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Abstract
We study asynchronous rumor spreading algorithm in dynamic and static graphs. In the asynchronous
rumor spreading, for a given underlying graph, each node is equipped with an exponential time
clock of rate 1. When a node’s clock ticks, the node calls a random neighbor in order to exchange
a rumor, if at least one of them knows it. Assuming a single node knows a rumor, we apply a
differential equation-based technique to obtain an upper bound for the spread time of the algorithm
in general dynamic graphs, which is the first time when all nodes get informed with high probability.
In particular, we derive an upper bound for the spread time of the algorithm in a discrete version
of a geometric mobile network, introduced by Clementi et al. [7]. In this model, a set of n agents
independently performs random walks on a

√
n ×

√
n plane and every two agents are able to

communicate if they are within Euclidean distance at most R, where f(n)
√

log n ⩽ R ⩽
√

n and
f(n) is a slowly growing function in n. Here, we show that the algorithm spreads a rumor through
the network in O(log n +

√
n/R) time, with high probability. Although we only show an upper

bound the spread time of the algorithm in a 2 dimensional space, the framework can be also applied
for geometric mobile networks defined over higher dimensional space and other random dynamic
evolving networks such as stationary edge-Markovian model. Besides these synchronous and discrete
dynamic models, we also consider the spreading time in dynamical Erdős-Rényi graphs.
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1 Introduction

Randomized rumor spreading algorithms are important primitives for information dissemina-
tion through a network. The standard randomized rumor spreading proceeds in succeeding
rounds. In each round, every node in the network calls a random neighbor and they possibly
exchange the rumor, if at least one of them knows it. Demers et al. [10] first introduced
the algorithm to consistently distribute an update in a network of databases. Feige et
al. [12] observed that the algorithm is scalable in terms of network size, and robust against
the node/link failure and thus it has been applied in a wide range of distributed settings
(e.g., see [3, 16]). The spread time is a well-studied parameter associated with the rumor
spreading algorithms which is the first time when all nodes have been informed with high
probability. The spread time of the algorithm has been studied on various network topo-
logies [2, 11]. Moreover, it has been shown that the spread time of the algorithm in any
static n-node network is at most O(log n/Φ), where Φ denotes the graph conductance [5].
In many distributed networks such as peer-to-peer, social and ad hoc networks, agents may
not act in a synchronized manner. Therefore, Boyd et al. [3] proposed the asynchronous
randomized rumor spreading algorithm, where each node has its own clock and contacts a
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31:2 Rumor Spreading in Dynamic Graphs

random neighbor in order to exchange the rumor according to arrival times of its Poisson
process with rate 1. The algorithm and its variations have been further studied in static
networks [1, 13, 20, 23].

Information spreading in dynamic graphs has been a fundamental question and the subject
of a large body of works (e.g., see [8] and references therein). For instance, the spread time
of various algorithms has been studied in popular dynamic evolving graphs whose evolution
is governed by a stochastic process such as geometric mobile [18, 21], edge-Markovian [6],
and node-Markovian dynamic graphs [8]. Deterministic and adversarial settings have also
been considered in [14, 22]. A dynamic evolving graph, denoted by G = {G(t)}∞

t=0, is usually
referred to as a sequence of graphs with same set of nodes, but the edge set may change over
discrete time t = 0, 1 . . .. It has gained popularity as it models a wide range of real-world
networks including the wireless communication, mobile, and peer-to-peer networks.

1.1 Related Works
Kowalski and Caro [17] considered the asynchronous rumour spreading on general graphs and
introduced a graphical quantity based on degree distribution of nodes that are incident to
edges in any cut set. By applying the quantity they derive upper bounds for the spread time.
Also, Panagiotou and Spiedel [20] rigorously analyzed the spread time of the asynchronous
algorithm in Erdős-Rényi graphs G(n, p) with p = ω(log n/n). In order to show their results,
they presented a large deviation inequality for the sum of a particular set of exponential
random variables, which cannot be generalized for every graph.

Giakkoupis et al. [13] applied coupling techniques and established an interesting relation
between synchronous and asynchronous rumor spreading algorithms. Let G be a given n-node
static network and assume that Ts(G) and Ta(G) are the spread time of synchronous and
the standard asynchronous rumor spreading algorithms on G, respectively. They showed
that Ta(G) = O(Ts(G) + log n). Moreover, they derived an upper bound for Ts(G)

Ta(G) , which is
n1/2(log n)O(1). Giakkoupis et al. [14] considered the spread time of the synchronous rumor
spreading in dynamic evolving graphs. They showed that the rumor propagates through the
graph whenever

∑
t{Φ(G(t)) · D} = Ω(log n), where D = maxu δu/∆u, ∆u and δu are the

upper and lower bounds for degree of node u over time, respectively, and the maximum is
taken over all nodes.

Pourmiri and Mans [22] established a similar upper bound for the spread time of asynchron-
ous rumor spreading in dynamic graphs that is the first time when

∑
t{Φ(G(t)) · ρ(G(t))} =

Ω(log n), where ρ(G(t)) is called the graph diligence. The graph diligence presents a more
refined version of parameter D and ρ(G(t)) ⩾ δ(t)/∆(t), where ∆(t) and δ(t) denote the
maximum and minimum degree of G(t), respectively. Moreover, they present a family of
dynamic graphs for which the upper bounds is tight up to a o((log n)2) factor.

The aforementioned results have shown that besides the graph conductance, variation of
degree sequence in a dynamic graph directly affect the spread time.

1.2 Our Main Results
We focus on asynchronous rumor spreading in dynamic and static graphs and present a
general technique to obtain an upper bound for the spread time. The upper bounds are based
on a differential equation taking into account the expansion properties of various subset of
nodes, the maximum and the minimum degree of nodes. The methods have two advantages;
(i) In contrast to existing method, this technique can be extended to settings where graphical
parameters continuously or discretely change over time. (ii) It provides an alternative way
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to compute the spread time by defining a Poisson random variable that is stochastically
dominated by the size of informed nodes. The latter allows us to apply a concentration result
for Poisson random variables and obtain a lower bound for the size of informed nodes at
any time.

For every n-vertex graph G = (V, E) and 1 ⩽ x < n, conductance function, denoted by
Φ(x), measures the expansion property of any subset of nodes of size at most x in G, which
is defined as follows

Φ(x) = min
S⊂V (G)
1⩽|S|⩽x

|E(S, S)|
min{vol(S), vol(S)}

,

where vol(S) =
∑

u∈S du and E(S, S) denotes the set of edges crossing S and its complement
S (i.e., V \ S). It is easy to see that the standard graph conductance can be rewritten as
Φ(G) = Φ(n/2). Lovász and Kannan [19] introduced the concept of conductance function
and showed that a lazy random walk on a connected graph with n nodes converges to its
stationary distribution within at most

∫ 1/2
1/n

dt/(tΦ(nt)2) time. Somewhat analogous to this
result we estimate the number of informed nodes up to time t by a Poisson-distributed random
variable with rate Λ(t), where dΛ(t)/dt satisfies a differential equation (see Lemma 2.9).

Using the differential equation presented at Lemma 2.9, we drive upper bounds for the
spread time of the asynchronous rumor spreading in a general dynamic evolving graph,
geometric mobile, and dynamical Erdős-Rényi graphs. A dynamic evolving graph is a
sequence of n-node graphs, G(1), G(2), . . ., where they all have the same set of nodes but set
of edges changes over time t = 1, . . ..

▶ Theorem 1.1. Suppose that G = {G(t)}∞
t=1 denote a dynamic evolving graph whose nodes’

degrees range over interval [δ, ∆]. Also, assume that graph exposed at any time t, G(t), has
conductance at least Φ. Then, with high probability,

T (G) = O (∆ log n/(δΦ)) ,

where T (G) denote the first time when all nodes get informed.

