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Preface

The papers in this volume were presented at the 25th International Conference on Principles
of Distributed Systems (OPODIS 2021), held on December 13–15, 2021 in Strasbourg, France.

OPODIS is an open forum for the exchange of state-of-the-art knowledge about dis-
tributed computing. With strong roots in the theory of distributed systems, OPODIS has
expanded its scope to cover the entire range between the theoretical aspects and practical
implementations of distributed systems, as well as experimental and quantitative assessments.
All aspects of distributed systems are within the scope of OPODIS: theory, specification,
design, performance, and system building. Specifically, this year, the topics of interest at
OPODIS included:

Biological distributed algorithms
Blockchain technology and theory
Communication networks (protocols, architectures, services, applications)
Cloud computing and data centers
Dependable distributed algorithms and systems
Design and analysis of concurrent and distributed data structures
Design and analysis of distributed algorithms
Randomization in distributed computing
Social systems, peer-to-peer and overlay networks
Distributed event processing
Distributed operating systems, middleware, and distributed database systems
Distributed storage and file systems, large-scale systems, and big data analytics
Edge computing
Embedded and energy-efficient distributed systems
Game-theory and economical aspects of distributed computing
Security and privacy, cryptographic protocols
Synchronization, concurrent algorithms, shared and transactional memory
Impossibility results for distributed computing
High-performance, cluster, cloud and grid computing
Internet of things and cyber-physical systems
Mesh and ad-hoc networks (wireless, mobile, sensor), location and context-aware systems
Mobile agents, robots, and rendezvous
Programming languages, formal methods, specification and verification applied to distrib-
uted systems
Self-stabilization, self-organization, autonomy
Distributed deployments of machine learning

We received 70 submissions, each of which underwent a double-blind peer review process.
Three submissions were rejected for being out of the scope of the conference or having
the wrong format. Overall, the quality of the submissions was very high. From the 70
submissions, 28 papers were selected to be included in these proceedings.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget.
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The review process was done using HotCRP. The Best Paper Award was awarded to Ittai
Abraham, Kartik Nayak and Nibesh Shrestha for their paper titled “Optimal Good-case
Latency for Rotating Leader Synchronous BFT”. The Best Student Paper Award was given
to Gabriel Le Bouder for his paper titled “Optimal Space Lower Bound for Deterministic Self-
Stabilizing Leader Election Algorithms”, co-authored with Laurent Feuilloley and Lélia Blin.

This year OPODIS had three distinguished invited keynote speakers: Nathalie Bertrand
(INRIA, Rennes), Petr Kuznetsov (INFRES, Telecom Paris, Institut Polytechnique de Paris)
and Robbert van Renesse (Cornell University, Ithaca, NY, USA).

Thank you to all the authors that submitted their work to OPODIS. We are also grateful
to the Program Committee members for their hard work reviewing papers and their active
participation in the online discussions and the Program Committee meeting. We also thank
the external reviewers for their help with the reviewing process.

Organizing this event would not have been possible without the help of the Networks
Team of the ICUBE Laboratory.

Finally, we thank the Steering Committee members for their valuable advice, as well as
the sponsors and the University of Strasbourg for their support.

November 2021

Quentin Bramas (University of Strasbourg, ICUBE, France)
Vincent Gramoli (University of Sydney and EPFL, Switzerland)
Alessia Milani (LIS, Aix-Marseille Université, France)
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Distributed Algorithms: A Challenging Playground
for Model Checking
Nathalie Bertrand #

Univ Rennes, Inria, CNRS, IRISA, France

Abstract
Distributed computing is increasingly spreading, in advanced technological applications as well
as in our daily life. Failures in distributed algorithms can have important human and financial
consequences, so that is is crucial to develop rigorous techniques to verify their correctness. Model
checking is a model-based approach to formal verification, dating back the 80’s. It has been
successfully applied first to hardware, and later to software verification.

Distributed computing raises new challenges for the model checking community, and calls for
the development of new verification techniques and tools. In particular, the parameterized verifica-
tion paradigm is nowadays blooming to help proving automatically the correctness of distributed
algorithms. In this invited talk, we present recent parameterized verification developments to
automatically prove properties of some classical distributed algorithms.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Distributed algorithms

Keywords and phrases Verification, Distributed algorithms
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Accountable Distributed Computing
Petr Kuznetsov #

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Abstract
There are two major ways to deal with failures in distributed computing: fault-tolerance and
accountability. Fault-tolerance intends to anticipate failures by investing into replication and
synchronization, so that the system’s correctness is not affected by faulty components. In contrast,
accountability enables detecting failures a posteriori and raising undeniable evidences against faulty
components.

In this talk, we discuss how accountability can be achieved, both in generic and application-
specific ways. We begin with an overview of fault detection mechanisms used in benign, crash-prone
system, with a focus on the weakest failure detector question. We then consider the fault detection
problem in systems with general, Byzantine failures and explore which classes of misbehavior can be
detected and which – cannot. We then study the mechanism of application-specific accountability
that, intuitively, only accounts for instances of misbehavior that affect particular correctness criteria.
Finally, we discuss how fault detection can be combined with reconfiguration, opening an avenue of
“self-healing” systems that seamlessly replace faulty system components with correct ones.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Fault-tolerance, fault detection, accountability, application-specific
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A Fresh Look at the Design and Implementation of
Communication Paradigms
Robbert van Renesse #

Cornell University, Ithaca, NY, USA

Abstract
Datacenter applications consist of many communicating components and evolve organically as
requirements develop over time. In this talk I will present two projects that try to support such
organic growth. The first project, Escher, recognizes that components of a distributed systems may
themselves be distributed systems. Escher introduces a communication abstraction that hides the
internals of a distributed component, and in particular how to communicate with it, from other
components. Using Escher, a replicated server can invoke another replicated server without either
server having to even know that the servers are replicated. The second project, Scalog, presents a
datacenter scale totally ordered logging service. Logs are increasingly a central component in many
datacenter applications, but log configurations can lead to significant hiccups in the performance
of those applications. Scalog has seamless reconfiguration operations that allow it to scale up and
down without any downtime.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed systems
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Arbitrarily Accurate Aggregation Scheme for
Byzantine SGD
Alexandre Maurer
School of Computer Science, UM6P, Ben Guerir, Morocco

Abstract
A very common optimization technique in Machine Learning is Stochastic Gradient Descent (SGD).
SGD can easily be distributed: several workers try to estimate the gradient of a loss function, and
a central parameter server gathers these estimates. When all workers behave correctly, the more
workers we have, the more accurate the gradient estimate is. We call this the Arbitrary Aggregation
Accuracy (AAA) property.

However, in practice, some workers may be Byzantine (i.e., have an arbitrary behavior). In-
terestingly, when a fixed fraction of workers is assumed to be Byzantine (e.g. 20%), no existing
aggregation scheme has the AAA property. In this paper, we propose the first aggregation scheme
that has this property despite a fixed fraction of Byzantine workers (less than 50%). We theoretically
prove this property, and then illustrate it with simulations.
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1 Introduction

Many machine learning models are trained using stochastic gradient descent (SGD) [17], an
optimization technique that can easily be parallelized on multiple computers. As machine
learning models become larger and larger, parallelizing their training becomes more and
more important, if we want to train them in a reasonable amount of time.

If all computers are assumed to work correctly, parallelizing the training is relatively
simple. The classical architecture is the following. A central parameter server is trying to
minimize a loss function. To do so, it uses the gradient descent algorithm, which requires to
compute (an approximation of) the gradient of the loss function, at several points of the loss
function. As this is the most time-consuming task, the parameter server distributes this task
among multiple workers. Each worker computes a vector which is an approximation of the
desired gradient. The parameter server then collects and aggregates these vectors, to obtain
a (reasonably good) approximation of the gradient. This process is repeated multiple times,
until we reach a minimum of the loss function. We explain this in more details in Section 2.3.

However, when the number of workers becomes very large, one should assume that
some workers will not behave correctly. Some workers may even be malicious agents trying
to prevent a successful training of the model. This is especially true when workers are
not identical computers stored in a data center, but personal computers or smartphones
participating in the training in a collaborative way.

Therefore, a recent line of work is robust distributed SGD: the goal is to propose distributed
architectures that manage to train the model despite the presence of malicious workers. In
order to achieve very strong safety guarantees, we assume that these malicious workers are
Byzantine [15], that is: they are omniscient, and can have any arbitrary behavior.
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4:2 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

Let us give a quick overview of this literature.1 In [18], a first solution was proposed for
problems of dimension one. In [3], a score is associated to each proposed vector, defined as
the sum of distances with some of its closest neighbors. The vector with the smallest score
is then selected. In [9], several outputs of [3] are selected (without replacement), and then
averaged. In [21], a scalar aggregation rule (SAR) is applied to each coordinate. This SAR
can be, for instance, the median, or a trimmed mean (a mean after removing the x% largest
and x% smallest values). In [19] (resp. [20]), the proposed values closest from the median
(resp. trimmed mean) are selected, then averaged. In [12], a variant of the trimmed mean
is applied to a selection of vectors obtained from [9]. In [7], several batches of vectors are
averaged; then, their geometric median is computed. In [6], the vectors are aggregated using
coding theory and a redundancy scheme. In [1] and [10], historical information is used to
identify dishonest workers. The only solution tolerating asynchrony so far is [10].

Note that most of these works assume a centralized and reliable parameter server. However,
as shown in [11], these schemes2 can be transformed into fully decentralized schemes, where
no entity is a single point of failure. In order to focus on the aggregation strategy, we also
assume a centralized parameter server in this paper.

In the following, we focus on aggregation schemes where an approximation of the gradient
is computed independently at each step, like in classical SGD. Aside from enabling a clearer
mathematical analysis of the gradient, it also makes the system resilient to transient failures,
that is: in addition of Byzantine workers, the system can recover from any temporary failures
of correct workers.

The Arbitrary Aggregation Accuracy (AAA) property

Now, let us come back to the case where all workers are correct, and consider a given step of
the gradient descent algorithm. In this setting, the parameter server simply computes the
mean of the received vectors. If each workers processes a given share of the dataset, and these
shares are independent and identically distributed (which is usually assumed), then the more
workers we have, the more accurate our approximation of the true gradient will be. Actually,
for any arbitrary level of precision, there exists a number of workers that can achieve this
level of precision. We call this the Arbitrary Aggregation Accuracy (AAA) property.

Formally, if G is the true gradient of the loss function (at a given step), n is the number
of workers, and An is the vector aggregated by the parameter server (the approximation of
the true gradient), then this property can be expressed as follows:3

lim
n→+∞

E∥An −G∥ = 0.

We now assume that there is a fixed fraction of Byzantine workers (for instance, 20% of
workers, independently of the total number of workers). We may ask the following question:
is it possible to have the AAA property in this setting?

1 This problem shares some similarities with the more general problem of executing arbitrary tasks in a
setting with a “master” and several (unreliable) “workers”. In [14], a bound is shown on the complexity
of performing n tasks correctly with high probability. However, doing so does not give meaningful
guarantees when the goal is to perform SGD.

2 This applies to any scheme of the same (centralized) nature as those presented above.
3 In this paper, ∥·∥ refers to the L2 norm, and the expectation is both on the i.i.d. samples of the dataset

and on the randomness involved in the algorithm.
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Interestingly, no existing Byzantine-resilient version of SGD has this property (more
details on this in Section 2.5): a fixed fraction of Byzantine workers results in a fixed error
w.r.t. the true gradient, no matter how large the number of workers is.

Our contribution

In this paper, we propose Compass, the first aggregation scheme that has the AAA property
despite a fixed fraction f of Byzantine workers (f < 1

2 ). We describe this scheme, then prove
that it has the AAA property. We then illustrate this property with simulations: we compare
the accuracy of CompMed (a modified version of Compass4) to an existing aggregation
scheme.

The rest of the paper is organized as follows. In Section 2, we describe the general
setting. In Section 3, we describe the Compass aggregation scheme. In Section 4, we prove
that Compass has the AAA property. In Section 5, we illustrate the AAA property with
simulations. We conclude in Section 6.

Remarks and clarifications

Before going further, let us clarify several points about the contribution of this paper.

This work is mostly a theoretical work.
This work, as well as many previous works, proposes a scheme to approximate the gradient
of the loss function. The precision of this approximation (of the gradient) should not
be confused with the precision of the learned model. For a given gradient descent step,
having an accurate gradient is always a desirable property, since the goal of a gradient
descent step is to decrease the value of the loss function. Therefore, an accurate gradient
approximation will not be the cause of problems like overfitting.
Similarly, guarantees on the quality of the gradient approximation (as provided in this
work and several previous works) should not be confused with guarantees on the accuracy
of the trained model. Such guarantees can be found, for instance, in [1] and [5], under
specific hypotheses (e.g., convex loss function, bounded gradient. . . ).
The gradient approximations proposed by correct workers may have a variance high
enough to allow Byzantine workers to collude to move the mean without being detected
(as described in [2]). However, they can only do so in aggrergation schemes where the AAA
property is not satisfied: this property ensures that the estimated gradient is arbitrarily
close to the true gradient, independently of the behavior of Byzantine workers.
In the SGD algorithm, there is always a probability of error w.r.t. the true gradient. It is
also the case for distributed SGD (without failures), and for Byzantine-resilient solutions
(including ours). Nevertheless, we ensure that this error shrinks to zero when the number
of nodes increases.

2 Preliminaries

2.1 Setting
We want to train a machine learning model of d parameters, using the gradient descent
algorithm.

4 The reason for this change is motivated in Section 5.1.
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4:4 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

The model can be represented by a function M(P, X), where P = (p1, . . . , pd) are the
parameters of the model (for instance, the weights and biases of a neural network), and X is
the current input of the model (usually a vector of real values). M(P, X) returns a single
real value y.

To train the model, we have a dataset consisting in two lists (X1, . . . , Xm) and (y1, . . . , ym),
where Xi is an input of the model (feature), and yi is the corresponding desired output
(label). In the following, we denote yi by y(Xi). We define a loss function L(P ), measuring
the “distance” between the current model and the desired outputs. For instance, a classic
form of the loss function is:

L(P ) = 1
m

m∑
i=1

(M(P, Xi)− y(Xi))2
.

We make no hypotheses on the shape of this function, except that it has, in each point, a
gradient with finite coordinate values.5

Training the model consists in finding a set of parameters minimizing the loss function.
The standard way to do this is to use the gradient descent algorithm, which consists of
repeating the two following steps:

1. Compute the gradient ∇L(P ) of the loss function.
2. Update the vector of parameters P as follows: P ← P−α∇L(P ) (where α is an arbitrarily

small constant).

2.2 Stochastic gradient descent (SGD)
In practice, computing the exact gradient may be very long when the dataset contains a lot
of elements (which is usually the case). An alternative is to use stochastic gradient descent
(SGD), that is: at each step, we randomly select a set S of elements from the dataset, and
use it to compute an approximation ∇L∗(P, S) of ∇L(P ). For instance, if L(P ) has the
aforementioned classical form, then:

L∗(P, S) = 1
|S|

∑
X∈S

(M(P, X)− y(X))2
.

Over several steps, the errors due to randomness tend to cancel each other, and we
generally achieve the same result with a much shorter computation time.

2.3 Distributed SGD
A convenient property of SGD is that it can easily be parallelized. The classical architecture
is the following. We have a parameter server, that stores and updates the parameters of the
model, and n workers (w1, . . . , wn).

Let α > 0 be an arbitrarily small constant. At each step:

1. The parameter server sends the current vector of parameters P to each worker.
2. Each worker wi selects a random subset S of the dataset, computes Vi = ∇L∗(P, S), and

sends it to the parameter server.
3. The parameter server computes the mean An of the received vectors Vi (An = 1

n

∑n
i=1 Vi),

and uses it to update the model (P ← P − αAn).

5 This function may have multiple local minima. However, for most machine learning models (e.g. neural
networks), most local minima are sufficient to reach a satisfying accuracy [8].
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Here, we assume that each worker possesses a copy of the whole dataset, and can randomly
select elements from the dataset at each step. This is a reasonable hypothesis, given the
current memory capacities of computers (or even smartphones), and the cheap cost of memory
units (relatively to the cost of computing power). We make this hypothesis in the rest of
the paper. Another justification might be that workers have remote access to the dataset
through the internet (and may copy specific parts of it).

2.4 Failure model
In the aforementioned distributed setting, all workers are assumed to behave correctly.
However, in practice, this may not always be the case.

Let f < 0.5 be a fixed parameter of the problem. Let k be the largest integer such that
k ≤ fn. Among the n workers, k are assumed to be Byzantine, that is: their behavior is
completely arbitrary. Here, as the workers send vectors to the parameter server, this means
that up to k workers can send arbitrary vectors to the parameter server. The parameter
server does not know which workers are Byzantine.

Note that, since the behavior of Byzantine workers is arbitrary, it does not matter whether
or not they keep track of past events: we must always assume the worst-case scenario.

2.5 The Arbitrary Aggregation Accuracy (AAA) property
An aggregation scheme is a distributed system that, for a given step of the gradient descent
algorithm, produces an approximation A of the true gradient G = ∇L(P ) of the loss function.
The scheme presented in 2.3 is an example of aggregation scheme. If such a system allows an
arbitrary number n of workers, we call the resulting aggregated vector An.

We say that an aggregation scheme has the Arbitrary Aggregation Accuracy (AAA)
property if the expected value of the distance between An and G approaches 0 when n

increases:

lim
n→+∞

E∥An −G∥ = 0.

A classical metric for Byzantine-resilient versions of SGD is the angular error, that is: the
angle θn between E[An] and G. An asymptotic comparison of the angular errors of existing
aggregation schemes is provided in [4]. When the fraction of Byzantine workers is constant
(independently of n), these angular errors are at best Θ(1) (i.e. constant). This contradicts
the AAA property: when this property is satisfied, limn→+∞θn = 0.

To give some intuition on why these previous solutions do not satisfy the AAA property,
let us consider, for instance, the coordinate-wise median: for each coordinate, we take the
median of the values proposed by workers (see Section 5.1 for a more formal description).
In this setting, the worst thing Byzantine workers can do is to propose extreme values (all
positive or all negative): even if they are a minority, this will push the median towards these
extreme values. Here, for a given distribution of values, a fixed fraction of Byzantine workers
will have a fixed impact of the median value. This phenomena is illustrated experimentally
in Section 5.

3 Our aggregation scheme

In this section, we present the Compass aggregation scheme. In 3.1, we give some preliminary
definitions. In 3.2, we describe Compass. In 3.3, we explain its general idea, and comment
it step by step.
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4:6 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

3.1 Definitions
We consider n workers (w1, . . . , wn). Let N be the largest integer such that N2 ≤ n. Let M

be a fixed parameter, corresponding to the number of elements of the dataset that a worker
uses to compute an approximation of the gradient at each step.

We now define several notions and functions used in our aggregation scheme:

A random split consists in randomly selecting a set S of N2 workers among (w1, . . . , wn),
then randomly splitting the elements of S into N sets (W1, . . . , WN ), each one containing
N elements.
A random pick is a set of M randomly selected integers between 1 and m (as a reminder,
m is the size of the dataset).
For a set S of vectors of dimension d, we define the function Maj(S) as follows:

If there exists a vector V of S such that a strict majority of vectors of S are equal to
V , then, Maj(S) = V .
Otherwise, Maj(S) returns a null vector (0, 0, . . . , 0) of dimension d.

For two values p and x (with x ≥ 0), we define Cut0(p, x) as follows:
If p > x, Cut0(p, x) = x

If p < −x, Cut0(p, x) = −x

Otherwise, Cut0(p, x) = p

For a vector V = (v1, v2, . . . , vd) and a value x, we define Cut(V, x) as follows:

Cut(V, x) = (Cut0(v1, x), Cut0(v2, x), . . . , Cut0(vd, x)).

3.2 Description of the aggregation scheme
We now describe the Compass aggregation scheme (similarly to the distributed SGD scheme
described in 2.3).

Let α > 0 be an arbitrarily small constant. At each step:

1. The parameter server generates a random split (W1, . . . , WN ) and N random picks
(Z1, . . . , ZN ).

2. ∀i ∈ {1, . . . , N}, the parameter server sends Zi and the current vector of parameters P

to each worker of the set Wi.
3. ∀i ∈ {1, . . . , N}, let Ωi be the set containing the elements Xj of the dataset such that

j ∈ Zi. Each worker of the set Wi computes ∇L∗(P, Ωi), and sends it to the parameter
server.

4. ∀i ∈ {1, . . . , N}, let Si be the set of vectors sent by the workers of Wi (the parameter
server only accepts one vector per worker6). The parameter server aggregates the received
vectors as follows:

An = Cut

(
1
N

N∑
i=1

Maj(Si),
√

N

)

. . . and uses it to update the model (P ← P − αAn).

6 If a worker does not send any vector before the end of the round, we consider that it sent a null vector
(0, 0, . . . , 0). Therefore, |Si| = |Wi|.
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3.3 Detailed explanation
General idea

A common strategy to defeat Byzantine processes is replication: many processes perform
the same computing task, and a majority vote selects the correct output. Here, however,
if all correct workers compute the same vector, adding more workers will not improve the
quality of the gradient approximation. To do so, we have to aggregate many (independent)
approximations. This is done, for instance, in the simple scheme described in Section 2.3
(with a mean). However, this scheme is not robust to even one Byzantine worker (as shown
in [3]).

Here, we propose a balanced mix of replication and aggregation: if we have N2 workers
(N ≈

√
n), then, we can choose N sets of N workers each. Each set computes the same

vector, and a majority vote determines the output of this set. We then aggregate these
outputs. As N grows with n, increasing the number of workers increases both the reliability
of replication and the quality of aggregation.

Step-by-step description

Now, let us comment on our aggregation scheme step by step.
In Step 1, the parameter server generates the N aforementioned sets (W1, . . . , WN ). To

prevent any strategic placement of Byzantine workers, these sets are chosen randomly at each
step. The parameter server also generates N random picks (Z1, . . . , ZN ). Each Zi is a set of
identifiers of elements of the dataset. These elements will be processed by the corresponding
group of workers Wi.

In Step 2, the parameter server sends P (the current vector of parameters) and Zi (the
aforementioned set of identifiers) to each worker of the set Wi, for each i ∈ {1, . . . , N}.

In Step 3, each worker of the set Wi (for each i ∈ {1, . . . , N}) computes the approximation
∇L∗(P, Ωi) of the gradient∇L(P ), where Ωi is the set of elements of the dataset corresponding
to Zi. Then, it sends it back to the parameter server.

In Step 4, the parameter server aggregates the received vectors. First, it uses a majority
vote (Maj(Si)) to determine the output of the set Wi (for each i ∈ {1, . . . , N}). Then, it
computes the mean of these outputs. Finally, it applies the Cut function to ensure that the
coordinates of the aggregated vector remain smaller than

√
N . Doing so is important, because

there is always a probability µ > 0 that a set Wi contains a majority of Byzantine workers. If
so, the output of this set (after the majority vote) will be determined by Byzantine workers,
that could (for instance) propose a vector with coordinate values inversely proportional to
µ, to ensure that the expected mean of outputs remains far away from the true gradient.
Applying the Cut function enables to prove the result of Lemma 3 (see Section 4), and then
the AAA property.

4 Analysis

In this section, we prove that Compass has the AAA property (see Theorem 4).
In the following proofs, we introduce several variables in order to constrain some values to

be integers. For instance: “Let k be the largest integer such that k < n2”. Some readers may
consider that it would be simpler to just write “

√
n” here; however, some other readers may

object that doing so would make the proofs less rigorous, and make their validity unclear.
For this reason, we choose to use the first notation.

OPODIS 2021



4:8 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

▶ Lemma 1. Let p < 1
2 be a probability. Consider N sets of N workers, where each worker

has an independent probability p to be Byzantine. Let EN be the following event: “All N sets
contain a strict minority of Byzantine workers”. Then, there exists N0 such that, ∀N ≥ N0,
P (EN ) ≥ 1− 2

N .

Proof. As lim
x→+∞

ln x
x = 0, let N0 be the smallest integer such that, ∀N ≥ N0:

ln N0

N0
<

(
1− 2p

4

)2
.

Consider a set of workers. Let k be the number of Byzantine workers in this set. According
to Hoeffding’s inequality:

P (|k −Np| ≥
√

N ln N) ≤ 2
N2 .

Therefore:

P

(∣∣∣∣ k

N
− p

∣∣∣∣ <

√
ln N

N

)
≥ 1− 2

N2

. . . and, for N ≥ N0:

P

(∣∣∣∣ k

N
− p

∣∣∣∣ <
1− 2p

4

)
≥ 1− 2

N2 .

Now, we can remark that:

P

(∣∣∣∣ k

N
− p

∣∣∣∣ <
1− 2p

4

)
≤ P

(
k

N
− p <

1− 2p

4

)
= P

(
k

N
<

1 + 2p

4

)
.

As p < 1
2 , we have 1 + 2p < 2, and:

P

(
k

N
<

1 + 2p

4

)
≤ P

(
k

N
<

2
4

)
= P

(
k <

N

2

)
.

Thus, ∀N ≥ N0:

P

(
k <

N

2

)
≥ 1− 2

N2

and

P (EN ) ≥
(

1− 2
N2

)N

≥ 1− 2N

N2 = 1− 2
N

. ◀

▶ Lemma 2. Let N ≥ 1 be an integer, and let f < 1
2 be a positive value. Consider N2

workers, among which k are Byzantine, with k ≤ fN2. Assume that these N2 workers are
randomly assigned to N sets. Let E′

N be the following event: “All N sets contain a strict
minority of Byzantine workers”. Then, there exists N1 such that, ∀N ≥ N1, P (E′

N ) ≥ 1− 3
N .

Proof. The proof of this lemma can be found in the appendix. ◀
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▶ Lemma 3. Let G be a vector of dimension d, and let p < 3
N be a probability. Let

(V1, V2, V3, . . . ) be a sequence of vectors of dimension d, such that limN→+∞
1
N

∑N
i=1 Vi = G.7

Let (B1, B2, B3, . . . ) be an arbitrary sequence of vectors of dimension d. Let RN be a
random vector defined as follows: with probability p, RN = Cut

(
BN ,
√

N
)

; otherwise,

RN = Cut
(

1
N

∑N
i=1 Vi,

√
N
)

. Then, limN→+∞ E∥RN −G∥ = 0.

Proof. Before going further, let us clarify one possible misunderstanding. Some readers may
confuse N with the number of parameters of the model (which is not the case). According to
the lemma’s statement, N is related to the numbers of vectors used to approximate the true
gradient. The number of parameters of the model is not used in the proofs of this paper.

E∥RN −G∥ = p
∥∥∥Cut

(
BN ,
√

N
)
−G

∥∥∥︸ ︷︷ ︸
XN

+ (1− p)

∥∥∥∥∥Cut

(
1
N

N∑
i=1

Vi,
√

N

)
−G

∥∥∥∥∥︸ ︷︷ ︸
YN

By definition of the Cut function, ∀N ≥ 1,
∥∥∥Cut

(
BN ,
√

N
)∥∥∥ ≤ √d

√
N .

As p < 3
N :

p
∥∥∥Cut

(
BN ,
√

N
)∥∥∥ <

3
N

√
d
√

N = 3
√

d√
N

.

Therefore:

XN ≤ p
∥∥∥Cut

(
BN ,
√

N
)∥∥∥+ p∥G∥ <

3
√

d√
N

+ 3
N
∥G∥.

As a result, limN→+∞ XN = 0. Now, let us determine limN→+∞ YN .
Let δ > 0. Let j ∈ {1, . . . , d}, and let v(i, j) (resp. g(j)) be the jth coordinate of Vi (resp.

G). As limN→+∞
1
N

∑N
i=1 Vi = G, in particular:

lim
N→+∞

1
N

N∑
i=1

v(i, j) = g(j).

Thus, there exists nj such that, ∀N ≥ nj :∣∣∣∣∣g(j)− 1
N

N∑
i=1

v(i, j)

∣∣∣∣∣ ≤ δ.

Thus, ∀N ≥ nj :∣∣∣∣∣ 1
N

N∑
i=1

v(i, j)

∣∣∣∣∣ ≤ δ + |g(j)| .

Let N0 be the smallest integer such that N0 ≥ max(n1, . . . , nd) and
√

N0 ≥ δ+maxj∈{1,...,d} |g(j)|.
Then, ∀N ≥ N0 and ∀j ∈ {1, . . . , d}:∣∣∣∣∣ 1
N

N∑
i=1

v(i, j)

∣∣∣∣∣ ≤ √N

7 This sequence represents the vectors proposed by Byzantine workers. The reason why we write them as
a sequence is that we further write “limN→+∞fN ”, where fN is a function of BN .
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4:10 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

and

Cut0

(
1
N

N∑
i=1

v(i, j),
√

N

)
= 1

N

N∑
i=1

v(i, j).

Thus, forall N ≥ N0:

Cut

(
1
N

N∑
i=1

Vi,
√

N

)
= 1

N

N∑
i=1

Vi.

As a result:

lim
N→+∞

Cut

(
1
N

N∑
i=1

Vi,
√

N

)
= lim

N→+∞

1
N

N∑
i=1

Vi = G

and

lim
N→+∞

∥∥∥∥∥Cut

(
1
N

N∑
i=1

Vi,
√

N

)
−G

∥∥∥∥∥ = 0.

As p < 3
N , limN→+∞(1− p) = 1, and limN→+∞ YN = 0. Therefore:

lim
N→+∞

E∥RN −G∥ = lim
N→+∞

XN + lim
N→+∞

YN = 0. ◀

▶ Theorem 4. Compass has the AAA property.

Proof. As a reminder, N is the largest integer such that N2 ≤ n.
Let (W1, . . . , WN ) be the random split generated in Step 1 of Compass. According

to Lemma 2, with a probability at least 1 − 3
N , each set Wi contains a strict minority of

Byzantine workers. In other words, the probability p that these sets do not all contain a
strict minority of Byzantine workers is such that p < 3

N .
Besides, when all sets Wi contain a strict minority of Byzantine workers, Maj(Si)

corresponds to the vector sent by the correct workers of Wi (as a reminder, Si is the set
of vectors sent by the workers of Wi). As these vectors Maj(Si) are all based on random
samples of the dataset, E[Maj(Si)] = G. In other words:

lim
N→+∞

1
N

N∑
i=1

Maj(Si) = G.

Therefore, the output An of Compass can be represented by the random vector RN of
Lemma 3 (where the arbitrary vectors (B1, B2, B3, . . . ) correspond to the cases where not
all sets Wi contain a strict minority of Byzantine workers).

When n→ +∞, N → +∞. Therefore, according to Lemma 3, limn→+∞ E∥An −G∥ = 0,
and Compass has the AAA property. ◀

5 Simulations

In this section, we illustrate the AAA property with simulations. We compare CompMed (a
modified version of Compass) with an existing aggregation scheme. In 5.1, we describe these
two aggregation schemes. In 5.2, we describe the simulation setting. In 5.3, we show how to
make simulations both simpler and more general. The simulation results are presented in 5.4.
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5.1 Aggregation schemes
Let us describe the aggregation schemes CWMed and CompMed.

CWMed (Coordinate-Wise Median) is an aggregation scheme introduced in [21]. It
consists in taking the median value for each coordinate, in order to exclude extreme
values proposed by Byzantine workers. Its angular error is constant. As a reminder (see
2.5), among existing aggregation schemes, the angular error is at best constant.
CompMed is a modified version of Compass. The principle is the same, except that
the final aggregation formula is now similar to CWMed. The reason for this change is
that Compass is designed to prove a very general result (for any distribution of values),
but may be slow to converge in practice. For these simulations, we assume that the
coordinates values proposed by correct workers follow a normal distribution (see 5.2). In
this setting, CompMed converges much more quickly.8

Description of CWMed

We first define the function Med.
Let L be a list of n values. Let (x1, . . . , xn) be a list containing the same values as L,

but sorted in increasing order. We define the function med(L) as follows:

If n is even, med(L) =
x n

2
+x n

2 +1

2 .
If n is odd, med(L) = x n+1

2
.

Let (V1, . . . , Vn) be n vectors. Let v(i, j) be the jth coordinate of Vi. Let Cj =
(v(1, j), v(2, j), . . . , v(n, j)).

We define Med(V1, V2, . . . , Vn) as follows:

Med(V1, V2, . . . , Vn) = (med(C1), med(C2), . . . , med(Cd)).

We now describe the CWMed aggregation scheme.
Let α > 0 be an arbitrarily small constant. At each step:

1. The parameter server generates n random picks (Z1, . . . , ZN ).
2. ∀i ∈ {1, . . . , n}, the parameter server sends Zi and the current vector of parameters P to

worker wi.
3. ∀i ∈ {1, . . . , n}, let Ωi be the set containing the elements Xj of the dataset such that

j ∈ Zi. Each worker wi computes ∇L∗(P, Ωi), and sends it to the parameter server.
4. ∀i ∈ {1, . . . , n}, let Vi be the vector sent by worker wi.9 The parameter server aggregates

the received vectors as follows:

8 This is due to the fact that Compass computes a mean of several vectors, some of which being potentially
Byzantine. Therefore, the size N of the groups of workers must be large enough to ensure that all these
vectors are correct with a very high probability (the Cut function takes care of the extremely unlikely
bad cases).

Here, we assume that the coordinate values proposed by correct workers follow a normal distribution,
which means that their expected median value is equal to their expected mean value. Therefore, we can
use CWMed, which also excludes extreme values. However, in the general case, the expected median
value of a distribution is not always equal to its expected mean value. This is why we used Compass to
prove the main theoretical result.
Note that this problem (of the expected median value now always being equal to the expected mean value)
is a theoretical limitation of both CWMed and CompMed. Therefore, the comparison we make here is
fair with regards to this particular aspect.
9 If a worker does not send any vector before the end of the round, we consider that it sent a null vector

(0, 0, . . . , 0).
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An = Med(V1, V2, . . . , Vn)

. . . and uses it to update the model (P ← P − αAn).

Description of CompMed

The CompMed aggregation scheme is defined similarly to the Compass aggregation scheme,
except that the aggregated vector is now defined as follows:

An = Med(Maj(S1), Maj(S2), . . . , Maj(Sn)).

5.2 Simulation setting
Let σ > 0 be a positive constants. Let G = (g1, . . . , gd) = ∇L(P ) be the gradient of the loss
function.

Let Ω∗ be a set of M random elements of the dataset. We assume that L∗(P, Ω∗) =
(g∗

1 , g∗
2 , . . . , g∗

d) (i.e., the approximation of the gradient that each correct worker computes)
follows a normal distribution centered on the true gradient, that is: ∀j ∈ {1, . . . , d}, gj

follows the normal distribution N (gj , σ2). This assumption is backed by recent results in
machine learning [13]: many normally distributed datasets result in normally distributed
gradients.

Aggregation error

To measure the quality of an aggregation scheme An (for a given number of workers n), we
define the aggregation error λn as follows:

λn = E[∥An −G∥2]
d

.

This quantity measures the average distance between An and G, with regards to the
randomness of our model. Dividing by the dimension d (which is a constant of the problem)
enables to significantly simplify the simulations, as shown in Section 5.3.

Attack model

Let f < 1
2 be the fraction of Byzantine workers. We assume that all Byzantine workers send

the vector VB = (ω, ω, . . . , ω) to the parameter server, where ω is an arbitrarily large positive
constant.

For CWMed, this attack has a maximal impact: it “pushes” the median values of
coordinates as far a possible from the value they would have had otherwise. The same is true
for CompMed: if some groups of workers contain a majority of Byzantine workers, their
output will be VB .

5.3 Making the simulations simpler and more general
Let us show that, for CWMed and CompMed, the aggregation error λn can actually be
computed without choosing specific values for d and (g1, . . . , gd). Besides simplifying the
simulations, this makes the simulation results more general (i.e., not dependent on d and
(g1, . . . , gd)). Therefore, the only parameters of the simulations (defined above) are: σ, f

and ω.
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In the following, we explain how to compute two metrics βn and γn, that do not depend
on d or (g1, . . . , gd). Then, in Theorem 5 and 6, we show that λn = βn (for CWMed) and
λn = γn (for CompMed).

Definition of βn

Let k be the largest integer such that k ≤ fn. Let L = (y1, . . . , yn) be a list of n values, such
that:
∀i ∈ {1, . . . , n− k}, yi is a random value following the normal distribution N (0, σ2);
∀i ∈ {n− k + 1, . . . , n}, yi = ω.

We define βn as follows: βn = E[med(L)2].

Definition of γn

For a given step of CompMed, among the N sets of workers (W1, . . . , WN ), let K be the
number of sets that do not contain a strict majority of correct workers.

Let L′ = (y1, . . . , yN ) be a list of N values, such that:
∀i ∈ {1, . . . , N −K}, yi is a random value following the normal distribution N (0, σ2);
∀i ∈ {N −K + 1, . . . , N}, yi = ω.

We define γn as follows: γn = E[med(L′)2].10

▶ Theorem 5. For CWMed, λn = βn.

▶ Theorem 6. For CompMed, λn = γn.

The proofs of Theorem 5 and Theorem 6 can be found in the appendix.

5.4 Simulation results

The parameters of the simulations are σ = 1 and ω = 105. The code used for simulations
can be found in [16].

We simulated the evolution of the aggregation error λn as a function of the number of
workers, for both CWMed and CompMed. The results are presented in Figure 1.

For f = 0, the aggregation error converges to 0 for both aggregation schemes. We now
consider the case f = 0.2 (i.e., 20% of Byzantine workers). For CWMed, the aggregation
error converges to a value close to 0.12 (the irregularities of the plot are due to the fact
than one new Byzantine worker is added for every 5 new workers). For CompMed, the
aggregation error quickly becomes indistinguishable from the case f = 0 (i.e., it converges
to 0).

This illustrates the AAA property of our aggregation scheme: the aggregation error
converges to 0 when the number of workers increases, despite a constant fraction of Byzantine
workers (which is not the case for existing aggregation schemes, e.g. CWMed).

10 Note that here, the randomness comes from the values yi, but also from K.
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Figure 1 Evolution of the aggregation error for CWMed (left side) and CompMed (right side),
as a function of n (number of workers) and N (number of sets of workers) respectively, for f = 0
and f = 0.2. As a reminder, N is the largest integer such that N ≤ n2, where n is the number of
workers.

6 Conclusion

In this paper, we presented the first aggregation scheme with the AAA property, and proved
its correctness. We illustrated this property with simulations, and compared it to an existing
scheme.

The goal of this work was to show that it was possible to have an aggregation error
converging to 0 (when n increases) in the presence of Byzantine workers. For future works,
an interesting question would be: how fast can it converge to zero? The challenge would
be to design an aggregation scheme ensuring a faster convergence, both in theory and in
simulations.
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A Appendix

Proof of Lemma 2. Let p = 2f+1
4 . Let us describe 4 ways to select some Byzantine workers

among N2 workers, that we call “games”.
Game A: k workers are selected randomly, and then turned Byzantine.
Game B: Each worker is turned Byzantine with probability p.
Game C: Game B is executed. Then, if the number of Byzantine workers is k or less:
all workers are turned Byzantine.
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Game D: Game C is executed. Then, we randomly pick one Byzantine worker, make it
correct again, and repeat the process until we have exactly k Byzantine workers.

Let ΦX be the event: “After Game X, all N sets contain a strict minority of Byzantine
workers.” As Game D consists in executing Game C, then only removing Byzantine workers,
we have: P (ΦD) ≥ P (ΦC).

Then, we can notice that Game D is equivalent to Game A (since each worker is equally
likely to end up Byzantine). Therefore, P (ΦA) = P (ΦD) ≥ P (ΦC). Now, let us give a lower
bound of P (ΦC).

Let ΨB be the following event: “After Game B, there are strictly more than k Byzantine
workers”. Then, we can notice that, for ΦC to be true, it is necessary that both ΦB and ΨB

are true. Indeed, if ΨB is false, ΦC cannot be true, because all workers would then be turned
Byzantine in Game C (just after executing Game B). And, if ΨB is true but ΦB is false, ΦC

cannot be true, because we would not have a strict minority of Byzantine workers in all N

sets. Therefore, P (ΦC) ≥ P (ΦB ∧ΨB).
Now, notice that P (ΨB) = P (ΦB ∧ ΨB) + P (¬ΦB ∧ ΨB). Since P (¬ΦB ∧ ΨB) ≤

P (¬ΦB) = 1− P (ΦB), we have: P (ΨB) ≤ P (ΦB ∧ΨB) + 1− P (ΦB), and P (ΦB ∧ΨB) ≥
P (ΦB) + P (ΨB)− 1.

Before going further, let us give a lower bound of P (ΨB). Let N ′
0 be the smallest integer

such that, ∀N ≥ N ′
0:

ln N2

N2 < (p− f)2

Let k′ be the number of Byzantine workers after Game B. According to Hoeffding’s inequality,
applied to the N2 workers:

P

(∣∣∣∣ k′

N2 − p

∣∣∣∣ <

√
ln N2

N2

)
≥ 1− 2

N4

Thus, ∀N ≥ N ′
0:

P

(∣∣∣∣ k′

N2 − p

∣∣∣∣ < p− f

)
≥ 1− 2

N4

Now, we can remark that:

P

(∣∣∣∣ k′

N2 − p

∣∣∣∣ < p− f

)
≤ P

(
− k′

N2 + p < p− f

)
= P (k′ > fN2)

Thus, ∀N ≥ N ′
0:

P (ΨB) = P (k′ > k) ≥ P (k′ > fN2) ≥ 1− 2
N4

Thus, according to Lemma 1, ∀N ≥ max(N0, N ′
0):

P (ΦB ∧ΨB) ≥
(

1− 2
N

)
+
(

1− 2
N4

)
− 1 = 1− 2

N
− 2

N4

Therefore, we have:

P (E′
N ) = P (ΦA) = P (ΦD) ≥ P (ΦC) ≥ P (ΦB ∧ΨB) ≥ 1− 2

N
− 2

N4

Let N1 be such that N1 ≥ max(N0, N ′
0) and, ∀N ≥ N1, 2

N4 ≤ 1
N . Then, we have:

P (E′
N ) ≥ 1− 3

N
◀



A. Maurer 4:17

Proof of Theorem 5. Let j ∈ {1, . . . , d}, and let L∗ be a list defined similarly to L, except
that we replace N (0, σ2) by N (gj , σ2). Note that this is equivalent to adding gj to each
value of L.

Let us call aj the jth coordinate of the aggregated vector An. Then:

E[(aj − gj)2] = E[(med(L∗)− gj)2] = E[med(L)2] = βn

Therefore, ∀j ∈ {1, . . . , d}, E[(aj − gj)2] = βn, and:

λn = E[∥An −G∥2]
d

=
∑d

j=1 E[(aj − gj)2]
d

= dβn

d
= βn ◀

Proof of Theorem 6. Let (W1, . . . , WN ) be the N sets of workers chosen at each step of
CompMed. Let Si be the set of vectors sent by the workers of Wi. Let Maj(Si) =
(h1, h2, . . . , hd).

If Wi contains a strict majority of correct workers, then, ∀j ∈ {1, . . . , d}, hj follows the
normal distribution N (gj , σ2). Otherwise, ∀j ∈ {1, . . . , d}, hj = ω.

Let K be the number of sets of workers Wi that do not contain a strict majority of correct
workers. Then, the rest of the proof is identical to the proof of Theorem 5, if we replace L

by L′ (that is, replacing n by N and k by K). Thus, the result. ◀
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Abstract
This paper studies the good-case latency of unauthenticated Byzantine fault-tolerant broadcast, which
measures the time it takes for all non-faulty parties to commit given a non-faulty broadcaster. For
both asynchrony and synchrony, we show that n ≥ 4f is the tight resilience threshold that separates
good-case 2 rounds and 3 rounds. For asynchronous Byzantine reliable broadcast (BRB), we also
investigate the bad-case latency for all non-faulty parties to commit when the broadcaster is faulty
but some non-faulty party commits. We provide matching upper and lower bounds on the resilience
threshold of bad-case latency for BRB protocols with optimal good-case latency of 2 rounds. In
particular, we show 2 impossibility results and propose 4 asynchronous BRB protocols.
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1 Introduction

Byzantine fault-tolerant broadcast is a fundamental primitive in distributed systems, where a
designated broadcaster sends its value to all parties, such that all non-faulty parties commit
on the same value despite arbitrary deviation from Byzantine parties. Moreover, if the
broadcaster is non-faulty, then all honest parties are required to commit the same value as the
broadcaster’s input. Byzantine broadcast (BB) requires all non-faulty parties to eventually
commit, while Byzantine reliable broadcast (BRB) relaxes the condition to only require
termination when the broadcaster is honest or if some non-faulty party terminates. When
the network is asynchronous, meaning the message delays are unbounded, it is well-known
that BB is unsolvable with even a single fault. On the other hand, BRB is solvable under
asynchrony as long as there are n ≥ 3f + 1 parties.

Recent work of Abraham et al. [4] investigates the notion of good-case latency of Byzantine
fault-tolerant broadcast, which is the time for all honest parties to commit given that the
broadcaster is honest. Theoretically, the good-case latency is a natural and interesting
metric that has not been formally studied by the literature until recently; Practically, for
applications like leader-based Byzantine fault-tolerant state machine replication (BFT SMR),
the good-case latency study answers the fundamental question of how fast can leader-based
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Table 1 Upper and lower bounds for good-case latency of unauthenticated Byzantine fault-tolerant
broadcast.

Problem Timing Model Resilience Lower Bound Upper Bound

BRB Asynchrony n ≥ 4f 2 rounds [4] 2 rounds (Thm 9)
3f + 1 ≤ n ≤ 4f − 1 3 rounds (Thm 10) 3 rounds [5]

BB Synchrony n ≥ 4f 2δ [4, 9] 2δ (Thm 18)
3f + 1 ≤ n ≤ 4f − 1 3δ (Thm 17) 3δ (Thm 19) [5]

Table 2 Comparison of our results and previous results of asynchronous unauthenticated Byzantine
reliable broadcast.

Result Resilience Good-case Bad-case Comm. cost Reference
Bracha n ≥ 3f + 1 3 rounds 4 rounds O(n2) [5]

Imbs and Raynal n ≥ 5f + 1 2 rounds 3 rounds O(n2) [12]
Impossibility of (2, 2) f ≥ 2 2 rounds 2 rounds – Thm 11

F1-BRB n ≥ 4f, f = 1 2 rounds 2 rounds O(n2) Thm 12
Impossibility of (2, 3) n ≤ 5f − 2, f ≥ 3 2 rounds 3 rounds – Thm 13

F2-BRB n ≥ 4f, f = 2 2 rounds 3 rounds O(n3) Thm 15
(2, 4)-BRB n ≥ 4f 2 rounds 4 rounds O(n2) Thm 9
(2, 3)-BRB n ≥ 5f − 1 2 rounds 3 rounds O(n2) Thm 16

BFT SMR commit decisions during the steady state when the leader is non-faulty. Moreover,
for asynchronous Byzantine reliable broadcast, good-case latency is particularly important
since BRB may not terminate under a Byzantine leader.

The work of Abraham et al. [4] reveals a surprisingly rich structure in the good-case
latency tight bounds for authenticated Byzantine broadcast, where digital signatures are used
and the adversary is assumed to be computationally bounded. In this work, we study the
good-case latency and bad-case latency of unauthenticated Byzantine fault-tolerant broadcast.
Our results are summarized in Table 1 and 2.

Complete categorization for good-case latency under asynchrony and synchrony. Under
asynchrony when the message delays are unbounded, we show that n ≥ 4f is the tight
resilience threshold that separates good-case latency of 2 rounds and 3 rounds. For n ≥ 4f , [4]
shows a 2-round lower bound, and we present a protocol with good-case latency of 2 rounds.
For 3f + 1 ≤ n ≤ 4f − 1, Bracha’s reliable broadcast [5] has good-case latency of 3 rounds,
and we prove a matching 3-round lower bound.

▶ Theorem 1 (Informal; tight bounds on good-case latency in asynchrony). For unauthenticated
Byzantine reliable broadcast with f Byzantine parties under asynchrony, in the good-case:
1. 2 rounds are necessary and sufficient if n ≥ 4f (Section 3.1), and
2. 3 rounds are necessary and sufficient if 3f + 1 ≤ n < 4f (Section 3.2).

The above asynchronous good-case latency bounds also imply similar results for good-case
latency of BB and BRB under synchrony as well. Let δ denote the actual message delay
bound during the execution (see Section 5 for details). For n ≥ 3f + 1, [4] shows a 2δ lower
bound (also implied by the early-stopping results [9]), and we present a synchronous BB
protocol with good-case latency of 2δ under n ≥ 4f , inspired by our 2-round asynchronous
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BRB protocol. For 3f + 1 ≤ n ≤ 4f − 1, we show a synchronous BB protocol that has
good-case latency of 3δ inspired by Bracha’s reliable broadcast [5], and the aforementioned
3δ lower bound also applies to synchrony.

▶ Theorem 2 (Informal; tight bounds on good-case latency in synchrony). For unauthenticated
Byzantine broadcast and Byzantine reliable broadcast with f Byzantine parties under synchrony
(message delay bounded by δ), in the good-case:
1. 2δ are necessary and sufficient if n ≥ 4f (Section 5), and
2. 3δ are necessary and sufficient if 3f + 1 ≤ n < 4f (Section 5).

Complete categorization for bad-case latency of asynchronous Byzantine reliable broadcast.
In addition to the good-case commit path, asynchronous BRB protocols usually have a
second commit path to ensure all honest parties eventually commit, when the Byzantine
broadcaster and Byzantine parties deliberately make only a few honest parties commit in
the good-case commit path. We use bad-case latency to denote the latency of such second
commit path, and say a BRB protocol is (Rg, Rb)-round if it has good-case latency of Rg

rounds and bad-case latency of Rb rounds. For instance, Bracha’s reliable broadcast [5] is
(3, 4)-round.

We provide a complete categorization of the threshold resilience for BRB with good-case
latency of 2. We show two lower bound results on the resilience threshold: for (2, 2) and
for (2, 3). We also show 4 protocols with matching resilience bounds: these protocols have
the optimal good-case latency of 2 rounds, but with different trade-offs in resilience and
bad-case latency, matching the lower bound results. As summarized in Table 2, prior upper
bound results include Bracha’s (3, 4)-round BRB for n ≥ 3f + 1, and the (2, 3)-round BRB
for n ≥ 5f + 1 by Imbs and Raynal [12].

First, we show it is impossible to achieve (2, 2)-round BRB, except for the special case of
f = 1 where we propose a protocol F1-BRB that has (2, 2)-round and optimal resilience
n ≥ 4f .
Next, we show another impossibility result stating that no BRB protocol can achieve
(2, 3)-round under n ≤ 5f − 2 for f ≥ 3. That is, for f ≥ 3, no BRB protocol can have
optimality in all three metrics: good-case latency, bad-case latency and resilience. For the
special case of f = 2, we propose a protocol F2-BRB that has (2, 3)-round and optimal
resilience n ≥ 4f . For the general case of f ≥ 3, we have two protocols – a protocol
named (2, 4)-BRB under n ≥ 4f that has (2, 4)-round, and a protocol named (2, 3)-BRB
which improves the resilience of Imbs and Raynal [12] from n ≥ 5f +1 to n ≥ 5f −1 while
keeping the protocol (2, 3)-round. Both (2, 4)-BRB and (2, 3)-BRB have tight resilience
and latencies due to the impossibility result.

2 Preliminaries

Model of execution. We define a protocol for a set of n parties, among which at most f

are Byzantine faulty and can behave arbitrarily and has unbounded computational power.
If a party remains non-faulty for the entire protocol execution, we call the party honest.
During an execution E of a protocol, parties perform sequences of events, including send,
receive/deliver, local computation.

In this paper, we investigate results for deterministic unauthenticated protocols. If the
protocol is deterministic, for any two executions, if an honest party has the same initial
state and receives the same set of messages at the same corresponding time points (by its
local clock), the honest party cannot distinguish two executions. We will use the standard
indistinguishability argument to prove lower bounds.
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We consider both synchronous and asynchronous network models. Under synchrony, any
message between two honest parties will be delivered within δ time during the execution. More
details about the synchrony model assumption is deferred to Section 5. Under asynchrony,
the adversary can control the message delay of any message to be an arbitrary non-negative
value. We assume all-to-all, reliable and authenticated communication channels, such that
the adversary cannot fake, modify or drop the messages sent by honest parties.

Byzantine broadcast variants. We investigate two standard variants of Byzantine broadcast
problem for synchrony and asynchrony.

▶ Definition 3 (Byzantine Broadcast (BB)). A Byzantine broadcast protocol must satisfy the
following properties.

Agreement. If two honest parties commit values v and v′ respectively, then v = v′.
Validity. If the designated broadcaster is honest, then all honest parties commit the
broadcaster’s value and terminate.
Termination. All honest parties commit and terminate.

▶ Definition 4 (Byzantine Reliable Broadcast (BRB)). A Byzantine reliable broadcast protocol
must satisfy the following properties.

Agreement. Same as above.
Validity. Same as above.
Termination. If an honest party commits a value and terminates, then all honest parties
commit a value and terminate.

We will also use Byzantine agreement as a primitive to simplify the construction of our
BB protocols under synchrony in Section 5. The Byzantine agreement gives each party an
input, and its validity requires that if all honest parties have the same input value, then all
honest parties commit that value.

Good-case latency of broadcast. Depending on the network model, the measurement of
latency is different. Under synchrony, we can measure the latency using the physical clock
time.

▶ Definition 5 (Good-case Latency under Synchrony [4]). A Byzantine broadcast (or Byzantine
reliable broadcast) protocol has good-case latency of T under synchrony, if all honest parties
commit within time T since the broadcaster starts the protocol (over all executions and
adversarial strategies), given the designated broadcaster is honest.

Under asynchrony, the network delay is unbounded. To measure the latency of asyn-
chronous protocols, we use the natural notion of asynchronous rounds from the literature [6],
where a protocol runs in R asynchronous rounds if its running time is at most R times the
maximum message delay between honest parties during the execution.

▶ Definition 6 (Good-case Latency under Asynchrony [4]). A Byzantine reliable broadcast
protocol has good-case latency of R rounds under asynchrony, if all honest parties commit
within asynchronous round R (over all executions and adversarial strategies), given the
designated broadcaster is honest.

When the broadcaster is dishonest, Byzantine broadcast will have worst-case latency of
f + 1 rounds [11], and for Byzantine reliable broadcast by definition it does not guarantee
termination (the broadcaster can just remain silent). Therefore, the notion of good-case
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latency is the natural metric to measure the latency performance of reliable broadcast.
Another important latency metric for reliable broadcast is to measure how fast can all honest
parties commit, once an honest party commit. We formally define it as the bad-case latency
as below.

▶ Definition 7 (Bad-case Latency under Asynchrony). A Byzantine reliable broadcast protocol
has bad-case latency of R′ = R + Rex rounds under asynchrony, if all honest parties commit
within Rex asynchronous round after an honest party commits (over all executions and
adversarial strategies), and the good-case latency of the protocol is R.

We will use the notation (Rg, Rb)-round BRB to denote an authenticated Byzantine
reliable broadcast protocol that has good-case latency or Rg rounds and bad-case latency of
Rb rounds. For instance, the classic Bracha reliable broadcast [5] has a good-case latency of
3 rounds and a bad-case latency of 4 rounds (Rex = 1), under n ≥ 3f + 1 parties; it is thus a
(3, 4)-round BRB.

3 Good-case Latency of Asynchronous Byzantine Reliable Broadcast

Under asynchrony, Byzantine reliable broadcast is solvable if and only if n ≥ 3f +1. We show
the tight lower and upper bound on the good-case latency of asynchronous unauthenticated
BRB is 2 rounds when n ≥ 4f , and 3 rounds when 3f + 1 ≤ n ≤ 4f − 1.

3.1 2-round Unauthenticated BRB under n ≥ 4f

We show the tightness of the bound by presenting a 2-round unauthenticated BRB protocol,
which has good-case latency of 2 rounds and bad-case latency of 4 rounds with n ≥ 4f

parties, as presented in Figure 1.
In the protocol, in the first round the broadcaster sends its proposal to all parties. Then

in the second round, all parties send an ack for the first proposal received. Parties commit
in 2 rounds when receiving n − f − 1 ack for the same value from distinct parties other than
the broadcaster, which will happen when the broadcaster is honest. To ensure termination,
the protocol has another 4-round commit path, to guarantee that all honest parties will
commit even if the Byzantine parties deliberately make only a few honest parties commit in
round 2. The 4-round commit path consists of a Bracha-style reliable broadcast, where the
parties send vote-1 and vote-2 messages upon receiving enough messages as specified in
Step 4. Finally, when receiving enough vote-2 messages, party can also commit in round 4.

▶ Lemma 8. If an honest party commits v at Step 3, then no honest party will send vote-1
or vote-2 for any other value v′ ̸= v.

Proof. Since the honest party commit v at Step 3, it receives n − f − 1 ack messages
for v from distinct non-broadcaster parties. If the broadcaster is honest, then no honest
party will send vote-1 or vote-2 message for v′ since there are at most f Byzantine
parties. If the broadcaster is Byzantine, and suppose there are t Byzantine parties, then
there are at most t − 1 Byzantine parties among all non-broadcaster parties, and there
must be at least (n − f − 1) − (t − 1) = n − f − t honest parties sending ack for v.
Suppose an honest party receives n − 2f ack messages for v′ from distinct non-broadcaster
parties, then there must be at least (n − 2f) − (t − 1) = n − 2f − t + 1 honest parties
sending ack for v′. Since there are only n − t honest parties, there must be at least
(n − f − t) + (n − 2f − t + 1) − (n − t) = n − 3f − t + 1 ≥ n − 4f + 1 ≥ 1 honest party
that sends ack for both v and v′, contradiction. Hence no honest party can receive n − 2f
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1. Propose. The designated broadcaster L with input v sends ⟨propose, v⟩ to all
parties.

2. Ack. When receiving the first proposal ⟨propose, v⟩ from the broadcaster, a party
sends an ⟨ack, v⟩ message to all parties.

3. 2-round Commit. When receiving ⟨ack, v⟩ from n−f −1 distinct non-broadcaster
parties, a party commits v, sends ⟨vote-1, v⟩ and ⟨vote-2, v⟩ to all parties, and
terminates.

4. Vote.
When receiving ⟨ack, v⟩ from n − 2f distinct non-broadcaster parties, a party
sends a ⟨vote-1, v⟩ message to all parties, if it has not already sent vote-1 for
any value.
When receiving ⟨vote-1, v⟩ from n − f − 1 distinct non-broadcaster parties, a
party sends a ⟨vote-2, v⟩ message to all parties, if it has not already sent vote-2
for any value.
When receiving ⟨vote-2, v⟩ from f + 1 distinct non-broadcaster parties, a party
sends a ⟨vote-2, v⟩ message to all parties, if it has not already sent vote-2 for
any value.

5. 4-round Commit. When receiving ⟨vote-2, v⟩ from n − f − 1 distinct non-
broadcaster parties, a party commits v and terminates.

Figure 1 (2, 4)-round BRB protocol under n ≥ 4f .

ack messages for v′. Moreover, since the thresholds in Step 4 are larger than the number
of Byzantine parties, i.e., n − f − 1 ≥ 3f − 1 > f and f + 1 > f , no honest party will send
vote-1 or vote-2 for v′ ̸= v. ◀

▶ Theorem 9. The protocol in Figure 1 solves Byzantine reliable broadcast under asynchrony
with optimal resilience n ≥ 4f and optimal good-case latency of 2 rounds, and has bad-case
latency of 4 rounds.

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal
of value v to all parties. Then all n − f − 1 non-broadcaster honest parties will multicast the
ack message for v. The Byzantine parties cannot make any honest party to send vote-1,
vote-2, for any other value v′ ̸= v since f is below any threshold specified in the protocol.
All honest parties will eventually commit v after receiving n − f − 1 ack messages at Step 3
and terminate. The good-case latency is 2 rounds, including broadcaster sending the proposal
and all parties sending ack message.

Agreement. If the broadcaster is honest, by validity all honest parties will commit the same
value. Now consider when the broadcaster is Byzantine, there are at most f − 1 Byzantine
parties among non-broadcasters.

If any two honest parties commit different values at Step 3, then there must be at least
n−f −1− (f −1) = n−2f ≥ 2f honest parties sending ack for each of these different values.
It is impossible by quorum intersection since there are only 3f honest parties. Similarly, no
two honest parties can commit different values at Step 5.
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Now we show that if an honest party h1 commits v at Step 3 and another honest party
h2 commits v′ at Step 5, then it must be v = v′. Suppose h1 commits v at Step 3, then
by Lemma 8, no honest party will send vote-1 or vote-2 for v′ ̸= v, and thus not enough
vote-2 for any v′ ̸= v to be committed at Step 5. Suppose h2 commit v′ at Step 5, then
h2 receives at least n − f − 1 − (f − 1) = n − 2f ≥ 2f vote-2 messages for v′ from honest
parties. By the contrapositive of Lemma 8, no honest party commits v ̸= v′ at Step 3.

Termination and Bad-case Latency. If the broadcaster is honest, by validity all honest
parties will commit the same value. Now consider when the broadcaster is Byzantine, there
are at most f − 1 Byzantine parties among non-broadcasters.

Suppose that an honest party commits v at Step 3, by Lemma 8, no honest party will
send vote-1 or vote-2 for any v′ ̸= v. Since there are at least n − f − 1 − (f − 1) = n − 2f

non-broadcaster honest parties sending ack for v, all honest parties will receive at least
n − 2f ack for v from non-broadcasters, and thus send vote-1 for v. Since there are n − f

honest non-broadcasters, all honest parties will send vote-2 for v, and then commit after
receiving n − f − 1 vote-2 messages.

Suppose that an honest party commits v at Step 5, then at least n − f − 1 − (f − 1) =
n − 2f ≥ f + 1 honest non-broadcasters send vote-2 for v. We only need to show that no
honest party send vote-2 for v′ ̸= v, then all honest parties will send vote-2 for v and thus
commit v. Suppose there is an honest party that send vote-2 for v′ ≠ v, then there exists
two sets of vote-1 messages from n−f −1 distinct non-broadcasters for v and v′ respectively.
Suppose there are t > 0 Byzantine parties, then at least n − f − 1 − (t − 1) ≥ n − t − f

honest parties send vote-1 for v and v′ respectively, which is impossible as there are
n − t < 2(n − t − f) honest parties. Therefore no honest party sends vote-2 for v′ ̸= v, and
all honest parties commits v.

It is clear from the protocol that after at most 2 rounds (vote-1 and vote-2) since
any honest party commits, all honest parties also commit. Hence the bad-case latency is 4
rounds. ◀

3.2 3-round Lower Bound for Unauthenticated BRB under n ≤ 4f − 1
▶ Theorem 10. Any unauthenticated Byzantine reliable broadcast protocol under 3f + 1 ≤
n ≤ 4f − 1 must have a good-case latency of at least 3 rounds even under synchrony.

Proof of Theorem 10. The proof is illustrated in Figure 2. We assume all parties start their
protocol at the same time, which strengthens the lower bound result. Under synchrony, any
message between all honest parties will be delivered within δ time, and hence each round of
the protocol is of δ time. Without loss of generality, we prove the lower bound for n = 4f − 1.
Suppose there exists a BRB protocol Π that has a good-case latency of 2 round, which means
the honest parties can always commit after receiving two rounds of messages but before
receiving any message from the third round, if the designated broadcaster is honest. Let
party s be the broadcaster, and divide the remaining n − 1 = 4f − 2 parties into 4 groups
A, B, C, D where |A| = |D| = f and |B| = |C| = f − 1. For brevity, we often use A (B, C, D)
to refer all the parties in A (B, C, D). Consider the following three executions of Π.

Execution 1. The broadcaster s is honest and has input 0. Parties in D are Byzantine,
they behave honestly according to the protocol except that they pretend to receive from
a broadcaster whose input is 1. Since the broadcaster is honest, by validity and good-case
latency, parties in A, B, C will commit 0 after receiving two rounds of messages but
before receiving any message from the third round.
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A B C D

f f-1 f-1 f
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A, B, C commit 0 in 2 rounds
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1
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00 1

“0”

C cannot distinguish in 2 rounds

A, D cannot distinguish Execution 3, 4

Figure 2 Unauthenticated BRB Good-case Latency Lower Bound: 3 rounds under n = 4f − 1.
Dotted circles denote Byzantine parties.

Execution 2. This execution is a symmetric case of Execution 1. The broadcaster s is
honest and has input 1. Parties in A are Byzantine, they behave honestly according to
the protocol except that they pretend to receive from a broadcaster whose input is 0.
Since the broadcaster is honest, by validity and good-case latency, parties in B, C, D will
commit 1 after receiving two rounds of messages but before receiving any message from
the third round.
Execution 3. The broadcaster s and the parties in C are Byzantine. s behaves to A, B

identically as in Execution 1 and to D identically as in Execution 2. Parties in C behave
to B honestly according to the protocol except that they pretend to receive the same
messages from the broadcaster as in Execution 1, and only send messages to B in the first
two rounds. Parties in C behave to A, D honestly except that they pretend to receive the
same messages from the broadcaster as in Execution 2, and pretend to receive messages
from B as in Execution 2 only in the first two rounds.
Execution 4. This execution is a symmetric case of Execution 3. The broadcaster s

and the parties in B are Byzantine. s behaves to A identically as in Execution 1 and
to C, D identically as in Execution 2. Parties in B behave to C honestly according to
the protocol except that they pretend to receive the same messages from the broadcaster
as in Execution 2, and only send messages to C in the first two rounds. Parties in B

behave to A, D honestly except that they pretend to receive the same messages from the
broadcaster as in Execution 1, and pretend to receive messages from C as in Execution 1
only in the first two rounds.

We show the following indistinguishability and contradiction.
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B cannot distinguish Execution 1 and 3 in the first two rounds, and thus will commit
0 in the end of round 2 in Execution 3. The broadcaster s behaves to B identically
in both executions. The messages sent to B in the first round by any non-broadcaster
party are identical in Execution 1 and 3, since the first round message only depends on
the initial state and all Byzantine parties behave honestly in the first round. For the
second round, in Execution 3, since parties in D pretends to B that it receives messages
from the broadcaster with input 1, and parties in C pretends to B that it receives the
same messages from the broadcaster as in Execution 1, the parties in B observe the
same messages in the first two rounds of both executions. Hence, B cannot distinguish
Execution 1 and 3 in the first two rounds. Since B commit 0 in the end of round 2 in
Execution 1 due to validity and good-case latency, B also commit 0 in the end of round 2
in Execution 3.
Similarly, C cannot distinguish Execution 2 and 4 in the first two rounds, and thus will
commit 1 in the end of round 2 in Execution 4.
A, D cannot distinguish Execution 3 and 4. Similarly, the messages sent to A, D in the
first round are identical in both executions. The broadcaster s behaves to A, B identically
in Execution 3 and 4 as in Execution 1, and to C, D identically in Execution 3 and 4 as
in Execution 2. In Execution 3, parties in B only receive messages from C in the first
two rounds, and Byzantine parties in C pretend to receive messages from a broadcaster
whose input is 1. In Execution 4, Byzantine parties in B pretends only receiving two
rounds of messages from C. Since the first two rounds of messages only depend on the
initial state and the message received from the broadcaster in the first round, parties in
B receives the same messages from C. Therefore, A, D receive the same messages from
B in both Execution 3 and 4. Similarly, A, D receive the same messages from C in both
Execution 3 and 4, and thus cannot distinguish these two executions.

Contradiction. Since parties in B commit 0 in Execution 3, parties in C commit 1 in
Execution 4, and parties in A, D cannot distinguish Execution 3 and 4, either agreement or
termination of BRB will be violated. Therefore no such protocol Π exists. ◀

4 Bad-case Latency of Asynchronous Byzantine Reliable Broadcast

In this section, we present 2 impossibility results and 4 asynchronous BRB protocols with
tight trade-offs between resilience, good-case latency and bad-case latency.

Recall that the classic Bracha reliable broadcast [5] has optimal resilience of n ≥ 3f + 1,
non-optimal good-case latency of 3 rounds and bad-case latency of 4 rounds (1 extra round).
The 2-round BRB protocol by Imbs and Raynal [12] has non-optimal resilience of n ≥ 5f + 1,
optimal good-case latency of 2 rounds and bad-case latency of 3 rounds (1 extra round).
Meanwhile, our 2-round BRB protocol from Section 3 has optimal resilience n ≥ 4f , optimal
good-case latency of 2 rounds and bad-case latency of 4 round (2 extra rounds). All protocols
above have optimal communication complexity of O(n2), matching the lower bound [8].

On the other hand, we can show that for any f > 1, no asynchronous BRB protocol can
achieve both good-case latency of 2 rounds and bad-case latency of 2 rounds (Theorem 11 in
Section 4.1). For the special case of f = 1, we show it is possible to have a (2, 2)-round BRB
(Theorem 12).

Therefore, it is interesting to ask:
Under what conditions can BRB achieve optimality in all three metrics – optimal

resilience of n ≥ 4f , optimal good-case latency of 2 rounds and optimal bad-case latency of 3
rounds (1 extra round)?
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1. Propose. The designated broadcaster L with input v sends ⟨propose, v⟩ to all
parties.

2. Ack. When receiving the first proposal ⟨propose, v⟩ from the broadcaster, a party
sends an ack message for v to all parties in the form of ⟨ack, v⟩.

3. 2-round Commit. When receiving ⟨ack, v⟩ from n − 2 distinct non-broadcaster
parties, a party commits v and terminates.

Figure 3 (2, 2)-round BRB Protocol under n ≥ 4f, f = 1.

We show it is impossible for the general case of f ≥ 3, by proving that no BRB protocol
under n ≤ 5f − 2, f ≥ 3 can achieve (2, 3)-round (Theorem 13). For f ≥ 3, our BRB
(Figure 1) in earlier Section 3.1 has optimal good-case latency of 2 rounds and optimal
resilience n ≥ 4f , but with bad-case latency of 4 rounds. On the other hand, we give
a (2, 3)-round BRB protocol (Figure 5) with tight resilience n ≥ 5f − 1, improving the
n ≥ 5f + 1 resilience of Imbs and Raynal [12]. For the special case of f = 2, we show it is
possible to construct a (2, 3)-round BRB (Figure 4) with optimal resilience n ≥ 4f .

4.1 Impossibility of (2, 2)-round BRB
For the general case of f ≥ 2, we show any asynchronous BRB protocol cannot achieve
(2, 2)-round. The proof of Theorem 11 is deferred to Appendix A due to space limit.

▶ Theorem 11. Any asynchronous unauthenticated Byzantine reliable broadcast protocol
under f ≥ 2 and has a good-case latency of 2 rounds must have a bad-case latency of at least
3 rounds.

4.2 (2, 2)-round BRB Protocol under n ≥ 4f, f = 1
For the special case of f = 1, we can show a simple BRB protocol (Figure 3) that has optimal
good-case latency and bad-case latency of 2 rounds, while having optimal resilience n ≥ 4.

▶ Theorem 12. The protocol in Figure 3 solves Byzantine reliable broadcast under asynchrony
with optimal resilience n ≥ 4, f = 1, optimal good-case latency and bad-case latency of 2
rounds.

Proof.
Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal of
value v to all parties, and all n − 2 ≥ 2 non-broadcaster honest parties will multicast the ack
message for v. Since there is just one Byzantine party, its ack is below the n − 2 threshold.
Then all honest parties will commit v after receiving n − 2 ack messages at Step 3 and
terminate. The good-case latency is 2 rounds, including broadcaster sending the proposal
and all parties sending ack message.

Agreement, Termination and Bad-case Latency. If the broadcaster is honest, by validity
all honest parties will commit the same value. If the broadcaster is Byzantine, then all n − 1
non-broadcaster parties are honest. If an honest party commits v at Step 3, then it receives
n − 2 ack messages of v from distinct non-broadcaster parties, and thus all honest parties
will also receive these ack messages and commit v. Since all honest parties commit in the
same asynchronous round, the bad-case latency is also 2 rounds. ◀
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1. Propose. The designated broadcaster L with input v sends ⟨propose, v⟩ to all
parties.

2. Ack. When receiving the first proposal ⟨propose, v⟩ from the broadcaster, a party
sends a ack message for v to all parties in the form of ⟨ack, v⟩.

3. 2-round Commit. When receiving ⟨ack, v⟩ from n−f −1 distinct non-broadcaster
parties, a party commits v and terminates.

4. Vote and Lock.
When receiving ⟨ack, v⟩ from a non-broadcaster party j, a party sends ⟨vote, j, v⟩
to all parties if not yet sent ⟨vote, j, v⟩.
When receiving ⟨vote, j, v⟩ from n − f − 2 distinct non-broadcaster parties other
than j, a party locks on v for party j.

5. 3-round Commit. When locking on the same v for n−2f distinct non-broadcaster
parties, a party commits v and terminates.

Figure 4 (2, 3)-round BRB under n ≥ 4f, f = 2.

4.3 Impossibility of (2, 3)-round BRB
▶ Theorem 13. Any asynchronous unauthenticated Byzantine reliable broadcast protocol
under n ≤ 5f − 2, f ≥ 3 and has a good-case latency of 2 rounds must have a bad-case latency
of at least 4 rounds.

The proof of Theorem 13 is deferred to Appendix B due to the space limit.

4.4 (2, 3)-round BRB Protocol under n ≥ 4f, f = 2
For the special case of f = 2, we propose a (2, 3)-round BRB protocol (Figure 4) that has
optimal resilience n ≥ 4f . The main idea is that all parties send ack for broadcaster’s
proposal, and also send vote for other parties’ ack. When receiving enough vote messages
of v for the same party, a party locks on v. The protocol guarantees that all honest parties
lock on the same value for each party when f = 2. Then, the 3-round commit step let a
party commits if the party locks on the same value for a majority of the parties. Since all
parties send a vote for all other parties, the message and communication complexity are
both O(n3).

