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—— Abstract

A very common optimization technique in Machine Learning is Stochastic Gradient Descent (SGD).
SGD can easily be distributed: several workers try to estimate the gradient of a loss function, and
a central parameter server gathers these estimates. When all workers behave correctly, the more
workers we have, the more accurate the gradient estimate is. We call this the Arbitrary Aggregation
Accuracy (AAA) property.

However, in practice, some workers may be Byzantine (i.e., have an arbitrary behavior). In-
terestingly, when a fixed fraction of workers is assumed to be Byzantine (e.g. 20%), no existing
aggregation scheme has the AAA property. In this paper, we propose the first aggregation scheme
that has this property despite a fixed fraction of Byzantine workers (less than 50%). We theoretically
prove this property, and then illustrate it with simulations.
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1 Introduction

Many machine learning models are trained using stochastic gradient descent (SGD) [17], an
optimization technique that can easily be parallelized on multiple computers. As machine
learning models become larger and larger, parallelizing their training becomes more and
more important, if we want to train them in a reasonable amount of time.

If all computers are assumed to work correctly, parallelizing the training is relatively
simple. The classical architecture is the following. A central parameter server is trying to
minimize a loss function. To do so, it uses the gradient descent algorithm, which requires to
compute (an approximation of) the gradient of the loss function, at several points of the loss
function. As this is the most time-consuming task, the parameter server distributes this task
among multiple workers. Each worker computes a vector which is an approximation of the
desired gradient. The parameter server then collects and aggregates these vectors, to obtain
a (reasonably good) approximation of the gradient. This process is repeated multiple times,
until we reach a minimum of the loss function. We explain this in more details in Section 2.3.

However, when the number of workers becomes very large, one should assume that
some workers will not behave correctly. Some workers may even be malicious agents trying
to prevent a successful training of the model. This is especially true when workers are
not identical computers stored in a data center, but personal computers or smartphones
participating in the training in a collaborative way.

Therefore, a recent line of work is robust distributed SGD: the goal is to propose distributed
architectures that manage to train the model despite the presence of malicious workers. In
order to achieve very strong safety guarantees, we assume that these malicious workers are
Byzantine [15], that is: they are omniscient, and can have any arbitrary behavior.
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Let us give a quick overview of this literature.! In [18], a first solution was proposed for
problems of dimension one. In [3], a score is associated to each proposed vector, defined as
the sum of distances with some of its closest neighbors. The vector with the smallest score
is then selected. In [9], several outputs of [3] are selected (without replacement), and then
averaged. In [21], a scalar aggregation rule (SAR) is applied to each coordinate. This SAR
can be, for instance, the median, or a trimmed mean (a mean after removing the 2% largest
and % smallest values). In [19] (resp. [20]), the proposed values closest from the median
(resp. trimmed mean) are selected, then averaged. In [12], a variant of the trimmed mean
is applied to a selection of vectors obtained from [9]. In [7], several batches of vectors are
averaged; then, their geometric median is computed. In [6], the vectors are aggregated using
coding theory and a redundancy scheme. In [1] and [10], historical information is used to
identify dishonest workers. The only solution tolerating asynchrony so far is [10].

Note that most of these works assume a centralized and reliable parameter server. However,
as shown in [11], these schemes? can be transformed into fully decentralized schemes, where
no entity is a single point of failure. In order to focus on the aggregation strategy, we also
assume a centralized parameter server in this paper.

In the following, we focus on aggregation schemes where an approximation of the gradient
is computed independently at each step, like in classical SGD. Aside from enabling a clearer
mathematical analysis of the gradient, it also makes the system resilient to transient failures,
that is: in addition of Byzantine workers, the system can recover from any temporary failures
of correct workers.

The Arbitrary Aggregation Accuracy (AAA) property

Now, let us come back to the case where all workers are correct, and consider a given step of
the gradient descent algorithm. In this setting, the parameter server simply computes the
mean of the received vectors. If each workers processes a given share of the dataset, and these
shares are independent and identically distributed (which is usually assumed), then the more
workers we have, the more accurate our approximation of the true gradient will be. Actually,
for any arbitrary level of precision, there exists a number of workers that can achieve this
level of precision. We call this the Arbitrary Aggregation Accuracy (AAA) property.

Formally, if G is the true gradient of the loss function (at a given step), n is the number
of workers, and A, is the vector aggregated by the parameter server (the approximation of
the true gradient), then this property can be expressed as follows:?

lim E[A, — G| = 0.

n—-+o0o

We now assume that there is a fixed fraction of Byzantine workers (for instance, 20% of
workers, independently of the total number of workers). We may ask the following question:
is it possible to have the AAA property in this setting?