▶ Remark. It turns out that the upper bound tight up to a o((log n)2). In fact, there exists a
dynamic evolving graph with ∆/δ = Θ(

√
n) and Φ = Θ(log log n/ log n) for which the rumor

spreads in Ω(
√

n/ log n) time. For more details see [22, Theorem 1.2].

Geometric Mobile Network

The geometric mobile stationary network, introduced by Clementi et al. [7], is a discrete
version of random walk mobility model, where nodes represent radio stations in a wireless
communication system [4]. For some small number ϵ > 0, initially, n agents are randomly
distributed on nodes of a

√
n/ϵ ×

√
n/ϵ 2-dimensional grid, embedded on a

√
n ×

√
n square

plane. For a given parameter r > 0, in each time step t = 1, . . ., each agent independently
and uniformly at randomly moves to a node whose Euclidean distance from its current
location is at most r. Given this random process, in each time step t, we define network G(t)

whose vertex set is the set of all agents and there is an edge between any two agents in G(t)

if their Euclidean distance is at most R, where f(n)
√

log n ⩽ R ⩽
√

n in the plane, and f(n)
is a slowly growing function in n. The model is denoted by M(n, R) = {G(t)}∞

t=0 and it is
assumed that the agents are initially distributed according to the stationary distribution of
the random walk on the grid.

OPODIS 2021
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▶ Theorem 1.2. Suppose that M(n, R) = {G(t)}∞
t=0 is a geometric mobile network with

f(n)
√

log n ⩽ R ⩽
√

n/2, where f(n) is a slowly growing function. Also, assume that,
initially, a node of G(0) is aware of a rumor. Then, with high probability, the asynchronous
rumor spreading algorithm propagates the rumor in O(

√
n/R + log n) time.

Interestingly, the upper bound has the same magnitude as the spread time of flooding in the
network [7]. The flooding is a simple variant of the synchronous rumor spreading algorithm
where each informed node pushes the rumor to all of its neighbors. For sufficiently large
R = Θ(

√
n), M(n, R) is almost fully connected and the theorem gives an upper bound of

O(log n) for the algorithm, which is tight for the asynchronous rumor spreading in any fully
connected network [3]. The proof technique of the theorem can be also applied for geometric
mobile network defined over higher dimensional space.

Dynamical Erdős-Rényi Graph

Häggström, Peres and Steif [15] introduced dynamical percolation graph by adding a time
dynamics to the well-known percolation model. The model, initially, starts with a fixed
underlying graph G whose edges have been associated with a Poisson clock of rate µ. When
an edge’s clock ticks, then the edge is activated (opened) with probably p and deactivated
(closed) with probability 1 − p. Later, Sousi and Thomas [24] studied a setting where the
underlying graph is an n-node complete graph, µ = o((log n)−6/n) and p = c/n, where
c > 1 is a constant. The dynamic graph is called dynamical Erdős-Rényi graph ER(n, p, µ)
modeling a sparse dynamic graph whose edges get updated, slowly. They studied the
mixing properties of a random walk on the graph and show that the random walk mixes in
log n

µ (1 + o(1)) time.

▶ Theorem 1.3. Suppose that for some constant c > 1, p = c/n and µ = o((log n)−6/n).
Also, assume that initially a rumor is injected to a node of ER(n, µ, p). Then, with probability
1 − o(1), the rumor propagates through the ER(n, µ, p) within O((log n)2/µ) time.

A natural question would be to investigate the relation between the mixing and spread time
in dynamic percolation graphs.

Outline

In Section 2 we present useful definitions and some preliminaries. We prove Theorems 1.1, 1.2,
in Sections 3 and 4, respectively. Also, we give a proof sketch for Theorem 1.3 in Section 5.

2 Notations and Preliminaries

In this section we first define notations and some useful preliminaries. Throughout this
paper, n denotes the number of nodes in the dynamic or static graph and log stands for
the logarithm to the base of e. We say an event, say En, holds with high probability, if
Pr [En] ⩾ 1 − n−c, for some constant c > 1. For the sake of brevity we use w.h.p. to denote
with high probability. Now, let us formally present some definitions.

▶ Definition 2.1 (Conductance function). Let G = (V, E) be an n-vertex simple graph. Then,
for every 1 ⩽ x < n, conductance function is defined as

Φ(x) = min
S⊂V (G)
1⩽|S|⩽x

|E(S, S)|
min{vol(S), vol(S)}

, (1)

where E(S, S) is the set of edges crossing S and its complement and vol(S) =
∑

u∈S du.
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▶ Definition 2.2 (Asynchronous rumor spreading). Suppose G is a graph whose nodes are
associated with an exponential time clock of rate 1. Also, assume that initially a rumor is
injected to a node of G. Each node contacts a random neighbor according to the arrival times
of its Poisson process with rate 1. When they contact each other, they may learn the rumor,
if at least one of them knows it. Also, we define the spread time as the first time when all
nodes get informed with high probability and we use T (G) to denote the spread time.

▶ Definition 2.3 (Non-homogeneous Poisson process). Suppose that for every τ ⩾ 0 there is a
Poisson process with rate λ(τ) ⩾ 0. Then, P = {λ(τ) : τ ⩾ 0} is called a non-homogeneous
Poisson or counting process. Also, let N(τ) denote the number of occurrences made by process
during [0, τ ].

▶ Definition 2.4 (Stochastic Dominance). We say random variable X stochastically dominates
random variable Y , if for any arbitrary number a, we have that

Pr [X ⩽ a] ⩽ Pr [Y ⩽ a] .

We will now present a well-known theorem regarding non-homogeneous Poisson process.

▶ Theorem 2.5 ([9, Chapter 2]). Suppose that P = {λ(τ) : τ ⩾ 0} is a non-homogeneous
Poisson process. Also assume that λ(τ) : [0, ∞) → [0, ∞) is an integrable function. Then,
for every 0 ⩽ a ⩽ b, N(b) − N(a) has a Poisson distribution with rate

Λ =
∫ b

a

λ(τ)dτ.

For more information about non-homogeneous Poisson processes we refer the interested
reader to [9]. We now present a large deviation bound for Poisson random variables, whose
proof is based on the moment generating function of the Poisson random variables.

▶ Theorem 2.6. Suppose that X denote a Poisson random variable with rate Λ. Then we
have that

Pr [|X − Λ| ⩾ η] ⩽ 2 · e
−η2

2(Λ+η) .

Towards studying distribution of T (G), we divide the asynchronous algorithm in n states
where each state 1 ⩽ j ⩽ n stands for the situation where we have j informed nodes. For
every j = 1, . . . , n − 1, define tj(G) to be the waiting time for the algorithm to jump from
the j-th state to the (j + 1)-st one. Clearly, we have that

T (G) =
n−1∑
j=1

tj(G).

▶ Lemma 2.7. Suppose that G = (V, E) denote an n-node graph. Also, assume that, initially,
rumor is injected to a node of G. Then, for every 2 ⩽ j ⩽ n − 1, conditional on the first j

informed nodes, say Ij, tj(G) is an exponential random variable with rate

βj(G) =
∑

{u,v}∈E(Ij ,Uj)

{
1

d(u) + 1
d(v)

}
,

where E(Ij , Uj) is the set of edges crossing Ij and its complement Uj (set of non-informed
nodes). Moreover tj(G) is independent of tj−1, . . . t1.