▶ Lemma 14. If the broadcaster is Byzantine and an honest party locks on v for party j,
then all honest parties also lock on v for party j.

Proof. Since an honest party locks on v for party j, it receives n − f − 2 vote messages from
non-broadcaster parties other than j. If j is honest, then it sends the same ack to all parties,
and thus all honest parties receive n − f − 2 vote for party j from non-broadcaster honest
parties other than j. If j is Byzantine, then the parties other than j and the broadcaster are
all honest. Since an honest party receives n − f − 2 vote messages from these honest parties,
all honest parties will also receive the messages. Therefore, all honest parties also lock on v

for party j. ◀

▶ Theorem 15. The protocol in Figure 4 solves Byzantine reliable broadcast under asynchrony
with optimal resilience n ≥ 4f, f = 2 and optimal good-case latency of 2 rounds, and has
bad-case latency of 3 rounds.
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Proof.

Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal
of value v to all parties, and all n − f − 1 honest non-broadcaster parties will multicast the
ack message for v. Since there are only f Byzantine party, their ack messages is below the
n − f − 1 threshold. Then all honest parties will commit v after receiving n − f − 1 ack
messages at Step 3 and terminate. The good-case latency is 2 rounds, including broadcaster
sending the proposal and all parties sending ack message.

Agreement. If the broadcaster is honest, by validity all honest parties will commit the
same value. Now consider when the broadcaster is Byzantine, and suppose there are t > 0
Byzantine parties there are at most t − 1 Byzantine parties among non-broadcasters.

If any two honest parties commit different values at Step 3, then there must be at least
n − f − 1 − (t − 1) = n − f − t honest parties sending ack for each of these different values.
It is impossible by quorum intersection since there are only n − t honest parties.

Suppose any two honest parties commit different values at Step 5. Then, there must
exists at least 2(n − 2f) − (n − 1) ≥ 1 party for which the two committed honest parties
lock different values. However, this contradicts Lemma 14, which states honest parties lock
on the same value for any party when the broadcaster is Byzantine. Hence, no two honest
parties can commit different values at Step 5.

Now we show that if an honest party h1 commits v at Step 3 and another honest party
h2 commits v′ at Step 5, then it must be v = v′. Suppose h1 commits v at Step 3, then at
least n − f − 1 − (f − 1) = n − 2f honest non-broadcaster parties send ack for v. All honest
parties will lock on v for these n − 2f non-broadcaster parties, which is a majority of the
n − 1 non-broadcaster parties. Therefore any honest party that commits v′ at Step 5 must
have v′ = v.

Termination and Bad-case Latency. If the broadcaster is honest, by validity all honest
parties will commit the same value. If the broadcaster is Byzantine, once an honest party
commits v at Step 3, there are n − 2f non-broadcaster honest parties that send ack for v,
and all honest parties will eventually lock on v for these parties after receiving the vote
messages. Therefore all honest parties will commit v at Step 5 after 1 extra round. ◀

4.5 (2, 3)-round BRB under n ≥ 5f − 1

In this section, we improve the resilience of 2-round BRB protocol in the previous work [12]
from 5f + 1 to 5f − 1, while keeping the bad-case latency 3 rounds. The protocol is presented
in Figure 5, and the main difference compared to Imbs and Raynal [12] is that in Step 2,
parties send ack for v if receiving n − 2f ack from non-broadcaster parties, instead of from
any parties as in [12]. The intuition is that when the broadcaster is Byzantine, the above set
of non-broadcaster parties only contains f − 1 Byzantine parties, and thus we can reduce the
total number of parties but still ensure quorum intersection.

▶ Theorem 16. The protocol in Figure 5 solves Byzantine reliable broadcast under asynchrony
with resilience n ≥ 5f −1 and optimal good-case latency of 2 rounds, and has bad-case latency
of 3 rounds.
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1. Propose. The designated broadcaster L with input v sends ⟨propose, v⟩ to all
parties.

2. Ack.
When receiving the first proposal ⟨propose, v⟩ from the broadcaster, a party
sends a ack message for v to all parties in the form of ⟨ack, v⟩.
When receiving ⟨ack, v⟩ from n − 2f distinct non-broadcaster parties, a party
sends ⟨ack, v⟩ to all parties if not yet sent ⟨ack, v⟩.

3. Commit. When receiving ⟨ack, v⟩ from n − f − 1 distinct non-broadcaster parties,
a party commits v and terminates.

Figure 5 (2, 3)-round BRB under n ≥ 5f − 1.

Proof.
Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal
of value v to all parties, and all n − f − 1 honest non-broadcaster parties will multicast the
ack message for v. Since there are only f Byzantine party, their ack messages is below the
n − f − 1 threshold. Then all honest parties will commit v after receiving n − f − 1 ack
messages at Step 3 and terminate. The good-case latency is 2 rounds, including broadcaster
sending the proposal and all parties sending ack message.

Agreement. If the broadcaster is honest, by validity all honest parties will commit the
same value. If the broadcaster is Byzantine, and suppose there are t > 0 Byzantine
parties, then there are t − 1 Byzantine parties among all non-broadcaster parties. Suppose
that two honest parties commit different values v ̸= v′, then by Step 3 there are at least
n−f −1−(t−1) = n−f −t honest parties A that send ack for v and at least n−f −1−(t−1) =
n − f − t honest parties B that send ack for v′. Since there are n − t honest parties in
total, |A ∩ B| ≥ 2(n − f − t) − (n − t) = n − 2f − t ≥ 3f − t − 1 > 0, there must exist
some honest party that sends ack due to the second condition of Step 2. If the above only
happens to v, then there are at least n − 2f − (t − 1) = n − 2f − t + 1 honest parties that
send ack for v due to receiving the propose from the broadcaster. This contradicts the
fact that at least n − f − t honest parties send ack for v′ due to receiving propose, since
(n − 2f − t + 1) + (n − f − t) > n − t. It the above happens to both v, v′, then there are
at least n − 2f − (t − 1) = n − 2f − t + 1 honest parties that send ack for v (and for v′,
respectively) due to receiving the propose from the broadcaster. This is also impossible
since 2(n − 2f − t + 1) ≥ n + f − 2t + 1 > n − t. Therefore, all honest parties commit the
same value.

Termination and Bad-case Latency. If the broadcaster is honest, by validity all honest
parties will commit the same value. If the broadcaster is Byzantine, once an honest party
commits v, there are n − 2f non-broadcaster honest parties that send ack for v. Therefore
all honest parties will send ack for v and hence commit v after 1 extra round. ◀

5 Extension to Unauthenticated Byzantine Broadcast under Synchrony

In this section, we extend the previous results to show the good-case latency results for
unauthenticated Byzantine broadcast under synchrony. It is well-known that unauthenticated
Byzantine broadcast or Byzantine reliable broadcast is solvable if and only if n ≥ 3f + 1.
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We adopt the synchrony model assumptions from [4], including distinguishing the latency
bounds δ and ∆, and the clock assumption, briefly as follows. More details about the model
assumptions can be found in [4].

Network delays. We separate the actual bound δ, and the conservative bound ∆ on the
network delay:

For one execution, δ is the upper bound for message delays between any pair of honest
parties, but the value of δ is unknown to the protocol designer or any party. Different
executions may have different δ values.
For all executions, ∆ is the upper bound for message delays between any pair of honest
parties, and the value of ∆ is known to the protocol designer and all parties.

Clock synchronization. Each party is equipped with a local clock that starts counting at
the beginning of the protocol execution. We assume the clock skew is at most σ, i.e., they
start the protocol at most σ apart from each other. We assume parties have no clock drift
for convenience. There exist clock synchronization protocols [7, 1] that guarantee a bounded
clock skew of σ ≤ δ. Since the value of δ is unknown to the protocol designer or any party,
our protocol will use ∆ as the parameter for clock skew in the protocol. Note that the actual
clock skew is still σ ≤ δ, guaranteed by the clock synchronization protocols [7, 1]. In addition,
due to clock skew, the BA primitive used in our BB protocol (Figure 6) needs to tolerate
up to σ clock skew. For instance, any synchronous lock-step BA can do so by using a clock
synchronization algorithm [7, 1] to ensure at most ∆ clock skew, and setting each round
duration to be 2∆ to enforce the abstraction of lock-step rounds.

▶ Theorem 17. Any unauthenticated Byzantine reliable broadcast protocol under 3f + 1 ≤
n ≤ 4f − 1 must have a good-case latency of at least 3δ under synchrony.

The proof of Theorem 17 is analogous to that of Theorem 10, and is omitted here for
brevity. Next, we show a synchronous BB protocol in Figure 6 that has good-case latency of
2δ under n ≥ 4f .

Protocol description. The protocol is presented in Figure 6, and is inspired by our (2, 4)-
round asynchronous BRB protocol (Figure 1) from Section 3.1. The main idea is to add a
Byzantine agreement at the end of the protocol to ensure termination, since BRB does not
require termination when the broadcaster is Byzantine. The input of the BA is called lock,
which is set to be some default value ⊥ initially, and will be set when commit in Step 3 or
receiving enough vote in Step 4. One guarantee implied by the (2, 4)-round BRB protocol
is that, when any honest party commit v in Step 3, all honest parties will lock on v, and
therefore the BA will only output v.

▶ Theorem 18. The protocol in Figure 6 solves Byzantine broadcast under synchrony with
optimal resilience n ≥ 4f and optimal good-case latency of 2δ.

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it proposes the same value v

to all parties, and all honest parties will send ack for v. Then at Step 3, all honest parties
receive n − f − 1 ack messages of v after 2δ time (which is before local time 2∆ + σ), and
commits v.
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Initially, every party i starts the protocol at most δ time apart with a local clock and
sets lock = ⊥, σ = ∆.

1. Propose. The designated broadcaster L with input v sends ⟨propose, v⟩ to all
parties.

2. Ack. When receiving the first proposal ⟨propose, v⟩ from the broadcaster, a party
sends an ack message for v to all parties in the form of ⟨ack, v⟩.

3. Commit. When receiving ⟨ack, v⟩ from n − f − 1 distinct non-broadcaster parties
at time t, a party sets lock = v. If t ≤ 2∆ + σ, the party commits v.

4. Vote.
When receiving ⟨ack, v⟩ from n − 2f distinct non-broadcaster parties, a party
sends a vote message for v to all parties in the form of ⟨vote, v⟩ if not yet sent
vote for any value.
When receiving ⟨vote, v⟩ from n−f − 1 distinct non-broadcaster parties, a party
sets lock = v.

5. Byzantine agreement. At local time 3∆ + 2σ, a party invokes an instance of
Byzantine agreement with lock as the input. If not committed, the party commits
on the output of the Byzantine agreement. Terminate.

Figure 6 2δ unauthenticated BB protocol under n ≥ 4f .

Agreement. If all honest parties commit at Step 5, all honest parties commit on the same
value due to the agreement property of the BA. Otherwise, there must be some honest party
that commits at Step 3. First, no two honest parties can commit different values at Step 3
due to quorum intersection. Now suppose any honest party h that commits v at Step 3. If
the broadcaster is honest, by validity, all honest parties commits v. If the broadcaster is
Byzantine, then there are f − 1 Byzantine parties among non-broadcasters. Since h receives
n − f − 1 ack messages from non-broadcasters, at least n − f − 1 − (f − 1) = n − 2f of them
are from honest parties. Then, all honest parties receive these n − 2f ack messages and set
lock = v at their local time ≤ (2∆ + σ) + ∆ + σ = 3∆ + 2σ, before invoking the Byzantine
agreement primitive at Step 5, since the clock skew is σ and message delay is bounded by
∆. Also by quorum intersection, there cannot be n − 2f ack messages for v′ ≠ v, since the
set of (n − 2f) − (f − 1) = n − 3f + 1 honest parties who voted for v′ and the set of n − 2f

honest parties who voted for v intersect at ≥ (n − 3f + 1) + (n − 2f) − (n − f) ≥ 1 honest
parties. Therefore, at Step 5, all honest parties have the same input lock = v to the BA.
Then by the validity condition of the BA primitive, the output of the agreement is also v.
Any honest party that does not commit at Step 3 will commit v at Step 5.

Termination. According to the protocol, honest parties terminate at Step 5, and they
commit a value before termination. ◀

6 Related Work

Byzantine fault-tolerant broadcast, first proposed by Lamport et al. [13], have received
a significant amount of attention for several decades. Under synchrony, the deterministic
Dolev-Strong protocol [10] solves Byzantine broadcast in worst-case f + 1 rounds, matching
a lower bound [11]. Under asynchrony, Byzantine broadcast is unsolvable even with a single
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failure. Byzantine reliable broadcast relaxes the termination property of Byzantine broadcast,
and the classic Byzantine reliable broadcast by Bracha [5] has a good-case latency of 3
rounds and bad-case latency of 4 rounds with optimal resilience n ≥ 3f + 1. Later works
improves the good-case latency of reliable broadcast to 2 rounds by trading off resilience [12]
or using authentication (signatures) [4]. A recent line of work studies the good-case latency
of authenticated BFT protocols, including [2, 3, 4].

7 Conclusion

In this paper, we investigate the good-case latency of unauthenticated Byzantine fault-
tolerant broadcast, which is time for all honest parties to commit given that the broadcaster
is honest. We show the tight results are 2 rounds under n ≥ 4f and 3 rounds under
3f + 1 ≤ n ≤ 4f − 1 for asynchronous Byzantine reliable broadcast, which can be extended
for synchronous Byzantine broadcast as well. In addition, we also study the bad-case latency
for asynchronous BRB which measures how fast can all honest parties commit when the
broadcaster is dishonest and some honest party commits. We show 2 impossibility results
and 4 matching asynchronous BRB protocols, including (2, 4)-BRB under n ≥ 4f , F2-BRB
of (2, 3)-round under n ≥ 4f, f = 2, F1-BRB of (2, 2)-round under n ≥ 4f, f = 1, and
(2, 3)-BRB under n ≥ 5f − 1.
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A Proof of Theorem 11

Proof. Suppose on the contrary there exists an asynchronous BRB protocol Π that tolerates
f = 2 and has (2, 2)-round. We assume n ≥ 4f = 8, otherwise no protocol can solve BRB
with good-case latency of 2 rounds by Theorem 10. Denote the broadcaster as party 0 always,
and remaining parties as party 1, ..., n − 1. We construct the following executions.

Execution 1. The broadcaster is honest, and has input 0. Party n − 1 is Byzantine and
remain silent. Then all honest parties commit 0 in 2 rounds by assumption.

Execution 2. The broadcaster is Byzantine, and behaves honestly to parties 1, ..., n − 3
with input 0, and remains silent to other parties. Party n − 2 is Byzantine, and behaves
identically to party n − 3 as in Execution 1, but remains silent to rest of the parties. Any
messages from party n − 1 are delayed and not delivered in 2 rounds. It is easy to see
that party n − 3 cannot distinguish Execution 2 and 1 in 2 rounds, therefore it commits
0 in 2 rounds in Execution 2 as well. By assumption, parties 1, ..., n − 4 also commit 0 in
2 rounds in Execution 2.

Execution x for x = 3, ..., n − 3. The broadcaster is Byzantine, and behaves honestly to
parties 1, ..., n − x − 1 with input 0, and remains silent to other parties. Party n − x is
Byzantine, and behaves identically to party n − x − 1 as in Execution x − 1, but remains
silent to rest of the parties. Any messages from party n − x + 1 are delayed and not
delivered in 2 rounds. It is easy to see that party n − x − 1 cannot distinguish Execution
x and x − 1 in 2 rounds, therefore it commits 0 in 2 rounds in Execution x as well. By
assumption, parties 1, ..., n − x − 2 also commit 0 in 2 rounds in Execution 2.

Execution n − 2. The broadcaster is Byzantine, and behaves honestly to party 1 with
input 0, and remains silent to other parties. Party 2 is Byzantine, and behaves identically
to party 1 as in Execution n − 3, but remains silent to rest of the parties. Any messages
from party 3 are delayed and not delivered in 2 rounds. It is easy to see that party 1
cannot distinguish Execution n − 2 and n − 3 in 2 rounds, therefore it commits 0 in 2
rounds in Execution n − 2 as well.

Similarly, we can construct n − 2 symmetric executions, where the broadcaster has input 1,
and in the last execution the broadcaster only behaves honestly to party n − 1 with input 1,
and party n − 1 commits 1 in 2 rounds.

Contradiction. Now we consider another execution, where the broadcaster is Byzantine,
it behaves to party 1 honestly with input 0, and to party n − 1 honestly with input 1, and
remain silent to other parties. Party 2 is Byzantine, it behaves to party 1 identically as in
Execution n − 3, and to party n − 1 identically as the party n − 2 to party n − 1 in the last
execution of the constructed symmetric executions (due to symmetric of the non-broadcaster
parties, the index does not matter). Any messages between parties 1, n − 1 are delayed and
not delivered in 2 rounds. Then, party 1 commits 0 in 2 rounds while party n − 1 commit 1
in 2 rounds, breaking agreement of the BRB. Therefore, such protocol Π does not exist. ◀
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B Proof of Theorem 13

Proof. Suppose on the contrary that there exists an asynchronous BRB protocol Π under
n = 5f − 2, f ≥ 3 that has (2, 3)-round. Denote the broadcaster as party 0 always, denote 2
non-broadcaster parties as p, q, and divide the remaining 5f −5 parties into 5 groups G1, ..., G5
each of size f − 1 (recall f − 1 ≥ 2). Denote GL = {p} ∪ G1 ∪ G2 and GR = G4 ∪ G5 ∪ {q}.
We use S[i] to denote the i-th party in set S, where S can be any set defined above (such as
Gj for j = 1, ..., 5 and GL, GR). We construct the following executions. In all constructed
executions, all messages are delivered by the recipient after ∆ time by default, and we will
explicitly specify the messages that are delayed by the adversary due to asynchrony.

E0
1 . The broadcaster is honest and has input 0. Parties in G5 ∪ {q} are Byzantine, and

they behave honestly except that they pretend to receive from a broadcaster whose input
is 1. Since the broadcaster is honest, by validity and good-case latency, all honest parties
commit 0 after receiving two rounds of messages.
E1

1 . This execution is a symmetric case of E0
1 . The broadcaster is honest and has input 1.

Parties in G1 ∪ {p} are Byzantine, and they behave honestly except that they pretend to
receive from a broadcaster whose input is 0. Since the broadcaster is honest, by validity
and good-case latency, all honest parties commit 1 after receiving two rounds of messages.
E0

2 . The broadcaster is Byzantine, it behaves to GL ∪ G3 identically as in E0
1 , and to

G5 ∪ {q} identically as in E1
1 . Parties in G4 are Byzantine, they behave to the party

G3[f − 1] honestly (recall that f − 1 ≥ 2 so G3[f − 1] ̸= G3[1]) but pretending to receive
from the broadcaster in E0

1 , and to other parties honestly but pretending to receive from
the broadcaster in E1

1 .

▷ Claim. The honest party G3[f − 1] cannot distinguish E0
2 and E0

1 in 2 rounds, and
thus will commit 0 in round 2. Then, by assumption, all honest parties also commit 0 in
round 3 in E0

2 . The broadcaster behaves to G3[f − 1] identically in both executions. The
messages sent to G3[f − 1] in the first round by any non-broadcaster party are identical
in E0

2 and E0
1 , since the first round message only depends on the initial state and all

Byzantine parties behave honestly in the first round. For the second round, since in E0
1

the Byzantine parties in G5 ∪{q} pretend to receive from a broadcaster with input 1, they
send the same round-2 messages as in E0

2 . For the Byzantine parties in G4, they behave
identically to G3[f − 1] by construction. All honest parties in GL also behave identically
to G3[f − 1] in round 2 since they receive the same round-1 messages. Therefore party
G3[f − 1] cannot distinguish E0

2 and E0
1 in 2 rounds, and thus will commit 0 in round 2.

E0
3 . The broadcaster is Byzantine, it behaves to GL identically as in E0

1 , and to GR

identically as in E1
1 . Parties in G3 are Byzantine, they behave to other parties identically

as in E0
2 .

▷ Claim. The honest parties in GL ∪ GR cannot distinguish E0
3 and E0

2 in 3 rounds, and
thus will commit 0 in round 3. For the round-1 message, honest parties receive the same
messages in both executions since Byzantine parties including the broadcaster send the
same messages. For the round-2 message, the Byzantine parties of G4 in E0

2 behave to
GL ∪ GR as if they receive from a broadcaster with input 1, which would be identically
to E0

3 . The Byzantine parties of G3 in E0
3 behave to other parties identically as in E0

2 by
construction. Similarly, Gl ∪ GR receive the same round-3 messages in both executions,
and thus cannot distinguish E0

3 and E0
2 in 3 rounds, and will commit 0 in round 3 in E0

3
as well.
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E0
2j+2 for j = 1, 2, ..., |GR| = 2f − 1. The broadcaster is Byzantine, it behaves to

GL ∪ {G3[1]} identically as in E0
1 , and to GR identically as in E1

1 . Parties in G3 \ {G3[1]}
are Byzantine (recall that |G3| = f − 1 ≥ 2), and they behave to all honest parties
identically as in E0

2j+1. Party GR[j] is Byzantine, and it behaves to all honest parties
except p identically as in E0

2j+1, and to party p honestly except that it pretends receiving
no message from G3 sent after round 1. Any round-2 or round-3 message from G3[1] to
parties in GR[i], i = 1, ..., j − 1 are delayed and received only after round 3.
E0

2j+3 for j = 1, 2, ..., |GR| = 2f − 1. The broadcaster is Byzantine, it behaves to GL

identically as in E0
1 , and to GR identically as in E1

1 . Parties in G3 are Byzantine, they
behave to other parties identically as in E0

2j+2, but they send no message to GR[j] after
round 1.

▷ Claim. Any honest party in GL \ {p} cannot distinguish E0
2j+2 and E0

2j+1 in 3 rounds,
and it will commit 0 in round 3 in E0

2j+2. Then, by assumption, party p will also commit
0 in round 3 in E0

2j+2. Similar to the previous claim, honest parties receive the same
round-1 messages. For round 2, the Byzantine parties in E0

2j+2 behave identically to all
honest parties, including party p since the difference from GR[j] to p is reflected only
after round 2. Hence, honest parties in GL \ {p} will also receive the same messages in
round 3, thus cannot distinguish E0

2j+2 and E0
2j+1 in 3 rounds.

▷ Claim. Party p cannot distinguish E0
2j+3 and E0

2j+2 in 3 rounds, and thus will commit
0 in round 3 in E0

2j+3. Then, by assumption, all honest parties in GL ∪ GR also commit
0 in round 3. Similar to previous claim, honest parties receive the same round-1 and
round-2 messages. For round 3, since Byzantine parties in G3 send no message to GR[j]
after round 1 in E0

2j+3, the honest party GR[j] in E0
2j+3 will behave the same to p as the

Byzantine party GR[j] which pretends to p that it receives no message from G3 in E0
2j+2.

Hence, p cannot distinguish E0
2j+3 and E0

2j+2 in 3 rounds.

By the above constructions, we finally have an execution E0
2j+3,j=2f−1 = E0

4f+1 where
the Byzantine broadcaster behaves to GL with input 0, and to GR with input 1, and the
Byzantine parties in G3 send no message to GR, but party p has to commit 0 in 3 rounds.
Similarly, we can construct a series of symmetric executions of the above executions including
E1

1 , i.e., E1
1 , E1

2 , ..., E1
4f+1, and have the execution E1

4f+1 where the Byzantine broadcaster
also behaves to GL with input 0, and to GR with input 1, and the Byzantine parties in G3
send no message to GL, but party q has to commit 1 in 3 rounds.

Contradiction. Now we construct another middle execution Em, where the Byzantine
broadcaster behaves to GL with input 0, and to GR with input 1, and Byzantine parties in
G3 behave to GL identically as in E0

4f+1 and to GR identically as in E1
4f+1. It is easy to

see that party p cannot distinguish Em and E0
4f+1 in 3 rounds, and thus will commit 0 in

round 3, while party q cannot distinguish Em and E1
4f+1 in 3 rounds, and thus will commit

1 in round 3. This violates the agreement property of BRB, and hence such BRB protocol Π
does not exist. ◀

C 3δ Unauthenticated Byzantine Broadcast under Synchrony

For completeness, we show an unauthenticated BB protocol in Figure 7 with good-case
latency of 3δ under synchrony and n ≥ 3f + 1, inspired by Bracha’s reliable broadcast [5].

▶ Theorem 19. The protocol in Figure 7 solves Byzantine broadcast under synchrony with
resilience n ≥ 3f + 1 and good-case latency of 3δ.
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The correctness proof is similar to that of Theorem 18, and we omit it here for brevity.

Initially, every party i starts the protocol at most δ time apart with a local clock and
sets lock = ⊥, σ = ∆.

1. Propose. The designated broadcaster L with input v sends ⟨propose, v⟩ to all
parties.

2. Echo. When receiving the first proposal ⟨propose, v⟩ from the broadcaster, a party
sends an echo message for v to all parties in the form of ⟨echo, v⟩.

3. Vote.
When receiving ⟨echo, v⟩ from n − f distinct parties, a party sends a vote
message for v to all parties in the form of ⟨vote, v⟩ and sets lock = v if not yet
sent vote for any value.
When receiving ⟨vote, v⟩ from f + 1 distinct parties, a party sends a vote
message for v to all parties in the form of ⟨vote, v⟩ and sets lock = v if not yet
sent vote for any value.

4. Commit. When receiving ⟨vote, v⟩ from n − f distinct parties at time t, a party
sets lock = v. If t ≤ 3∆ + σ, the party commits v.

5. Byzantine agreement. At local time 4∆ + 2σ, a party invokes an instance of
Byzantine agreement with lock as the input. If not committed, the party commits
on the output of the Byzantine agreement. Terminate.

Figure 7 3δ unauthenticated BB protocol under synchrony and n ≥ 3f + 1.
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Abstract
This paper focuses on blockchain finality, which refers to the time when it becomes impossible to
remove a block that has previously been appended to the blockchain. Blockchain finality can be
deterministic or probabilistic, immediate or eventual. To favor availability against consistency in the
face of partitions, most blockchains only offer probabilistic eventual finality: blocks may be revoked
after being appended to the blockchain, yet with decreasing probability as they sink deeper into the
chain. Other blockchains favor consistency by leveraging the immediate finality of Consensus – a
block appended is never revoked – at the cost of additional synchronization.

The quest for “good” deterministic finality properties for blockchains is still in its infancy,
though. Our motivation is to provide a thorough study of several possible deterministic finality
properties and explore their solvability. This is achieved by introducing the notion of bounded
revocation, which informally says that the number of blocks that can be revoked from the current
blockchain is bounded. Based on the requirements we impose on this revocation number, we provide
reductions between different forms of eventual finality, Consensus and Eventual Consensus. From
these reductions, we show some related impossibility results in presence of Byzantine processes, and
provide non-trivial results. In particular, we provide an algorithm that solves a weak form of eventual
finality in an asynchronous system in presence of an unbounded number of Byzantine processes.
We also provide an algorithm that solves eventual finality with a bounded revocation number in
an eventually synchronous environment in presence of less than half of Byzantine processes. The
simplicity of the arguments should better guide blockchain designs and link them to clear formal
properties of finality.
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1 Introduction

This paper focuses on blockchain finality, which refers to the time when it becomes impossible
to remove a block previously appended to the blockchain. Blockchain finality can be
deterministic or probabilistic, immediate or eventual.

Informally, immediate finality guarantees, as its name suggests, that when a block is
appended to a local copy, it is immediately finalized and thus will never be revoked in the
future. Designing blockchains with immediate finality favors consistency against availability
in presence of transient partitions of the system. It leverages the properties of Consensus (i.e
a decision value is unique and agreed by everyone), at the cost of synchronization constraints.
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Assuming partially synchronous environments, most of the permissioned blockchains satisfy
the deterministic form of immediate consistency, as for example Red Belly blockchain [8] and
Hyperledger Fabric blockchain [2]. The probabilistic form of immediate finality is typically
achieved by permissionless pure proof-of-stake blockchains such as Algorand [7].

Unlike immediate finality, eventual finality only ensures that eventually all local copies of
the blockchain share a common increasing prefix, and thus finality of their blocks increases
as more blocks are appended to the blockchain. The majority of permissionless cryptoassets
blockchains, with Bitcoin [20] and Ethereum [25] as celebrated examples, guarantee eventual
finality with some probability: blocks may be revoked after being appended to the blockchain,
yet with decreasing probability as they sink deeper into the chain. In an effort to replace
the energy-wasting proof-of-work (PoW) method of Bitcoin and Ethereum, recent proof-of-
stake blockchains such as e.g. [16, 12, 15] emerged. These blockchains offer as well a form
of eventual finality. More broadly, all these permissionless solutions favor availability (or
progress) relying on a Nakamoto-style consensus: a broadcast primitive to diffuse blocks
and a local reconciliation mechanism to select a unique chain. It is indeed admitted that
a blockchain may lose consistency by incurring a fork, which is the presence of multiple
chains at different processes. The reconciliation mechanism, available to recover from a fork,
consists in a local deterministic rule selecting a chain among the different possible alternatives.
In Bitcoin for instance any participant reconciles the state following the “longest” chain
rule (the term “longest” chain rule is commonly employed, but this is actually the one that
required the most work to be built). Once a winner chain is chosen, the other alternatives
are revoked, as such all the blocks belonging to them. In designs using Nakamoto-style
consensus, however, network effects make the moment at which all honest processes observe
the same set of candidate chains unknown. Reconciliation and finalisation guarantees are
then uncertain, or simply extremely inefficient, for example by considering a block as finalised
after one or more days. To solve this problem a number of projects are investigating how
to add “finality gadgets” (e.g., [5, 24]) to Nakamoto-style blockchains, which means seeking
additional mechanisms or protocols to reach “better” finality properties in network adversarial
settings. The hope is to find ways to get deterministic finality by periodically running finality
gadgets on top of Nakamoto-style consensus. For the time being, the only way that has been
concretely pursued is to resort to Byzantine Consensus – e.g. Tenderbake [4] adds Byzantine
Consensus to the existing proof-of-stake method assuring deterministic finality to each block
followed by other two blocks. How to add mechanisms that do not resort to Consensus,
however, is an intriguing and open question, related to the finality properties one would like
to guarantee.

The quest for “good” deterministic finality properties for blockchains is still in its infancy,
though. Our motivation is to provide a protocol-independent abstraction of several possible
finality properties to study their solvability. To this aim we formalise, for the first time, the
notion of finality in a protocol-agnostic way. At the heart of the proposed formalisation lies
the notion of revocation number. Informally, given a system run and a blockchain bc read by
a user at some time t, we call the revocation number the natural number n such that by
pruning the last n blocks from bc, we obtain a prefix of any blockchain bc′ read after t.

By leaving the revocation number unbounded in all the runs of the system, we formalise
our weakest form of finality, the eventual finality consistency criterion F : In each run, the
revocation number can be infinite when the run goes to infinity, still each block will be
eventually finalised.
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By introducing restrictions on the revocation number, we then introduce stronger criteria.
The strongest criterion, called Fc, is obtained by restricting the revocation number to be a
constant c in all the runs of the system. Informally, Fc guarantees that finality of each block
is deferred by at most c blocks in all system runs, i.e., any block followed by at least c blocks
in the blockchain cannot be revoked.

Between F and Fc we then define three other forms of deferred finality: Fn, where the
revocation number is bounded but not known, F⋄,c, where the revocation number is constant
but holds only eventually, and finally F⋄,n, where the bound on the revocation number is
not known and holds only eventually. Fn guarantees that finality of each block is deferred
by a constant c in each system run, but this constant can vary from one run to another. For
F⋄,c and F⋄,n we have that F⋄,c guarantees that eventually finality of each block is deferred
by c in all system runs, while for F⋄,n, eventually finality of each block is deferred by c in
each system run with c varying from one run to another. Nicely, we obtain each consistency
criterion by adding a proper bounded revocation property to F and we prove that Fn, F⋄,c,
F⋄,n are all equivalent.

The rigorous formalisation of these consistency criteria enables us to easily show that
solutions that guarantee Fc are equivalent to Consensus, while solutions that guarantee Fn

(or equivalently F⋄,n and F⋄,c) are not weaker than Eventual Consensus, an abstraction
that captures eventual agreement among all participants. From these reductions, we show
some related impossibility results in presence of Byzantine processes. Beside reductions and
related impossibilities, we propose the following non-trivial results:

F cannot be achieved in an asynchronous system if the reconciliation rule follows the
“longest” chain rule (Theorem 22). This implies that the reconciliation rule, used in current
blockchains to provide probabilistic finality in synchronous settings, cannot guarantee
that participants will eventually converge to a stable prefix of the chain in asynchronous
settings.

A solution that guarantees F in an asynchronous system with a possibly infinite set of
processes which can append infinitely many blocks. This novel solution is simple and
tolerant to an unbounded number of Byzantine processes (Theorem 23).

A solution that solves Fn in an eventually synchronous environment in presence of less
than half of Byzantine processes (Theorem 24). The central point of our solution is to let
correct processes blame each fork on a particular Byzantine process, which can then be
excluded from the computation. Weakening the classic requirement of < 1/3 to < 1/2
Byzantine processes makes such a solution well adapted to large scale adversarial systems.
As for the previous one, we are not aware of any such solution in the literature.

We hope that these results will better guide blockchain designs and link them to clear
formal properties of finality. Hence, in the remainder of this article, Section 2 situates our
work with respect to similar ones. Section 3 formally presents the sequential specification of
a blockchain and the formalisation of the different finality properties we may expect from a
blockchain when concurrently accessed. Section 4 presents reductions between different forms
of finality, Consensus and Eventual Consensus. Section 5 first shows why F is not solvable
in an asynchronous environment when the “longest” chain rule is used, and then presents
two original and simple algorithms that respectively solve F and Fn. Finally, Section 6
concludes the paper.
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2 Related Work

Formalization of blockchains in the lens of distributed computing has been recognized as
an extremely important topic [14]. Garay et al. [10] have been the first to analyze the
Bitcoin backbone protocol and to define invariants this protocol has to satisfy to verify with
high probability an eventual consistent prefix. The authors have analyzed the protocol in a
synchronous system, while others, as for example Pass et al. [21], have extended this line
of work considering a more adversarial network. In those works the specification of the
consistency properties are protocol dependent and thus provide an abstraction level that
does not allow us to model the blockchain as a shared object being agnostic of the way it is
implemented. The objective we pursue throughout this work is to formalize the semantic
of the interface between the blockchain and the users. To do so we consider the blockchain
as a shared object, and thus the consistency properties are specified independently of the
synchrony assumptions of underlying distributed system and the type of failures that may
occur. By doing this, we offer a higher level of abstraction than well-known properties do.

This approach has been recently followed in particular by Anta et al. [3], Anceaume et
al. [1] and Guerraoui et al. [13] 1. In Anta et al. [3], the authors propose a formalization of
distributed ledgers, modeled as an ordered list of records along with implementations for
sequential consistency and linearizability using a total order broadcast abstraction. Anceaume
et al. [1] have captured the convergence process of two distinct classes of blockchain systems:
the class providing strong prefix as [3] (for each pair of chains returned at two different
processes, one is the prefix of the other) and the class providing eventual prefix, in which
multiple chains can co-exist but the common prefix eventually converges. The authors of [1]
show that to solve strong prefix the Consensus abstraction is needed, however they do not
address solvability of eventual prefix and do not formalise finality. Interestingly, our notion
of finality and bounded revocation is able to encompass the strong and the eventual prefix
consistency properties of [1].

3 Definitions

3.1 Preliminary Definitions
We describe a blockchain object as an abstract data type which allows us to completely
characterize a blockchain by the operations it exports [18]. The basic idea underlying the
use of abstract data types is to specify shared objects using two complementary facets: a
sequential specification that describes the semantics of the object, and a consistency criterion
over concurrent histories, i.e. the set of admissible executions in a concurrent environment [22].
Prior to presenting the blockchain abstract data type we first recall the formalization used
to describe an abstract data type (ADT).

3.1.1 Abstract data types
An abstract data type (ADT) is a tuple of the form T = (A, B, Z, z0, τ, δ). Here A and B

are countable sets respectively called input alphabet and output alphabet. Z is a countable
set of abstract object states and z0 ∈ Z is the initial abstract state. The map τ : Z × A → Z

is the transition function, specifying the effect of an input on the object state and the

1 While not related to the blockchain data structure, authors of [13] have formalized the notion of
cryptocurrency showing that Consensus is not needed.
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map δ : Z × A → B is the output function, specifying the output returned for a given input
and an object local state. An input represents an operation with its parameters, where (i)
the operation can have a side-effect that changes the abstract state according to transition
function τ and (ii) the operation can return values taken in the output B, which depends on
the state in which it is called and the output function δ.

3.1.2 Concurrent histories of an ADT
Concurrent histories are defined considering asymmetric event structures, i.e., partial order
relations among events executed by different processes.

▶ Definition 1 (Concurrent history H). The execution of a program that uses an abstract
data type T =⟨A, B, Z, ξ0, τ, δ⟩ defines a concurrent history H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩, where

Σ = A ∪ (A × B) is a countable set of operations;
E is a countable set of events that contains all the ADT operations invocations and all
ADT operation response events;
Λ : E → Σ is a function which associates events to the operations in Σ;
7→: is the process order, irreflexive order over the events of E. Two events (e, e′) ∈ E2

are ordered by 7→ if they are produced by the same process, e ̸= e′ and e happens before e′,
that is denoted as e 7→ e′.
≺: is the operation order, irreflexive order over the events of E. For each couple
(e, e′) ∈ E2 if e′ is the invocation of an operation occurred at time t′ and e is the response
of another operation occurred at time t with t < t′ then e ≺ e′;
↗: is the program order, irreflexive order over E, for each couple (e, e′) ∈ E2 with e ̸= e′

if e 7→ e′ or e ≺ e′ then e ↗ e′.

3.2 The blocktree ADT
We represent a blockchain as a tree of blocks. The same representation has been adopted
in [1]. Indeed, while consensus-based blockchains prevent forks or branching in the tree of
blocks, blockchain systems based on proof-of-work allow the occurrence of forks to happen
hence presenting blocks under a tree structure. The blockchain object is thus defined as a
blocktree abstract data type (Blocktree ADT).

3.2.1 Sequential Specification of the Blocktree ADT (BT-ADT)
A blocktree data structure is a directed rooted tree bt = (Vbt, Ebt) where Vbt represents a
set of blocks and Ebt a set of edges such that each block has a single path towards the root
of the tree b0 called the genesis block. A branching in the tree is called a fork. Let BT be
the set of blocktrees, B be the countable and non empty set of uniquely identified blocks
and let BC be the countable non empty set of blockchains, where a blockchain is a path
from a leaf of bt to b0. A blockchain is denoted by bc. The structure is equipped with two
operations append() and read(). Operation append(b) adds block b ̸∈ bt to Vbt and adds the
edge (b, b′) to Ebt where b′ ∈ Vbt is returned by the append selection function fa() applied to
bt. Operation read() returns the chain bc selected by the read selection function fr() applied
to bt (note that in [1], the read() and append() operations are defined with a unique selection
function). The read selection fr() takes as argument the blocktree and returns a chain of
blocks, that is a sequence of blocks starting from the genesis block to a leaf block of the
blocktree. The chain bc returned by a read() operation r is called the blockchain, and is
denoted by r/bc. The append selection function fa() takes as argument the blocktree and
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returns a chain of blocks. Function last_block() takes as argument a chain of blocks and
returns the last appended block of the chain. Only blocks satisfying some validity predicate
P can be appended to the tree. Predicate P is an application-dependent predicate used to
verify the validity of the chain obtained by appending the new block b to the chain returned
by fa() (denoted by fa(bt)⌢b). In Bitcoin for instance this predicate embeds the logic to
verify that the obtained chain does not contain double spending or overspending transactions.
Formally,

▶ Definition 2 (Sequential specification of the Blocktree ADT). The Blocktree Abstract Data
Type is the 6-tuple BT − ADT={A = {append(b), read()/bc ∈ BC}, B = BC ∪ {⊤, ⊥}, Z =
BT , ξ0 = b0, τ, δ}, where the transition function τ : Z × A → Z is defined by

τ(bt, read()) = bt

τ(bt, append(b)) =
{

(Vbt ∪ {b}, Ebt ∪ {b, last_block(fa(bt))}) if P (fa(bt)⌢b)
bt otherwise,

and where the output function δ : Z × A → B is defined by

δ(bt, read()) = fr(bt)

δ(bt, append(b)) =
{

⊤ if P (fa(bt)⌢b)
⊥ otherwise.

Note that we do not need to add the validity check during the read operation in the
sequential specification of the Blocktree ADT because in absence of concurrency the validity
check during the append operation is enough.

3.2.2 Concurrent Specification and Consistency Criteria of the
BlockTree ADT

The concurrent specification of the blocktree abstract data type is the set of its concurrent
histories. A blocktree consistency criterion is a function that returns the set of concurrent
histories admissible for the blocktree abstract data type. In this paper, we define different
consistency criteria for the blocktree. We first define eventual finality, which is the weakest
consistency criterion that we may expect from blockchains, along with the notion of block
revocation. We then combine eventual finality with different forms of revocation to provide
stronger consistency criteria. The presented family of consistency criteria is a comprehensive
characterization of what we may expect from blockchains.

▶ Notation 3.
E(a∗, r∗) is an infinite set containing an infinite number of append() and read() invocation
and response events;
E(a, r∗) is an infinite set containing (i) a finite number of append() invocation and
response events and (ii) an infinite number of read() invocation and response events;
oinv and orsp indicate respectively the invocation and response event of an operation o;
and in particular for the read() operation, rrsp/bc denotes the returned blockchain bc

associated with the response event rrsp and for the append() operation ainv(b) denotes the
invocation of the append operation having b as input parameter;
length : BC → N denotes a monotonic increasing deterministic function that takes as input
a blockchain bc and returns a natural number as length of bc. Increasing monotonicity
means that length(bc⌢{b}) > length(bc);
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We represent chain bc as an infinite list b0b∗⊥+ of blocks, where the first block bc[0] = b0,
the genesis block, followed by block values b, and an infinite number of ⊥ values. Notation
bc[i] refers to the i-th block of blockchain bc. Note that the special “⊥” symbol counts for
zero for the length function.
bc ⊑ bc′ if and only if bc prefixes bc′. The operator ⊑ ignores all the records set to ⊥.

▶ Definition 4 (BT Eventual Finality Consistency criterion (F)). A concurrent history
H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of a system that uses a BT-ADT verifies the BT eventual finality
consistency criterion if the following four properties hold:

Chain validity:
∀rrsp ∈ E, P (rrsp/bc).
Each returned chain is valid.

Chain integrity:
∀rrsp ∈ E, ∀b ∈ rrsp/bc : b ̸= b0, ∃ainv(b) ∈ E, ainv(b) ↗ rrsp.
If a block different from the genesis block is returned, then an append operation has been
invoked with this block as parameter. This property is to avoid the situation in which
reads return blocks never appended.
Eventual prefix:
∀E ∈ E(a, r∗) ∪ E(a∗, r∗), ∀rrsp/bc, ∀i ∈ N : bc[i] ̸= ⊥, ∃r′

rsp : rrsp ↗ r′
rsp, ∀r′′

rsp : r′
rsp ↗

r′′
rsp, (r′

rsp/bc′)[i] = (r′′
rsp/bc′′)[i] ̸= ⊥.

In all the histories in which the number of read invocations is infinite, then for any read
operation such that the returned chain has a block at position i, there exists a read r′/bc′

from which all the subsequent reads r′′/bc′′ will return the same block at position i, i.e.
bc′[i] = bc′′[i] ̸= ⊥.
Ever growing tree:
∀E ∈ E(a∗, r∗), ∀k ∈ N, ∃r ∈ E : length(rrsp/bc) > k.

In all the histories in which the number of append and read invocations is infinite, for
each length k, there exists a read that returns a chain with length greater than k. This
property avoids the trivial scenario in which the length of the chain remains unchanged
despite the occurrence of an infinite number of append operations (i.e., tree built as a star
with infinite branches of bounded length). Specifically the “Ever growing tree” property
imposes that in presence of an infinite number of read and append operations, for any
natural number k, there will always exist a read operation that will return a chain of at
least length k. Note that the well known “Chain Growth Property” [10, 21] states that
each (honest) chain grows proportionally with the number of rounds of the protocol, which
in contrast to our specification, makes it protocol dependent.

Bounded revocation
As previously said, the bounded revocation properties are at the heart of our formalisation
of blockchain finality. Informally, given a history, we call the revocation number the natural
number n such that for any two reads r/bc and r′/bc′, where r precedes r′, by pruning the
last n blocks from bc we obtain a chain that is a prefix of bc′.

Note that the eventual finality consistency criterion presented so far does not impose any
bound on the revocation number, which can be then infinite when the history goes to infinity.

To obtain stronger consistency criteria, we then introduce restrictions to the revocation
number. To this aim, we define the c-bounded revocation property, which states that the
revocation number n is bounded by a constant c in all histories. We also define the bounded
revocation property, which states that the revocation number n is bounded by a constant
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c in each history, but may be unbounded when we consider the union of all the histories,
i.e., the bound can vary from a history to another. Eventual forms of c-bounded revocation
and bounded revocation state that the revocation number will be equal to a constant c only
eventually. More formally:

▶ Definition 5 (c-Bounded Revocation). ∃c ∈ N, ∀E, ∀rrsp/bc, r′
rsp/bc′ ∈ E : rrsp ↗ r′

rsp, ∀i ∈
N : i ≤ (length(bc) − c), bc[i] = bc′[i] ̸= ⊥.

▶ Definition 6 (Bounded Revocation). ∀E, ∃c ∈ N, ∀rrsp/bc, r′
rsp/bc′ ∈ E : rrsp ↗ r′

rsp, ∀i ∈
N : i ≤ (length(bc) − c), bc[i] = bc′[i] ̸= ⊥.

▶ Definition 7 (Eventual c-Bounded Revocation). ∃c ∈ N, ∀E, ∃r ∈ E : ∀r′
rsp/bc, r′′

rsp/bc′ ∈
E : rrsp ↗ r′

rsp, r′
rsp ↗ r′′

rsp, ∀i ∈ N : i ≤ (length(bc′) − c), bc′[i] = bc′′[i] ̸= ⊥

▶ Definition 8 (Eventual Bounded Revocation). ∀E, ∃c ∈ N, ∃r ∈ E : ∀r′
rsp/bc, r′′

rsp/bc′ ∈ E :
rrsp ↗ r′

rsp, r′
rsp ↗ r′′

rsp, ∀i ∈ N : i ≤ (length(bc′) − c), bc′[i] = bc′′[i] ̸= ⊥

Note that Bounded Revocation properties are not protocol dependent in contrast to the
well-known “Common-Prefix Property” [10, 21], which states that for any two rounds r and
r’ of the protocol with r < r’, the (honest) chain read at round r from which the last c

blocks have been pruned is a prefix of (resp. is equal to with high probability) the one read
at round r’.

Based on these different forms of bounded revocation, we define four criteria stronger
than eventual finality. Nicely, we obtain each consistency criterion by adding the proper
bounded revocation property to F .

By adding c-bounded revocation to F , we obtain the c-deferred finality form, denoted by
Fc. Informally, Fc guarantees that finality of each block is deferred by at most c blocks in
all histories, i.e., any block followed by at least c blocks in the blockchain cannot be revoked.

By adding the bounded revocation property to F , we obtain the bounded deferred finality
form, denoted by Fn. Informally Fn guarantees that finality of each block is deferred by a
constant c in each history, but this constant can vary from history to history. In other words
constant c is unknown.

Finally, by adding respectively, eventual c-bounded finality and eventual bounded finality
to F , we obtain other two forms of deferred finality, namely F⋄,c F⋄,n, both equivalent to
Fn. Informally, F⋄,c guarantees that eventually finality of each block is deferred by c in all
histories. For F⋄,n, eventually finality of each block is deferred by c in each history, with c

varying from history to history.
In the following we formally introduce Fc, Fn, F⋄,c, F⋄,n, and show equivalences between

F⋄,c, F⋄,n and Fn.

▶ Definition 9 (BT c-Deferred Finality Consistency criterion (Fc)). A concurrent history
H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of the system that uses a BT-ADT verifies the BT c-deferred finality
consistency criterion if chain validity, chain integrity, eventual prefix, ever growing tree, and
the c-bounded revocation properties hold.

▶ Definition 10 (BT Bounded Deferred Finality Consistency criterion (Fn)). A concurrent
history H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of the system that uses a BT-ADT verifies the BT bounded
deferred finality consistency criterion if chain validity, chain integrity, eventual prefix, ever
growing tree, and the bounded revocation properties hold.

▶ Definition 11 (BT Eventual c-Deferred Finality Consistency criterion (F⋄,c)). A concurrent
history H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of the system that uses a BT-ADT verifies the BT eventual
c-deferred finality consistency criterion if chain validity, chain integrity, ever growing tree,
eventual prefix and the eventual c-bounded revocation properties hold.
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▶ Definition 12 (BT Eventual Bounded Deferred Finality Consistency criterion (F⋄,n)). A
concurrent history H = ⟨Σ, E, Λ, 7→, ≺, ↗⟩ of the system that uses a BT-ADT verifies the
BT eventual bounded deferred finality consistency criterion if chain validity, chain integrity,
ever growing tree, eventual prefix and the eventual bounded revocation properties hold.

Note that in the blockchain literature, Fc, with c = 0, is also referred to as immediate
finality. Immediate finality is equivalent to BT strong consistency defined in [1], which
implies that for any two read operations, one of the returned blockchains is the prefix of the
other one.

▶ Notation 13. For readability reasons, in the following we will simply say finality instead
of finality consistency criterion.

▶ Theorem 14. Fn and F⋄,n are equivalent.

Proof. Trivially, Fn implies F⋄,n. Let us now consider the other direction. From F⋄,n, we
have that given any execution E, there exists c ∈ N and a read operation r such that for all
reads r′, r′′ after r, with r′ ↗ r′′ the blockchain returned by r′ pruned of the last c blocks
is a prefix of the blockchain returned by r′′. Let c′ be the maximal length of blockchains
returned by read operations occurring before r, and let c′′ = max(c, c′). By construction, Fn

is satisfied for E with revocation number n = c′′. Hence F⋄,n implies Fn. ◀

We now show that F⋄,n and F⋄,c are equivalent. This equivalence is shown by first
proving that F⋄,n and F⋄,c=0 are equivalent and then that F⋄,c=0 and F⋄,c are equivalent.

▶ Theorem 15. F⋄,c=0 and F⋄,n are equivalent.

Proof. Let P1 be a protocol guaranteeing F⋄,n. We build protocol P2 as follows: to make
an append() operation, processes simply use the append() operation of P1. For the read()
operation, processes use the read() operation provided by P1 to obtain the blockchain and
prune the second half of it before returning the first half of the blockchain. Let us show that
protocol P2 guarantees F⋄,c=0. For this, we need to show that the properties of F⋄,c=0 are
satisfied:

Chain validity: The chain validity property is still satisfied by pruning half of the chain.
Chain integrity: The chain integrity property is still satisfied by pruning half of the
chain.
Eventual prefix: The eventual prefix property is still satisfied by pruning half of the
chain.
Ever growing tree: The ever growing tree property is still satisfied by pruning half of
the chain.
(c = 0)-eventual bounded revocation: This property follows from the removal of the
second half of the chain. Indeed, if we remove the second half of the chain, then eventually
for any two read() operations, then the first read() returns a prefix of the second read()
operation.

For the other direction, we can build a solution to F⋄,n using a solution to F⋄,c=0. ◀

▶ Theorem 16. F⋄,c=0 and F⋄,c are equivalent.

Proof. Trivially, F⋄,c=0 implies F⋄,c. For the other direction, we apply a construction close
to the one used in the proof of Theorem 15. Specifically, given a protocol P1 that guarantees
F⋄,c, we build a protocol P2 by using P1 as follows. To make an append() operation,
processes simply use the append() operation of P1. For the read() operation, processes use
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the read() operation provided by P1 to obtain the blockchain and prune its last c blocks
before returning it. Note that if there are less than c blocks, processes then return the genesis
block. The properties of F⋄,c=0 trivially follow from the properties of F⋄,c and the proposed
transformation. ◀

▶ Corollary 17. Fn, F⋄,n, F⋄,c, and F⋄,c=0 are equivalent.

Proof. Straightforward from Theorems 14, 15 and 16. ◀

4 (Eventual) Consensus Reductions

In this section, we show that guaranteeing Fc is equivalent to solving Consensus, while
guaranteeing bounded deferred finality (or any of the equivalent forms) is not weaker than
solving Eventual Consensus.

4.1 c-Bounded Deferred Finality and Consensus
▶ Theorem 18. Guaranteeing Fc is equivalent to solving Consensus.

Proof. Let us first remark that Fc=0 is equivalent to BT Strong Consistency [1], which has
been shown to be equivalent to Consensus [1].

To prove the theorem it is then sufficient to give a protocol P2 that guarantees Fc=0 given
a solution P1 that satisfies Fc, the other direction being trivial. We build P2 by applying
the same transformation of P1 described in the proof of Theorem 16. The properties of Fc=0

trivially follow from the properties of Fc and the proposed transformation. ◀

▶ Corollary 19. There does not exist any solution that solves Fc in an eventual synchronous
system with more than 1/3 of Byzantine processes.

Proof. The proof follows from the equivalence between Fc and Consensus (cf. Theorem 18),
which is unsolvable in a synchronous (and thus also in an eventually synchronous) system
with more than one third of Byzantine processes [17]. ◀

4.2 Bounded Deferred Finality and Eventual Consensus
In this section we show that guaranteeing bounded deferred finality is not weaker than
Eventual Consensus. To this aim we first recall the Eventual Consensus problem with a
small modification of the validity property to make it suitable to the blockchain context and
then we show that F⋄,c=0 (which is equivalent to F⋄,n by Corollary 17) is not weaker than
Eventual Consensus.

The Eventual Consensus (EC) abstraction [9] captures eventual agreement among all
participants. It exports, to every process pi, operations proposeEC1, proposeEC2, . . . that
take multi-valued arguments (correct processes propose valid values) and return multi-valued
responses. Assuming that, for all j ∈ N, every process invokes proposeECj as soon as it
returns a response to proposeECj−1, the abstraction guarantees that, in every admissible run,
there exists k ∈ N and a predicate PEC , such that the following properties are satisfied:

EC-Termination. Every correct process eventually returns a response to proposeECj for
all j ∈ N.
EC-Integrity. No process responds twice to proposeECj for all j ∈ N.
EC-Validity. Every value returned to proposeECj is valid with respect to predicate PEC .
EC-Agreement. No two correct processes return different values to proposeECj for all
j ≥ k.
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▶ Theorem 20. Guaranteeing F⋄,c=0 (or any of the equivalent forms) is not weaker than
solving Eventual Consensus.

Proof. We show that there exists a protocol P1 that solves Eventual Consensus assuming the
existence of a protocol P2 that solves F⋄,c=0. We do the transformation as follows. Every
correct process p invokes proposeECj for all j ∈ N. We impose that the validity predicate P

of the blocktree ADT (see Section 3) be equal to predicate PEC . When a correct process
p invokes the proposeECj(v) operation of P1, for any j ∈ N, then p executes the following
sequence of three steps: (i) p invokes the append(v) operation of P2, then (ii) p invokes
a sequence of read() operations up to the moment the read() returns a chain bc such that
bc[j] ̸= ⊥, and finally (iii) p decides chain bc (i.e., it returns chain bc) and triggers the next
operation proposeECj+1(v′). We now show that protocol P1 solves Eventual Consensus.

EC-Termination This property is guaranteed by the ever growing tree property.
EC-Integrity This property follows directly from the transformation.
EC-Validity This property follows by construction and by the chain validity property
since predicate P equals to predicate PEC .
EC-Agreement This property follows by the eventual prefix property and the 0-eventual
revocation property, which guarantees that there exists a read() operation r such that all
the subsequent ones return blockchains that are each prefix of the following one. In other
words, eventually there is agreement on the value contained in bc[j]. This implies that
there exists k for which all proposeECj with j ≥ k return the same value to all correct
processes.

Finally, by Corollary 17, the proof of the Theorem completes. ◀

▶ Theorem 21. There does not exist any solution that solves Fn (and any of the equivalent
forms) in an asynchronous system with at least one Byzantine process.

Proof. The proof follows from Corollary 17 and the fact that F⋄,c=0 is not weaker than
Eventual Consensus (cf. Theorem 20). Since Eventual Consensus is equivalent to the leader
election problem [9], which cannot be solved in an asynchronous system with at least one
Byzantine process [23], this completes the proof of the Theorem. ◀

5 Finality Solutions

In this section we first show the impossibility of solving our weakest form of finality F when
the append operation, in case of forks, selects the “longest” chain. We then provide the first
solution to F with an unbounded number of Byzantine processes in an asynchronous system
using an alternative selection rule.

5.1 Impossibility to Satisfy F with the Longest Chain Rule
In the following we prove that, in an asynchronous environment, we cannot provide F if, in
case of forks, the append selection function fa() follows the longest chain rule, i.e., returns
the longest chain of the blockchain tree. Note that this result holds even in absence of
failures. Obviously we assume that blocks are not created using the Consensus abstraction:
With Consensus, immediate finality is easily ensured, and thus no fork will ever occur.
Thus, when the Consensus abstraction cannot be implemented (due to the adversity of the
environment), many blockchain systems adopt a selection function fa based on the longest
chain. For instance, in proof-of-work systems such as Bitcoin, selected chains are the ones
that have required the most amount of work, which is equivalent to the longest chains when
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the difficulty is constant. In Ethereum, while the selection rule is based on heaviest sub-tree
of the blockchain tree, or in proof-of-stake systems like EOS [12] or Tezos [11], the same
argument applies.

To show this impossibility result, we consider a scenario in which the occurrence of any
fork produces at most two alternative chains (this is often referred to as a branching factor
of 2). We consider a finite number of processes and an append selection function fa that
in case of forks deterministically selects the longest chain through the length function (see
Section 3.2.2), and in case of a tie selects the chain following any deterministic rule (for
instance the chain whose last block hast the smallest digest). We show that it is impossible
to guarantee F for such append selection function fa.

Intuitively, the impossibility follows from the fact that with the longest chain selection
rule, races can occur between different branches in the tree. We show that as forks may
occur, we can create two infinite branches sharing only the root. One or the other branch
constitutes alternatively the longest chain and append operations select chains from each
branch alternatively. This is enough to show that the only common prefix that is returned is
the root hence, violating eventual finality.

▶ Theorem 22. It is impossible to guarantee F if the append operation is based on the
longest chain rule in an asynchronous environment.

Proof. The interested reader is invited to read the proof in the Appendix of this paper. ◀

5.2 Asynchronous Solution Satisfying F with an Unbounded Number of
Byzantine Processes

We consider an asynchronous system with a possibly infinite set of processes which can
append infinitely many blocks, and processes can be affected by Byzantine failures. Each
process has a unique identifier i ∈ N and is equipped with signatures that can be used to
identify the message sender identifier. Each block is identified with the identifier of the
process that created it. Block identifier is inserted in the header of the block. Moreover, since
it has been proven that reliable communications are necessary to ensure eventual finality [1],
we assume that each process is equipped with an Eventually Reliable Broadcast primitive
that satisfies the following two properties: If a correct process p broadcasts a message m

then p eventually delivers m and if a correct process p delivers m then all correct processes
eventually deliver m. Such a primitive can be implemented by organizing the infinite set
of processes in a topology in which for each pair of correct processes, there exists a path
composed by only correct processes [19]. Thus, we do not require any assumptions on the
proportion between Byzantine and correct processes in the system but on the way those
processes are arranged on the network topology.

The main idea of Algorithm 1 consists in using local selection functions fa and fr for
append and read operations respectively and characterizing blocks by their parents and
producer signatures.

To perform an append operation of a block b, correct processes extend the chain returned
by function fa applied on their current view of bt with b, i.e., fa(bt)⌢b, and rb-broadcast
fa(bt)⌢b. When a process rb-delivers a blockchain bc, it calls bt.addIfValid(bc) that merges bc

with bt if the former is valid. By merging bc with bt we mean that for each block bi of bc

starting from the genesis block b0, if bi is not present in bt then bi is added to bt, i.e., bi is
added to the block of bt whose hash is equal to the one contained in bi’s header. A read()
operation triggered by a correct process p returns the chain selected by fr on the current
blocktree bt of p. Given a blocktree bt, the append selection function fa selects a chain in bt
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Algorithm 1 Guaranteeing F with an unbounded number of Byzantine processes.

1 upon rb-delivery(bc)
2 bt.addIfValid(bc)
3 end
4 upon append(b)
5 rb-broadcast(fa(bt)⌢b)
6 end
7 upon read()
8 return fr(bt)
9 end

by going from the root (i.e., genesis block) to a leaf, choosing at each fork bi the edge to the
child with the lowest identifier. If more than one child have the same identifier (i.e., they
have been created by the same process), then all of them are ignored. If all the children have
the same identifier, then fa returns the chain from the genesis block to bi. Blocks are ranked
by the creator identifier, in the domain of the natural number and thus lower bounded by 0.
Then even though, an infinite number of blocks is added continuously to a fork, there is not,
for a given block, an infinite number of blocks with a smaller identifier. Thus eventually the
selection function fa will always select the same prefix. Finally, since blocks are diffused by
an eventually reliable broadcast primitive, eventually all correct processes will have the same
view of the blocktree. When a process invokes the read() operation, it returns the blockchain
selected by the read selection function fr applied to its current view of the blocktree. By
imposing that fr = fa, then eventually all the processes, when reading, will select the same
prefix.

▶ Theorem 23. Algorithm 1 is a solution satisfying F in an asynchronous system with a
possibly infinite set of processes which can append infinitely many blocks, and suffer from an
unbounded number of Byzantine failures.

Proof. We show by construction that Algorithm 1 solves F in an asynchronous system with
a possibly infinite set of processes which can append infinitely many blocks, and can suffer
an unbounded number of Byzantine failures. Intuitively, despite the unbounded number of
blocks in each fork, by the eventually reliable broadcast, eventually for each fork all correct
processes have the same block with the smallest identifier. Hence, by the read selection
function fr that at each fork selects the block with the smallest identifier in order to select
the chain to return, eventually, at all correct processes, function fr returns the blockchain
having a common increasing prefix. Let p1, p2, . . . , be a possibly infinite set of processes,
such that each one maintains its local view bti of blocktree bt by running Algorithm 1. Then
for any correct process pi the following properties hold.

Chain validity: it is satisfied by function bt.addIfValid(bc) that merges blockchain bc to
bti only if the former is valid.
Chain integrity: The read() operation returns the chain of blocks selected by function
fr applied to bti. By Line 2 of Algorithm 1, only valid blocks are locally added to bti

once they have been reliably delivered. By Algorithm 1, the only place at which blocks
are reliably broadcast is in the append() operation.
Eventual prefix: This property follows from the definition of fa and the eventually
reliable broadcast primitive. Thanks to the latter, for any b in the bt of a correct process
p, eventually all correct processes deliver b. Let tb be the time after which no process can
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append further blocks bchild to b such that bchild is part of the chain returned by fa. This
time tb always exists, as for each block b having potentially infinitely many children we
have, by definition of function fa, that fa(bt) selects a chain in bt by going from the root
to a leaf, choosing at each fork b the edge to the child with the lowest identifier. Since
identifiers are lower bounded by 0, eventually function fa will always select the same
child b′ of b. The same argument applies for b′ and its children. Hence, if any two correct
processes invoke the read operation infinitely many times, then as fr = fa, eventually
they return chains that satisfy the eventual prefix property.
Ever growing tree: This property relies on the fact that each fork has a finite number
of blocks since there are finitely many processes and each (Byzantine or correct) process
can contribute with at most one block per parent as multiple children created by the same
process are ignored by fa. Thus, eventually, new blocks contribute to the tree growth. ◀

5.3 Eventually Synchronous Solution Satisfying Bounded Deferred
Finality with less than half of Byzantine Processes

In this section we prove that the bounded deferred finality is solvable in an eventually
synchronous message-passing system with less than n/2 Byzantine processes, where n is the
number of processes.

We propose an algorithm, called AF for Accountable Forking. This algorithm is inspired
by the Streamlet [6] algorithm. Streamlet [6] assumes the presence of less than a third of
Byzantine processes and an eventually synchronous system with a known message delay ∆
after GST. Algorithm AF relies on weaker assumptions: we assume the presence of only
a majority of correct processes and we do not explicitly use bound ∆. We suppose that
processes have access to the eventually reliable broadcast presented in Section 5.2. Prior to
presenting our algorithm, we first recall the description of the original Streamlet [6].

The Streamlet Algorithm. The Streamlet algorithm works in an eventually synchronous
system with a known message delay ∆ and a finite set of n processes. In particular, before
the Global Stabilisation Time (GST), message delays can be arbitrary; however, after GST,
messages sent by correct processes are guaranteed to be received by correct processes within
∆ time units. Each epoch, composed of 2∆ time units, has a designated leader chosen at
random by a publicly known hash function. Each block b is labelled with the epoch (b.epoch)
at which it has been created. This allows processes to determine whether block b has been
created by a legitimate leader. Algorithm 2 presents Steamlet protocol [6].

The Accountable Forking (AF) Algorithm. We propose AF , an algorithm that extends
Streamlet. AF guarantees that for any given fork, correct processes can blame the process
that originates it, i.e, a Byzantine process creating a fork is accountable for it. This is
achieved as follows: First, we only require that a block gains votes from a majority of distinct
processes to become notarized, which means that forks can occur. The second modification
we propose goes deeper: if a fork occurs, any correct processes can detect the Byzantine
process that originated it, and excludes it from the voters. Specifically, when two conflicting
chains are finalized (i.e., two finalized chains that are not the prefix of one another) then
processes look for inconsistent blocks. By definition, two notarized blocks b, b′ are inconsistent
with one another if one of the following two conditions holds:

Condition 1. b and b′ share the same epoch, i.e, b.epoch = b′.epoch;
Condition 2. either ((b.epoch < b′.epoch) and (b.height > b′.height)) or ((b′.epoch <

b.epoch) and (b′.height > b.height)). Function height counts the number of blocks from
the genesis block.
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Algorithm 2 Streamlet algorithm [6].

Propose-Vote. In every epoch:
The epoch’s designated leader proposes a new block and reliably broadcasts it, extending
the longest notarized chain (defined below) it has seen, or breaking ties arbitrarily if
they have the same height.
Each process votes (rb-broadcasts a vote) for the first proposal it sees from the epoch’s
leader, as long as the proposed block extends (one of) the longest notarized chain(s)
that the voter has seen. A vote is a signature on the proposed block.
When a block gains votes from at least 2n/3 distinct processes, it becomes notarized.
A chain is notarized if its constituent blocks are all notarized.

Finalize. Notarized does not mean final. If in any notarized chain, there are three
adjacent blocks with consecutive epoch numbers, the prefix of the chain up to the second
of the three blocks is considered final. When a block becomes final, all of its prefixes
must be final too.

If a process votes for blocks inconsistent with one another then it is detected as Byzantine.
Once a correct process p detects a Byzantine process q, p ignores all messages coming from
q. Since all messages received by a correct process q are eventually received by any correct
process, then all of them do the same with respect to q.

▶ Theorem 24. There exists a solution that satisfies F⋄,c=0 (and all the equivalent forms)
in an eventually synchronous system with less than half Byzantine processes.

Proof. We show in the Appendix that algorithm AF is such a solution. ◀

6 Conclusion

In this work we have defined different consistency criteria for blockchains. We have first
defined eventual finality, which is the weakest consistency criterion that we may expect from
blockchains, along with the notion of block revocation. By combining eventual finality with
different forms of revocation we obtained stronger consistency criteria, thus providing a
comprehensive characterization of what we may expect from blockchains. We have formally
shown that in an asynchronous system it is not possible to provide a known bound on
the number of blocks that can be revoked. On the other hand, we have proposed for the
first time a solution in an eventually synchronous system with less than half of Byzantine
processes guaranteeing that eventually such bound is reached. We have also shown that in
an asynchronous system, finality with no bound on the number of revocable blocks cannot
be solved using the reconciliation rule of Bitcoin. Still we provide an asynchronous solution
with an unlimited number of Byzantine processes. We hope that this work will better guide
blockchain designs.
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A Appendix

▶ Theorem 22. It is impossible to guarantee F if the append operation is based on the
longest chain rule in an asynchronous environment.

Proof. To capture the synchronisation power of the system, we abstract the deterministic
creation of new blocks and their addition to the blockchain within an oracle. This oracle
is the only generator of valid blocks, and regulates the number of appended children from
a same parent. The same approach has been proposed in [1]. The branching factor of an
oracle is the maximal number of children that can be appended to a block. The oracle owns
a synchronization power equal to Consensus if its branching factor is equal to 1. The oracle
grants access to the blocktree as a shared object, through the following three operations:
update_view() returns the current state of the blocktree; getValidBlock(bi, bj) returns a valid
block b′

j , constructed from bj , that can be appended to block bi, where bi is already included
in the blocktree; and setValidBlock(bi, b′

j) appends the valid block b′
j to bi, and returns ⊤

when the block is successfully appended and ⊥ otherwise. The following theorem shows that,
even with this strong oracle (that allows to have a bounded branching factor in contrast to
proof-of-work (PoW) approaches), we cannot reach eventual finality if we rely on the longest
chain rule to resolve forks.

In the proof we consider the stronger oracle allowing the occurrence of one fork, i.e., an
oracle with branching factor equal to 2. That is, this oracle allows for two valid blocks to
be appended to the same parent. If the oracle receives new requests to append additional
blocks to this parent, it shall return ⊥ to all such requests.

Let p1 and p2 be two processes trying to append infinitely many blocks. Without loss of
generality, we carry out this proof with a length function that counts the number of blocks
from the genesis block.

We illustrate our proof with Figure 1. At time t0, for both p1 and p2, the update_view()
of bt equals b0, thus when both apply the append selection function fa on it to select the leaf
where to append the new block, they both get b0. Then they both call getValidBlock(b0, bi,1) =
b′

i, where i = 1 for p1 and i = 2 for p2. At time t1 > t0, p1 and p2 are poised to call
setValidBlock(b0, b′

i,1). We then let p1 call setValidBlock(b0, b′
1,1), which must return ⊤ and

hence b′
1,1 is appended to b0. Process p1 then proceeds to append a new block b1,2, i.e., after

having updated its bt’s view, through the update_view() function, p1 applies the append
selection function fa on it to select the leaf where to append its new block, in this case the
only leaf is b′

1,1. It calls getValidBlock(b′
1,1, b1,2) function which returns {b′

1,2} and it is poised
to call setValidBlock(b′

1,1, b′
1,2).

We let p1 continue to append new blocks until some time t2 at which it is poised to
call setValidBlock(b′

1,h, b′
1,h+1), with h = 1, such that the length of the chain b0, . . . , b′

1,h+1
would be greater than or would have the same length but a larger lexicographical order than
the chain b0, b′

2,1 if b′
2,1 were already appended to block b0. Afterwards, at time t3 ≥ t2,

we let p2 resume and complete its call to setValidBlock(b0, b′
2,1) which must also succeed

and return ⊤ as our oracle has a branching factor of 2. By construction, p2 sees the two
branches in its following update_view() of bt (i.e., chain b0, b′

1,h with h = 1, and chain b0, b′
2,1)

of the same length thus the selection function fa selects the branch b0, b′
2,1 for where to

append the next block as block b′
2,1 is smaller than b′

1,h in the lexicographical order. We
let p2 append blocks to this branch until some time t4 at which it becomes poised to call
setValidBlock(b′

2,c, b′
2,c+1) with c = 2 such that the length of the chain b0, . . . , b′

2,c is smaller
than the chain b0, . . . , b′

1,h+1, or in case of equal length has a higher lexicographical order,
and such that the length of the chain b0, . . . , b′

2,c+1 is greater than the chain b0, . . . , b′
1,h+1,

or in case of equal length has a smaller lexicographical order.
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Figure 1 A blocktree generated by two processes. On the x-axis the longest chain value of each
chain at different time instants (from the root to the current leaf) and the relationships between
those values.

As before, it is time to stop the execution of p2 and resume the execution of p1 and
to let it complete its call to setValidBlock(b′

1,h, b′
1,h+1). We can continue to create two

infinite branches sharing only the root by alternatively letting p1 and p2 extend their own
branch while stopping one and resuming the execution of the other each time its length
would overcome the length of the other branch extended with the pending block (and the
appropriate lexicographical orderings in case of equal length). This way we construct a tree
composed of two infinite branches sharing only the root b0 as common prefix. It is easy to
see that we can integrate read operations that may return the current chain from any branch
as both branches are temporarily the longest one. Thus, the common prefix never increases,
and so, the eventual finality consistency criterion is not satisfied.

It is important to note that with any length function that increases monotonically with
prefixes (e.g, the length function could count the total number of transactions that belong to
the blocks on the same branch) then this scenario still holds. In that case h and c in the
proof could be larger than 1 and 2 respectively. ◀

▶ Theorem 24. There exists a solution that satisfies F⋄,c=0 (and all the equivalent forms)
in an eventually synchronous system with less than half Byzantine processes.

Proof. Let us first demonstrate that voting for two inconsistent blocks b and b′ is a Byzantine
failure. We have two cases to consider. If both b and b′ are inconsistent because Condition 1
holds, then the intersecting voters are Byzantine as correct processes vote only once per epoch.
Hence if process q votes for b and b′ then q is Byzantine. If both b and b′ are inconsistent
because Condition 2 is met, then the intersecting voters are Byzantine, as correct processes
vote only for blocks extending one of the longest notarized chains. That is, if correct process
p votes for b it means that b is extending a notarized block bpred that is of height b.height − 1,
therefore p cannot vote afterwards for a block b′ whose height is strictly smaller than b.height
because p must extend one of the longest notarized chain. It follows that if process q votes
for both b and b′ then q is Byzantine.