This problem shares some similarities with the more general problem of executing arbitrary tasks in a
setting with a “master” and several (unreliable) “workers”. In [14], a bound is shown on the complexity
of performing n tasks correctly with high probability. However, doing so does not give meaningful
guarantees when the goal is to perform SGD.

This applies to any scheme of the same (centralized) nature as those presented above.

In this paper, || - || refers to the L2 norm, and the expectation is both on the i.i.d. samples of the dataset
and on the randomness involved in the algorithm.
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Interestingly, no existing Byzantine-resilient version of SGD has this property (more
details on this in Section 2.5): a fixed fraction of Byzantine workers results in a fixed error
w.r.t. the true gradient, no matter how large the number of workers is.

Our contribution

In this paper, we propose COMPASS, the first aggregation scheme that has the AAA property
despite a fixed fraction f of Byzantine workers (f < %) We describe this scheme, then prove
that it has the AAA property. We then illustrate this property with simulations: we compare
the accuracy of COMPMED (a modified version of CoMPAss?) to an existing aggregation
scheme.

The rest of the paper is organized as follows. In Section 2, we describe the general
setting. In Section 3, we describe the COMPASS aggregation scheme. In Section 4, we prove
that CoMPASS has the AAA property. In Section 5, we illustrate the AAA property with
simulations. We conclude in Section 6.

Remarks and clarifications

Before going further, let us clarify several points about the contribution of this paper.

This work is mostly a theoretical work.

This work, as well as many previous works, proposes a scheme to approximate the gradient
of the loss function. The precision of this approximation (of the gradient) should not
be confused with the precision of the learned model. For a given gradient descent step,
having an accurate gradient is always a desirable property, since the goal of a gradient
descent step is to decrease the value of the loss function. Therefore, an accurate gradient
approximation will not be the cause of problems like overfitting.

Similarly, guarantees on the quality of the gradient approximation (as provided in this
work and several previous works) should not be confused with guarantees on the accuracy
of the trained model. Such guarantees can be found, for instance, in [1] and [5], under
specific hypotheses (e.g., convex loss function, bounded gradient. .. ).

The gradient approximations proposed by correct workers may have a variance high
enough to allow Byzantine workers to collude to move the mean without being detected
(as described in [2]). However, they can only do so in aggrergation schemes where the AAA
property is not satisfied: this property ensures that the estimated gradient is arbitrarily
close to the true gradient, independently of the behavior of Byzantine workers.

In the SGD algorithm, there is always a probability of error w.r.t. the true gradient. It is
also the case for distributed SGD (without failures), and for Byzantine-resilient solutions
(including ours). Nevertheless, we ensure that this error shrinks to zero when the number
of nodes increases.

2 Preliminaries

2.1 Setting

We want to train a machine learning model of d parameters, using the gradient descent
algorithm.

4 The reason for this change is motivated in Section 5.1.
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The model can be represented by a function M(P, X), where P = (p1,...,pq) are the
parameters of the model (for instance, the weights and biases of a neural network), and X is
the current input of the model (usually a vector of real values). M(P, X) returns a single
real value y.

To train the model, we have a dataset consisting in two lists (X1, ..., X,,) and (y1, ..., Ym),
where X; is an input of the model (feature), and y; is the corresponding desired output
(label). In the following, we denote y; by y(X;). We define a loss function L(P), measuring
the “distance” between the current model and the desired outputs. For instance, a classic
form of the loss function is:

S (M(P,X,) — y(X,)°.

i=1

1
m

We make no hypotheses on the shape of this function, except that it has, in each point, a
gradient with finite coordinate values.®

Training the model consists in finding a set of parameters minimizing the loss function.
The standard way to do this is to use the gradient descent algorithm, which consists of
repeating the two following steps:

1. Compute the gradient VL(P) of the loss function.
2. Update the vector of parameters P as follows: P <— P—aV L(P) (where « is an arbitrarily
small constant).

2.2 Stochastic gradient descent (SGD)

In practice, computing the exact gradient may be very long when the dataset contains a lot
of elements (which is usually the case). An alternative is to use stochastic gradient descent
(SGD), that is: at each step, we randomly select a set S of elements from the dataset, and
use it to compute an approximation VL*(P,S) of VL(P). For instance, if L(P) has the
aforementioned classical form, then:

L(P.8) = g 3 (M(P.X) = y(X))".