OPODIS 2021
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Proof. Notice that for every pair of vertices {u, v} ∈ E, u and v contact each other with
Poisson rate 1/d(u) + 1/d(v), where d(u) and d(v) are degrees of u and v, respectively. Let
Ij denotes the set of first j informed nodes. Then the (j + 1)-st node gets informed with
Poisson rate βj(G), which is

βj(G) =
∑

{u,v}∈E(Ij ,Uj)

{
1

d(u) + 1
d(v)

}
,

As soon as the j-th node gets informed and Ij gets determined, by memory-less property
of exponential distribution, tj(G) is an exponentially distributed random variable which is
independent of t1(G), . . . tj−1(G). ◀

▶ Lemma 2.8. Suppose that, for some n, A = (α1, . . . , αn), B = (β1, . . . , βn) ∈ Rn
+ be two

arbitrary vectors where for every 1 ⩽ j ⩽ n, αj ⩽ βj. Also, let P(A) and P(B) denote
non-homogeneous Poisson process for which, j = 1, . . . n, the j-th event happens with rate αj

and βj, respectively. Then, during a given time interval, the number of events generated by
P(B) stochastically dominates the number of events generated by P(A).

The proof is given in Appendix A.

2.1 Some Useful Lemmas
▶ Lemma 2.9. Suppose that G = {G(t)}∞

t=1 denotes an evolving dynamic graph whose nodes’
degree range over [δ, ∆]. Also, let Φ(x), 1 ⩽ x ⩽ n, be a lower bound for the conductance
function of any graph G(t) ∈ G. Now, assume that initially a rumor is injected to an arbitrary
node and the asynchronous algorithm starts propagating the rumor. Then, the number of
informed nodes up to time t stochastically dominates a Poisson distribution with rate Λ(t)
satisfying at

Λ′(t) = 2 · (δ/∆) · Φ(min{n − C(t), C(t)}) min{C(t), n − C(t)},

where C(t) counts the number of events happened by a Poisson distribution with rate Λ(t).
In particular, Φ(x) can be replaced with any function F (x) ⩽ Φ(x) where 1 ⩽ x ⩽ n/2.

Proof. Let βj denotes the Poisson rate at which the (j + 1)-st node gets informed. Also let
Ij and Uj denote the set of first j informed and n − j uninformed nodes, respectively. At
any time t, by Lemma 2.7, for every 1 ⩽ j ⩽ n − 1, we get that

βj =
∑

{u,v}∈Et(Ij ,Uj)

{
1

dt(u) + 1
dt(v)

}
⩾

2|Et(Ij , Uj)|
∆ ,

where dt(u) and dt(v) denote the degree of u and u at time t. Also, the last inequality
follows from 1/d(u) + 1/d(v) ⩾ 2/∆. Note that dt(u) and dt(v) are not zero as they are
incident to edge {u, v} crossing cut Et(Ij , Uj). By the lemma statement and the definition
of conductance function, we have that

|Et(Ij , Uj)| ⩾ Φ(min{j, n − j})(min{vol(Ij), vol(Uj)})
⩾ Φ(min{j, n − j}) · (min{j, n − j}) · δ,

where vol(Ij) and vol(Uj) denote the volume of sets Ij and Uj in G(t) and hence lower bounded
by Ij · δ and Uj · δ, respectively. Notice that one can replace Φ(x) by any F (x) ⩽ Φ(x) and
the lower bound still holds. Therefore, for every 1 ⩽ j ⩽ n − 1,

βj ⩾ 2(δ/∆)Φ(min{j, n − j}) · min{j, n − j}) (2)
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Define a non-homogeneous Poisson process P = {λ(t) : τ ∈ [0, ∞)}, where we have

λ(t) =


(2δ/∆)Φ(C(t))C(t) if C(t) ⩽ n/2,

(2δ/∆)Φ(n − C(t))[n − C(t)] n/2 < C(t) < n,
0 otherwise,

(3)

where C(t) counts the number of informed nodes during [0, t]. Lemma 2.8 and Inequality
(2) together show that the number of informed nodes stochastically dominates the number
of events happened by P. Moreover, by Theorem 2.5 during any interval [0, t], C(t) has a
Poisson distribution with rate Λ(t) =

∫ t

0 λ(z)dz. Applying the fundamental theorem of the
calculus yields that, for 1 ⩽ C(t) ⩽ n,

Λ′(t) = (2δ/∆)Φ(min{n − C(t), C(t)}) min{n − C(t), C(t)}. (4)

◀

The following useful lemma helps to approximate C(t) and apply Lemma 2.9.

▶ Lemma 2.10. Suppose that (log n)1.3 ⩽ Λ(t) ⩽ n −
√

n(log n)1.3. Then for any constant
0 < ε < 1, we have that

Λ′(t) ⩾ (1 − ε)(2δ/∆) · Φ(min{Λ(t), n − Λ(t)}(1 + ε)) · min{Λ(t), n − Λ(t)}.

In particular, Φ(x) can be replaced by any function F (x) ⩽ Φ(x), 1 ⩽ x < n.

Proof. Recall that for every t > 0, C(t) counts the number of events made by a Poisson
distribution with rate Λ(t) during time interval [0, t]. Let us set η =

√
Λ(t) · (log n)1.1 and

apply a concentration result (e.g., Theorem 2.6) for C(t) and obtain an estimation for C(t)
as follows.

Pr [|C(t) − Λ(t)| ⩾ η] ⩽ 2 · e
−η2

2(Λ(t)+η) = 2e
−Λ(t)(log n)1.1

4Λ(t) ⩽ 2e−(log n)1.1/4 = n−ω(1). (5)

By (5) we have that with probability 1 − n−w(1),

Λ(t) − η ⩽ C(t) ⩽ Λ(t) + η

and hence,

n − Λ(t) − η ⩽ n − C(t) ⩽ n − Λ(t) + η.

Combing the both inequalities implies that with high probability

min{n − Λ(t), Λ(t)} − η ⩽ min{n − C(t), C(t)} ⩽ min{n − Λ(t), Λ(t)} + η.

Note that if (log n)1.3 ⩽ Λ(t) ⩽ n/2, then we have that

η =
√

Λ(t)(log n)1.1 ⩽
Λ(t)

(log n).1 .

Moreover, if n/2 ⩽ Λ(t) ⩽ n −
√

n(log n)1.3, then n − Λ(t) ⩾
√

n(log n)1.3 and

η =
√

Λ(t)(log n)1.1 ⩽

√
n(log n)1.3

(log n).1 ⩽
n − Λ(t)
(log n).1

OPODIS 2021
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Using the above two inequalities implies that η ⩽ min{Λ(t), n − Λ(t)}/(log n).1. Thus,

min{n − Λ(t), Λ(t)}
(

1 − 1
(log n).1

)
⩽ min{n − C(t), C(t)}

⩽ min{n − Λ(t), Λ(t)}
(

1 + 1
(log n).1

)
(6)

Let us apply (6) in the differential equation presented at Lemma 2.9 implies that

Λ′(t) ⩾ 2 ·(δ/∆) ·Φ
(

min{n − C(t), C(t)}
(

1 + 1
(log n).1

))
min{C(t), n−C(t)}

(
1 − 1

(log n).1

)
.

We replace 1/(log n).1 by any constant 0 < ε < 1 and the statement follows. ◀

3 Spread Time and Graph Conductance

This section is devoted to the proof of Theorem 1.1 presenting an upper bound for the spread
time in terms of graph conductance.