Let us now show that a fork occurs because of two inconsistent blocks. If there is a
fork then this gives rise to two sequences of three adjacent blocks with consecutive epochs,
b1, b2, b3 and b′

1, b′
2, b′

3 (by construction given the finalization rule). If no blocks share the
same epoch number then we can assume w.l.o.g. that b3.epoch < b′

1.epoch. Let block b′

belonging to the prefix of b′
3 such that b′.epoch > b1.epoch and b′.height is the smallest in the

prefix of b′
3. Such block always exists as b′

1 satisfies those two conditions. We have two cases:
Either b′.height < b3.height or b′.height ≥ b3.height. In the former case, b′ is inconsistent
with b3 since by assumption b′.epoch > b3.epoch. In the latter case, the predecessor of b′

is inconsistent with b3. Indeed, the predecessor of b′ has a strictly smaller height than b1
and by assumption has a larger epoch number than b3. Figure 2 illustrates the presence
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Figure 2 Illustration of block inconsistencies due to the occurrence of a fork when the finalized
blocks are not labelled with the same epoch. Epochs are on the x axis, and all consecutive blocks
have consecutive epochs, e.g., bc and bd have four epochs of difference, 4 and 7 respectively, while b1

and b2 are labelled with consecutive epochs.

of inconsistent blocks in presence of a fork at some block bc. From bc two chains are built,
the first one consisting of the sequence of three blocks b1, b2 and b3, and the second chain
consisting of four consecutive blocks bd, b′

1, b′
2, b′

3 (to illustrate the first case) and of five
consecutive blocks bd, be, b′

1, b′
2, b′

3 (to illustrate the second case). In both cases block b′
1 plays

the role of block b′. In the first case (figure in the top), b3.height = 6 and b′.height = 5 while
b3.epoch = 6 and b′.height = 5. Thus Condition 2 applies. In the second case (figure in
the bottom), since b′.height ≥ b3.height then there must exist some block be in the b′ prefix.
Thus be.height < b′.height. Given that by assumption be.epoch > b3.epoch, then Condition 2
holds for be and b3. Hence there is always a couple of inconsistent blocks in a fork.

Let us now conclude our proof that protocol AF solves F⋄,c=0. If a fork occurs, then
each correct process eventually detects at least one Byzantine process and ignores its votes.
Thus, the number of forks is finite since we have a finite number of Byzantine processes. As a
consequence, there is always a single chain that is eventually finalized. As there is a majority
of correct processes, algorithm AF remains live as the original Streamlet one. Algorithm
AF also inherits the properties of the original Streamlet algorithm regarding the eventual
finalization of blocks when the system becomes synchronous.

Finally, by applying Corollary 17, we complete the proof of the theorem. ◀
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This paper presents Twins, an automated unit test generator of Byzantine attacks. Twins implements
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state such as forgetting “locks” guarding voted values. To emulate interesting attacks by a Byzantine
node, it instantiates twin copies of the node instead of one, giving both twins the same identities
and network credentials. To the rest of the system, the twins appear indistinguishable from a
single node behaving in a “questionable” manner. Twins can systematically generate Byzantine
attack scenarios at scale, execute them in a controlled manner, and examine their behavior. Twins
scenarios iterate over protocol rounds and vary the communication patterns among nodes. Twins
runs in a production setting within DiemBFT where it can execute 44M Twins-generated scenarios
daily. Whereas the system at hand did not manifest errors, subtle safety bugs that were deliberately
injected for the purpose of validating the implementation of Twins itself were exposed within minutes.
Twins can prevent developers from regressing correctness when updating the codebase, introducing
new features, or performing routine maintenance tasks. Twins only requires a thin wrapper over
DiemBFT, we thus envision other systems using it. Building on this idea, one new attack and several
known attacks against other BFT protocols were materialized as Twins scenarios. In all cases, the
target protocols break within fewer than a dozen protocol rounds, hence it is realistic for the Twins
approach to expose the problems.
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1 Introduction

Byzantine Fault Tolerant (BFT) protocols introduced in the seminal work of Lamport et
al. [19] are designed to withstand attacks or arbitrary malfunction of internal nodes. However,
creating Byzantine attacks in order to validate a BFT system is challenging: (i ) Byzantine
behavior is unconstrained and (ii ) developers may be tainted by what they think that the
system is designed to tolerate. Last, as a pragmatical consideration, developing code that
implements Byzantine attacks might be risky.

This paper introduces Twins, a principled approach for effectuating Byzantine attacks
on BFT systems and examining their behavior. Instead of coding incorrect behavior, Twins
creates faulty behavior testing from the correct behavior itself, simply by duplicating correct
and unmodified node behavior. This works as follows.

Twins creates a “faulty” nodes by deploying two (or generally, k) instances, both having
the same credentials/signing-keys but running autonomously. Thus, for example, both nodes
can send messages in the same protocol round, but these messages will carry conflicting
proposals or votes; to the rest of the system, this twins behavior will appear indistinguishable
from an equivocating behavior by a single node. In another example, one twin may send a
vote in one round, and its twin will “forget” it has voted in the next round; again, to the rest
of the system, this will appear indistinguishable from a single node violating safety rules.

Twins is based on the insight that most interesting Byzantine attacks are internal and
leverage knowledge of the expected behavior of participants, hence they go unnoticed. In
particular, Twins foregoes trivial attacks such as sending semantically invalid messages,
or sending a message without justification. Thus, leveraging existing code, Twins can
automatically cover material Byzantine behaviors. Indeed, Section 3 demonstrates one new,
and several known, attacks on BFT protocols materialized as Twins attacks. Crucially, in all
cases, protocols break within fewer than a dozen protocol steps, hence Twins successfully
exposes them. Note that Twins scenarios systematically iterate over protocol rounds and
vary the communication patterns among nodes. While inherently exponential, in the above
attacks, it took Twins only minutes to discover protocol flaws that in some cases, took the
community decades to surface.

Twins has been incorporated into a production setting, DiemBFT [13], in which Twins can
execute 44M Twins-generated scenarios daily. Whereas the system at hand did not manifest
errors, subtle safety bugs that were deliberately injected for the purpose of validating the
implementation of Twins itself were exposed within minutes. Twins can prevent developers
from regressing correctness when updating the codebase, introducing new features, or
performing routine maintenance tasks.

Twins & attacks on BFT replication. Twins arises in the context of BFT replication
protocols. In this domain, several worrisome safety and liveness vulnerabilities were exposed
recently [1, 23] in both known protocols [22, 17] and in new ones [2]. One reason that
BFT replication lends itself well to analysis via Twins is as follows. A common paradigm
underlying practical BFT replication protocols is a view-by-view design. Each view is driven
by a designated leader proposing to the nodes and going through voting rounds by the nodes.
If a leader is successful, a consensus decision is reached in the view. If not, nodes give up after
a timeout and move to the next view. Transitioning to the new view/leader is tricky: A new
leader must discover if the previous leader was successful, but it may be able to communicate
only with a subset of the nodes. The transition logic turns out to be the source of problems
in all the above cases, hence exposing the flaw requires only one or two leader rotations.
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Twins implementation. Twins effectuates a Byzantine attack by a Byzantine node via
instantiating twin copies of the node instead of one, giving both twins the same identities
and network credentials. To the rest of the system, the twins appear indistinguishable from
a single node behaving in a “questionable” manner. Twins minutely interacts with existing
code to control message delivery and schedule various coarse-steps such as protocol rounds.
It is practical to deploy in real systems as it uses existing node code, easily keeping up with
an evolving software project.

We built an attack generator based on the Twins approach in the DiemBFT open-source
project, the BFT replication core of the Diem payment system [13]. Implementing Twins in
DiemBFT consists of two principal parts.

The first is a scenario executor that deploys a network configuration where some nodes
have twins. The scenario executor hides twins behind a thin multiplexing wrapper; to the
rest of the system, each pair of twins appear as a single entity. The scenario executor controls
the scheduling of message deliveries according to a prescribed scenario. This is accomplished
through a transport emulator in the DiemBFT repository called Network Playground.

The second part is a scenario generator. The scenario generator enumerates scenarios by
varying the number of nodes and the message delivery schedule, then feeding the scenarios
to the scenario executor. We describe in the paper several strategies for drastically reducing
the number of scenarios through aggressive trimming of symmetrical scenarios. Among
these strategies, one minimally “opens” the DiemBFT implementation and lets the scenario
executor determine when a node acts as a leader in the consensus protocol. This removes
duplicate scenarios that differ only in their leaders. Another strategy may allow only faulty
nodes to become leader. Section 6 reports on our experience with Twins in DiemBFT.

Coverage. What attacks does the Twins approach capture? Developing a rigorous theory
that answers this question is an intriguing question left for future work. Here, we provide
anecdotal evidence of coverage in three forms:

(i) Section 2 brings intuition and experience of several decades of work in the field. There
are only a handful of ways in which a Byzantine attacker can materially deviate from the
safety rules imposed by its protocol. For example, it can equivocate and send different
proposals to different groups of recipients, or it can pretend it did not send/receive a
message and propose or vote in a manner that conflicts with such a message.

(ii) Evaluating within the DiemBFT production system Section 6 provides compelling
validation of the Twins approach. Whereas the system at hand did not manifest errors,
self-injected subtle safety bugs – for the purpose of validating the implementation
of Twins itself – were exposed within minutes. In particular, we created a simple
safety-violating setting by deploying f + 1 (instead of f) nodes with Twins, which led
to an expected consistency violation within seconds. We further injected three subtle
logical bugs, which only slightly deviated from the original specification. In all three
cases, with only f twins (faults), Twins successfully exposed safety violations.

(iii) Section 3.1 shows how Twins can instantiate a safety violation in a new protocol
described in a recent manuscript [15]. This highlights the importance of systematically
analyzing the properties of BFT protocols using Twins to expose subtle flaws. Section 3
reinstates several known attacks on BFT protocols using the Twins approach. These
attacks cover a broad spectrum of vulnerabilities, e.g., safety, liveness, timing, and
responsiveness.

In some protocol steps, a node may wait for messages to determine its next action. Under
Twins, the node is forced to act according to the messages it received, as if the node provided
a justification for each step in form of the history of messages it received. Deviating from
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this behavior was not required to reinstate any of the attacks discussed in Section 3, though
in principle, various deviating behaviors would not be covered by Twins. Another coverage
challenge emerges in synchronous protocols because a node behavior may be based on real
time. In such protocols, Twins essentially forces a node to behave in a timely manner.
We tackle this case in one of the attacks investigated in Section 3 and demonstrate that
nonetheless, a slight adaptation of the original attack reinstates the attack in Twins. However,
we do not know yet which timing attacks may not be covered. We discuss some concrete
future directions in Section 8 for extending Twins in the settings we explore as well as others.

2 Motivating the Twins Approach

We open this section with a quick primer on the Byzantine Fault Tolerant (BFT) replication
problem, and describe the notation that will be used to describe attacks through the rest
of this paper. We then provide high-level intuition on why Twins is a viable approach by
showing the different kinds of Byzantine behaviors that can be captured by Twins. (Concrete
attacks using Twins are described later in Section 3 and Section 6.1.)

BFT Replication. The goal of BFT replication is for a group of nodes to provide a fault-
tolerant service through redundancy. Clients submit requests to the service. These requests
are collectively sequenced by the nodes; this enables all nodes to execute the same chain of
requests and hence agree on their (deterministic) output.

Except when specifically noted, we consider protocols that maintain safety against
arbitrary delays in message transmissions. That is, we assume an asynchronous network
setting. The main challenge is to drive agreement on a chain of requests (and their output)
among all non-faulty nodes despite node failures. It is common to rely on leaders to populate
the network with a unique proposal. During periods in which the leader is non-faulty and
communication among the leader and non-faulty nodes is timely, this regime can drive
consensus quickly. This approach is called partial synchrony, indicating that it maintains
safety at all times and progress only during periods of synchrony.

In the Byzantine fault model, a node may crash or arbitrarily deviate from the protocol.
In this setting, a BFT replication system implements a fault tolerant service via n nodes,
of which a threshold f < n/3 may be Byzantine. As Byzantine behavior is defined rather
vaguely, there is no principled way to evaluate BFT systems. Twins is a new approach to
systematically generate Byzantine attacks. The main idea of Twins is the following: running
two (generally, up to k) autonomous instances of a node that both use correct code and
share the same identity, allows us to emulate most interesting Byzantine attacks. Two nodes
share the same identity when they share the same credentials and signing keys.

Notation. Nodes are represented by capital alphabets (e.g., A) and the twin of a node is
represented by the same alphabet with the prime symbol (e.g., A′). When referring to a set
of nodes, we enclose them in parentheses e.g., (A, B, B′). We underline a node that is serving
as the leader, e.g., A. The adversary can delay and filter messages between nodes. We denote
partitions of nodes by enclosing them in braces, e.g., P1 = {A, B, C, D} and P2 = {E, F, G},
and reserve the capital letter P to denote them. Additionally, to show messages allowed in
a given direction, we use the symbols → and ↔. For example, A → (B, C) means A can
send messages to B and C; similarly, A ↔ P2 means A can send messages to and receive
messages from any node of the partition P2. The scenarios described below use a network
configuration of 7 nodes, (A, B, C, D, E, F, G). Byzantine nodes have twins denoted with ′,
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as in F ′, G′. To experiment with any of the deviating behaviors described below, one can
increase the number of Byzantine faults to f + 1 (say E, F, G have twins E′, F ′, G′) and
expect to see conflicting commits.

Equivocation. A quintessential Byzantine behavior is for a node to equivocate. That is, in
the same step, a Byzantine node might send different messages to different recipients.

Twins covers equivocation by splitting honest nodes between two partitions, each one
communicating with only one twin of each pair. For example, we can split the system into
P1 = {A, B, C, D, F }, P2 = {C, D, E, F ′, G}. The leader(s) F and F ′ execute correct leader
code but nevertheless may generate conflicting proposals due to different inputs or randomness
seeds. If there is a protocol flaw then these conflicting proposals could respectively commit
in P1 and P2, hence safety breaks.

Amnesia. An important role that nodes have in agreement protocols is vote for a single
proposal per view. However, a Byzantine node might vote for a proposal and then “forget”
that it has voted and vote again. Twins covers amnesia by letting one of the twins vote on
one proposal. Since the other twin is oblivious to the vote happening, it may nevertheless –
albeit executing correct code – vote on a different proposal.

More concretely, as in the scenario above, we can split the nodes into two partitions,
P1 = {A, B, E, F, G}, P2 = {C, D, E, F ′, G′}. If there is a protocol flaw then this double-
voting behavior may result in conflicting commits in P1 and P2, hence safety breaks.

Losing internal states. Another notable deviation for Byzantine nodes is to lose their
internal state, particularly a lock that guards a value they voted for. Twins covers this
deviation by letting one of the twins get locked on a value in one view, but in some subsequent
view, bring the other twin who is ignorant that a lock exists.

More concretely, we can split the nodes into two partitions P1 = {A, B, E, F, G}, P2 =
{C, D, E, F ′, G′}. In one view, the adversary relays messages only among P1. In the next
view, it switches to P2, causing F ′, G′ – albeit executing correct code – to ignore their
“previous” actions. This can repeat any number of times. If there is a protocol flaw then
conflicting proposals may commit in different views, hence safety breaks.

3 Attacks Materialized in Twins

In this section, we demonstrate one new, and several known, attacks on BFT replication
protocols, expressed as Twins scenarios. We provide insight into the attacks and defer
the details of all but the linear leader-replacement attack to an appendix, due to space
constraints.

3.1 New Attack
Fast-HotStuff [15] is a new protocol, described in a recent manuscript. It is similar to
HotStuff [32], except with a 2-phase commit rule. The safety violation we reveal using Twins
is possible because Fast-HotStuff does not require consecutive rounds in order to commit.
Specifically, Quorum Certificates (QCs) [32] formed by some of the (partitioned) nodes
do not reach the other nodes, resulting in two parallel branches that eventually commit
two conflicting blocks. We instantiate this safety violation with Twins (using only network
partitions in a network with 4 nodes and within 11 rounds). This highlights the efficacy of
systematically analyzing the properties of BFT protocols via Twins to expose subtle flaws.
More details are provided in Appendix F.
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We implemented the Fast-HotStuff BFT consensus algorithm in a Python simulator which
we release as open source1. The simulator then executes Twins scenarios over the algorithm.

3.2 Reinstated Attacks
We present several known attacks on BFT protocols, expressed as Twins scenarios. In all
cases, exposing vulnerabilities requires only a small number of nodes, partitions, rounds
and leader rotations. It is worth noting that later, our evaluation (Section 6) of LibTwins,
Twins implemented for DiemBFT, shows that running an automated scenario generator
(Section 4.2) with these configurations would cover the described attacks within minutes. We
did not undertake to re-implement all these protocols and apply a Twins scenario generator
to them; our implementation covers only DiemBFT [13].

Safety attack on Zyzzyva. Zyzzyva broke new ground in BFT replication with the in-
troduction of an optimistic single phase “fast track” commit. Eleven years elapsed from
its publication until a safety flaw in Zyzzyva was discovered [1], during which numerous
research project and systems were built on it. Twins generates a scenario that exposes the
flaw with 4 nodes and two leader rotations: the first leader equivocates via a twin, and the
next two leaders drop messages to/from some nodes. The details of this attack using Twins
is described in Appendix C.

Liveness attack on FaB. FaB [22], a precursor to Zyzzyva, is a view-based protocol with
an optimistic fast track. Not surprisingly, a similar problem arises in FaB due to a flawed
leader replacement protocol [1], albeit manifesting as a liveness bug. Twins exposes this bug
in a short scenario with n = 4 and three leader rotations, leading to a complete absence of
leader proposals. The detailed attack using Twins is described in Appendix D.

Timing attack on Sync HotStuff. Force-Locking Attack [23] is a timing attack on a
preliminary version of a synchronous BFT protocol named Sync HotStuff [2] (which was
subsequently updated to resist the attack). As before, Twins captures this attack with only
a small system size, n = 5, and two leader rotations. However, in order to create timing
attacks, Twins needs to be aware of timing information for protocol steps and messages
deliveries. Extending Twins with timing data is left for future work. In the specific attack at
hand, course-grain timing at fixed intervals – fewer than ten – suffice to reinstate the attack.
The detailed attack using Twins is described in Appendix E.

Non-Responsiveness attack on linear leader-replacement. Practical Byzantine Fault Tol-
erance (PBFT) [9] is a seminal work that was designed to work efficiently in the asynchronous
setting. Carrying the classical PBFT solution to the blockchain world, Tendermint [7] and
Capser [8] introduced a simplified linear strategy for leader-replacement. However, it has been
observed [6, 31] that this strategy forgoes an important property of asynchronous protocols –
Responsiveness – the ability of a leader to advance as soon as it receives messages from 2f + 1
nodes.2 Indeed, bringing linear leader-replacement approach into PBFT, we demonstrate a
liveness attack using a Twins scenario. Lack of progress is detected by observing that two
consecutive views with honest leaders whose communication with a quorum is timely do not
produce a decision. We present the details of this attack using Twins in the next section.

1 https://github.com/asonnino/twins-simulator/tree/master/fhs
2 Tendermint is a precursor to HotStuff [32] and DiemBFT [13] which operates in two-phase views, but

has no Responsiveness. HotStuff/DiemBFT solve this by adding a third phase.

https://github.com/asonnino/twins-simulator/tree/master/fhs
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3.3 Non-Responsiveness Attack
We now describe in more detail the non-Responsiveness attack above on linear leader-
replacement. The seminal PBFT solution operates two-phase views. A simplified, linear
leader-replacement works as follows. A leader proposes to extend the highest quorum
certificate (QC) it knows. A QC is formed on a proposed value if it gathers 2f + 1 votes from
nodes. Nodes vote on the leader proposal if it extends the highest QC they know. A commit
decision on the leader proposal forms if 2f + 1 nodes form a QC, and then 2f + 1 nodes
vote for the QC. Progress is hinged on leaders obtaining the highest QC from the system,
otherwise liveness is broken.

Using the notation from Section 2, the liveness attack here uses 4 replicas (D, E, F, G),
where D has a twin D′. In the first view, D and D′ generate equivocating proposals. Only
D, E receive a QC for D’s proposal. The next leader is F who proposes to re-propose the
proposal by D′, which E and D do not vote for because they already have a QC for that
height. Only F and D′ receive a QC for F ’s proposal. This scenario repeats indefinitely,
resulting in loss of liveness. More specifically, this attack works as follows:

View 1: Initialize D and D′ with different inputs v1 and v2.
Create the partitions P1 = {D, E, G}, P2 = {D′, F}.
Let D and D′ run as leaders for one round. D proposes v1 to P1 and gathers votes
from P1 creating QC(v1). D′ proposes v2 to P2 and gathers votes but not a QC.
Create the following partitions: P1 = {D, E}, P2 = {D′, F}, P3 = {G}. D broadcasts
QC(v1), which only reaches P1 i.e., (D, E).

View 2: Drop all proposals from D and D′ until View 2 starts.
Remove all partitions, i.e., P = {D, D′, E, F , G}.
Let F run as leader for one round. F re-proposes v2 (i.e., D′’s proposal in the previous
round) to P . (D, E) do not vote as they already have QC(v1) for that height. F

gathers votes from the other nodes and forms QC(v2).
Create partitions P1 = {D, E}, P2 = {D′, F}, P3 = {G}.
F broadcasts QC(v2), which only reaches P2.

View 3: Drop all proposals from F until View 3 starts.
Create the partitions P1 = {D, E, G}, P2 = {D′, F}.
Let E run as leader for one round. E proposes v3 which extends the highest QC it
knows, QC(v1). As before, E manages to form QC(v3), but as a result of a partition,
the QC will only reach (D, E). Next, there is a view-change, F is the new leader, and
there are no partitions. F proposes v4 which extends QC(v2), the highest QC it knows.
However, (D, E) do not vote because v4 does not extend their highest QC i.e., QC(v3).
This scenario can repeat indefinitely, resulting in the loss of liveness.

4 Systematic Scenario Generation

Whereas the previous section demonstrated manually crafted Twins attack scenarios, this
section presents a framework for systematically generating such scenarios.

Systematically and efficiently generating Twins scenarios that provide good coverage
requires tailoring to the specific BFT protocol settings. We develop the Twins framework
which generates and executes scenarios that describe the node and network configurations.
Specifically, the Twins framework is comprised of two components as shown in Figure 1: (i )
the scenario executor, and (ii ) the scenario generator. The scenario executor runs a single
scenario and generates output logs, while the scenario generator produces various scenarios
that are fed to the scenario executor to check for violations. The following design goals
underlie the Twins framework:
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Scenario Generator

More
Scenarios?

Scenario ExecutorScenario

Yes
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Output
Logs

Persistent
Storage

Figure 1 Twins high-level design.

Generic & Modular. Twins is modular with respect to the particular BFT protocol im-
plementation being analyzed, imposes as little complexity as possible on the development,
and easily keeps up with code changes.
Parametrizable. The network setup (i.e., the number of nodes, leaders per round, and
network configuration per round) and adversarial assumptions (i.e., how many Byzantine
faults are tolerated) is configurable.
Feasible. Twins allows pruning duplicate scenarios in order to provide coverage of
material attacks.
Customizable Coverage. The coverage of scenarios, i.e., the subset of all possible
scenarios to choose for execution, is configurable by randomly sampling scenarios to run
among all possible enumeration.
Reproducible. Twins writes logs to persistent storage, containing sufficient information
to detect and reproduce any safety violations.

Next, we describe the two main components (Figure 1) of Twins– the scenario executor
and the scenario generator– in detail.

4.1 Scenario Executor

In every Twins scenario, a threshold of the nodes are “misconfigured” to have a twin instance
with identical transport endpoint credential and secret keys. The Twins scenario executor
gets as input a scenario consisting of a node-set, a subset of which are marked compromised
(representing Byzantine nodes); and a round-by-round message delivery schedule. The
scenario executor sets up a network of nodes with a given number of compromised nodes
and per round partitions and leaders. The compromised nodes correspond to the nodes for
which the scenario executor creates twins (i.e., identical instances with the same credentials
and signing keys), thereby emulating misbehavior.

As mentioned above, we address BFT replication protocols that proceed in rounds
initiated by a designated leader, each round representing a state transition in the protocol’s
state machine replicated on each node. For each round, the scenario executor creates a given
network partition and assigns given leaders to the round. The scenario executor runs the
BFT protocol among nodes for a pre-specified number of rounds, at the end of which, the
scenario executor checks for violations. Specifically, protocol guarantees can be violated in
two principal ways, safety and liveness. A safety violation is detected if two nodes commit
to conflicting decisions. A liveness violation can be detected if the protocol fails to commit
within a certain number of steps or a certain duration bound.
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4.2 Scenario Generator
We build a scenario generator of round-by-round scenarios: for each round, the scenario
generator enumerates possible leaders and message delivery schedules among nodes. The sce-
nario generator produces various scenarios to be fed into the scenario executor. Each scenario
represents a unique instance of executor configuration parameters, i.e., the compromised
nodes and per round network partitions and leaders. Scenarios are generated systematically
as follows (see notations in Section 2):

Step 1. The scenario generator first produces the set of all possible partitions of nodes
(called partition scenarios). For example, for a network of 4 nodes (A, B, C, D), possible
partition scenarios (P ) include {P1 = {A, D}, {B, C}}, and P2 = {{A}, {B, C, D}}. This
problem relates to the Stirling Number of the Second Kind [27] which enumerates the
ways in which a set of N nodes can be divided up into P non-empty partitions, where P

ranges from N (i.e., each node is self-isolated) to 1 (i.e., fully connected network without
partitions).
Step 2. Next the scenario generator assigns each partition scenario to all possible leaders
i.e., the set of N nodes assuming any of those can be a potential leader. For example,
for the example partition scenario above {P1 = {A, D}, {B, C}} for a network of nodes
(A, B, C, D), possible leader-partition combinations include {A, P1}, {B, P1}, {C, P1},
{D, P1}. Each leader-partition combination fully describes the Twins configuration
required for each round.
Step 3. The scenario generator lists scenarios by enumerating all possible ways in which
the leader-partition pairs generated in the previous step can be arranged over R rounds
(i.e., permutation, with or without replacement).

The scenario generator iterates over the generated scenarios linearly, and invokes the
scenario executor for each scenario. For safety analysis, usually a small number of rounds
(< 10) suffices to expose logical bugs in the protocol. Scenario generators therefore need to
enumerate a reasonable number of combinations.

Pruning scenarios. Important to the success of the approach is for the scenario generator
to avoid duplicate scenarios (e.g., in symmetry or node label3 rotation) and generate only
materially different scenarios. The implementation we describe in the Evaluation section
of this paper (Section 6) employs aggressively such pruning. Certain heuristics further
substantially reduce the number of scenario configurations. For example, in most safety
violations the set of honest parties is split into two, hence it suffices to play with two or
three partitions per round. These optimizations make it feasible to cover a broad range of
meaningful scenarios. For analyzing liveness, many scenarios will obviously fail to make
progress because there does not exist a super-majority quorum that has reliable and timely
communication among its members. Hence, for liveness analysis the scenario generator must
guarantee that eventually such a quorum exists.

Message delays and timeouts. We note that the scenario generator does not address
message delays and timeouts, only the dropping of messages and their relative delivery order.
Because the BFT protocol may employ timers, the dropping of messages implicitly implies

3 Nodes can have designated roles in the protocol, referred to as node labels. Twins incorporates the
label “leader”, which is the case for standard BFT protocols. Extensions of these protocols might have
further hierarchy e.g., primary and secondary leaders. This is currently not supported, but the scenario
generator can be easily extended to support different node labels.
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Figure 2 Design of DiemBFT’s Network Playground.

that relevant endpoint incur a violation of presumed bounds on transmission delays. Future
work may incorporate explicit message delays into the scenario generator to check specific
timing violations and also to analyze BFT protocols in the synchronous model (Section 8).

5 Implementation

We implemented the Twins framework for DiemBFT, which we call LibTwins. Appendix A
provides an overview of DiemBFT. As described in Section 4, an implementation consists
of two principal ingredients, a scenario generator and an scenario executor (Figure 1). We
first describe the scenario executor implementation which leverages a network emulator
in DiemBFT referred to as the network playground. We then proceed to describe the
scenario generator implementation. For completeness, the Rust code and interfaces for the
main functions of LibTwins, execute_scenario and scenario_generator, are provided in
Appendix B. We are open sourcing the Rust implementation of LibTwins4.

5.1 Scenario Executor
The LibTwins scenario executor leverages the network emulator of DiemBFT, network
playground5. Network playground provides an apparatus for running single-host DiemBFT
deployments, emulating a network and intercepting all messages exchanged between nodes.
Scenarios can be written to manipulate the intercepted messages (e.g., by dropping certain
messages) and observe node response. Figure 2 shows the design of the network playground.
Nodes are represented by processes run on different threads (that run the full consensus
protocol), and network links between them are expressed as Rust channels that provide
asynchronous unidirectional communication between threads. In DiemBFT, nodes are
identified by their Account Address (a public key that uniquely identifies a node). Channels
are associated with their respective account addresses (nodes). When a node starts a new
round, it checks whether it is leader for this round; if yes, then it generates on the fly a block
to propose using a mock block generator. Each call to the mock block generator produces a
different block. This has important implication for LibTwins, as we require a node and its
twin to propose different blocks at the same round to emulate equivocation.

The scenario executor component (Section 4) of LibTwins is built on top of network
playground. This required the following modifications and extensions to the original library:

4 https://github.com/diem/diem
5 https://github.com/diem/diem/blob/master/consensus/src/network_tests.rs

https://github.com/diem/diem
https://github.com/diem/diem/blob/master/consensus/src/network_tests.rs
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Adding twins. We wrote a new method to add nodes to the network that supports
twins. The method takes “compromised nodes” as a parameter to refer to the nodes
for which to create twins. For each target node, a duplicate instance is created with
the same credentials and signing keys. Consequently, in the eyes of the other nodes the
compromised node and its twin are indistinguishable.
Inferring rounds. LibTwins requires to apply a number of filtering policies at the round
level. Network playground does not have a notion of rounds – it only supports static
configurations that remain unchanged throughout protocol execution. There is no global
notion of rounds in a distributed system with partial synchrony; instead, nodes have their
own view of which round they are in, which they include in their messages. We enable
network playground to extract round from intercepted messages and accordingly apply
filtering criteria.
Round-based message filtering. Network playground allows writing rules to drop
intercepted messages that meet certain criteria, i.e., messages to or from specified nodes
and messages of specified types e.g., votes or proposals. LibTwins extends network
playground to drop intercepted messages per round, which allows emulating different
network partitions per round. The message dropping rules treat compromised nodes and
their twins differently – the rules apply to account addresses (which uniquely identify
nodes), not public keys (which are the same for a target node and its twins).
Deterministic multi-leader election. DiemBFT currently uses a non-deterministic
leader election algorithm. LibTwins requires leader election at a finer granularity, i.e.,
assigning a specified leader to each round, potentially assigning multiple leaders to a
round (because if a compromised node is elected as a round leader, its twins becomes
leader too). We wrote a new leader election algorithm for DiemBFT that supports these
requirements.

To emulate running the protocol for a given number of rounds, we approximate rounds
by the number of messages emitted by nodes. Note that in a system with partial synchrony,
we can only make guesses about rounds as there is no global notion of rounds. Using
message-count per-round (without partitions) as an “over-guesstimate”, we let the nodes vote
for 3 extra rounds. Over-running a scenario has no consequence on the results of LibTwins
(other than longer scenario execution time) because any safety violations would have already
been detected in earlier rounds.

5.2 Scenario Generator
The scenario generator produces scenarios in three main steps. First, it generates all the
possible ways in which a set of N nodes can be split into P partitions (partition scenarios).
Second, it generates all possible ways in which L leaders can be combined with the partitions
generated in the previous step. Finally, it generates all the possible ways in which the partition-
leader combinations can be permuted over R rounds of consensus protocol execution. The
scenario generator can operate in online or offline modes. In the online mode, scenarios
are generated on the fly and fed to the scenario executor. The scenario generator can be
configured to write the scenarios to a file. In the offline mode, the scenario generator reads
previously generated scenarios from a file and feeds them to the scenario executor.

Pruning scenarios. A naïve enumeration of all combinations of P partitions, L leaders, and
R rounds may explode quickly (see Table 1). In order to constrain the number of generated
scenarios in a particular run, we provide hooks to control the number of P partitions,
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the number of L leader-partition pairs, and the number of leader-partition configuration
assignments to rounds. For all three cases, we specify whether the selection is deterministic
– first X – or randomized – an X sample. In the third case – configuration assignment to
rounds – the total combination space to select from is large. Therefore, the scenario generator
allows randomizing the per-round configuration selection, rather than sampling over the
entire space of assignments.

6 Evaluation

We validate the capability of LibTwins to model and detect attacks, present microbenchmarks
for the main components of LibTwins, and describe our experiments at scale using Amazon
Web Services (AWS) [4]. We are open sourcing the implementation of LibTwins, AWS
orchestration scripts, and microbenchmarking scripts and data to enable reproducible results6.

All our evaluations correspond to 4–7 nodes, 4–7 rounds and 2–3 partitions. Intuitively,
these configurations seem sufficient to expose any safety violations. Indeed, the known
attacks on BFT protocols described in Section 3 were exposed with only a small number
of nodes, partitions and leader rotations. A recent work [25] on the coverage of random
scenarios to detect crash faults shows that coverage depends on the number of partitions and
node labels (in our case, the leaders), but not on the number of nodes. For Jepsen [16], all
the bugs that provide meaningful coverage have a small number of rounds, and 2–3 partitions
and roles [25]. Using higher values for these parameters leads to a very large number of
scenarios, which cannot be feasibly executed without some sort of filtering (Section 5.2). It
is an interesting open question whether increasing the value of these parameters has a higher
chance of exposing safety violations.

6.1 Validation

We deliberately introduce bugs to DiemBFT, and validate that LibTwins is able to model
and detect attacks that exploit the injected vulnerabilities. This approach is similar to
mutation testing, a well-known technique to evaluate the quality of existing tests in terms of
whether they can detect programs with deliberately injected modifications (called “mutants”).
While approaches such as automated mutation testing can help us to exhaustively introduce
mutants, this is computationally expensive and not practical for large, complex systems.
We select bugs to inject into DiemBFT based on their ability to compromise the program’s
functional correctness. We note that this choice is based on our intuition and experience, and
does not provide any coverage guarantees. The validation approach we use is to: (i ) inject
the bug into DiemBFT; and (ii ) generate scenarios using the LibTwins scenario generator,
checking for any safety violations. We instantiate the scenario generator with different
configurations and vary them until a safety violation is exposed.

We begin with the base case: can LibTwins generate a scenario that violates safety when
the BFT threshold is exceeded (i.e., > f Byzantine nodes)? We discovered a safety violation
with 4 nodes and 2 twins (A, B, C, D, A′, B′), 7 rounds, and static scenario configuration (i.e.,
each partition-leader combination is run for all R rounds). LibTwins executed 62 scenarios
of which 8 led to safety violation within 86s.

6 https://github.com/libra/libra

https://github.com/libra/libra
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Figure 3 Time taken by the scenario generator to produce LibTwins scenarios. Each data point is the
average of 10 runs; error bars represent one standard deviation.

Changing quorum size to 2f . BFT protocols consider a state transition safe if it receives
votes from an honest majority of nodes (i.e., quorum). We change DiemBFT’s quorum size
from 2f +1 to 2f . LibTwins detects a safety violation with 4 nodes and 1 twin (A, B, C, D, A′),
7 rounds, and static scenario configuration (i.e., where each partition-leader combination is
run for all the R rounds). Within 20s, LibTwins executes 14 scenarios of which 6 lead to
safety violation. These scenarios have the same pattern: Nodes are split into two partitions
of size 2 and 3, with A in one partition and A′ in the other. As nodes in the two partitions
can form quorum, oblivious to each other they continue to generate quorum certificates on
blocks proposed by A and A′, respectively. Ultimately, nodes in the two partitions commit
two different blocks.

Accepting conflicting votes. Upon receiving a proposal, nodes vote for it only if the
block_round is greater than the last_voted_round (Safety Rule 1, Appendix A). We intro-
duce a subtle bug to DiemBFT by changing this rule, so that a node votes for a block if the
block_round is greater than or equal to the last_voted_round. LibTwins detects the safety
violation within a few seconds, with 4 nodes and 1 twin {A, B, C, D, A′}, and 7 rounds. This
safety bug was detected in one-shot, with 0 partitions. Nodes vote on proposals from both A
and A′ and quickly end up committing two different proposals for the same round.

Forgetting to update preferred round. Upon receiving a proposal, nodes vote for the
block if the block_round is greater than last_voted_round, and the block’s parent_round

is greater than or equal to preferred_round (Safety rules 1 and 2, Appendix A). We disable
the first check, and bypass the second check by never updating preferred_round so it
permanently remains at 0 (Update rule 2, Section A). The main ingredient of an attack that
exploits the bug described above is to propose a block in an old round, and get the nodes
to over-write committed blocks (safety violation). The challenge for LibTwins is that as a
twin node runs correct code, it cannot be made to propose blocks in arbitrary rounds. One
option is to partition the twin node in an old round, and bring it back up in a later round,
so it starts proposing blocks from where it left. This is, however, not possible in a “full
disclosure” protocol like DiemBFT where each quorum certificate (or timeout certificate)
contains the full history of previous messages that led to the certificate. That is, as soon
as A′ recovers from the partition, it receives a quorum certificate (or timeout certificate)
from other nodes and advances its round. To emulate A′ going back in time and proposing a
block for an older round, we let it run as leader for a few rounds, crash it, and then recover
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Table 1 The number of LibTwins scenarios generated for various configurations. Steps 1, 2 and 3
correspond to the scenario generation pipeline described in Section 4. Step 1: The number of ways
in which N nodes can be distributed among P partitions. Step 2: The number of ways in which the
partitions generated in Step 1 can be combined with leaders. Step 3: The number of ways in which the
partition-leader pairs generated in Step 2 can be permuted (with and without replacement) over R rounds.
In Static configurations, each partition-leader pair is statically configured for all the R rounds.

Nodes Twins Partitions Rounds Step 1 Step 2 Step 3
No Repl. Repl. Static

4 1 2 4 15 15 ∼ 3 × 104 ∼ 5 × 104 15
4 1 3 4 25 25 ∼ 3 × 105 ∼ 4 × 105 25
4 1 2 7 15 15 ∼ 3 × 107 ∼ 2 × 108 15
4 1 3 7 25 25 ∼ 2 × 109 ∼ 6 × 109 25

7 2 2 4 255 510 ∼ 7 × 1010 ∼ 7 × 1010 510
7 2 3 4 3,025 6,050 ∼ 1 × 1010 ∼ 1 × 1015 6,050
7 2 2 7 255 510 ∼ 9 × 1018 ∼ 9 × 1018 510
7 2 3 7 3,025 6,050 ∼ 3 × 1026 ∼ 3 × 1026 6,050

it again as leader. When A′ comes back up again it starts from round 0, proposing a block
that builds on the genesis block (the first committed block). Because of our modifications to
the preferred_round and last_voted_round checks, the nodes re-write history.

6.2 Microbenchmarks
We present microbenchmarks for the two main components of LibTwins: scenario generator
(Section 5.2) and scenario executor (Section 5.1). The microbenchmarks are run on an Apple
laptop (MacBook Pro) with a 2.9 GHz Intel Core i9 (6 physical and 12 logical cores), and 32
GB 2400 MHz DDR4 RAM.

Scenario generator microbenchmarks. The scenario generator incurs a one-time compu-
tational cost – once the scenarios are generated, the scenario generator feeds them one
by one to the scenario executor. Table 1 shows the number of scenarios generated with
different configurations. We observe that the number of nodes and the number of rounds
significantly increase the output of Step 1, which increases proportionally in the number of
twins (as we only configure nodes with twins to become leaders). We find that non-static
configurations in Step 3 cause the number of scenarios to explode. Therefore, of the various
filters implemented for the scenario generator (Section 5.2), we find the filter at Step 2 to
be most useful. We use this filter to make our at-scale Twins analysis (Section 6.3) feasible.
Note that this inevitably comes at the cost of completeness of coverage – a trade-off that
we cannot completely eliminate. Figure 3 shows how long the scenario generator takes to
produce scenarios for the same number of nodes (4) and partitions (2), and 4 (Figure 3a) and
7 (Figure 3b) rounds. We observe that while it expectedly takes longer to generate scenarios
for 7 rounds vs. 4 rounds due to a larger number of permutations, for each case the time
taken increases linearly in the number of scenarios. We observe a similar linear trend in
our microbenchmarks for other configurations with varying number of nodes and partitions
(figures not included due to space constraints).

Scenario executor microbenchmarks. Table 2 shows the time the scenario executor takes
to execute a scenario. We repeat each measurement over 100 randomly selected scenarios
from a configuration with 2 partitions, and varying number of nodes (4 and 7) and rounds
(4–12). We observe that for 4 nodes, the execution time ranges from 234–465ms for 4–12
rounds, with a maximum standard deviation of 314ms. For 7 nodes, the execution time
ranges from 547–748ms for 4–12 rounds, with a maximum standard deviation of ∼ 1.2s.
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Table 2 The time scenario executor takes to execute a scenario for 4 and 7 nodes, over varying number
of rounds and fixed partitions (=2). Each measurement is repeated for 100 randomly selected scenarios.

Rounds 4 Nodes 7 Nodes
Mean (ms) Std. (ms) Mean (ms) Std. (ms)

4 239 314 547 1,286
5 250 87 555 1,059
6 284 88 555 802
7 296 87 559 752
8 334 209 647 810
9 363 175 643 557
10 398 222 653 539
11 433 168 718 570
12 465 179 748 223

The variation observed above in execution times is expected because of how DiemBFT
handles timeouts (Appendix A). For each scenario, LibTwins runs DiemBFT until it has
observed a given number of messages (proposals and votes), which roughly corresponds to
the number of rounds. In some scenarios, LibTwins can quickly pull out the given number of
messages and finish the scenario in a timely manner. In other scenarios, we might end up
with partitions where the nodes are not able to make progress and advance rounds, due to
frequent round failures and increased timeout values. Some scenarios may take longer to run,
waiting for the network to emit enough messages to conclude the scenario. The execution of
scenarios has negligible (< 0.1%) memory and CPU footprints.

6.3 Running Scenarios at Scale
We evaluate LibTwins at scale, by running it against the correct code of DiemBFT. We
executed 44M scenarios which were randomly selected from the 200M scenarios corresponding
to the third row of Table 1 (that is, with 4 nodes, 2 partitions, 7 rounds, permuted with
replacement). We first generated all the 200M scenarios and randomly selected 44M samples.
We ran the scenario generator in offline mode so the scenarios are written to file rather than
being passed to the scenario executor. We then split the generated scenarios into 20 shards.
The scenarios can be easily sharded, as the scenarios are independent of each other – this
implies that subject to the availability of computing power to generate and execute scenarios,
LibTwins can be scaled up arbitrarily via sharding. We execute the sharded scenarios over
20 parallel instances of LibTwins on AWS. We use t3.2xlarge instances with 8 vCPUs, 2.5
GHz, Intel Skylake P-8175; 32 GB of RAM, and 300 GB of SSD storage. All machines run a
fresh installation of Ubuntu 18.04. We did not observe any safety violations.

7 Related Work

There are two typical approaches to validate distributed systems. The first approach is to
offer strong guarantees by building a fully verified system from the ground up [18, 26], or to
show the absence or presence of bugs [29, 11, 10, 21] by exhaustively enumerating the space
of system behaviors [5, 30] under systematically injected faults [3, 20].

Fully verified systems do not scale to systems deployed in the real world. Model checking
and exhaustive enumeration of distributed system faults (especially, Byzantine arbitrary
behavior) leads to state explosion (despite partial order reduction techniques [14]), resulting in
low performance. This motivates the second approach of random validation, which underlies
the discipline of Chaos Engineering, exemplified by systems like Chaos Monkey [24]. The
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main idea is to analyze the resiliency of a distributed system by randomly injecting faults (e.g.,
terminating processes). Turret [20] refines this idea by focusing on performance attacks. It
runs an attack-finding algorithm using different strategies, ranging from simple brute-force to
more sophisticated “greedy search” algorithms. Jepsen [16] is a blackbox analysis framework
that runs processes with a random, auto-generated workload and randomly injected network
partitions. A related approach is to subject the system being evaluated to trials by fire such
as Cosmos Game of Stakes [12], i.e., financially incentivizing the community to attack the
“mock” network, and analyzing successful attacks to harden the network. Random validation
is effective and scalable – but it is not comprehensive or reproducible, and cannot be used to
evaluate distributed systems in an ongoing fashion.

Prior work (with the exception of Jepsen) focused on crash faults. Twins is a new,
principled approach to validate BFT systems by emulating Byzantine behavior via twins–
copies of “compromised” nodes that can send duplicate or conflicting messages. Twins
advances state-of-the-art by providing a framework to systematically generate scenarios
with configurable coverage, and only modeling correct executions (thus avoiding the state
explosion problem associated with formal methods). We show with extensive evaluations
that Twins is suitable for evaluating real-world systems, and can be scaled up arbitrarily for
larger scenario coverage. Twins automatically generate scenarios that modify the interaction
of components with the environment, without opening the code.

8 Future Work & Conclusion

Twins is a novel approach to systematically analyze BFT systems. It provides coverage
for many, but not all, Byzantine attacks. The paper demonstrated anecdotal evidence of
coverage with respect to several known Byzantine attacks, and an implementation of Twins
for DiemBFT that exposes misconfiguration and purposely injected logical bugs within
minutes. Many directions are left open for future extensions.

Theory of Twins coverage. As mentioned in the Introduction, it is left open to rigorously
characterize the attacks that Twins can cover. In particular, we conjecture that Twins covers
all Byzantine behaviors in a class of protocols that have “full disclosure”: each message
includes a reference to its entire causal past and any source of non-determinism (such as
local coin flips), and nodes act deterministically according to their causal past. It would
seem that this class of protocols is fully covered by Twins since the only possible attack
by Byzantine nodes is to select different subsets of messages to report to different targets.
Similarly, we conjecture that Twins can cover timing violations in a class of “lock-step”
synchronous protocols. Increasing coverage of Twins in the settings we explore as well as
others, and providing a formal treatment of coverage remain interesting open challenges.

Checking additional properties. A different dimension for extension is the type of guarantees
which Twins scenarios. While this paper focused squarely on safety of the core consensus
protocol, the Twins approach can be extended to validate ancillary components of BFT
systems. For example, DiemBFT switches to a new set of nodes by committing a special
block that includes the new set of nodes and signals the reconfiguration event. It would be
useful to investigate if Twins can cause a safety violation by creating an inconsistent node
change (i.e., parts of the network believe in different nodes). Similarly, DiemBFT’s smart
contract execution engine is re-instantiated via a similar mechanism, and can be subjected
to a similar Twins-based attack.
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Extending Twins implementation. With respect to the concrete DiemBFT Twins imple-
mentation presented in Section 5, several extensions are left for future work, including: (i )
tackling more than a pair of twins; (ii ) detecting liveness violations; and (iii ) implementing
process-level twins over TCP/IP.
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A Overview of DiemBFT

We now shift our attention to utilizing Twins for validating BFT replication in DiemBFT [13].
We discuss our implementation and evaluation of Twins for DiemBFT in Sections 5 and 6. In
this section, we provide an overview of DiemBFT (for details, see the technical report [28]).

DiemBFT operates in a round-by-round manner, electing leaders in each round among
the nodes to balance node participation. Rounds are slightly different from conventional
“views” because it takes multiple rounds to reach a decision, but leaders are rotated in each
round. The leader protocol is quite simple. A leader proposes an extension to the longest
chain of requests that it knows already. Usually leaders collect batches of requests to propose,
referred to as blocks, hence the DiemBFT protocol forms a chain of blocks (or a blockchain).
Nodes vote for a proposed block, unless it conflicts with a longer chain that they believe may
have reached consensus already. Nodes send their votes to the next leader to help the leader
learn the longest safe chain. If there are three consecutive blocks in the chain, Bk, Bk+1,
Bk+2, which are proposed in consecutive rounds, rk, rk+1, rk+2, and each block has votes
from 2f + 1 nodes (gathered in a data structure called the quorum certificate, or QC), then
the protocol has reached consensus on block Bk.

If 2f + 1 send votes to the next leader in a timely manner, a QC is formed by the leader
and it sends the next proposal. Nodes maintain a timer to track progress. When the timer
expires and a node still has not received a proposal, it broadcasts a timeout vote on a Nil
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block. When a node gathers enough timeout votes to form a timeout certificate, it advances
its round. Every time a round fails, timeout periods are increased, allowing lagging nodes to
catch up and enabling the protocol to eventually reach a decision.

As briefly alluded to in the Introduction, the trickiest part of BFT replication is to manage
leader transition. DiemBFT maintains four parameters to ensure safety, and at the same time
facilitate progress: (i ) current_round, the node’s current round; (ii ) last_voted_round,
the last round for which the node voted; (iii ) parent_round, the round of the block certified
by the QC attached with the block being processed; (iv ) grandparent_round, the parent of
the block certified by the QC; and (iv ) preferred_round, the highest known grandparent
round. Note that as a QC serves as a pointer to the previous certified block, parent_round

and grandparent_round do not need to be explicitly tracked; these can be derived from the
QC carried by a block.

Upon Receiving a Proposal. Upon receiving proposal for a block, a node processes the
certificates it carries, and votes for the proposed block if it satisfies a simple voting rule: If a
node voted for Bk+2, it prefers the sub-tree of proposals rooted at block Bk (regardless of
round numbers). A node will not vote for a block B that does not belong to its preferred
sub-tree rooted at Bk, unless B’s parent has votes from 2f + 1 nodes at a higher round than
rk. Concretely:

Safety Rule 1. The block_round is greater than last_voted_round.
Safety Rule 2. The block’s parent_round is greater than or equal to preferred_round.

If the node decides to vote for the proposed block, it updates its state as follows:

Update Rule 1. Update last_voted_round to round of the proposed block.
Update Rule 2. Update the node’s preferred_round to the proposed block’s
grandparent_round if the latter is higher.
Update Rule 3. Update the node’s current_round to the parent_round +1, if the
latter is higher.

Upon Receiving a Vote. For every round, the nodes send their votes to the leader of the
next round. When the leader receives a vote, it performs the following safety checks:

Safety Rule 3. If a vote from the same node was previously received for the same block
and round, the leader rejects the vote and generates a “duplicate vote” warning.
Safety Rule 4. If a vote from the same node was previously received for a different
block but same round, the leader rejects the vote and generates an “equivocating vote”
warning.

If a vote passes both these checks, the leader considers it as valid and checks if it has
enough votes to form a QC. When a QC has been formed, the leader generates a new round
event, broadcasts a new block proposal and updates its state.

Update rule 4. When a leader gathers enough votes to form a QC, it broadcasts a new
proposal and increments current_round.

Spoiler alert: In our evaluation in Section 6.1, we are going to deliberately modify the
above rules. We will see that this enables safety violations that the Twins framework will
expose.
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Figure 4 Consensus and preferred sub-trees in DiemBFT.

B LibTwins Implementation of Scenario Executor and Scenario
Generator

This section provides the Rust code for the two main functions of Twins, execute_scenario
and scenario_generator. The code listings in Figure 5 and Figure 6 present simplified
Twins interfaces, i.e., we omit Rust-specific features such as explicit typing, details of error
messages returned, de-referencing, and managing variable ownership.

The scenario executor, implemented by execute_scenario (Figure 5), executes scenarios
generated by the scenario generator. This function takes as input the number of nodes and
twins, and the leaders and partitions for each round. It creates a network with the given
inputs, and starts running the protocol until the nodes have emitted a given number of
messages, which approximate the number of rounds for which the protocol has been run.

The execute_scenario function exposes a simple interface, abstracting complex under-
lying network and SMR configurations. To demonstrate the simplicity and flexibility of
execute_scenario, we show how to implement a simple scenario (Figure 6) where no quo-
rum can be formed, and therefore no block gets committed. We set up a network with 4
honest nodes (n0, n1, n2, n3), and 1 twin (twin0). We split the network into two partitions
{n0, twin0, n1} and {n1, n3}. For each round n0 and twin0 (in partition 1) are leaders. We
then run the protocol for enough rounds (at least 3 in DiemBFT) to get a commit on a
block. In partition 1, both n0 and twin0 propose different blocks for the same rounds. n1
will only vote for one of the two proposals because the second proposal is for a round that is
not greater than its last_voted_round (Safety rule 1, Section A). The second partition does
not have enough nodes to form quorum. Consequently, no blocks are committed.

C Detailed Safety Attack on Zyzzyva

We present a summary of Zyzzyva, and use Twins to reinstate a known safety attack [1] on
Zyzzyva [17]. We use the notation described in Section 2.

C.1 Summary of Zyzzyva
Zyzzyva is an SMR protocol in the same settings as DiemBFT (partial synchrony and
n = 3f +1). It operates in a view-by-view manner. Each view has a designated leader. Nodes
vote on the leader proposal if they consider it valid (we describe the validity criteria below,
which has a flaw that enables the safety attack). A commit decision on the leader proposal
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fn execute_scenario (
num_nodes , // number of nodes
target_nodes , // the nodes for which to create twins
round_partitions , // Vector of partitions for each round
round_leaders // Vector of leaders for each round

) {
let runtime = consensus_runtime ();
let playground = NetworkPlayground :: new( runtime . handle ());

// Start nodes and twins
let nodes = SMRNode :: start_num_nodes_with_twins (

num_nodes ,
& target_nodes ,
& playground ,
round_proposers

);

// Create partitions
create_partitions (& playground , round_partitions );

// Start running the protocol and sending messages
block_on ( async move {

let proposals = playground
. wait_for_messages (2, NetworkPlayground :: proposals_only ::< Payload >)
. await ;

// Pull enough votes to get a commit on the first block
let votes : Vec <VoteMsg > = playground

. wait_for_messages ( num_nodes * num_of_rounds , NetworkPlayground :: votes_only
::< Payload >))

. collect ();
});

// Check that the branches are consistent at all heights
let all_branches = vec ![];

for i in 0.. nodes .len () {
nodes [i]. commit_cb_receiver . close ();
let node_commits = vec ![];
while let node_commit_id = nodes [i]. commit_cb_receiver . try_next () {

node_commits .push( node_commit_id );
}
all_branches .push( node_commits );

}

assert !( is_safe ( all_branches ));

// Stop all nodes
for each_node in nodes {

each_node .stop ();
}

}

Figure 5 The execute_scenario function which executes scenarios.

forms in either of two tracks, fast and two-phase. In the fast track, all n nodes vote for the
leader proposal to commit it. In the two-phase track, 2f + 1 nodes form a commit-certificate
(CC), then 2f + 1 nodes vote for the CC to commit the proposal.

At the beginning of the view, nodes send the new leader a signed NEW-VIEW status
message. The leader’s first proposal carries the status of 2f + 1 nodes at the beginning of the
view to prove the proposal validity. The (flawed) definition in Zyzzyva for a valid proposal
upon view change is as follows. For each sequence slot:

Validity Rule 1. The leader picks among the states of 2f + 1 nodes, the CC from the
highest view, if one exists.
Validity Rule 2. Otherwise, the leader picks a proposal that has f + 1 votes from the
highest view, if one exists.
Validity Rule 3. Finally, if none of the above exist, the leader creates a Nil proposal.
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fn twins_no_quorum_scenario () {
let runtime = consensus_runtime ();
let playground = NetworkPlayground :: new( runtime . handle ());
let num_nodes = 4;

// 4 honest nodes
let n0 = 0, n1 = 1, n2 = 2, n3 = 3;
// twin of n0
let twin0 = node_to_twin .get(n0);
// twin of n1
let twin1 = node_to_twin .get(n1);

// Index #s of nodes for which we will create twins
let target_nodes = vec ![0];

// Specify round leaders
let round_leaders = HashMap :: new ();
for i in 1..10 {

// Insert (n0 , twin0 , n3) as leaders for round i
round_leaders . insert (i, vec ![n0 , twin0 , n3 ]);

}

// Specify round partitions
let round_partitions = HashMap :: new ();
for r in 0..10 {

// Insert partitions for round r
round_partitions . insert (

r,
vec ![

vec ![n0 , twin0 , n1],
vec ![n2 , n3],

],
);

}

execute_scenario (
num_nodes ,
& target_nodes ,
& round_partitions ,
& round_leaders

);
}

Figure 6 Twins “No Quorum” scenario.

The flaw is to prioritize Validity Rule 1 over Validity Rule 2, which causes the leader to
prefer CC even if generated in a lower view than f + 1 votes.

C.2 Safety Attack on Zyzzyva

The Zyzzyva flawed scenario safety demonstrated in [1] goes through a succession of three
views. In the first view, a faulty leader generates conflicting proposals v1, v2 and splits honest
nodes between f + 1 that vote for v1 and f that vote for v2. The faulty leader gathers a
CC on v1 but does not send it to other nodes. In the second view, a good leader adopts
v2 and drives agreement in the fast track. In the third view, f faulty nodes join the f + 1
honest nodes that voted for v1 in the first view. They send the leader a CC for v1, hence
the protocol proceeds with v1, in conflict with the v2 commit. The attack on Zyzzyva needs
only n = 4 nodes, of which f = 1 is faulty, and it is fairly easy to re-instate using the Twins
framework. There are four nodes, (D, E, F, G). To model the case that D is Byzantine, it
has a twin D′ initialized with different input. We drive the execution creating partitions and
electing leaders at each step, according to the attack described above. We describe below
the detailed attack using Twins.
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Step 1. Initialize D and D′ with different inputs v1 and v2.
Step 2. During View 1:

Create the following partitions: P1 = {D, E, F }, P2 = {D′, G}.
Let D run as leader for one round. D proposes v1 to P1 and gathers votes from P1
creating a CC.
Create the following partitions: P1 = {E, F }, P2 = {D′, G}, P3 = {D}.
As a result, D does not get to share CC on v1 with E and F .
Similarly, for one round let D′ propose v2 to P2 and gather votes from P2.

Step 3. Delay all messages until a new view starts. View 2:

Create the following partitions: P1 = {D′, E, G}, P2 = {D, F }.
Run G as leader, and let it collect (NEW-VIEW) messages from D′ and E. Using
Validity Rule 2 (Appendix C.1), G decides to propose for v2.
Remove all partitions, i.e., P = {D, D′, E, F, G}.
G proposes v2, and collects votes from everyone. This leads to a commit of v2.

Step 4. Delay all further messages until new view starts. View 3:

Create the following partitions: P1 = {D, E, F}, P2 = {D′, G}.
Run E as leader, and collect (NEW-VIEW) messages from D and F . Note that D

sends the CC on v1 (from view 1) to E. Using Validity Rule 1 (Appendix C.1), E

decides to propose v1.
E proposes v1 to P1, and gathers votes from D, E and F (who empty their local logs,
undoing v2). This leads both E and F to commit v1, a safety violation.

D Detailed Liveness Attack on FaB

We present a summary of FaB, and use Twins to reinstate a known liveness attack on FaB [1].
We use the notation described in Section 2.

D.1 Summary of FaB

FaB is a single-shot consensus protocol for the partial synchrony setting with n = 3f + 1.7

A precursor to Zyzzyva, FaB is a view-based protocol with an optimistic fast track. A
leader drives a decision in the fast track if all nodes vote for it, and in the two-phase track
if 2f + 1 nodes vote for a (2f + 1) commit-certificate (CC). When a new leader is elected,
it picks a valid proposal that does not conflict with neither f + 1 votes nor a CC in the
previous view.

7 FaB is actually designed for a parameterized model with n = 3f + 2t + 1, with safety guaranteed against
f Byzantine failures and fast track guaranteed against t. For brevity and uniformity, we ignore t here
and set t = 0.
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D.2 Liveness Attack on FaB
The (flawed) selection criterion above leads an execution in the following scenario to become
stuck. A faulty leader equivocates and proposes v1, v2 to 2f + 1 and f honest nodes,
respectively. In transitioning to the next view, there is a commit-certificate for v1 and f + 1
votes for v1 (including an equivocation by one faulty), hence neither is safe, and the new
leader is stuck. The attack on FaB needs only n = 4 nodes, of which f = 1 is faulty, and
it can be easily re-instated using Twins. There are four nodes, (A, B, C, D) with D as a
Byzantine node, for which we create a twin D′ initialized with different input. We describe
below the attack using Twins.

Step 1. Initialize D and D′ with different inputs v1 and v2.
Step 2. During View 1:

Create the following partitions: P1 = {A, B, D}, P2 = {C, D′}
Run D as leader for one round. D proposes v1 to P1 which decides to vote on v1.
Insert the following rule in P1: (B, D) → A. That is, the only messages allowed are
those from B and D, to A.
D, A and B send their votes which only reach A. Thus, only A produces a CC for v1.
Meanwhile, the leader D′ proposes v2 to P2.

Step 3. Delay all further messages until new view starts. Create the partitions: {A, C, D′},
{B, D}. Let the new leader A collect NEW-VIEW status messages from P1. These status
messages block A from proposing both v1 and v2 due to the FaB proposal validity rule.
The rule states that a proposal is valid if it does not conflict with neither f + 1 votes nor
a CC in the previous view, which is not the case for v1 (has a CC) and v2 (has f + 1
votes) as described below:

From A, the NEW-VIEW message contains the value v1, and a CC for it.
From C, the NEW-VIEW message contains the value v2, and no CC.
From D′, the NEW-VIEW message contains the value v2, and no CC.

E Detailed Liveness Attack on Sync HotStuff

We present a summary of Sync HotStuff, and use Twins to reinstate the force-locking
attack [23] on a preliminary version of Sync HotStuff (which was fixed in an updated version).
We use the notation described in Section 2.

E.1 Summary of Sync HotStuff
The preliminary version of Sync HotStuff [2] is an SMR solution in the synchronous model
with n = 2f + 1 parties.8

In synchronous protocols like Sync HotStuff, nodes execute the protocol in terms of ∆,
which is the known bound assumed on maximal network transmission delay. Sync HotStuff
operates in a view-by-view regime – in each view there is a designated leader which proposes

8 The description here covers the first of three variants in that paper; two other variants are designed for
slightly different synchrony assumptions, but the attacks on them are similarly covered by the Twins
approach.
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values to nodes. If a node accepts the proposed value, it broadcasts its vote. A node creates
a commit certificate (CC) for a proposed value if it receives f + 1 votes on it. Nodes track
the highest CC, and only vote on a proposed value if it: (i ) extends the highest CC known
to the node, and (ii ) does not equivocate another value proposed for the same height.

A node creates and broadcasts a blame against a leader: (i ) if the leader does not propose
a value for 3∆, or (ii ) the leader proposes an equivocating value. If a node observes f + 1
blames against the leader in the current view, it broadcasts the f + 1 blames, then waits ∆
(to allow the blames to reach all honest nodes), and moves to the new view. In the new view,
it immediately sends the new leader the highest CC it knows of.

After a view change, the new leader waits for ∆ to receive node status messages (carrying
the highest CC known to them). The leader then proposes a value that extends the highest
CC from among the received status messages. Nodes proceed in the new view as previously
described.

E.2 Implementing Synchrony Attacks in Twins

Due to the synchronous settings and the nature of the attack which heavily leverages
synchrony assumptions, in this case a Twins scheduler must control message delivery timing.
More precisely, rather than only specifying whether a message is delivered to a party or
dropped, attacks on synchronous protocols require the Twins scheduler to deliver messages
to specific parties at specified times. While this is captured by the Twins approach, our
current implementation (Section 5) does not support this feature (this will be implemented
in future Twins extensions).

Generally, we expect that the granularity of the scheduler timing can be fairly coarse.
In particular, there is a known parameter ∆, the bound presumed by the algorithm on
message transmission delays and hard-coded into it. Indeed, the force-locking attack needs
to deliver messages at 0.5∆ increments, e.g., at times 0, 0.5∆, ∆, 1.5∆, 2.0∆, ... Therefore, a
Twins network emulator could operate in discrete lock-step at 0.5∆ increments. With this
capability in place, the force-locking attack can be re-instated in the Twins approach as
described below.

E.3 Safety Attack on Sync HotStuff

We now rebuild the force-locking attack on the preliminary version of Sync HotStuff using
Twins. The crux of the attack is for a faulty leader to generate a last-minute proposal that
reaches only half of the honest nodes. The other half trigger a view change, and now the
system becomes split. The first half continues to commit the first leader proposal with “help”
from Byzantine nodes. The second half starts a new view and fork the chain. This attack
can be reinstated with Twins using 5 nodes (A, B, C, D, E), of which (A, B) are faulty and
have twins (A′, B′).

Notation. We extend the notation described in Section 2 to capture message transmission
in the synchronous setting as follows: St

v−→ S′
t′ denotes the transmission of a value v from a

set of nodes S that generate the value at time t, to a set of nodes S′ that receive the value at
time t′. If a value is broadcast, we use the ⋆ symbol instead of a set: For example, St

V−→ ⋆

means that S broadcasts a value v at time t. Additionally, to highlight the “send” or “receive”
action on a value, we use bold text on the left or right side of the arrow, respectively. For
example, St

v−→ S′ means that S sends v to S′ (message arrival time is not known).
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To reinstate this attack with Twins, we deploy 5 nodes (A, B, C, D, E), of which (A, B) are
faulty and have twins (A′, B′). Here, n = 5, f = 2, and quorum size is 3 (since synchronous
BFT protocols tolerate f Byzantine nodes for n = 2f + 1). We describe below the detailed
attack using Twins.

At time 1.5∆:
A is the leader, and broadcasts a proposal with delay = ∆ for the value v1 which
extends v0.

(A)1.5∆
propose(v1)−−−−−−−→ ⋆

At time 2.5∆:
C receives V1, and broadcasts its vote.

(A)1.5∆
propose(v1)−−−−−−−→ (C)2.5∆

(C)2.5∆
vote(v1)−−−−−→ ⋆

At time 3∆:
D blames A since it did not receive a proposal from A within 3∆. Twins (A′, B′) also
did not receive a proposal from A, hence they also blame with A. (D, A′, B′) broadcast
their blames with delay = 0, receive f + 1 blames from each other, and start waiting
for ∆.

(D, A′, B′)3∆
blame(A)−−−−−−→ ⋆

(D, A′, B′)3∆
blame(A)−−−−−−→ (D, A′, B′)3∆

At time 3.5∆:
D receives C’s vote on v1, but it cannot create a CC on v1 since it has less than f + 1
votes.

(C)2.5∆
vote(v1)−−−−−→ (D)3.5∆

(A, B) broadcast their votes on v1, which arrive at C with delay 0. As a result, C

gathers f + 1 votes on v1 and creates CC(v1).

(A, B)3.5∆
vote(v1)−−−−−→ ⋆

(A, B)3.5∆
vote(v1)−−−−−→ (C)3.5∆

At time 4∆:
C receives f + 1 blame messages from (D, A′, B′), broadcasts all blame messages, and
starts waiting for ∆.

(D, A′, B′)3∆
blame(A)−−−−−−→ (C)4∆

(C)4∆
blame(A)−−−−−−→ ⋆

D has waited for ∆ since it quit the old view w with leader A, so it starts the next
view w + 1 and sends its highest commit certificate CC(V0) along with f + 1 blames
on A to the next leader B, with delay = 0.

(D)4∆
CC(v0),blame(A)−−−−−−−−−−−→ (B)4∆

The new leader B receives CC(v0) from D and f + 1 blames on A, and broadcasts a
proposal for value v1

′ extending V0. Note that B does not know about CC(v1).

(D)4∆
CC(v0),blame(A)−−−−−−−−−−−→ (B)4∆

(B)4∆
propose(v1

′)−−−−−−−−→ ⋆

D receives the proposal v1
′ from B, and broadcasts its vote with delay ∆, then it sets

its commit timer to 2∆ and starts counting down.

(B)4∆
propose(v1

′)−−−−−−−−→ (D)4∆

(D)4∆
vote(v1

′)−−−−−−→ ⋆
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At time 4.5∆:
D receives votes on v1 from (A, B); as it has now gathered f + 1 votes on v1 it creates
CC(v1). However, this certificate is too late, as we will see in the following steps.

(A, B)3.5∆
vote(v1)−−−−−→ (D)4.5∆

At time 5∆:
C has waited for ∆ since it quit the old view with leader A, so it starts the next view
w + 1 and sends its highest certificate CC(v1) to the new leader B.

(C)5∆
CC(v1)−−−−−→ (B)

C receives D’s vote on v1
′ but does not vote since v1

′ (which extends CC(v0)) does
not extend its highest certificate CC(V1).

(D)4∆
vote(v1

′)−−−−−−→ (C)5∆

At time 6∆:
D commits v1

′ since it finished waiting for 2∆ and observed no equivocation or blame
in the view w + 1. However, D’s highest certificate is CC(v1) (see time 4.5∆).
Now if the current leader B goes offline, this will result in a view change to view w + 2
and the new leader will extend the blockchain from the highest certificate from the
previous view, CC(v1). But D has committed v1

′ conflicting with v1, hence safety is
violated.

F Attack on Fast-HotStuff

We present a safety attack against Fast-HotStuff [15] and express it using Twins.

F.1 Summary of Fast-HotStuff
Fast-HotStuff is essentially HotStuff [32] with a 2-phase commit rule. In the happy-path, if
the leader of round n is successful, the leader of round n + 1 performs the same protocol as
HotStuff, namely, it collects a QC from previous round and embeds it in the n + 1 proposal.
In the unhappy-path, if the leader of round n is unsuccessful, the protocol for leader n + x + 1
(x > 0) provides a proof in the n + x + 1 proposal that it is using the highest QC from 2f + 1
validators. This proof incurs quadratic communication complexity. Moreover, Fast-HotStuff
claims it does not require consecutive rounds in order to commit.

The benefits of Fast-HotStuff are twofold. It provides a fast 2-phase track for HotStuff
whenever the leader is successful in obtaining a QC for the previous round (happy-path).
Fast-HotStuff is also faster both in phases (2 phases instead of 3) and in getting to a scenario
that guarantees progress, namely, it requires 3 consecutive honest leaders (instead of 4).
Requiring a leader proof for the unhappy-path prevents a proposal that conflicts with an
uncommitted and unlocked tail of a chain that already has a QC. Thus, dishonest leaders
cannot intentionally slow down progress by overriding the latest tail.

Fast-HotStuff is however flawed as explained in Appendix F.2.

F.2 Safety Attack on Fast-HotStuff
Figure 7 illustrates the safety attack against Fast-HotStuff that we implement using Twins.
There are four nodes (A, B, C, D) all of which are honest – the safety attack can be executed
leveraging only network partitions. Blocks are represented by rectangles (which are annotated
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Figure 7 Example of safety attack on Fast-HotStuff.

with the nodes that receive the block). Block proposers are indicated as “authors”. Diamonds
refers to QCs (which are embedded into blocks). The arrows indicate the block that a QC
refers to.

We execute the safety attack in 11 rounds starting at round 3 (rounds 2 carries QC for
the genesis block).
Round 3: Initially there are no partitions, i.e., P = {A, B, C, D}.

A proposes a block. Nodes send their votes on this proposal to the leader of the next
round, node A.

Round 4:
A gathers votes from the previous round, forms a QC, and includes the QC in a new
block proposal. Nodes send their votes on the new proposal to the leader of the next
round, node B.

Round 5: Set node B as leader, i.e., P = {A, B, C, D}.
B gathers votes from the previous round, forms a QC, and includes the QC in a new
block proposal.
Create the following partitions: P1 = {A, C, D} and P2 = {B}.
The partitions prevent B from broadcasting the new block (and the newly formed QC
it embeds). B is thus the only node knowing the QC certifying the block of round 4.
Nodes of P1 time out, and send a NEW-VIEW message to the leader of the next round
(node A) containing their highest known QC.

Round 6: Set node A as leader, i.e., P1 = {A, C, D} and P2 = {B}.
A selects the highest QC from the NEW-VIEW messages (i.e., the QC certifying the
block of round 3), and embeds it in a new block proposal. All nodes of P1 vote on this
proposal and send their votes to the leader of the next round (node C).

Round 7: Set node C as leader, i.e., P1 = {A, C, D} and P2 = {B}.
C gathers votes from the previous round, forms a QC, and includes the QC in a new
block proposal.
Create partitions: P1 = {A, B, D} and P2 = {C}.
These partitions prevent C from broadcasting the new block (and the newly formed
QC it embeds). C is thus the only node knowing the QC certifying the block of round
6.
Nodes of P1 time out and send a NEW-VIEW message to the leader of the next round
(node B) containing their highest known QC.

Round 8: Set node B as leader, i.e., P1 = {A, B, D} and P2 = {C}.
B selects the highest QC from the NEW-VIEW messages (i.e., the QC certifying the
block of round 4, presented by B), and embeds it in a new block proposal. All nodes
vote on this proposal and send their votes to the leader of the next round (node B).
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Round 9:
B gathers all votes from the previous round, forms a QC, and includes the QC in a
new block proposal.
Create partitions P1 = {A, C, D} and P2 = {B}.
The partitions prevent B from broadcasting its newly block(and the newly formed QC
it embeds). B is thus the only node knowing the QC certifying the block of round 8
and committing the block at round 4.
Nodes of P1 time out and send a NEW-VIEW message to the leader of the next round
(node C) containing their highest known QC.