Xes

Over several steps, the errors due to randomness tend to cancel each other, and we
generally achieve the same result with a much shorter computation time.

2.3 Distributed SGD

A convenient property of SGD is that it can easily be parallelized. The classical architecture
is the following. We have a parameter server, that stores and updates the parameters of the
model, and n workers (w1, ..., wy,).

Let a > 0 be an arbitrarily small constant. At each step:

1. The parameter server sends the current vector of parameters P to each worker.

2. Fach worker w; selects a random subset S of the dataset, computes V; = VL*(P,S), and
sends it to the parameter server.

3. The parameter server computes the mean A,, of the received vectors V; (A, = * LY Vi),
and uses it to update the model (P < P — a4,,).

5 This function may have multiple local minima. However, for most machine learning models (e.g. neural
networks), most local minima are sufficient to reach a satisfying accuracy [8].
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Here, we assume that each worker possesses a copy of the whole dataset, and can randomly
select elements from the dataset at each step. This is a reasonable hypothesis, given the
current memory capacities of computers (or even smartphones), and the cheap cost of memory
units (relatively to the cost of computing power). We make this hypothesis in the rest of
the paper. Another justification might be that workers have remote access to the dataset
through the internet (and may copy specific parts of it).

2.4 Failure model

In the aforementioned distributed setting, all workers are assumed to behave correctly.

However, in practice, this may not always be the case.

Let f < 0.5 be a fixed parameter of the problem. Let k be the largest integer such that
k < fn. Among the n workers, k are assumed to be Byzantine, that is: their behavior is
completely arbitrary. Here, as the workers send vectors to the parameter server, this means
that up to & workers can send arbitrary vectors to the parameter server. The parameter
server does not know which workers are Byzantine.

Note that, since the behavior of Byzantine workers is arbitrary, it does not matter whether
or not they keep track of past events: we must always assume the worst-case scenario.

2.5 The Arbitrary Aggregation Accuracy (AAA) property

An aggregation scheme is a distributed system that, for a given step of the gradient descent

algorithm, produces an approximation A of the true gradient G = VL(P) of the loss function.

The scheme presented in 2.3 is an example of aggregation scheme. If such a system allows an
arbitrary number n of workers, we call the resulting aggregated vector A,,.

We say that an aggregation scheme has the Arbitrary Aggregation Accuracy (AAA)
property if the expected value of the distance between A, and G approaches 0 when n
increases:

lim E||4, - G| =0.

n—-+oo

A classical metric for Byzantine-resilient versions of SGD is the angular error, that is: the
angle 6,, between F[A,] and G. An asymptotic comparison of the angular errors of existing
aggregation schemes is provided in [4]. When the fraction of Byzantine workers is constant
(independently of n), these angular errors are at best ©(1) (i.e. constant). This contradicts
the AAA property: when this property is satisfied, lim, .00, = 0.

To give some intuition on why these previous solutions do not satisfy the AAA property,
let us consider, for instance, the coordinate-wise median: for each coordinate, we take the

median of the values proposed by workers (see Section 5.1 for a more formal description).

In this setting, the worst thing Byzantine workers can do is to propose extreme values (all
positive or all negative): even if they are a minority, this will push the median towards these
extreme values. Here, for a given distribution of values, a fixed fraction of Byzantine workers
will have a fixed impact of the median value. This phenomena is illustrated experimentally
in Section 5.

3  Our aggregation scheme

In this section, we present the COMPASS aggregation scheme. In 3.1, we give some preliminary
definitions. In 3.2, we describe COMPASS. In 3.3, we explain its general idea, and comment
it step by step.

4:5
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3.1 Definitions

We consider n workers (w1, ...,w,). Let N be the largest integer such that N2 < n. Let M
be a fixed parameter, corresponding to the number of elements of the dataset that a worker
uses to compute an approximation of the gradient at each step.

We now define several notions and functions used in our aggregation scheme:

A random split consists in randomly selecting a set S of N? workers among (wy, ..., w,),
then randomly splitting the elements of S into N sets (W7,..., Wx), each one containing
N elements.