Proof of Theorem 1.1. By Lemma 2.9 we have that the number of informed nodes stochastic-
ally dominates a Poisson distribution with rate Λ(t) satisfying

Λ′(t) = (2δ/∆) · Φ · min{C(t), n − C(t)}, (7)

where C(t) denotes the number of events happened by a non-homogenous process {λ(t) : t ⩾
0} and λ(t) = (2δ/∆)·Φ·min{C(t), n−C(t)}. Therefore, the number of informed nodes during
any interval [0, τ ] stocahstically dominates a Poisson-distributed random variable with rate∫ τ

0 λ(t)dt. Moreover, using a large deviation result for Poisson-distributed random variables
(e.g., Theorem 2.6), the number of events is concentrated around

∫ τ

0 λ(t)dt. Therefore,
by computing

∫ τ

0 λ(t)dt one can obtain a lower bound for the number of informed nodes
during time interval [0, τ ], with high probability, and an upper bound for the spread time,
consequently. To do so according to C(t), we study the process in three consecutive phases.

Initial phase. This phase starts with C(t) = 1 and ends when C(t) exceeds log n. Let
Tinit be the time when the phase ends. By Theorem 2.5, C(t) is a Poisson random
variable with rate Λ(t) =

∫ t

0 λ(z)dz.

Λ(t) =
∫ t

0
λ(z)dz ⩾

∫ t

0
(2δ/∆)Φdz = (2δ/∆) · Φ · t (8)

Then, by setting t = 4∆ log n/(δΦ), we conclude that λ(t) ⩾ 8 log n. Using a large
deviation bound (see e.g., Theorem 2.6) we get that

Pr
[
C(t) ⩽ Λ(t) −

√
Λ(t)8 log n

]
⩽ exp{−8 log n/4} = n−2.

Therefore, with high probability, Tinit ⩽
4∆ log n

δΦ .
Middle Phase. This phase starts with C(t) = log n and ends when C(t) exceeds n/2. Let
Tmid be the first time when the phase ends. Also, define t0, t1, t2 to be the first times that
we have Λ(t0) = (log n)1.3, Λ(t1) = n/2 and Λ(t2) = 2n/3, respectively. In this phase for
every t ∈ [Tinit, Tmid], we have that

Λ(t) =
∫ t

0
λ(z)dz ⩾

∫ t

Tinit

(2δ/∆) · Φ · (log n)dz = (2δ/∆) · Φ · (log n) · (t − Tinit).
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This implies that there exists

t0 ⩽ Tinit + ∆(log n).3

2δΦ ⩽ O
(

∆ log n

δΦ

)
(9)

for which we have Λ(t0) = (log n)1.3. Applying Lemma 2.10 and using the fact that
Φ ⩽ Φ(x), 1 ⩽ x < n, we have that for every (log n)1.3 ⩽ Λ(t) ⩽ n −

√
(log n)1.3n,

Λ′(t)
min{Λ(τ), n − Λ(τ)} ⩾ (2(1 − ε)δ/∆)Φ,

where 0 < ε < 1 is an arbitrary constant. Taking the integral from both sides, on interval
[t0, t], and setting appropriate integral constants we get that

Λ(t) ⩾
{

exp{ 2(1−ε)δΦ
∆ (t − t0) + (1.3) log log n} (log)1.3 ⩽ Λ(t) ⩽ n/2

n − exp{ −2δ(1−ε)Φ
∆ (t − t1) + log(n/2)} n/2 ⩽ Λ(t) ⩽ n −

√
n(log n)1.3

where t1 is the first time when Λ(t1) = n/2. From the first row in the above piecewise
function we conclude that there exist

t1 ⩽
∆ log(n/2)
2(1 − ε)δΦ + t0 = O

(
∆ log n

δΦ

)
,

where the last equality follows from (9). Considering the second row and the previous
equality we deduce that there exists

t2 = O
(

∆ log n

2(1 − ε)δΦ

)
+ t1 = O

(
∆ log n

δΦ

)
with Λ(t2) ⩾ 2n/3. Since C(t) has Poisson rate Λ(t), by using a large deviation inequality
we get that

Pr [C(t2) ⩽ n/2] ⩽ Pr
[
C(t2) ⩽ Λ(t2) − log n

√
Λ(t2)

]
⩽ n−ω(1).

Therefore, w.h.p., Tmid ⩽ t2 = O
(

∆ log n
δΦ

)
.

Final Phase. This phase starts with C(t) = n/2 and ends when C(t) = n. Let Tfinal

denote the time when the phase ends. Notice that by definition of P, the process is
symmetric in C(t), as λ(t) is proportional to 1 ⩽ min{C(t), n−C(t)} ⩽ n/2. Considering
the time interval for which the process starts at C(t) = ⌈n/2⌉ and ends at C(t) = n. The
length of this interval has the same distribution as the time that P requires to start from
C(t) = 1 and reach to the C(t) = ⌊n/2⌋. Therefore, from the previous phases we have
that, with high probability,

Tfinal − Tmid = O
(

∆ log n

δΦ

)
.

The number of informed nodes up to time t, I(t), stochastically dominates C(t). Thus

Pr [I(Tfinal) < n] ⩽ Pr [C(Tfinal) < n] = n−ω(1)

Therefore, with high probability T (G) = O
(

∆ log n
δΦ

)
. ◀
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4 Geometric Mobile Networks

In this section, we prove Theorem 1.2 presenting an upper bound for the spread time of
the asynchronous rumor spreading in a geometric mobile network introduced by Clementi
et al. [7]. Let us first present the following lemma regarding some useful properties of the
dynamic graph whose proof is differed to Appendix B.

▶ Lemma 4.1. Suppose that M(n, R) = {G(t)}∞
t=0, is a geometric mobile network with

f(n)
√

log n ⩽ R <
√

n, where f(n) is a slowly growing function in n. Then, with probability
1 − n−ω(1), for every 1 ⩽ t ⩽ n3, the followings hold:
1. For every node u, du(t) = Θ(R2), where du(t) is the degree of node u in G(t).
2. There exists a constant a > 0 such that conductance function G(t) satisfies

Φ(x) ⩾

a 1 ⩽ x ⩽ R2,

a R√
min{x,n−x}

R2 < x ⩽ n − 1.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, applying Lemma 2.9 results
that the number of informed nodes stochastically dominates a Poisson distribution with rate
Λ(t) satisfying

Λ′(t) = (2δ/∆) · Φ(min{C(t), n − C(t)}) · min{C(t), n − C(t)},

where C(t) denotes the number of events happened by a non-homogenous process {λ(t) : t ⩾
0} and λ(t) = (2δ/∆) · Φ(min{C(t), n − C(t)}) · min{C(t), n − C(t)}. Therefore the number
of informed nodes during any interval [0, τ ] stochastically dominates a Poisson-distributed
random variable with rate

∫ τ

0 λ(t)dt. On the other hand, a large deviation bound (e.g., see
Theorem 2.6) for the Poisson-distributed random variable shows that the number of events
is concentrated around

∫ τ

0 λ(t)dt, with heigh probability. Therefore, one can obtain a lower
bound for the number informed nodes during time interval [0, τ ] by approximating

∫ τ

0 λ(t) ·dt.
In what follows, by a case analysis according to C(t) we estimate

∫ τ

0 λ(t) · dt and apply the
large deviation bound to obtain an upper bound for the spread time, with high probability.