Round 10: Set node C as leader, i.e., P1 = {A, C, D} and P2 = {B}.
C selects the highest QC from the NEW-VIEW messages from the previous round
(the QC certifying the block of round 6, presented by C), and embeds it in its new
block proposal. The highest QC in the NEW-VIEW messages.
All nodes of P1 vote on this proposal and send their votes to the leader of the next
round (node C).

Round 11: Set node C as leader, i.e., P1 = {A, C, D} and P2 = {B}.
C assembles votes from the previous round into a QC certifying the block of round 10,
thus committing the block of round 6.

The safety violation appears at round 11 when node C commits the block of round 6 while
node B previously committed the block of round 4: both blocks have the same height and
fork from the block of round 3.

F.3 Implementation of the Attack
We implemented a Python simulator of Fast-HotStuff using the discrete event simulator
simpy. We demonstrate the safety violation by running a manually-crafted scenario in the
simulator. We are open sourcing our Fast-HotStuff simulator as well as our Twins scenario
used for the attack9.

9 https://github.com/asonnino/twins-simulator
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Abstract
Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and degree
∆, we consider the problem of dispersing k ≤ n robots (or tokens) positioned initially arbitrarily on
one or more nodes of the graph to exactly k different nodes of the graph, one on each node. The
objective is to simultaneously minimize time to achieve dispersion and memory requirement at each
robot. If all k robots are positioned initially on a single node, depth first search (DFS) traversal
solves this problem in O(min{m, k∆}) time with Θ(log(k+∆)) bits at each robot. However, if robots
are positioned initially on multiple nodes, the best previously known algorithm solves this problem
in O(min{m, k∆} · log ℓ) time storing Θ(log(k + ∆)) bits at each robot, where ℓ ≤ k/2 is the number
of multiplicity nodes in the initial configuration. In this paper, we present a novel multi-source DFS
traversal algorithm solving this problem in O(min{m, k∆}) time with Θ(log(k + ∆)) bits at each
robot, improving the time bound of the best previously known algorithm by O(log ℓ) and matching
asymptotically the single-source DFS traversal bounds. This is the first algorithm for dispersion that
is optimal in both time and memory in arbitrary anonymous graphs of constant degree, ∆ = O(1).
Furthermore, the result holds in both synchronous and asynchronous settings.
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methodologies → Distributed algorithms; Computer systems organization → Robotics

Keywords and phrases Distributed algorithms, Multi-agent systems, Mobile robots, Local commu-
nication, Dispersion, Exploration, Time and memory complexity
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1 Introduction

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges,
and (maximum) degree ∆, we consider the problem of dispersing k ≤ n robots (or tokens)
positioned initially arbitrarily on one or more nodes of the graph to exactly k different nodes
of the graph, one on each node (which we call the Dispersion problem). This problem has
many practical applications, for example, in relocating self-driven electric cars (robots) to
recharge stations (nodes), assuming that the cars have smart devices to communicate with
each other to find a free/empty charging station [1, 18]. This problem is also important
because it has the flavor of many other well-studied robot coordination problems, such as
exploration, scattering, load balancing, covering, and self-deployment [1, 18, 22].

One of the key aspects of mobile-robot research is to understand how to use the resource-
limited robots to accomplish some large task in a distributed manner [12, 13]. In this paper,
we study trade-off between time and memory complexities to solve Dispersion on arbitrary
anonymous graphs. Time complexity is measured as the time duration to achieve dispersion
and memory complexity is measured as the number of bits stored in persistent memory
at each robot. The literature typically traded memory (or time) to obtain better time (or
memory) bounds (for example, compare memory and time bounds of the two algorithms
from [18] given in Table 1).
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Table 1 Algorithms solving Dispersion for k ≤ n robots on undirected, anonymous, port-labeled
graphs of n memory-less nodes, m edges, and (maximum) degree ∆. †[19] assumes m, k, and ∆
are known to the algorithm a priori. ℓ ≤ k/2 is the number of multiplicity nodes in the initial
configuration; Dispersion is already solved if there is no multiplicity node.

Algorithm Memory/robot Time Single-source/ Setting
(in bits) (in rounds/epochs) Multi-source

Lower bound Ω(log(k + ∆)) Ω(k) any Asynchronous
DFS Θ(log(k + ∆)) O(min{m, k∆}) Single-source Asynchronous
[18] O(k log ∆) O(min{m, k∆}) Multi-source Asynchronous
[18] Θ(log(k + ∆)) O(min{m, k∆} · ℓ) Multi-source Asynchronous
[19]† O(log n) O(min{m, k∆} · log ℓ)† Multi-source Synchronous
[31] Θ(log(k + ∆)) O(min{m, k∆} · log ℓ) Multi-source Synchronous

Th. 1 Θ(log(k + ∆)) O(min{m, k∆}) Multi-source Synchronous
Th. 2 Θ(log(k + ∆)) O(min{m, k∆}) Multi-source Asynchronous

Recent studies [19, 31] focused on minimizing time and memory complexities simultan-
eously. More precisely, they tried to answer the following question: Can the time bound
of O(min{m, k∆}) be obtained keeping memory optimal Θ(log(k + ∆)) bits at each robot?
This question can be easily answered in the single-source case of all k ≤ n robots ini-
tially co-located on a node. The challenge is how to answer it in the multi-source case
of the robots initially on two or more nodes of the graph. For the multi-source case, the
algorithms in [19, 31] were successful in keeping memory bound optimal as in [18] and reduce
time bound to O(min{m, k∆} · log ℓ), an improvement of ℓ/ log ℓ factor compared to the
O(min{m, k∆} · ℓ) time bound of [18], where ℓ ≤ k/2 is the number of multiplicity nodes in
the initial configuration.

In this paper, we present a new algorithm for Dispersion that settles the question
completely, i.e., it obtains the time bound of O(min{m, k∆}) keeping memory optimal
Θ(log(k + ∆)) bits at each robot, first such result for the multi-source case. The time bound
is an improvement of O(log ℓ) factor compared to the best previously known algorithms [19, 31].
Furthermore, the time and memory bounds match the respective bounds for the single-source
case. Thus, the proposed algorithm is the first for Dispersion that is simultaneously optimal
for arbitrary anonymous graphs of constant degree ∆ = O(1).

Overview of the Model and Results. We consider k ≤ n robots operating on an undirected,
anonymous (no node IDs), port-labeled graph G of n memory-less nodes, m edges, and degree
∆. The ports (leading to incident edges) at each node have unique labels from [0, δ − 1],
where δ is the degree of that node. (∆ is the maximum over δ’s of all n nodes.) The robots
have unique IDs in the range [1, k]. In contrast to graph nodes which are memory-less,
the robots have memory to store information (otherwise the problem becomes unsolvable).
Finally, at any time, the robots co-located at the same node of G can communicate and
exchange information, if needed, but they cannot communicate and exchange when located
on different nodes. We call an initial configuration single-source if all k robots are initially
positioned on a single node of G, otherwise we call it multi-source. Even in the multi-source
initial configurations, the robots can only be on 1 < k′ < k nodes, since for the case of k′ = k,
the initial configuration is already a configuration that solves Dispersion. In this paper, we
establish the following theorem in the synchronous setting where all robots are activated in a
round, they perform their operations simultaneously in synchronized rounds, and hence the
time (of the algorithm) is measured in rounds (or steps).
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▶ Theorem 1. Given any initial configuration of k ≤ n mobile robots on the nodes of an
undirected, anonymous, port-labeled graph G of n memory-less nodes, m edges, and degree
∆, dispersion can be solved deterministically in O(min{m, k∆}) rounds in the synchronous
setting storing O(log(k + ∆)) bits at each robot.

Theorem 1 improves the time bound O(min{m, k∆} · log ℓ) of the best previously known
algorithms [19, 31] by a factor of O(log ℓ) keeping the memory optimal, where ℓ is the number
of nodes in the initial configuration with at least two robots co-located on them. Interestingly,
both time and memory bounds of Theorem 1 match asymptotically the O(min{m, k∆}) time
and O(log(k + ∆)) memory bounds for the single-source case, which is inherent for any DFS
traversal based algorithm for Dispersion. Finally, for constant-degree arbitrary anonymous
graphs, i.e., ∆ = O(1), our algorithm is asymptotically optimal w.r.t. both time and memory,
first such result for Dispersion (Table 1).

Furthermore, we extend Theorem 1 to the asynchronous setting where robots become
active and perform their operations in arbitrary duration, keeping the same time and memory
bounds. Here we measure time in epochs (instead of rounds) – an epoch represents the time
interval in which each robot becomes active at least once.

▶ Theorem 2. Given the setting as in Theorem 1, dispersion can be solved deterministically
in O(min{m, k∆}) epochs in the asynchronous setting storing O(log(k + ∆)) bits per robot.

Challenges. The single-source Dispersion can be solved in min{4m − 2n + 2, 4k∆} rounds
in any anonymous graph G having n memory-less nodes using the well-known DFS traversal [6]
storing O(log(k + ∆)) bits at each robot. The k-source Dispersion finishes in a single
round, since k robots are already on k different nodes solving Dispersion. Therefore, the
challenging case is k′-source Dispersion with 1 < k′ < k.

The early papers obtained better bounds on either time or memory, trading one for another.
The first algorithm of [18] obtained O(min{m, k∆}) time bound with memory O(k log ∆)
bits at each robot. The second algorithm of [18] kept memory optimal O(log(k + ∆)) bits
at each robot and established time O(min{m, k∆} · ℓ), where ℓ ≤ k′ < k is the number of
multiplicity nodes in the initial configuration. Their algorithm starts ℓ different single-source
DFS traversals in parallel from ℓ sources with multiple robots on them. Each DFS traversal
is given a unique ID, which is the smallest robot ID present on that source. Each DFS
traversal leaves a robot on each new node it visits. If no DFS traversals meet, then k robots
are on k different nodes and Dispersion is solved in time and memory bounds akin to the
single-source DFS bounds. In case of two (or more) DFS traversals meet, the higher ID DFS
traversal subsumes the lower ID DFS traversal. The problem here is that if the lower ID
DFS traversal meets the higher ID DFS traversal, in the subsumption process, the higher ID
DFS traversal may again visit all the nodes that the lower ID DFS traversal already visited.
Therefore, in the worst-case, the time becomes the multiplication of O(min{m, k∆}) rounds
for the single-source DFS traversal times ℓ parallel traversals, i.e., O(min{m, k∆} · ℓ) rounds.

Recent studies [19, 31] reduced the O(ℓ) factor in the time bound to O(log ℓ). Providing
m, k, and ∆ parameters to the algorithm beforehand, Kshemkalyani et al. [19] run ℓ-source
DFS traversals in passes of interval O(min{m, k∆}) rounds. After each pass, they guaranteed
that the ℓ-source DFS traversal reduces to ℓ/2-source DFS traversal. Therefore, in total
⌈log ℓ⌉ passes, the ℓ-source DFS traversal reduces to a single-source DFS traversal, which then
finishes in additional O(min{m, k∆}) rounds, giving in the worst-case, O(min{m, k∆} · log ℓ)
rounds time bound. The memory requirement is O(log n) bits at each robot, due to the
memory to store m ≤ n2 which dominates the memory to store k ≤ n and ∆ < n. Recently,
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Shintaku et al. [31] established the same time bound as in [19] avoiding the requirement for
the algorithm to know m, k, ∆ beforehand. Moreover, they improved the memory bound
O(log n) bits in [19] to optimal Θ(log(k + ∆)) bits at each robot.

Observing the techniques of [19, 31], the algorithms developed there subsume different
DFS traversals pairwise which helps in improving the sequential subsumption of the different
DFS traversals in the algorithm of [18]. The implication of the pairwise subsumption is only
a O(log ℓ) factor more cost is needed to subsume all ℓ parallel DFS traversals to obtain a
single DFS traversal. This O(log ℓ) factor is significantly better compared to the O(ℓ) factor
obtained due to the sequential subsumption.

Despite these benefits, the pairwise subsumption is not matching the single-source DFS
traversal time bound and, more importantly, it is not clear whether the O(log ℓ) factor arising
in the pairwise subsumption technique in [19, 31] can be removed from the time bound.
Therefore, a new set of ideas are needed, which we develop in this paper and they constitute
our main contribution.

Techniques. We use parallel multi-source DFS traversals as in [19, 31] but devise a novel
subsumption technique, leading to O(min{m, k∆}) time with O(log(k + ∆)) bits at each
robot, removing the O(log ℓ) factor from the time bound of the best previously known
algorithms [19, 31] and matching the time and memory bounds for single-source DFS
traversal. Each DFS traversal constructs a DFS tree. Our technique executes subsumption
on the two DFS traversals that meet based on the size of the DFS traversal measured as the
number of settled robots with the same DFS tree ID. In fact, the larger size DFS traversal
subsumes the smaller size DFS traversal. The subsumed DFS traversal is collapsed to a
single node, collecting all the robots on that traversal at that node, and those robots are
given to the subsuming DFS traversal allowing it to extend its DFS traversal. The benefit is
two-fold: (i) the size of the subsumed traversal is smaller than the size of the subsuming
traversal and hence the collapse and merge of the subsumed traversal to the subsuming one
can be done in time proportional to the size of the subsumed traversal, and (ii) it avoids
the need of revisiting the nodes of the subsumed traversal more than once, a crucial aspect
in removing the O(log ℓ) factor from the time bound. Furthermore, one traversal always
remains subsuming throughout the execution of the algorithm.

This is in contrast to the technique used in the best previously known algorithms [19, 31]
that uses IDs of the DFS traversals (larger ID DFS traversal subsumes smaller ID DFS
traversal). The drawback of the subsumption based on DFS ID is that the algorithm cannot
limit the repeating traversal of the already built DFS tree, adding a Θ(log ℓ) factor in the
subsumption process, and hence leading to a O(min{m, k∆} · log ℓ) time bound.

We particularly tackle two major challenges: (i) how to execute the size-based subsumption,
and (ii) what to do when more than two DFS traversals meet at different nodes forming a
transitive chain or more generally, what we define as a meeting graph (Definition 4). The
first challenge is due to the fact that the exact size of the DFS traversal is only known by
its head node which is either the current node that has all not-yet-settled robots (if any,)
belonging to that DFS traversal or else the node on which last robot belonging to that DFS
traversal has settled. Therefore, it requires for the meeting traversal to traverse the met
DFS tree to reach its head node to find its size. Our technique of collapsing the subsumed
traversal successfully fulfills this requirement in time proportional to the size of the smaller
size DFS traversal.
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The second challenge is due to the fact that if not synchronized carefully, different DFS
traversals in the transitive chain or meeting graph might run into a deadlock situation. We
devise a technique that partitions the DFS traversals in the meeting graph such that in each
partition, one DFS traversal subsumes the others without introducing any deadlock and in
time proportional to the size of the DFS traversals that were subsumed and collapsed.

Through these techniques, we finally show that one DFS traversal (among those that meet
in the meeting graph) always grows bigger and the total cost remains proportional to the
total size of the DFS traversals that are subsumed by the DFS traversal, giving our claimed
time bound. Interestingly, the process is executed keeping the memory at an (asymptotically)
optimal number of bits per robot.

Related Work. Augustine and Moses Jr. [1] proved a memory lower bound of Ω(log n) bits
at each robot and a time lower bound of Ω(D) (Ω(n) in arbitrary graphs) for any deterministic
algorithm for Dispersion on graphs. They then provided deterministic algorithms using
O(log n) bits at each robot to solve Dispersion on lines, rings, and trees in O(n) time. For
arbitrary graphs, they gave one algorithm using O(log n) bits at each robot with O(mn) time
and another using O(n log n) bits at each robot with O(m) time.

Kshemkalyani and Ali [18] provided an Ω(k) time lower bound for arbitrary graphs for
k ≤ n. They then provided three deterministic algorithms for Dispersion in arbitrary
graphs: (i) The first algorithm using O(k log ∆) bits at each robot with O(min{m, k∆})
time, (ii) The second algorithm using O(D log ∆) bits at each robot with O(∆D) time (D
is diameter of graph), and (iii) The third algorithm using O(log(k + ∆)) bits at each robot
with O(min{m, k∆} · ℓ) time. Kshemkalyani et al. [19] provided an algorithm for arbitrary
graph with O(min{m, k∆} · log ℓ) time using O(log n) bits memory at each robot, with the
algorithm knowing m, k, ∆ beforehand. The same time bound and improved memory bound
of O(log(k+∆)) bits were obtained in [31], without the need of the algorithm knowing m, k, ∆
beforehand. For grid graphs, Kshemkalyani et al. [21] provided an algorithm that runs in
O(min{k,

√
n}) time using O(log k) bits memory at each robot. Randomized algorithms were

presented in [24, 8] mainly to reduce the memory requirement at each robot.
Recently, Kshemkalyani et al. [20] provided an algorithm for arbitrary graphs with

time O(min{m, k∆}) when all robots can communicate and exchange information in every
round (that is even the non-co-located can communicate and exchange information, which is
called the global communication model). The global model comes handy while dealing with
subsuming the multiple DFS traversals that meet in the transient chain or meeting graph.
The information each robot can have allows the head node of the highest ID DFS traversal
(satisfying a certain property) in the transient chain/meeting graph to ask the head nodes
of the rest of the DFS traversals to stop growing their DFS tree. This makes sure that one
DFS traversal always grows and others stop as soon as they find that they were met by the
DFS traversal that is of higher ID then theirs. The result presented in this paper is different
since only the co-located robots can communicate and it is called the local communication
model. In the local model, it is not possible to extend the idea that is developed for the
global model. For grid graphs, Kshemkalyani et al. [21] provided a O(

√
k) time algorithm

with O(log k) bits at each robot in the global model.
Dispersion in anonymous dynamic (undirected) graphs was considered in [22] where

the authors provided some impossibility, lower, and upper bound results. Dispersion under
crash faults was considered in [27] and under Byzantine faults was considered in [25, 26]
establishing a spectrum of interesting results.
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The related problem of exploration has been quite heavily studied in the literature for
specific as well as arbitrary graphs, e.g., [2, 4, 9, 15, 14, 17, 23]. It was shown that a robot can
explore an anonymous graph using Θ(D log ∆)-bits memory; the runtime of the algorithm
is O(∆D+1) [15]. In the model where graph nodes also have memory, Cohen et al. [4]
gave two algorithms: The first algorithm uses O(1)-bits at the robot and 2 bits at each
node, and the second algorithm uses O(log ∆) bits at the robot and 1 bit at each node.
The runtime of both algorithms is O(m) with preprocessing time of O(mD). The trade-off
between exploration time and number of robots is studied in [23]. The collective exploration
by a team of robots is studied in [14] for trees. The dual of the Dispersion problem is
gathering, which has been extensively studied, e.g., [10, 16]. Another problem related to
Dispersion is the scattering of k robots on graphs. This problem has been mainly studied
for rings [11, 30] and grids [3]. Recently, Poudel and Sharma [28, 29] provided improved time
algorithms for uniform scattering on grids. Furthermore, Dispersion is related to the load
balancing problem, where a given load at the nodes has to be (re-)distributed among several
processors (nodes). This problem has been studied quite heavily in graphs, e.g., see [7]. We
refer readers to [12, 13] for other recent developments in these topics.

Roadmap. We discuss model details in Section 2. We discuss the single-source DFS traversal
in Section 3. We then present our (synchronous) multi-source DFS traversal algorithm in
Section 4. We prove the correctness, time, and memory complexity of our algorithm in
Section 5 (i.e., Theorem 1). We then discuss the extensions to the asynchronous setting,
proving Theorem 2. Finally, we conclude in Section 6 with a short discussion.

2 Model

Graph. Let G = (V, E) be a connected, unweighted, and undirected graph of n nodes, m

edges, and maximum degree ∆. G is anonymous – nodes do not have identifiers but, at any
node, its incident edges are uniquely identified by a port number in the range [0, δ − 1], where
δ is the degree of that node. (∆ is the maximum among the degree δ of the nodes in G.) We
assume that there is no correlation between two port numbers of an edge. Any number of
robots are allowed to move along an edge at any time (i.e., unlimited edge bandwidth). The
graph nodes are memory-less (do not have memory).

Robots. Let R = {r1, r2, . . . , rk} be the set of k ≤ n robots residing on the nodes of G. No
robot can reside on the edges of G, but one or more robots can occupy the same node of
G, which we call co-located robots. In the initial configuration, we assume that all k robots
in R can be in one or more nodes of G but in the final configuration there must be exactly
one robot on k different nodes of G. Suppose robots are on k′ ≤ k nodes of G in the initial
configuration. We denote by ℓ ≤ k′ the number of nodes in the initial configuration which
have at least two robots co-located on them.

Each robot has a unique ⌈log k⌉-bit ID taken from the range [1, k]. When a robot moves
from node u to node v in G, it is aware of the port of u it used to leave u and the port of v

it used to enter v. We do not restrict time duration of local computation of the robots. The
only guarantee is that all this happens in a finite cycle of “Communicate-Compute-Move”
(defined below) and we measure time with respect to the number of cycles until Dispersion
is achieved. Furthermore, it is assumed that each robot is equipped with memory. The
robots do not experience fault.
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Communication Model. This paper considers the local communication model where only
co-located robots at a graph node can communicate and exchange information. This model
is in contrast to the global communication model where even non-co-located robots (i.e., at
different graph nodes) can communicate and exchange information.

Time Cycle. An active robot ri performs the “Communicate-Compute-Move” (CCM) cycle
as follows. Communicate: Let ri be on node vi. For each robot rj ∈ R that is co-located at
vi, ri can observe the memory of rj , including its own memory; Compute: ri may perform an
arbitrary computation using the information observed during the “communicate” portion of
that cycle. This includes determination of a (possibly) port to use to exit vi, the information
to carry while exiting, and the information to store in the robot(s) rj that stays at vi; Move:
ri writes new information (if any) in the memory of a robot rj at vi, and exits vi using the
computed port to reach to a neighbor node of vi.

Robot Activation. In the synchronous setting, every robot is active in every CCM cycle. In
the asynchronous setting, there is no common notion of time and no assumption is made on
the number and frequency of CCM cycles in which a robot can be active. The only guarantee
is that each robot is active infinitely often.

Time and Memory Complexity. For the synchronous setting, time is measured in rounds.
Since a robot in the asynchronous settings could stay inactive for an indeterminate but finite
time, we bound a robot’s inactivity introducing the idea of an epoch. An epoch is the smallest
interval of time within which each robot is guaranteed to be active at least once [5]. Let ti

be the time at which a robot ri ∈ R starts its CCM cycle. Let tj be the time at which the
last robot finishes its CCM cycle. The time interval tj − ti is an epoch. Another important
parameter is memory – the number of bits stored in persistent memory at each robot.

3 DFS traversal of a Graph (Algorithm DFS(k))

We describe here a single-source DFS traversal algorithm, DFS(k), that disperses all k robots
in the set R(v) situated at a node v initially to exactly k nodes of G, solving Dispersion.
DFS(k) will be heavily used in Section 4 as a basic building block.

Each robot ri stores in its memory five variables. (i) parent (initially assigned ⊥), for a
settled robot denotes the port through which it first entered the node it is settled at; (ii)
child (initially assigned −1), for an unsettled robot ri stores the port that it has last taken
(while entering/exiting the node). For a settled robot, it indicates the port through which
the other robots last left the node except when they entered the node in forward mode for
the second or subsequent time; (iii) treelabel (initally assigned min{R(v)}) stores the ID of
the smallest ID robot the tree is associated with; (iv) state ∈ {forward, backtrack, settled}
(initially assigned forward). DFS(k) executes in two phases, forward and backtrack [6];
(v) rank (initialized to 0), for a settled robot indicates the serial number of the order in
which it settled in its DFS tree. The algorithm pseudo-code is shown in Algorithm 1. The
robots in R(v) move together in a DFS, leaving behind the highest ID robot at each newly
discovered node. They all adopt the ID of the lowest ID robot in R(v) which is the last to
settle, as their treelabel. The algorithm executes in forward and backtrack modes.

▶ Theorem 3 ([19]). Algorithm DFS(k) solves Dispersion for k ≤ n robots initially
positioned on a single node of an arbitrary anonymous graph G of n memory-less nodes, m

edges, and degree ∆ in min{4m − 2n + 2, 4k∆} rounds using O(log(k + ∆)) bits at each robot.
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Algorithm 1 Algorithm DFS(k) for DFS traversal of a graph by k robots from a rooted
initial configuration. Code for robot i. r is robot settled at the current node.

1 Initialize: child← −1, parent←⊥, state← forward, treelabel← min{R(v)}, rank ← 0
2 for round = 1 to min{4m− 2n + 2, 4k∆} do
3 child← port through which node is entered
4 if state = forward then
5 if node is free then
6 rank ← rank + 1
7 if i is the highest ID robot on the node then
8 state← settled, i settles at the node (does not move henceforth),

parent← child, treelabel← lowest ID robot at the node
9 else

10 child← (child + 1) mod δ, r.child← child

11 if child = parent of robot settled at node then
12 state← backtrack

13 else
14 state← backtrack

15 else if state=backtrack then
16 child← (child + 1) mod δ, r.child← child

17 if child ̸= parent of robot settled at node then
18 state← forward

19 move out through child

4 The Algorithm

The root of a DFS i (which equals the identifier (treelabel)) is the node where the first robot
settles. This is the settled robot having rank = 1. The head of a DFS i is the node where
the unsettled robots (if any) of that DFS are currently located at, or else it is the node where
the last robot of that DFS settled. Node root(i) is reachable by following parent pointers;
node head(i) is reachable by following child pointers.

In the initial configuration, if robots are at k′ < k nodes (k′ = k solves Dispersion in
the first round without any robot moving), k′ DFS traversals are initiated in parallel. A
DFS i meets DFS j if the robots of DFS i arrive at a node x where a robot from DFS j is
settled. Node x is called a junction node of head(i). If robots from multiple DFSs/nodes
arrive at a node where there is no settled robot, a robot from the DFS with the highest ID
settles in that round and the other DFSs are said to meet this DFS. If DFS i has met DFS j,
we define head(i) to be blocked, else we define head(i) to be free.

The size di of a DFS i is the number of settled robots in that DFS. When DFS i meets
DFS j, the first task is to determine whether di > dj or dj > di, where we define a total
order (>) by using the DFS IDs as tiebreakers if the number of settled robots is the same.
di is known to robots of DFS i at head(i) by reading rank of DFS tree i. The unsettled
robots at head(i) traverse DFS j to head(j) in an exploration to determine dj . If they reach
head(j) without encountering a node with rank greater than di, then di > dj . The junction
head(j) is defined to be locked by i if DFS i’s robots are the first to reach head(j) in such an
exploration (and at this time, j’s exploratory robots have yet to return to head(j)). However,
if the exploratory robots of DFS i encounter a node with rank greater than di before reaching
head(j), they return to head(i) as dj > di. A key advantage of this mechanism is that
di > dj can be determined in time proportional to min{di, dj}.
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Algorithm 2 Algorithm Exploration to explore parent(i) component on reaching junction
head(i) by DFS of component i.

1 explorers move to root(parent(i)) leaving retrace pointers for return path. Then they follow
child pointers from root(parent(i)) to head(parent(i)). There are 4 possibilities.

2 if dparent(i) > di, i.e., rank > di is encountered, implying explorers do not reach
head(parent(i)) (possibly the next junction) then

3 return to head(i) junction
4 if head(i) is not locked then
5 Collapse_Into_P arent(i)
6 else if head(i) is locked by j then
7 Collapse_Into_Child(i, j)

8 else if dparent(i) < di, implying head(parent(i)) is reached (possibly next junction) then
9 lock head(parent(i))

10 traverse parent(i) informing each node (a) that parent(i) is locked and will be
collapsing, and also (b) value of dparent(i), and return to head(parent(i))

11 wait until parent(i)’s explorers return from parent(parent(i))
12 follow action (Collapse_Into_Child(parent(i), i)) which will be determined on their

return (if head(parent(i)) is not junction, execute Collapse_Into_Child(parent(i), i))
13 else if exploring robots find parent(i) is collapsing or learn that parent(i) is locked and will

be collapsing then
14 P arent_Is_Collapsing

15 else if explorers E’s path meets another explorers F ’s path then
16 wait until F return
17 if parent(i) is collapsing then
18 P arent_Is_Collapsing

19 else if parent(i) is not collapsing then
20 continue E’s exploration

Knowing the sizes, the general idea is that if di is greater, DFS j is subsumed by DFS i

and DFS j collapses by having all its robots collected to the head(i) to continue DFS i. This
collapse however cannot begin immediately because j’s robots may be exploring the DFS
l it has met and they must return to head(j) before j starts its collapse. (The algorithm
ensures there are no such cyclic waits to prevent deadlocks.) However, if dj is greater, DFS
i gets subsumed, i.e., DFS j subsumes DFS i. The free robots of i exploring j return to
head(i), DFS i collapses by having all its robots collected to head(i), and then they all move
to head(j) to continue DFS j. Now, these above policies regarding which DFS collapses and
gets subsumed by which other have to be adapted to the following fact – due to concurrent
actions in different parts of G, a DFS j may be met by different other DFSs, and DFS j

may in turn meet another DFS concurrently. Further, transitive chains of such meetings can
occur concurrently. This leads us to formalize the notion of a meeting graph.

▶ Definition 4 (Meeting graph). The directed meeting graph G′ = (V ′, E′) is defined as
follows. V ′ is the set of concurrently existing DFS IDs. There is a (directed) edge in E′ from
i to j if DFS i meets DFS j.

For an edge (i, j) in the meeting graph, DFS j is defined to be parent(i) and DFS i is
defined to be child(j). The size of a node in the meeting graph is defined to be the size
of the DFS for that node. Nodes in V ′ have an arbitrary in-degree (< k′) but out-degree
at most 1. There may also be a cycle in each connected component of G′. Henceforth, we
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Algorithm 3 Algorithms Collapse_Into_Child, Collapse_Into_Parent, and Par-
ent_Is_Collapsing.

1 Collapse_Into_Child(i,j)
2 explorers of i go from head(i) locked by j to root(i)
3 explorers of i do i’s DFS tree traversal collecting all robots to collapse path (root(i) to

head(j)) marked by retrace pointers, waiting until collapsing_children = 0 at each node
4 from root(i) collect all robots accumulated on collapse path to j’s junction head(j)
5 collapsed robots change ID treelabel to j

6 if head(j) is locked by l then
7 Collapse_Into_Child(j, l)
8 else if head(j) is not locked then
9 continue j’s DFS

10 Collapse_Into_Parent(i)
11 robot at head(i) increments collapsing_children

12 explorers of i go from head(i) to root(i) leaving collapse pointers
13 explorers of i do i’s DFS tree traversal collecting all robots to collapse path (root(i) to

head(i)) marked by collapse pointers, waiting until collapsing_children = 0 at each node
14 from root(i) collect all robots accumulated on collapse path to i’s junction head(i)
15 robot at head(i) decrements collapsing_children

16 collapsed robots change ID treelabel to parent(i)
17 explorers and collapsed robots go to head(parent(i)) by following child pointers
18 if parent(i) along the way is found to be collapsing then
19 collapse with it; break()
20 if head(parent(i)) is free then
21 continue parent(i)’s DFS
22 else if head(parent(i)) is blocked and possibly also locked then
23 wait until parent(i) collapses (and collapse with it) or becomes unblocked (and continue

parent(i)’s action)
24 Parent_Is_Collapsing
25 retrace path to head(i) junction
26 if di < dparent(i) and head(i) junction is not locked then
27 Collapse_Into_P arent(i)
28 else if di > dparent(i) and head(i) junction is not locked and remains unlocked until

parent(i)’s collapse reaches head(i) then
29 unsettled robots get absorbed in parent(i) during its collapse
30 else if head(i) junction of i (is locked by j) or (gets locked by j before parent(i)’s collapse

reaches head(i) and di > dparent(i)) then
31 Collapse_Into_Child(i, j)

focus on a single connected component of G′ by default; other connected components are
dealt with similarly. The algorithm implicitly partitions a connected component of G′ into
(connected) sub-components such that each sub-component is defined to have a master node
M into which all other nodes of that sub-component are subsumed, directly or transitively.
In this process, the at most one cycle in any connected component of G′ is also broken. In
each sub-component, the master node M has the highest value of d and the other smaller
(or equal sized) nodes, i.e., DFSs, get subsumed. The pseudo-code is given in Algorithm 2
and in Algorithm 3. In Algorithm 2, j is explored by robots from i to determine if di > dj

(therefore, we sometimes call Algorithm 2 Exploration), and the appropriate procedures for
collapsing and collecting are given in Algorithm 3 (therefore, we sometimes call Algorithm 3
various procedures invoked).
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Algorithm 4 Algorithm Determine_Master(i) to identify master component in which
component i will collapse.

1 master(i)
2 if dparent(i) > di then
3 t1 ← time when explorers of i return to head(i) from parent(i)
4 t2 (initialized to ∞) ← the time, if any, when first child j locks head(i)
5 if t1 < t2 then w ← parent(i)
6 else if t1 > t2 then w ← j

7 return(master(w))
8 else
9 if ∃ a first child j to lock head(i) then return(master(j))

10 else return(i)

For any given node i ∈ V ′, its master node is given as per Algorithm 4. Note that this
algorithm is not actually executed and the master node of a node need not be known – it is
given only to aid our understanding and in the complexity proof. If master(j) gets invoked
directly or transitively in the invocation of master(i) for any i, then i must be subsumed and
its robots collected completely before j gets subsumed and its robots are collected completely.

A path in G′ is an increasing (decreasing) path if the node sizes along the path are increas-
ing (decreasing). For a master node M , the nodes x in its sub-component of G′ that directly
and transitively participate in only Collapse_Into_Parent and no Collapse_Into_Child

until collapsing into M form the set X(M). Whereas the (other) nodes y in the sub-component
that directly and transitively invoke at least one Collapse_Into_Child until they collapse
into M belong to the set Y (M). The component C(M) = X(M) ∪ Y (M) ∪ {M}.

A component C(M) is acyclic. For an edge (i, j), i is the child and j is the parent.
Nodes in the set X have an increasing path to the master node. They collapse into and get
subsumed by the master node (possibly transitively) by executing Collapse_Into_Parent.
Nodes in the set Y are reachable from the master node on a decreasing path – such nodes
are termed Y _trunk nodes, or have a increasing path to a Y _trunk node – such nodes
are termed Y _branch nodes. Nodes in Y (i.e., in Y _trunk and Y _branch) collapse into
and get subsumed by the master node, possibly transitively. First, the Y _branch nodes
collapse into and get subsumed by their ancestors on the increasing path ending in a
Y _trunk node by executing Collapse_Into_Parent; then the Y _trunk nodes collapse
and get subsumed into their child nodes along Y _trunk and then into the master node by
executing Collapse_Into_Child.

After nodes in C(M) get subsumed in M , the master node grows again until involved in
more meetings and new meeting graphs are formed. Thus the meeting graph is dynamic. We
define a related notion of a meeting tree that represents which nodes (DFSs) have met and
been subsumed by which master node, in which meeting sequence number of meetings for
each such node.

▶ Definition 5 (Meeting tree). The k′ initial DFSs i form the k′ leaf nodes (i, 0) at level 0.
When α nodes (ai, hi) for i ∈ [1, α] meet in a component and get subsumed by the master
node with DFS identifier M of the meeting graph, a node (M, h), where h = 1 + maxi∈[1,α] hi,
is created in the meeting tree as the parent of the child nodes (ai, hi), for i ∈ [1, α].

For a node (M, h), h is the length of the longest path from some leaf node to that node. We
now formally define X(M, h), Y (M, h), and C(M, h).
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▶ Definition 6 (Component C(M, h)).
1. X(M, h) is the set of child nodes in the meeting tree that directly and transitively participate

only in Collapse_Into_Parent until collapsing into (M, h).
2. Y (M, h) is the set of child nodes in the meeting tree that directly and transitively participate

in at least one Collapse_Into_Child until collapsing into (M, h).
3. C(M, h) = X(M, h) ∪ Y (M, h) ∪ {(M, prev(h))}, where for any z ∈ C(M, h), z =

(a, prev(h)) and prev(h) is defined as the highest value less than h for which node
(a, prev(h)) has been created.

For any node (i, h), we also define next(h) as the value h′ such that (i, h) ∈ C(M, h′) for
some M . If such a h′ does not exist, we define it to be k′.

We omit h in (i, h) and C(M, h) in places where it is understood or not required.

5 Analysis of the Algorithm

In our algorithm, a common module is to traverse an already identified DFS component
with nodes having the same treelabel. This can be achieved by going to root(i) and doing
a (new) DFS traversal of only those nodes (using a duplicate set of variables state and
parent for DFS); if you reach a node which has no settled robot or a settled robot having
a different treelabel, one simply backtracks along that edge. Such a DFS traversal occurs
in (i) Algorithm Exploration when di > dparent(i) and i locks head(parent(i)) junction, (ii)
procedure Collapse_Into_Child, and (iii) procedure Collapse_Into_Parent, and can be
executed in 4∆di steps. In (ii) and (iii), a settled robot not on the collect path gets unsettled
and gets collected in the DFS traversal to the collect path when the DFS backtracks from
the node where the robot was settled.

The time complexity of Algorithms 2 and 3 is as follows.
1. Algorithm 2 takes time bounded by 8di∆ + 3di. The derivation is as follows.

a. min{di, dparent(i)} to go from head(i) to root(parent(i)).
b. 4 min{di, dparent(i)}∆ to go then to head(parent(i)).
c. if dparent(i) > di, then 2di to return to head(i) via root(parent(i)).
d. if dparent(i) < di and i locks head(parent(i)), then 4dparent(i)∆ + 2dparent(i) for DFS

traversal of parent(i) component from root(parent(i)) plus to root(parent(i)) from
head(parent(i)) and back.

If explorers E’s path meets explorers F ’s path, the explorers E wait until F ’s return.
This delay is analyzed later.

2. In Algorithm 3,
a. Collapse_Into_Child takes 4di∆ + 2di.

Time di to go from head(i) to root(i); 4∆di for a DFS traversal of i component from
root(i); and di to collect the accumulated robots from root(i) to head(j) along the
collapse path.

b. Collapse_Into_Parent takes 4di∆ + 2di + 4dparent(i)∆.
Time di to go from head(i) to root(i); 4∆di for a DFS traversal of i component from
root(i); di to collect the accumulated robots from root(i) to head(i); and 4dparent(i)∆
to then go to head(parent(i)).

c. The cost of Parent_Is_Collapsing is min{di, dparent(i)} but is subsumed in the cost
of Algorithm 2.
This cost is to return to head(i) from the exploration point in parent(i) component
where it is invoked.
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The contributions to this time complexity by the various nodes in C(M) are as follows.
(The cost is the sum of Algorithm Exploration plus appropriate invoked procedure costs.)
1. Each x ∈ X executes Collapse_Into_Parent after Exploration, as it is part of an

increasing path. So it contributes the sum of the two contributions, giving 12dx∆ + 5dx +
4dparent(x)∆.
The 4dparent(x)∆ is for traversing to head(parent(x)) after x collapses to head(x), and
this can be done concurrently by multiple x that are children of the same parent. As each
x can be thought of as the parent of another element in X, so the cost of subsuming the
X set is

∑
x∈X 16dx∆ + 5dx + (if X ̸= ∅, 4dM ∆).

2. Each y ∈ Y _branch executes Collapse_Into_Parent after Exploration, as it is part of
an increasing path. So it contributes the sum of the two contributions, giving 16dy∆+5dy.
Each y ∈ Y _trunk executes Collapse_Into_Child after Exploration, as it is part
of a decreasing path. So it contributes the sum of the two contributions, giving
12dy∆ + 5dy, plus it potentially acts as a parent of a node on a Y _branch that executed
Collapse_Into_Parent so it contributes an added 4dy∆, giving a total of 16dy∆ + 5dy.

3. Node M will contribute in Algorithm Exploration 4 min{dM , dparent(M)}∆ + min{dM ,-
dparent(M)}, plus 4dparent(M)∆ + 2dparent(M) as parent(M) is smaller. Thus, a total of
8dparent(M)∆+3dparent(M). This can be counted towards a contribution by parent(M) =
y ∈ Y , thus the contribution of each y ∈ Y can be bounded by 24dy∆ + 8dy with M

contributing nil.
There is another source of time overhead contributed by nodes in Y _trunk ∪{M}. Nodes

y, i.e., head(y) ∈ G, for y ∈ Y _trunk, are locked by their child. Before this can happen,
other children of y may be exploring y by leaving retrace pointers. However, due to the
O(log(k + ∆)) bits bound on memory at each robot, a retrace pointer at a node in y can
be left by only O(1) children, not by O(k′) children. Therefore in Algorithm 2, if explorers
E path meets another explorers F path, they wait at the meeting node until F return. If
they learn that the y is collapsing, they retrace to their head nodes else if they learn y is not
collapsing, they continue their exploration towards head(y) but may be blocked again if their
path meets another explorers’ path. This waiting due to concurrently exploring children
introduces delays.

A child of y outside Y _trunk may be either locked (l) or unlocked (u) and is also smaller
(S) or larger (L) than y. Thus, there are 4 classes of such children.
1. Su-type children belong to Y _branch and their introduced delays are already accounted

for above.
2. Each Lu-type and Ll-type child does not contribute any delay. This is because even

though these children are larger than y, they are not the child in Y who succeeds in
locking y; the child in Y who locks y does so before such L∗-type children try to explore
y and try to lock y. Such L∗-type children learn that y is collapsing.

3. Each Sl-type child node b contributes delay 4db∆ + 3db. The sum of such delays at y is
denoted ty(M,h). Later, we show how to bound the sum of such delays across multiple M ,
h and y.
Similar reasoning can be used for M delaying its children in X due to explorations of

other children z ̸∈ X. Specifically, (1) type Su child z of M : ̸ ∃ child z ̸∈ X. (2) type L∗
child z of M : ̸ ∃ such a child z. If it existed, it would have succeeded in locking M and M

would not be master. (3) Each type Sl child z contributes delay 4dz∆ + 3dz, whose sum for
all z is denoted by t(M,prev(h)). Later, we show how to bound the sum of such delays across
multiple M and h.
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Note that for any x ∈ X, (1) each type Su child belongs to X and the delay is already
accounted for in Collapse_Into_Parent executed by x. (2) each type Sl child and type L∗
child does not contribute any delay beyond that of Collapse_Into_Parent executed by x and
already accounted for. (The type L∗ child does not succeed in locking head(x) and learns
that x is collapsing into its parent.)

Thus far, the size di of node i referred to the number of settled robots in it, and is
henceforth referred to as ds

i . More specifically, ds
i,h will refer to the number of settled robots

up until just before the next(h) meeting of i. The number of unsettled robots in i up until
just before the next(h) meeting of i is referred to as du

i,h. Let T (M, h) denote the time to
settle DFS M up until meeting at depth h of the meeting tree, and from then on until the
next meeting (next(h)) for M . The collapse and collection time to head(M) has components
c(M, h) and g(M, h). c(M, h) has a upper bound factor of (24∆ + 8) for x ∈ X and y ∈ Y

as derived above. The time for dispersion/settling after collection and until the next(h)
meeting is s(M, h). These are defined as follows.

c(M, h) =


0 if h = 0
(24∆ + 8)(

∑
x∈X(M,h) ds

x +
∑

y∈Y (M,h) ds
y) if h > 0

(+4∆(ds
M,prev(h)) if X(M, h) ̸= ∅)

(1)

s(M, h) =


4∆(ds

M,h − ds
M,prev(h)) if next(h) < k′

4∆(
∑

x∈X(M,h) ds
x +

∑
y∈Y (M,h) ds

y otherwise
+

∑
x∈X(M,h) du

x +
∑

y∈Y (M,h) du
y

+du
M,prev(h))

(2)

g(M, h) =
{

0 if h = 0∑
y∈Y (M,h) ty + t(M,prev(h)) if h > 0 (3)

This process of collapsing and collecting for instance (M, h) began at the very latest
(since the start of the algorithm) at the time at which the latest of the x nodes, x′, got
blocked. Thus,

T (M, h) ≤
f(M,h)︷ ︸︸ ︷

c(M, h) + s(M, h) +g(M, h) + T (x′, prev(h)),
x′ = argmaxx | (x,prev(h))∈X(M,h)∪{(M,prev(h))}T (x, prev(h)),

c(∗, 0) = 0, g(∗, 0) = 0, s(∗, 0) = ds
∗,0. (4)

We break T (M, h) into two series, and bound them separately. The two series are:

S1 = f(M, h) + f(x′(M, h), prev(h))
+f(x′(x′(M, h), prev(h)), prev(prev(h))) + · · · + f(∗, 0)

S2 = g(M,h) + g(x′(M,h),prev(h)) + · · · + (g(∗, 0) = 0)

=
∑

y∈Y (M,h)

ty +
∑

y∈Y (x′(M,h),prev(h))

ty + · · · + (
∑

y∈Y (∗,0)

ty = 0)

+t(M,prev(h)) + t(x′(M,h),prev(prev(h))) + · · · + (t(∗,prev(0)) = 0) (5)

▶ Lemma 7. The sum in the series S1 is O(k∆).
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Proof. We consider levels of the meeting tree from level 1 upwards to h (≤ k′ − 1). Let
η DFS components collapse and merge into one of them, and let the size (i.e., number of
settled robots) of each component be d. We consider two extreme cases and show for each
that the lemma holds.
1. Case 1: At each level when components collapse and collect in a master component,

immediately afterwards (before the collected unsettled robots can settle) the master
component meets another component at the next level, and the collapse and collection
happen at the next level. Again, immediately afterwards, the (new) master component
meets another component at the yet next higher level, and so on till level h. This case
assumes s(i, ∗) = 0.
a. At level 1, η components of size d each merge into one of size d in O(ηd∆) time, leading

to a total of ηd robots in the master component.
b. At level 2, η components of size d each merge into one of size d in O(ηd∆) time, leading

to a total of η2d robots in the master component.
c. At level h, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of ηhd robots in the master component.
ηhd is at most the maximum number of robots k. Solving k = ηhd, h = logη

k
d . Therefore

the maximum total elapsed time until the h-th level meeting and collapse takes place is

Max. elapsed time is O(h(ηd∆)) = O(ηd∆ logη

k

d
)

This maximum elapsed time is O(k∆), considering both extreme cases (a) ηd = O(1) and
(b) ηd = O(k).

2. Case 2: At each level when components collapse and collect in a master component, the
collected robots (almost) fully disperse after which the master component meets another
component at the next level, and the collapse and collection happen at the next level.
Again, the robots collected by the (new) master component (almost) fully disperse after
which the master component meets another component at the yet next higher level, and
so on till level h. This case assumes ∀j, s(i, j) satisfies next(j) ̸< k′.
a. At level 1, η components of size d each merge into one of size ηd in O(ηd∆) time,

leading to a total of ηd robots in the master component.
b. At level 2, η components of size ηd each merge into one of size η2d in O(η2d∆) time,

leading to a total of η2d robots in the master component.
c. At level h, η components of size ηh−1d each merge into one of size ηhd in O(ηhd∆)

time, leading to a total of ηhd robots in the master component.
ηhd is at most the maximum number of robots k. Solving k = ηhd, h = logη

k
d . Therefore

the maximum total elapsed time until the h-th level meeting and collapse/dispersion
takes place is

O(∆(ηd + η2d + η3d + . . . + ηhd)) = O(∆ηd
ηh − 1
η − 1 )

= O( ∆ηd

η − 1(ηlogη
k
d − 1))

= O( ∆ηd

η − 1(k

d
− 1))

= O(k∆)

There is also a special case in which a single component M , each time (∀h′), grows
and meets other fully dispersed component(s) that collapse (transitively) in to it and no
component meets M . Here, ∀h′, X(M, h′) = ∅ as all subsumed components belong to
Y (M, h′) sets. Observe that

∑
h′ c(M, h′) =

∑
h′ s(M, h′) = O(k∆).

The lemma follows. ◀
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▶ Lemma 8. The sum in the series S2 is O(k∆).

Proof is deferred to Appendix due to space constraints.

▶ Theorem 9. Algorithm Exploration (Algorithm 2) in conjunction with Algorithm DFS(k)
correctly solves Dispersion for k ≤ n robots initially positioned arbitrarily on the nodes
of an arbitrary anonymous graph G of n memory-less nodes, m edges, and degree ∆ in
O(min{m, k∆}) rounds using O(log(k + ∆)) bits at each robot.

Proof. T (M, h) is the sum of the series S1 and S2 which are both O(k∆) by Lemmas 7 and 8.
So the time till termination of the Algorithms 1 (DFS), 2 (Exploration), and Algorithm 3
(various procedues invoked) is O(k∆). As k ≤ n, this is O(n∆). Now observe that in our
derivations (Lemmas 7 and 8), the ∆ factor is an overestimate. The actual upper bound is
O(

∑n
i=1 δi) which is O(m), the number of edges in the graph. This upper bound is better

when m < k∆ and hence the time complexity is O(min{m, k∆}).
The highest level node (i, h) in each tree in the final forest of the meeting graph represents

a master node that has never been subsumed and always alternated between growing and
subsuming other components, and growing again. The growth happens as per Algorithm 1
(DFS) which correctly solves Dispersion by Theorem 3. Whereas the subsuming of other
components merely collects the robots of the other components to the head node head(i)
(Algorithm Exploration) which subsequently get dispersed by the growing phases (Algorithm
DFS). Hence, Dispersion is achieved.

The retrace and collapse variable at each robot used in Algorithm 2 and 3 are O(log ∆).
collapsing_children takes O(log k) bits and a single bit each is required to track whether
the component is locked and whether it is collapsing. The space requirement of Algorithm 1
was shown in Theorem 3 to be (log(k + ∆)) bits. The theorem follows. ◀

Proof of Theorem 1. Follows from Theorem 9. ◀

Proof of Theorem 2. In the asynchronous setting, in every CCM cycle, each robot at a
node u determines x, the number of co-located robots, if any, that should be moving with
it to node v. It then moves as per its own schedule. On arriving at v, it does not start
its next CCM cycle until x robots have arrived from u. This essentially constitutes one
epoch and ensures that the robots that move together in a round in a synchronous setting
move together in one epoch in the asynchronous setting. With this simple modification, the
algorithm given for the synchronous setting works for the asynchronous setting. The space
and time complexities, as given in Theorem 1, carry over to the asynchronous setting. ◀

6 Concluding Remarks

In this paper, we have presented a deterministic algorithm that solves Dispersion, starting
from any initial configuration of k ≤ n robots positioned on the nodes of an arbitrary anonym-
ous graph G having n memory-less nodes, m edges, and degree ∆, in time O(min{m, k∆})
with O(log(k + ∆)) bits at each robot. This is the first algorithm that is simultaneously
optimal w.r.t. both time and memory in arbitrary anonymous graphs of constant degree,
i.e., ∆ = O(1). This algorithm improves the time bound established in the best previously
known results [19, 31] by an O(log ℓ) factor and matches asymptotically the time and memory
bound of the single-source DFS traversal. This algorithm uses a non-trivial approach of
subsuming parallel DFS traversals into single one based on their DFS tree sizes, limiting the
subsumption process overhead to the time proportional to the time needed in the single-source
DFS traversal. This approach might be of independent interest.
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For future work, it will be interesting to improve the existing time lower bound of Ω(k) to
Ω(min{m, k∆}) or improve the time bound to O(k) removing the O(∆) factor. The second
interesting direction will be to consider faulty (crash and/or Byzantine) robots.
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A Appendix

Proof of Lemma 8. The series S2 is the sum of all the waits introduced by children a of
a Y _trunk node y and of M , that are of type Sl. Such a Sl child contributes delay up
to 4da∆ + da (≤ 4dy∆ + 3dy or ≤ 4dM ∆ + 3dM , respectively) and then collapses and gets
subsumed by the node b that has locked it. Thus Sl type children can occur at most k′ − 1
times in the lifetime of the execution. Note also that db ≥ da as b to a is a decreasing path.

If all the Sl children were never involved in any meeting until now, then
∑

da ≤ k and
the lemma follows. However we need to also analyze the case where a Sl node gets subsumed
by another node b, and then the node b becomes a Sl node later. In this case, the robots
subsumed from a may be double-counted in the size of b when b later becomes a type Sl

node. This can happen at most k′ − 1 times.
Let η DFS components, including the Sl component, collapse and merge into one of them,

and let the size (i.e., number of settled robots) of each component be d. We consider two
extreme cases and show for each that the lemma holds.
1. Case 1: When components collapse and are collected, immediately afterwards (before

the collected unsettled robots can settle) the master component becomes a Sl-type node,
and the collapse and collection happen again. Again, immediately afterwards, the new
master component becomes a type Sl node, and so on.
a. The first time, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of ηd robots in the master component.
b. The second time, η components of size d each merge into one of size d in O(ηd∆) time,

leading to a total of η2d robots in the new master component.
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c. The j-th time, η components of size d each merge into one of size d in O(ηd∆) time,
leading to a total of ηjd robots in the master component.

ηjd is at most the maximum number of robots k. Solving k = ηjd, j = logη
k
d . Therefore

the total delay introduced in series S2 which is linearly proportional to ∆ times the sum
of sizes of the type Sl components, is O(η∆dj).

Sum of delays is O(η∆dj) = O(η∆d logη

k

d
)

This maximum elapsed time is O(k∆), considering both extreme cases (a) ηd = O(1) and
(b) ηd = O(k).

2. Case 2: When components collapse and are collected, the collected robots (almost) fully
disperse after which the master component becomes a type Sl node, and the collapse
and collection happen again. Again, the collected robots in the new master component
(almost) fully disperse after which the (new) master component becomes a type Sl node
and collapses and gets collected, and so on.
a. The first time, η components of size d each merge and settle into one of size ηd in

O(ηd∆) time, leading to a total of ηd robots in the master component.
b. The second time, η components of size ηd each merge and settle into one of size η2d in

O(η2d∆) time, leading to a total of η2d robots in the master component.
c. The j-th time, η components of size ηj−1d each merge and settle into one of size ηjd

in O(ηjd∆) time, leading to a total of ηjd robots in the master component.
ηjd is at most the maximum number of robots k. Solving k = ηjd, j = logη

k
d . Therefore

the total delay introduced in series S2 which is linearly proportional to ∆ times the sum
of sizes of the type Sl components, is

O(∆(ηd + η2d + η3d + . . . + ηjd)) = O(∆ηd
ηh − 1
η − 1 )

= O( ∆ηd

η − 1(ηlogη
k
d − 1))

= O( ∆ηd

η − 1(k

d
− 1))

= O(k∆)

The lemma follows. ◀
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Abstract
We consider the gathering problem for asynchronous and oblivious robots that cannot communicate
explicitly with each other but are endowed with visibility sensors that allow them to see the positions
of the other robots.

Most investigations on the gathering problem on the discrete universe are done on ring shaped
networks due to the number of symmetric configurations. We extend in this paper the study of the
gathering problem on torus shaped networks assuming robots endowed with local weak multiplicity
detection. That is, robots cannot make the difference between nodes occupied by only one robot
from those occupied by more than one robot unless it is their current node. Consequently, solutions
based on creating a single multiplicity node as a landmark for the gathering cannot be used. We
present in this paper a deterministic algorithm that solves the gathering problem starting from any
rigid configuration on an asymmetric unoriented torus shaped network.
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1 Introduction

We consider autonomous robots [21] that are endowed with visibility sensors and motion
actuators, yet are unable to communicate explicitly. They evolve in a discrete environment,
i.e., their space is partitioned into a finite number of locations, conveniently represented by a
graph, where the nodes represent the possible locations that a robot can be, and the edges
denote the possibility for a robot to move from one location to another.

Those robots must collaborate to solve a collective task despite being limited to computing
capabilities, inputs from the environment, etc. In particular, the robots we consider are
anonymous, uniform, yet they can sense their environment and make decisions according to
their own ego-centered view. In addition, they are oblivious, i.e., they do not remember their
past actions. Robots operate in cycles that include three phases: Look, Compute, and Move
(LCM for short). The Look phase takes a snapshot of the other robots’ positions using a
robot’s visibility sensors. During the Compute phase, a robot computes a target destination
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based on its previous observation. The Move phase consists in moving toward the computed
destination using motion actuators. Three execution models have been considered in the
literature using LCM cycles, capturing the various degrees of synchrony between robots.
According to current taxonomy [11], they are denoted as FSYNC, SSYNC, and ASYNC, from
the stronger to the weaker. FSYNC stands for fully synchronous. In this model, all robots
execute the LCM cycle synchronously and atomically. In the SSYNC (semi-synchronous)
model, robots are asynchronously activated to perform cycles, yet at each activation, a robot
executes one cycle atomically. With the weaker model, ASYNC (asynchronous), robots
execute LCM in a completely independent manner. Of course, the ASYNC model is the
most realistic.

In the context of robots evolving on graphs, the two benchmarking tasks are explora-
tion [13] and gathering [4]. In this paper, we address the gathering problem, which requires
that robots eventually all meet at a single node, not known beforehand, and terminate upon
completion.

We focus on the case where the network is an anonymous unoriented torus (or simply
torus, for short). The terms anonymous and unoriented mean that no robot has access to any
kind of external information (e.g., node identifiers, oracle, local edge labeling, etc.) allowing to
identify nodes or to determine any (global or local) direction, such as North-South/East-West.
Torus networks were investigated for the purpose of exploration by Devismes et al.[9].

1.1 Related Work
Mobile robot gathering on graphs was first considered for ring-shaped graphs. Klasing
et al. [18], proposed gathering algorithms for rings with global-weak multiplicity detection.
Global-weak multiplicity detection enables a robot to detect whether the number of robots
on each node is one or more than one. However, the exact number of robots on a given node
remains unknown if more than one robot is on the node. Then, Izumi et al. [14] provided a
gathering algorithm for rings with local-weak multiplicity detection under the assumption
that the initial configurations are non-symmetric and non-periodic, and that the number of
robots is less than half the number of nodes. Local-weak multiplicity detection enables a
robot to detect whether the number of robots on its current node is one or more than one.
This condition was slightly relaxed by Kamei et al. [15]. D’Angelo et al. [6] proposed unified
ring gathering algorithms for most of the solvable initial configurations, using local-weak
multiplicity detection. Overall, for rings, relatively few open cases remain [1], as algorithm
synthesis was demonstrated feasible [19].

The case of gathering in tree-shaped networks was investigated by D’Angelo et al. [7] and
by Di Stefano et al.[20]. Hypercubes were the focus of Bose at el. [2]. Complete and complete
bipartite graphs were outlined by Cicerone et al. [5], and regular bipartite by Guilbault et
al. [12]. Finite grids were studied by D’Angelo et al. [7], Das et al. [8], and Castenow et
al. [3], while infinite grids were considered by Di Stefano et al. [20], and by Durjoy et al. [10].
Results on grids and infinite grids do not naturally extend to tori. On the one hand, the
proof arguments for impossibility results on the grid can be extended for the torus, since
their indistinguishability criterium remains valid. So, if a torus admits an edge symmetry
(the robot positions are mirrored over an axial symmetry traversing an edge), is periodic (a
non-trivial translation leaves the robot positions unchanged), or admits a rotation whose
center is not a robot, the gathering is impossible on a torus. On the other hand, both the
finite and the infinite grid allow algorithmic tricks to be implemented. For example, the finite
grid has three classes of nodes: corners (of degree 2), borders (of degree 3), and inner nodes
(of degree 4), and those three classes permit the robots to obtain some sense of direction. By
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contrast, the infinite grid makes a difference between two locations: the inner space (the set
of nodes within the convex hull formed by the robot positions) and the outer space (the rest
of the infinite grid), which also give some sense of direction. Now, every node in a torus has
degree 4, and no notion of inner/outer space can be defined. To our knowledge, torus-shaped
networks were never considered before for the gathering problem. The previous work by
Devismes et al [9] only considers the exploration task.

1.2 Our Contribution
We consider the problem of gathering on torus-shaped networks. In more detail, for initial
configurations that are rigid (i.e. where each robot has a unique view of the configuration),
we propose a distributed algorithm that gathers all robots to a single node, not known
beforehand. We only make use of local-weak multiplicity detection: robots may only know
whether at least one other robot is currently hosted at their hosting node but cannot know
the exact number and are also unable to retrieve multiplicity information from other nodes.
Furthermore, robots have no common notion of North and no common notion of handedness.
Finally, robots operate in the most general and realistic ASYNC execution model.

2 Model

We consider a distributed system that consists of a collection of K ≥ 3 robots evolving on a
non-oriented and anonymous (ℓ, L)-torus (or simply torus for short) of n nodes. Values ℓ
and L are two integers such that L < ℓ and (definition borrowed from Devismes et al. [9]):
1. n = ℓ× L.
2. Let E be a finite set of edges. There exists an ordering v1, . . . , vn of the nodes of the

torus such that ∀i ∈ {0, . . . , n− 1}:
if i+ ℓ < n, then {vi, v(i+ℓ)} ∈ E, else {vi, v(i+ℓ) mod n} ∈ E.
if i+ 1 mod ℓ ̸= 0, then {vi, vi+1} ∈ E, else {vi, vi−ℓ+1} ∈ E.

Given the previous ordering v0, . . . , vn−1, for every j ∈ {0, . . . , L− 1}, the sequence vj×ℓ,
v1+j×ℓ, . . . , vℓ−1+j×ℓ is called an ℓ-ring. Similarly, for every k ∈ {0, . . . , ℓ− 1}, the sequence
vk, vk+ℓ, vk+2×ℓ, . . . , vk+(L−1)×ℓ is called an L-ring.

On the torus operate K ≥ 3 identical robots, i.e., they all execute the same algorithm
using no local parameters, and one cannot distinguish them using their appearance. In
addition, they are oblivious, i.e., they cannot remember the operations performed before.
No direct communication is allowed between robots; however, we assume that each robot
is endowed with visibility sensors that allow him to see the position of the other robots on
the torus. Robots operate in cycles that comprise three phases: Look, Compute and Move.
During the first phase (Look), each robot takes a snapshot to see the positions of the other
robots on the torus. In the second phase (Compute), they decide to either stay idle or move.
In the case they decide to move, a neighboring destination is computed. Finally, in the last
phase (Move), they move to the computed destination (if any).

At each instant, a subset of robots is activated for the execution by an external entity
called scheduler. We assume that the scheduler is fair, i.e., all robots are activated infinitely
many times. The model considered in this paper is the asynchronous model (ASYNC), where
the time between Look, Compute, and Move phases is finite but unbounded. We however
assume that the move phase is instantaneous, so that when a robot performs a look operation,
it sees all robots on nodes and none on edges. Still, even with instant moves, each robot may
move according to an outdated view, i.e., the robot takes a snapshot to see the positions of
the other robots, but when it decides to move, some other robots may have moved already.
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Axes of symmetry ℓ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(A) Symmetric (B) Periodic (C) 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Figure 1 Instance of some defined configurations.

Let ℓ0, ℓ1, . . . , ℓL−1 be the sequence of ℓ-rings and let vi,0, vi,1, . . . , vi,ℓ−1 be the sequence
of nodes on ℓi (all operations on the indices are modulo ℓ for the nodes and modulo L for the
ℓ-rings). By #ri,j(t) we denote the number of robots on vi,j at time t. Node vi,j is empty if
#ri,j(t) = 0. Otherwise, vi,j is occupied. In the case where #ri,j(t) = 1, we say that there is
a single robot on vi,j . By contrast, if #ri,j(t) ≥ 2, we say that there is a multiplicity on vi,j .

In this paper, we assume that robots have a local weak multiplicity detection i.e., for
any robot r, located at node u, r can only detect a multiplicity on its current node u (local).
Moreover, r cannot be aware of the exact number of robots part of the multiplicity (weak).

During the process, some robots move and occupy some nodes of the torus, and their
positions form the configuration of the system at that time. Initially, we assume that each
node hosts at most one robot, i.e., the initial configuration contains no multiplicities.

For each robot r, only a degraded vision of occupied locations is available. So, the local
vision di,j(t) of r about node vi,j at time t is 1 if #ri,j(t) > 0 and 0 otherwise.

For any i, j ≥ 0, let δ+
i,j(t) denote the sequence < di,j(t), di,j+1(t), . . . , di,j+ℓ−1(t) >,

and let δ−
i,j(t) denote the sequence < di,j(t), di,j−1(t), . . . , di,j−(ℓ−1)(t) >. Similarly, let

∆+s
i,j (t) be the sequence < δsi,j(t), δsi+1,j(t), . . . , δsi+(L−1),j(t) > and ∆−s

i,j (t) to be the sequence
< δsi,j(t), δsi−1,j(t), . . . , δsi−(L−1),j(t) > with s ∈ {+,−}.

The view of a given robot r located on node vi,j at time t is defined as the pair viewr(t) =
(Vi,j(t),mj) where Vi,j(t) consists of the four sequences ∆++

i,j ,∆
+−
i,j ,∆

−+
i,j ,∆

−−
i,j ordered in

the lexicographical order and mj = 1 if vi,j hosts a multiplicity and mj = 0 otherwise.
By viewr(t)(1), we refer to Vi,j(t) in viewr(t). Given two robots r and r′, we say that

r has a larger view than r′ at time t, denoted viewr(t)(1) > viewr′(t)(1), if viewr(t) is
lexicographically larger than viewr′(t). Similarly, r is said to have the largest view at time t,
if for any robots r′ ̸= r, not located on the same node as r, viewr(t)(1) > viewr′(t)(1) holds.

A configuration is said to be rigid at time t, if for any two robots r and r′, located on
two different nodes of the torus, viewr(t)(1) ̸= viewr′(t)(1) holds.

A configuration is said to be periodic at time t if there exist two integers i and j such
that i ̸= j, i ̸= 0 mod ℓ, j ̸= 0 mod L, and for every robot r(x,w) located on ℓx at node
vx,w, viewr(x,w)(t)(1) = viewr(x+i,w+j)(t)(1) (An example is given in Figure 1).

As defined by D’Angelo et al. [7], a configuration is said to be symmetric at time t, if the
configuration is invariant after a reflection with respect to either a vertical or a horizontal
axis. This axis is called the axis of symmetry (An example is given in Figure 1).

In this paper, we consider asymmetric (ℓ, L)-torus, i.e., ℓ ̸= L. We assume w.l.o.g. that
L < ℓ. In this case, we can differentiate two sides of the torus. We denote by nbℓi

(C) the
number of occupied nodes on ℓ-ring ℓi, in configuration C. An ℓ-ring ℓi is said to be maximal
in C if ∀ j ∈ {0, . . . , L− 1} \ {i}, nbℓj

(C) ≤ nbℓi
(C).

Given a configuration C and two ℓ-rings ℓi and ℓj . We say that ℓj is adjacent to ℓi if
|i − j| = 1 mod L holds. Similarly, we say that ℓj is neighbor of ℓi in configuration C if
nbℓj

(C) > 0 and nbℓk
(C) = 0 for any k ∈ {i+1, i+2, . . . , j−1} or k ∈ {i−1, i−2, . . . , j+1}.

We also define dis(xi, xj) to be a function which returns the shortest distance, in terms of
hops, between xi and xj where xi and xj are two nodes of the torus. We sometimes write
xi = ri where ri is a robot. In this case, xi refers to the node that hosts ri. Finally, we use
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the notion of d.block to refer to a sequence of consecutive nodes in which there are occupied
nodes each d hops (distance) with no other robot in between. The size of a d.block is the
number of its occupied nodes.

Due to the lack of space, some details and proofs are omitted but can be found in [17].

3 Impossibility Results

This section presents impossibility results that motivate our settings.
Given a graph G = (V,E) and a function m : V → N associating the number of robots on

a vertex v of V to v, (G,m) is a configuration whenever
∑
v∈V m(v) is bounded and greater

than zero. Let ϕ be a permutation of G’s vertices that preserves its adjacency relation, so if
(u, v) ∈ E, then (ϕ(u), ϕ(v)) ∈ E′, with ϕ(G) = (V ′, E′). Note that ϕ always exists as the
identity permutation fits this definition. Similarly, given a configuration (G,m), let ψ be
a permutation of G’s vertices that preserves its adjacency relation and such that for every
node v of V , m(v) = m(ψ(v)). Again, ψ always exists as the identity permutation fits this
definition. Given such a permutation ψ, the cycle Cψ of order p that is generated by ψ is
{ψ0, ψ1 = ψ,ψ2 = ψ ◦ ψ, . . . , ψp−1} such that ψp = ψ0, where ϕ0 is the identity. Note that
Cψ has order 1 if and only if ψ is the identity. Given a cycle Cψ, the orbit of a vertex v

of V is Cψ(v) = {γ(v)|γ ∈ Cψ}. Now, given a configuration (G = (V,E),m), ψ is partitive
if Cψ has order p > 1, and for every v ∈ V , |Cψ(v)| = p. That is, ψ is not reduced to the
identity, and all nodes have the same orbit size. We now recall the Theorem of Di Stefano
and Navarra for general topologies:

▶ Theorem 1 ([20] Restated). If a configuration (G,m) admits a partitive permutation ψ,
then (G,m) cannot be gathered.

We specialize the general theorem to our setting:

▶ Corollary 1. If a torus configuration is invariant by a non-empty series of non-null
translations, a reflection through an edge-axis, or a non-empty series of non-null rotations
whose center does not hold a robot; it is not gatherable.

Next, we show that two robots cannot gather on a torus, even in FSYNC.

▶ Theorem 2. Starting from a configuration with two robots a and b on different vertices in
a torus with at least two vertices, gathering cannot occur, even in FSYNC.

Finally, we show by induction that without multiplicity detection, the gathering is impossible.

▶ Theorem 3. Starting from any configuration with K ≥ 2 robots with no multiplicity
detection, gathering in a torus is impossible, even in SSYNC.

4 Algorithm

When robots have only local weak multiplicity detection, multiplicities should be carefully
created as the gathering becomes impossible from a configuration in which there are only two
occupied nodes that both host a multiplicity. In ASYNC model, we need to be extra careful
when it comes to robots with outdated views as they might create unwanted multiplicities
(recall that when a robot moves the configuration might have changed as one or several
robots might have moved once or many times).
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Our strategy is to create a sense of direction on a torus to identify the gathering node
and keep this node invariant, preventing the creation of unwanted multiplicities (if the
configuration contains only two occupied nodes, one of these two nodes hosts for sure a
single robot). For this purpose, robots proceed in two phases: first, they create the desired
direction allowing them to identify a single node and then gather on the identified node.
More precisely, let Ctarget be the set of configurations such that C ∈ Ctarget if the following
properties are satisfied: C contains three ℓ-rings ℓsecondary, ℓmax and ℓtarget such that:

(1) ℓmax is the unique maximal ℓ-ring in C, (2) ℓsecondary and ℓtarget are adjacent to ℓmax .
(3) nbℓsecondary (C) = 0, (4) ℓtarget satisfies exactly one of the following conditions:

nbℓtarget (C) = 1. We refer to the occupied node on ℓtarget by vtarget .
nbℓtarget (C) = 2 and ℓtarget hosts a 2.block. We refer to the unique empty node in the
2.block by vtarget .
nbℓtarget (C) = 3 and ℓtarget hosts a 1.block of size 3. By vtarget , we refer to the occupied
node in the middle of the 1.block.

From a configuration C ∈ Ctarget, a direction can be identified: from vtarget to ℓmax. The
idea is to make all robots neither on ℓmax nor on ℓtarget move to join vtarget and then make
the remaining robots gather on the node that is on ℓmax which is adjacent to vtarget. To
summarize, the proposed algorithm consists of two phases:
1. Preparation Phase. This phase starts from an arbitrary rigid configuration C0 in which

each node hosts at most one robot. Its aim is to reach a configuration C ∈ Ctarget .
2. Gathering Phase. Starting from a configuration C ∈ Ctarget , the gathering node is

identified, and all robots eventually move to join it i.e., the gathering is achieved.
Let us refer by Cp1 (respectively Cp2) to the set of configurations that appear during the
Preparation (respectively the Gathering) phase. Let C be the current configuration, robots
execute Protocol 1. Observe that Cp1 ∩ Cp2 = ∅ and Ctarget ⊂ Cp2 .

Protocol 1 Main protocol.

if C ∈ Cp2 then
Execute Gathering phase

else
Execute Preparation phase

To ease the description of our strategy, we define predicates on a given configuration C:
Unique(C): There exists a unique i ∈ {0, . . . , L− 1} such that ∀ j ∈ {0, . . . , L− 1} \ {i},
nbℓj

(C) < nbℓi
(C).

Empty(C): (C ∈ Ctarget) ∧ (∀ i ∈ {0, . . . , L− 1}, such that ℓi ̸= ℓtarget and ℓi ≠ ℓmax ,
nbℓi

(C) = 0).
Partial(C): (C ∈ Ctarget) ∧ (∃ i ∈ {0, . . . , L− 1}, such that ℓi ̸= ℓtarget and ℓi ̸= ℓmax ,
nbℓi

(C) ̸= 0).
Given a configuration C, Unique(C) indicates that C contains a unique maximal ℓ-ring.
Empty(C) indicates that C ∈ Ctarget and all the ℓ-rings, except for ℓmax and ℓtarget , are
empty. By contrast, Partial(C) indicates that C ∈ Ctarget and there exists at least one ℓ-ring
besides ℓmax and ℓtarget that is occupied (hosts at least one occupied node).

In our algorithm, in several cases, robots in a single ℓ-ring, say ℓi, need to move and align
themselves with respect to the positions of other robots which are on another ℓ-ring, say
ℓk. To ease the description of the algorithm, we define a procedure referred to by Align(ℓi,
ℓk) which makes the robots to perform such alignment i.e., align robots on ℓi with respect
to robots positions on ℓk. When the procedure is called in a configuration C, the following
properties hold on both ℓi and ℓk:
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𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐶𝐶)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐶𝐶) is false

is true

𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑠𝑠

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑠𝑠

𝐶𝐶𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠−1

𝐶𝐶𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠−2

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

𝐶𝐶𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠

𝐶𝐶𝑝𝑝𝑝
𝐶𝐶𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝑝𝑝𝑝𝑝

𝐶𝐶𝑙𝑙𝑙𝑙

𝐶𝐶𝑝𝑝𝑝

𝐶𝐶𝑠𝑠𝑠𝑠

𝐶𝐶𝑠𝑠𝑠𝑠−1 𝐶𝐶𝑠𝑠𝑠𝑠−2 𝐶𝐶𝑠𝑠𝑠𝑠−3

𝐶𝐶𝑠𝑠𝑠𝑠−4

Gathering

Preparation Phase Gathering Phase

Figure 2 Transitions among all configurations.
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Figure 3 Some examples of Align(ℓi, ℓk).