A random pick is a set of M randomly selected integers between 1 and m (as a reminder,
m is the size of the dataset).
For a set S of vectors of dimension d, we define the function Maj(S) as follows:
If there exists a vector V' of S such that a strict majority of vectors of S are equal to
V, then, Maj(S)="V.
Otherwise, Maj(S) returns a null vector (0,0,...,0) of dimension d.
For two values p and z (with = > 0), we define Cuto(p, x) as follows:
If p > x, Cuto(p,z) = x
If p< —z, Cuty(p,z) = —x
Otherwise, Cuto(p,z) =p

For a vector V = (v1,va,...,v4) and a value z, we define Cut(V, z) as follows:

Cut(V,z) = (Cuto(vy, z), Cuto(va, x), ..., Cuty(vg, x)).

3.2 Description of the aggregation scheme

We now describe the COMPASS aggregation scheme (similarly to the distributed SGD scheme
described in 2.3).
Let o > 0 be an arbitrarily small constant. At each step:

1. The parameter server generates a random split (W1,...,Wyx) and N random picks
(Z1,...,ZN).
2. Vi€ {1,..., N}, the parameter server sends Z; and the current vector of parameters P

to each worker of the set W;.

3. Vie {1,...,N}, let ©; be the set containing the elements X; of the dataset such that
j € Z;. Each worker of the set W; computes VL*(P,€;), and sends it to the parameter
server.

4. Vi e {1,...,N}, let S; be the set of vectors sent by the workers of W; (the parameter
server only accepts one vector per worker®). The parameter server aggregates the received
vectors as follows:

N
1 :
A, =Cut (N E_l Maj(S;), \/N)
...and uses it to update the model (P <+ P — aA,).

6 If a worker does not send any vector before the end of the round, we consider that it sent a null vector
(0,0,...,0). Therefore, |S;| = |[Ws.
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3.3 Detailed explanation
General idea

A common strategy to defeat Byzantine processes is replication: many processes perform
the same computing task, and a majority vote selects the correct output. Here, however,
if all correct workers compute the same vector, adding more workers will not improve the
quality of the gradient approximation. To do so, we have to aggregate many (independent)
approximations. This is done, for instance, in the simple scheme described in Section 2.3
(with a mean). However, this scheme is not robust to even one Byzantine worker (as shown
in [3]).

Here, we propose a balanced mix of replication and aggregation: if we have N? workers
(N =~ /n), then, we can choose N sets of N workers each. Each set computes the same
vector, and a majority vote determines the output of this set. We then aggregate these
outputs. As N grows with n, increasing the number of workers increases both the reliability
of replication and the quality of aggregation.

Step-by-step description

Now, let us comment on our aggregation scheme step by step.

In Step 1, the parameter server generates the N aforementioned sets (W1,..., Wyx). To
prevent any strategic placement of Byzantine workers, these sets are chosen randomly at each
step. The parameter server also generates N random picks (Z1,...,Zy). Each Z; is a set of
identifiers of elements of the dataset. These elements will be processed by the corresponding
group of workers W;.

In Step 2, the parameter server sends P (the current vector of parameters) and Z; (the
aforementioned set of identifiers) to each worker of the set W;, for each i € {1,..., N}.

In Step 3, each worker of the set W; (for each ¢ € {1,..., N}) computes the approximation
VL*(P,Q;) of the gradient VL(P), where 2, is the set of elements of the dataset corresponding
to Z;. Then, it sends it back to the parameter server.

In Step 4, the parameter server aggregates the received vectors. First, it uses a majority
vote (Maj(S;)) to determine the output of the set W; (for each i € {1,...,N}). Then, it
computes the mean of these outputs. Finally, it applies the Cut function to ensure that the
coordinates of the aggregated vector remain smaller than v/N. Doing so is important, because
there is always a probability p > 0 that a set W; contains a majority of Byzantine workers. If
so, the output of this set (after the majority vote) will be determined by Byzantine workers,
that could (for instance) propose a vector with coordinate values inversely proportional to

1, to ensure that the expected mean of outputs remains far away from the true gradient.

Applying the Cut function enables to prove the result of Lemma 3 (see Section 4), and then
the AAA property.

4  Analysis

In this section, we prove that COMPASS has the AAA property (see Theorem 4).

In the following proofs, we introduce several variables in order to constrain some values to
be integers. For instance: “Let k be the largest integer such that k < n2”. Some readers may
consider that it would be simpler to just write “y/n” here; however, some other readers may

object that doing so would make the proofs less rigorous, and make their validity unclear.

For this reason, we choose to use the first notation.

4:7
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» Lemma 1. Let p < % be a probability. Consider N sets of N workers, where each worker
has an independent probability p to be Byzantine. Let En be the following event: “All N sets
contain a strict minority of Byzantine workers”. Then, there exists Ny such that, VN > Ny,
P(EN)>1-%.