By Lemma 4.1, we observe that, w.h.p., at any time step t, 1 ⩽ t ⩽ n3, G(t) is almost
regular. Thus the minimum degree of G(t) over its maximum degree is a constant and we
have δ/∆ = b = Θ(1). The lemma also gives a lower bound for the conductance function
Φ(x). Conditioning on the mentioned properties about G(t)’s, 1 ⩽ t ⩽ n3 that hold with
probability 1 − n−ω(1), one can apply Lemma 2.9 and conclude that

Λ′(t) =
{

c1C(t) 1 ⩽ C(t) ⩽ min{R2, n/2}
c1
√

min{C(t), n − C(t)} min{R2, n/2} < C(t) ⩽ n − 1,
(10)

where R2 < n/2, c1 = 2 ·a ·b is a constant and a appeared in Lemma 4.1. Moreover, applying
Lemma 2.10 implies that for every constant 0 < ε0 < 1 we have that

Λ′(t) ⩾ 1 − ε0√
1 + ε0

{
c1Λ(t) (log n)1.1 ⩽ Λ(t) ⩽ max{R2, (log n)1.1},

c1R
√

min{Λ(t), n − Λ(t)} max{R2, (log n)1.1} < Λ(t) ⩽ n − 1,

In order to have a simpler form we set 1 − ε = 1−ε0√
1+ε0

. Therefore, if max{R2, (log n)1.1} <

Λ(t) ⩽ n − 1, then we have that

Λ′(t)√
min{Λ(t), n − Λ(t)}

⩾ (1 − ε)c1R. (11)
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Note that the number of informed nodes up to time t stochastically dominates C(t). Therefore,
in what follows we analyze C(t) in three consecutive phases.

Initial phase. This phase starts with C(t) = 1 and finishes when C(t) exceed R2. Let Tinit

be the first time when this phase ends. By (10) we get that Λ′(t) = c1C(t). Therefore,
if C(t) = j, then the (j + 1)-st event happens with Poisson rate at least c1 · j. Let sj

denote the waiting time for moving from C(t) = j to C(t) = j + 1. Also, let m = ⌊R2⌋
and define Sm =

∑m−1
j=1 sj . Since sj has an exponential distribution with rate c1j, we

conclude that

E [sj ] = E [E [sj |C(t) = j]] ⩽ E
[

1
c1j

]
= 1

c1j

By linearity of expectation we get that

E [Sm] =
m∑

j=1
E [sj ] ⩽

m∑
j=1

1
c0j

= Hm/c1 = (log m)/c0 + O(1)

where Hm is the m-th harmonic number and we have that Hm = log m + O(1). By a
large deviation inequality for this particular set of exponential random variables (e,g,
see Lemma A.1) we can show that, for every c ⩾ 0, Pr [Sm ⩾ log m + c log n] ⩽ n−c.
Therefore, with high probability,

Tinit ⩽ (log m)/c1 + c log n = O(log n). (12)

Middle phase. This phase starts with C(t) = R2 and ends when C(t) exceeds n/2. Let
Tmid be the first time when this phase ends. Define t0, t1, t2 to be the first times that we
have Λ(t0) = max{R2, (log n)1.3}, Λ(t1) = n/2 and λ(t2) = 2n/3. By (10) we have that
for every R2 ⩽ C(t) ⩽ n/2,

Λ(t0) =
∫ t0

0
c1R

√
C(t)dt ⩾ c1R2(t0 − Tinit),

where the lower bound follows from the fact that C(t) ⩾ R2. The presented lower bound
implies that there exists t0 such that Λ(t0) = max{R2, (log n)1.3}. Moreover, we have
that R2 ⩾ (log n) and hence

t0 ⩽ Tinit + (log n).3 = O(log n). (13)

Using the fact that for every t ⩾ t0, Λ(t) ⩾ max{R2, (log n)1.3}, we integrate from both
sides of (11) and we have that if t0 ⩽ t ⩽ t1 we have that max{R2, (log n)1.3} ⩽ Λ(t) ⩽ n/2.
Thus,∫ t1

t0

Λ′(t)dt√
Λ(t)

= 2
√

Λ(t1) − 2
√

Λ(t0) ⩾
∫ t1

t0

(1 − ε)c1Rdt = (1 − ε)c1R(t1 − t0).

If t1 ⩽ t ⩽ t2, then we have that n/2 ⩽ Λ(t) ⩽ 2n/3 and hence∫ t2

t1

Λ′(t)dt√
n − Λ(t)

= 2
√

n − Λ(t1)−2
√

n − Λ(t2) ⩾
∫ t2

t1

(1−ε)c1Rdt = (1−ε)c1R(t2 −t1)

Recall that we have defined Λ(t0) = max{R2, (log n)1.3}, Λ(t1) = n/2 and λ(t2) = 2n/3.
Considering the above lower bounds, one can observe that t1 − t0 = O(

√
n/R) and

t2 − t1 = O(
√

n/R). Therefore,

t2 = (t2 − t1) + (t1 − t0) + t0 = O(
√

n/R) + t0 = O(
√

n/R) + O(log n),
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where the equality follows from (13). Since C(t2) is distributed as a Poisson random
variable with rate Λ(t2) = 2n/3, by using Theorem 2.6 we have that

Pr [C(t2) < n/2] ⩽ Pr [|C(t2) − 2n/3| ⩾ n/6] = n−ω(1).

Then, w.h.p. Tmid ⩽ t2 = O(
√

n/R + log n).
Final phase. This phase starts with C(t) = n/2 and ends when C(t) = n. Let Tfinal be
the time when the phase ends. The analysis makes use of the fact that Poisson process
with rate Λ(t) is symmetric in C(t). Therefore, similar to the the final phase in the
proof of Theorem 1.1, we have that w.h.p Tfinal − Tmid = O(

√
n/R) + log n) and hence

Tfinal = O(
√

n/R + log n).
Using the fact that the number of informed node up to time t, say I(t), dominates C(t) we
have that

Pr [C(Tfinal) < n] ⩽ Pr [C(Tfinal) < n]

Therefore, w.h.p. the spread time in M(n, R) is bounded by Tfinal = O(
√

n/R + log n). ◀

5 Dynamical Erdős-Rényi Graphs

In this section we provide a proof sketch for Theorem 1.3 which presents an upper bound for
the spread time in a dynamical Erdős-Rényi graph ER(n, p, µ). Before that we need some
properties of the graph that have been shown in [24]. Recall ER(n, p, µ) is a continuous
Markov chain whose stationary distribution is a random graph distributed as Erdős-Rényi
grpah G(n, p).

▶ Definition 5.1 ([24, Definition 2.2]). For a specified constant c, we say that graph G = (V, E)
is good and we write G ∈ H(c), if G has a unique connected component C with |C| ⩾ c · log n,
and we call it the giant component and satisfies the following properties.

Size. We have |C| ⩾ c · n,.
Maximum degree. The maximum degree of C is at most c log n.
Number of edges. There are at most cn edges in C
Expansion properties. We have that ΦC ⩾ c(log n)−2, where ΦC is the conductance of the
giant component.

▶ Proposition 5.2 ([24, Proposition 2.3]). For any graph G sampled from the stationary
distribution of dynamical Erdős-Rényi process. Then, we have that Pr [G /∈ H(c)] = O(n−9).

Proof of Theorem 1.3. We analyze the algorithm in three consecutive phases. For every
τ > 0, let G(τ) be the dynamical Erdős-Rényi graph at time τ . Also, let Tmix denote the
mixing time of the dynamical Erdős-Rényi graph, which is Tmix = (2 + o(1)) log n

µ (e.g.,
see [24]).