1. nbℓi
(C) = j with j ∈ {2, . . . , 5}, i.e., there are at least two and at most five robots on ℓi.

2. nbℓi
(C) > nbℓk

(C) holds, and either (1) nbℓk
(C) = 1 or (2) nbℓk

(C) = 2 and ℓk contains
a 2.block or (3) nbℓk

(C) = 3 and ℓk contains a 1.block of size 3.
Let umark be the node on ℓk that is: occupied if nbℓk

(C) = 1, empty in the 2.block if
nbℓk

(C) = 2, occupied in the middle of the 1.block if nbℓk
(C) = 3. Node umark is used as a

land mark to align robots on ℓi (a detailed description can be found in [17]). To give a better
idea on the purpose of procedure Align, some examples are given in Figure 3. The procedure
makes sure that if a multiplicity is created on ℓi then it is adjacent to umark. This allows
the robots to keep track on multiplicities’ positions and also make sure that the occupied
nodes at a border of a 1.block on ℓi host only a single robot.

Figure 2 presents an overview of our strategy showing all the transitions among the
different defined configurations in sections 4.1-4.2.

4.1 Preparation Phase
Let C ∈ Cp1. The purpose of this phase is to reach a configuration C ′ ∈ Ctarget from C so
that a direction is defined and the gathering node is identified. For this aim, robots first need
to decrease the number of maximal ℓ-rings to reach a configuration C ′′ in which Unique(C ′′)
is true. Then, from configuration C ′′, robots need to create both ℓtarget and ℓsecondary to
reach a configuration C ′ ∈ Ctarget . To prevent the creation of unwanted multiplicities due to
robots with outdated views, most of the configurations in this phase are kept rigid.

First, let us address the case in which Unique(C) is false (C contains at least two maximal
ℓ-rings). Robots need to decrease the number of maximal ℓ-rings to reach a configuration C ′

in which Unique(C ′) holds. Two cases are possible depending on whether there is an empty
node on a maximal ℓ-ring: if a maximal ℓ-ring hosts at least one empty node then, the idea
is to fill one of these empty nodes on a single maximal ℓ-rings. By contrast, if all the nodes
of the maximal ℓ-rings are occupied, the idea is to create a single multiplicity on one of the
maximal ℓ-rings to decrease their number gradually. Robots to move are chosen carefully
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r

Configuration C Configuration C’ Configuration C

r
𝑈𝑈 𝑈𝑈 𝑈𝑈

Figure 4 On the left, r is suppose to move but by moving, it creates a symmetric configuration
C′ shown in the middle. The robot on target-ℓ on the same L-ring as r moves to u.

in both cases, so that the configuration remains rigid. This is important to prevent having
robots with outdated views. In the following, we refer to a maximal ℓ-ring by ℓmax. Robots
behavior in a configuration C in which Unique(C) holds is as follows:
1. If nbℓmax (C) = ℓ (all the nodes of ℓmax are occupied). Let Rmax(C) be the set of robots

on a maximal ℓ-ring. As C is rigid, all robots in Rmax(C) have a unique view. Let ℓm be
the maximal ℓ-ring in C that hosts the robot with the maximal view in Rmax(C). One
robot r is elected on ℓm to move. Its destination is one of its adjacent occupied nodes
on ℓm. Robot r is selected as follows: Let Rm(C) ⊂ Rmax(C) be the set of robots on ℓm
which by moving to one of their adjacent occupied node on ℓm, the configuration reached
remains rigid. Robot r is the robot in Rm(C) which has the biggest view (|Rm(C)| > 0).

2. If nbℓmax (C) < ℓ (There is at least one empty node on ℓmax), the idea is to fill exactly one
of the empty nodes on exactly one of the maximal ℓ-ring. Let R(C) be the set of robots
closest to an empty node on a maximal ℓ-ring in C. Under some conditions, using the
rigidity of C, one robot of R(C), say r, is elected to move (the one with the largest view).
Its destination is its adjacent empty node toward the closest empty node on a maximal
ℓ-ring, say u, taking the shortest path. Among robots in the set R(C), the one to move is
the one that does not create a symmetric configuration. If no such robot exists in R(C),
some extra steps are taken beforehand to ensure that the configuration remains rigid. We
discuss the various cases:

If C contains exactly two occupied ℓ-rings then, C contains only two maximal ℓ-rings.
Robot r (the one to move) is the robot with the maximal view in C. Its destination is
its adjacent empty node on an empty ℓ-ring (Note that this ℓ-ring exists since L > 4).
If C contains more than two occupied ℓ-rings then: let r be the robot in R(C) with
the largest view. By u and target-ℓ we refer to the closest empty node on a maximal
ℓ-ring to r and the ℓ-ring including u. If by moving, r does not create a symmetric
configuration, then r simply moves to its adjacent node toward u taking the shortest
path. By contrast, if r creates a symmetric configuration by moving, then let C ′ be
the configuration reached once r moves. Using configuration C ′ that each robot can
compute without r moving, another robot r′ in C is selected to move. We show later
on that a symmetric configuration can only be reached when r either joins an empty
node on the same L-ring as u for the first time or when it joins u. For the other cases,
the configuration remains rigid. Hence, we only address the following two cases:

a. Robot r joins an empty node on the same L-ring as u for the first time in C ′. In
this case, in C, the robot that is on target-ℓ being on the same L-ring as r moves
to u (refer to Figure 4).

b. Robot r joins u in C ′. If in C ′ there are only two occupied ℓ-rings. The robot with
the largest view which does not create a symmetric configuration is elected to move.
Its destination is its adjacent empty node on an empty ℓ-ring. By contrast, if there
are more than two occupied ℓ-rings in C ′ then robots proceed as follows:
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If the axis of symmetry lies on the unique ℓmax in C ′ then, we are sure that there
are two ℓ-rings which are maximal in C and that are symmetric with respect to
the unique maximal ℓ-ring in C ′. Let r be the robot located on a maximal ℓ-ring
which is not on the axis of symmetry in C ′, that has the smallest view. Robot r
is the one to move; its destination is its adjacent empty node on its ℓ-ring.
If the axis of symmetry is perpendicular to the unique maximal ℓ-ring in C ′ then
let T be the set of occupied ℓ-rings in C without target-ℓ. If there is an ℓ-ring
in T which does not contain two 1.blocks separated by a single empty node on
each side, then using the rigidity of C, a single robot on such an ℓ-ring which is
the closest to the biggest 1.block is elected to move. Its destination is the closest
1.block. If there no such ℓ-ring in T (all ℓ-rings contains two 1.blocks separated
by a unique empty node), then using the rigidity of C, one robot being on an
ℓ-ring of T who has an empty node as a neighbor on its ℓ-ring is elected to move.
Its destination is its adjacent empty node on its current ℓ-ring.

Note that we have only discussed the cases in which the reached configuration is either
rigid or symmetric. This is because when r moves, it create neither a periodic nor an
edge-edge symmetric configuration. This is mainly due to the fact that in C ′, there is
a unique maximal ℓ-ring and C is assumed to be rigid.

We address now the case in which Unique(C) holds i.e., C contains a unique maximal
ℓ-ring, ℓmax. To reach a configuration C ′ ∈ Ctarget, robots need to move to build both
ℓsecondary and ℓtarget i.e., one of the two adjacent ℓ-rings to ℓmax needs to become empty
while the other one needs to host either a single occupied node, a 2.block of size 2 or a
1.block of size 3. Let ℓi and ℓk be the two adjacent ℓ-rings to ℓmax. Assume w.l.o.g. that
nbℓi

(C) ≤ nbℓk
(C). To ease the description of this phase, we distinguish five main cases

describing the possible states of ℓi and ℓk: (i) the case in which both ℓi and ℓk are empty
(C ∈ CEmpty). The idea, in this case, is to elect a single robot to join either ℓi or ℓk. (ii) the
case in which ℓi is empty and ℓk hosts more than one occupied node (C ∈ CSemi−Empty).
The idea is to make the robots on ℓk gather in a single node. Note that in both cases (i) and
(ii), a configuration C ′ ∈ Ctarget is created. (iii) the case in which ℓi hosts a single occupied
node while ℓk hosts at least two robots (C ∈ COriented). The unique occupied node on ℓi is
used as a landmark to make robots on ℓk move and create either a 2.block of size 2 or a
1.block of size 3 (C ∈ COriented−2). Once such a block is created (C ∈ COriented−1), it is easy
to free ℓi as the robots move to their adjacent node on ℓmax (since the configuration reached
C ′ ∈ Ctarget, the multiplicity created on ℓmax can be identified as it is adjacent to vtarget).
(iv) the case in which both ℓi and ℓk host a unique occupied node (C ∈ CSemi−Oriented). The
idea is to add a single robot to either ℓi or ℓk. Finally, (v) the case in which both ℓi and ℓk
host more than one robot (CUndefined). The idea is to make robots elect either ℓi or ℓk and
then make the robots on the elected ring gather on a single node. Both cases (iv) and (v)
aim at reaching a configuration in COriented. More formally:
1. Set CEmpty: C ∈ CEmpty if nbℓi

(C) = nbℓk
(C) = 0.

2. Set CSemi−Empty: C ∈ CSemi−Empty if w.l.o.g. nbℓi
(C) = 0 and nbℓk

(C) > 1.
3. Set COriented: C ∈ COriented if w.l.o.g. nbℓi

(C) = 1 and nbℓk
(C) > 1. Set COriented

includes:
a. COriented−1. In this case either (i) nbℓk

(C) = 3 and ℓk contains a 1.block of size 3
whose middle robot is on the same L-ring as the unique occupied node on ℓi. (ii)
nbℓk

(C) = 2 and ℓk contains a 2.block. Moreover, the unique empty node in the 2.block
is on the same L-ring as the unique robot on ℓi.
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Figure 5 Instance of configurations C when Unique(C) is true.

b. COriented−2. Contains all the configuration in Coriented that are not in COriented−1.
That is, COriented−2 = COriented − COriented−1.

4. Set CSemi−Oriented: C ∈ CSemi−Oriented if w.l.o.g. nbℓi
(C) = 1 and nbℓk

(C) = 1.
5. Set CUndefined: C ∈ CUndefined if nbℓi(C) > 1 and nbℓk

(C) > 1.
Figure 5 presents instances of configurations in which there is a unique maximal ℓ-ring.

The behavior of the robots in each set of configurations is as follows:
1. C ∈ CEmpty. Let ℓni and ℓnk

be the two neighboring ℓ-rings of ℓmax (one neighboring
ℓ-ring from each direction). In the case in which ℓni

= ℓnk
= ℓmax (C contains a single

occupied ℓ-ring) then, using the rigidity of C, one robot from C is selected to move to
its adjacent empty node outside its ℓ-ring (the scheduler chooses the direction to take).
Otherwise, let Rm be the set of robots which are the closest to either ℓi or ℓk. If |Rm| = 1
then, the unique robot in Rm, referred to by r, is the one allowed to move. Assume
w.l.o.g. that r is the closest to ℓi. The destination of r is its adjacent empty node outside
its current ℓ-ring on the shortest empty path toward ℓi. If r is the closest to both ℓi and
ℓk then the scheduler chooses the direction to take (it moves either toward ℓi or ℓk). In
the case where |Rm| > 1 (Rm contains more than one robot) then, by using the rigidity
of C, one robot r is selected. Its behavior is the same as r in the case where |Rm| = 1.

2. C ∈ CSemi−Empty. Assume w.l.o.g. nbℓk
(C) > 1 and nbℓi

(C) = 0. We consider two cases:
a. nbℓk

(C) > 3 or nbℓk
(C) = 2. Recall that C ̸∈ Ctarget . Let ↑ be the direction defined

from ℓmax to ℓk taking the shortest path and let ℓn be the ℓ-ring that is neighbor of
ℓi. Observe that ℓn = ℓk is possible (if only two ℓ-rings are occupied in C). Using the
rigidity of configuration C, one robot from ℓn is elected to move. Its destination is its
adjacent node outside ℓn and towards ℓi with respect to the direction ↑.

b. nbℓk
(C) = 3. Again, recall that C ̸∈ Ctarget . The aim is to make the three robots form

a single 1.block. To this end, if the configuration contains a single d.block of size 3
with d > 1 then the robot in the middle of the d.block moves to its adjacent node
on ℓk (the scheduler chooses the direction to take). By contrast, if the configuration
contains a single d.block of size 2 (d ≥ 1) then the robot not part of the d.block moves
towards its adjacent empty node towards the d.block taking the shortest empty path.

3. C ∈ COriented. Let ri be the single robot on ℓi.
a. C ∈ COriented−1. If nbmax(C) > 4 then the unique robot on ℓi moves to its adjacent

node on ℓmax . Otherwise, let u be the node on ℓmax adjacent to a robot on ℓi.
If nbmax(C) = 3 and the robots form a 1.block of size 3 whose middle robot is
adjacent to u then the unique robot on ℓi moves to its adjacent node on ℓmax .
Otherwise, robots on ℓmax execute Align(ℓmax , ℓi).
If nbmax(C) = 4 and u is empty, then the unique robot on ℓi moves to u. Otherwise
(u is occupied), then let r be the robot on u.
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If r has an adjacent empty node on ℓmax then r moves to one of its adjacent
nodes (the scheduler chooses the node to move to in case of symmetry).
If r does not have an adjacent empty node on ℓmax , then let r′ be the robot on
ℓmax which is adjacent to r and which does not have a neighboring robot on ℓmax
at distance ⌊ℓ/2⌋. Robot r′ moves to its adjacent empty node on ℓmax .

b. C ∈ COriented−2. If nbℓk
(C) = 2 or nbℓk

(C) = 3 then Align(ℓk, ℓi) is executed.
Otherwise, if nbℓk

(C) > 3 then, nbℓk
(C) − 2 robots gather on the node uk located

on ℓk and which is on the same L-ring as the unique occupied node on ℓi. For this
purpose, the robot on ℓk which is the closest to uk with the largest view is the one
allowed to move. Its destination is its adjacent node on ℓk toward uk.

4. C ∈ CSemi−Oriented. Let ℓni
and ℓnk

be the two neighboring ℓ-rings of ℓi and ℓk respect-
ively. First, if w.l.o.g. ℓi = ℓnk

(ℓk = ℓni
) then, C contains only 3 occupied ℓ-rings ℓi,

ℓmax and ℓj . Using the rigidity of C, one robot from either ℓni
or ℓnk

(not both) is
selected to move. Its destination is its adjacent empty node outside its current ℓ-ring in
the opposite direction of ℓmax . Next, if ℓi ̸= ℓnk

(ℓk ̸= ℓni
) then, using the rigidity of C,

a unique robot is selected to move from either ℓni or ℓnk
(not both). Its destination is its

adjacent empty node outside its current ℓ-ring toward ℓi (respectively ℓk) if the robot
was elected from ℓni (respectively ℓnk

). If ℓni = ℓnk
, the scheduler chooses the direction

to take.
5. C ∈ CUndefined. Depending on the number of robots on ℓi and ℓk, we consider two cases::

a. nbℓi
(C) < nbℓk

(C). The idea is to make robots on ℓi gather on ℓi. We define a
configuration, denoted Γ(C), built from C ignoring some ℓ-rings that will be used
to identify a single node on ℓi on which all robots on ℓi will gather. If there are at
least four occupied ℓ-rings in C then Γ(C) is the configuration built from C ignoring
both ℓi and ℓk. By contrast, if there are only three occupied ℓ-rings then Γ(C) is the
configuration built from C ignoring only ℓi. The following cases are possible:
i. Configuration Γ(C) is rigid. Using the rigidity of Γ(C), one node on ℓi, say u, is

elected as the gathering node. Robots on ℓi move in turn to the elected node.
ii. Configuration Γ(C) has exactly one axis of symmetry. The axis of symmetry of

Γ(C) either intersects with ℓi on a single node (edge-node symmetric), or on two
nodes (node-node symmetric) or only on edges (edge-edge symmetric):
- Γ(C) is node-edge symmetric: The node on ℓi that is on the axis of symmetry of
Γ(C) is the gathering node. Robots on ℓi move in turn to join it.
- Γ(C) is node-node symmetric: Let u1 and u2 be the two nodes on ℓi on which the
axis of symmetry passes through. If both nodes are occupied, then using the rigidity
of C, exactly one of the two nodes is elected. Assume w.l.o.g. that u1 is elected.
Robots on u1 move to their adjacent node. If both u1 and u2 are empty then let R
be the set of robots on ℓi that are at the smallest distance from either u1 or u2. If
|R| = 1 (Let r ∈ R and assume w.l.o.g. that r is the closest to u1) then, r moves
on ℓi toward u1 taking the shortest path. By contrast, if |R| > 1 then using the
rigidity of C, exactly one robot of R is elected to move. The elected robot moves
on ℓi toward the closest node among u1 and u2 taking the shortest path.
- Γ(C) is edge-edge symmetric: assume w.l.o.g. that Γ(C)’s axis of symmetry of
passes through ℓi on the two edges e1 = (u1, u2) and e1 = (u3, u4) with u1 and u3
being on the same side. Let U = {uj , j ∈ [1 − 4]}. We consider the following cases:

For all u ∈ U , u is occupied. Using the rigidity of C, a single node u ∈ U is
elected. Robots on u move to their adjacent node u′ ∈ U (refer to Figure 6, (A)).
Three nodes of U are occupied. Assume w.l.o.g. that u1 ∈ U is the one empty.
If there are robots on ℓi which are located on the same side as u1 and u3 with
respect to Γ(C)’s axis of symmetry then, the robots among these which are the
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Figure 6 Case in which Γ(C) is edge-edge symmetric.

closest to u3 move to their adjacent node on ℓi toward u3 taking the shortest
path (refer to Figure 6, (B)). By contrast, if there are no robots on ℓi which are
on the same side of u1 and u3 then, robots on u2 move to their adjacent node in
the opposite direction of u1 (refer to Figure 6, (C)).
Two nodes of U are occupied. First, assume w.l.o.g. that u1 and u2 are occupied
(the case in which the two nodes are neighbors). If all robots on ℓi are on the
same side of the axis of symmetry (assume w.l.o.g. that they are at the same
side as u2). Robots on u1 are the ones to move. Their destination is u2 (refer to
Figure 6, (D)). By contrast, if there are robots on both sides of Γ(C)’s axis of
symmetry then, let U ′ be the set of occupied nodes on ℓi which are the farthest
from the occupied node of U which is on the side (of the axis of symmetry). If
there are two such nodes (one at each side), as C is rigid, the scheduler elects
exactly one of these two nodes. Let us refer to the elected node by u. Robots on
u are the ones to move. Their destination is their adjacent node on ℓi towards
the occupied node of U being on their side (refer to Figure 6, (E)). By contrast, if
there is only one node in U ′ then, robots on the other side of the axis of symmetry
are the ones to move to start from the robots that are the closest to the occupied
node of U being on their side. Their destination is their adjacent ℓi toward the
occupied node of U on their side (refer to Figure 6, (F)). Finally, if there are no
robots on both sides of the axis of symmetry, then using the rigidity of C, one
occupied node of U is elected. Robots on the elected node are the ones to move.
Their destination is their adjacent occupied node in U .
Next, assume w.l.o.g. that u1 and u3 are occupied (the case in which the
two nodes of U are not neighbors but are at the same side of Γ(C)’s axis of
symmetry). Robots on a node of U with the largest view are the ones to move.
Their destination is their adjacent node in the opposite direction of a node of
U (refer to Figure 6, (H)). Finally, assume w.l.o.g. that u1 and u4 are occupied
(the case in which the two nodes of U are not neighbors and are in opposite sides
of Γ(C) axis of symmetry). Robots on a node of U with the largest view are
the ones to move. Their destination is their adjacent node on ℓi, in the opposite
direction of their adjacent node in U (refer to Figure 6, (G)).
There is only one node of U that is occupied. Assume w.l.o.g. that u1 is occupied.
If all robots on ℓi are on the same side as u1 with respect to Γ(C)’s axis of
symmetry then, the closest robot to u1 on ℓi are the ones to move. Its destination
is its adjacent node towards u1 taking the shortest path. By contrast, if all robots
on ℓi are in the opposite side of the axis of symmetry of u1 then robots on u1 are
the ones to move. Their destination is u2. Finally, if robots on ℓi are on both
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sides of the axis of symmetry then the closest robot to u1 being on the same side
of Γ(C)’s axis of symmetry as u1 are the ones to move. Their destination is their
adjacent node on ℓi towards u1 taking the shortest path.
All nodes of U are empty. Let d be the smallest distance between a node of
u ∈ U and a robot on the same side of Γ(C)’s axis of symmetry as u. Let R be
the set of robots at distance d from a node u ∈ U . If |R| = 1 then the robot in
R moves towards the closest node u ∈ U . By contrast, if |R| > 1 then, using
the rigidity of C, a unique robot in R is selected to move. Its destination is its
adjacent node on ℓi toward the closest node u ∈ U .

iii. Configuration Γ(C) has more than one axis of symmetry. Using the rigidity of C,
a single robot from Γ(C) is elected to move. Its destination is its adjacent empty
node on its current ℓ-ring. This reduces the number of axis of symmetries to either
1 or 0.

b. nbℓi(C) = nbℓk
(C). The strategy is similar to the one used in the case in which

nbℓi
(C) ̸= nbℓk

(C). That is, by using the state of configuration Γ(C), robots on either
ℓi or ℓk gather in a single node. The difference in this case is that the robots need to
elect either ℓi or ℓk. The detailed description of this case can be found in [17].

▶ Lemma 1. From any initial rigid configuration C0 ∈ Cp1 , a configuration C ′ ∈ Ctarget
which does not contain any robot with an outdated view, is eventually reached. Moreover,
the unique maximal ℓ-ring in C ′ hosts at most one multiplicity node. This node (if any) is
adjacent to vtarget.

4.2 Gathering Phase
This phase starts from a configuration C ∈ Ctarget in which a direction is defined in C (from
ℓtarget to ℓmax). The idea is to make all robots that are neither on ℓtarget nor ℓmax move
to join vtarget. Then, make some robots on ℓmax move to join vtarget while the other align
themselves with respect to vtarget to finally gather all on the node of ℓmax adjacent to vtarget.
To ease the description of our algorithm, we define the following set of configurations:
1. Set Csp which includes the following four sub-sets:

a. SubSet Csp−1: C ∈ Csp−1 if there are exactly two occupied ℓ-rings in C denoted ℓi
and ℓj respectively on which the following conditions hold: (1) ℓi and ℓj are adjacent.
(2) nbℓj

(C) < nbℓi
(C) (3) either :

nbℓi
(C) = 4 and ℓi contains two 1.blocks of size 2 being at distance 2 from each

other. Let u be the unique node between the two 1.blocks on ℓi.
nbℓi

(C) = 3 or 5 and ℓi contains a 1.block of size nbℓi
(C). Let u be the middle node

of the 1.block of size nbℓi
(C).

(4) Either nbℓj
(C) = 3 and ℓj contains a 1.block of size 3 whose middle node is adjacent

to u or nbℓj
(C) = 2 and ℓj contains either a 2.block of size 2 whose middle node is

adjacent to u or a 1.block of size 2 having one extremity adjacent to u (refer to Figure 7
for some examples).

b. SubSet Csp−2: C ∈ Csp−2 if C ∈ Ctarget and nbℓtarget (C) = 1. In addition either one
of the following conditions are verified: (1) nbℓmax (C) = 4 and on ℓmax there are two
1.blocks of size 2 being at distance 2 from each other. Let u be the unique node
between the two 1.blocks then u is adjacent to vtarget . (2) nbℓmax = 5 and on ℓmax
there is a 1.block of size 5 whose middle robot is adjacent to vtarget . (3) nbℓmax (C) = 4
and on ℓmax there is a 1.block of size 3 having a unique occupied node at distance 2.
Let u be the unique empty node between the 1.block of size 3 and the 1.block of size 1.
Then u is adjacent to vtarget (refer to Figure 7).
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Figure 7 Set Csp.

c. SubSet Csp−3: C ∈ Csp−3 if C ∈ Ctarget , Empty(C) is true, nbℓtarget (C) = 1 and one of
the two following conditions holds: (1) nbℓmax (C) = 3 and ℓmax contains an 1.block of
size 3 whose middle robot is adjacent to vtarget . (2) nbℓmax (C) = 2 and the two robots
form a 2.block on ℓmax . Let u be the unique empty node between the two robots on
ℓmax , then u is adjacent to vtarget (refer to Figure 7).

d. SubSet Csp−4: C ∈ Csp−4 if there is a unique ℓ-ring that is occupied and on this ℓ-ring
there are either two or three occupied nodes that form a 1.block (refer to Figure 7).

2. Set Cpr: C ∈ Cpr if C ∈ Ctarget and Partial(C) is true. That is, ∃ i ∈ {0, . . . , L− 1} such
that ℓi ̸= ℓmax and ℓi ̸= ℓtarget and nbℓi(C) > 0. Note that we are sure that C ̸∈ Csp.

3. Set Cls: C ∈ Cls if C ∈ Ctarget and C ̸∈ Csp and Empty(C). In other words, there are
only two ℓ-rings that are occupied: ℓmax and ℓtarget .

We now present the behavior of robots during the gathering phase. If the current
configuration C ∈ Ctarget , then we define ↑ as the direction from ℓtarget to ℓmax taking the
shortest path. Observe that ↑ can be computed by all robots and ↑ is unique (recall that
ℓmax is unique, and ∀ C ∈ Ctarget , nbℓtarget (C) ̸= nbℓsecondary (C)). Using ↑, we define a total
order on the ℓ-rings of the torus such that ℓi ≤ ℓj if ℓi is not further from ℓtarget than ℓj with
respect to ↑. Note that Cp2 = Cpr ∪ Cls ∪ Csp. Let C be the current configuration, robots
behavior for each defined set is as follows:
1. C ∈ Cpr. Let us refer by ℓi to the ℓ-ring that is adjacent to ℓtarget such that ℓi ̸= ℓmax .

Depending on the number of robots on ℓi, two cases are possible:
a. nbℓi

(C) > 0. Let Rm be the set of robots on ℓi that are the closest to vtarget , if
i. there is an occupied node ui on ℓi that is adjacent to vtarget , then robots on ui are

the ones to move. Their destination is vtarget .
ii. there is no robot on ℓi that is adjacent to vtarget and nbℓi(C) < ℓ− 1, then robots

in Rm are the ones to move. Their destination is their adjacent empty node on ℓi
on the empty path toward vtarget .

iii. there is no robot on ℓi adjacent to vtarget and nbℓi
(C) = ℓ− 1, then let Rm′ be the

set of robots that share a hole with ui, where ui is the node on ℓi that is adjacent to
vtarget . Robots in Rm′ are allowed to move only if they are not part of a multiplicity
location. Their destination is the node towards ui on the empty path.

b. nbℓi(C) = 0. Let ℓk be the closest neighboring ℓ-ring to ℓtarget with respect to ↑. Let
Rm be the set of robots on ℓk that are closest to vtarget . Robots on Rm are the ones
to move, their destination is the node outside ℓk and toward ℓtarget with respect to ↑.

2. C ∈ Cls. Robots aims at reaching a configuration C ′ ∈ Csp. If nbℓmax (C) ≤ 5, robots on
ℓmax execute Align(ℓmax , ℓtarget). Otherwise, robots behave as follows: Let u1, u2, u3, u4
and u5 be a sequence of five consecutive nodes on ℓmax such that u3 is adjacent to vtarget .
If u3 is occupied and has exactly one adjacent occupied node on ℓmax (assume w.l.o.g.
that this node is u2) then the robot on u2 is the one to move. Its destination is u3. By
contrast, if u3 has either no adjacent occupied nodes on ℓmax , or two adjacent occupied
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nodes on ℓmax , then robots on u3 move to vtarget . Finally, if u3 is empty then let R be
the set of robots that are closest to u3 on ℓmax . If |R| = 2 then both robots move to their
adjacent node on ℓmax toward u3. By contrast, if |R| = 1, then first assume that the
distance between the robot in R and u3 is d. If there is a robot rm on ℓmax that shares a
hole with u3 and at distance d+ 1 from u3, then rm moves towards u3 taking the shortest
path. If no such robot exists, the robot in R moves toward u3 taking the shortest path.

3. C ∈ Csp. We distinguish:
a. C ∈ Csp−1. If C ∈ Ctarget , then the robots on ℓtarget that are at the extremities of the

1.block or the 2.block move to their adjacent occupied node on ℓmax . By contrast, if
C ̸∈ Ctarget , then the robot not on ℓmax that has two adjacent occupied nodes moves
to its adjacent node on ℓmax .

b. C ∈ Csp−2. If there is a 1.block of size 3 on ℓmax then the robots that are in the
middle of the 1.block of size 3 move to their adjacent occupied node that has one robot
at distance 2. If ℓmax contains a 1.block of size 5 then the robots on ℓmax that are
adjacent of the extremities of the 1.block move on ℓmax in the opposite direction of
the extremities of the 1.block. Finally, if ℓmax contains two 1.blocks of size 2 then the
robots that share a hole of size 1 move toward each other.

c. C ∈ Csp−3. Robots on vtarget move to their adjacent node on ℓmax (note that vtarget
can be occupied by either a single robot or a multiplicity).

d. C ∈ Csp−4. If C contains a 1.block of size 3 then the robots at the extremities of the
1.block move to their adjacent occupied node. By contrast, if C contains a 1.block of
size 2 then the robot that is not part of a multiplicity moves to its adjacent occupied
node (it will be shown that one of the occupied nodes hosts only one robot).

We now state our main positive result.

▶ Theorem 4. Assuming an (ℓ, L)-torus in which L < ℓ and L > 4 and starting from an
arbitrary rigid configuration, Protocol 1 solves the gathering problem for any K ≥ 3.

5 Concluding Remarks

We presented the first algorithm for gathering asynchronous oblivious mobile robots in a fully
asynchronous model in a torus-shaped space graph. Our work raises several open questions:
1. What is the exact set of initial configurations that are gatherable? Our work considers

initial rigid configurations only, and we know that periodic, edge-symmetric, and invariant
through rotation (with no center robot) configurations make the problem impossible to
solve. As in the case of the ring, special classes of non-rigid configuration may exist that
are still gatherable.

2. The case of a square torus is intriguing: the robots would loose the ability to distinguish
between the big side and the small side of the torus, so additional constraints are likely
to hold if gathering remains feasible.

3. Following recent work by Kamei et al. [16] on the ring, it would be interesting to consider
myopic (i.e. robot whose visibility radius is limited) yet luminous (i.e. robots that
maintain a constant size state that can be communicated to other robots in the visibility
range) robots in a torus.
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Abstract
Arbitrary Pattern Formation is a fundamental problem in autonomous mobile robot systems.
The problem asks to design a distributed algorithm that moves a team of autonomous, anonymous
and identical mobile robots to form any arbitrary pattern F given as input. In this paper, we study
the problem for robots whose movements can be inaccurate. Our movement model assumes errors
in both direction and extent of the intended movement. Forming the given pattern exactly is not
possible in this setting. So we require that the robots must form a configuration which is close to the
given pattern F . We call this the Approximate Arbitrary Pattern Formation problem. With
no agreement in coordinate system, the problem is unsolvable, even by fully synchronous robots, if
the initial configuration 1) has rotational symmetry and there is no robot at the center of rotation
or 2) has reflectional symmetry and there is no robot on the reflection axis. From all other initial
configurations, we solve the problem by 1) oblivious, silent and semi-synchronous robots and 2)
oblivious, asynchronous robots that can communicate using externally visible lights.
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1 Introduction

A robot swarm is a distributed system of autonomous mobile robots that collaboratively
execute some complex tasks. Distributed coordination of robot swarms has attracted
considerable research interest. Early investigations of these problems were experimental in
nature with the main emphasis being on designing good heuristics. However, the last two
decades have seen a series of theoretical studies on the computability and complexity issues
related to distributed computing by robot swarms. These studies are aimed at providing
provably correct algorithmic solutions to fundamental coordination problems. The robots
are assumed to be anonymous (they have no unique identifiers that they can use in a
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computation), homogeneous (they execute the same distributed algorithm) and identical
(they are indistinguishable by their appearance). The robots do not have access to any global
coordinate system. They have either no memory or very little memory available to remember
past observations and calculations. Also, they either have no means of direct communication
or have some very weak communication mechanism (e.g., an externally visible light that
can assume a small number of predefined colors). The model assumes robots with such
weak features because the theoretical studies usually intend to find the minimum capabilities
necessary for the robots to solve a given problem. The objective of this approach is to obtain a
clear picture of the relationship between different features and capabilities of the robots (such
as memory, communication, sensing, synchronization, agreement among local coordinate
systems etc.) and their exact role in solvability of fundamental problems. Adopting such
restrictive model also makes sense from a practical perspective since the individual units
of robot swarms are low-cost generic robots with limited capabilities. Although certain
assumptions, such as obliviousness (having no memory of past observations and calculations),
may seem to be overly restrictive even for such weak robots, there are specific motivations for
these assumptions. For example, the assumption of oblivious robots ensures self-stabilization.
This is because any algorithm that works correctly for oblivious robots is inherently self-
stabilizing as it tolerates errors that alter the local states of the robots. While the robots
are assumed to be very weak with respect to memory, communication etc., certain aspects
of the model are overly strong. In particular, the assumed mobility features of the robots
are very strong. Two standard models regarding the movement of the robots are Rigid and
Non-Rigid. In Rigid, if a robot x wants to go to any point y, then it can move to exactly
that point in one step. This means that the robots are assumed to be able to execute error-free
movements in any direction and by any amount. Certain studies also permit the robots to
move along curved trajectories. The algorithms in this model rely on the accurate execution of
the movements and are not robust to movement errors that real life robots are susceptible to.
Furthermore, the error-free movements of the robots have surprising theoretical consequences
as shown in the remarkable results obtained in [11]. A “positional encoding” technique was
developed in [11] that allows a robot, that has very limited or no memory to store data,
to implicitly store unbounded amount of information by encoding the data in the binary
representation of its distance from another robot or some other object, e.g., the walls of
the room inside which it is deployed. Exact movements allow the robots to preserve and
update the data. This gives the robots remarkable computational power that allows them to
solve complex problems which appear to be unsolvable by robots with limited or no memory,
e.g., constructing a map of a complex art gallery by an oblivious robot. Obviously these
techniques are impossible to implement in practice. Also, for problems that we expect to
be unsolvable by real life robots with certain restrictions in memory, communication etc.,
it may become difficult or impossible to theoretically establish a hardness or impossibility
result due to the strong model. The Non-Rigid model assumes that a robot may stop before
reaching its intended destination. However, ∃ a constant δ > 0 such that if the destination
is at most δ apart, the robot will reach it; otherwise, it will move towards the destination
by at least δ. Notice that in the Non-Rigid model, 1) the movement is still error-free if
the destination is close enough, i.e., within δ, and 2) there is no error whatsoever in the
direction of the movement even if the destination is far away. In [1], it was shown that these
two properties allow robots to implement positional encoding even in the Non-Rigid model.
This motivates us to consider a new movement model allowing inaccurate movements.

We consider a movement model that assumes errors in both direction and extent of the
intended movement. Also, the errors can occur no matter what the extent of the attempted
movement is. In this model, we study the Arbitrary Pattern Formation problem.
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Arbitrary Pattern Formation is a fundamental robot coordination problem that has
been extensively studied in the literature [12, 14, 9, 8, 6, 13, 5, 10, 15, 2, 4]. The objective
of the problem is to design a distributed algorithm that allows the robots to form any
pattern F given as input. This problem is well-studied in the literature in the Rigid and
Non-Rigid model. However, the techniques used in these algorithms are not readily portable
in our setting. For example, in most of these algorithms, the minimum enclosing circle
of the configuration plays an important role. The center of the minimum enclosing circle
is set as the origin of the coordinate system with respect to which the pattern is to be
formed. So the minimum enclosing circle is kept invariant throughout the algorithm. The
robots inside the minimum enclosing circle move to form the part of the pattern inside
the circle, without disturbing it. For the pattern points on the minimum enclosing circle,
robots from the inside may have to move on to the circle. Also, the robots on the minimum
enclosing circle, in order to reposition themselves in accordance with the pattern to be
formed, will move along the circumference so that the minimum enclosing circle does not
change. Notice that while moving along the circle, an error prone robot might skid off the
circle. Also, when a robot from the inside attempts to move exactly on to the circle, it may
move out of the circle due to the error in movement. In both cases, the minimum enclosing
circle will change and the progress made by the algorithm will be lost. In fact, we face
difficulty at a more fundamental level: exactly forming an arbitrary pattern is impossible by
robots with inaccurate movements. Therefore, we consider a relaxed version of the problem
called Approximate Arbitrary Pattern Formation where the robots are required
to form an approximation of the input pattern F . We show that with no agreement in
coordinate system, the problem is unsolvable, even by fully synchronous robots, if the initial
configuration 1) has rotational symmetry and there is no robot at the center of rotation, or 2)
has reflectional symmetry and there is no robot on the reflection axis. From all other initial
configurations, we solve the problem in OBLOT + SSYN C (the robots are oblivious, silent
and semi-synchronous) and FCOM + ASYN C (the robots are oblivious, asynchronous and
can communicate using externally visible lights).

Movement error was previously considered in [7], but in the context of the Convergence
problem which requires the robots to converge towards a single point. The error model
in [7] also considers errors in both direction and extent of the intended movement. However,
there is some difference between the error model of [7] and the one introduced in this paper.
In particular, the maximum possible error in direction is independent of the extent of the
intended movement in [7]. In our model, the maximum possible error in both direction
and extent, depend upon the extent of the intended movement. We believe that this is a
reasonable assumption as the error is expected to be less if the destination of the intended
movement is not far away.

2 Robot Model

A set of n mobile computational entities, called robots, are initially positioned at distinct
points in the plane. The robots are anonymous, identical, autonomous and homogeneous.
The robots are modeled as dimensionless points in the plane. They do not have access to
any global coordinate system. Each robot has its own local coordinate system centered at its
current position. There is no consistency among the local coordinate systems of the robots
except for a common unit of distance. We call this the standard unit of distance. Based on
the memory and communication capabilities, we consider two standard models: OBLOT
and FCOM. In OBLOT , the robots are silent (they have no means of communication) and
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oblivious (they have no memory of past observations and computations). In FCOM, each
robot is equipped with a light which can assume a constant number of colors and is only
visible to other robots. The lights serve as a weak communication mechanism. The robots,
when active, operate according to the so-called Look-Compute-Move cycles. In each cycle,
a previously idle or inactive robot wakes up and executes the following steps. In the Look
phase, the robot takes the snapshot of the positions (and their lights in case of FCOM) of
the robots. Based on the perceived configuration, the robot performs computations according
to a deterministic algorithm to decide a destination point (and a color in case of FCOM).
Based on the outcome of the algorithm, the robot (sets its light to the computed color in case
of FCOM, and ) either remains stationary or attempts to move to the computed destination.
Based on the activation and timing of the robots, there are three types of schedulers. In
FSYN C or fully synchronous, time can be logically divided into global rounds. In each
round, all the robots are activated and they perform their actions at the same time. SSYN C
or semi-synchronous coincides with FSYN C, with the only difference that not all robots are
necessarily activated in each round. The most general model is ASYN C or asynchronous
where there are no synchronicity assumptions.

We now describe our movement model. There are known constants 0 < λ < 1, 0 < ∆ < 1,
such that if a robot at x attempts to move to y, then it will reach a point z where d(z, y) <

µ(x, y)d(x, y) where µ(x, y) = min{∆, λd(x, y)}. Here d(x, y) denotes (the numerical value
of) the distance between the points x and y measured in the standard unit of distance. The
movement of the robot will be along the straight line joining x and z. We denote by Z(x, y)
the set of all points where a robot may reach if it attempts to move from x to y. So Z(x, y)
is the open disk {z ∈ R2 | d(z, y) < µ(x, y)d(x, y)} (see Fig. 1a). We denote by errord(x, y)
and errora(x, y) the supremums of the possible distance errors (i.e., the deviation from the
intended amount of distance to be traveled) and angle errors (i.e., the angular deviation from
the intended trajectory) respectively when a robot intends to travel from x to y. Notice that
errord(x, y) is equal to the radius of Z(x, y) and errora(x, y) is equal to the angle between
line(x, y) and a tangent on Z(x, y) passing through x. Hence, errord(x, y) = µ(x, y)d(x, y)
and errora(x, y) = sin−1( µ(x,y)d(x,y)

d(x,y) ) = sin−1(µ(x, y)). Also notice that 1) errord(x, y)
increases with d(x, y), and 2) errora(x, y) increases with d(x, y) only up to a certain value,
i.e., sin−1(∆) and then remains constant (see Fig. 1b). So, errora(x, y) ≤ sin−1(∆), for any
x, y.

x

y

z

Z(x, y)

(a)

x y3y2y1

(b)

Figure 1 a) If a robot attempts to move from x to y, then it will reach at some point z in the shaded
region Z(x, y). b) If a robot attempts to move from x to yi, then it will reach at some point in Z(x, yi)
which is the shaded region around yi. Observe that errord(x, y1) < errord(x, y2) < errord(x, y3),
but errora(x, y1) < errora(x, y2) = errora(x, y3).
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3 Definitions and Notations

We denote the configuration of robots by R = {r1, r2, . . . , rn} where each ri denotes a
robot as well as the point in the plane where it is situated. The input pattern given
to the robots will be denoted by F = {f1, f2, . . . fn} where each fi is an element from
R2. Given two points x and y in the Euclidean plane, let d(x, y) denote the distance
between the points x and y measured in the standard unit of distance. We denote by
line(x, y) the straight line passing through x and y. By seg(x, y) (seg(x, y)) we denote
the line segment joining x and y excluding (resp. including) the end points. If ℓ1 and
ℓ2 are two parallel lines, then S(ℓ1, ℓ2) denotes the open region between these two lines.
For any point c in the Euclidean plane and a length l, C(c, l) = {z ∈ R2 | d(c, z) = l},
B(c, l) = {z ∈ R2 | d(c, z) < l} and B(c, l) = {z ∈ R2 | d(c, z) ≤ l} = B(c, l) ∪ C(c, l). If C is
a circle then encl(C) and encl(C) respectively denote the open and closed region enclosed by
C. Also, ext(C) = R2 \ encl(C) and ext(C) = R2 \ encl(C). Hence, encl(C) = encl(C) ∪ C

and ext(C) = ext(C) ∪ C. Let x, y be two points in the plane and d(x, y) > l. Suppose
that the tangents from x to C(y, l) touches C(y, l) at a and b. The Cone(x, B(y, l)) is
the open region enclosed by B(y, l), seg(x, a) and seg(x, b), as shown in Fig. 2. Also,
∠Cone(x, B(y, l)) = ∠axb. We denote by F(x, y) the family of circles passing through x and
y. The center of all the circles lie on the perpendicular bisector of seg(x, y). If C1, C2 ∈ F(x, y)
and c1, c2 be their centers respectively, then (C1, C2)F(x,y) and [C1, C2]F(x,y) will denote
respectively the family of circles {C ∈ F(x, y) | c ∈ seg(c1, c2), where c is the center of C}
and {C ∈ F(x, y) | c ∈ seg(c1, c2), where c is the center of C}.

x

a

b

y

Figure 2 Cone(x, B(y, l)) is defined as the shaded open region enclosed by B(y, l), seg(x, a) and
seg(x, b).

For a set P of points in the plane, C(P ) and c(P ) will respectively denote the minimum
enclosing circle of P (i.e., the smallest circle C such that P ⊂ encl(C)) and its center. The
smallest enclosing circle C(P ) is unique and can be computed in linear time. For P , with
2 ≤ |P | ≤ 3, CC(P ) denotes the circumcircle of P defined as the following. If P = {p1, p2},
CC(P ) is the circle having seg(p1, p2) as the diameter and if P = {p1, p2, p3} and the three
points are not collinear, CC(P ) is the unique circle passing through p1, p2 and p3.

▶ Property 1. If P ′ ⊆ P such that 1) P ′ consists of two points or P ′ consists of three
points that form an acute angled triangle, and 2) P ⊂ encl(CC(P ′)), then C(P ) = CC(P ′).
Conversely, for any P , ∃P ′ ⊆ P so that 1) P ′ consists of two points or P ′ consists of three
points that form an acute angled triangle and 2) C(P ) = CC(P ′).

From Property 1 it follows that C(P ) passes either through two points of P that are on
the same diameter (antipodal points), or through at least three points so that some three of
them form an acute angled or right angled triangle. A point p ∈ P is said to be critical if
C(P ) ̸= C(P \ {p}). Note that p ∈ P is critical only if p ∈ C(P ).

▶ Property 2. If |P ∩ C(P )| ≥ 4 then there exists at least one point from P ∩ C(P ) which is
not critical.
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10:6 Pattern Formation by Robots with Inaccurate Movements

Consider all concentric circles that are centered at c(P ) and passes through at least one
point of P . Let Ci

↓(P ) (Ci
↑(P )) denote the ith (i ≥ 1) of these circles so that Ci+1

↓ (P ) ⊂
encl(Ci

↓(P )) (resp. Ci
↑(P ) ⊂ encl(Ci+1

↑ (P ))). We shall denote c(P ) by C0
↑(P ). So we have

C1
↓(P ) = C(P ) and if there is a point at c(P ), then C1

↑(P ) = c(P ) = C0
↑(P ). We say that a

configuration of robots R is symmetry safe if one of the following three conditions hold (see
Fig. 3).
1. i) there is some non-critical robot on C(R), hence |R ∩ C(R)| ≥ 3, ii) there is no

robot at c(R), iii) |R ∩ C1
↑(R)| = 1 and |R ∩ C2

↑(R)| = 1, iv) if R ∩ C1
↑(R) = {r1} and

R ∩ C2
↑(R) = {r2}, then r1, r2, c(R) are not collinear.

2. i) all robots on C(R) are critical and R ∩ C(R) = {r1, r2, r3}, ii) ∆r1r2r3 is scalene, i.e.,
all three sides have different lengths.

3. i) all robots on C(R) are critical and R ∩ C(R) = {r1, r2}, ii) |R ∩ C1
↑(R)| = 1, iii) if

R ∩ C1
↑(R) = {r}, r /∈ line(r1, r2) ∪ ℓ, where ℓ is the line passing through c(R) and

perpendicular to line(r1, r2).

r1
r2

(a)

r1

r3

r2

(b)

r

r1 r2

(c)

Figure 3 Illustrations of symmetry safe configurations.

We shall say that a configuration R of robots has an unbreakable symmetry if one of the
following is true: i) R has rotational symmetry with no robot at c(R), ii) R has reflectional
symmetry with respect to a line ℓ with no robot on ℓ.

4 Approximate Arbitrary Pattern Formation

The Arbitrary Pattern Formation problem in its standard form is the following. Each
robot of a team of n robots is given a pattern F as input which is a list of n distinct
elements from R2. The given input F is exactly same for each robot. The problem asks
for a distributed algorithm that guides the robots to a configuration that is similar to F

with respect to translation, reflection, rotation and uniform scaling. We refer to this version
of the problem as the Exact Arbitrary Pattern Formation problem, highlighting
the fact that the configuration of the robots is required to be exactly similar to the input
pattern. However, it is not difficult to see that Exact Arbitrary Pattern Formation is
unsolvable in our model where the robot movements are inaccurate.

▶ Theorem 1. Exact Arbitrary Pattern Formation is unsolvable by robots with
inaccurate movements.

Therefore, we introduce a relaxed version of the problem called the Approximate
Arbitrary Pattern Formation. Intuitively, we want the robots to form a pattern that
is close to the given pattern, but may not be exactly similar to it. Formally, the robots
are given as input a pattern F and a number 0 < ϵ < 1. The number ϵ is small enough so
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that the distance between no two pattern points is less than 2ϵD where D is the diameter
of C(F ). Given the input (F, ϵ), the problem requires the robots to a form a configuration
R = {r1, . . . , rn} such that there exists an embedding (subject to translation, reflection,
rotation and uniform scaling) of the pattern F on the plane, say P = {p1, . . . , pn}, such that
d(pi, ri) ≤ ϵD for all i = 1, . . . , n, where D is the diameter of C(P ). In this case, we say
that the configuration R is ϵ-close to the pattern F . Recall that the number ϵ is such that
the disks B(fi, ϵD) are disjoint. Since P is similar to F , disks B(pi, ϵD) are also disjoint.
The problem requires that exactly one robot is placed inside each disk. Furthermore, the
movements should be collisionless.

It is well known that Arbitrary Pattern Formation is unsolvable if the initial
configuration has an unbreakable symmetry. It can be shown that this also holds for
Approximate Arbitrary Pattern Formation (See Appendix A for proof).

▶ Theorem 2. Approximate Arbitrary Pattern Formation is deterministically un-
solvable, even with Rigid movements, if the initial configuration has unbreakable symmetries.

5 The Algorithm for Semi-Synchronous Robots

In this section, we present an algorithm that solves Approximate Arbitrary Pattern
Formation in OBLOT + SSYN C from any initial configuration that does not have any
unbreakable symmetries. The algorithm works in three phases which we shall describe in the
next three subsections. For each phase, we shall first present the idea behind the approach
and then give a brief description of the algorithm. More detailed description along with
formal proofs can be found in the full version [3] of the paper.

5.1 Phase 1
Motive and Overview

The goal of Phase 1 is to create a configuration which is asymmetric and in which all
robots on its minimum enclosing circle are critical. Phase 1 consists of three subphases,
namely Subphase 1.1, Subphase 1.2 and Subphase 1.3. If the configuration is symmetric,
our first step would be to get rid of the symmetry. Since the initial configuration cannot
have any unbreakable symmetries, it will be possible to choose some unique robot from the
configuration. We can remove the symmetry by appropriately moving this robot. This is
done in Subphase 1.1. Once we have an asymmetric configuration, the next objective is
to bring inside some non-critical robots from the minimum enclosing circle so that all the
remaining robots on the minimum enclosing circle are critical. However, we have to make
sure that these moves do not create new symmetries in the configuration. For this, we first
make the configuration symmetry safe, i.e., have unique robots r1 and r2 respectively closest
and second closest from the center of the minimum enclosing circle such that r1 and r2 are
not on the same diameter. This is done in Subphase 1.2. After this, in Subphase 1.3, we
start bringing inside the robots from the circumference. The movements of the robots should
be such that r1 and r2 remain the unique closest and second closest robot from the center.
This ensures that these movements do not create any symmetries. The two properties that
we achieved in Phase 1, namely, having an asymmetric configuration and not having any
non-critical robot on the minimum enclosing circle, will play crucial role in our approach
and hence, will be preserved during the rest of the algorithm. This will be the case even if
the target pattern F is symmetric or has non-critical robots on its minimum enclosing circle.
This is not a problem as we are not required to exactly form the pattern F . Any pattern F

can be approximated by a pattern that is asymmetric and has no non-critical points on its
minimum enclosing circle.
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10:8 Pattern Formation by Robots with Inaccurate Movements

Brief Description of the Algorithm

We shall now briefly describe the algorithm. The algorithm is in Phase 1 if ¬u ∧ (¬a ∨ ¬c)
holds, where a = “R is an asymmetric configuration”, u = “R has an unbreakable symmetry”,
c = “all robots on C(R) are critical”. The objective is to create a configuration with a ∧ c.
The algorithm is in Subphase 1.1 if ¬u ∧ ¬a holds, in Subphase 1.2 if a ∧ ¬s ∧ ¬c holds
(s = “R is symmetry safe”) and in Subphase 1.3 if s ∧ ¬c holds.

First we describe Subphase 1.1. We have ¬u∧¬a. Our objective is to create an asymmetric
configuration, i.e., have a. As mentioned earlier, we will remove the symmetry by moving
exactly one robot of the configuration, while all other robots will remain stationary. The
fact that we have ¬u, will allow us to select one such robot from the configuration. To
describe the algorithm, we have to consider the following four cases. Case 1 consists of the
configurations in Subphase 1.1 where there is a robot at c(R). Now consider the cases where
there is no robot at c(R). Notice that in this case, R cannot have a rotational symmetry
because ¬u holds. So R has a reflectional symmetry with respect to a unique line ℓ as
reflectional symmetry with respect to two different lines imply rotational symmetry. Since
¬u holds, there are robots on ℓ. If there is a non-critical robot on ℓ then we call it Case 2.
For the remaining cases where there is no non-critical robot on ℓ, we call it Case 3 if there
are more than 2 robots on C(R) and Case 4 if there are exactly 2 robots on C(R).

In Case 1, we have a robot r at x = c(R). In this case, r will move away from the center
and all other robots will remain static. The destination y chosen by the robot r should
satisfy the following conditions: (1) Z(x, y) ⊂ encl(C2

↑(R)) \ {c(R)}, (2) Z(x, y) ∩ ℓ = ∅ for
any reflection axis ℓ of R \ {r}. It is easy to see that such an y exists. Furthermore, r can
easily compute such an y.

In Case 2, there is no robot at c(R), R has reflectional symmetry with respect to a
unique line ℓ and there is at least one non-critical robot on ℓ. If there are more than one
non-critical robots on ℓ, we can single out one of them using the concept of view of a robot
(see Appendix A for details). In particular, all robots on ℓ will have distinct views (because
otherwise R will have rotational symmetry) and hence we have a unique non-critical robot
r with minimum view. Only r will move in this case. Suppose that r is at point x. The
destination y chosen by r should satisfy the following conditions: (1) if x ∈ Ci

↑(R), then
Cone(x, Z(x, y)) ⊂ encl(Ci

↑(R)) \ encl(Ci−1
↑ (R)), (2) Z(x, y) ∩ ℓ′ = ∅ for any reflection axis

ℓ′ of R \ {r}. Such points clearly exist and r can easily compute one.
In Case 3, we have no robot at c(R), R has reflectional symmetry with respect to a

unique line ℓ, there is no non-critical robot on ℓ and C(R) has at least 3 robots on it. In
this case, it can be shown that there is exactly one robot on ℓ and it is on C(R). Call
this robot r. Let x denote its position. Let r1, r2 be the two robots (specular with respect
to ℓ) on C(R) such that ∠rc(R)r1 = ∠rc(R)r2 = max{∠rc(R)r′′ | r′′ ∈ R ∩ C(R)}. It
can be shown that π

2 < ∠rc(R)r1 = ∠rc(R)r2 < π. Only r will move in this case and
the rest will remain static. Here the robot will move outside of the current minimum
enclosing circle. The chosen destination y should satisfy the following conditions: (1)
Z(x, y) ∩ ℓ = ∅, (2) Cone(x, Z(x, y)) ⊂ ext(C(R)) ∩ encl(C ′) ∩ H where C ′ is the largest
circle from {C ∈ F(r1, r2) | R ⊂ encl(C)} and H is the open half-plane delimited by
line(r1, r2) that contains x, (3) Z(x, y) ∩ Ci = ∅, where Ci = C(ri, d(r1, r2)), i = 1, 2, (4)
Z(x, y) ⊂ S(L1, L2), where Li is the line parallel to ℓ and passing through ri, i = 1, 2. Again,
it is staightforward to see that such an y should exist and r can easily compute one.

In Case 4, we have no robot at c(R), R has reflectional symmetry with respect to a
unique line ℓ, there is no non-critical robot on ℓ and C(R) has exactly 2 robots on it. In
this case, it can be shown that there is no robot on ℓ ∩ encl(C(R)) and there are two
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antipodal robots on ℓ, say r and r′. Also, the views of r and r′ must be different. So
let r be the robot with minimum view. Only r will move in this case. Let ℓ′ be the line
perpendicular to ℓ and passing through r. For each r′′ ∈ R \ {r, r′}, consider the line passing
through r′′ and perpendicular to seg(r′′, r′). Consider the points of intersection of these
lines with ℓ′. Let P1, P2 (specular with respect to ℓ) be the two of these points that are
closest to ℓ. Let L1, L2 be the lines parallel to ℓ and passing through P1, P2 respectively.
Assuming that r is at point x, the destination y chosen by r should satisfy the following
conditions: (1) Cone(x, Z(x, y)) ⊂ ext(C(R)), (2) Z(x, y) ∩ ℓ = ∅, (3) Z(x, y) ⊂ S(L1, L2),
(4) Z(x, y) ∩ C(c, d(c, r′)) = ∅, where c = c(R \ {r, r′}).

It can be shown that the movements described for Subphase 1.1 will lead to an asymmetric
configuration. The algorithm will be in Subphase 1.2 if a∧¬s∧¬c holds. Then our goal would
be to make the configuration symmetry safe. This can be easily done. When s ∧ ¬c holds,
we are in Subphase 1.3 . Then our objective would be to have a ∧ c. As the configuration is
asymmetric (as s =⇒ a), there is a robot with minimum view among all the non-critical
robots lying on C(R). This robot will move inside. Continuing in this manner, non-critical
robots on C(R) will sequentially move inside until we obtain a ∧ c.

5.2 Phase 2

Motive and Overview

Phase 1 was a preprocessing step where a configuration was prepared in which there is no
symmetry and all robots on the minimum enclosing circle are critical. Actual formation of
the pattern will be done in two steps, in Phase 2 and Phase 3. In Phase 2, the robots on the
minimum enclosing circle will reposition themselves according to the target pattern and then
in Phase 3, the robots inside the minimum enclosing circle will move to complete the pattern.
The standard approach to solve the Arbitrary Pattern Formation problem, however, is
exactly the opposite. Usually, the part of the pattern inside the minimum enclosing circle
is first formed and then the pattern points on the minimum enclosing circle are occupied
by robots. In this approach, the minimum enclosing circle is kept invariant throughout the
algorithm. Keeping the minimum enclosing circle fixed is important because it helps to fix
the coordinate system with respect to which the pattern is formed. During the second step,
a robot on the minimum enclosing circle may have to move to another point on the circle.
In order to keep the minimum enclosing circle unchanged, it has to move exactly along the
circumference. However, it is not possible to execute such movement in our model. An error
in movement in this step will change the minimum enclosing circle and the progress made
by the algorithm will be lost. Placing the robots at the correct positions on the minimum
enclosing circle is a difficult issue in our model. In fact, it can be proved that it is impossible
to deterministically obtain a configuration with ≥ 4 robots on the minimum enclosing circle
if the initial configuration has < 4 robots on the minimum enclosing circle. For this reason,
we shall work with 2 or 3 (critical) robots on the minimum enclosing circle as obtained
from Phase 1 (or may be from the beginning). So in Phase 2, we start with an asymmetric
configuration where all robots on the minimum enclosing circle are critical. The objective of
this phase is to move these critical robots so that their relative positions on the minimum
enclosing circle is consistent with the target pattern. For this, we shall choose a set of two or
three pattern points from the minimum enclosing circle of the target pattern. We shall call
this set the bounding structure of the target pattern. Essentially, the objective of Phase 2 is
to approximate this structure by the critical robots.
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10:10 Pattern Formation by Robots with Inaccurate Movements

The Bounding Structure

If Algorithm 1 is applied on the target pattern F , then we obtain a set BF ⊆ C(F ) ∩ F of
pattern points such that BF is a minimal set of points of C(F )∩F such that CC(BF ) = C(F ).
By minimal set we mean that no proper subset of BF has this property. By Property 1, BF

either consists of two antipodal points or three points that form an acute angled triangle.
We call BF the bounding structure of F (see Fig. 4a). Recall that each robot computes the
same bounding structure since the input F = {f1, f2, . . . fn} is same for all robots. We say
that the bounding structure of F is formed by the robots if one of the following holds.

1. BF has exactly two points, C(R) has exactly two robots on it and R is symmetry safe.
2. BF has exactly three points and C(R) has exactly three robots on it (see Fig. 4). Let

BF = {fi1 , fi2 , fi3} and C(R) ∩ R = {r1, r2, r3}. R is symmetry safe (i.e. ∆r1r2r3 is
scalene) and furthermore, if seg(r1, r2) is the largest side of the triangle formed by r1, r2, r3
and seg(fi1 , fi2) is a largest side of the triangle formed by fi1 , fi2 , fi3 , then ∃ an embedding
fi 7→ Pi of F on the plane identifying seg(fi1 , fi2) with seg(r1, r2) so that i) r3 ∈
B(Pi3 , ϵD), (D = diameter of C(P1, . . . , Pn)) and ii) B(Pi, ϵD) ∩ encl(CC(r1, r2, r3)) ̸= ∅
for all i ∈ {1, . . . , n}

Algorithm 1 Algorithm producing the bounding structure of a pattern.
Input : A pattern F = {f1, . . . , fn}

1 Let C(F ) ∩ F = {fj1 , . . . , fjk}, where j1 < . . . < jk

2 BF ← {fj1 , . . . , fjk}
3 for l ∈ 1, . . . , k do
4 if fjl is non-critical in F then
5 F ← F \ {fjl}
6 BF ← BF \ {fjl}

7 Return BF

Brief Description of the Algorithm

The algorithm is in Phase 2 if a ∧ c ∧ ¬b holds (b = “the bounding structure is formed”).
The objective is to have b. We describe the algorithm for the following cases: C(R) has three
robots and the bounding structure also has three points (Case 1), C(R) has three robots
and the bounding structure has two points (Case 2), C(R) has two robots and the bounding
structure has three points (Case 3) and C(R) has two robots and the bounding structure
also has two points (Case 4).

First consider Case 1. Here the goal is to transform the triangle of the robots on C(R)
so that the bounding structure of F is formed. Let C(R) ∩ R = {r1, r2, r3}. If ∆r1r2r3 is
not scalene, then we shall make it so by using similar techniques from Subphase 1.1, Case 3.
So now assume that ∆r1r2r3 is scalene. Let seg(r1, r2) be the largest side of ∆r1r2r3. In
that case, r3 will be called the transformer robot. This robot will move to form the bounding
structure of F . Let L be the perpendicular bisector of seg(r1, r2). Since no two sides of
the triangle are of equal length, r3 /∈ L. Let H be the open half-plane delimited by L that
contains r3. Without loss of generality, assume that r1 ∈ H. Let L1 be the line parallel to L

and passing through r1. Let H′ be the open half-plane delimited by L1 that contains L. Since
∆r1r2r3 is acute angled, r3 ∈ H′. Let H′′ be the open half-plane delimited by line(r1, r2) that
contains r3. Let C1 = C(r1, d(r1, r2)) and C2 = C(r2, d(r2, r1)). Since seg(r1, r2) is (strictly)
the largest side of ∆r1r2r3, r3 ∈ encl(C1) ∩ encl(C2). If C3 = CC(r1, r2), then r3 ∈ ext(C3)
as ∆r1r2r3 is acute angled. Now take the largest side of the bounding structure BF . In
case of a tie, use the ordering of the points in the input F to choose one of them. Embed
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(a) (b)

(c) (d)

Figure 4 a) The input pattern F . The bounding structure bF consists of the blue pattern points.
b)-c) The bounding structure is formed by the robots. d) To obtain a final configuration, each
shaded region must have a robot inside it.

the bounding structure BF on the plane identifying this side with seg(r1, r2) so that the
third point of the bounding structure is mapped to a point P ∈ H ∩ H′′. Since the bounding
structure is acute angled, P ∈ H′. Also, P ∈ ext(C3) for the same reason. Furthermore, since
a largest side of the bounding structure is identified with seg(r1, r2), P ∈ encl(C1)∩encl(C2).
So we have r3 ∈ H ∩ H′ ∩ H′′ ∩ encl(C1) ∩ encl(C2) ∩ ext(C3) = Ublue (the blue open region
in Fig. 5a) and P ∈ H ∩H′ ∩H′′ ∩encl(C1)∩encl(C2)∩ext(C3) = U ′

blue. Notice that U ′
blue

consists of the open region Ublue and some parts of its boundary. Our objective is to move
the robot r3 to a point near P . The entire trajectory of the movement should lie inside the
region Ublue. However, before this movement, we have to make sure that the configuration
satisfies some desirable properties described in the following. Let C4 be the circle passing
through r1, r2 and the point in H′′ where C1 and C2 intersect each other. We shall say that
the transformer robot is eligible to move if R ∩ encl(C(R)) ⊂ encl(C3) ∩ encl(C4) = Ured

(the red region in Fig. 5b). The transformer robot will not move until it becomes eligible.
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r2r1

(a)

r2r1

(b)

r2r1

r3

(c)

r2r1

r

(d)

Figure 5 a)-b)Illustrations for Phase 2, Case 1. c) Illustrations for Phase 2, Case 2. d) Illustrations
for Phase 2, Case 3.

So the robots in encl(C(R)) that are not in Ured, should sequentially move inside this
region first. Notice that during these movements, the configuration remains asymmetric
(as ∆r1r2r3 remains scalene) and also r3 remains the transformer robot. So when we have
R ∩ encl(C(R)) ⊂ Ured, r3 will become eligible to move. Now it has to move inside the
region B(P, ϵD) ∩ Ublue. However, it is important that its trajectory lies inside Ublue. This is
because it can be shown that as long as r3 stays inside the “safe region” Ublue, it remains as
the transformer robot. This can be done by a movement scheme described in Appendix B
that allows a robot to move close to a destination point through a safe region.

In Case 2, C(R) has exactly three robots and the bounding structure has exactly two
points. Let C(R) ∩ R = {r1, r2, r3}. As before, ∆r1r2r3 will be made scalene. Let seg(r1, r2)
be the largest side. Then r3 is the transformer robot. The plan is to move r3 inward so that
it is no longer on the minimum enclosing circle. Let C1, C2, C3, H, H′, H′′ denote the same
as in Case 1. As before, we have r3 ∈ H ∩ H′ ∩ H′′ ∩ encl(C1) ∩ encl(C2) ∩ ext(C3) = Ublue

(blue region in Fig. 5c). We shall say that the transformer robot is eligible to move if 1)
R∩encl(C(R)) ⊂ encl(C3)∩encl(C(R)) (red region in Fig. 5c) and 2) R\{r3} is a symmetry
safe configuration. The robots in encl(C(R)) that are not already in encl(C3) will move
inside it. Then we have C(R \ {r3}) = C3 and it passes through only r1 and r2. So R \ {r3}
will be symmetry safe if there is a unique robot closest to O, the midpoint of seg(r1, r2), and
it is not on seg(r1, r2) or its perpendicular bisector. This can be achieved easily. When r3
becomes eligible to move, it will move inside encl(C3). During its movement, when it has not
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entered encl(C3), its trajectory should remain inside Ublue. Also, when it enters encl(C3), it
should remain in ext(C) where C = C1

↑(R \ {r3}). So its entire trajectory should be inside
the region H ∩ H′ ∩ H′′ ∩ encl(C1) ∩ encl(C2) ∩ ext(C) and it should not collide with any
robot upon entering encl(C3). This can be done by the scheme from Appendix B.

In Case 3, C(R) has exactly two robots and the bounding structure consists of exactly
three points. Let C(R)∩R = {r1, r2}. Here the strategy is to move outward one of the robots
from encl(C(R)), say r, so that the minimum enclosing circle becomes the circumcircle of r, r1
and r2. We shall call r the transformer robot. The robot farthest from c(R) will be chosen as
the transformer robot. In case of a tie, it is broken using the asymmetry of the configuration.
Let H be the open half plane delimited by line(r1, r2) that contains r. Let L1 and L2 be the
lines perpendicular to line(r1, r2) and passing through respectively r1 and r2. Let L be the
perpendicular bisector of seg(r1, r2). Without loss of generality, assume that r ∈ S(L1, L)∪L.
Let C1 = C(r1, d(r1, r2)), C2 = C(r2, d(r2, r1)) and C3 = CC(r1, r2). Let C4 be the
largest circle from the family {C ∈ F(r1, r2) | center of C lies in H and R ⊂ encl(C)}. The
algorithm asks r to move into the region encl(C1)∩encl(C2)∩ext(C3)∩encl(C4)∩H∩S(L1, L)
(the blue region in Fig. 5d). Again, this can be done by the scheme described in Appendix B.

In Case 4, C(R) has two exactly robots and the bounding structure also has exactly two
points. The only time ¬b may hold is when the configuration is not symmetry safe. So we
have to make the configuration symmetry safe by previously discussed techniques.

5.3 Phase 3
Motive and Overview

The algorithm is in Phase 3 if b holds. The objective of this phase is to form the pattern
approximately. Notice that when b holds, the configuration is symmetry safe and hence
asymmetric. This will allow the robots to agree on a coordinate system in which the target
will be formed (approximately). During this process, b has to be preserved because otherwise
the agreement in coordinate system will be lost.

The termination condition of the algorithm is that both b holds (i.e., it is a Phase 3
configuration) and the configuration is ϵ-close to F . Therefore, even if the initial configuration
is ϵ-close to F (i.e., the pattern F is already formed approximately), the algorithm will still
go through the earlier phases to have b and then approximately form the pattern while
preserving b. The reason why we take this approach is because in general, even if the
configuration is ϵ-close to F , the robots may not be able to efficiently identify this. This is a
basic difficultly of the problem. However, when b holds there is a way to fix a particular
embedding of F in the plane and then the only thing to check is whether there are robots
close to each point of the embedding. For Phase 3, there are two cases to consider: BF has
exactly two points (Case 1) and BF has exactly three points (Case 2).

Brief Description of the Algorithm

We shall only discuss Case 1 because its techniques can be used to solve Case 2 as well.
Case 2 and all the omitted details of Case 1 can be found in the full version [3] of the
paper. So for Case 1, let us first describe how we shall fix a common coordinate system.
Let {r1, r2} = C(R) ∩ R. Let ℓ = line(r1, r2) and ℓ′ be the line passing through c(R) and
perpendicular to ℓ. Let rl be the unique robot closest to c(R). Also it is in encl(C(R))\(ℓ∪ℓ′).
Such a robot exists because b holds. We set a global coordinate system whose center is
at c(R), X axis along ℓ, Y axis along ℓ′. The positive directions of X and Y axis are
such that rl lies in the positive quadrant. Now we choose an embedding of the pattern F

that will be approximated. Perform a coordinate transformation (rotation) on the target
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pattern F so that the bounding structure is along the X axis. Let F ′ denote the input
after this transformation. Consider the pattern points on C1

↑(F ′) except the points of the
bounding structure (notice that C1

↑(F ′) may have points from the bounding structure when
C1

↑(F ′) = C1
↓(F ′)). Reflect the pattern with respect to X axis or Y axis or both, if required,

so that at least one of them is in the closed positive quadrant (X ≥ 0, Y ≥ 0). Let F ′′ denote
the pattern thus obtained. Therefore, if {fi, fj} be the bounding structure, then we have
1) fi, fj on the X axis and 2) at least one point from C1

↑(F ′′) ∩ (F ′′ \ {fi, fj}) in the closed
positive quadrant. Each robot applies coordinate transformations on F and obtains the same
pattern F ′′. Let fl denote the first pattern point from C1

↑(F ′′) ∩ (F ′′ \ {fi, fj}) that is in the
closed positive quadrant. The pattern F ′′ is mapped in the plane in the global coordinate
system and scaled so that the bounding structure is mapped onto seg(r1, r2). These points
are called the target points. T denotes the set of target points. Notice that the robot rl,
being the unique robot on C1

↑(R) and also being in an open quadrant (defined by ℓ ∪ ℓ′),
plays crucial role in fixing the common coordinate system. This will be preserved throughout
the algorithm. In particular, rl will remain in such a position even in the final configuration.
The target point that rl will approximate in the final configuration will be the target point
corresponding to fl. Let us call it tl. Now tl is on C1

↑(T ) and in the closed positive quadrant.
As rl is in the open quadrant, it does not need to move out of it to approximate tl. Now as
rl needs to remain the closest robot from the center, we will define a circle Cl, that depends
only on the position of tl, and require that in the final configuration we have rl inside this
circle and all robots are outside the circle. If D is the diameter of C(T ), i.e., D = d(r1, r2),
then define the circle Cl as (see Fig. 6) i) if tl ∈ C1

↑(T ) = c(T ), then Cl = C(c(T ), ϵD), ii) if
tl ∈ C1

↑(T ) = C(T ), then Cl = C(c(T ), (1 − ϵ) D
2 ), iii) otherwise, Cl = C1

↑(T ).
We shall say that a target point t ̸= tl is realized by a robot r, if r is the unique closest

robot to t and r ∈ B(t, ϵD) ∩ ext(Cl) ∩ encl(C(R)). We shall say that tl is realized by a robot
r if all target points t ̸= tl are realized, r is the robot closest to tl and r ∈ B(t, ϵD) ∩ encl(Cl).
Hence, if tl is realized then it implies that all target points are realized, i.e., the given pattern
is formed. We call this the final configuration (see also Fig. 6). Now the objective is to realize
all the target points. This will be done in the following way. First the robot rl moves inside
encl(Cl), if not already there. The movement should be such that s remains true. Then the
robots from R \ {rl} will sequentially realize all the target points of T \ {tl} preserving s.
These movements are complicated and are described in the full version [3]. When the target
points of T \ {tl} are realized, the robot rl will then realize tl. Again, s should remain true
and rl should remain as the unique robot closest to c(R).

5.4 The Main Result
Recall that a configuration with ¬u ∧ (¬a ∨ ¬c) is in Phase 1, a configuration with a ∧ c ∧ ¬b
is in Phase 2, and a configuration with b is in Phase 3. It is easy to see that any configuration
with ¬u belongs to one of the three phases. Phase 1 terminates with a ∧ c which is either a
Phase 2 or Phase 3 configuration. Phase 2 terminates with b which is a Phase 3 configuration.
A final configuration is formed in Phase 3. Hence the algorithm solves the problem in
OBLOT + SSYN C from any configuration which is ¬u.