Proof. As lim IHTE = 0, let Ny be the smallest integer such that, VN > Ny:

xr——+00

In Ny < 1-2p 2
N() 4 '
Consider a set of workers. Let k& be the number of Byzantine workers in this set. According
to Hoeffding’s inequality:

2
Therefore:
k In N 2
AT i (NSO I
P<N p’<\/ N)_l N2

...and, for N > Ny:

k 1—2p 2
Pl - >1- 2.

Now, we can remark that:
k 1-—2p k 1—2p k 1+ 2p
Pl|l=— <P|—-— =P = .
(N p‘< 1 ) (N Ps—y ) <N< 1
Asp<%,wehave1+2p<2, and:

k 1+2p k 2 N
— < — <) = — .
P<N< 4 ) P<N<4> P<k<2>

Thus, VN > Ngy:

P<k<];]>21—2

N2
and

N
2 2N 2
PEN)>(1-—=) >1-2=1-=.
(N)< N2> =T N? N b

» Lemma 2. Let N > 1 be an integer, and let f < % be a positive value. Consider N2
workers, among which k are Byzantine, with k < fN2. Assume that these N2 workers are
randomly assigned to N sets. Let Ely be the following event: “All N sets contain a strict
minority of Byzantine workers”. Then, there exists N1 such that, VN > Ny, P(Ely) > 1— %

Proof. The proof of this lemma can be found in the appendix. <
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» Lemma 3. Let G be a vector of dimension d, and let p < % be a probability. Let
(V1,Va, Vs, ...) be a sequence of vectors of dimension d, such that limy_, 4o % Zi\il V,=G."
Let (B1,Bs, Bs,...) be an arbitrary sequence of vectors of dimension d. Let Ry be a

random vector defined as follows: with probability p, Ry = Cut (BN,\/N) ; otherwise,
Ry = Cut (% SN v \/N) Then, limy_ o0 El|Ry — G| = 0.

Proof. Before going further, let us clarify one possible misunderstanding. Some readers may
confuse N with the number of parameters of the model (which is not the case). According to
the lemma’s statement, IV is related to the numbers of vectors used to approximate the true
gradient. The number of parameters of the model is not used in the proofs of this paper.

fofi )

YN

(Bx.VN) | = Vavn.

E||RN—G|\:pcht(BN,\F) GH+ (1-p

XN

Asp<%:

pllcu (Br. VW) | < Svavi =22

Therefore:

Xy < pHCut (BN, \/N) H +pllal < ?’f + —||GH

As a result, limy_, 100 Xy = 0. Now, let us determine limy_, 4o Yn.
Let 6 > 0. Let j € {1,...,d}, and let v(4,5) (resp. g(j)) be the j** coordinate of V; (resp.
G). Aslimpy 400 % Zil V; = G, in particular:
| X
lim =% v(i.5) = g(j).

N—+oo ‘
=1

Thus, there exists n; such that, VN > n;:

1
N;U’L]

<5+ 1g()l-

1 N
N Z ’U(ia .7)
=1

Let Ng be the smallest integer such that No > max(ny,...,nq) and /No > d+max;eqi,... a3 [9(7)]-
Then, VN > Ny and Vj € {1,...,d}:

1 N
NZU(%])

<VN

7 This sequence represents the vectors proposed by Byzantine workers. The reason why we write them as
a sequence is that we further write “limy_ oo fn”, where fn is a function of By.

OPODIS 2021
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and

1 N N
Cluty <sz(i,j),\/ﬁ> =—> w(i,j).

i=1 =1

==

Thus, forall N > Ng:

1 < 1 &
cut<N;v;,m>—N;v;.

As a result:
1Y 1Y
NLHEOOCM <N;V¢,\/ﬁ> :NLIIEOON;V; =G
and

lim =0.

N—+oo

N
1
Cut <N;V\/N> -G

Asp < %, limy_100(1 —p) =1, and limy 4 Ya = 0. Therefore:

lim E||Ry —G| = lim X lim Yy =0.
Wi Fl B =Gl = iy v L Yo <

» Theorem 4. COMPASS has the AAA property.

Proof. As a reminder, N is the largest integer such that N? < n.