Informing a node of the giant component. This phase starts with one single informed
node and ends when a node of giant component knows the rumor. Let T1 be the first
time when this phase ends. For each k = 1, . . . , define τk = k · Tmix. By Proposition 5.2,
G(τk) ∈ H(c) and hence it has a unique giant component of size at least c · n. Therefore,
at time τk, the informed node is not included in the giant component with probability
at least (1 − c)k. Hence, we deduce that with probability at least 1 − 1/n after at most
(log n/c)Tmix = (log n)2

cµ (2 + o(1) time this phase ends.
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Informing all nodes within the giant component. This phase starts with an single
informed node that belongs to the giant component and ends when all nodes in the
giant component get informed. Let T2 denotes the time this phase requires to finish. By
Proposition 5.2, the giant has at most cn edges. Thus, the first edge in the component gets
updated with Poisson rate cnµ = O((log n)−6). This implies that with probability 1−o(1),
during time [T1, T1 + (log n)5], the component remains connected and will be the same
during the time interval. Applying Theorem 1.1 implies that rumor spreads through the
giant component within O

(
∆ log n

δΦ

)
time. By Proposition 5.2, with probability 1−O(n−9),

the giant component is a good graph and hence we have that δ = 1, ∆ = O(log n) and
ΦC = Ω((log n)−2). Thus, with probability 1 − o(1), the rumor spreads through the giant
component within T2 − T1 = O((log n)4) time.
Informing rest of the nodes. This phase starts with at least cn informed nodes, which is
the size of giant component. Let U(τ) and I(τ) be the set of informed and non-informed
nodes up to time τ . Let T3 denote the time when this phase ends. For each k = 1, . . .,
define τk = T2 + k · Tmix and suppose that u ∈ U(τk). It is worth mentioning that
definition of τk allows us to have a new sample of G(n, p) and for each τk, G(τk) is
distributed as G(n, p). Fo every k = 1, . . . , define random variables Xu(k) to be the
number of informed nodes that are adjacent to u at time τk. Also |I(τk)| ⩾ c · n is
non-decreasing function in time. Therefore, Xu(k) dominates binomial random variable
X ∼ Bin(cn, p). Then, for every 0 < θ < 1, by Zygmund-Paley inequality we have that

Pr [Xu(k) > θcnp] ⩾ Pr [Xu(k) > θcnp]

⩾ (1 − θ)2 (cnp)2

cnp(1 − p) + (cnp)2

⩾ (1 − θ)2 cnp

1 + cnp
.

Setting θ = 1/2 and using the fact that p = Θ(1/n), we conclude that

Pr [Xu(k) > 0] ⩾ cnp

4(1 + cnp) = c1,

where c1 is a constant. Therefore, with probability at least c1, for every k = 1, . . .,
u ∈ U(τk) is connected to some informed node. Fixing arbitrary u ∈ U(τ1), the
probability that at time τk, u is not connected to some informed node is at least (1 − c1)k.
Thus, by setting k = 2 log n/c1, with probability at most n−2, u is not connected. By
union bound over all non-informed nodes, we conclude that, with probability 1−1/n, every
non-informed node is being connected to some informed one before time τk. Provided
u ∈ U(τ) has an informed neighbor, say v, they share the rumor with rate 1/d(u)+1/d(v).
Notice that for every k, G(τk) ∼ G(n, p) and hence its maximum degree is at most
O(log n). Therefore, u and v communicates with rate at least Ω(1/ log n). So with
high probability during a period of length at most (log n)3 , u gets informed from its
neighbor v, which follows from a concentration result for a Poisson random variable of
rate Ω(1/ log n) · (log n)3 ⩾ (log n)3/2.
Note that edge {u, v} may disappear with rate µ, however, during a time interval of
length (log n)3, the edge disappear with probability µ(log n)3 = o(1). Therefore, with
probability 1 − o(1) after at most T2 + (2 log n/c1)Tmix + O((log n)3) time every node
gets informed. From the first and second phases T2 = T1 + O((log n)4) = O(log nTmix)
and hence, with probability 1 − o(1), the rumor spreads in O((log n)2/µ) time. ◀

OPODIS 2021



31:14 Rumor Spreading in Dynamic Graphs

References
1 Hüseyin Acan, Andrea Collevecchio, Abbas Mehrabian, and Nick Wormald. On the push&pull

protocol for rumour spreading: [extended abstract]. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21
- 23, 2015, pages 405–412, 2015. doi:10.1145/2767386.2767416.

2 Petra Berenbrink, Robert Elsässer, and Tom Friedetzky. Efficient randomised broadcasting
in random regular networks with applications in peer-to-peer systems. In Proc. 27th Symp.
Principles of Distributed Computing (PODC), pages 155–164, 2008.

3 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530, 2006.

4 Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing, 2(5):483–502, 2002.
doi:10.1002/wcm.72.

5 Flavio Chierichetti, George Giakkoupis, Silvio Lattanzi, and Alessandro Panconesi. Rumor
spreading and conductance. J. ACM, 65(4):17:1–17:21, 2018. doi:10.1145/3173043.

6 Andrea E. F. Clementi, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud, Marco Isopi,
Alessandro Panconesi, Francesco Pasquale, and Riccardo Silvestri. Rumor spreading in
random evolving graphs. In Algorithms - ESA 2013 - 21st Annual European Symposium,
Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 325–336, 2013. doi:
10.1007/978-3-642-40450-4_28.

7 Andrea E. F. Clementi, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Information
spreading in stationary markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst.,
22(9):1425–1432, 2011. doi:10.1109/TPDS.2011.33.

8 Andrea E. F. Clementi, Riccardo Silvestri, and Luca Trevisan. Information spreading in
dynamic graphs. In ACM Symposium on Principles of Distributed Computing, PODC ’12,
Funchal, Madeira, Portugal, July 16-18, 2012, pages 37–46, 2012. doi:10.1145/2332432.
2332439.

9 D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I.
Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2003.
Elementary theory and methods.

10 Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish, John Larson, Sue Manning,
Scott Shenker, Howard Sturgis, Dan Swinehart, Doug Terry, and Don Woods. Epidemic
algorithms for replicated database maintenance. In Proc. 6th Symp. Principles of Distributed
Computing (PODC), pages 1–12, 1987.

11 Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread rumors in
sublogarithmic time. In Proc. 43th Symp. Theory of Computing (STOC), pages 21–30, 2011.

12 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in
networks. Random Struct. Algorithms, 1(4):447–460, 1990.

13 George Giakkoupis, Yasamin Nazari, and Philipp Woelfel. How asynchrony affects rumor
spreading time. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 185–194, 2016. doi:
10.1145/2933057.2933117.

14 George Giakkoupis, Thomas Sauerwald, and Alexandre Stauffer. Randomized rumor spreading
in dynamic graphs. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 495–507,
2014. doi:10.1007/978-3-662-43951-7_42.

15 Olle Häggström, Yuval Peres, and Jeffrey E. Steif. Dynamical percolation. Ann. Inst. H.
Poincaré Probab. Statist., 33(4):497–528, 1997. doi:10.1016/S0246-0203(97)80103-3.

16 Mor Harchol-Balter, Frank Thomson Leighton, and Daniel Lewin. Resource discovery in
distributed networks. In Proc. 18th Symp. Principles of Distributed Computing (PODC), pages
229–237, 1999.

https://doi.org/10.1145/2767386.2767416
https://doi.org/10.1002/wcm.72
https://doi.org/10.1145/3173043
https://doi.org/10.1007/978-3-642-40450-4_28
https://doi.org/10.1007/978-3-642-40450-4_28
https://doi.org/10.1109/TPDS.2011.33
https://doi.org/10.1145/2332432.2332439
https://doi.org/10.1145/2332432.2332439
https://doi.org/10.1145/2933057.2933117
https://doi.org/10.1145/2933057.2933117
https://doi.org/10.1007/978-3-662-43951-7_42
https://doi.org/10.1016/S0246-0203(97)80103-3


B. Mans and A. Pourmiri 31:15

17 Dariusz R. Kowalski and Christopher Thraves Caro. Estimating time complexity of rumor
spreading in ad-hoc networks. In Jacek Cichon, Maciej Gebala, and Marek Klonowski, editors,
Ad-hoc, Mobile, and Wireless Network - 12th International Conference, ADHOC-NOW 2013,
Wrocław, Poland, July 8-10, 2013. Proceedings, volume 7960 of Lecture Notes in Computer
Science, pages 245–256. Springer, 2013.