6 The Algorithm for Asynchronous Robots

Let us denote the algorithm presented in Section 5 as A. It works in OBLOT + SSYN C.
Notice that a feature of this algorithm is that it is sequential in the following sense. At
any round during the execution of the algorithm, at most one robot decides to move.
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(a) (b)

(c) (d)

(e) (f)

Figure 6 Illustrations for Phase 3, Case 1. In each row, the input pattern F is shown on the
left and a final configuration approximating F is shown on the right. In each case, points of the
bounding structure are shown in blue, tl is shown in black and the green circle represents Cl.
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This immediately gives an algorithm that works in FCOM + ASYN C using two colors
{busy, idle}. The algorithm A can be seen as a function that maps the snapshot taken by
a robot to a movement instruction. We now construct an algorithm A′ from A with two
colors {busy, idle} in the following way. Initially the colors of all robots are set to idle. If
any robot finds some robot with light set to busy, then it does nothing. Otherwise, it applies
A on its snapshot (ignoring colors). If A returns a non-null move, it sets its light to busy
and moves accordingly. If A returns a null move, it sets its light to idle (recall that it does
not know what its present color is) and does not make any move. It is easy to see that A′

solves the problem in FCOM + ASYN C.

7 Concluding Remarks

We have introduced a model for robots with inaccurate movements. In this model, we have pre-
sented algorithms for Approximate Arbitrary Pattern Formation in OBLOT + SSYN C
and FCOM + ASYN C. Solving the problem in OBLOT + ASYN C is an interesting open
problem. The main difficulty of the ASYN C setting is that a robot can see another robot
while the later is moving. How will a robot identify whether a robot in its snapshot is static
or moving? In FCOM, a robot used the color busy to inform others that it is moving. But
this is not possible in OBLOT . Usually such difficulties are handled in a different way in
OBLOT + ASYN C. Suppose that a robot r has to move to a point P . Other robots also
know this and conclude that r has completed its movement by simply observing that r has
moved to P . But notice that in our case, moving exactly to P is impossible with erroneous
movements. Even when r is close to P , it can not be decided whether it is still moving or
not. Consider a particular situation in our algorithm where r is moving outside the smallest
enclosing circle (as in Phase 1 and Phase 2), i.e., the smallest enclosing circle is changing as
r is moving. If we cannot ascertain if r is moving or not, then we cannot ascertain if the
smallest enclosing circle is stable or changing. Recall that the center of the smallest enclosing
circle is the origin of the coordinate system with respect to which the pattern will be formed.
So with a changing smallest enclosing circle, the coordinate system is also changing. So
it is crucial to distinguish between moving and static robots. A possible approach in this
setting could be that the robots may predict a bound on how much the coordinate system
can perturb and act accordingly.

We did not consider multiplicities (points with multiple robots) in the input pattern.
Since two robots cannot be brought to the same point in our model, a multiplicity can
be interpreted in this case as multiple robots very close to each other. Our algorithm can
be adapted to handle inputs with multiplicities. In this work, we modeled the robots as
dimensionless points. Another interesting direction for future research would be to consider
robots with physical extent.
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following. For r ̸= c(R), consider the polar coordinates of the points/robots in the coordinate
system with origin at c(R),
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direction. The first element of the string V⟳(r) is the coordinates of r and next n elements
are the coordinates of the n points/robots ordered lexicographically. For r = c(R), all n + 1
elements are taken (0, 0). The counterclockwise view V⟲(r) is defined analogously. Among
V⟳(r) and V⟲(r), the one that is lexicographically smaller is called the view of r and is
denoted as V(r). In a configuration, each robot can compute its view as well as the views
of all other robots. Hence, the following properties can be used by the robots to detect
whether the configuration is symmetric or not [6]: 1) R admits a reflectional symmetry if
and only if there exist two points ri, rj ∈ R, ri, rj ̸= c(R), not necessarily distinct, such that
V⟳(ri) = V⟲(rj), 2) R admits a rotational symmetry if and only if there exist two points
ri, rj ∈ R, ri ̸= rj , ri, rj ̸= c(R), such that V⟳(ri) = V⟳(rj).

A problem that is closely related is the Leader Election problem where a unique
robot from the team is to be elected as the leader. It is a well-known result [6] that Leader
Election is deterministically solvable if and only if the initial configuration R does not
have i) rotational symmetry with no robot at c(R) or ii) reflectional symmetry with respect
to a line ℓ with no robot on ℓ. We call the symmetries i) and ii) unbreakable symmetries.
If a configuration does not have such symmetries, then it can be shown that the robots
can use the views to elect a unique leader. It is well-known [6] that Exact Arbitrary
Pattern Formation is deterministically unsolvable, even with Rigid movements, if the
initial configuration has unbreakable symmetries. The same result holds for Approximate
Arbitrary Pattern Formation as stated in Theorem 2

Proof of Theorem 2

Proof. For any configuration of robots R, define γ(r) for any r ∈ R as γ(r) = Σr′∈R\{r}d(r, r′).
Let R0 be an initial configuration of n robots that has an unbreakable symmetry. For the sake
of contradiction, assume that there is a distributed algorithm A that solves Approximate
Arbitrary Pattern Formation for any input (F, ϵ) from this configuration, i.e., it forms
a configuration that is ϵ-close to F . Consider the following input pattern F = {f1, f2, . . . , fn},
where f1, f2, f3 form an isosceles triangle with d(f1, f2) = d(f1, f3) > d(f2, f3) and f4, . . . , fn

are arranged on the smaller side of the triangle. If d(f1, f2) = d(f1, f3) is sufficiently large
compared to d(f2, f3) and ϵ is sufficiently small, then for any configuration R′ of robots that
is ϵ-close to F , we have γ(r1) > γ(r) for all r ∈ R′ \{r1}, where r1 is the robot approximating
f1. This property can be used to elect r1 as the leader. Hence, Approximate Arbitrary
Pattern Formation can be used to solve Leader Election from the initial configuration
R0. This is a contradiction to the fact that Leader Election is deterministically unsolvable
from a configuration with unbreakable symmetries [6]. ◀

B Moving Through Safe Zone

In this section, we present some movement strategies that will be used several times in the
main algorithm. Suppose that a robot needs to move to or close to some point in the plane.
If the point is far away from the robot and it attempts to reach it in one step, the error
would be very large and it will miss the target by a large distance. As a result, it may reach
a point which causes the configuration to loose some desired property. Also, due to the
large deviation from the intended trajectory, it may collide with other robots. So the robot
needs to move towards its target in multiple steps and move through a “safe” region where it
does not collide with any robot and the desired properties of the configuration are preserved.
We first discuss the following problem. Let x0 and y be two points in the plane so that
d(x0, y) > l. Suppose that a robot r is initially at x0 and the objective is that it has to move
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x0
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B(y, l)

(b)

x0
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B(y, l)

(c)
x0

y
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Figure 7 Some variants of Algorithm 2. a) Starting from x0, the robot has to move inside the
shaded region. b) Starting from x0, the robot has to move inside B(y, l) avoiding point obstacles.
There are no obstacles on the line segment joining x0 and y. c) Starting from x0, the robot has
to move inside B(y, l) avoiding disk shaped obstacles. The line segment joining x0 and y does not
intersect any obstacle. d) Starting from x0, the robot has to move inside B(y, l) avoiding point
obstacles. There are some obstacles on the line segment joining x0 and y.

to a point inside B(y, l) via a trajectory which lies inside Cone(x0, B(y, l)). A pseudocode
description of an algorithm that solves the problem is presented in Algorithm 2. Proof of
correctness of the algorithm can be found in the full version [3] of the paper.

Algorithm 2 Algorithm for moving through a safe zone.
Input : A point y on the plane and a distance l

1 r ← myself
2 if d(r, y) ≥ l then
3 if d(r, y) = l or l

d(r,y) ≥ sin(errora(r, y)) then
4 Move to y
5 else
6 p← point on seg(r, y) so that l

d(r,y) = sin(errora(r, p))
7 Move to p

We now discuss some variants of the problem. They can be solved using the movement
strategy of Algorithm 2 subject to some modifications.
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1. Suppose that the robot r is required to move inside some region other than a disk. Assume
that the region is enclosed by some line segments and circular arcs. We can easily solve
this problem using the same movement strategy, e.g., by fixing some disk B(y, l) inside
the region and following Algorithm 2. See Fig. 7a.

2. Now consider the situation where the robot r, starting from x0, have to get inside a disk
B(y, l), but there are some point obstacles that it needs to avoid. Let O ⊂ R2 be the set
of obstacles. However, there are no obstacles on seg(x0, y). Again a similar approach will
work. Instead of B(y, l), the robot r just needs to consider B(y, l′) where l′ ∈ (0, l] is the
largest possible length such that Cone(r, B(y, l′)) ∩ O = ∅. See Fig. 7b.

3. Instead of point obstacles, now consider disk shaped obstacles. Assume that none of the
obstacles intersect seg(x0, y). The same approach as in the previous problem would work
here too. See Fig. 7c.

4. Now again consider point obstacles, but this time there might be some obstacles lying on
seg(x0, y). Let O′ = O ∩seg(x0, y). The robot will move to a point x′ ∈ Cone(x0, B(y, l))
so that there is no obstacle on seg(x′, y). For this, it will move so that it reaches a point
in Cone(x0, B(y, l′)) \ seg(x0, y) where l′ ∈ (0, l] is the largest possible length such that
Cone(x0, B(y, l′)) ∩ (O \ O′) = ∅. See Fig. 7d.
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Hybrid networks, i.e., networks that leverage different means of communication, become ever more
widespread. To allow theoretical study of such networks, [Augustine et al., SODA’20] introduced
the HYBRID model, which is based on the concept of synchronous message passing and uses two
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its infancy, even though there are several examples where hybrid communication is already
exploited in practice. For instance, in modern data centers, wired communication networks
are combined with high-speed wireless communication to reduce wire length or increase
bandwidth without adding congestion to the wired network [12]. This paper focuses on
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local network) with connections via a cellular or satellite infrastructure (the global network).
These can be realized, for instance, by smartphones, since they support both communication
modes and solutions for smartphone ad hoc networks have been around for almost a decade.
Connections in the local network can transfer large amounts of data cheaply, but have limited
range, while global connections can transmit data between any pair of devices, but typically
with bandwidth restrictions and additional costs. So ideally, global communication should be
reserved for exchanging control messages while the data should be sent via the local edges,
which necessitates the computation of a routing scheme for the local network.

The simplest solution to compute a routing scheme would be to use the global mode
to collect all local device connections and/or positions in a centralized server and do the
computation there. However, a centralized solution would represent a bottleneck and single
point of failure, or it would not be for free when making use of a cloud service. We avoid
these problems by only relying on the devices themselves. Interestingly, even without any
central service, we vastly improve the results over what is possible with just the local network.
More specifically, we demonstrate that with a hybrid wireless network one can significantly
speed up the computation of compact routing schemes under certain natural circumstances,
thereby opening up a new research direction for wireless networks.

1.1 Model and Problem Definition
We assume a set V of n nodes with unique IDs. Each node is associated with a fixed, distinct
point in the 2-dimensional Euclidean plane, (i.e., V ⊆ R2), and every node v ∈ V knows
the global coordinates of its point. We assume the standard synchronous message passing
model: time proceeds in synchronous time slots called rounds. In each round, every node can
perform an arbitrary amount of local computation and then communicate with other nodes.

In the HYBRID model, communication occurs in one of two modes: the local mode and
the global mode. The connections for the local mode are given by a fixed graph. In our case,
this graph is represented by a unit-disk graph UDG(V ): for any v, w ∈ V , {v, w} ∈ UDG(V )
if and only if v and w are at distance at most 1. For the local mode, we use the CONGEST
model for simplicity: in each round, for all edges {v, w} ∈ UDG(V ), node v can send a
message of O(log n) bits to node w. However, our algorithms still work if instead the more
restrictive (and more natural) Broadcast-CONGEST model is used (see the full version). We
assume that each message can carry a constant number of node locations (this is analogous
to the Real RAM model, a standard model of sequential computation).

For the global mode, we are using a variant of the node-capacitated clique (NCC) model
called NCC0 [2] that captures key aspects of overlay networks. In this model, any node u

can send messages to any other node v ∈ V provided u knows v’s ID. Initially, the set of
IDs known to each node is just limited to its neighbors in UDG(V ). Each node is limited to
sending O(log n) messages of O(log n) bits via the global mode in each round. W.l.o.g., we
assume that whenever a node v knows the ID of some node w, it also knows w’s location
(since this can be sent together with its ID).

Model Motivation. The assumption that the nodes know their global coordinates is
motivated by the fact that smartphones can nowadays accurately determine their location
using GPS or wireless access point or base station information. However, it would also
be sufficient if the nodes can determine the distance and relative angles to their neighbors
in the UDG (this can be obtained via kown localization methods [18]), though with some
precision loss.
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The use of the NCC0 model in the global communication mode is motivated by the fact
that nodes can communicate with any other node in the world via the cellular infrastructure
given its ID (e.g., its phone number). Note that NCC0 is weaker than NCC, which assumes
a clique from the start, but it is known that once the right topology has been set up in
NCC0 (which can be done in O(log n) rounds [16]), any communication round in NCC can
be simulated by O(log n) communication rounds in NCC0 [25].

Problem Definition. Our goal is to compute a compact routing scheme for UDG(V ), in
hybrid networks where UDG(V ) is connected and does not contain radio holes. UDG(V ) is
said to contain a radio hole if, roughly speaking, there is an internal cycle in UDG(V ) that
cannot be triangulated. A precise definition will be given in Section 2.

Let G be a class of graphs. A stateless1 routing scheme R for G is a family of labeling
functions ℓG : V (G)→ {0, 1}+ for each G ∈ G, which assigns a bit string to every node v in
G. The label ℓG(v) serves as the address of v for routing in G: it contains the identifier of v,
and may also contain information about the topology of G.

While the identifier is given as part of the input, the label is determined in the preprocessing.
Additionally, the preprocessing has to set up a routing function ρG : V (G)×{0, 1}+ → V (G)
for the given graph G that, given the current node of a message and the label of the
destination, determines the neighbor of v in G to forward the message to2. A routing scheme
must satisfy various properties.

First of all, it must be correct, i.e., for every source-destination pair (s, t), ρG determines
a path in G leading from s to t. Second, it must be local, in a sense that every node v can
evaluate ρG(v, ℓ) locally. Third, the routing should be efficient, i.e., the ratio of the length
of the routing path and the shortest path – also known as the stretch factor – should be
as close to 1 as possible. In our case, the length of a routing path is simply determined by
the number of edges used by it. Note that whenever we have a constant stretch w.r.t. the
number of edges in UDG(V ), we also have a constant stretch w.r.t. the sum of the Euclidean
lengths of its edges, so we achieve a constant stretch for both types of metrics (see Section 2).
Finally, the routing scheme should be compact, i.e., the labels ℓG(v) of the nodes v and the
amount of space needed at each node v to evaluate ρG(v, ℓ) should be as small as possible.

Problem Motivation. There are various reasons for developing fast distributed algorithms
for compact routing schemes in hybrid wireless networks. First of all, computing routing
schemes for the local ad-hoc network is useful even in the presence of a cellular infrastructure
since ad-hoc connections are comparatively cheap to use and typically offer a much larger
bandwidth. Also, the ability to quickly compute compact routing schemes allows for frequent
adaption in case of topological changes in the wireless ad-hoc network with low overhead.

1.2 Our Contributions
In Appendix A we show that it is impossible to set up a compact routing scheme with
constant stretch in time o(

√
n) when just relying on the UDG for communication even if the

geometric location of all nodes is known and the UDG is hole-free. This poses the question
of whether limited global communication can overcome this. We answer this question by

1 In a stateless routing scheme a packet can not accumulate information along the routing path and is
thus oblivious to the routing path that the packet took so far (as opposed to stateful routing).

2 More general definitions of routing functions exist, but we do not require the additional power afforded
by stateful routing (for instance), to compute near-constant routing schemes in logarithmic time.
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showing the following result, which demonstrates the impact that a modest amount of global
communication has when applied to problems which are challenging to solve locally.

▶ Theorem 1. For a HYBRID network with a hole-free UDG(V ), a compact, stateless routing
scheme can be deterministically computed for UDG(V ) in O(log n) rounds. The scheme uses
node labels of O(log n) bits and a mapping ρ that (i) can be evaluated locally with O(log n)
bits of information in each node and (ii) such that for every source-destination pair s, t ∈ V ,
ρ determines a routing path of constant stretch from s to t in UDG(V ).

Technical novelties of this work include a grid graph abstraction of any UDG which serves
to sparsify the UDG while preserving its geometric structure. Computations on the grid
graph can be simulated efficiently in UDG(V ). Furthermore, we can transform a routing
scheme on the grid graph to one in the UDG, increasing the stretch only by a constant.

We show how to construct this abstraction in a distributed setting based entirely on local
communication. This could potentially make it of interest when studying routing or distance
approximation problems on UDGs in the CONGEST or Broadcast-CONGEST models or for
simplification of existing algorithms. We also believe that the grid graph abstraction and its
properties will be useful for future work in the HYBRID setting, making it a springboard for
the case of UDGs with radio-holes.

1.3 Overview

The first step is the computation of a simple, yet surprisingly useful abstract graph structure
on UDG(V ), which we call a grid graph Γ. The vertices of Γ are the centers of the cells of a
regular square grid which intersect with an edge of UDG(V ). Two vertices of Γ share an edge
iff their cells are vertically or horizontally adjacent (see Section 2.2, Figure 1). Subsequently,
in Section 2.3, we tie the graphs UDG(V ) and Γ together by defining a representative in V

for each vertex of Γ that fulfills two main properties. First, two representatives of adjacent
grid vertices are connected with a path of at most 3 hops in UDG(V ) (see Figure 2). Second,
each node in V has such a representative within 1 hop in UDG(V ).

We then turn to the algorithmic aspects of Γ. In Section 2.4 we define the representation
R of Γ, where grid vertices correspond to their aforementioned representatives and grid edges
correspond to paths of 3 hops in UDG(V ), and we show that R can be efficiently computed in
UDG(V ). Furthermore, the representation R can be used to efficiently simulate the HYBRID
model on Γ, which is summarized in Theorem 8. In Section 3, we show that an optimal path
in Γ implies a path in R with a constant approximation ratio (Theorem 10).

The final step of the first part is to construct a constant stretch routing scheme R for
UDG(V ) assuming that we have an optimal one for Γ (Section 3.2), which is encapsulated
by Theorem 16. Since we can efficiently simulate the HYBRID model on Γ (Theorem 8),
the second part can be considered in isolation from the first part. Note that so far we did
not exploit the fact that UDG(V ) is hole-free. In fact, the construction, simulation, and
properties of Γ hold without that assumption, which is only needed for the second part.

Requiring the UDG to be hole-free is a strong assumption. However, we believe that at
least bounding the number of holes is necessary in order to compute a compact, constant-
stretch labelling scheme in O(log n) rounds. Doing this in time and space polylogarithmic
in n that also scales well in the number of radio holes in the UDG seems to be highly non-
trivial, as these holes may intertwine in arbitrary ways, while there are exponentially many
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possibilities of navigating around them.3 While in our setting there still can be exponentially
many simple paths between two points, we are able to exploit the lack of large holes between
them to deal with arbitrarily complex boundaries of UDGs in a hybrid network setting.

To compute the routing scheme RΓ on Γ, the first step (Section 4) is to arrange the
grid nodes into maximal vertical lines, called portals (see Figure 3a). All portals with two
horizontally adjacent nodes will add one such edge, resulting in a portal-tree TΓ, which is
cycle-free because UDG(V ) is hole-free (see Figure 3b). In order to compute a labelling
scheme we first perform a distributed depth-first traversal on TΓ (where the root is the node
with min ID). This allows us to compute intervals Iv for each node v of TΓ that fulfill the
parenthesis theorem: it is Iw ⊃ Iv (Iw ⊂ Iv) for each ancestor (descendant) node w of v in
TΓ, or else Iw ∩ Iv = ∅ when v, w are in different branches of TΓ (see Figure 3d). Then all
nodes of a portal will agree on interval Ir of node r that is closest to the root as their portal
label. The challenge here is to carefully line up techniques for the more restrictive NCC0
model to obtain such a labelling in O(log n) rounds.

Finally, in Section 5, we use TΓ to route a packet from source s to target node t in TΓ.
Since the shortest path in TΓ may not necessarily follow the tree, we have to define a routing
strategy that jumps over branches when needed, for which we can use the “tree information”
encoded in the labels. We use the portal labels to prioritize jumping horizontally as soon
as the next portal on a path is reachable via any edge in Γ. Vertical routing within portals
is done as a second priority for which node labels Iv are used. We prove that this strategy
yields an exact routing scheme RΓ for Γ formalized in Theorem 23. Consequently, Theorem
1 is a corollary from the fact that we can emulate Γ on UDG(V ) (Theorem 8) and that RΓ
can be transformed into a constant stretch routing scheme R for UDG(V ) (Theorem 16).

1.4 Related Work
An early effort to formalize hybrid communication networks by [1], combined the LOCAL
model with a global communication mode that essentially allows a single node to broadcast
a message to all others per round. Note that this conception of the global network is
fundamentally different to ours, which manifests in the fact that solving a aggregations
problem (e.g., computing the sum of inputs of each node) can take Ω(n) rounds (by contrast,
it takes O(log n) rounds in the NCC model).

Recently, shortest path problems in general hybrid networks have been studied by
various authors [3, 9, 21, 11], which provide approximate and exact solutions for the all-pairs
shortest paths problem (APSP) and the single-source shortest paths problem (SSSP). These
solutions all require O(nε) rounds (for constant ε > 0) to achieve a constant approximation
ratio, and this is tight in the case of APSP. O(log n)-time algorithms to solve SSSP for some
classes of sparse graphs (not including UDGs) are given in [11]. Shortest path problems have
also been studied for hybrid wireless networks [8]. They show that for a bounded-degree
UDG(V ) with a convex outer boundary, where the bounding boxes of the radio holes do
not overlap, one can compute an abstraction of UDG(V ) in O(log2 n) time so that paths of
constant stretch between all source-destination pairs outside of the bounding boxes can be
found (a simple extension of their approach to outer boundaries of arbitrary shape seems
unlikely).

Numerous online routing strategies have been proposed for general UDGs, including
FACE-I, FACE-II, AFR, OAFR, GOAFR and GOAFR+ [5, 24, 22, 23]. In [24, 22] it is
proven that GOAFR and GOAFR+ are asymptotically optimal w.r.t. path length compared

3 The number of simple st-paths that cannot be continuously deformed into each other without crossing a
hole (i.e., non-homotopic paths) is 2h, where h is the number of radio holes.
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to any geometric routing strategy. However, the achieved stretch is linear in the length of a
shortest path. When a UDG contains the Delaunay graph of its nodes, one can exploit the
fact that the Delaunay graph is a 2-spanner of the Euclidean metric [29], and MixedChordArc
has been shown to be a constant-competitive routing strategy for Delaunay graphs [4]. This
is only applicable in UDGs where the line segment connecting two nodes of the UDG does
not intersect a boundary, which is the case if it has a convex outer boundary and is hole-free.

Centralized constructions4 for compact routing schemes have been heavily investigated
for general graphs (see, e.g., [28]) as well as UDGs. Here, we just focus on UDGs. Bruck
et al. [6] present a medial axis based naming and routing protocol that does not require
geographical locations, makes routing decisions locally, and achieves good load balancing.
The routing paths seem near-optimal in simulations, but no rigorous results are given. Gao
and Goswami [13] propose a routing algorithm that achieves a constant approximation ratio
for load balanced routing in a UDG of arbitrary shape, but the question of near-optimal
routing paths is not addressed. Based on work by Gupta et al. [17] for planar graphs, Yan
et al. [30] show how to assign a label of O(log2 n) bits to each node of the graph such that
given the labels of a source s and of a target t, one can locally compute a path from s to t

with constant stretch. Using the well-separated pair decomposition (WSPD) for UDGs [14],
Kaplan et al. [19] present a local routing scheme with stretch 1+ε with node labels, routing
tables and headers of size polynomial in log n, log D, and 1/ε, where D is the diameter of
UDG(V ). Later, [26] shows how to achieve a stretch of 1+ε without using dynamic headers.

Our routing scheme for the grid graph abstraction extends the routing scheme proposed
by Santoro and Khatib [27], who presented a labelling along with an optimal routing scheme
for trees by computing a minimum-distance spanning tree and labelling of that tree via a
depth-first search.5 In our scheme, we provide optimal paths between any source-target pair
in the grid graph, because we allow using edges that are not part of the spanning tree for
routing in order to jump between the branches of the spanning tree.

Our study is also related to routing problems in sparse graphs in parallel models [20, 10].
For example, the algorithm of Kavvadias et al. [20] can be used to compute routing tables
in planar graphs in time Õ(1) and work Õ(n). Together with the simulation framework of
Feldmann et al. [11], the algorithm could in principle be used to solve our problem. However,
for the simulation to work, one would need to construct a suitable global network, sparsify
the graph, and, together with the simulation overhead, one would obtain a polylogarithmic
runtime much higher than O(log n). Further, the size of the routing tables may be Θ(n2).

2 Grid Graph

Let G := UDG(V ). The goal of this section is to construct a grid abstraction of G which
makes finding routing protocols in the subsequent section manageable. In particular (but
still suppressing some details), we want to simulate a bounded degree grid graph on G such
that shortest paths in the grid graph represents only a constant factor detour in G. The way
we obtain such a grid representation of G in a distributed fashion is by simulating grid nodes

4 Note that in this paper, we allow ourselves just O(log n) rounds for pre-computation and each node can
learn only polylog n bits per round given that it has small (polylog n) degree, which can be true for
every node. The local network has size Ω(n), meaning no single node can learn it completely. This
inhibits solving the problem locally at some node, i.e., by direct use of some centralized algorithm.

5 While the routing scheme in [27] guarantees a 2-approximation for general graphs regarding the worst-
case optimal cost when routing over all possible source-target-pairs, their scheme does not guarantee
constant stretch when routing a message between two specific nodes s, t in the grid graph.
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with real nodes of V that are close by, where edges between grid nodes correspond to paths
of constant length in G. We start by introducing some notations we require in the following.

2.1 Preliminaries
Graphs and Polygons in R2. Since each node in V is associated with a point in R2, we can
associate each edge {u, v} ∈ UDG(V ) with the line segment with endpoints u and v, i.e., the
set {x · u + (1−x) · v | x ∈ [0, 1]}. We use the names of vertices and edges to refer to their
associated subsets of R2 when no ambiguity arises.

A polygonal chain is a finite sequence of points where consecutive points are connected by
segments. A polygonal chain is closed if the first point in the sequence is equal to the last. A
polygon is a closed, connected, and bounded region in R2 where the boundary consists of a
finite number of (not necessarily disjoint) closed polygonal chains (this implies the edges in
these polygonal chains have no proper intersections).

A hole of a polygon P is an open region in R2 that is a maximal bounded and connected
component of R2 \ P . Note that the boundary of each hole of P is equal to one of the
polygonal chains bounding P . A polygon is simple if it has no holes.

Distance Metrics. We use the notation ∥ · ∥ for the Euclidean metric on R2. Consequently,
for p, q ∈ R2, ∥p−q∥ denotes the Euclidean distance from p to q. For sets of points A, B ⊆ R2

we define the distance between those sets as dist(A, B) := mina∈A,b∈B ∥a−b∥.
Let P ⊆ R2 be a polygon in the Euclidean plane and let p, q ∈ P . We define the geometric

distance between p and q in P , distP (p, q), to be the length of the shortest path between p, q

in P . Note that because P is a polygon, there is a polygonal chain Π = (v1, . . . , vk) from p

to q inside P such that distP (p, q) =
∑k−1

i=1 ∥vi+1−vi∥.
Let G = (V, E) be an embedded graph. Let Π ⊆ E be a path, i.e., a sequence of incident

edges of G. Then we define distG(Π) =
∑

(u,v)∈Π ∥u−v∥. Let |Π| be the number of edges
(or hops) of a path Π in G. The hop-distance between two nodes u, v ∈ V is defined as
hopG(u, v) :=minu-v-path Π |Π|.

2.2 Grid Graph Definition
We first give some definitions to formalize the notion of an UDG having radio-holes. A
triangle of UDG(V ) is a region in R2 that is bounded by the edges of a 3-cycle in UDG(V )
(including both the boundary and interior of the triangle). We define the contour polygon P

of UDG(V ) as the union of all triangles and edges of UDG(V ). Since UDG(V ) is connected,
P is indeed a polygon. We call the holes in P radio-holes of UDG(V ). We say an UDG has
no radio-holes if the contour polygon of that UDG has no holes, i.e., the polygon P is simple.

Next we partition the plane into an axis-parallel square grid with side-length c = 1
10
√

15
and a fixed origin corresponding to origin of the coordinate system. Note that due to
knowledge of coordinates, all nodes are aware of their position relative to the grid.

Define a square grid-cell to be active if it has a non-empty intersection with P . Based
on this grid, we define the grid graph Γ = (VΓ, EΓ), where VΓ has a node positioned at the
center of each active cell in our grid, and we have an edge in EΓ between every pair of nodes
of VΓ that lie in adjacent cells in the grid (i.e., the square cells share an edge). The grid graph
Γ will be simulated in the routing protocol. We will also define the cell graph Γ′ = (VΓ′ , EΓ′)
in the analysis of our protocol, but do not simulate it. We call a vertex of the grid loose if it
is a corner of exactly 2 active cells that are not adjacent. Γ′ is composed of the boundaries
of the square grid, with VΓ′ the set of all corners of each active grid-cell that are not loose,
with a pair of vertices in VΓ′ having an edge in EΓ′ if they are ends of an edge of a grid-cell.
To define the cell polygon P ′, first take the union of all active grid-cells. Then, for every
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(a)

v

(b)

v

Figure 1 (a): G := UDG(V ) (black), polygon P (red), and cell polygon P ′ (blue). (b): grid graph
Γ (orange), active grid-cells and cell graph Γ′ (blue). The grid vertex v is loose. Note that G and Γ
have a hole. Our routing algorithm on Γ would not work for this UDG, but we can still construct Γ.

loose vertex v in the grid, remove a triangle from P ′ at every active grid-cell incident to v

that is small enough to be disjoint from P , such that P ′ no longer contains v. Note that
since a loose vertex does not lie in P (otherwise, all 4 cells incident to it would have been
active), such a triangle exists. See Figure 1 for an example of these definitions. Next, we
define a representative r for each grid node g ∈ VΓ, which simulates g throughout the rest of
the protocol. We apply one of the following rules to assign a grid node to a node u ∈ V .

▶ Definition 2. Let g ∈ VΓ, and let C be the grid cell of which g is the center. We define
C1(g) as the set of vertices of all triangles of UDG(V ) that contain the point g. We define
C2(g) as the set of vertices incident to an edge that intersects C.

We define the set of candidate representatives C(g) as C1(g) ∪ C2(g).
The representative of g is defined as r = arg minv∈C1(g) ∥v − g∥ if C1(g) is non-empty,

and r = arg minv∈C2(g) ∥v − g∥ otherwise. In either case, we break ties by smallest node ID.

2.3 Properties of the Grid Graph
The next step is to show that the grid abstraction introduced in Definition 2 represents the
UDG well. In this section we prove several properties to this effect: we show that nodes are
adjacent to the representative of the cell which they are in (Lemma 3); that representatives
for adjacent grid cells are close (Lemma 4); and that the cell polygon P ′ is simple (Lemma 5).

For brevity, all proofs in this section are delegated to the full version .

▶ Lemma 3. Let u, r ∈ V . If r is the representative of the cell C containing u, then
hopG(u, r) ≤ 1

Intuitively, this is true because u must be close to the centre of C, as must r: even if
these nodes are different they cannot be too far apart.

▶ Lemma 4. Let (g1, g2) ∈ EΓ be an edge in Γ. Let u, v ∈ V be representatives of g1, g2
respectively. Then hopG(u, v)≤3.

We show that the edges which define C(g1) and C(g2) are at most the diagonal of a
2× 1 block of grid cells apart. We conclude that this distance is small enough that an edge
connects an endpoint of one edge with an endpoint from the other, and so the representatives
of adjacent cells have distance at most 3 from each other.
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g1 g2

r2

r1

Figure 2 Representatives r1, r2 of adjacent grid nodes g1, g2 are connected by a path of 3 hops.

Finally, we show that P ′ is simple, i.e., it has no holes. We show this by observing that if
there is a hole in P ′, there is a cycle of active cells with an inactive cell in its interior. We
show this cycle of cells contains a cycle of G, which implies G contains a radio-hole.

▶ Lemma 5. If G has no holes, then P ′ is simple.

2.4 Grid Graph Representation, Computation and Simulation

Building on the previous subsections, we show that we can efficiently simulate the grid graph
Γ with a sub-graph R = (VR, ER) of the UDG G which we call a representation of Γ in G

which closely approximates the structure of Γ. In a nutshell: the set of nodes VR contains
the set of representatives of all grid nodes VΓ. On top of that, for each grid edge in EΓ, we
add a path in the UDG G to R between two representatives of the corresponding grid nodes
(see example in Figure 2). Note that in the previous subsection we have shown the existence
of such paths that have at most 3 hops.

The first goal of this subsection is to thoroughly define R and to show that we can
compute R in G according to that definition in O(1) rounds. The second goal is to give
an interfacing theorem for later sections that purely work with Γ, showing that a round
of HYBRID in the grid graph Γ can be simulated in O(1) rounds by the nodes in R (the
proof is also given in the full version). By simulation, we mean that one round of local
communication between adjacent grid nodes in Γ can be performed using O(1) rounds of
local communication in G to route messages between the representatives of adjacent grid
nodes. An analogous property holds for the global communication.

▶ Definition 6. Let Γ = (VΓ, EΓ) be the grid graph as defined in Section 2. A representation
R = (VR, ER) of Γ in G is a sub-graph of G defined as follows. For every grid node g ∈ VΓ
with representative r ∈ V we define: r ∈ VR. For each edge {g1, g2} ∈ EΓ let r1, r2 ∈ V be
the corresponding representatives. Then R contains all nodes and edges of one r1-r2-path
Πr1,r2 in G such that |Πr1,r2 | ≤ 3. We call Πr1,r2 the representation of the edge {g1, g2}.
Note that such a path always exists due to Lemma 4.

▶ Lemma 7. A representation R = (VR, ER) of Γ can be computed in O(1) rounds.

▶ Theorem 8. A round of the HYBRID model in Γ can be simulated in O(1) rounds.

3 Constant Stretch Routing Scheme for the UDG

It remains to show how to leverage the grid graph constructed in the previous section for the
computation of routing schemes for the UDG assuming that an exact routing scheme for the
grid graph is known. We start with the analysis of the approximation factor.
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3.1 From Shortest Paths in Γ to Approximate Paths in G

The goal of this subsection is to show that shortest paths in the simulated grid graph Γ
represent good paths in the UDG G. In particular, paths in G that are obtained via the
representation R of Γ are constant approximations of optimal paths in G, both in terms of
hop-length and Euclidean distance. We start by defining a representative path.

▶ Definition 9. Let s, t ∈ V . Let gs, gt ∈ VΓ be the two grid nodes which are located in the
same grid cell as s, t respectively. Let rs, rt be the representatives of gs and gt. Note that
{s, rs}, {rt, t} ∈ EG due to Lemma 3. Consider an optimal gs-gt-path Π∗. For e ∈ Π∗ let Πe

be the representation of the grid edge e ∈ EΓ (see Definition 6). Let Πrs,rt :=
⋃

e∈Π∗ Πe. We
define the representative s-t-path as Πs,t := {{s, rs}} ∪Πrs,rt

∪ {{rt, t}}.

We will show that our routing scheme routes packets from s to t along the representative
path s-t-path Πs,t. First, we show that these paths achieve constant stretch in G.

▶ Theorem 10. Let s, t ∈ V . Let Πs,t be the s-t-path given in Def. 9. If {s, t} /∈ EG Then
dist(Πs,t) ≤ |Πs,t| ≤ 36 · distG(s, t).

Note that if {s, t} ∈ EG then we can send the packet directly along this edge and the
distance and number of hops is guaranteed to be optimal. If {s, t} ̸∈ EG then distG(s, t) > 1,
a fact which we use in the proof of Theorem 10. We prove this theorem in stages represented
by the subsequent lemmas. In the first stage we upper bound the number of hops of the
representative path Πs,t with the distance of a corresponding gs, gt-path in Γ.

▶ Lemma 11. Let s, t ∈ V . Then |Πs,t| ≤ 3
c · distΓ(gs, gt) + 2.

Proof. We exploit the fact that edges in Γ have distance at least c and that Πs,t = {{s, rs}}∪
Πrs,rt

∪{{rt, t}} is constructed from an optimal path in Γ (see Definition 9). We combine this

with Lemmas 3, 4 to obtain the following |Πs,t|
Lem. 3
≤ |Πrs,rt

|+ 2
Lem. 4
≤ 3 · hopΓ(gs, gt) + 2 ≤

3
c distΓ(gs, gt) + 2. ◀

Since the cell-polygon P ′ completely covers P (the smallest polygon containing all edges
of Γ does not, in general), we relate paths in the grid graph Γ to paths in the cell-graph Γ′.
This allows us to relate paths in P to Γ. Note that comparisons of hop-distance in Γ and Γ′

correspond to equal comparisons of distances, since both graphs have the same granularity c.

▶ Lemma 12. Let g1, g2 ∈ VΓ be located in cells C1, C2, respectively. There exist nodes
g′

1, g′
2 ∈ VΓ′ that are corners of C1, C2 respectively, such that distΓ(g1, g2) ≤ 2 · distΓ′(g′

1, g′
2).

Proof. Choose g′
1, g′

2 such that hopG(g′
1, g′

2) ≥ 1. Let Π′ be a shortest g′
1g′

2-path in Γ′. Since
all edges and vertices of Γ′ are part of the boundary of an active grid cell and Γ′ contains no
loose vertices, there is a sequence A of active grid-cells from C1 to C2, where consecutive
cells share a side and each cell has an edge or vertex of Π′ on its boundary. There are two
kinds of cells in A: the first kind has an edge of Π′ on its boundary, the second kind does not
have an edge of Π′ on its boundary, but has a vertex of Π′ on its boundary. The number of
cells of the first kind is at most |Π′|, because each edge in Π′ is adjacent to at most one cell
of A. The number of cells of the second kind is at most |Π′|+ 1, because each vertex of Π′ is
adjacent to at most one cell of this type (since Π′ has at least one edge.). So, |A| ≤ 2|Π′|+ 1.

We obtain a g1g2-path Π of length |A|−1 in Γ from the chain A by taking the vertex
centered at each cell in A. So, we have hopΓ(g1, g2) ≤ |Π| ≤ |A|−1 ≤ 2|Π′| = 2 hopΓ′(g′

1, g′
2).

Since all edges in Γ and Γ′ have length c, we have distΓ(g1, g2) ≤ 2 distΓ′(g′
1, g′

2). ◀
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We follow up on the previous stage, and bound the distance of an optimal path in
the graph Γ′ with that of an optimal geometric path in the polygon P ′. The resulting
approximation factor of

√
2 stems from a segment-wise comparison of Euclidean distance of

a shortest polygonal chain in P ′ to the Manhattan distance in the graph Γ′.

▶ Lemma 13. Let g1, g2 ∈ VΓ′ . Then distΓ′(g1, g2) ≤
√

2 · distP ′(g1, g2).

Proof. Let Π be the shortest geometric path from g1 to g2 in P ′. Since P ′ is a polygon, Π is
a polygonal chain connecting vertices g1 =: v1, . . . , vn := g2, where vi are reflex vertices (i.e.,
vertices with an internal angle of at least π) of P ′. Note that by construction of P ′, all reflex
vertices of P ′ are vertices of Γ′, so we have v1, . . . , vn ∈ VΓ′ .

Consider one such segment si. Each point of si lies in some gridcell belonging to P ′,
because the path Π lies in P ′. Therefore, there is a monotone chain of gridcells connecting vi

and vi+1. Consider the axis aligned bounding rectangle Ri defined by the two opposite corners
vi, vi+1 ∈ VΓ′ . The width and length of Ri sum up to ∥vi − vi+1∥1 (where ∥(x, y)∥1 = x + y

for some (x, y) ∈ R2 denotes the L1-norm).
Traversing the boundary of the monotone chain of gridcells between vi and vi+1 in

the shortest possible way represents a shortest path between vi and vi+1 in Γ′. On one
hand, the length of this path equals the sum of side-lengths of Ri, i.e., distΓ′(vi, vi+1) =
∥vi − vi+1∥1. On the other hand the geometric distance equals the length of si which is
distP ′(vi, vi+1) = ∥vi − vi+1∥. We have

distΓ′(vi, vi+1) = ∥vi − vi+1∥1 ≤
√

2 · ∥vi − vi+1∥2 =
√

2 · distP ′(vi, vi+1),

using the equivalence property of L1 and L2-norms: ∥x∥1 ≤
√

2∥x∥2 for any x ∈ R2. So,
for each segment Si of Π, there exists a path in Γ′ with stretch at most

√
2 connecting the

endpoints. Concatenating these paths gives the required g1-g2-path in Γ′. ◀

Next we observe that an optimal path between two nodes in the UDG G can not be any
shorter than a corresponding shortest geometric path in P ′.

▶ Lemma 14. Let s, t ∈ V . Then distP ′(s, t) ≤ distG(s, t).

Proof. Let Π be a shortest st-path in G. By definition, each cell that is intersected by an
edge of Π is active and therefore this edge lies in P ′. So, Π is an st-path in P ′. ◀

We now use the inequalities proven in the lemmas above to prove Theorem 10.

Proof of Theorem 10. Let s, t ∈ V and let gs, gt ∈ Γ be their cell representatives. Let
g′

s, g′
t ∈ VΓ′ be two corner-nodes of gs, gt for which Lemma 12 holds. Then we get

|Πs,t| ≤ 3
c · distΓ(gs, gt) + 2 Lemma 11

≤ 6
c · distΓ′(g′

s, g′
t) + 2 Lemma 12

≤ 6
√

2
c · distP ′(g′

s, g′
t) + 2 Lemma 13

≤ 6
√

2
c ·

(
distP ′(g′

s, s) + distP ′(s, t) + distP ′(t, g′
t)

)
+ 2 triangle ineq.

= 6
√

2
c ·

(
∥g′

s−s∥+ distP ′(s, t) + ∥g′
t−t∥

)
+ 2 sg′

s and tg′
t in same cell

≤ 6
√

2
c ·

(
∥g′

s−s∥+ distG(s, t) + ∥g′
t−t∥

)
+ 2 Lemma 14

= 6
√

2
c ·

(
distG(s, t) +

√
2 · c

)
+ 2 = 6

√
2

c · distG(s, t) + 14

In the equality in the fourth step we use that the segments sg′
s and tg′

t are both contained
in a single grid cell, hence the distance in the cell-polygon equals the Euclidean distance.
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Since a grid cell has side length c, we have ∥g′
s−s∥, ∥g′

t−t∥ ≤ 1
2
√

2 · c in the second last step.
As Πs,t is a path in a UDG each edge has distance at most 1, thus

distG(Πs,t) ≤ |Πs,t| ≤ 6
√

2
c · distG(s, t) + 14 ≤ 22 · distG(s, t) + 14.

Since we have a direct edge to targets with distance at most 1, the additive error can
be accounted for by increasing the multiplicative stretch by the additive error for targets at
distance more than 1. Consequentially, we obtain dist(Πs,t) ≤ |Πs,t| ≤ 36 · distG(s, t). ◀

3.2 Transforming Routing Schemes for the Grid Graph to the UDG
We provide an interface to transform a routing scheme RΓ for the grid graph Γ (for which an
exact routing scheme is provided in the subsequent section) into a routing scheme R for the
UDG G with constant stretch. The idea is to construct R from RΓ using the representation
R of Γ (see Definition 6). Theorem 16 provides approximation guarantees by leveraging
the insights on representative paths from the previous subsection (for a proof see the full
version).

▶ Definition 15 (UDG Routing Scheme). Let RΓ be an exact routing scheme for Γ consisting
of ℓΓ : VΓ → {0, 1}+ and ρΓ : VΓ × {0, 1}+ → VΓ. Let R = (VR, ER) be the representation of
Γ (see Def. 6). The routing scheme R for G is defined on the basis of grid cells. Let C be a
cell with grid node g ∈ VΓ and let r ∈ VR be the representative of g. For each v ∈ C we set
ℓG(v) := ℓΓ(g) ◦ ID(v) (where “◦” represents the concatenation of bit strings). The routing
function ρG is defined as follows. Let v ∈ VG be the current node and let ℓt := ℓΓ,t ◦ ID(t)
be the label of the target node t ∈ V , where ℓΓ,t is the label of the representative in t’s cell
w.r.t. RΓ. We assume t ̸= v, as otherwise the packet has already arrived.
1. If {v, t} ∈ EG, then we can directly deliver to t: ρG(v, ℓt) := t.
2. Else, if v ∈ C \VR is the source we directly route to the representative of C: ρG(v, ℓ) := r.
3. Else, if v = r is the representative of this grid cell C, let g′ := ρΓ(g, ℓΓ,t) be the next grid

node suggested by RΓ. Let u be the first node on the path Π{g,g′} ⊆ ER that represents
the edge {g, g′} ∈ EΓ. Then ρG(v, ℓt) := u.

4. Else, if v ∈ VR but v is not the representative of C, then v must be a “transitional node”
on Π{g,g′} ∈ ER that represents {g, g′} ∈ EΓ. W.l.o.g. let g′ := ρΓ(g, ℓΓ,t) be the next grid
node suggested by RΓ and u be the next node on Π{g,g′} towards g′. Then ρG(v, ℓt) := u.

▶ Theorem 16. Let RΓ be a local, correct, exact routing scheme for Γ with labels and local
routing information of O(log n) bits. Then the routing scheme R from Definition 15 is local,
correct, has constant stretch, labels and local routing information of size O(log n) bits and
can be computed in O(1) rounds.

4 Computing a Labelling for the Grid Graph

This section is dedicated to computing the labelling ℓΓ : VΓ → {0, 1}+ for the grid graph
by first constructing a particular tree structure TΓ and then computing a labelling on it
in O(log n) rounds leveraging various HYBRID (and in particular NCC0) model techniques.
For the tree-labelling we use a similar approach as presented in [27], but slightly adapt
the labelling which later allows jumping over branches of our specifically constructed tree,
facilitating an optimal routing scheme in grid graphs. Afterwards, Section 5 will deal with
computing the routing function ρΓ : VΓ × {0, 1}+ → VΓ leading to the routing scheme RΓ.

We assume the HYBRID model on the grid graph Γ that represents the network which we
constructed and simulated in the previous sections (Theorem 8). The goal is to divide the
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grid nodes into sets of vertically connected grid nodes called portals. Connecting neighboring
portals with a single edge gives us a spanning tree of Γ, which we call portal tree. We then
root the portal tree at the node with minimum identifier and compute a label for each grid
node, leading to a well-defined labelling function ℓΓ. Note that we require that the cell
polygon P ′ does not contain holes (Lemma 5), as otherwise there be a cycle after connecting
neighboring portals.
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(a) Initial grid graph Γ. (b) Portal tree TΓ
(blue).
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Figure 3 Example for creation and labelling of the portal tree.

We first define the set of portals as follows:

▶ Definition 17 (Portals). Let Γ = (VΓ, EΓ) be the grid graph as constructed in the last
section. The set of portals are the connected components of (VΓ, Evert), where Evert ⊂ EΓ
are the vertical edges of the grid graph.

For convenience, assume that the grid nodes v1, . . . , vk within a portal P are sorted by
their y-coordinates in descending order, i.e., v1 is the northernmost node.

To construct the portal tree TΓ of the grid graph Γ we connect neighboring portals via a
single edge. Each grid node v checks whether it has an edge to the left and communicates
this to its northern and southern neighbors vN and vS . Assume that v has an edge {v, vW }
to the left. Then v checks if vS also has a horizontal edge to the left. If that is not the case,
v adds the edge {v, vW } to the portal tree. We refer to Figures 3a and 3b for an example.
This gives us the following lemma, the proof of which is delegated to Appendix C.1:

▶ Lemma 18. The portal tree TΓ of a grid graph Γ can be computed in O(1) rounds.

Given the portal tree TΓ, we want to compute a unique label for each grid node that
reflects its structure as portal tree. First, we root TΓ at the grid node r whose representative
is the UDG node u with minimal identifier, using pointer jumping (Appendix C.2) on the
cycle of all grid nodes that corresponds to an Euler tour (Appendix C.3).

Now we compute the labelling for the (rooted) portal tree. For each grid node v in TΓ,
we aim to assign an interval Iv = [lv, rv] ∈ N2 to v, such that Iv ⊃ Iw for any child node
w of v in TΓ. To obtain the left interval border lv for each grid node v in the portal tree,
we perform a depth-first traversal (DFS) on TΓ in O(log n) rounds, using Lemma 28 (see
Appendix C.4). The value lv is then the preorder number of v according to the DFS. Note
that lv < lu for any node u lying in the subtree of v. We then compute the number rv,
corresponding to the maximum left interval border among all nodes in v’s subtree. In a
nutshell, we first let all nodes compute some value d ∈ O(log n), d ≥ log D(TΓ), where D(TΓ)
is the depth of the portal tree. Then we generate additional edges in TΓ for d iterations, by
performing pointer-jumping on the paths from the leaf nodes of TΓ to the root. We perform
the pointer-jumping technique in a condensed way to ensure that the node degrees do not
exceed O(log n). With the help of these additional edges, we let each node v ∈ TΓ compute
the value rv as an aggregate of the lu-values of all nodes u that are contained in the subtree
TΓ(v) of TΓ with root v. We elaborate on this approach in Appendix C.5 (see Lemma 29).

After the algorithm has terminated, each node v knows the correct value rv and thus its
interval Iv = [lv, rv]. Observe that grid nodes which are in different branches of the portal
tree have incomparable labels. We obtain the following lemma:
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▶ Lemma 19. Given a rooted portal tree TΓ, each node v ∈ TΓ can compute an interval
Iv = [lv, rv] in O(log n) rounds, such that Iv ⊃ Iw for any child node w of v in TΓ.

Now that each grid node v knows its interval in TΓ we need to perform one final step. In
addition to its own (unique) interval, a grid node v needs to know the interval that has been
assigned to the node vi which is closest to the root within its own portal. We call this label
the portal label of v. The node on a portal which is closest to the root can determine this
locally. Each portal label can then be broadcasted to all nodes within the respective portal in
O(log |P|) rounds (see Lemma 26), so we obtain the following lemma (cf. Figures 3c and 3d).

▶ Lemma 20. After O(log n) rounds, each grid node v in the portal P = (v1, . . . , vk) knows
the interval Ivi

of the node i ∈ P closest to the root of the portal tree.

Observe that, the way we defined the portal labels we obtain the property that for portal
labels of two neighboring portals, one portal’s label is always a subset of the other. Combining
Lemma 19 and Lemma 20 yields the main result of this section.

▶ Theorem 21. Computing the labelling ℓΓ : VΓ → {0, 1}+ for the grid graph Γ as part of
the routing scheme RΓ can be done within O(log n) rounds.

5 Compact Routing Scheme for the Grid Graph

Finally, we explain our routing strategy for transmitting a packet between two nodes s, t ∈ VΓ
in the grid graph, leading to the routing function ρΓ : VΓ×{0, 1}+ → VΓ. At the start of the
routing protocol, the node s generates a message m that contains the identifier of the target
node t, as well as t’s label and portal label. The goal of our routing strategy is to route m to
t along grid edges via an optimal path in the grid graph. To do so, each grid node receiving
the message m has to decide which of its grid neighbors to forward m to, using only the
information stored in m, and the information stored in its own local memory. Briefly, the
strategy works as follows. While we are not at the portal containing t, we always try going
left (west) or right (east) first by going to a portal whose label is closest to the portal label
of the target node t. If going east or west is not possible, we go up (north) or down (south)
instead by comparing g’s own label with the actual label of the target node t. Once we are at
the portal that contains the target node, we only consider going up or down until we reach t.

Detailed Description. We describe the routing strategy in more detail now (see the full
version for pseudocode). Assume we are at a grid node g and want to route a message m to
a grid node t. We introduce the following notation for the information known to g. Note
that grid nodes obtain this information in one communication round with their neighbors.

▶ Definition 22. The information required to be stored by a grid node g ∈ VΓ are denoted by
the following variables.

(i) g.L ∈ N2: g’s own interval given to it by labelling of the portal tree.
(ii) g.P ∈ N2: The portal label of the portal containing g.
(iii) gN , gS , gE , gW ∈ VΓ ∪ {⊥}: g’s grid neighbors in north, south, east and west direction

(⊥ denotes that there is no such neighbor). For each of these grid neighbors g also
knows the label of the grid node and the portal label of the grid node.

Additionally, we store the label t.L of t and the portal label t.P of t in the message m, so
g knows these as well upon receipt of m. Note that storing this information at g requires only
O(log n) bits. Assuming that g ̸= t, g must decide which of its grid neighbors gW , gE , gN , gS
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to forward m to. Node g first checks if it is in the same portal as t by comparing g.P and
t.P . Assume that this is not the case. Then g has to consider the following cases. We use
the notation a≁ b to denote that label a is incomparable to label b, i.e., a ̸⊆ b ∧ b ̸⊆ a.

We start by explaining how a message m is routed in horizontal direction.
(i) g.P ⊂ t.P or g.P ⊃ t.P . In case g.P ⊂ t.P then g checks if either g.P ⊂ gW .P ⊂ t.P

or g.P ⊂ gE .P ⊂ t.P holds (only one of these conditions can be true). In the first case,
g forwards m to gW , in the second case g forwards m to gE . If none of the conditions
hold (for example, if gW =⊥ or gE =⊥), then g routes m vertically (see the description
below). The case g.P ⊃ t.P works analogously.

(ii) g.P ≁ t.P . In this case g tries to forward m horizontally to a node, whose portal label is
a superset of g.P . By doing so, m eventually reaches a node g′ whose portal label is also
a superset of t.P (at the closest “common ancestor portal”), and case (i) is considered.
If neither gW nor gE satisfies this condition or does not exist, g routes vertically.

We now explain how m is routed in vertical direction. We do this if g has not been able to
route m horizontally (either because its horizontal neighbors are not appropriate, or because
they do not exist) or if it is already contained in the same portal as the target node t. Again,
g considers the following cases, this time for its own label g.L instead for g.P and for the
actual label t.L instead of the portal label t.P .

(i) g.L ⊂ t.L or g.L ⊃ t.L. In the case g.L ⊂ t.L node g checks if either g.L ⊂ gN .L ⊂ t.L

or g.L ⊂ gS .L ⊂ t.L holds. In the first case, g forwards m to gN , in the second case g

forwards m to gS . The case g.L ⊃ t.L works analogously.
(ii) g.L≁ t.L. If the labels g.L and t.L are incomparable, g tries to forward m vertically to

a node, whose label is a superset of g.L. This is the case for either gN or gS , depending
on the location of the root of the labeled tree.

Analysis of the Routing Strategy. We show that our routing strategy is local, efficient,
and correct, so it fulfills all requirements for a routing scheme. Our routing strategy is local,
as each node v can determine the next node to forward the message m to based solely on the
O(log n) bits of local information, and the labels t.L and t.P given to v upon receipt of m.

Regarding efficiency of our routing strategy, we prove in the full version that it is optimal.
The idea is to show that in case the message is routed in a specific direction, there exists at
least one optimal path that moves in the same direction. We conclude the following theorem.

▶ Theorem 23. A local, correct and exact routing scheme RΓ for Γ using node labels and
local space of O(log n) bits can be computed in O(log n) rounds in the HYBRID model.

6 Conclusion

We showed that for any HYBRID network with a hole-free UDG(V ), a compact routing scheme
can be computed for UDG(V ) in just O(log n) rounds. There are various interesting directions
for follow-up research. For example, we suspect that our approach can be generalized to 3
dimensions (potentially more) where the corresponding “unit ball graph” implies a polyhedron
of genus 0. In particular, some approach akin to multidimensional range trees might work:
define Γ analogously in a three dimensional grid; dissect Γ along 2d-hyperplanes to obtain
2d-portals in Γ – if one then comes up with a routing scheme to find the correct 2d-portal,
then this can be applied alongside the 2d-routing algorithm presented here to find the correct
node in that 2d-portal. There are unresolved issues, however. Another interesting direction
is to efficiently compute compact routing schemes for arbitrary connected UDGs, or ideally,
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to find efficient solutions for arbitrary planar graphs. This seems to be a daunting task; a
simpler setting might be to consider UDGs with a small number of holes where our grid
construction could be of help. Finally, it would be interesting to think about adaptations of
our routing scheme to also minimize congestion, which should be possible in the special case
of hole-free UDGs (see for example the case where the contour polygon is a square [7]).
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A Lower Bound Without Global Communication

The counterexample in Figure 4 (which follows the arguments of [23]) demonstrates that it
is impossible to set up a compact routing scheme with constant stretch in polylogarithmic
time when just relying on the unit-disk graph, even if it does not have radio holes and the
geometric location of the destination is known: Suppose the destination is in the center.
With a wheel of Θ(

√
n) spikes of Θ(

√
n) length each, no node on the wheel can guess the

right spike with probability better than Θ(1/
√

n), so routing information is required for a
constant stretch, but in order to compute the information needed for a constant stretch, the
starting point w of the spike leading to the destination in the center needs to be identified,
which requires Ω(

√
n) communication rounds.

▶ Theorem 24. There is no deterministic (randomized) distributed algorithm that can, within
o(
√

n) rounds, compute a compact routing scheme that achieves (expected) o(
√

n) stretch
when only communicating over the unit-disk graph. This claim holds even when the algorithm
can use geometric information6 and the unit-disk graph has no radio-holes.

Figure 4 Lower bound graph (slightly adapted from Figure 8 in [23]).

B Proof of Theorem 16

Proof of Theorem 16. Given some t ∈ V , the label ℓt of t is the concatenation of the
label ℓΓ,t of the grid node which is in the same cell as t and ID(t). Hence, the labelling
ℓG requires O(log n) bits, given that the same is true for ℓΓ. The information required to
compute ρG(v, ℓt) is composed of the knowledge of neighbors of v in G which includes the
representative of the cell of v (due to Lemma 3) and the information required to evaluate
ρΓ(v, ℓΓ,t). Since nodes know their neighbors already as part of the problem input (local
network equals the routing graph), we do not regard this as additional routing information.
The information to evaluate ρΓ(v, ℓΓ,t) is O(1) bits by our presumption.

We continue with the correctness and the stretch of a path implied by ρG. Let s ̸= t ∈ V

be the current node and the target node respectively. Consider the case that ∥s− t∥ ≤ 1,
i.e., the nodes are adjacent. Then, according to Definition 15 rule (1) the packet is delivered
directly to t which constitutes a correct and exact path.

6 i.e., each node knows and can communicate its own location, the location of its neighbours, and each
source will be given the location of its destination before routing.
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Consider the case that ∥s− t∥ ≥ 1. Let gs, gt ∈ VΓ and rs, rg be the respective grid
nodes and representatives of the cells of s, t. Let Π∗ be the optimal gs-gt-path in Γ implied
by ρΓ. Then the path implied by ρG equals Πs,t = {{s, rs}} ∪ Πrs,rt

∪ {{rt, t}} from
Definition 9, where Πrs,rt :=

⋃
{g,g′}∈Π∗ Π{g,g′} and Π{g,g′} is the representation of the grid

edge {g, g′} ∈ Π∗. This is due to rules (2),(3) and (4).
By Theorem 10, we have that dist(Πs,t) ≤ |Πs,t| ≤ 36 · distG(s, t), implying a stretch

of O(1).
The runtime of pre-computing RG amounts to that of computing a representation R of Γ,

which takes O(1) rounds due to Lemma 7. Note that in all four cases of the routing function
ρG can be evaluated locally using the representation R of Γ from the pre-computation step,
information about local neighbors in G and (local) evaluations of ρΓ. ◀

C Additional Technical Details for Section 4

We provide the missing proof of Lemma 18 and additionally give an overview on some
techniques for hybrid networks that are used by our tree labelling algorithm in Section 4. A
more detailed description of these techniques can be found in [11, 16, 15].

C.1 Proof of Lemma 18
Proof of Lemma 18. The runtime of O(1) rounds is clear, as each node v only needs to
communicate for one round with its southern neighbor vS in the portal. We provide arguments
on why the construction is a tree. Since the cell polygon P ′ is simple (Lemma 5), the cells
of vertices in a portal connect two points on the same polygonal boundary of P ′. Thus,
removing these cells disconnects P ′ and therefore removing the vertices of a portal from Γ
disconnects Γ. This means the portal graph is acyclic, i.e., a tree. Since Γ is connected, the
portal graph is connected as well. ◀

C.2 Pointer Jumping
We show how to construct a network with diameter O(log n) in time O(log n) out of a simple
line graph L with O(n) nodes. Assume each node v ∈ L knows its left and right neighbor in
the line (except for the left- and rightmost node, who only know one neighbor). We let the
nodes of L generate shortcut edges via pointer jumping: In the first round, each node vi ∈ L

that has two neighbors vi−1, vi+1 ∈ L establishes the edge {vi−1, vi+1}. Whenever in each
subsequent round, a node v ∈ L receives two new shortcut edges {u, v}, {v, w} in the previous
round, v generates another shortcut edge {u, w}. It is easy to see that after O(log n) rounds,
no further shortcut edges are created and the resulting structure has diameter O(log n), thus
implying the following lemma.

▶ Lemma 25. Given a line L of O(n) nodes, setting up additional edges to obtain a structure
L+ with diameter O(log n) and degree O(log n) takes O(log n) rounds.

Performing pointer jumping on each of our portals in the portal tree, the grid nodes
within each portal P are able to set up a structure on which they can quickly broadcast
information to all grid nodes within P. By doing so, we immediately obtain the following
lemma.

▶ Lemma 26. Any O(log n)-bit message can be broadcast among all grid nodes within a
single portal P in O(log |P|) rounds.



S. Coy et al. 11:21

C.3 Rooting Trees of Arbitrary Depth

Given a tree T of n nodes with arbitrary depth and constant node degree, we show how
to root T at the node s with minimum identifier, such that every node in T is aware of
its parent node. To do so, we adapt the well-known Euler tour technique to a distributed
setting. Every node v ∈ T with neighbors v(0), . . . , v(deg(v)− 1) (sorted in ascending order
by their identifiers) simulates a virtual node vi for each of its neighbor v(i). We now connect
all virtual nodes to a simple cycle C as follows. For every node vi ∈ C, there is an edge
(vi, uj) ∈ C such that u = v((i + 1) mod deg(v)) and v = u(j). Therefore, each virtual node
vi that belongs to the node v with identifier id(v) is able to introduce itself to its predecessor
in C by sending its virtual identifier ĩd(vi) := id(v) ◦ i for all i ∈ [deg(v)], where ◦ denotes
the concatenation of two binary strings and [k] = {0, . . . , k − 1}. Since each node simulates
only a constant number of virtual nodes, the number of virtual nodes in the cycle C is O(n).

We first describe how to determine the virtual node si with minimal virtual identifier
in O(log n) rounds.7 Note that the node s simulating s0 is then the node with minimal
identifier. Consider the cycle C of virtual nodes and denote the edges of the cycle as level-1
edges. Our algorithm works in multiple iterations. Initially, each virtual node v stores its
own virtual identifier ĩd(v) in some variable v.I. In the first iteration, each virtual node v

does the following. In the first step, v sends v.I to its left neighbor in the cycle8. Upon
receipt of a virtual identifier v.I, each node u updates its variable u.I to v.I in case that
v.I < u.I. In the next step, each virtual node v introduces its left neighbor vl to its right
neighbor vr to create the edge {vl, vr}, a level-2 edge. In each subsequent iteration, say the
i-th iteration, each node v first sends v.I along with its own identifier via all of its level-j
edges (for all j ∈ {1, . . . , i}) and then creates level-(i+1) edges, using its level-i edges created
in the previous iteration. Note that after the i-th iteration, 2i nodes are aware of v’s virtual
identifier and thus have stored v’s virtual identifier in their variables u.I, in case v’s virtual
identifier is the minimal virtual identifier among all of these nodes. We proceed in this
manner until a virtual node v has received its own virtual identifier from its right neighbor in
some iteration, as in this case all nodes have received v’s virtual identifier. This happens at
the node s0 with minimum virtual identifier after O(log n) rounds, because C contains O(n)
virtual nodes. Thus, all that is left to do is to let s0 announce itself as the root of the tree by
broadcasting a message on the cycle with the generated shortcuts, indicating the termination
of the algorithm and announcing itself as the node with minimum virtual identifier. This
takes another O(log n) rounds. Then, each virtual node is now aware of the node s0 with
minimum virtual identifier and therefore also of the node s with minimum identifier.

Now we want to root the tree T at s. The virtual node s0 starts broadcasting its virtual
identifier via all of its outgoing edges to the left (including all of the generated shortcuts
from before). During this broadcast, we keep track of the traversal distance of the message
to be broadcasted, such that each virtual node is able to determine how many hops it is away
from s0 in the cycle. A real node v can now determine its parent in the tree T by looking at
its virtual node with minimum traversal distance to s0. Let this node be the node vi and let
ui be the predecessor of vi in the cycle C. Then it is easy to see that u is the parent node of
v in T , resulting in T getting rooted at s and implying the following lemma.

7 The virtual node with minimal virtual identifier ĩd(si) = id(s) ◦ i is the node si with id(s) ≤ id(v) for
all v ∈ T and i = 0.

8 The nodes may have different perceptions on which direction is left, but this is of no concern for our
algorithm.
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▶ Lemma 27. Let T be a tree of n nodes with constant node degree. T can be rooted at the
node s with minimal identifier within O(log n) rounds.

C.4 Depth-First Search on Trees
Given a rooted tree T of n nodes with arbitrary depth and constant node degree, we compute
for each node v ∈ T the preorder number lv ∈ N according to a depth-first search (DFS) of
T . Let s be the root of T . As the first step, we perform the distributed Euler-Tour technique
described in the previous section with the exception that the virtual node s0 refrains from
introducing itself to its predecessor. It is easy to see that this results in the virtual nodes
being arranged in a simple line L instead of a cycle.

Next, we apply the pointer jumping technique from Lemma 25 to transform L into a
structure L+ with diameter O(log n). Through a single broadcast from the leftmost node
s ∈ L+, we are now able to compute a number l′

u for a virtual node u indicating the number
of (real) nodes v for which at least one of v’s virtual nodes is left of u on the line L. Each
real node u then sets lu to the minimum value out of all l′

u values of its virtual nodes, which
corresponds to u’s position in the DFS.

▶ Lemma 28. Let T be a rooted tree of n nodes with constant node degree. A DFS on T

where each node v ∈ T is assigned its number lv ∈ N in the DFS can be computed in O(log n)
rounds.

C.5 Computing the Maximum Preorder Number in a Rooted Tree
Assume we are given a rooted tree T of n nodes with arbitrary depth and constant node
degree in which every node v ∈ T possesses a preorder number lv ∈ N according to a DFS.
We compute for each node v ∈ T the maximum preorder number possessed by a node in v’s
subtree, i.e., we compute rv = max{lu ∈ N | u ∈ T (v)}, where T (v) is the subtree of T with
v as the root.9

Before we describe our algorithm, we let the nodes compute an upper bound of log n,
i.e., some value d = O(log n), d ≥ log n as follows. We compute the line L via the Euler-tour
described earlier on the rooted tree T and apply Lemma 25 on L to obtain the structure L+.
Then we perform a broadcast from the rightmost node u in L+ to the leftmost node s0 in
L+, where each message generated by the broadcast contains a counter that is incremented
by 1 once the message is forwarded. The node s0 then maintains a variable d that contains
the maximum counter received by s0. Since L+ has diameter O(log n), the broadcast finishes
after O(log n) rounds. Once the broadcast is finished, it is easy to see that d = O(log n).
The node s0 then broadcasts d to all nodes in L+, such that after another O(log n) rounds,
each node knows d. Observe that d ≥ log D(T ), where D(T ) is the depth of the tree T .

We are now ready to describe the algorithm for computing the values rv for each node
v ∈ T . Initially, each node v sets rv to lv. Denote the edges of T as level-0 edges. The
algorithms performs i = 1, . . . , d iterations, each iteration needing O(1) rounds. Iteration

9 A more general approach to this problem is presented in [16, Lemma 4.12], where the goal is to compute
the value of a distributive aggregate function for each node v’s own subtree. An aggregate function f is
called distributive if there is an aggregate function g such that for any multiset S and any partition
S1, . . . , Sℓ of S, f(S) = g(f(S1), . . . , f(Sℓ)). Classical examples are MAX, MIN, and SUM. However,
due to the generality of f , the authors had to make use of randomization, which results in a runtime of
O(log n), w.h.p. for their algorithm. We present a deterministic O(log n)-algorithm that is specifically
tailored to the MAX function in this section.
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i works as follows at each node v ∈ T . First, if v has a level-(i − 1) edge going up in the
tree to some node u, then v sends rv to u. Upon receipt of a value rw from node w in the
previous step, v updates rv by setting rv ← rw and marks the edge {v, w}.10 As the final
step of the iteration, v checks whether it has a marked edge {v, u} going up the tree and a
marked edge {v, w} going down the tree. If that is the case, v creates a level-i edge {u, w}
by introducing u to w and vice versa. If not, then v marks itself as ready.

Let T (v) be the subtree of T with v as the root and let w ∈ T (v) be the leaf node with
maximum preorder number. Consider the unique path P up the tree from w to v in T (v). It
is easy to see that our algorithm transfers the preorder number lw to all nodes on this path
within ⌈log k⌉ iterations, where k is the length of P , because in each iteration i, new level-i
shortcuts are added to the nodes on the path in a manner similar to the pointer-jumping
approach from Section C.2. Therefore, once a node v has marked itself as ready in iteration
i, v has received the desired value for rv in iteration i. As each node v ∈ T performs the
algorithm in parallel, each node v has determined rv after at most d = O(log n) iterations
(recall that d ≥ log D(T )). Note that the node degree for each node v does not exceed
O(log n) throughout the algorithm, as in each iteration, v’s degree increases by at most 2.

We obtain the following lemma.

▶ Lemma 29. Let T be a rooted tree of n nodes with constant node degree in which every
node v ∈ T possesses a preorder number lv ∈ N according to a DFS on T starting at its root.
Each node v ∈ T can compute the value rv = max{lu ∈ N | u ∈ T (v)}, where T (v) is the
subtree of T with v as the root, within O(log n) rounds.

10 Note that in the first iteration (i = 1), a node v receives a value rw from each of its child nodes w. It
then just sets rv to be the maximum value out of all received values rw. It is easy to see that v receives
at most one message in any subsequent iterations in this step.

OPODIS 2021





Efficient Assignment of Identities in Anonymous
Populations
Leszek Gąsieniec ! Ï

Department of Computer Science, University of Liverpool, UK

Jesper Jansson ! Ï

Graduate School of Informatics, Kyoto University, Japan

Christos Levcopoulos ! Ï

Department of Computer Science, Lund University, Sweden

Andrzej Lingas ! Ï

Department of Computer Science, Lund University, Sweden

Abstract
We consider the fundamental problem of assigning distinct labels to agents in the probabilistic
model of population protocols. Our protocols operate under the assumption that the size n of the
population is embedded in the transition function. Their efficiency is expressed in terms of the
number of states utilized by agents, the size of the range from which the labels are drawn, and
the expected number of interactions required by our solutions. Our primary goal is to provide
efficient protocols for this fundamental problem complemented with tight lower bounds in all the
three aspects. W.h.p. (with high probability), our labeling protocols are silent, i.e., eventually
each agent reaches its final state and remains in it forever, and they are safe, i.e., never update the
label assigned to any single agent. We first present a silent w.h.p. and safe labeling protocol that
draws labels from the range [1, 2n]. Both the number of interactions required and the number of
states used by the protocol are asymptotically optimal, i.e., O(n log n) w.h.p. and O(n), respectively.
Next, we present a generalization of the protocol, where the range of assigned labels is [1, (1 + ε)n].
The generalized protocol requires O(n log n/ε) interactions in order to complete the assignment of
distinct labels from [1, (1 + ε)n] to the n agents, w.h.p. It is also silent w.h.p. and safe, and uses
(2 + ε)n + O(nc) states, for any positive c < 1. On the other hand, we consider the so-called pool
labeling protocols that include our fast protocols. We show that the expected number of interactions
required by any pool protocol is ≥ n2

r+1 , when the labels range is 1, . . . , n + r < 2n. Furthermore, we
provide a protocol which uses only n + 5

√
n + O(nc) states, for any c < 1, and draws labels from

the range 1, . . . , n. The expected number of interactions required by the protocol is O(n3). Once a
unique leader is elected it produces a valid labeling and it is silent and safe. On the other hand, we
show that (even if a unique leader is given in advance) any silent protocol that produces a valid
labeling and is safe with probability > 1 − 1

n
, uses ≥ n +

√
n−1

2 − 1 states. Hence, our protocol is
almost state-optimal. We also present a generalization of the protocol to include a trade-off between
the number of states and the expected number of interactions. Finally, we show that for any silent
and safe labeling protocol utilizing n + t < 2n states, the expected number of interactions required
to achieve a valid labeling is ≥ n2

t+1 .
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12:2 Efficient Assignment of Identities in Anonymous Populations

1 Introduction

The problem of assigning and further maintaining unique identifiers for entities in distributed
systems is one of the core problems related to network integrity. In addition, a solution to this
problem is often an important preprocessing step for more complex distributed algorithms.
The tighter the range that the identifiers are drawn from, the harder the assignment problem
becomes.