Let (Wy,...,Wx) be the random split generated in Step 1 of CoMPASS. According
to Lemma 2, with a probability at least 1 — %, each set W; contains a strict minority of
Byzantine workers. In other words, the probability p that these sets do not all contain a
strict minority of Byzantine workers is such that p < %

Besides, when all sets W, contain a strict minority of Byzantine workers, Maj(.S;)
corresponds to the vector sent by the correct workers of W; (as a reminder, S; is the set
of vectors sent by the workers of W;). As these vectors Maj(S;) are all based on random

samples of the dataset, E[Maj(S;)] = G. In other words:

S PR
N1—1>r-r‘rloo N ; Maj(S:) = G.

Therefore, the output A,, of COMPASS can be represented by the random vector Ry of
Lemma 3 (where the arbitrary vectors (Bj, B2, Bs, ... ) correspond to the cases where not
all sets W; contain a strict minority of Byzantine workers).

When n — 400, N — +00. Therefore, according to Lemma 3, lim,,_, 1 o, E||4, — G|| = 0,
and COMPASS has the AAA property. <

5 Simulations

In this section, we illustrate the AAA property with simulations. We compare COMPMED (a
modified version of COMPASS) with an existing aggregation scheme. In 5.1, we describe these
two aggregation schemes. In 5.2, we describe the simulation setting. In 5.3, we show how to
make simulations both simpler and more general. The simulation results are presented in 5.4.
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5.1 Aggregation schemes

Let us describe the aggregation schemes CWMED and COMPMED.

CWMED (Coordinate-Wise Median) is an aggregation scheme introduced in [21]. It
consists in taking the median value for each coordinate, in order to exclude extreme
values proposed by Byzantine workers. Its angular error is constant. As a reminder (see
2.5), among existing aggregation schemes, the angular error is at best constant.
CoMPMED is a modified version of CoMPASS. The principle is the same, except that
the final aggregation formula is now similar to CWMED. The reason for this change is
that CoMPASS is designed to prove a very general result (for any distribution of values),
but may be slow to converge in practice. For these simulations, we assume that the
coordinates values proposed by correct workers follow a normal distribution (see 5.2). In
this setting, COMPMED converges much more quickly.?

Description of CWMed

We first define the function Med.
Let L be a list of n values. Let (x1,...,x,) be a list containing the same values as L,
but sorted in increasing order. We define the function med(L) as follows:

. Tn+Tn g
If n is even, med(L) = 52—

If n is odd, med(L) = Togr.

Let (V4,...,V,) be n vectors. Let v(i,5) be the j'* coordinate of V;. Let C; =

(v(1,5),v(2,7), ..., v(n, ).
We define Med(Vy, Va, ..., V,) as follows:

Med(Vy,Va, ..., V) = (med(Cy), med(Cs), ..., med(Cy)).

We now describe the CWMED aggregation scheme.
Let a > 0 be an arbitrarily small constant. At each step:

1. The parameter server generates n random picks (Z1,...,Zx).
2. Vi € {1,...,n}, the parameter server sends Z; and the current vector of parameters P to
worker w;.

3. Vi e {1,...,n}, let Q; be the set containing the elements X; of the dataset such that
J € Z;. Each worker w; computes VL*(P,€;), and sends it to the parameter server.

4. Vi € {1,...,n}, let V; be the vector sent by worker w;.” The parameter server aggregates
the received vectors as follows:

This is due to the fact that COMPASS computes a mean of several vectors, some of which being potentially
Byzantine. Therefore, the size N of the groups of workers must be large enough to ensure that all these
vectors are correct with a very high probability (the Cut function takes care of the extremely unlikely
bad cases).

Here, we assume that the coordinate values proposed by correct workers follow a normal distribution,
which means that their expected median value is equal to their expected mean value. Therefore, we can
use CWMED, which also excludes extreme values. However, in the general case, the expected median
value of a distribution is not always equal to its expected mean value. This is why we used COMPASS to
prove the main theoretical result.

Note that this problem (of the expected median value now always being equal to the expected mean value)
is a theoretical limitation of both CWMED and CoMPMED. Therefore, the comparison we make here is
fair with regards to this particular aspect.

9 If a worker does not send any vector before the end of the round, we consider that it sent a null vector
(0,0,...,0).
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An = Med(Vl,Vg,...,Vn)

...and uses it to update the model (P + P — aA,).

Description of CompMed

The CoMPMED aggregation scheme is defined similarly to the COMPASS aggregation scheme,
except that the aggregated vector is now defined as follows:

Ap, = Med(Maj(S1), Maj(S2),...,Maj(Sy)).

