations whose sequence number is smaller or equal to that
stored for the process in recoveryW . We then proceed in a way similar to the global-crash
algorithm. Process i collects into persistedOps all persisted operations in Ops, i.e., whose
V TSs appear in OpVTS (Line 45), and creates the order L0 on persistedOps based on their
V TSs (Line 46). Then, process i linearizes opi using InsertOperationIntoOrder while the
prevOrder parameter is also L0 because unlike the global-crash model, here, we insert a
single operation, opi. Note that each time a process acquires the lock and recovers its
effective non-persisted operation, op, it persists it in OpVTS, such that the next process
will consider op as a persisted operation and will order it as part of L0. Therefore, effective
non-persisted operations that have the same barrier are ordered by the real-time order of
processes capturing the lock. Finally, i orders opi, releases mutex (Line 48), and applies
ComputeVal to the corresponding VTS of opi to compute its response.

The correctness proof of this algorithm appears in Appendix A.1.

5 Impossibility of Wait-Free Recovery in the Individual-Crash Model

▶ Theorem 10. There is no detectable self-implementation of FAA in the individual-crash
model, such that both the FAA operation and the FAA.RECOVER function are lock-free.

Proof. We prove the theorem using valency arguments [2, 12]. Assume, by way of contradic-
tion, that there is such an implementation with lock-free FAA and FAA.RECOVER. In all
executions we consider, the initial value of the FAA object is 0 and both processes, p and q,
invoke FAA with argument 1. Hence, one process must return 0 and the other must return 1.

Given a configuration C and a process r ∈ {p, q}, we say that C is r-valent if there is a
crash-free execution starting from C in which the return value of FAA or FAA.RECOVER
by r is 0. C is bivalent if it is both p-valent and q-valent. C is p-univalent if it is p-valent
and not q-valent, and symmetrically for q-univalent. We say that C is univalent if it is either
p-univalent or q-univalent.

The initial configuration, C0, is bivalent because a solo execution of each process returns
0. Following a standard valency argument and since we assume that the FAA operation is
lock-free, there is an execution starting from C0 that leads to a bivalent configuration C1,
in which both p and q are about to take a critical step, i.e, a step that leads to a univalent
configuration, one of which is p-univalent while the other is q-univalent. A standard argument
can be used to show the following claim (see Appendix A.2):

▷ Claim 11. The critical steps of p and q apply fetch&add to the same base object.
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Figure 4 Illustration of one case in the proof of Theorem 10.

Assume, without loss of generality, that configuration C1 ◦ p is p-univalent while C1 ◦ q is
q-univalent. Consider the execution from C1 in which p takes a step followed by a step of q

and then p crashes: C2 = C1 ◦ p ◦ q ◦ CRASHp.
Consider also the execution from C1 in which q takes a step followed by a step of p and then
p crashes: C3 = C1 ◦ q ◦ p ◦ CRASHp.

A solo execution of FAA.RECOVER by p from both configurations C2 and C3 must
complete, since it is lock-free. Furthermore, these two configurations are indistinguishable to
p, because p’s response from the primitive fetch&add is lost, while the value of the fetch&add
base object is the same in both configurations. Therefore, an execution of FAA.RECOVER
by p from both C2 and C3 returns the same value – v.

Assume v is 0, and thus C3 is p-valent. The configuration C1 ◦ q ◦ p is q-univalent, while
C3 = C1 ◦ q ◦ p ◦ CRASHp is p-valent. However, these configurations are indistinguishable
to q because it is unaware of p’s crash, therefore a solo execution of q from C3 must return
0, that is, C3 is q-valent. This proves that C3 is bivalent (see Figure 4). The case v = 1 is
symmetric, since if p returns 1 this proves the configuration is q-valent, as a solo execution
of q after p completes must return 0; a similar argument proves that C2 is bivalent.

In this manner, we can keep extending the execution to obtain a crash-free execution of q

in which it performs an infinite number of steps without completing a single FAA operation,
contradicting the assumption that the algorithm is lock-free. ◀

6 Discussion

We present two self-implementations of a recoverable detectable FAA operation, one for
the global-crash model and the other for the individual-crash model. Both algorithms are
wait-free in crash-free executions. Recovery in both algorithms is blocking. In the global-crash
model, this is the result of a design choice to delegate recovery to a single process. For the
individual-crash model, we prove that a lock-free self-implementation of a detectable FAA
does not exist.
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The proof of Theorem 10 constructs an execution in which one process, repeatedly
crashing during its recovery, blocks another process that does not crash, from making
progress. This leaves open the question of making progress once no process crashes. We note
that Algorithm 2 may have an execution, where process i acquires the lock during its recovery
and then crashes; this means that another process j that crashes and tries to recover, cannot
complete its recovery, even when no further crashes occur. Finding an algorithm that makes
progress when processes stop crashing, or proving such an algorithm does not exist, is an
interesting question.