In this paper we adopt the probabilistic population protocol model in which we study
the problem of assigning distinct identifiers, which we refer to as labels, to all agents 1 The
adopted model was originally intended to model large systems of agents with limited resources
(state space) [4]. In this model the agents are prompted to interact with one another towards
a solution of a shared task. The execution of a protocol in this model is a sequence of
pairwise interactions between randomly chosen agents. During an interaction, each of the
two agents: the initiator and the responder (the asymmetry assumed in [4]) updates its state
in response to the observed state of the other agent according to the predefined (global)
transition function. For more details about the population protocol model, see Appendix A.

Designing our population protocols for the problem of assigning unique labels to the
agents (labeling problem), we make an assumption that the number n of agents is known in
advance. Our protocols would also work if only an upper bound on the number of agents is
known to agents. In fact, in such case the problem becomes easier as the range from which
the labels are drawn is larger. In particular, if we do not have the limit on n we also do
not have limit on the number of states to be used. More natural assumption is that such a
limit is imposed. And indeed, there are plenty of population protocols which rely on the
knowledge of n [12, 13].

Our labeling protocols include a preprocessing for electing a leader, i.e., an agent singled
out from the population, which improves coordination of more complex tasks and processes.
A good example is synchronization via phase clocks propelled by leaders. More examples of
leader-based computation can be found in [5].

In the unique labeling problem adopted here, the number of utilized states needs to reflect
the number of agents n. Also, Ω(n log n) is a natural lower bound on the expected number of
interactions required to solve not only the labeling problem but any non-trivial problem by a
population protocol. The main reason is that Ω(n log n) interactions are needed to achieve a
positive constant probability that each agent is involved in at least one interaction [10].

Perhaps the simplest protocol for unique labeling in population networks is as follows [13]
(cf. [11]). Initially, all agents hold label 1 which is equivalent with all agents being in state 1.

In due course, whenever two agents with the same label i interact, the responder updates own
label to i + 1. The advantage of this simple protocol is that it does not need any knowledge
of the population size n and it utilizes only n states and assigns labels from the smallest
possible range [1, n]2. The severe disadvantage is that it needs at least a cubic in n number
of interactions (getting rid of the last multiple label i, for all i = 1, . . . n − 1, requires a
quadratic number of interactions in expectation) to achieve the configuration in which the
agents have distinct labels.

In the following two examples of protocols for unique labeling, we assume that the
population size n is embedded in the transition function, such protocols are commonly used
and known as non-uniform protocols [3], and one of the agents is distinguished as the leader,
see leader based protocols [5].

1 When the size of the label range is equal to the number of agents, the problem is also called ranking in
the literature [12].

2 We shall denote a range [p, · · · , q] by [p, q] from here on.
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In the first of the two examples, we instruct the leader to pass labels n, n − 1, ..., 2 to the
encountered subsequently unlabeled yet agents and finally assign 1 to itself. The protocol
uses only 2n − 1 states (n states utilized by the leader and n − 1 states by other agents) and
it assigns unique labels in the smallest possible range [1, n] to the n agents. Unfortunately,
this simple protocol requires Ω(n2 log n) interactions because as more agents get their labels,
interactions between the leader and agents without labels become less likely. The probability
of such an encounter drops from 1

n at the beginning to 1
n(n−1) at the end of the process.

By using randomization, we can obtain a much faster simple protocol as follows. We
let the leader to broadcast the number n to all agents. It requires O(n log n) interactions
w.h.p.3 [18]. When an agent gets the number n, it uniformly at random picks a number in
[1, n3] as its label. The probability that a given pair of agents gets the same label is only 1

n3 .

Hence, this protocol assigns unique labels to the agents with probability at least 1 − 1
n . It

requires only O(n log n) interactions w.h.p. The drawback is that it uses O(n3) states and
the large range [1, n3]. This method also needs a large number of random bits independent
for each agent.

Besides the efficiency and population size aspects, there are other deep differences between
the three examples of labeling protocols. An agent in the first protocol never knows whether
or not it shares its label with other agents. This deficiency cannot happen in the case of the
second protocol but it takes place in the third protocol although with a small probability.

The labeling protocols presented in this paper are silent and safe. We say that a (non-
necessarily labeling) protocol is silent if eventually each agent reaches its final state and
remains in it forever. We say that a labeling protocol is safe if it never updates the label
assigned to any single agent. While the concept of a silent population protocol is well
established in the literature [12, 15], the concept of a safe labeling protocol is new. The
latter property is useful in the situation when the protocol producing a valid labeling has to
be terminated before completion due to some unexpected emergency or running out of time.

Observe that among the three examples of labeling protocols, only the second one is
both silent and safe. The first example protocol is silent [12] but not safe. Finally, the
third (probabilistic) one is silent and almost safe as it violates the definition only with small
probability.

Our contributions. The primary objective of this paper is to provide efficient labeling
protocols complemented with tight lower bounds in the aspects of the number of states
utilized by agents, the size of the range from which the labels are drawn, and the expected
number of interactions required by our solutions.

In particular, we provide positive answers to two following natural questions under the
assumption that the number n of agents is known at the beginning.

1. Can one design a protocol for the labeling problem requiring an asymptotically optimal
number of O(n log n) interactions w.h.p., utilizing an asymptotically optimal number of
O(n) states and an asymptotically minimal label range of size O(n) ?

2. Can one design a silent and safe protocol for the labeling problem utilizing substantially
smaller number of states than 2n and possibly the minimal label range [1, n] ?

We first present a population protocol that w.h.p. requires an asymptotically optimal
number of O(n log n) interactions to assign distinct labels from the range [1, 2n]. The
protocol uses an asymptotically optimal number of O(n) states. We also present a more

3 That is with the probability at least 1 − 1
nα , where α ≥ 1 and n is the number of agents.
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involved generalization of the protocol, where the range of assigned labels is [1, (1 + ε)n]. The
generalized protocol requires O(n log n/ε) interactions in order to complete the assignment
of distinct labels from [1, (1 + ε)n] to the n agents, w.h.p. It uses (2 + ε)n + O(nc) states,
for any positive c < 1. Both protocols are silent w.h.p. and safe. Furthermore, we consider
a natural class of population protocols for the unique labeling problem, the so-called pool
protocols, including our fast labeling protocols. We show that for any protocol in this class
that picks the labels from the range [1, n + r], the expected number of interactions is Ω( n2

r+1 )
Next, we provide a labeling protocol which uses only n + 5

√
n + O(nc) states, for any

positive c < 1, and the label range [1, n]. The expected number of interactions required
by the protocol is O(n3). Once a unique leader is elected it produces a valid labeling and
it is silent and safe. On the other hand, we show that (even if a unique leader is given
in advance) any silent protocol that produces a valid labeling and is safe with probability
larger than 1 − 1

n , uses at least n +
√

n−1
2 − 1 states. It follows that our protocol is almost

state-optimal. In addition, we present a variant of this protocol which uses n(1 + ε) + O(nc)
states, for any positive c < 1. The expected number of interactions required by this variation
is O(n2/ε2), where ε = Ω(n−1/2). On the other hand, we show that for any silent and safe
labeling protocol utilizing n + t < 2n states the expected number of interactions required to
achieve a valid labeling is at least n2

t+1 .
All our labeling protocols include a preprocessing for electing a unique leader and assume

the knowledge of the population size n. However, our almost state-optimal protocol (Single-
Cycle protocol) can be made independent of n (see Section 4).

Our results are summarized in Tables 1 and 2.

Main ideas of our protocols. Our first fast labeling protocol roughly operates as follows.
The leader initially has label 1 and a range of labels [2, n]. During the execution of the first
phase, encountered unlabeled agents also get a label and an interval of labels that they can
distribute among other agents. Upon a communication between a labeled agent that has a
non-empty interval and an unlabeled agent, the latter agent gets a label from the interval
and if the remaining part of the interval has length ≥ 2 then it is shared between the two
agents. After O(n log n) interactions, a sufficiently large fraction of agents is labeled and has
no additional labels to distribute w.h.p. The leader counts its own interactions up to O(log n)
in order to trigger the second phase by broadcasting. In the latter phase, an agent with a
label x and without a non-empty interval can distribute one additional label x + n. In the
first phase of this protocol the labels from the range [1, n] are distributed rapidly among the
agents. In the second phase the unlabeled agent still have a high chance of communicating
with an agent that can distribute a label. Roughly, our second, generalized fast labeling
protocol is obtained from the first one by constraining the set of agents that may distribute
the labels x + n in the second phase to those having labels in the range [1, nϵ].

The main idea of the almost state-optimal labeling protocol (Single-Cycle protocol) is
to use the leader and an auxiliary leader nominated by the leader to disperse the n labels
jointly among the remaining free agents. The leader disperses the first and the auxiliary
leader the second part of each individual label. When a free agent gets both partial labels, it
combines them into its individual label and then informs the leaders about this. The two
leaders operate in two embedded loops. For each of roughly

√
n partial labels of the leader,

the auxiliary leader makes a full round of dispersing its roughly
√

n partial labels. In the
generalized version of the protocol (k-Cycle protocol), the process is partially parallelized by
letting the leader to form k pairs of dispensers, where each pair labels agents in a distinct
range of size n/k.
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Table 1 Upper bounds on the number of states, the number of interactions and the range required
by the labeling protocols presented in this paper. In Theorem 9, ε is Ω(n−1) while in Theorem 12
Ω(n−0.5).

Theorem # states # interactions Range

Theorem 4 O(n) O(n log n) w.h.p. [1, 2n]
Theorem 9 (2 + ε)n + O(nc), any c < 1 O(n log n/ε) w.h.p. [1, (1 + ε)n]
Theorem 11 n + 5 ·

√
n + O(nc), any c < 1 expected O(n3) [1, n]

Theorem 12 (1 + ε)n + O(nc), any c < 1 expected O(n2/ε2) [1, n]

Table 2 Lower bounds on the number of states or/and the number of interactions required by
labeling protocols. (1) Any labeling protocol that is capable to produce a valid labeling. (2) The
silent protocol in Theorem 14 (first part) is assumed to produce a valid labeling and be safe with
probability greater than 1 − 1

n
. (3) The silent protocol in Theorem 14 (2nd part) is assumed to

produce a valid labeling and be safe with probability 1.

Protocol type # states # interactions Theorem

any1 n Ω(n log n) w.h.p. Theorem 13
silent, safe2 n +

√
n−1

2 − 1 - Theorem 14 (1st part)
silent, safe3, n + t < 2n states - expected n2

t+1 Theorem 14 (2nd part)
pool, range [1, n + r] - expected n2

r+1 Theorem 17

Related work. There are several papers concerning labeling of processing units (also known
as renaming or naming) in different communication models [14]. E.g., Berenbrink et al. [8]
present efficient algorithms for the so-called lose and tight renaming in shared memory systems
improving on or providing alternative algorithms to the earlier algorithms by Alistarh et
al. [2, 1]. The lose renaming where the label space is larger that the number of units is shown
to admit substantially faster algorithms than the tight renaming [1, 8].

The problem of assigning unique labels to agents has been studied in the model of
population protocols by Beauquier et al. [7, 11]. In [11], the emphasis is on estimating the
minimum number of states which are required by apparently non-safe protocols. In [7], the
authors provide among other things a generalization of a leader election protocol to include
a distribution of m labels among n agents, where m ≤ n. In the special case of m = n, all
agents will receive unique labels. No analysis on the number of interactions required by the
protocol is provided in [7]. Their focus is on the feasibility of the solution, i.e., that the
process eventually stabilizes in the final configuration. Their protocol seems inefficient in the
state space aspect as it needs many states/bits to keep track of all the labels.

Doty et al. considered the labeling problem in [17] and presented a subroutine named
“UniqueID” for it based on the technique of traversing a labeled binary tree and associating
agents with nodes in the tree. The subroutine requires O(n log n log log n) interactions.

The labeling problem has also been studied in the context of self-stabilizing protocols
where the agents start in arbitrary (not predefined) states, see [12, 13]. In [13], Cai et al.
propose a solution which coincides with our first example of labeling protocols presented in
the introduction. In a very recent work [12], Burman et al. study both slow and fast labeling
protocols, the latter utilizing an exponential number of states. The protocols in both papers
require the exact knowledge of n. The work [12] focuses on self-stabilizing protocols which
cannot be safe by definition. It is more proper to compare our protocols with the initialized
version of the protocols in [12]. E.g., the leader-driven initialized (silent) ranking protocol
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in [12] (see Lemma 4.1) requires O(n2) interactions, uses O(n) states and it is safe. An
analogous variant of the fast ranking protocol from [12] requiring O(n log n) interactions and
an exponential number of states is also safe but not silent. The known labeling protocols are
summarized in Table 3 in Appendix B.

The most closely related problem more studied in the literature is that of counting the
population size, i.e., the number of agents. It has been recently studied by Aspnes et al.
in [6] and Berenbrink et al. in [10]. We assume that the population size is initially known.
Alternatively, it can be computed by using the protocol counting the exact population
size given in [10]. The aforementioned protocol computes the population size in O(n log n)
interactions w.h.p., using Õ(n) states. Another possibility is to use the protocol computing
the approximate population size, presented in [10]. The latter protocol requires O(n log2 n)
interactions to compute the approximate size w.h.p., using only a poly-logarithmic number of
states. For references to earlier papers on protocols for counting or estimating the population
size, in particular the papers that introduced the counting problem and that include the
original algorithms on which the improved algorithms of Berenbrink et al. are based, see [10].

All our protocols include a preprocessing for electing a unique leader and its synchro-
nization with the proper labeling protocol (e.g., see the proof of Theorem 4). There is a
vast literature on population protocols for leader election [9, 16, 18, 19]. For our purposes,
the most relevant is the protocol that elects a unique leader from a population of n agents
using O(n log n) interactions and O(nc) many states, for any positive constant c < 1, w.h.p.,
described in [10, 16] (see also Fact 7). The newest results elaborate on state-optimal leader
election protocols utilizing O(log log n) states. These include the fastest possible protocol [9]
based on O(n log n) interactions in expectation, and a slightly slower protocol [19] requiring
O(n log2 n) interactions with high probability.

Our population protocols for unique labeling use also the known population protocol
for (one-way) epidemics, or broadcasting. It completes spreading a message in Θ(n log n)
interactions w.h.p. and it uses only two states [18] (see also Fact 4).

Organization of the paper. In the next section, we provide basic facts on probabilistic
inequalities and population protocols for broadcasting, counting and leader election. In
Section 3, we present our fast silent w.h.p. and safe protocol for unique labeling in the
range [1, 2n] and its generalization to include the range [1, n(1 + ε)]. Section 4 is devoted
to the almost state-optimal, roughly silent and safe protocol with the label range [1, n] and
its variation. Section 5 presents lower bounds on the number of states or the number of
interactions for silent, safe and the so-called pool protocols for unique labeling. We conclude
with Final remarks.

2 Preliminaries

Probabilistic bounds.

▶ Fact 1 (The union bound). For a sequence A1, A2, ...., Ar of events, Prob(A1 ∪ A2 ∪
......Ar) ≤

∑r
i=1 Prob(Ai).

▶ Fact 2 (multiplicative Chernoff lower bound). Suppose X1, ..., Xn are independent random
variables taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the sum’s
expected value. Then, for any δ ∈ [0, 1],
P rob(X ≤ (1 − δ)µ) ≤ e

δ2µ
2 holds. Similarly, for any δ ≥ 0, P rob(X ≤ (1 + δ)µ) ≤ e

δ2µ
2+δ

holds.
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▶ Fact 3 ([18]). For all C > 0 and 0 < δ < 1, during Cn log n interactions, with probability
at least 1 − n−O(δ2C) , each agent participates in at least 2C(1 − δ) log n and at most
2C(1 + δ) log n interactions.

Broadcasting, counting and leader election. We shall refer to the following broadcast
process which can be completed during Θ(n log n) interactions w.h.p. Each agent is either in
a state of M-type (got the message) or in a state of ¬M-type. Whenever an agent in a state
of M-type interacts with an agent in a state of ¬M-type, the latter changes its state to a
state of M-type (gets the message). The process starts when the first agent gets the message
and completes when all agents have the message.

▶ Fact 4. There is a constant c0 , such that for c ≥ c0, the broadcast process completes in
cn log n interactions with probability at least 1 − n−Θ(c).

Berenbrink et al. [10] obtained among other things the following results on counting the
population size, i.e., the number of agents.

▶ Fact 5. There is a protocol for a population of an unknown number n of agents such
that w.h.p., after O(n log2 n) interactions the protocol stabilizes and each agent holds the
same estimation of the population size which is either ⌈log n⌉ or ⌊log n⌋. The protocol uses
O(log2 n log log n) states.

▶ Fact 6. There is a protocol for a population of an unknown number n of agents such that
w.h.p., after O(n log n) interactions the protocol stabilizes and each agent holds the exact
population size. The protocol uses Õ(n) states.

There is a vast literature on population protocols for leader election [18]. For our purposes,
the following fact will be sufficient. Its idea is to start leader election with a subprotocol
of [19] that elects a junta of substantially sublinear in n number of leaders. The junta is
formed using O(n log n) interactions. Then, when state space of size nc is available, c < 1,

only a constant number of rounds of leader elimination is needed, each requiring O(n log n)
interactions. For more details, see [10, 16].

▶ Fact 7. There is a protocol that elects a unique leader from a population of n agents
using O(n log n) interactions and O(nc) many states, for any positive constant c < 1, w.h.p.
[10, 16].

3 Labeling with asymptotically optimal number of interactions, nearly
optimal number of states and range

In this section, we provide a silent w.h.p. and a safe labeling protocol that assigns unique
labels from the range [1, 2n] to n agents in O(n log n) interactions w.h.p. Then, we generalize
the protocol to include the range [1, (1 + ε)n], where ε does not have to be a constant; it can
even be as small as O(n−1). We show that the generalized protocol assigns unique labels
from [1, (1 + ε)n] in O(n log n/ε) interactions w.h.p. In the first protocol, the agents use
O(n) states, in the second protocol only (2 + ε)n + O(nc) states, for any positive c < 1.

Range [1, 2n]. The protocol runs in two main phases preceded by a leader election prepro-
cessing. The idea of the first phase resembles that of load balancing [10], the difference is
that tokens (in our case labels and interval sub-ranges) are distinct.
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At the beginning of the first phase, the leader assigns the label 1 and also temporarily the
interval [2, n] to itself. Next, whenever two agents interact, one with label and a temporarily
assigned interval [q, r] where r > q and the other without label, the former agent shrinks
its interval to [q, ⌊ q+r

2 ⌋] and it gives away the label ⌊ q+r
2 ⌋ + 1 and if ⌊ q+r

2 ⌋ + 2 ≤ r also the
sub-interval [⌊ q+r

2 ⌋ + 2, r] to the latter agent. Furthermore, whenever an agent with label
and a temporarily assigned singleton interval [q, q] interacts with an agent without label, the
former agent cancels its interval and gives the label q to the latter agent. In the remaining
cases, interactions have no effect. Note that during the first phase a sub-tree of the binary
tree of the partition of the start interval [1, n] with n leaves determined by the protocol rules
is formed; see Fig. 1 in Appendix C. Also observe that when an agent at an intermediate
node of the tree interacts with an agent without label then the former agent migrates to the
left child of the node while the latter agent lands at the right child of the node.

In the second phase, when an agent with a label i ∈ [1, n] at a leaf of the tree interacts
with an agent without label for the first time then the latter agent gets the label i + n.

Interactions between agents (if any) at intermediate nodes of the tree and agents without
labels are defined as in the first phase.

The following lemmata are central in showing that O(n log n) interactions are sufficient
w.h.p. to implement our protocol.

▶ Lemma 1. There is a constant c such that after cn log n interactions in the first phase the
number of agents without labels drops below n/4 w.h.p.

Proof. The proof is by contradiction. Suppose that a set F of at least n/4 agents without
labels survives at least cn log n interactions, where the constant c will be specified later.

Consider first the leader agent starting with the interval [2, n] during the aforementioned
interactions. When the agent interacts with an agent without label its interval is roughly
halved. We shall call such an interaction a success. The probability of success is at least 1

4n .

The expected number of successes is at least c
4 log n. By using Chernoff multiplicative bound

given in Fact 2, we can set c to enough large constant so the probability of at least log2 n + 1
successes will be at least 1 − 1

n2 . This means that the leader will end up without any interval
with so high probability during the cn log n interactions. The leader chooses the leftmost
path in the binary partition tree of the start interval [1, n]. Consider an arbitrary path P

from the root to a leaf in the tree. Note that several agents during distinct interactions can
appear on the path. Define as a success an interaction in which an agent currently on P

interacts with an agent without label. The expected number of successes is again at least
c
4 log n and again we can conclude that there are at least log2 n + 1 successes with probability
at least 1 − 1

n2 . Simply, the probabilities of interacting with an agent without label are the
same for all agents with labels, i.e., on some paths in the tree. Another way to argue is that
the leader could make other decisions as to which roughly half of interval to preserve and the
path choice. By the union bound (Fact 1), we conclude that all the n paths from the root
to the leaves in the tree could be developed during the cn log n interactions, so all agents
would get a label, with probability at least 1 − 1

n . We obtain a contradiction with the so
long existence of the set F. ◀

▶ Lemma 2. If the second phase starts after cn log n interactions, where c is the constant
from Lemma 1, then only O(n log n) interactions are needed to assign labels in [1, 2n] to the
remaining agents without labels, w.h.p.

Proof. The number of agents without labels at the beginning of the second phase is at most
n/4 w.h.p. Hence, at the beginning of this phase the number of agents with labels is at least
3
4 n w.h.p. An agent with label i ≤ n at a leaf of the tree can give the label i + n to an agent
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without label only once. Since this can happen at most n
4 times, the number of agents with

labels in [1, n] that can give a label is always at least n
2 w.h.p. We conclude that for an agent

without label the probability of an interaction with an agent that can give a label is is at
least almost 1

2n . Hence, after each O(n) interactions the expected number of agents without
label halves. It follows that the expected number of such interactions rounds is O(log n).
Consequently, the number of the rounds is also O(log n) w.h.p. by Chernoff bound (Fact 2).

An alternative way to obtain the O(n log n) bound on the number of interactions w.h.p.
is to use Fact 3 with C = O( 1

1/2 ) and δ = 1
2 . Then, each agent will interact with at least

C log n agents w.h.p. during Cn log n interactions. Consequently, the probability that a
given agent does not interact with any agent that can give a label during the aforementioned
interactions is (1 − 1

2 )O(2 log n). Hence, by picking enough large C, we conclude that each
agent (in particular without label) will interact with at least one agent that can give a label
during the Cn log n interactions w.h.p. ◀

▶ Lemma 3. During both phases, no pair of agents gets the same label.

Proof. The uniqueness of the label assignments in the first phase follows from the disjointed-
ness of the labels and intervals assigned to agents before and after each interaction. This
argument also works for the labels not exceeding n assigned later in the second phase. Finally,
the uniqueness of the labels of the form i + n follows from the uniqueness of the labels of the
agents passing these labels. ◀

▶ Theorem 4. There is a safe protocol for population of n agents that w.h.p. assigns unique
labels in the range [1, 2n] to the agents equipped with O(n) states in O(n log n) interactions.
The protocol is also silent w.h.p.

Proof. Under the assumption that the leader election preprocessing provides a unique leader,
the correctness of label assignment in both phases w.h.p. and the fulfilling of the definition
of a silent and safe protocol follows from Lemmata 1, 2, and 3 and the specification of the
protocol, respectively.

For the purpose of the leader election preprocessing, we use the simple leader election
protocol using O(n log n) interactions and O(nc) states, for any positive constant c, described
in [10, 16] (Fact 7). The phase clock (based on junta of leaders) from [19] is also formed in
O(n log n) interactions, using O(log log n) states and we use this clock to count the required
(by the simple leader election protocol) time Ω(n log n). When this time is reached on the
clock we switch from leader election to our proper labeling protocol. The two aforementioned
processes can be run simultaneously, resulting in additional state usage O(nc log log n) (still
fine for our needs). Thus, the leader election preprocessing and its synchronization with the
proper labeling protocol in two phases add O(n log n) interactions and o(n) states w.h.p. It
provides a unique leader w.h.p. It follows that w.h.p. the whole protocol provides a correct
labeling, it is silent and safe. In fact, we can make it safe (with probability 1) by prohibiting
agents to change or get rid of an assigned label. Note that this constraint does not affect the
operation of the protocol when a unique leader is provided by the preprocessing.

Both phases require O(n log n) interactions w.h.p. by Lemmata 1, 2.
To put the two phases described in Lemmata 1, 2 together, we let the leader agent to

count its interactions. When the number of interactions of the leader in the first phase
exceeds an appropriate multiplicity of log n, the total number of interactions in the first
phase achieves the required lower bound from Lemma 1 w.h.p. by Fact 3. Therefore, then
the leader starts broadcasting the message on the transition to the second phase to the other
agents. By Fact 4, the broadcasting increases the number of interactions only by O(n log n)
w.h.p. (The leader can also stop the second phase in a similar fashion.)
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To save on the number of states, instead of having states corresponding to all possible
sub-intervals of [1, n], we consider states corresponding to the nodes of the interval partition
tree (see Fig. 1 in Appendix C) whose sub-tree is formed in the first phase. More precisely,
we associate two states with each intermediate node of the binary tree on n leaves and n − 1
intermediate nodes. They indicate whether or not the agent at the intermediate node has
already received the message about the transition to the second phase. Next, we associate
four states to each leaf of the tree. They indicate similarly whether or not the agent at the
leaf has already received the phase transition message and whether or not the agent has
already passed a label to an agent without label in the second phase, respectively. With
each label in the range [n + 1, 2n], we associate only a single state. Additionally, there are
O(log n) states used by the leader to count interactions in order to start the second phase.
Recall also that the leader election preprocessing requires o(n) additional states. Thus the
total number of states does not exceed 2n + 4n + n + o(n). ◀

By combining the protocol of Theorem 4 with that of Berenbrink et al. for exact counting
the population size (Fact 6), we obtain the following corollary on unique labeling when the
population size is unknown to agents initially.

▶ Corollary 5. There is a protocol for a population of n agents that assigns unique labels in
the range [1, 2n] to the agents initially not knowing the number n, equipped with Õ(n) states,
in O(n log n) interactions w.h.p.

Proof. We run first the protocol for exact counting (Fact 6) and then our protocol for unique
labeling (Theorem 4) using the leader elected by the counting protocol. We can synchronize
the three protocols in a similar fashion as we synchronized the two phases of our protocol
additionally using O(n log n) interactions and O(log n) states. ◀

By using the method of approximate counting from [10] (Fact 5) instead of that for exact
counting (Fact 6), we can decrease the number of states to O(n) at the cost of increasing the
label range to [1, 8n] and the number of interactions required to O(n log2 n).

Range [1, (1 + ε)n]. The new protocol is obtained by the following modifications in the
previous one. The leader which counts the number of own interactions starts broadcasting
the phase transition message when the number of agents without labels drops below nε/4
w.h.p. (see Lemma 6). The information about the transition to the second phase affects
only the agents at the leaves of the interval partition tree, corresponding to labels in [1, nε].
When they get the message about the phase transition, they know that they can pass a label
which is the sum of their own label and n to the first agent without label they interact with.
For this reason, only the agents at the leaves corresponding to labels in [1, nε] as well as
the agents that are at the nodes that are ancestors of the aforementioned leaves participate
in the broadcasting of the phase transition message. (Observe that the number of agents
at these ancestors is O(nε) and an agent at such an ancestor also has a label in [1, nε].) In
the second phase, besides the agents at the leaves corresponding to labels in [1, nε] and the
agents without labels, also the agents at the intermediate nodes of the tree (if any) can really
interact, in fact as in the first phase.

The following generalization of Lemma 1 is straightforward; see Appendix D for the proof.

▶ Lemma 6. Let c be the constant from the statement of Lemma 1. During cn log n/ε

interactions in the first phase the number of agents without label drops below nε/4 w.h.p.

Having Lemma 6, we can easily generalize Lemma 2 to the following one; see Appendix D
for the proof.
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▶ Lemma 7. If the second phase starts after cn log n/ε interactions, where c is the constant
from Lemmata 1, 6 , then only O(n log n/ε) interactions are needed to assign labels in
[1, (1 + ε)n] to the remaining agents without labels, w.h.p.

We also need the following auxiliary lemma on broadcasting constrained to a subset of
agents; see Appendix D for the proof.

▶ Lemma 8. The leader can inform Θ(nε) agents with labels not exceeding O(nε) about the
phase transition using only these agents in O(n log n/ε) interactions.

The proof of the following theorem is analogous to that of Theorem 4 with Lemmata 1, 2
replaced by Lemmata 6, 7.

▶ Theorem 9. Let ε > 0. There is a silent w.h.p. and safe protocol for a population of
n agents that assigns unique labels in the range [1, (1 + ε)n] to n agents equipped with
(2 + ε)n + O(nc) states, for any positive c < 1, in O(n log n/ε) interactions w.h.p.

Proof. Under the assumption that the leader election preprocessing provides a unique leader,
the correctness of the label assignment in both phases w.h.p. and the fulfillment of the
definition of a silent and safe protocol follow from Lemmata 6, 7, and 8 by the same arguments
as in the proof of Theorem 4.

The leader election preprocessing and its synchronization with the proper labeling protocol
require O(n log n) interactions and o(nc) states, for c < 1, w.h.p. as described in the proof of
Theorem 4. Analogously, it follows that w.h.p. the whole protocol provides a valid labeling,
it is silent and safe. Again, it can be transformed to a safe protocol by prohibiting agents to
change or get rid of an assigned label.

By Lemmata 6, 7, both phases require O(n log n/ε) interactions w.h.p. The broadcasting
about the phase transition starts when the number of agents without labels in the first phase
drops below nε/4 w.h.p. By Lemma 8, it requires O(n log n/ε) interactions w.h.p. since only
the Θ(nε) agents in states corresponding to labels in [1, nε] are involved in it.

The estimation of the number of needed states is more subtle than in Theorem 4. With
each intermediate node of the interval partition tree that does not correspond to a label in
[1, nε] (equivalently, that is not an ancestor of a leaf corresponding to a label in [1, nε]), we
associate a single state. (Recall here that if an agent at an intermediate node of the tree
encounters an agent without label then the former agent moves to the left child of the node.)
With each intermediate node corresponding to a label in [1, nε], we associate two states.
They indicate whether or not the agent at the node has already got the message about phase
transition. Next, with each leaf of the tree corresponding to a label i in [1, nε], we associate
four states. They indicate whether or not the agent at the leaf has already got the message
about the phase transition, and whether or not the agent has already passed the label i + n

to some agent without label, respectively. To each of the remaining leaves, we associate only
a single state.

We also need O(log n/ε) additional states for the leader to count the number of own
interactions in order to start broadcasting the message on transition to phase two at a right
time step. In fact, we can get rid of the O( 1

ε ) factor here by letting the leader to count
approximately each Θ(1/e) interaction. Simply, the leader can count only interactions with
agents which have got labels not exceeding O(εn).

Finally, we have nε states corresponding to the labels in [n + 1, (1 + ε)n]. Thus, totally
only (2 + O(ε))n + O(nc) states, for any positive c < 1, are sufficient. To get rid of the
constant factor at ε, it is sufficient to run the protocol for a smaller ε′ = Ω(ε). It does not
change the asymptotic upper bound on the number of required interactions w.h.p. and even
it decreases the range of the labels. ◀
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Note that ε in Theorem 9 does not have to be a constant; it can even be as small as
O(n−1).

By combining the protocol of Theorem 9 with that of Berenbrink et al. for exact counting
the population size (Fact 6), we obtain the following corollary on unique labeling when the
population size is unknown to agents initially. The proof is analogous to that of Corollary 5.

▶ Corollary 10. Let ε > 0. There is a protocol for a population of n agents that assigns
unique labels in the range [1, (1 + ε)n] to the agents initially not knowing the number n,

equipped with Õ(n) states in O(n log n/ε) interactions w.h.p.

4 State- and range-optimal labeling

In this section we propose and analyze state-optimal protocols, which are silent and safe once
a unique leader is elected, and utilize labels from the smallest possible range [1, n]. We assume
the number of agents n to be known. We propose such a labeling protocol Single-Cycle
which utilizes n + 5

√
n + O(nc) states, for any positive c < 1, and the expected number of

interactions required by the protocol is O(n3). We show in Section 5 that any silent and safe
labeling protocol requires n +

√
n−1

2 − 1 states, see Theorem 14. Thus, our protocol is almost
state-optimal. Finally, we propose a partial parallelization of Single-Cycle protocol called
k-Cycle protocol which utilizes (1 + ε)n states and O((n/ε)2) interactions for ε = Ω(n−1/2).

Labeling protocol. The state efficient labeling protocol starts from a preprocessing electing
a unique leader. Its main idea is to use two agents: the initial leader A and a nominated
(by A) agent B, as partial label dispensers. These two agents jointly dispense unique labels
for the remaining free (non-labeled yet) agents in the population where agent A dispenses the
first and agent B the second part of each individual label. For the simplicity of presentation,
we assume that n is a square of some integer. During execution of the protocol agent A uses
partial labels label(a) ∈ {0, . . . ,

√
n − 1} and B uses partial labels label(b) ∈ {1, . . . ,

√
n}.

The two dispensers label every agent by a unique pair of partial labels (label(a), label(b))
where the combination (i, j) is interpreted as the integer label i ·

√
n + j. The protocol first

labels all free (different to dispensers unlabeled) agents and eventually gives labels (0, 2) to
agent B and (0, 1) to agent A.

In a nutshell, the labeling process is based on a single cycle of interactions between
dispensers A and B and the free agents. Agent A awaits an interaction with a free agent F

when A dispenses to F its current partial label label(a). Now F awaits an interaction with
B in order to receive the second part of its label. And when this happens agent F concludes
with the combined label and agent B awaits an interaction with A to inform that the next
free agent needs to be labeled. On the conclusion of this interaction if label(b) > 1 agent
B adopts new partial label label(b) − 1, otherwise B adopts label(b) =

√
n and agent A

adopts new label label(a) − 1. The only exception is when label(a) = 0 and label(b) = 2
when agent B adopts label (0, 2) and agent A adopts label (0, 1) and both agents conclude the
labeling process. For more details, see the definition of the transition function in Appendix E.

▶ Theorem 11. Single-cycle utilizes n + 5 ·
√

n + O(nc) states, for any positive c < 1, and
the minimal label range [1, n]. The expected number of interactions required by the protocol is
O(n3). Once a unique leader is elected, it produces a valid labeling of the n agents and it is
silent and safe.

Proof. Assume that the leader election preprocessing provides a unique leader. Then, the
protocol is silent and safe by its definition. All ll labels are dispensed in the sequential
manner and the labeling process concludes when the two dispensers finalize their own labels.
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In particular, as soon as the two dispensers A and B are established they operate in a short
cycle formed of steps C1, C2 and C3 labeling one by one all free agents in the population.
One can observe that the sequence of cycles mimics the structure of two nested loops where
the external loop iterates along the partial labels of A and the internal one along partial
labels of B. In total, we have n − 2 iterations where the expected number of interactions
required by each iteration is O(n2). Thus one can conclude that the expected number of
interactions required by the whole labeling process but for the leader election preprocessing
is O(n3). By the definition of the protocol the range of assigned labels is [1, n]. Finally, as
indicated earlier in this section the number of states utilized by the protocol but for the
leader election preprocessing is equal to n + 5 ·

√
n + 4.

The leader election preprocessing and its synchronization with the proper labeling protocol
require additional O(n log n) interactions and additional o(nc) states, for c < 1, w.h.p. as
described in the proof of Theorem 4. ◀

Observe that when the exact value of n is embedded in the transition function on the
conclusion all agents become dormant, i.e., they stop participating in the labeling process.
One could redesign the protocol such that the labels are dispensed by A and B in the
increasing order using a diagonal method, e.g., (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3),
(1, 2), (2, 1), (3, 0) etc., where agent A gets label (0, 0), agent B gets label (0, 1), the first
labeled free agent gets (1, 0), the second (0, 2), then (1, 1) and (2, 0), when A and B start
using the next diagonal, etc. Each pair (i, j) is interpreted as (i + j)(i + j + 1)/2 + i, e.g.,
(0, 1) = 1, (0, 2) = 3, (0, 3) = 6 and in general (0, j) = j(j + 1)/2, (1, j − 1) = j(j + 1)/2 + 1,

(1, j − 2) = j(j + 1)/2 + 2,....,(j, 0) = j(j + 1)/2 + j = (j + 1)(j + 2)/2 − 1 = (0, j + 1) − 1. In
this case the size of the population does not need to be known in advance, however, the two
dispensers will never stop searching for free agents yet to be labeled.

Faster Labeling. We observe that one can partially parallelize Single-Cycle protocol by
instructing leader A to form k pairs of dispensers where each pair labels agents in a distinct
range of size n/k. In such case the new k-cycle protocol requires extra 2k states to allow
leader A initialize the labeling process (create two dispensers) in all k cycles. Thus the
total number of states is bounded by n + 2k + k · (5

√
n/k + 4) = n + 6k + 5k ·

√
n/k <

n + 6(k +
√

nk) < n + 12
√

nk, as k <
√

nk, plus the number of states required by the leader
election preprocessing. We use the same method for the leader election preprocessing and
its synchronization with the proper labeling protocol described in the proof of Theorem 4.
Analogously, it adds O(n log n) interactions and O(nc) states, for any positive c < 1. As we
need to pick k for which n + 12

√
nk ≤ n + nε we conclude that k ≤ nε2/144.

One can show that for k = nε2/144, the expected number of interactions required by the
k-cycle protocol is O(n2/ε2). Note that in order to initialize k cycles the leader A has to
communicate with 2k − 1 free agents. As k is at most a small fraction of n during the search
for dispensers for each cycle the number of free agents is always greater than n/2 (in fact it
is very close to n). Thus the probability of forming a new dispenser during any interaction is
greater than 1/2n, i.e., the product of the probability 1/n that the random scheduler selects
leader A as the initiator, times the probability greater than 1/2 that the responder is a free
agent. In order to finish the initialization, we need to create new dispensers 2k − 1 times.
Using Chernoff bound, we observe that after O(kn) = O(n2/ε2) interactions all k cycles have
their two dispensers formed. As each cycle dispenses n/k = 144/ε2 labels and the expected
number of interactions required to dispense a single label is O(n2) with high probability, the
expected number of interactions required by a specific cycle to generate all labels is O(n2/ε2)
also with high probability. As observed earlier, the leader election preprocessing adds
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only O(n log n) interactions w.h.p. Hence, the expected number of interactions required to
conclude the labeling process is O(n2/ε2). Finally, note that for small values of ε approaching
n−1/2 k-cycle protocol reduces to Single-cycle protocol and for constant ε the number of
interactions required by the protocol is O(n2).

▶ Theorem 12. For k = nε2/144, where ε = Ω(n−1/2), and the minimal label range [1, n],
the proposed k-cycle labeling protocol provides a space-time trade-off in which utilization of
(1 + ε)n + O(log log n) states permits the expected number of interactions O(n2/ε2).

5 Lower bounds

In this chapter, we derive several lower bounds on the number of states or the number
of interactions required by silent, safe or the so-called pool protocols for unique labeling.
Importantly, these lower bounds also hold in our model assuming that the population size is
known to the agents initially and also when a unique leader is available initially.

The following general lower bound valid for any range of labels follows immediately from
the definitions of a population protocol and the problem of unique labeling, respectively.

▶ Theorem 13. The problem of assigning unique labels to n agents requires Ω(n log n)
interactions w.h.p. and the agents have to be equipped with at least n states.

Proof. Ω(n log n) interactions are needed w.h.p. since each agent has to interact at least
once, see, e.g., the introduction in [10]. The lower bound on the number of states follows
from the symmetry of agents, so any agent has to be prepared to be assigned an arbitrary
label with at least a logarithmic bit representation. ◀

A sharper lower bound on the number of states. We obtain the following lower bound
on the number of states required by a silent protocol which produces a valid labeling of the
n agents and is safe w.h.p. The lower bound holds even if the protocol is provided with
a unique leader and the knowledge of the number of agents. It almost matches the upper
bound established in the previous section.

▶ Theorem 14. A silent protocol which produces a valid labeling of the n agents and is safe
with probability larger than 1 − 1

n requires at least n +
√

n−1
2 − 1 states. Also, if a silent

protocol, which produces a valid labeling of the n agents and is safe with probability 1, uses
n + t states, where t < n, then the expected number of interactions required by the protocol to
provide a valid labeling is n2

t+1 .

Proof. Let I be the set of ordered pairs of the n agents. I can be interpreted as the set of
possible pairwise interactions between the agents.

Let Z be a finite run of the protocol, i.e., a finite sequence of pairs in I. Suppose that the
execution of Z is successful, i.e., each agent reaches a final state with a distinct label, and no
agent gets assigned two or more distinct labels during the run.

Let FZ be the set of final states achieved by the agents after the execution of the run
Z. We have |FZ | = n. Also, let RZ stand for the set of remaining states used in this run.
Observe that if an agent is in a state in FZ then it has a label.

For an agent x, let fZ(x) ∈ FZ be the last state achieved by the agent in the run Z,

and let predZ(x) be the next to the last state achieved by the agent x in the run. Since
for at most one agent the common initial state can be the final one, predZ( ) is defined
for at least n − 1 agents. If predZ(x) ∈ FZ and predZ(x) assigns a distinct label from that
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assigned by fZ(x) to x then we have a contradiction with our assumptions on Z. In turn, if
predZ(x) ∈ FZ and predZ(x) assign the same label as that assigned by fZ(x) to x then we
have a contradiction with the validity of the final labeling resulting from Z. We conclude
that if predZ(x) is defined then predZ(x) ∈ RZ .

Next, let AZ be the set of agents x that achieved their final state in the run Z by an
interaction of x in the state predZ(x) with an agent in a state in FZ . For the proof of the
following claim under the assumptions of the first statement in the theorem, see Appendix F.

▷ Claim 15. There is a finite run Z of the protocol such that after the execution of Z, each
agent is in a final state with a distinct label, no single agent is assigned distinct labels during
Z, and for any pair of distinct agents x, y ∈ AZ , predZ(x) ̸= predZ(y).

From here on, we assume that the run Z satisfies the claim. Consequently, |RZ | ≥ |AZ |.
Let BZ be the set of remaining agents that got their final state in FZ in an interaction

where both agents were in states outside FZ , i.e., in RZ . Since the agents in B achieved
distinct final states with distinct labels in the aforementioned interactions, we infer that
2|RZ |2 ≥ |BZ | and thus |RZ | ≥

√
|BZ |/2. Simply, there are |RZ |2 ordered pairs of states in

RZ , and when agents in the states forming such a pair interact they can achieve at most two
distinct states in FZ . (Consequently, if 2|RZ |2 < |BZ | then there would be a pair of agents
in BZ that would achieve the same final state in the run and hence it would have the same
label at the end of the considered run.)

Thus, we obtain |RZ | ≥ max{|AZ |,
√

n−1−|AZ |)
2 } ≥

√
n−1

2 − 1 by straightforward calcu-
lations. This completes the proof of the first statement of the theorem.

To prove the second statement of the theorem, we need |RZ | ≥ |AZ | to hold for any
run Z resulting in a valid labeling of the agents without updating the label of any single
agent. The existence of such a run Z implied by Claim 15 is not sufficient to obtain a lower
bound on the expected number of required interactions. The stronger assumptions on the
silent protocol in the second statement of the theorem requiring the protocol to provide
always a valid labeling without updating the label of any single agent solves the problem.
Namely, if predZ(x) = predZ(y) for x, y ∈ AZ then following the notation and argumentation
from the proof of Claim 15 neither Z1i1Z2i3 nor any of its lengthening can provide a valid
labeling without updating the label of any single agent. We obtain a contradiction with the
aforementioned assumptions. Thus, the inequality |RZ | ≥ |AZ | holds for arbitrary run Z

ending with a valid labeling without updating the label of any single agent.
To prove the second statement, we may also assume w.l.o.g. that |AZ | < n since otherwise

t ≥ |RZ | ≥ |AZ | ≥ n. Hence, the set BZ of agents is non-empty. Let x be a last agent in
BZ that being in the state pred(x) gets its final state f(x) by an interaction with another
agent y in a state s. If y belongs to BZ then both x and y are the two last agents in BZ that
simultaneously get their final states in FZ in the same interaction. The probability of the
interaction between them is only 1

n2 . Suppose in turn that y belongs to AZ . We know that
t ≥ |RZ | ≥ |AZ | from the previous part. Thus, there are at most t agents in BZ in the state
s with which the agent x in the state predZ(x) could interact. The probability of such an
interaction is at most t

n2 . We conclude that the probability of an interaction between the
agent x and the agent y after which x gets its final state f(x) is at most t+1

n2 , which proves
the second statement. ◀

▶ Corollary 16. If for ε > 0, a silent protocol that produces a valid labeling of the n agents
and is safe with probability 1 uses only n + O(n1−ε) states then the expected number of
interactions required by the protocol to achieve a valid labeling is Ω(n1+ε).
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A lower bound for the range [1, n + r]. Our fast protocols presented in Section 3 are
examples of a class of natural protocols for the unique labeling problem that we term pool
protocols.

In each step of a pool protocol, a subset of agents owns explicit or implicit pools of labels
which are pairwise disjoint and whose union is included in the assumed range of labels. When
two agents interact, they can repartition the union of their pools among themselves. Before
the start of a pool protocol, only a single agent (the leader) owns a pool of labels. This initial
pool corresponds to the assumed range of labels. An agent can be assigned a label from
its own pool only. After that, the label is removed from the pool and cannot be changed.
Finally, an agent without an assigned label cannot give away the whole own pool during an
interaction with another agent without getting some part of the pool belonging to the other
agent.

▶ Theorem 17. The expected number of interactions required by a pool protocol to assign
unique labels in the range [1, n + r], where r ≥ 0, to the population of n agents is at least n2

r+1 .

Proof. We shall say that an agent has the P property if the agent owns a non-empty pool or
a label has been assigned to the agent. Observe that if an agent accomplishes the P property
during running a pool protocol then it never loses it. Also, all agents have to accomplish the
P property sooner or later in order to complete the assignment task. During each interaction
of a pool protocol at most one more agent can get the P property. Since at the beginning
only one agent has the P property, there must exist an interaction after which only one agent
lacks this property. By the disjointedness of the pools and labels, the assumed label range,
and the definition of a pool protocol, there are at most r + 1 agents among the remaining
ones that could donate a sub-pool or label from own pool to the agent missing the P property.
The expected number of interactions leading to an interaction between the agent missing the
P property and one of the at most r + 1 agents is n2

r+1 . ◀

6 Final remarks

Our upper bound of n + 5 ·
√

n + O(nc), for any positive c < 1, on the number of states
achieved by a protocol for unique labeling that is silent and safe once a unique leader is
elected almost matches our lower bound of n +

√
n−1

2 − 1. We can combine our protocols for
unique labeling with the recent protocols for counting or approximating the population size
due to Berenbrink et al. [10] in order to get rid of the assumption that the population size
is known to one of the agents initially. Since the aforementioned protocols from [10] either
require Õ(n) states or O(n log2 n) interactions, the resulting combinations lose some of the
near-optimality or optimality properties of our protocols (cf. Corollaries 5, 10). The related
question if one can design a protocol for counting or closely approximating the population
size simultaneously requiring O(n log n) interactions w.h.p. and at most cn states, where c is
a low constant, is of interest in its own right.
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A The computational model of population protocols

There is given a population of n agents that can pairwise interact in order to change their
states and in this way perform a computation. A population protocol can be formally
specified by providing a set Q of possible states, a set O of possible outputs, a transition
function δ : Q × Q → Q × Q, and an output function o : Q → O. The current state q ∈ Q of
an agent is updated during interactions. Consequently, the current output o(q) of the agent
also becomes updated during interactions. The current state of the set of n agents is given by
a vector in Qn with the current states of the agents. A computation of a population protocol
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is specified by a sequence of pairwise interactions between agents. In every time step, an
ordered pair of agents is selected for interaction by a probabilistic scheduler independently
and uniformly at random. The first agent in the selected pair is called the initiator while
the second one is called the responder. The states of the two agents are updated during the
interaction according the transition function δ.

We can specify a problem to solve by a population protocol by providing the set of input
configurations, the set O of possible outputs, and the desired output configurations for given
input configurations. For the unique labeling problem, all agents are initially in the same
state q0. The set O is just the set of positive integers. A desired configuration is when all
agents output their distinct labels. The stabilization time of an execution of a protocol is the
number of interactions until the states of agents form a desired configuration from which
no sequence of pairwise interactions can lead to a configuration outside the set of desired
configurations.

B Related work (Table 3)

Table 3 Upper bounds on the number of interactions, the number of states and the range used
by the known labeling protocols. In case of the self-stabilizing labeling protocols in [12], the “safe”
property can eventually hold only for their initialized versions.

n # interactions # states Range Properties Paper

unknown O(n3) w.h.p. n [1, n] silent [13]
unknown O(n log n log log n) w.h.p. nO(1) [1, nO(1)] silent [17]

known O(n2) expected O(n) [1, n] silent, safe [12]
known O(n log n) w.h.p. exp(O(nlog n log n)) [1, n] safe [12]
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Figure 1 An example of the partition tree of the start interval [1, 7].
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D Labeling with asymptotically optimal number of interactions within
[1, (1 + ϵ)n] (proofs)

Proof of Lemma 6. The proof is a generalization of that for Lemma 1. Define Fε as a set
of at least εn/4 agents without labels that survive at least cn log /ε interactions in the first
phase. Note that for an arbitrary agent, the probability of interaction with a member in
Fε is at least ε

4n . The rest of the proof is analogous to that of Lemma 1. It is sufficient to
replace F by Fε and the probability 1

4n of an interaction with a member in F with that ε
4n

of an interaction with a member in Fε. ◀

Proof of Lemma 7. The number of agents without labels at the beginning of the second
phase is smaller than εn/4 w.h.p. Hence, at the beginning of the second phase the number
of agents with labels in the range [1, εn] is at least 3εn

4 w.h.p. Recall that such an agent
at a leaf of the tree can give a label to an agent without label only once. It follows that
the number of agents with labels in [1, εn] that can give a label to an agent without label is
always at least εn

2 w.h.p. We conclude that for an agent without label the probability of
an interaction with an agent that can give a label is at least almost ε

2n . Hence, after each
O(n/ε) interactions the expected number of agents without labels halves. It follows that the
expected number of such interactions rounds is O(log n). Consequently, the number of the
rounds is also O(log n) w.h.p. by Fact 2.

An alternative way to obtain the O(n log n/ε) bound on the number of interactions w.h.p.
is to use Fact 3 analogously as in the proof of Lemma 2. The difference is that C is set
to O( 2

ε ) instead of O(2) since the set of agents that can give a label is of size at least nε
2

now. ◀

Proof of Lemma 8. During the initial part of the broadcasting process, after every O(n/ε)
interactions, the expected number of agents participating in the broadcasting process doubles.
Hence, after O(n log /ε) interactions, the expected number of informed agents will be Ω(nε).
Then, the expected number of uninformed agents will be halved for every O(n/ε) interactions.
So the expected number of rounds, each consisting of O(n/ε) interactions, needed to complete
the broadcasting is O(log n). It remains to turn the latter bound to a w.h.p. one. This can
be done by using the Chernoff bounds (Fact 2).

Alternatively, we can define for the purpose of the analysis of the doubling part, a binary
broadcast tree. An informed agent at an intermediate node of the tree after an interaction
with an uninformed agent moves to a child of the node while the other agent now informed
places at the other child (cf. the partition tree in the proofs of Lemmata 1, 6). Then, we can
use the technique from the proofs of Lemmata 1, 6 to show that only O(n log n/ε)interactions
are required w.h.p. to achieve a configuration where only a constant fraction of the agents
participating in the broadcasting is uninformed. To derive the same asymptotic upper bound
on the number of interactions required by the halving part w.h.p., we can use Fact 3 with
C = O(ε−1) analogously as in the proofs of Lemmata 2, 7. ◀

E The transition function of the state optimal protocol

State utilization in Single-Cycle protocol.
[Agent A] Since label(a) ∈ {0, . . .

√
n−1} dispenser A utilizes 2 ·

√
n+2 states including:

A.init = (1) # the initial (leadership) state of dispenser A,

A[label(a), await(F )] # dispenser A carrying partial label label(a) awaits interaction
with a free agent F,
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A[label(a), await(B)] # dispenser A carrying partial label label(a) awaits interaction
with dispenser B,

A.final = (0, 1) # the final state of A.

[Agent B] Since label(b) ∈ {0, . . .
√

n} dispenser B utilizes 2 ·
√

n + 3 states including:
B[label(b), await(F )] # dispenser B carrying partial label label(b) awaits interaction
with a free agent F,

B[label(b), await(A)] # dispenser B carrying partial label label(b) awaits interaction
with dispenser A

B.final = (0, 2) # the final state of B.

[Agent F ] Since free agents carry partial labels label(a) ∈ {0, . . .
√

n−1} and eventually
adopt one of the n − 2 destination labels (excluding dispensers) they utilize n +

√
n − 1 states

including:
F.init = (0) # the initial (non-leader) state of F

F [label(a), await(B)] # free agent F carrying partial label label(a) awaits interaction
with dispenser B,

F.final = (label(a), label(b)) # the final state of F.

In total Single-Cycle protocol requires n + 5 ·
√

n + 4 states.

Transition function in Single-Cycle protocol.
Step 0: Initialization. During the first interaction of A with a free agent the second dispenser

B is nominated. Both dispensers adopt their largest labels. Agent A awaits a free agent
in the initial state while agent B awaits a free agent carrying a partial label obtained
from A.

(A.init, F.init)
→ (A[label(a) =

√
n − 1, await(F )], B[label(b) =

√
n, await(F )]),

The three steps C1, C2, and C3 of the labeling cycle are given below.
Step C1: Agent A dispenses partial label. During an interaction of agent A with a free

agent F the current partial label label(a) is dispensed to F . Both agents await in-
teractions with dispenser B which is ready to interact with partially labeled F but
not A.

(A[label(a), await(F )], F.init)
→ (A[label(a), await(B)], F [label(a), await(B)]) # Go to Step C2

Step C2: Agent B dispenses partial label. During an interaction of agent B with a free
agent F which carries partial label label(a), the complementary current partial label
label(b) is dispensed to F . Agent F concludes in the final state with the combined label
(label(a), label(b)). Agent B is now ready for interaction with A.

(B[label(b), await(F )], F [label(a), await(B)])
→ (B[label(b), await(A)], F.final = (label(a), label(b))) # Go to Step C3

Step C3: Agent A and B negotiate a new label or conclude. In the case when label(a)
= 0 and label(b) = 2 the dispensers A and B conclude in states (0, 1) and (0, 2)
respectively, see the first transition. Otherwise a new combination of partial labels is
agreed and the protocol goes back to Step C1.

(A[label(a) = 0, await(B)], B[label(b) = 2, await(A)])
→ (A.final = (0, 1), B.final = (0, 2)) # Conclude the labeling process
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(A[label(a) = 0, await(B)], B[label(b) > 2, await(A)]) or
(A[label(a) > 0, await(B)], B[label(b) > 1, await(A)])

→ (A[label(a), await(F )], B[label(b) − 1, await(F )]) # Go to Step C1

(A[label(a) > 0, await(B)], B[label(b) = 1, await(A)])
→ (A[label(a) − 1, await(F )], B[label(b) =

√
n, await(F )]) # Go to Step C1

F Lower bounds (proofs)

Proof of Claim 15. The proof of the claim is by a contradiction with the assumptions on
the labeling protocol. The general intuition is that if predZ(x) = predZ(y) for two agents
x, y ∈ AZ then we can associate with a prefix of Z a slightly modified equally likely run Z ′

which assigns the same label to a pair of agents. Hence, the modified run does not produce a
valid labeling or it has to assign at least two different labels to some agent.

To obtain the contradiction, we assume that for each finite run Z in which the agents
achieve final states with distinct labels without assigning distinct labels to any single agent
during the run, there is a pair of agents x, y ∈ AZ , where predZ(x) = predZ(y). Let us
consider such a pair of agents x, y ∈ AZ that minimizes the length of the prefix of Z in
which both agents achieve their final states in FZ . We may assume w.l.o.g. that x gets its
final state fZ(x) in an interaction i1 with an agent x′ that is in a state in FZ , and in a later
interaction i2, y gets its final state fZ(y), in the run Z. (Note that x′ cannot be in a final
state different from its own, i.e., in FZ \ {fZ(x′)} since this would require updating its label
contradicting the assumption on Z.) Thus, the shortest prefix of Z in which both x and y get
their final states has the form Z1i1Z2i2. Then, if we replace the latter interaction i2 by the
interaction i3 between y and the agent x′ in the state fZ(x′) analogous to i1, it will result in
achieving by y the state fZ(x) since predZ(x) = predZ(y). Thus, neither the run Z1i1Z2i3
nor any of its extensions can yield a valid labeling of the agents without updating labels for
some of them. Importantly, the runs Z1i1Z2i2 and Z1i1Z2i3 are equally likely (*).

We initialize two sets Svalid and Sinvalid of strings (sequences) over the alphabet I. Then,
for each run Z in which the agents achieve final states with distinct labels without updating
the label of any single agent, we insert the prefix Z1i1Z2i2 into Svalid and the corresponding
sequence Z1i1Z2i3 into Sinvalid. Note that by the choice of i1, i2, no string in Svalid is a prefix
of another string in Svalid. The analogous property holds for Sinvalid. By the construction
of the sets, each run Z in which the agents achieve final states with distinct labels without
updating the label of any single agent has to overlap with or be a lengthening of a string in
Svalid. Furthermore, no run of the protocol that overlaps with a string in Sinvalid or it is a
lengthening of a string in Sinvalid results in a valid labeling without updating the label of any
single agent. Define the function g : Svalid → Sinvalid by g(Z1i1Z2i2) = Z1i1Z2i3. By the
property (*), the probability that a string over I is equal to Z1i1Z2i2 or it is a lengthening of
Z1i1Z2i2 is not greater than the probability that a string over I is equal to g(Z1i1Z2i2) or it
is a lengthening of g(Z1i1Z2i2). The function g is not necessarily a bijection. Suppose that
g(Z1i1Z2i2) = g(Z ′

1i′
1Z ′

2i′
2). Then, we have Z1i1Z2i3 = Z ′

1i′
1Z ′

2i3. Consequently, the strings
Z1i1Z2i2 and Z ′

1i′
1Z ′

2i′
2 may only differ in the last interaction, i.e., i2 may be different from

i′
2. However, i2 and i′

2 have to include the same agent (y in the earlier construction) that
appears in i3. We conclude that the aforementioned two strings in Svalid can differ by at
most one agent in the last interaction. It follows that g maps at most n − 1 strings in Svalid

to the same string in Sinvalid. Hence, the event that the agents eventually achieve their final
states yielding a valid labeling without updating the label of any single agent is at most n − 1
times more likely than the complement event, contradicting our assumptions. ◀
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In this paper, we focus on graph class identification problems in the population protocol model. A
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1 Introduction

The population protocol model is an abstract model for low-performance devices, introduced
by Angluin et al. [4]. In this model, a network, called population, consists of multiple devices
called agents. Those agents are anonymous (i.e., they do not have identifiers), and move
unpredictably (i.e., they cannot control their movements). When two agents approach, they
are able to communicate and update their states (this communication is called an interaction).
By a sequence of interactions, the system proceeds a computation. In this model, there are
various applications such as sensor networks used to monitor wild birds and molecular robot
networks [24].

In this paper, we study the computability of graph properties of communication graphs in
the population protocol model. Concretely, we focus on graph class identification problems
that aim to decide whether the communication graph is in the desired graph class. In
most distributed systems, it is essential to understand properties of the communication
graph in order to design efficient algorithms. Actually, in the population protocol model,

© Hiroto Yasumi, Fukuhito Ooshita, and Michiko Inoue;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yasumi.hiroto.yf9@is.naist.jp
mailto:f-oosita@is.naist.jp
mailto:kounoe@is.naist.jp
https://doi.org/10.4230/LIPIcs.OPODIS.2021.13
https://arxiv.org/abs/2111.05111
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Population Protocols for Graph Class Identification Problems

efficient protocols are proposed with limited communication graphs (e.g., ring graphs and
regular graphs) [2, 6, 16, 17]. In the population protocol model, the computability of the
graph property was first considered in [3]. In [3], Angluin et al. proposed various graph
class identification protocols with directed graphs and designated initial states under global
fairness. Concretely, Angluin et al. proposed graph class identification protocols for directed
lines, directed rings, directed stars, and directed trees. Moreover, they proposed graph
class identification protocols for other graphs such as 1) graphs having degree bounded by
a constant k, 2) graphs containing a fixed subgraph, 3) graphs containing a directed cycle,
and 4) graphs containing a directed cycle of odd length. However, there are still some open
questions such as “What is the computability for undirected graphs?” and “How do other
assumptions (e.g., initial states, fairness, etc.) affect the computability?” In this paper, we
answer those questions. That is, we clarify the computability of graph class identification
problems for undirected graphs under various assumptions such as initial states of agents,
fairness of the execution, and an initial knowledge of agents. More concretely, in this paper,
we consider the problems with designated or arbitrary initial states, under global or weak
fairness, and with the number of agents n, the upper bound P of the number of agents, or
no knowledge. The assumption of initial states bears on the requirement of initialization
and the fault-tolerant property. To execute a protocol with designated initial states, it
is necessary to initialize all agents. Alternatively, a protocol with arbitrary initial states
does not need to initialize agents. This implies that, even if agents transition to incorrect
states by transient faults, the protocol can recover to desired configurations. Fairness is an
assumption of interaction patterns. Intuitively, global fairness guarantees that, if a reachable
configuration can occur infinitely often, the reachable configuration actually occurs infinitely
often. On the other hand, weak fairness only guarantees that interactions occur infinitely
often between each pair of adjacent agents. The initial knowledge is given to agents for
helping the agents solve the problem. The initial knowledge enables us to construct efficient
protocols although it may be difficult to know the knowledge in some situations.

In the population protocol, researchers also considered other assumptions such as symme-
try and randomness (deterministic or non-deterministic). In this paper, we consider only
deterministic asymmetric protocols. Note that, with designated initial states under global
fairness, there is a transformer that transforms an asymmetric protocol into a symmetric
protocol by assuming additional states [13]. Although we deal only with asymmetric protocols,
we can transform most of our asymmetric protocols to symmetric protocols by applying this
transformer.

We remark that some protocols in [3] for directed graphs can be easily extended to
undirected graphs with designated initial states under global fairness (see Table 1). Concretely,
graph class identification protocols for directed lines, directed rings, and directed stars can
be easily extended to protocols for undirected lines, undirected rings, and undirected stars,
respectively. In addition, the graph class identification protocol for bipartite graphs can be
deduced from the protocol that decides whether a given graph contains a directed cycle of
odd length. This is because, if we replace each edge of an undirected non-bipartite graph
with two opposite directed edges, the directed non-bipartite graph always contains a directed
cycle of odd length. On the other hand, the graph class identification protocol for directed
trees cannot work for undirected trees because the protocol uses a property of directed trees
such that in-degree (resp., out-degree) of each agent is at most one on an out-directed tree
(resp., an in-directed tree). Note that agents can identify trees if they understand the graph
contains no cycle. However, the graph class identification protocol for graphs containing a
directed cycle in directed graphs cannot be used to identify a (simple) cycle in undirected
graphs. This is because, if we replace an undirected edge with two opposite directed edges,
the two directed edges compose a directed cycle.
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Table 1 The number of states to solve the graph class identification problems. n is the number
of agents and P is an upper bound of the number of agents.

Model Graph Properties
Initial states Fairness Initial knowledge Line Ring Bipartite Tree k-regular Star

Designated
Global

n O(1)† O(1)† O(1)† O(1)* O(k log n)* O(1)†
P O(1)† O(1)† O(1)† O(1)* O(k log P )* O(1)†

None O(1)† O(1)† O(1)† O(1)* – O(1)†

Weak n Unsolvable* O(n)*
P /None Unsolvable*

Arbitrary Global/Weak n/P /None Unsolvable*
* Contributions of this paper †Deduced from Angluin et al. [3]

Our Contributions

In this paper, we clarify the computability of graph class identification problems for undirected
graphs under various assumptions. Recall that we consider only deterministic asymmetric
protocols. A summary of our results is given in Table 1. Under global fairness, we propose
two graph class identification protocols. One is a graph class identification protocol for trees
with designated initial states. This protocol works with constant number of states even if no
initial knowledge is given. The other is a graph class identification protocol for k-regular
graphs with designated initial states and the initial knowledge of the upper bound P of the
number of agents. On the other hand, under weak fairness, we show that there exists no
graph class identification protocol for lines, rings, k-regular graphs, stars, trees, or bipartite
graphs even if the upper bound P of the number of agents is given. In the case where the
number of agents n is given, we propose a graph class identification protocol for stars and
prove that there exists no graph class identification protocol for lines, rings, k-regular graphs,
trees, or bipartite graphs. With arbitrary initial states, we prove that there is no protocol for
lines, rings, k-regular graphs, stars, trees, or bipartite graphs. In this paper, because of space
constraints, we omit the details of protocols and some proofs (see the full version in [26]).

Related Works

The population protocol model was proposed by Angluin et al. [4]. While they mainly studied
the computability of the model in the paper, subsequent works studied various problems
(e.g., leader election [1, 11, 18, 21], counting [7, 8, 12, 22], majority [5, 10, 20], etc) under
different assumptions (e.g., fairness assumption [7, 8], initial states of agents [6, 9], and initial
knowledge of agents [14, 25]).

Although those problems are usually considered with complete communication graphs
(i.e., every pairwise interaction can occur), some researchers proposed efficient protocols with
limited communication graphs (e.g., ring graph, regular graph, etc.) [2, 6, 16, 17]. More
concretely, Angluin et al. proposed a protocol that constructs a spanning tree with regular
graphs [6]. Chen et al. proposed self-stabilizing leader election protocols with ring graphs [16]
and regular graphs [17]. Alistarh et al. showed that protocols for complete graphs (including
the leader election protocol, the majority protocol, etc.) can be simulated efficiently in
regular graphs [2].

For graph class identification problems, after Angluin et al. studied some solvabilities [3],
Chatzigiannakis et al. studied solvabilities for directed graphs with some properties on the
mediated population protocol model [15], where the mediated population protocol model is an
extension of the population protocol model. In this model, a communication link (on which
agents interact) has a state. Agents can read and update the state of the communication
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link when agents interact on the communication link. In [15], they proposed graph class
identification protocol for some graphs such as 1) graphs having degree bounded by a constant
k, 2) graphs in which the degree of each agent is at least k, 3) graphs containing an agent such
that in-degree of the agent is greater than out-degree of the agent, 4) graphs containing a
directed path of at least k edges, etc. Since Chatzigiannakis et al. proposed protocols for the
mediated population protocol model, the protocols cannot work in the population protocol
model. As impossibility results, they showed that there is no graph class identification
protocol that decides whether the given directed graph has two edges (u, v) and (v, u) for
two agents u and v, or whether the given directed graph is weakly connected.

As another perspective of communication graphs, Michail and Spirakis proposed a net-
work constructors model that is an extension of the mediated population protocol [23]. The
network constructors model aims to construct a desired graph on the complete commu-
nication graph by using communication links with two states. Each communication link
only has active or inactive state. Initially, all communication links have inactive state. By
activating/deactivating communication links, the protocol of this model constructs a desired
communication graph that consists of agents and activated communication links. In [23],
they proposed protocols that construct spanning lines, spanning rings, spanning stars, and
regular graphs. Moreover, by relaxing the number of states, they proposed a protocol that
constructs a large class of graphs.

2 Definitions

2.1 Population Protocol Model
A communication graph of a population is represented by a simple undirected connected
graph G = (V, E), where V represents a set of agents, and E ⊆ V × V is a set of edges
(containing neither multi-edges nor self-loops) that represent the possibility of an interaction
between two agents (i.e., only if (a, b) ∈ E holds, two agents a ∈ V and b ∈ V can interact).

A protocol P = (Q, Y, γ, δ) consists of a finite set Q of possible states of agents, a finite
set of output symbols Y , an output function γ : Q→ Y , and a set of transitions δ from Q×Q

to Q×Q. Output symbols in Y represent outputs as the results according to the purpose of
the protocol. Output function γ maps a state of an agent to an output symbol in Y . Each
transition in δ is denoted by (p, q)→ (p′, q′). This means that, when an agent a in state p

interacts with an agent b in state q, their states become p′ and q′, respectively. We say that
such a is an initiator and such b is a responder. When a and b interact as an initiator and a
responder, respectively, we simply say that a interacts with b. Transition (p, q)→ (p′, q′) is
null if both p = p′ and q = q′ hold. We omit null transitions in the descriptions of protocols.
Protocol P = (Q, Y, γ, δ) is deterministic if, for any pair of states (p, q) ∈ Q×Q, exactly one
transition (p, q)→ (p′, q′) exists in δ. Recall that we consider only deterministic protocols in
this paper.

A configuration represents a global state of a population, defined as a vector of states of
all agents. A state of agent a in configuration C is denoted by s(a, C). Moreover, when C

is clear from the context, we simply use s(a) to denote the state of agent a. A transition
from configuration C to configuration C ′ is denoted by C → C ′, and means that, by a single
interaction between two agents, configuration C ′ is obtained from configuration C. For
two configurations C and C ′, if there exists a sequence of configurations C = C0, C1, . . .,
Cm = C ′ such that Ci → Ci+1 holds for every i (0 ≤ i < m), we say C ′ is reachable from C,
denoted by C

∗−→ C ′.
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An execution of a protocol is an infinite sequence of configurations Ξ = C0, C1, C2, . . .

where Ci → Ci+1 holds for every i (i ≥ 0). An execution Ξ is weakly-fair if, for any adjacent
agents a and a′, a interacts with a′ and a′ interacts with a infinitely often1. An execution Ξ
is globally-fair if, for each pair of configurations C and C ′ such that C → C ′, C ′ occurs
infinitely often when C occurs infinitely often. Intuitively, global fairness guarantees that,
if configuration C occurs infinitely often, then any possible interaction in C also occurs
infinitely often. Then, if C occurs infinitely often, C ′ satisfying C → C ′ occurs infinitely
often, and we can deduce that C ′′ satisfying C ′ → C ′′ also occurs infinitely often. Overall,
with global fairness, if a configuration C occurs infinitely often, then every configuration C∗

reachable from C also occurs infinitely often.
In this paper, we consider three possibilities for an initial knowledge of agents: the number

of agents n, the upper bound P of the number of agents, and no knowledge. Note that the
protocol depends on this initial knowledge. When we explicitly state that an integer x is
given as the number of agents, we write the protocol as Pn=x. Similarly, when we explicitly
state that an integer x is given as the upper bound of the number of agents, the protocol is
denoted by PP =x.

2.2 Graph Properties and Graph Class Identification Problems

We define graph properties treated in this paper as follows:
A graph G satisfies property tree if there is no cycle on graph G.
A graph G = (V, E) satisfies property k-regular if the degree of every agent in V is k.
A graph G satisfies property star if G is a tree with one internal agent and n− 1 leaves.
A graph G = (V, E) satisfies property bipartite if V can be divided into two disjoint and
independent sets U and W (i.e., U

⋂
W = ∅ holds and there is no edge connecting two

agents in U or W ).
A graph G = (V, E) satisfies property line if E = {(v0, v1), (v1, v2), (v2, v3), . . .,
(vn−1, vn)} for V = {v1, v2, . . . vn}.
A graph G = (V, E) satisfies property ring if the degree of every agent in V is 2.

Let gp be an arbitrary graph property. The gp identification problem aims to decide whether
a given communication graph G satisfies property gp. In the gp identification problem, the
output set is Y = {yes, no}. Recall that the output function γ maps a state of an agent to an
output symbol in Y (i.e., yes or no). A configuration C is stable if C satisfies the following
conditions: There exists yn ∈ {yes, no} such that 1) ∀a ∈ V : γ(s(a, C)) = yn holds, and 2)
for every configuration C ′ such that C

∗−→ C ′, ∀a ∈ V : γ(s(a, C ′)) = yn holds.
An execution Ξ = C0, C1, C2, . . . solves the gp identification problem if Ξ includes a

stable configuration Ct that satisfies the following conditions.
1. If a given graph G = (V, E) satisfies graph property gp, ∀a ∈ V : γ(s(a, Ct)) = yes holds.
2. If a given graph G = (V, E) does not satisfy graph property gp, ∀a ∈ V : γ(s(a, Ct)) = no

holds.

1 We use this definition only for the lower bound under weak fairness. For the upper bound, we use a
slightly weaker assumption. We show that our proposed protocol for weak fairness works if, for any
adjacent agents a and a′, a and a′ interact infinitely often (i.e., it is possible that, for any interaction
between some adjacent agents a and a′, a becomes an initiator and a′ never becomes an initiator). Note
that, in the protocol, if a transition (p, q) → (p′, q′) exists for p ̸= q, a transition (q, p) → (q′, p′) also
exists.
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A protocol P solves the gp identification problem under weak fairness (resp., under global
fairness) if every weakly-fair execution (resp., every globally-fair execution ) of protocol P
solves the gp identification problem.

3 Graph Class Identification Protocols

3.1 Tree Identification with No Initial Knowledge under Global Fairness
In this section, we give a tree identification protocol with 18 states and designated initial
states under global fairness (see the pseudocode in the appendix and the full version in [26]).