5.2 Simulation setting

Let o > 0 be a positive constants. Let G = (g1, ...,g94) = VL(P) be the gradient of the loss
function.

Let Q* be a set of M random elements of the dataset. We assume that L*(P,Q*) =
(97,95,--.,9;) (i-e., the approximation of the gradient that each correct worker computes)
follows a normal distribution centered on the true gradient, that is: Vj € {1,...,d}, g,
follows the normal distribution N (g, 0?). This assumption is backed by recent results in
machine learning [13]: many normally distributed datasets result in normally distributed
gradients.

Aggregation error

To measure the quality of an aggregation scheme A,, (for a given number of workers n), we
define the aggregation error A, as follows:

_ E[l4, — G|’
An = y :

This quantity measures the average distance between A,, and G, with regards to the
randomness of our model. Dividing by the dimension d (which is a constant of the problem)
enables to significantly simplify the simulations, as shown in Section 5.3.

Attack model

Let f < % be the fraction of Byzantine workers. We assume that all Byzantine workers send
the vector Vg = (w,w,...,w) to the parameter server, where w is an arbitrarily large positive
constant.

For CWMED, this attack has a maximal impact: it “pushes” the median values of
coordinates as far a possible from the value they would have had otherwise. The same is true
for CoMPMED: if some groups of workers contain a majority of Byzantine workers, their
output will be Vg.

5.3 Making the simulations simpler and more general

Let us show that, for CWMED and COMPMED, the aggregation error A, can actually be

computed without choosing specific values for d and (g1, ...,g4). Besides simplifying the
simulations, this makes the simulation results more general (i.e., not dependent on d and
(g1,---,94)). Therefore, the only parameters of the simulations (defined above) are: o, f

and w.
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In the following, we explain how to compute two metrics 5, and 7,, that do not depend
ond or (gi1,...,94). Then, in Theorem 5 and 6, we show that \,, = 3, (for CWMED) and
An = Yn (for COMPMED).

Definition of 3,

Let k be the largest integer such that k < fn. Let L = (y1,...,yn) be a list of n values, such
that:

Vi€ {1,...,n — k}, y; is a random value following the normal distribution N(0, o2);

Vie{n—k+1,...,n}, y; = w.

We define 3, as follows: 3, = E[med(L)?].

Definition of ~,

For a given step of COMPMED, among the N sets of workers (Wi,...,Wx), let K be the
number of sets that do not contain a strict majority of correct workers.

Let L' = (y1,...,yn) be a list of N values, such that:
Vie{l,...,N — K}, y; is a random value following the normal distribution A/(0, o?);
Vie{N—-K+1,...,N}, y; =w.

We define 7, as follows: v, = E[med(L’)?].1°
» Theorem 5. For CWMED, A\, = [3,.
» Theorem 6. For COMPMED, A\, = v,.

The proofs of Theorem 5 and Theorem 6 can be found in the appendix.

5.4 Simulation results

The parameters of the simulations are 0 = 1 and w = 10°. The code used for simulations
can be found in [16].

We simulated the evolution of the aggregation error A, as a function of the number of
workers, for both CWMED and COMPMED. The results are presented in Figure 1.

For f = 0, the aggregation error converges to 0 for both aggregation schemes. We now
consider the case f = 0.2 (i.e., 20% of Byzantine workers). For CWMED, the aggregation
error converges to a value close to 0.12 (the irregularities of the plot are due to the fact
than one new Byzantine worker is added for every 5 new workers). For COMPMED, the
aggregation error quickly becomes indistinguishable from the case f = 0 (i.e., it converges
to 0).

This illustrates the AAA property of our aggregation scheme: the aggregation error
converges to 0 when the number of workers increases, despite a constant fraction of Byzantine
workers (which is not the case for existing aggregation schemes, e.g. CWMED).

10Note that here, the randomness comes from the values y;, but also from K.

OPODIS 2021



4:14 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

Aggregation error (CWMed) Aggregation error (CompMed)
—a— f=0 —a— f=0
04 f=02 0.4 f=02
0.3 0.3
0.2 0.2
..’—‘\
0.1 0.1 g,

10 20 30 40 50 10 20 30 40 50
n (number of workers) N (number of sets of workers)

Figure 1 Evolution of the aggregation error for CWMED (left side) and COMPMED (right side),
as a function of n (number of workers) and N (number of sets of workers) respectively, for f =0
and f = 0.2. As a reminder, N is the largest integer such that N < n?, where n is the number of
workers.