18 Henry Lam, Zhenming Liu, Michael Mitzenmacher, Xiaorui Sun, and Yajun Wang. Information
dissemination via random walks in d-dimensional space. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 1612–1622, 2012. doi:10.1137/1.9781611973099.128.

19 László Lovász and Ravi Kannan. Faster mixing via average conductance. In Jeffrey Scott Vitter,
Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA,
pages 282–287. ACM, 1999. doi:10.1145/301250.301317.

20 Konstantinos Panagiotou and Leo Speidel. Asynchronous rumor spreading on random graphs. In
Algorithms and Computation - 24th International Symposium, ISAAC 2013, Hong Kong, China,
December 16-18, 2013, Proceedings, pages 424–434, 2013. doi:10.1007/978-3-642-45030-3_
40.

21 Alberto Pettarin, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal. Tight bounds on
information dissemination in sparse mobile networks. In Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June
6-8, 2011, pages 355–362, 2011. doi:10.1145/1993806.1993882.

22 Ali Pourmiri and Bernard Mans. Tight analysis of asynchronous rumor spreading in dynamic
networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2020, Salerno, Italy, 3-7 August 2020, pages 263–272, 2020.

23 Ali Pourmiri and Fahimeh Ramezani. Ultra-fast asynchronous randomized rumor spreading
(brief announcement). In The 31st ACM on Symposium on Parallelism in Algorithms and
Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019., pages 81–83, 2019. doi:
10.1145/3323165.3323167.

24 Perla Sousi and Sam Thomas. Cutoff for random walk on dynamical erdős-rényi graph. arXiv,
2018. arXiv:1807.04719.

A Missing Proofs of Section 2

Proof of Lemma 2.8. For very j = 1, . . . , n − 1, define sj and tj to be exponentially dis-
tributed random variables with rates αj and βj , respectively. Define X = (s1, . . . , sn) and
Y = (t1, . . . , tn). Toward proving the stochastic dominance, we couple X and Y , first by
revealing Y , and then, for every 1 ⩽ j ⩽ n − 1, set sj = βjtj/αj . Now, for every j = 1, . . . , n,
and any positive number x we have that

Pr [sj ⩾ x] = Pr
[

αj

βj
sj ⩾

αj

βj
x

]
= Pr

[
tj >

αj

βj
x

]
= exp{−βj(αj/βj)x} = exp{−αjx}.

Therefore, X = (s1, . . . sn) are exponentially distributed according to A. Also, βj/αj ⩾ 1
and hence, for every 1 ⩽ m ⩽ n − 1, tj ⩽ sj and we get that

m∑
j=1

tj ⩽
m∑

j=1
sj .

This implies that, Poisson process P(A) requires at least as much time as P(B) requires
to generate m events. For any given t, let NA(t) and NB(t) denote the number of events
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happened by P(A) and P(B) during [0, t], respectively. Then we have that NA(t) ⩽ NB(t).
Thus, for every positive integer k, we get that

Pr [NB(t) ⩽ k] ⩽ Pr [NA(t) ⩽ k] ,

which proves the lemma. ◀

We will combine the Lemmas 9 and 10 from [20] and get the following concentration bound
for a particular set of exponential random variables.

▶ Lemma A.1 (Lemma 9 and 10. [20]). Let f(m, j) be a deterministic sequence such that for
1 ⩽ j < m, E [sj |Ij ]−1 ⩾ f(m, j) and f(m, j) = Θ(min{j, m − j}). Moreover, let {t+

j }m−1
j=1

be a sequences of independent random variables, where t+
j is exponentially distributed with

parameter f(m, j). Also let T + =
∑m−1

j=1 t+
j , and Sm =

∑m−1
j=1 sj. Then, we have

for 0 < λ < min
j∈[m−1]

f(m, j), E
[
eλSm

]
⩽ exp{λ E

[
T +]+ O(1)}.

This implies that, for every z > 0,

Pr [Sm−1 ⩾ z] ⩽ exp{λ E
[
T +]+ O(1) − λz}

B Properties of Geometric Mobile Networks

This section is devoted to the proof of Lemma 4.1. Geometric mobile model is a dynamic
evolving network M(n, R) = {G(t)}∞

t=0 contains a set of n agents, denoted by [n]. Each
agent independently performs nearest neighbor random walks on H = (Ln,ϵ, E) and there is
an edge between two agents if their Euclidean distance is at most R. Recall that

Ln,ϵ = {(k · ϵ, l · ϵ) : k, l ∈ N, k, l ⩽
√

n/ϵ},

and

E = {{x, y} : x, y ∈ Ln,ε, d(x, y) ⩽ r}.

It is easy to see that for every x ∈ Ln,ϵ there are Θ(r2) locations at distance at most r from
x and hence H is almost regular (i.e., the ratio of the maximum and minimum degree is
at most a constant). Since H is connected and almost regular, a Markov chain defined by
the random walk is ergodic and converges to an almost uniform stationary distribution over
Ln,ε, say π. Notice that by an almost uniform we mean that for every location x, y ∈ Ln,ε,
π(x)/π(y) = Θ(1). Since n agents perform random walks on H, we will have an Markov
chain with state space

Ln,ε × Ln,ε × . . . Ln,ε︸ ︷︷ ︸
n times

.

Then, by a basic property of ergodic and finite Markov chains, at any time t ⩾ 1, each
agent is located at location x ∈ Ln,ε with probability π(x). Before proving Lemma 4.1, we
first present some useful lemmas. Note that we use node or agent but they have the same
meaning.

▶ Lemma B.1. Let A denote a arbitrary 2-dimensional grid with m′ nodes and S be an
arbitrary set of nodes in A, with size at most m′/2. Then, there exists a constant c > 0 such
that N(S) ⩾ c′

√
|S|, where N(S) is the number of nodes that have at least one neighbor in S.
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The proof can be found in [7, Theorem 4.1].

▶ Lemma B.2. Let M be an m × m grid embedded on
√

n ×
√

n square plane, where
m =

√
5n/R. Then, with high probability, each cell of M contains Θ(R2) agents.

Proof. Each cell in M is an R/
√

5 × R/
√

5 square and contains R2/5ε2 nodes from Ln,ε.
Let us fix some 1 ⩽ t ⩽ n3 and arbitrary cell C. Then, the location of each agent at time
t has an almost uniform distribution π over Ln,ε. For every agent u ∈ [n], define indicator
random variable Iu,C as follows:

Iu,C =
{

1 if i is located in cell C,
0 otherwise.

Thus,

Pr [Iu,C = 1] =
∑

x∈C∩Ln,ε

π(x) = (R2/5ε2) × Θ(ε2/n) = Θ(R2/5n).

Also let Y =
∑

u∈[n] Iu,C to denote the number of agents at time t in cell C. By the linearity
of expectation we have that E [Y ] = Θ(R2). Applying a Chernoff bound, we conclude that

Pr [|Y − E [Y ] | ⩾ E [Y ] /2] ⩽ e− E[Y ]/12 = n−ω(1).