Our algorithms apply fetch&add primitives to a shared unbounded base object storing a
vector timestamp with N entries. It would be interesting to see if the amount of memory
storage can be bounded. This might be challenging, since the vector timestamp is used to
precisely track which operations affected each persisted FAA, and detect where they should
be linearized and with which return value. Another interesting open question is whether
there exists a self-implementation of a recoverable FAA object for the global-crash model
such that both the FAA operation and the recovery code are wait-free.
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A Additional Proofs

A.1 Sketch of Correctness Proof for Individual-Crash Model
Correctness for crash-free executions is the same as in Section 3.3. We now consider an
execution α with individual crashes.

▶ Observation 12. Let α be an execution where i crashes during operation opi. If opi is
effective non-persisted, its VTS is recovered and stored in OpVTS exactly once.

▶ Lemma 13. The return values of all operations executing Algorithm 2 satisfy the sequential
specification of Fetch&Add.

Proof. Note that in the individual-crash model, we do not refer to a final linearization order
L, as in the global-crash model because each process only recovers its own operation by
inserting it to an L0 order of the persisted operations it currently read. Consider the L0
order by process i. We say that a return value of each persisted operation, op, satisfies the
sequential specification of Fetch&Add although not all effective non-persisted operations that
op follows necessarily appear in L0.

The proof relies on the following argument. Assume process i orders its effective non-
persisted operation opi based on the L0 it computes, and let opj be the immediate predecessor
of opi in the new order. Then, i sets V TSopi to be identical to V TSopj except for the j-th
component where it is larger by 1. Therefore, the return value it computes is resopi

=
resopj + valopj . For any other non-persisted operation opk one of the following holds. Either
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opk has been observed by V TSopj , that is, V TSopj in its k-th component contains a sequence
number larger or equal to the sequence number of opk. In such case, the response of opj took
into consideration the value added by opk, and thus also the response of opi. Moreover, we
are guaranteed that if process k acquires the lock it will order opk before opi, since it orders
it before the first V TS that observed it. Otherwise, opk was not observed by V TSopj

, thus
not observed also by V TSopi , and both return values do not consider the value added by
opk. However, once k acquires the lock and orders opk it will order it after opi, since none of
the preceding operations observed opk.

This proves that resopi
satisfies the sequential specification of Fetch&Add, since its return

value considers all operations that precede it, and those operations will be ordered before opi

(if they are not persisted yet), and no other operation will be ordered before opi. ◀

A.2 Proof of Claim 11
We consider all possible steps: read, write and fetch&add. Assume sp and sq are critical steps
by process p and q, receptively, such that C1 ◦ sp is p-univalent while C1 ◦ sq is q-univalent.

Steps sp and sq access distinct registers. In this case, these configurations are indistin-
guishable to p and q, that is, C ◦ sp ◦ sq

p,q∼ C ◦ sq ◦ sp.
Steps sp and sq read the same register. Also in this case, C ◦ sp ◦ sq

p,q∼ C ◦ sq ◦ sp.
Step sp writes to some register r step and sq reads r. In this case, C ◦ sp

p∼ C ◦ sq ◦ sp

holds.
Step sp applies fetch&add and step sq reads r. In this case, C ◦ sp

p∼ C ◦ sq ◦ sp holds.
Steps sp and sq write to the same register. In this case, C ◦ sp

p∼ C ◦ sq ◦ sp holds.
Step sp applies fetch&add, step sq writes to the same register. In this case, C ◦ sq

q∼
C ◦ sp ◦ sq holds.
Step sp applies fetch&add with val = 0, step sq applies fetch&add to the same register.
In this case, C ◦ sq

q∼ C ◦ sp ◦ sq holds.
In each of the above cases, the configurations are indistinguishable to at least one process,
and therefore, must have the same valencies. Therefore, it must be that p and q apply
fetch&add to the same base object.
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