6 Conclusion

In this paper, we presented the first aggregation scheme with the AAA property, and proved
its correctness. We illustrated this property with simulations, and compared it to an existing
scheme.

The goal of this work was to show that it was possible to have an aggregation error
converging to 0 (when n increases) in the presence of Byzantine workers. For future works,
an interesting question would be: how fast can it converge to zero? The challenge would
be to design an aggregation scheme ensuring a faster convergence, both in theory and in
simulations.
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A Appendix

2f+1

Proof of Lemma 2. Let p = == Let us describe 4 ways to select some Byzantine workers

4

among N2 workers, that we call “games”.

Game A: k workers are selected randomly, and then turned Byzantine.

Game B: Each worker is turned Byzantine with probability p.

Game C: Game B is executed. Then, if the number of Byzantine workers is k or less:
all workers are turned Byzantine.
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Game D: Game C is executed. Then, we randomly pick one Byzantine worker, make it
correct again, and repeat the process until we have exactly k& Byzantine workers.

Let @ x be the event: “After Game X, all IV sets contain a strict minority of Byzantine
workers.” As Game D consists in executing Game C, then only removing Byzantine workers,
we have: P(®p) > P(P¢).

Then, we can notice that Game D is equivalent to Game A (since each worker is equally
likely to end up Byzantine). Therefore, P(®4) = P(®p) > P(P¢). Now, let us give a lower
bound of P(®¢).

Let Ui be the following event: “After Game B, there are strictly more than k& Byzantine
workers”. Then, we can notice that, for ®- to be true, it is necessary that both &5 and Vg
are true. Indeed, if g is false, & cannot be true, because all workers would then be turned
Byzantine in Game C (just after executing Game B). And, if ¥g is true but ®p is false, P¢
cannot be true, because we would not have a strict minority of Byzantine workers in all N
sets. Therefore, P(®¢) > P(Pp A Up).

Now, notice that P(¥p) = P(®Pp A ¥p) + P(-Pp A ¥Up). Since P(-Pp A Up) <
P(ﬁq)B) =1- P((I)B), we have: P(\I/B) < P(’:DB AN \I’B) +1- P((I)B), and P((DB AN \I/B) >
P((I)B) + P(\I/B) —1.

Before going further, let us give a lower bound of P(¥ ). Let N{ be the smallest integer
such that, VN > Ng:

2

% <(p-1?

Let k&’ be the number of Byzantine workers after Game B. According to Hoeffding’s inequality,
applied to the N2 workers:

K In N2 2
P<N2p < N2>21N4
Thus, VN > N{:

K 2
P<N2_p <p—f)Zl—N4

Now, we can remark that:

K K
P<N2 <pf) §P(N2+p<pf>—P(k'>fN2)

Thus, VN > N{:

P(Wp) = P(K' > k) > P(k' > fN?)>1- %

Thus, according to Lemma 1, VN > max(Ng, Nj):

2 2
> —_ — _ — —_ = -
P(CI)B/\\I/B)i (1 N) + (]. N4> 1 1 N N

Therefore, we have:

2 2
P(EEV)ZP(@A):P(‘I’D)ZP(‘I’C)ZP(‘I’B/\‘I’B)Zl—N—ﬁ
Let Ny be such that Ny > max(Ny, V) and, VN > Ny, % < % Then, we have:
PEY) >1— «

N
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Proof of Theorem 5. Let j € {1,...,d}, and let L* be a list defined similarly to L, except
that we replace N(0,02) by N(g;,0?). Note that this is equivalent to adding g; to each
value of L.

Let us call a; the jth coordinate of the aggregated vector A,,. Then:

E[(a; — g;)%] = E[(med(L*) — g;)?] = E[med(L)?] = Bx

Therefore, Vj € {1,...,d}, E[(aj; — g;)?] = By, and:

B4 = GI7) _ i Bl —9i)] _ dB,

d d q «

Proof of Theorem 6. Let (Wy,...,Wy) be the N sets of workers chosen at each step of
ComMPMED. Let S; be the set of vectors sent by the workers of W,. Let Maj(S;) =
(hl, hoy..., hd)

If W; contains a strict majority of correct workers, then, Vj € {1,...,d}, h; follows the
normal distribution N (gj,0?). Otherwise, Vj € {1,...,d}, h; = w.

Let K be the number of sets of workers W; that do not contain a strict majority of correct
workers. Then, the rest of the proof is identical to the proof of Theorem 5, if we replace L
by L’ (that is, replacing n by N and k by K). Thus, the result. <
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