Therefore, with probability n−ω(1), cell C does not contain Θ(R2) agents at time t. An
application of union bound over all time steps and cells implies that with probability 1−n−ω(1),
for every 1 ⩽ t ⩽ n3, each cell of M contains Θ(R2) agents which completes the proof. ◀

▶ Lemma B.3 (Restatement of Lemma 4.1). Suppose that M(n, R) = {G(t)}∞
t=0, is a geometric

mobile network with f(n)
√

log n ⩽ R ⩽
√

n, where f(n) is a slowly growing function in n.
Then, with probability 1 − n−ω(1), for every 1 ⩽ t ⩽ n3, the followings hold:
1. For every node u (agent), du(t) = Θ(R2), where du(t) is the degree of node u in G(t).
2. There exists constant a > 0 such that conductance function G(t) satisfies

Φ(x) ⩾

a 1 ⩽ x ⩽ R2,

a R√
min{x,n−x}

R2 < x ⩽ n − 1.

Proof of (1). Let us fix an arbitrary time step 1 ⩽ t ⩽ n3 and an arbitrary agent, say u,
that is located at some x ∈ Ln,ε. Define

B(x) = {y : y ∈ Ln,ε, d(x, y) ⩽ R}.

It is not hard to see that for every x, |B(x)| = Θ((R/ε)2). For every y ∈ B(x) and u ∈ [n],
let us define the indicator random variable Iu,y as follows:

Iu,y =
{

1 if u is located at y,
0 otherwise.

Clearly, Y =
∑

v∈[n]\u

∑
y∈B(x) Iv,y is the degree of agent u in G(t). Since every agent v

has almost uniform distribution π over Ln,ε and agents are independent from each other, we
get that

Pr [Iv,y = 1] = π(y) = Θ(ε2/n).
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Figure 1 The right grid is the dual of colored left grid, where colored faces are translated to
colored vertices.

Thus, by linearity of expectation we have

E [Y ] =
∑

v∈[n]\u

∑
y∈B(x)

E [Iv,y] =
∑

v∈[n]\u

∑
y∈B(x)

π(y)

= (n − 1)
∑

y∈B(x)

π(y) = (n − 1)|B(x)|Θ(ε2/n) = Θ(R2) = ω(log n).

Iv,y’s are mutually independent so we apply a Chernoff bound and conclude that

Pr [|Y − E [Y ] | ⩾ E [Y ] /2] ⩽ e− E[Y ]/12 = n−ω(1).

Note that the above inequality holds only for an arbitrary and fixed time step t and node
u. By union bound over all n agents and n3 time steps, we conclude that with probability
n3 × n × n−ω(1) there is a time step s and agent w such that dw(s) /∈ [E [Y ] /2, 3 E [Y ] /2].
Therefore, with probability 1 − n−ω(1), for every agent u and time step t, du(t) = Θ(R2),
which completes proof of (1).

Proof of (2). Suppose that m =
√

5n/R and consider an m × m grid M embedded in a
plane square of

√
n ×

√
n, whose cells are

√
R/5 ×

√
R/5 squares. By Lemma B.2, with high

probability, for every t, each cell of M contains Θ(R2) agents. Fix an arbitrary set of agents
(nodes), say S, with size 1 ⩽ s ⩽ n/2. Also fix some time step t. Then, with respect to S

and time t, we color cells of M as follows. Cell C becomes white, if at most 3/4 agents in C

are contained in S and black otherwise. As a result, each cell of M gets colored by either
black or white at time step t. Let B and W denote the set of black and white cells in M .
Now, let us consider the dual of the grid M , which is again a (m − 1) × (m − 1) grid. Notice
that the vertex set of the dual graph is the interior faces of the primal and two vertices in
the dual are connected if their corresponding faces (cells) are side by side (e.g. see Figure 1).
By definition of M(n, R) = {G(t)}∞

t=0, every two agents located at any two side-by-side cells
are connected by an edge, because their Euclidean distance is at most

√
4R2/5 + R2/5 = R.

According to the size of B we consider two cases:

|B| < m2/2:
Let D be the set of vertices corresponding to cells of B in the dual graph (i.e. set of
black nodes in the right grid of Fig. 1). Thus, |D| < m2/2. By Lemma B.1, we have that
N(D) ⩾ c′

√
|D|, for some constant c′. This implies that there are at least c′

√
|B| white

cells that are connected to cells of B. By the coloring rule, we deduce that if a black cell
and a white cell are side by side, then at least 3/4 agents from the black cell contained in
S are connected to at least 1/4 agents of the white cell contained in S. Moreover, every
agent of S contained in a white cell is connected to at least 1/4 agents from the same
cell, which are contained in S. Remember that by Lemma B.2 each cell contains Θ(R2)
agents, w.h.p. Thus, we get that in G(t),

|E(S, S)| ⩾ c
√

|B|Θ(R2) +
∑

C∈W

x(C)Θ(R2),
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where x(C) is the number of agents in S that are contained in white cell C. Moreover,
G(t) is almost regular with degree Θ(R2) and each cell contains at most Θ(R2) agents.
So we have

vol(S) ⩽ |B|Θ(R4) +
∑

C∈W

x(C)Θ(R2).

Now, we may consider two cases |B| = 0 and |B| > 0. In first case, by two above
inequalities we get

|E(S, S)|
vol(S) = Θ(1). (14)

For the second case we get

|E(S, S)|
vol(S) ⩾

√
|B|Θ(R4) +

∑
C∈W x(C)Θ(R2)

|B|Θ(R4) +
∑

C∈W x(C)Θ(R2) ⩾ Θ
(√

|B|R4

|B|R4

)

= Θ
(

1√
|B|

)
⩾ Θ

(√
3R2

20|S|

)
= Θ

(
R√
|S|

)
, (15)

where the second inequality comes from the fact for every number z > x > 0 and arbitrary
z > 0, we have that x+y

z+y ⩾ x
z . Also, the third one follows from |B|Θ(R2)3/4 ⩽ |S|, as

3/4 agents in each black cell contained in S.
|B| ⩾ m2/2: In this case, we first observe that |W | = Θ(m2). Toward a contradiction,
we assume that

|W | = o(m2) = o(n/R2)

and hence white cells can have at most |W |Θ(R2) = o(n) agents, by lemma B.2, each cell
contains Θ(R2) agents. On the other hand, by definition, black cells can accommodate at
most n/4 agents from S, which contradicts assumption that |S| ⩾ n/2. So we have that
|W | = Θ(m2) = Θ(|B|). Since |W | + |B| = m2 we conclude that |W | < m2/2. Again
similar to the previous case, there are at least c

√
|W | black cells, which are adjacent to

white cells and we have

|E(S, S)| ⩾ c
√

|W |Θ(R2) +
∑

C∈W

x(C)Θ(R2).

Moreover,

vol(S) ⩽ |B|Θ(R4) +
∑

C∈W

x(C)Θ(R2) = |W |Θ(R4) +
∑

C∈W

x(C)Θ(R2),

where it follows from the fact that |W | = Θ(|B|). Similar to the previous case we will
have,

|E(S, Sc)|
vol(S) ⩾

√
|W |Θ(R4) +

∑
C∈W x(C)Θ(R2)

|W |Θ(R4) +
∑

C∈W x(C)Θ(R2)

⩾ Θ
(

1√
|W |

)
= Θ

(
1√
|B|

)
= Θ

(√
3R2

20|S|

)
= Θ

(
R√
|S|

)
. (16)
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From Inequalities (14), (15), and (16) we conclude that for every time step 1 ⩽ t ∈ n3 and a
set of agents of size at most n/2 in G(t), there exists constant a > 0 such that

|E(S, S)|
vol(S) ⩾ min

{
a

R√
|S|

, a

}
. (17)

For every subset of agents, say S, define

g(S) =
{

S if |S| ⩽ n/2,
S otherwise.

Clearly, we have that |g(S)| = min{|S|, n − |S|} ⩽ n/2 and |E(S, S)| = |E(g(S), g(S))|
completing the proof. ◀
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