The basic strategy of the protocol is as follows. Initially agents think that the graph
is a tree, and, if they detect a cycle, they confirm that the graph is not a tree. To detect
a cycle, first, agents elect one leader token, one right token, and one left token. Initially,
all agents have right tokens. When two agents with right tokens interact, agents make one
of the right tokens transition to a left token. Similarly, when two agents with left tokens
interact, agents make one of the left tokens transition to a leader token. When two agents
with leader tokens interact, agents delete one of the leader tokens. Agents carry these tokens
on a graph by interactions as if each token moves freely on the graph. Thus, by the above
behaviors, eventually agents elect one leader token, one right token, and one left token.

Agents behave as if the leader token has an opinion (tree/non-tree), and agents follow
the opinion (this opinion is hereinafter referred to as “decision”). Initially the leader token
has the decision such that the graph is a tree (i.e., there is no cycle). Since the leader token
moves freely on the graph and we assume global fairness, the leader token visits all agents
infinitely often. Thus, eventually all agents will know the decision of the leader token.

Agents reset the decision of the leader token if agents notice that the token election is
not yet over. Concretely, when two agents with leader tokens interact and delete one of the
leader token, agents reset the decision of the remaining leader token. By this behavior, all
agents virtually reset their decision because each agent follows the decision of the leader
token. Hence, when agents complete the token election, all agents (and the leader token)
virtually reset their decision. Now, we explain that, after the token election, agents correctly
detect a cycle and the leader token make a correct decision.

After the election, agents repeatedly execute a trial to detect a cycle by using the tokens.
The trial starts when an agent with the leader token places the right token and the left token
to two adjacent agents x and y, respectively. During the trial, x and y hold the right token
and the left token, respectively. To detect a cycle, agents use the right token and the left
token as a single landmark. The right token and the left token correspond to a right side and
a left side of the landmark, respectively. If agents can carry the leader token from the right
side of the landmark to the left side of the landmark without passing through the landmark,
the trial succeeds.

From now, we explain the behaviors of the trial in more details. An image of the trial is
shown in Figure 1, where Lse, Lr, Ll, Lt

r, and Lt
l represent tokens (we will show the details

later). To begin with, we explain the start of the trial (the first and second steps of Figure 1).
To start the trial, agents place the left token and the right token next to each other. To
distinguish between a moving token and a placed token, we use a trial mode. Agents regard
right and left tokens in a trial mode as placed tokens. An Lt

r token (resp., an Lt
l token)

represents the right token (resp., the left token) in the trial mode. An Lr token (resp., an Ll

token) represents the right token (resp., the left token) in a non-trial mode. An Lse token
represents the leader token.
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Detect a cycle

Figure 1 An image of the trial.

More concretely, agents start the trial as follows. When an agent x having the Ll token
interacts with an agent y having the leader token, agents make the Ll token transition to
an Lt

l token, and they exchange their tokens (the first step of Figure 1). Then, if agent x

having the leader token interacts with an agent having the Lr token, agents make the Lr

token transition to an Lt
r token, and they exchange their tokens (the second step of Figure 1).

By above behaviors, agents place an Lt
r token next to the Lt

l token, and a trial of the cycle
detection starts.

After that, agents try to carry the leader token to agent y without passing through agent
x (the third step of Figure 1). To do this, agents try to carry the leader token to an agent
having the Lt

l token. Note that the left and right tokens can move even while agents carry
the leader token. However, if they move, they transition to the non-trial mode. Thus, if an
agent having the leader token interacts with an agent having the Lt

l token, agents confirm
that the Lt

l token is still placed at y (the fourth step of Figure 1). Then, to confirm that the
Lt

r token is also still placed at x, agent y having the leader token tries to interact with an
agent having the Lt

r token. Since the right token may move and the leader token may pass
through agent x without meeting the right token, this confirmation is necessary. If agents
succeed both confirmations, agents succeed the trial and decide that there is a cycle (the fifth
step of Figure 1). Hence, in the case, the leader token makes a decision that the given graph
is not a tree, and the decision is conveyed to all agents. Since each token moves freely on
the graph and we assume global fairness, agents perform the trial on any place (i.e., agents
place the left token and the right token on any adjacent agents). Thus, if there is a cycle,
eventually agents decide that the given graph is not a tree. Recall that initially all agents
think that the given graph is a tree. Hence, unless the trial succeeds, all agents continue to
think that the given graph is a tree.

▶ Theorem 1. There exists a protocol with constant states and designated initial states that
solves the tree identification problem under global fairness.

3.2 k-regular Identification with Knowledge of P under Global Fairness
In this subsection, we give a k-regular identification protocol with O(k log P ) states and
designated initial states under global fairness (see the pseudocode in the appendix and the
full version in [26]).

The basic strategy of the protocol is as follows. First, agents elect a leader token. In
this protocol, agents with leader tokens leave some information in agents. To keep only the
information that is left after completion of the election, we introduce level of an agent. If an
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agent at level i has the leader token, we say that the leader token is at level i. Agents with
leader tokens leave the information with their levels. Before agents complete the election of
leader tokens, agents keep increasing their levels, and agents discard the information with
smaller levels when agents increase their levels. When agents complete the election of leader
tokens, the agent with the leader token is the only agent that has the largest level. Then, all
agents eventually converge to the level. We guarantee that the maximum level of agents is
⌊log P ⌋. Since agents discard the information with smaller levels, agents virtually discard
any information that was left before agents complete the election. From now on, we consider
configurations after agents elect a leader token and discard any outdated information.

Now, we explain how the protocol solves the k-regular identification problem by using
the leader token. First, an agent with the leader token examines whether its degree is at
least k, and whether its degree is at least k + 1. If the agent confirms that its degree is at
least k but does not confirm that its degree is at least k + 1, then the agent thinks that its
degree is k. Since the leader token moves freely on the graph and we assume global fairness,
eventually each agent confirms whether its degree is k. The agent with the leader token
examines whether its degree is at least k as follows: An agent a with the leader token checks
whether a can interact with k different agents. To check it, agent a with the leader token
marks adjacent agents and counts how many times a has marked. Concretely, when agent
a having the leader token interacts with an agent b, agent a marks agent b by making b

change to a marked state. Agent a counts how many times a interacts with an agent having
a non-marked state (hereinafter referred to as “a non-marked agent”). If agent a having the
leader token interacts with k non-marked agents successively, a decides that a can interact
with k different agents (i.e., its degree is at least k).

If an agent confirms that its degree is at least k, the agent stores this information locally.
To do this, we introduce a variable loca at agent a: Variable loca ∈ {yes, no}, initialized
to no, represents whether the degree of agent a is at least k. If loca = yes holds, agent a

thinks that its degree is at least k. If an agent a confirms that its degree is at least k, agent
a makes loca transition from no to yes.

Next, we show how agents decide whether the graph is k-regular. In this protocol, first an
agent with the leader token decides whether the graph is k-regular, and then the decision is
conveyed to all agents by the leader token. We use variable rega at agent a for the decision:
Variable rega ∈ {yes, no}, initialized to no, represents the decision of the k-regular graph. If
rega = yes holds for agent a, then γ(sa) = yes holds. If rega = no holds, then γ(sa) = no

holds. Whenever an agent a with the leader token makes loca transition to yes, agent a

makes rega transition to yes. If an agent a with the leader token finds an agent b such that
locb = no or its degree is at least k + 1, agents reset rega to no. Note that, since all agents
follow the decision of the leader token, this behavior practically resets reg of each agent. If
there is such agent b, agent a with the leader token eventually finds agent b since the leader
token moves freely on the graph. Hence, if the graph is not k-regular, reg of the leader token
(i.e., rega such that agent a has the leader token) transitions to no infinitely often. On the
other hand, if the graph is k-regular, eventually loca of each agent a transitions from no to
yes. Let us consider a configuration where loc of each agent other than an agent x is yes

and locx is no. After the configuration, when agent x makes locx and regx transition to yes,
agent x has the leader token (i.e., reg of the leader token transitions to yes). Hence, since
there is no agent such that its loc is no or its degree is at least k + 1, reg of the leader token
never transitions to no afterwards and thus reg of the leader token converges to yes. Thus,
since agents convey the decision of the leader token to all agents, eventually all agents make
a correct decision.
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▶ Remark. We have introduced the level of agents to reset all agents virtually. In the case of
tree identification, only the leader token needs to be reset because, after the leader token
is reset, the leader token is not affected by incorrect information (the decision of agent in
this case). On the other hand, in the case of k-regular identification, all agents need to be
reset because, even after the leader token is reset, the leader token is affected by incorrect
information (the value of loc in this case). More concretely, the leader token has to refer to
variable loc of agent in order to understand whether all agents have been examined. Hence,
since agents may store an incorrect value in loc, the leader token may make a wrong decision
unless the agents are reset.

To count the degree, agents require O(k) states, and the maximum level of agents is
⌊log P ⌋. Hence, the protocol works with O(k log P ) states.

▶ Theorem 2. If the upper bound P of the number of agents is given, there exists a protocol
with O(k log P ) states and designated initial states that solves the k-regular identification
problem under global fairness.

When the number of agents n is given, the protocol works even if the maximum level is
⌊log n⌋. Thus, we have the following theorem.

▶ Theorem 3. If the number of agents n is given, there exists a protocol with O(k log n)
states and designated initial states that solves the k-regular identification problem under global
fairness.

3.3 Star Identification with Knowledge of n under Weak Fairness
In this subsection, we give a star identification protocol with O(n) states and designated
initial states under weak fairness (see the pseudocode in the appendix and the full version
in [26]). In this protocol, the number of agents n is given. Since a given graph is a star if
n ≤ 2 holds, we consider the case where n is at least 3.

The basic strategy of the protocol is as follows. Initially, each agent thinks that the
given graph is not a star. First, agents elect an agent with degree two or more as a central
agent (i.e., an agent that connects to all other agents in the star graph). Then, by counting
the number of agents adjacent to the central agent, agents examine whether there is a star
subgraph in the given graph such that the subgraph consists of n agents. Concretely, if the
central agent confirms by counting that there are n− 1 adjacent agents, agents confirm that
there is the subgraph. In this case, agents think that the given graph is a star. Then, if two
agents other than the central agent interact, agents decide that the graph is not a star. If
such an interaction does not occur, agents continue to think that the given graph is a star.

To count n− 1 agents adjacent to the central agents, agents require O(n) states. Hence,
the protocol works with O(n) states.

▶ Theorem 4. There exists a protocol with O(n) states and designated initial states that
solves the star identification problem under weak fairness if the number of agents n is given.

4 Impossibility Results

4.1 A Common Property of Graph Class Identification Protocols for
Impossibility Results

In this subsection, we present a common property that holds for protocols with designated
initial states under weak fairness.
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Figure 2 An example of graphs G and G′.

With designated initial states under weak fairness, we assume that a protocol P solves
some of the graph class identification problems. From now, we show that, with P, there
exists a case where agents cannot distinguish between some different connected graphs. Note
that P has no constraints for an initial knowledge (i.e., for some integer x, P is Pn=x, PP =x,
or a protocol with no initial knowledge). Because of space constraints, we omit the details of
the proof (see the full version in the [26]).

▶ Lemma 5. Let us consider a communication graph G = (V, E), where V = {v1, v2, v3,
. . ., vn}. Let G′ = (V ′, E′) be a communication graph that satisfies the following, where
V ′ = {v′

1, v′
2, v′

3, . . ., v′
2n}.

E′ = {(v′
x, v′

y), (v′
x+n, v′

y+n) ∈ V ′× V ′ | (vx, vy) ∈ E} ∪ {(v′
1, v′

z+n), (v′
1+n, v′

z) ∈ V ′× V ′ |
(v1, vz) ∈ E} (Figure 2 shows an example of the graphs).

Let Ξ be a weakly-fair execution of P with G. If there exists a configuration C of Ξ after
which ∀v ∈ V : γ(s(v)) = yn ∈ {yes, no} holds, there exists an execution Ξ′ of P with G′

such that there exists a configuration C ′ of Ξ′ after which ∀v′ ∈ V ′ : γ(s(v′)) = yn holds.

Proof. (Proof sketch) With G′, we consider a particular weakly-fair execution Ξ′. In Ξ′,
agents repeat the following four sub-executions: 1) agents v′

1, v′
2, . . ., v′

n behave similarly
to Ξ, 2) agents v′

1+n, v′
2+n, . . ., v′

2n behave similarly to Ξ, 3) agent v′
1+n and agents v′

2, v′
3

. . ., v′
n behave similarly to Ξ by joining v′

1+n instead of v′
1, and 4) agent v′

1 and agents v′
2+n,

v′
3+n . . ., v′

2n behave similarly to Ξ by joining v′
1 instead of v′

1+n. Since v′
1 (resp., v′

1+n) can
join interactions instead of v′

1+n (resp., v′
1) by the definition of G and G′, this execution is

possible. Clearly, in Ξ′, the decision of each agent is the same as the decision of agent in Ξ.
Therefore, the lemma holds. ◀

4.2 Impossibility with Knowledge of P under Weak Fairness
For the purpose of the contradiction, we assume that, for an integer x, there exists a protocol
PP =x that solves some of the graph class identification problems with designated initial
states under weak fairness. We can apply Lemma 5 to PP =x because we can apply the
same protocol PP =x to both G and G′ in Lemma 5. Clearly, we can construct G and G′ in
Lemma 5 such that, for any of properties line, ring, tree, k-regular, and star, G is a graph
that satisfies the property, and G′ is a graph that does not satisfy the property. Therefore,
we have the following theorem.

▶ Theorem 6. Even if the upper bound of the number of agents is given, there exists no
protocol that solves the line, ring, k-regular, star, or tree identification problem with the
designated initial states under weak fairness.
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Note that, in Theorem 6, the bipartite identification problem is not included. However,
we show later that there is no protocol that solves the bipartite identification problem even
if the number of agents is given.

4.3 Impossibility with Knowledge of n under Weak Fairness

In this subsection, we show that, even if the number of agents n is given, there exists no
protocol that solves the line, ring, k-regular, tree, or bipartite identification problem with
designated initial states under weak fairness.

Case of Line, Ring, k-regular, and Tree

First, we show that there exists no protocol that solves the line, ring, k-regular, or tree
identification problem. Concretely, we show that there is a case where a line graph and a ring
graph are not distinguishable. To show this, first we give some notations. Let G = (V, E)
be a line graph with four agents, where V = {v1, v2, v3, v4} and E = {(v1, v2), (v2, v3),
(v3, v4)}. Let G′ = (V ′, E′) be a ring graph with four agents, where V ′ = {v′

1, v′
2, v′

3, v′
4} and

E′ = {(v′
1, v′

2), (v′
2, v′

3), (v′
3, v′

4), (v′
4, v′

1)}. Let s0 be an initial state of agents. Let us consider
a transition sequence T = (s0, s0) → (sa1 , sb1), (sb1 , sa1) → (sb2 , sa2), (sa2 , sb2) → (sa3 ,
sb3), (sb3 , sa3)→ (sb4 , sa4), . . .. Since the number of states is finite, there are i and j such
that sai

= saj
, sbi

= sbj
, and i < j hold. Let sa and sb be states such that sa = sai

= saj

and sb = sbi
= sbj

hold.
Because of space constraints, we omit the details of the proof (see the full version in

the [26]). The proof sketch is as follows: We construct a particular execution Ξ with G such
that the decision of each agent converges to yn ∈ {yes, no}. In Ξ, agents repeat the following
three sub-executions: 1) agents v1 and v2 interact repeatedly until v1 and v2 obtain sa and
sb, respectively, 2) agents v3 and v4 interact repeatedly until v3 and v4 obtain sa and sb,
respectively, and 3) v3 and v2 interact repeatedly until v3 and v2 obtain sa and sb again,
respectively. Next, we construct a particular execution Ξ′ with G′. In Ξ′, agents repeat the
following four sub-executions: 1) agents v′

1 and v′
2 interact repeatedly until v′

1 and v′
2 obtain

sa and sb, respectively, 2) agents v′
3 and v′

4 interact repeatedly until v′
3 and v′

4 obtain sa

and sb, respectively, 3) v′
3 and v′

2 interact repeatedly until v′
3 and v′

2 obtain sa and sb again,
respectively, and 4) v′

1 and v′
4 interact repeatedly until v′

1 and v′
4 obtain sa and sb again,

respectively. From the definition of sa and sb, we can construct those executions such that
the executions satisfy weak fairness and agents converge to the decision yn.

▶ Lemma 7. There exists a weakly-fair execution Ξ′ of P with G′ such that ∀v′ ∈ V ′ :
γ(s(v′)) = yn holds in a stable configuration of Ξ′.

Note that, even if the number of agents is given, Lemma 7 holds because |V | = |V ′| = 4
holds in the lemma. In Lemma 7, G is a line graph and a tree graph whereas G′ is neither a
line graph nor a tree graph. Furthermore, G′ is a ring graph and a 2-regular graph whereas
G is neither a ring graph nor a 2-regular graph. Hence, by Lemma 7, there is no protocol
that solves the line, ring, tree, or k-regular identification problem, and thus we have the
following theorem.

▶ Theorem 8. Even if the number of agents n is given, there exists no protocol that solves
the line, ring, k-regular, or tree identification problem with designated initial states under
weak fairness.
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Figure 3 Graphs G, G′, and G′′.

Case of Bipartite

Next, we show that there exists no protocol that solves the bipartite identification problem.
For the purpose of the contradiction, we assume that there exists a protocol Pn=6 that solves
the bipartite identification problem with designated initial states under weak fairness if the
number of agents 6 is given.

We define a ring graph G = (V, E) with three agents, a ring graph G′ = (V ′, E′) with 6
agents, and a graph G′′ = (V ′′, E′′) with 6 agents as follows:

V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v1)}.
V ′ = {v′

1, v′
2, v′

3, v′
4, v′

5, v′
6} and E′ = {(v′

1, v′
2), (v′

2, v′
6), (v′

6, v′
4), (v′

4, v′
5), (v′

5, v′
3),

(v′
3, v′

1)}.
V ′′ = {v′′

1 , v′′
2 , v′′

3 , v′′
4 , v′′

5 , v′′
6} and E′′ = {(v′′

x , v′′
y ), (v′′

x+n, v′′
y+n) ∈ V ′′ × V ′′ | (vx, vy) ∈

E} ∪ {(v′′
1 , v′′

5 ), (v′′
1 , v′′

6 ), (v′′
4 , v′′

2 ), (v′′
4 , v′′

3 )}.
Figure 3 shows graphs G, G′, and G′′.

From now, we show that there exists an execution Ξ′′ of Pn=6 with G′′ such that all
agents converge to yes whereas G′′ does not satisfy bipartite. To show this, we first show
that, in any execution Ξ of Pn=6 with G (i.e., the protocol for 6 agents is applied to a
population consisting of 3 agents), all agents converge to yes. To prove this, we borrow the
proof technique in [19]. In [19], Fischer and Jiang proved the impossibility of leader election
for a ring graph.

▶ Lemma 9. In any weakly-fair execution Ξ of Pn=6 with G, all agents converge to yes.
That is, in Ξ, there exists Ct such that ∀v ∈ V : γ(s(v, Ci)) = yes holds for i ≥ t.

Proof sketch. For Ξ, we construct an execution Ξ′ of Pn=6 with G′ such that v′
1, v′

2, and v′
3

behave similarly to v1, v2, and v3 in Ξ, respectively, and v′
4, v′

5, and v′
6 also behave similarly

to v1, v2, and v3 in Ξ, respectively. Note that agents v′
1, v′

2, and v′
3 and agents v′

4, v′
5, and v′

6
operate in parallel. Since v′

2 (resp., v′
5) is not adjacent to v′

3 (resp., v′
6), v′

2 (resp., v′
5) cannot

interact with v′
3 (resp., v′

6). When v′
2 (resp., v′

5) should interact with v′
3 (resp., v′

6), v′
2 (resp.,

v′
5) interacts with v′

6 instead of v′
3 (resp., v′

3 instead of v′
6). Since v′

2 and v′
5 (resp., v′

3 and v′
6)

behave similarly to v2 (resp., v3), v′
2 and v′

5 (resp., v′
3 and v′

6) have the same state. Hence,
even if v′

2 (resp., v′
5) interacts with v′

6 instead of v′
3 (resp., v′

3 instead of v′
6), v′

2 and v′
3 (resp.,

v′
5 and v′

6) can transition similarly to v2 and v3.
In Ξ′, since the number of agents is given correctly, a stable configuration exists. Hence,

since G′ is a bipartite graph, all agents converge to yes in Ξ′. This implies that all agents
converge to yes even in Ξ. ◀

Now, we show that there exists execution Ξ′′ of Pn=6 with G′′ such that all agents
converge to yes. We show this by applying Lemma 5 to protocol Pn=6 and graphs G and
G′′. Graphs G and G′′ satisfy the condition of G and G′ in Lemma 5, and the protocol Pn=6
satisfies the condition of protocol P in Lemma 5. Thus, we can apply Lemma 5 to protocol
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Pn=6 and graphs G and G′′. By applying Lemma 5, since all agents converge to yes in an
execution of Pn=6 with G by Lemma 9, there exists a weakly-fair execution Ξ′′ of Pn=6 with
G′′ in which all agents converge to yes.

▶ Lemma 10. With the designated initial states, there exists a weakly-fair execution Ξ′′ of
Pn=6 with G′′ such that ∀v′′ ∈ V ′′ : γ(s(v′′)) = yes in a stable configuration.

Graph G′′ does not satisfy bipartite. Thus, from Lemma 10, Pn=6 is incorrect. Therefore,
we have the following theorem.

▶ Theorem 11. Even if the number of agents n is given, there exists no protocol that solves
the bipartite identification problem with the designated initial states under weak fairness.

4.4 Impossibility with Arbitrary Initial States
In this subsection, we show that, even if the number of agents n is given, there exists no
protocol that solves the line, ring, k-regular, star, tree, or bipartite identification problem
with arbitrary initial states under global fairness.

For the purpose of the contradiction, we assume that there exists a protocol P that solves
some of the above graph class identification problems with arbitrary initial states under
global fairness if the number of agents n is given. From now, we show that there are two
executions Ξ and Ξ′ of P such that the decision of all agents in the executions converges to
the same value whereas Ξ and Ξ′ are for graphs G and G′( ̸= G), respectively.

▶ Lemma 12. Let G = (V, E) and G′ = (V ′, E′) be connected graphs that satisfy the following
condition, where V = {v1, v2, v3, . . ., vn} and V ′ = {v′

1, v′
2, v′

3, . . ., v′
n}.

For some edge (vα, vβ) in E, E′ = {(v′
x, v′

y) ∈ V ′ × V ′ | (vx, vy) ∈ E}\{(v′
α, v′

β)}.
If there exists a globally-fair execution Ξ of P with G such that ∀v ∈ V : γ(s(v)) = yn ∈ {yes,
no} holds in a stable configuration of Ξ, there exists a globally-fair execution Ξ′ of P with G′

such that ∀v′ ∈ V ′ : γ(s(v′)) = yn holds in a stable configuration of Ξ′.

Proof. Let Ξ = C0, C1, C2, . . . be a globally-fair execution of P with G such that ∀v ∈
V : γ(s(v)) = yn ∈ {yes, no} holds in a stable configuration Ct. For the purpose of the
contradiction, we assume that there exists no execution of P with G′ such that ∀v′ ∈ V ′ :
γ(s(v′)) = yn holds in a stable configuration.

Let us consider an execution Ξ′ = C ′
0, C ′

1, C ′
2, . . ., C ′

t′ , . . . of P with G′ such that, for
1 ≤ i ≤ n, s(v′

i, C ′
0) = s(vi, Ct) holds and C ′

t′ is a stable configuration. By the assumption,
∃v′

z ∈ V ′ : γ(s(v′
z, C ′

t′)) = yn′( ̸= yn) holds.
Next, let us consider an execution Ξ′′ = C ′′

0 , C ′′
1 , C ′′

2 , . . ., C ′′
t , . . . of P with G as follows:

For 0 ≤ i ≤ t, C ′′
i = Ci holds (i.e., agents behave similarly to Ξ).

For t < i ≤ t + t′, when v′
x interacts with v′

y at C ′
i−t−1 → C ′

i−t, vx interacts with vy at
C ′′

i−1 → C ′′
i . This is possible because E′ ⊂ E holds.

Since Ct is a stable configuration, C ′′
t is also a stable configuration and ∀v ∈ V : γ(s(v, C ′′

t )) =
yn holds. Since agents behave similarly to Ξ′ after C ′′

t , γ(s(vz, C ′′
t+t′)) = yn′ holds. This

contradicts the fact that C ′′
t is a stable configuration. ◀

We can construct a non-line graph, a non-ring graph, a non-star graph, a non-tree graph,
and a non-bipartite graph by adding an edge to a line graph, a ring graph, a star graph, a
tree graph, and a bipartite graph, respectively. Moreover, we can construct a k-regular graph
by adding an edge to some non-k-regular graph. From Lemma 12, there is a case where the
decision of all agents converges to the same value for each pair of graphs. Therefore, we have
the following theorem.

▶ Theorem 13. There exists no protocol that solves the line, ring, k-regular, star, tree, or
bipartite identification problem with arbitrary initial states under global fairness.
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5 Concluding Remarks

In this paper, we consider the graph class identification problems on various assumptions.
We have interesting open problems for future researches as follows:

What is the space complexity of k-regular identification problem under global fairness
with designated initial states and no initial knowledge.
What is the time complexity of graph class identification problems?
Are there some graph class identification protocols for other graph properties?
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A Pseudocode of Protocols

The descriptions of pseudocodes in this appendix are appeared in [26].

A.1 Tree Identification Protocol
Algorithm 1 shows the tree identification protocol in Subsection 3.1. The roles of the variables
at agent a in Protocol 1 are as follows.

LFa ∈ {Lse, Ll, Lr, Lt
se, Lt

se′ , Lse′ , Lt
l , Lt

r, ϕ}: Variable LFa, initialized to Lr, represents
a token held by agent a. If LFa is not ϕ, agent a has LFa token. There are three types
of tokens: a leader token (Lse, Lt

se, Lt
se′ , and Lse′), a left token (Ll and Lt

l), and a right
token (Lr and Lt

r). Ll, and Lr tokens are the tokens in non-trial modes. Lt
l and Lt

r

tokens represent the left token and the right token in the trial mode, respectively. Lt
se,

Lt
se′ , and Lse′ tokens represent a progress of a trial of the cycle detection. Lt

se token
represents that the left token has been placed. Lt

se′ token represents that the right token
has been placed. Lse′ token represents that the token confirms that the Lt

l token is still
placed on the certain agent. ϕ represents no token.
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trea ∈ {yes, no}: Variable trea, initialized to yes, represents a decision of the tree. If
trea = yes holds for agent a, then γ(sa) = yes holds (i.e., a decides that the given graph
is a tree). If trea = no holds, then γ(sa) = no holds (i.e., a decides that the given graph
is not a tree).

The protocol uses 18 states because the number of values taken by variable LFa is 9 and the
number of values taken by variable trea is 2.

Algorithm 1 A tree identification protocol (1/2).

Variables at an agent a:
LFa ∈ {Lse, Ll, Lr, Lt

se, Lt
se′ , Lse′ , Lt

l , Lt
r, ϕ}: Token held by the agent, initialized to

Lr.
trea ∈ {yes, no}: Decision of the tree, initialized to yes.

1: when agent a interacts with agent b do
{ The election of tokens }

2: if LFa, LFb ∈ {Lt
r, Lr} then

3: LFb ← Ll

4: else if LFa, LFb ∈ {Lt
l , Ll} then

5: LFb ← Lse

6: else if LFa, LFb ∈ {Lse, Lt
se, Lt

se′ , Lse′} then
7: LFa ← Lse, LFb ← ϕ

8: trea ← yes

{ Movement of tokens }
9: else if LFa ̸= ϕ ∧ LFb = ϕ then

10: if LFa ∈ {Lse, Lt
se, Lt

se′ , Lse′} then
11: treb ← trea

12: end if
13: if LFa = Lt

κ for κ ∈ {l, r} then
14: LFa ← Lκ

15: else if LFa = Lse′ ∨ LFa = Lt
se′ then

16: LFa ← Lse

17: end if
18: LFa ↔ LFb *

{ Decision }
19: else if LFa = Lse ∧ LFb = Ll then
20: LFa ← Lt

l , LFb ← Lse′

21: treb ← trea

22: else if LFa = Lse′ ∧ LFb = Lr then
23: LFa ← Lt

r, LFb ← Lt
se

24: treb ← trea

25: else if LFa = Lt
se ∧ LFb = Lt

l then
26: LFa ← Ll, LFb ← Lt

se′

27: treb ← trea

28: else if LFa = Lt
se′ ∧ LFb = Lt

r then
29: LFa ← Lr, LFb ← Lse

30: treb ← no

* p↔ q means that p and q exchange values.
▷ Continued on the next page
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Algorithm 1 A tree identification protocol (2/2).

31: else if LFa ̸= ϕ ∧ LFb ̸= ϕ then
32: if LFab ∈ {Lse, Lt

se, Lt
se′ , Lse′} for ab ∈ {a, b} then

33: trea ← treab, treb ← treab

34: end if
35: if LFab = Lt

κ for ab ∈ {a, b} and κ ∈ {l, r} then
36: LFab ← Lκ

37: end if
38: if LFab = Lse′ ∨ LFab = Lt

se ∨ LFab = Lt
se′ for ab ∈ {a, b} then

39: LFab ← Lse

40: end if
41: LFa ↔ LFb

42: end if
43: end

A.2 k-regular Identification Protocol

Algorithm 2 shows the k-regular identification protocol in Subsection 3.2.
The roles of the variables at agent a in Protocol 2 are as follows.
LFa ∈ {L0, L1, . . ., Lk, ϕ, ϕ′}: Variable LFa, initialized to L0, represents states for a
leader token and marked agents. If LFa is neither ϕ nor ϕ′, agent a has a leader token.
In particular, if LFa = Li(i ∈ {0, 1, . . ., k}) holds, agent a has an Li token. Moreover,
LFa = Li represents that agent a has interacted with i different non-marked agents (i.e.,
agent a has at least i edges). If LFa = ϕ holds, agent a has no leader token. If LFa = ϕ′

holds, agent a has no leader token and a is marked by other agents.
levela ∈ {0, 1, 2, . . ., ⌊log P ⌋}: Variable levela, initialized to 0, represents the level of
agent a.
rega ∈ {yes, no}: Variable rega, initialized to no, represents the decision of the k-regular
graph. If rega = yes holds for agent a, then γ(sa) = yes holds. If rega = no holds, then
γ(sa) = no holds.

The protocol uses O(k log P ) states because the number of values taken by variable LFa is
k + 2, the number of values taken by variable levela is ⌊log P ⌋+ 1, and the number of values
taken by other variables (loca and rega) is constant.

A.3 Star Identification Protocol

Algorithm 3 shows the star identification protocol in Subsection 3.3.
The roles of the variables at agent a in Protocol 3 are as follows.
LFa ∈ {ϕ, ϕ′, l′, L2, L3, . . ., Ln−1}: Variable LFa, initialized to ϕ, represents a role of
agent a. LFa = Li means that a central agent a has marked i agents (i.e., agent a has at
least i edges). LFa = l′ means that a is a candidate of a central agent and is a marked
agent. LFa = ϕ means that agent a is a non-marked agent. LFa = ϕ′ means that agent
a is a marked agent. When LFa = x holds, we refer to a as an x-agent.
stara ∈ {yes, no, never}: Variable stara, initialized to no, represents a decision of a
star. If stara = yes holds, γ(sa) = yes holds (i.e., a decides that a given graph is a
star). If stara = no or stara = never holds, γ(sa) = no holds (i.e., a decides that a given
graph is not a star). stara = never means the stronger decision of no. If agent a with
stara = never interacts with agent b, starb transitions to never regardless of the value
of starb.
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Algorithm 2 A k-regular identification protocol.

Variables at an agent a:
LFa ∈ {L0, L1, . . ., Lk, ϕ, ϕ′}: States for a leader token and marked agents, initialized
to L0.
levela ∈ {0, 1, 2, . . ., ⌊log P ⌋}: States for the level of agent a, initialized to 0.
loca ∈ {yes, no}: States representing whether the degree of agent a is at least k, initialized
to no.
rega ∈ {yes, no}: Decision of the k-regular graph, initialized to no.

1: when agent a interacts with agent b do
⟨ The behavior when agents have the same level ⟩

2: if levela = levelb then
{ The election of leader tokens }

3: if LFa = Lx ∧ LFb = Ly (x, y ∈ {0, 1, 2, . . ., k}) then
4: levela ← levela + 1
5: LFa ← L0, LFb ← ϕ

6: rega ← no

7: loca ← no

{ Decision and movement of the token }
8: else if LFa = Lx ∧ LFb = ϕ (x ∈ {0, 1, 2, . . ., k − 2}) then
9: LFa ← Lx+1, LFb ← ϕ′

10: else if LFa = Lx ∧ LFb = ϕ′ (x ∈ {0, 1, 2, . . ., k}) then
11: LFa ← ϕ, LFb ← L0
12: regb ← rega

13: else if LFa = Lk−1 ∧ LFb = ϕ then
14: LFa ← Lk, LFb ← ϕ′

15: if loca = no then
16: rega ← yes

17: loca ← yes

18: end if
{ Reset of reg of the leader token (the degree of agent a is at least k + 1) }

19: else if LFa = Lk ∧ LFb = ϕ then
20: LFa ← L0, LFb ← ϕ′

21: rega ← no

22: end if
{ Reset of reg of the leader token (loca or locb is no) }

23: if loca = no ∨ locb = no then
24: rega ← no, regb ← no

25: end if
⟨ The behavior when agents have different levels ⟩

26: else if levela > levelb then
27: levelb ← levela
28: locb ← no

29: LFb ← ϕ

30: end if
31: end

The protocol is given in Algorithm 3. Algorithm 3 uses 3n + 3 states because the number of
values taken by variable LFa is n + 1 and the number of values taken by variable stara is 3.
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Algorithm 3 A star identification protocol.

A variable at an agent a:
LFa ∈ {ϕ, ϕ′, l′, L2, L3, . . ., Ln−1}: States that represent roles of agents, initialized to ϕ.
Li represents a central agent, l′ represents a candidate of the central agent, ϕ′ represents
a marked agent, and ϕ represents a non-marked agent.
stara ∈ {yes, no, never}: Decision of a star, initialized to no.

1: when agent a interacts with agent b do
⟨ The behavior when stara or starb is never ⟩

2: if stara = never ∨ starb = never then
3: stara ← never, starb ← never

⟨ The behaviors when stara ̸= never and starb ̸= never holds ⟩
4: else

{ The election of a central agent }
5: if LFa = ϕ ∧ LFb = ϕ then
6: LFa ← l′, LFb ← l′

7: else if LFa = l′ ∧ LFb = ϕ then
8: LFa ← L2, LFb ← ϕ′

{ Counting the number of adjacent agents by the central agent }
9: else if LFa = Li ∧ LFb = ϕ (2 ≤ i ≤ n− 2) then

10: LFa ← Li+1, LFb ← ϕ′

11: end if
12: if LFa = Ln−1 then
13: stara ← yes, starb ← yes

14: end if
{ Decision of never }

15: if LFa = ϕ′ ∧ LFb = ϕ′ then
16: stara ← never, starb ← never

17: else if LFa = ϕ′ ∧ LFb = l′ then
18: stara ← never, starb ← never

19: end if
{ Conveyance of yes }

20: if stara = yes ∨ starb = yes then
21: stara ← yes, starb ← yes

22: end if
23: end if
24: end
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Abstract
Let G be a graph on n nodes. In the stochastic population protocol model, a collection of n

indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each
interaction, two randomly chosen neighbors first read each other’s states, and then update their
local states. A rich line of research has established tight upper and lower bounds on the complexity
of fundamental tasks, such as majority and leader election, in this model, when G is a clique.
Specifically, in the clique, these tasks can be solved fast, i.e., in n polylog n pairwise interactions,
with high probability, using at most polylog n states per node.

In this work, we consider the more general setting where G is an arbitrary regular graph, and
present a technique for simulating protocols designed for fully-connected networks in any connected
regular graph. Our main result is a simulation that is efficient on many interesting graph families:
roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the
conductance of the graph. As a sample application, we show that, in any regular graph with
conductance φ, both leader election and exact majority can be solved in φ−2 · n polylog n pairwise
interactions, with high probability, using at most φ−2 · polylog n states per node. This shows that
there are fast and space-efficient population protocols for leader election and exact majority on
graphs with good expansion properties. We believe our results will prove generally useful, as they
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1 Introduction

Since the early days of computer science, there has been significant interest in developing
an algorithmic theory of molecular and biological systems [49]. In distributed computing,
population protocols [8] have become a popular model for investigating the collective compu-
tational power of large collections of communication- and computationally-bounded agents.
This model consists of n identical agents, seen as finite state machines, and computation
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(a) (b) (c)

Figure 1 The graphical population protocol model. In each step, a random edge {u, v} is selected
and the nodes u and v interact (blue nodes). Examples of graph classes covered by our construction:
(a) regular high-girth expanders, (b) bipartite complete graphs, (c) toroidal grids.

proceeds via pairwise interactions which trigger local state transitions. The sequence of
interactions is provided by a scheduler, which picks pairs of agents to interact. The goal
is to have the system reach a configuration satisfying a given predicate, while minimising
the number of interactions (time complexity) and the number of states per node (space
complexity) required by the protocol.

Early work on population protocols focused on the computational power of the model
under various interaction graphs [8, 11]. More recently, the focus has shifted to understanding
complexity thresholds, often in the form of fundamental complexity trade-offs between time
and space complexity, e.g. [10, 7, 32, 35, 4, 16, 19, 31]; for recent surveys please see [34, 5].

The second line of work almost focuses mainly on the uniform stochastic scheduler,
where each interaction pair is chosen uniformly at random among all pairs of agents in the
population, and the time complexity of a protocol is measured by the number of interactions
needed to solve a task. This is analogous to having a large well-mixed solution of interacting
particles when modelling chemical reactions. However, many natural systems exhibit spatial
structure and this structure can significantly influence the system dynamics.

Indeed, there is a separation in terms of computational power for population protocols
in the clique versus other interaction graphs: connected interaction graphs can simulate
adversarial interactions on the clique graph by shuffling the states of the nodes [8] and
population protocols on some interaction graphs can compute a strictly larger set of predicates
than protocols on the clique; see e.g. [13] for a survey of computability results.

By comparison, surprisingly little is known about the complexity of basic tasks in general
interaction graphs under the stochastic scheduler. So far, only a handful of protocols have
been analysed on general graphs. Existing analyses tend to be complex, and specialised to
specific algorithms on limited graph classes [33, 27, 42, 43, 17]. This is natural: given the
intricate dependencies which arise due to the underlying graph structure, the design and
analysis of protocols in the spatial setting is understood to be challenging.

Contributions. In this work, we provide a general approach showing that standard problems
in population protocols can be solved efficiently under graphical stochastic schedulers, by
leveraging solutions designed for complete graphs. Our results are as follows:
1. We give a general framework for simulating a large class of synchronous protocols designed

for fully-connected networks, in the graphical stochastic population protocol model (see
Figure 1). Thus, the user can design efficient (and simple to analyse) synchronous
algorithms on a clique model, and transport the analysis automatically to the population
protocol model on a large class of interaction graphs. For instance, on any d-regular graph
with edge expansion β > 0, the resulting overhead in parallel time and state complexity
is in the order of (d/β)2 · polylog n.
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shuffle

round 1 round 2

shuffle shuffle

round 1 round 2

(b)(a) shuffle

Figure 2 The synchronous k-token shuffling model with 5 nodes for k = 1 and k = 2. Rectangles
are nodes and the small circles are tokens. In each round, nodes generate k tokens based on their
current state. Then all nk tokens are shuffled randomly. After this, nodes update their state based on
the vector of k tokens they hold. (a) An execution of a protocol in the 1-token shuffling model. The
arrows between tokens represent the random permutation used to shuffle tokens. (b) An execution
of a protocol for k = 2. Each node sends and receives two tokens.

2. As concrete applications, we show that for any d-regular graph with edge expansion
β > 0, there exist protocols for leader election and exact majority that stabilise both in
expectation and with high probability in (d/β)2 · polylog n parallel time, using (d/β)2 ·
polylog n states.

3. To complement the results following from the simulation, we also show that, on any graph
G with diameter diam(G) and m edges, leader election can be solved both in expectation
and with high probability in O(diam(G) ·mn2 log n) parallel time, by analysing the time
complexity of the constant-state protocol by Beauquier et al. [15].

Technical Overview. Our reduction framework combines several techniques from different
areas, and can be distilled down to the following ingredients.

We start by defining a simple synchronous, fully-connected model of communication for
the n nodes, called the k-token shuffling model. This is the model in which the algorithm
should be designed and analysed, and is similar, and in some ways simpler, relative to the
standard population model. Specifically, nodes proceed in synchronous rounds, in which
every node v first generates k tokens based on its current state. Tokens are then shuffled
uniformly at random among the nodes. At the end of a round, every node v updates its local
state based on its current state, and the tokens it received in the round. Figure 2 illustrates
the model. This simple model is quite powerful, as it can simulate both pairwise and one-way
interactions between all sets of agents, for well-chosen settings of the parameter k.

Our key technical result is that any algorithm specified in this round-synchronous k-token
shuffling model can be efficiently simulated in the graphical population model. Although
intuitive, formally proving this result, and in particular obtaining bounds on the efficiency
of the simulation, is non-trivial. First, to show that simulating a single round of the
k-token shuffling model can be done efficiently, we introduce new type of card shuffling
process [28, 50, 23, 38], which we call the k-stack interchange process, and analyse its mixing
time by linking it to random walks on the symmetric group.

Second, to allow correct and efficient asynchronous simulation of the synchronous token
shuffling model, we introduce two new gadgets: (1) a graphical version of decentralised phase
clocks [4, 36, 35], combined with (2) an asynchronous token shuffling protocol, which simulates
the k-token interchange process in a graphical population protocol. The latter ingredient is
our main technical result, as it requires both efficiently combining the above components,
and carefully bounding the probability bias induced by simulating a synchronous model
under asynchronous pairwise-random interactions.
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Table 1 Protocols for exact majority (EM) and leader election (LE) for different graph classes.
The state complexity is the number of states used by the protocol. The parallel time column gives
the expected parallel time (expected number of interaction steps divided by n) to stabilise. (*)
In [33], the running time of the protocol is bounded by the initial discrepancy in the inputs and the
spectral properties of the contact rate matrix; bounds in terms of n are only given for select graph
classes (paths, cycles, stars, random graphs and cliques). No sublinear in n bounds on parallel time
are given in [33]. Protocols marked with (⋆) stabilise also in non-regular graphs in poly(n) time.

Graph class Task States Parallel time Note
cliques EM 4 O(n log n) [33]

EM O(log n) Θ(log n) [31]
LE 2 Θ(n) [32]
LE Θ(log log n) Θ(log n) [19]

connected EM 4 poly(n) [33, 17], (*)
LE 6 O(diam(G) · mn2 log n) new analysis of [15]

d-regular EM (d/β)2 · polylog n (d/β)2 · polylog n new, (⋆)
LE (d/β)2 · polylog n (d/β)2 · polylog n new, (⋆)

Finally, we instantiate this framework to solve exact majority and leader election in the
graphical setting. We provide simple token-shuffling protocols for these problems, as well as
backup protocols to ensure their correctness in all executions.

Implications. Our results imply new and improved upper bounds on the time and state
complexity of majority and leader election for a wide range of graph families. In some cases,
they improve upon the best known upper bounds for these problems. Please see Table 1 for
a systematic comparison. Specifically, our results show that:

In sparse graphs with good expansion properties, such as constant-degree graphs with
constant edge expansion (Figure 1a), our simulation has polylogarithmic time and state
complexity overhead, relative to clique-based algorithms. Thus, good expanders admit
fast protocols using polylogarithmic states, despite being sparser than the clique.
In dense graphs, we obtain similar bounds whenever d/β ∈ polylog n holds. This is the
case for instance in d-dimensional hypercubes with n = 2d nodes, but also in highly-dense
clique-like graphs, such as regular complete multipartite graphs (Figure 1b), where the
degree and expansion are both Θ(n).
In D-dimensional toroidal grids, we get algorithms with n2/D polylog n parallel time
and state complexity. These graphs include cycles (1-dimensional toroidal grids), two-
dimensional grids (Figure 1c), three-dimensional lattices, and so on.

While our protocols guarantee fast stabilisation in regular graphs with high expansion, they
will stabilise in polynomial expected time in any connected graph. The results can be carried
over to certain classes of non-regular graphs provided that they are not highly irregular and
have high expansion; we discuss this in Section 8, and provide examples in the Appendix.

It is known that, in the clique setting, constant-state protocols are necessarily slower
than protocols with super-constant states [32, 4]. Our results suggest the existence of a
similar complexity gap in the graphical setting. Specifically, on d-regular graphs with good
expansion, such that d/β ∈ polylog n, we provide polylogarithmic-time protocols for both
leader election and exact majority. This opens a significant complexity gap relative to known
constant-state protocols on graphs. For instance, the 4-state exact majority protocol for
general graphs [33] requires Ω(n) parallel time even in regular graphs with high expansion, if
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node degrees are Θ(n). (A simple example is the complete bipartite graph given in Figure 1b.)
Yet, our protocols guarantee stabilisation in only polylog n parallel time in both low and
high degree graphs, as long as d/β is at most polylog n.

Due to space constraints, in the following we focus on the simulation framework and its
properties; the correctness proofs for our framework and the algorithmic applications are
given in the full version of the paper [6].

2 Related Work

Computability for Graphical Population Protocols. A variant of the graphical setting was
already considered in the foundational work of Angluin et al. [8], which also uses a state
shuffling approach. However, the resulting line of work focused on computational power in
the case where the number of states per node is constant [8, 9, 12, 11, 21]. A key difference
is that we aim to simulate pairwise interactions under the uniform stochastic scheduler, as
fast protocols in the clique require that pairwise interactions are uniformly random [34].
Thus, one of the main technical challenges is to devise an efficient shuffling procedure that
guarantees that the simulated interactions are (almost) uniform.

In addition, self-stabilising population protocols on graphs have been investigated partic-
ularly in the context of leader election [12, 15, 51, 47, 24, 25, 39, 48]. This considers more
stringent transient fault models than ours: we will thus be able to obtain better bounds,
but our results will not directly transfer to self-stabilising protocols. This is natural, since
self-stabilising leader election is not solvable on all graph families [12].

Beauquier et al. [15] noted that without the requirement of self-stabilisation, leader
election can be solved on every connected graph by a constant-state protocol. We provide
the first running-time upper bounds for this protocol; please see Table 1 for a summary of
the known bounds. Concurrent work by Sudo et al. [48] on self-stabilising leader election
on general graphs uses a similar approach to our analysis of the leader election protocol,
presented in the full version [6].

Complexity in the Clique Model. A parallel line of work has focused on determining the
fundamental space-time trade-offs for key tasks, such as majority and leader election, when
the interaction graph is a clique [32, 33, 42, 3, 4, 20, 16, 19, 31]. In this case, tight or
almost-tight complexity trade-offs are now known for these problems [19, 37, 4].

The vast majority of the work on complexity has focused on the clique case [34, 5]. Two
natural justifications for this choice are that: (1) the clique is a good approximation for
well-mixed solutions, and (2) the analysis of population protocols can be difficult enough
even without additional complications due to graph structure. Bounds on non-complete
graphs have been studied for exact [33] and approximate majority [42, 43], with some recent
work considering plurality consensus [26, 27, 17] in a related model. The recent survey of [34]
points out that running time on general graphs is poorly understood, and sets this as an
open question. We take a first step towards addressing this gap.

Interacting Particle Systems. Another related line of work investigated dynamics of
interacting particle systems on graphs, e.g. [2]. However, in this context dynamics are often
assumed to be round-synchronous, which allows the use of more powerful techniques, related
to independent random walks on graphs. Cooper et al. [26] analysed the coalescence time of
independent random walks on a graph in terms of the expansion properties of the graph,
where each node initially holds a unique particle, and in each step particles randomly move to

OPODIS 2021



14:6 Fast Graphical Population Protocols

another node. Whenever, two particles meet, they coalesce into a single one, which continues
its walk. We also employ token-based protocols on graphs, but in our case tokens are shuffled
between nodes instead of coalescing.

Token-based processes have also been used to implement efficient, randomised rumour
spreading protocols. For example, Berenbrink et al. [18] analysed the cover time of a
synchronous coalescing-branching random walk on regular graphs. Similarly to our work,
they use conductance to bound the behaviour of this process in regular graphs. In this work,
we use token-based population protocols on graphs, where the tokens are shuffled between
nodes during an interaction and the tokens instead of coalescing, may also interact in other
ways.

Plurality Consensus on Expanders. In plurality consensus, there are k > 1 opinions and
the task is the agree on opinion supported by the most nodes. Berenbrink et al. [17] present
a protocol for the plurality consensus problem in a synchronous pull-based interaction model.
Their protocol also circulates tokens, and samples their count periodically (after mixing) to
estimate opinion counts, running into the issue that the token movements are correlated.
The authors provide a generalisation of a result by Sauerwald and Sun [45] in order to show
that the joint token distribution is negatively correlated, and therefore the token counting
mechanism concentrates.

In this work, we also employ a token exchange protocol, and encounter non-trivial correl-
ation issues. However, we resolve these issues differently: we characterise the distribution
of the token interactions using the k-stack interchange process, and bound its total vari-
ation distance relative to the uniform distribution, showing that the two distributions are
indistinguishable in polynomial time with high probability. More generally, the goal of our
construction is different, as we aim to provide a general framework to efficiently simulate
pairwise random node interactions.

Shuffling Processes. Our results also connect to the work on card shuffling processes, and
in particular, the interchange process, which has a long and rich history, e.g. [29, 1, 28, 50, 38].
While many of these processes are simple to describe, they are often surprisingly challenging
to analyse. In the classic interchange process, a card is placed on every node of a graph and
the shuffling is performed by randomly exchanging cards between adjacent nodes.

Diaconis and Shahshahani [29] gave sharp bounds on the mixing time of the random
transpositions shuffle, i.e., interchange process on the clique. Diaconis and Saloff-Coste [28]
developed a powerful comparison technique for upper bounding the mixing time of a random
walk on a finite group. This is one the key techniques for upper bounding mixing times of
the interchange process.

Later, Wilson [50] developed a general technique for proving lower bounds for many
shuffling processes. For example, he showed that the mixing time of the interchange process
on the two-dimensional

√
n ×
√

n grid is Θ(n2 log n) and Ω(n log2 n) on the hypercube.
Subsequently, Jonasson [38] gave additional upper and lower bounds on the interchange
process on various graphs.

3 Preliminaries

Graphs. A graph G = (V, E) is d-regular if every node v ∈ V is adjacent to exactly d other
nodes. The edge boundary of a set S ⊆ V is the set ∂S ⊆ E of edges with exactly one endpoint
in S. The edge expansion of the graph G is defined as β = min {|∂S|/|S| : S ⊆ V, |S| ≤ n/2}.
If G is regular, its conductance is β/d. Unless otherwise mentioned, all graphs are assumed
to be regular and connected.
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Probability distributions. Let E be a finite set. We say µ : E → [0, 1] is a probability
distribution on E if

∑
x∈E µ(x) = 1 holds. For A ⊆ E we write µ(A) =

∑
x∈A µ(x). The

uniform distribution on E is the distribution ν defined by ν(x) = 1/|E|. The support of µ is
the set {x : µ(x) > 0}. The total variation distance between distributions µ1 and µ2 on E is

∥µ1 − µ2∥TV = 1
2
∑
x∈E

|µ1(x)− µ2(x)| = max
A⊆E

|µ1(A)− µ2(A)|.

We say that µ is ε-uniform on E if ∥µ− ν∥TV ≤ ε.

Permutations and the symmetric group. Let N > 0 be a positive integer and [N ] =
{0, . . . , N − 1}. A permutation on [N ] is a bijection from [N ] to [N ]. The symmetric group
SN over [N ] is the group consisting of the set of all permutations on [N ] with function
composition as the group operation and identity element id defined by id(i) = i. The inverse
x−1 of an element x ∈ SN is the map satisfying x−1 · x = x · x−1 = id. A transposition
(i j) ∈ SN of i and j is the permutation that swaps the elements i and j, but leaves
other elements in place. We say that a set H ⊆ SN generates SN if every element of SN

can be expressed as a finite product of elements in H and their inverses. We use · and ◦
interchangeably to denote function composition.

Let µ be a symmetric probability distribution on SN , i.e., µ(x) = µ(x−1). The random
walk on SN with increment distribution µ is a discrete time Markov chain with state space
SN . In each step, a random element x is sampled according µ and the chain moves from
state y to state xy. Thus, the probability of transitioning from state x to state yx is µ(y).
The holding probability of the random walk is α = µ(id). The following remark summarises
some useful properties of such random walks; see e.g. [41] for proofs.

▶ Remark 1. Let µ be an increment distribution for a random walk on SN .
1. The uniform distribution ν on SN is a stationary distribution for the random walk.
2. The random walk is reversible if and only if µ is symmetric.
3. The random walk is irreducible if and only if the support of µ generates SN .
4. If µ(id) > 0, then the random walk is aperiodic.

Mixing times. Let ν be the uniform distribution on SN and be p(t) be the probability
distribution over states of the chain after t steps. Following [28], we define the ℓs-norm and
the normalised ℓs-distance to stationarity for s > 0 as:

∥µ∥s =
(∑

x

|µ(x)|s
)1/s

and ds(t) = |SN |1−1/s · ∥p(t) − ν∥s.

The total variation distance and the normalised distances satisfy 2
∥∥p(t) − ν

∥∥
TV = d1(t) ≤

d2(t), where the latter inequality follows from the Cauchy-Schwarz inequality. We define
the ε-mixing time as τ(ε) = min{t : d1(t) ≤ 2ε}. We refer to the value τmix = τ(1/2) as the
mixing time of the walk. Note that τ(ε) ≤ ⌈log2 ε−1⌉ · τmix.

Tasks. Let Σ and Γ be nonempty finite sets of input and output labels, respectively. A
task Π on a set V of n nodes is a function Π that maps any input labelling z : V → Σ to a
set Π(z) ⊆ ΓV of feasible output labellings. If Π(z) = ∅, then we say that z is an infeasible
input. We focus on two tasks:
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In leader election, the input is the constant function z(v) = 1 and the output labelling z′

is feasible iff there exists v ∈ V such that z′(v) = 1 and z′(u) = 0 for all u ̸= v. That is,
exactly one node should output 1 and all others should output 0.
In the majority task, the inputs are given by z : V → {0, 1} and z′ ∈ Π(z) if z′(v) = b,
where b is the input value held by the majority of the nodes. As conventional, the input
with equally many zeros and ones is taken to be infeasible.

Graphical stochastic population protocols. Let G = (V, E) be a graph. In the graphical
stochastic population model, the computation proceeds asynchronously, where in each time
step t > 0:
1. a stochastic scheduler picks uniformly at random a pair et = (u, v) of neighbouring nodes,
2. the nodes u and v read each other’s states and update their local states.
As is common in population protocols, we assume that the node pairs are ordered, which will
allow us to distinguish the two nodes: node u is called the initiator and v is the responder.
We assume that nodes have access to independent and uniform random bits. Specifically,
upon each interaction, both u and v are provided with a single random bit each. We note
that this assumption is common in the context of population protocols, e.g. [35], and can be
justified practically by the fact that chemical reaction network (CRN) implementations can
directly obtain random bits given the structure of their interactions [22].

Formally, a protocol for a task Π is a tuple A = (f, ℓin, ℓout), where f : S × {0, 1} × S ×
{0, 1} → S × S is the state transition function and S is the set of states, ℓin : Σ→ S maps
inputs to initial states, and ℓout : S → Γ maps states to outputs. A configuration is a map
x : V → S and x0 = ℓin ◦ z is the initial configuration on input z. An asynchronous schedule
is a random sequence (et)t≥1 of the interaction pairs. An execution is the sequence (xt)t≥0
of configurations given by

xt+1(u), xt+1(v) = f (xt(u), qt+1(u), xt(v), qt+1(v)) and xt+1(w) = xt(w) for w ∈ V \{u, v},

where (u, v) = et+1 and qt+1(u) ∈ {0, 1} is the random bit provided to the node u during
the interaction. The output of the protocol at step t is given by z′

t = ℓout ◦ xt.
We say that A stabilises on input z by step T if z′

t+1 = z′
t and z′

t ∈ Π(z) holds for
all t ≥ T . Moreover, A solves the task Π with probability at least p in T (A) steps if the
protocol stabilises by step T (A) on any feasible input with probability at least p. The state
complexity of the protocol is S(A) = |S|, i.e., the number of states used by the protocol.

Synchronous token protocols. In the synchronous k-token shuffling model, we assume that
there are n agents which communicate in a round-based fashion using tokens. In each round,
1. every node v generates exactly k tokens based on its current state,
2. all nk tokens are shuffled uniformly at random so that each node gets exactly k tokens,
3. every node v updates its local state based on its current state and the k tokens it received.
Let X be the set of states a node can take and Y be a set of distinct token types. An algorithm
in the token shuffling model is a tuple B = (f, g, ℓin, ℓout). The map f : X × Y k → X is
a state transition function, and g : X → Y k determines which tokens each node creates at
the start of each round. As before, ℓin : Σ → X maps input values to initial states and
ℓout : X → Γ maps the state of a node onto an output value. The initial configuration on
input z is x0 = ℓout ◦ z.
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Figure 3 Interchange dynamics on a 4-cycle. In each step, blue cards are swapped. Top row:
The 1-stack interchange process. Bottom row: The 2-stack interchange process. In each step, a
randomly selected node either moves its top card to the bottom of its stack or exchanges it with the
top card of a randomly selected neighbour.

A synchronous schedule is a sequence (σr)r≥1, where the permutation σr ∈ Snk describes
how the tokens are shuffled in round r. For any y : [nk] → Y , we let y(v0, . . . , vk−1) =
(y(v0), . . . , y(vk−1)). A synchronous execution induced by (σr)r≥1 on input z is defined by

yr+1(v0, . . . , vk−1) = (g ◦xr)(v) and xr+1(v) = f (xr(v), (yr+1 ◦ σr+1) (v0, . . . , vk−1)) ,

where yr(v0, . . . , vk−1) and (yr ◦ σr+1)(v0, . . . , vk−1), respectively, are the k tokens generated
and received by node v during round r.

We assume the uniform synchronous scheduler, which picks each permutation σr inde-
pendently and uniformly at random from the set of all permutations Snk. The output of
node v at the end of round r is z′

r(v) = (ℓout ◦xr)(v). The synchronous algorithm B stabilises
on input z in R rounds if zr+1 = z′

r and z′
r ∈ Π(z) holds for all r ≥ R. The algorithm solves

the problem Π if it stabilises in R rounds on any feasible input with probability at least p.

4 Shuffling states on graphs: the k-stack interchange process

We now describe a shuffling process on graphs, which we call the k-stack interchange process.
This process will be useful in our analysis, and is a variant of the classic graph interchange
process, e.g. [30, 38]. We analyse its mixing time using the path comparison method of
Diaconis and Saloff-Coste [28], leveraging a classical flow result of Leighton and Rao [40].

The k-stack interchange process. Let G = (V, E) a graph with n vertices {0, . . . , n− 1}
and N = kn for k > 0. Assume each node of G holds a stack of exactly k cards, and consider
the shuffling process where, in every time step, one of the following actions is taken:
1. with probability 1/2, move the top card of a random node to the bottom of its stack,
2. with probability 1/4, choose a random edge {u, v} and swap the top cards of u and v,
3. with probability 1/4, do nothing.
We refer to this process as the k-stack interchange process on G. The special case of k = 1 is
the classic interchange process on G with holding probability 3/4, as the first rule does not
do anything on stacks of size 1. For k > 1, the holding probability will be 1/4. Instances of
the process for k = 1 and k = 2 are illustrated in Figure 3.

▶ Theorem 2. Let G be a d-regular graph with edge expansion β > 0. For any constant
k > 0, the mixing time of the k-stack interchange process on G is O

(
(d/β)2

n log3 n
)

.
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We prove this theorem in the full version of the paper [6]. In Section 6, we will show that
this shuffling process can be implemented efficiently in the graphical population protocol
model.

5 Decentralised graphical phase clocks

We now describe a bounded phase clock construction for the stochastic population protocol
model over regular graphs. Interestingly, the construction can be generalised to non-regular
graphs, assuming that node degrees do not deviate too much from the average degree; see
the full version [6] for details. Our approach generalises that of Alistarh et al. [4], who
built a leaderless phase clock on cliques leveraging the classic two-choice load balancing
process [14, 44].

Phase clocks. Let ϕ > 0 be an integer and consider a population protocol C with state
variables c(v) ∈ {0, . . . , ϕ− 1} for each v ∈ V . The variable c(v) represents the value of the
clock at node v. Let c(v, t) be the clock value node v has at the end of time step t (regardless
of whether it was active during that step). We define the distance D between two clock
values and the skew ∆ of the clock at the end of step t, respectively, as follows:

D(x, y) = min{|x− y|, ϕ− |x− y|} and ∆(t) = max
u,v∈V

D (c(u, t), c(v, t)) .

We say that the protocol C implements a (ϕ, γ, κ)-clock if for all t ≥ 0 the following hold:
1. Pr[∆(t) ≥ γ] < t/nκ, and
2. c(v, t + 1) = c(v, t) + 1 mod ϕ for exactly one v ∈ V and c(u, t + 1) = c(u, t) for all

u ∈ V \ {v}.
Intuitively, ϕ is the length of a phase, γ is the skew of the clock, and κ controls the failure
probability. The above properties guarantee that the clocks (1) have a skew bounded by γ

for polynomially many steps, w.h.p.; and (2) in each step, the clocks make progress (at some
node). A clock protocol C fails at time t if ∆(t) ≥ γ occurs. Several types of phase clocks
have been proposed in the population protocol literature, e.g. [10, 35, 4, 46].

Bounded phase clocks via graphical load balancing. Let G be a graph and suppose that
each node of G contains a bin, which is initially empty. Our phase clock is based on the
classic graphical load-balancing process [44] where, in each step, a directed edge (u, v) is
sampled uniformly at random and a ball is placed into the least loaded of bin among the two
nodes connected by the edge (in case of ties, place the ball into bin u). Using this idea, we
obtain bounded phase clocks in the graphical population protocol model. We note that this
is the only place in our framework where the initiator/responder distinction is used. The
proof of this result can be found in the full version [6].

▶ Theorem 3. Let G = (V, E) be a d-regular graph with n nodes and edge expansion β > 0
and let κ > 1 be a constant. There exists a constant c(κ) such that for any γ and ϕ satisfying

γ ≥ c(κ) d

β
log n and ϕ ≥ 2γ

there exists (ϕ, γ, κ)-clock on G that uses ϕ states per node.
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6 Simulating synchronous token shuffling protocols

In this section, we give our main technical result: synchronous protocols in the fully-connected
token shuffling model can be simulated in the graphical, stochastic population protocol model.

▶ Theorem 4. Let k > 0 be a constant and A be a synchronous k-token shuffling protocol
on n nodes, where X is the set of local states and Y the set of token types used the protocol
A. If A solves the task Π with high probability in R ∈ poly(n) rounds, then there exists a
stochastic population protocol B that also solves task Π with high probability on any n-node
d-regular graph G with edge expansion β > 0. The step complexity T (B) and state complexity
S(B) of the protocol B satisfy

T (B) ∈ O (R · n · ζ) and S(B) ∈ O
(
|X| · |Y |k · ζ

)
with ζ = log n ·

(
d

β
+ τmix

n

)
,

where τmix is the mixing time of the k-stack interchange process on G.

Notation. The rest of this section is dedicated to proving this theorem. Throughout, we
fix R = R(n) ∈ poly(n) and ε = 1/na < 1/(Rnλ) for an arbitrary large constant a > 0.
Let G = (V, E) be d-regular n-node graph and N = kn. We use µ to denote the increment
distribution of the k-stack interchange process on the graph G. The support of µ is the set
H ⊆ SN and τ = τ(ε) is the ε-mixing time of the k-stack interchange process.

6.1 The token shuffling protocol
We now give a stochastic population protocol that simulates uniform schedules of the
synchronous token shuffling model. The protocol simulates the random walk made by the
k-stack interchange process, synchronised by phase clocks.

Setting up the clock. We choose the parameter κ > 0 such that a (ϕ, γ, κ)-clock C with
parameters given by

γ ∈ Θ
(

d

β
log n

)
ϕ = γ + ϑ ϑ = 2τ

n
+ 3γ t∗ = (Rϕ + γ)n

fails (i.e., the clock skew becomes γ or greater) with probability at most 1/nλ during the
first t∗ steps. Since ϕ ≥ 2γ, R ∈ poly(n), and t∗ ∈ poly(n) hold, such a protocol exists by
Theorem 3 for any constant λ > 0 by choosing a sufficiently large κ. The fact that t∗ is
polynomially bounded follows from Theorem 2 and that β ≥ 1/n2 for any regular connected
graph. Further, τ ≤ ⌈log 1/ε⌉ · τmix ∈ poly(n), and hence, ϕ, γ ∈ poly(n).

The token shuffling protocol. The parameter ϑ is used as a special threshold value for
the token shuffling protocol. We assume that each node v holds exactly k tokens, which are
ordered from 0 to k − 1, in the same manner as cards ordered are in the k-stack interchange
process. We say that the first token is the top token. We say that node u is receptive when
ever its clock satisfies c(u) < ϑ and that it is suspended otherwise. When nodes in {u, v}
interact, they apply the following rule:
1. If both are receptive, that is, c(u) < ϑ and c(v) < ϑ holds, then

a. Let q(u) and q(v) be the random coin flips of u and v, respectively.
b. If q(u) = q(v) = 0, then u and v swap their top tokens.
c. If q(u) < q(v), then v moves its top token to the bottom of its stack; u does nothing.
d. If q(u) = q(v) = 1, then do nothing.

2. Otherwise, do nothing.
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Figure 4 The dynamics of the shuffling protocol for k = 1. Circles filled with white and red
denote receptive and suspended nodes, respectively. The blue arrows connect nodes who exchange
their tokens in the given step. Red lines denote steps, where at least one of the interacting nodes is
suspended, and thus, no swap is made. (a) Initially all nodes are receptive and swap tokens with
their interaction partners. After sufficiently many interactions, nodes become suspended and refrain
from swapping tokens. (b) Eventually all nodes are suspended. The highlighted panel shows the
resulting permutation, which will act as the interaction pattern for the simulated round. (c) As the
phase clocks reset back to 0, nodes become receptive again, and the tokens are shuffled once more.

The protocol uses at most one random bit per node per interaction and that this is the
only part of our framework, where the random bits provided to the nodes are used. The
interacting nodes exchange at most 4 bits (i.e., whether they receptive or not, and the result
of their coin flip) in addition to the contents of the swapped tokens in Step (1b). Finally,
observe that when all nodes are receptive, the tokens are shuffled according to the increment
distribution µ of the k-stack interchange process on G. Figure 4 illustrates the dynamics of
the shuffling protocol in the case k = 1.

6.2 Properties of the shuffling protocol
We now analyse the above shuffling protocol. Let c(u, t) indicate the clock value of node u at
the end of step t. Let c(u, 0) = 0 and t(v, 0) = 0. We say that the clock of node u resets at
time step t if its value transitions from ϕ− 1 to 0. For r ≥ 0, define

t(v, r +1) = min{t > t(v, r) : c(v, t) = 0}; the step when v resets its clock for the rth time,
tmin(r) = min{t(v, r) : v ∈ V }; the earliest step when some clock is reset for the rth time,
tmax(r) = max{t(v, r) : v ∈ V }; the latest step when some clock is reset for the rth time.

Similarly, we define the times with respective to the events when the clocks reach the value ϑ:
s(v, r) = min{t > t(v, r) : c(v, t) = ϑ},
smin(r) = min{s(v, r) : v ∈ V },
smax(r) = max{s(v, r) : v ∈ V }.

The following lemma captures the relationship between the timing of these events.

▶ Lemma 5. With high probability, the following inequalities hold:
1. tmax(R + 1) ≤ t∗ = (Rϕ + γ)n,
2. smin(r)− tmax(r) ≥ τ for each 1 ≤ r ≤ R.
3. tmax(r) < smax(r) < tmin(r + 1) for each 1 ≤ r ≤ R.
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Distribution of tokens. We now show that the distribution tokens mix to an ε-uniform
distribution during the intervals {tmax(r) + 1, . . . , smin(r)} for 1 ≤ r ≤ R. Let π0 = id and πt

denote the locations of the tokens after t steps of the shuffling protocol. Define σ0 = id and

σr = πsmax(r) for 1 ≤ r ≤ R.

Observe that σr = ρ3 · ρ2 · ρ1 · σr−1, where each ρi is product of elements from the support
H ⊆ SN of the increment distribution µ of the k-stack interchange process, where

ρ1 = xtmax(r) · · ·xtmin(r−1)+1 (a subset of nodes have become receptive for the rth time),
ρ2 = xsmin(r) · · ·xtmax(r)+1 (all nodes are receptive),
ρ3 = xsmax(r) · · ·xsmin(r)+1 (a subset of nodes have become suspended for the rth time).

(Recall that permutations are applied from right to left.) Observe that while each xi is a
random element of H, only the elements ρ2 are guaranteed to be distributed according to
the increment distribution µ of the k-stack interchange process. The elements of ρ1 and ρ3
are skewed towards the identity permutation, as some nodes are suspended whenever their
clock values are in {ϑ, . . . , ϕ− 1}. The next lemma establishes that this does not interfere
with the mixing behaviour.

▶ Lemma 6. Let 0 ≤ r < R. For any A ⊆ SN , we have |Pr[σr+1 ∈ A | σr]− ν(A)| ≤ ε.

6.3 The simulation protocol

Using the shuffling protocol in the population protocol model, we can simulate an R-round
algorithm A in the synchronous k-token shuffling model. Let f : X × Y k → X be the state
transition function and g : X → Y k be the token generation function of the algorithm A.
Recall that X and Y denote the sets of local states and token types, respectively.

The simulation protocol. Each node v maintains the following variables:
a(v) ∈ X to simulate the local state of the synchronous protocol A,
b0(v), . . . , bk−1(v) ∈ Y to store the sent and received tokens, and
r(v) ∈ {0, 1, . . . , R} to store the number of simulated rounds.

The variable a(v) is initialised to the initial state x0(v) of node v in the algorithm A and
b0(v), . . . , bk−1(v) are initialised to the values given by g(x0(v)). The variable r(v) is initially
set to 0. When node v interacts (in the asynchronous population protocol model), v updates
its state according to the following rules:
1. Run the clock and the shuffling protocol using b0(v), . . . , bk−1(v) to hold the k tokens.
2. If c(v) = ϑ, then

update the round counter and set r(v)← min{r(v) + 1, R},
compute the new state a(v)← f (a(v), b0(v), . . . , bk−1(v)), and
generate new tokens b0(v), . . . , bk−1(v)← g(a(v)).

As output value of the simulation, node v uses the output value algorithm A associates to
state a(v). The above algorithm simulates an execution of the synchronous algorithm A under
the schedule σ1, . . . , σR given by the shuffling protocol. To this end, define x0(v) = a(v, 0)
and x(r) = a(v, s(v, r)) for all 1 ≤ r ≤ R.

▶ Lemma 7. With high probability, the sequence (xr)0≤r≤R is an execution induced by the
schedule (σr)1≤r≤R.

OPODIS 2021
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6.4 From almost-uniform schedules to uniform schedules
The schedules provided by the shuffling protocol are only ε-uniform, as the shuffling process
is executed for finitely many steps. We now show that this does not matter: any synchronous
protocol behaves statistically similarly under ε-uniform and uniform schedules.

To formalise this, let Φ be the distribution over sequences (σ1, . . . , σR) ∈ SR
N of permuta-

tions generated by the shuffling protocol under the assumption that the clock protocol works
correctly for T time steps. Let νR = ν × · · · × ν denote the distribution of a sequence of R

independently and uniformly sampled random permutations from SN . That is, νR is the
distribution of the uniform R-round schedules. The following then holds:
▶ Lemma 8. The total variation distance between Φ and νR satisfies

∥∥Φ− νR
∥∥

TV ≤ εR.
Together with the following lemma, we can show that protocols simulated under the

ε-uniform schedules behave almost the same as under perfectly uniform schedules.
▶ Lemma 9. Let µ and ν be probability distributions over a finite domain Ω. For any
function F : Ω→ Ω′, the total variation distance satisfies ∥F (µ)− F (ν)∥TV ≤ ∥µ− ν∥TV.

6.5 The main simulation theorem
With all the pieces now in place, we can now state our simulation theorem.
▶ Theorem 4. Let k > 0 be a constant and A be a synchronous k-token shuffling protocol
on n nodes, where X is the set of local states and Y the set of token types used the protocol
A. If A solves the task Π with high probability in R ∈ poly(n) rounds, then there exists a
stochastic population protocol B that also solves task Π with high probability on any n-node
d-regular graph G with edge expansion β > 0. The step complexity T (B) and state complexity
S(B) of the protocol B satisfy

T (B) ∈ O (R · n · ζ) and S(B) ∈ O
(
|X| · |Y |k · ζ

)
with ζ = log n ·

(
d

β
+ τmix

n

)
,

where τmix is the mixing time of the k-stack interchange process on G.

7 Applications: leader election and exact majority

Using Theorem 4, we can automatically transport algorithms from the fully-connected
synchronous token shuffling model to the graphical, asynchronous population protocol model.
We utilise this result to obtain fast protocols for leader election and exact majority in the
graphical population protocol model.

The leader election protocol for the token shuffling model uses a one-way information
dissemination protocol and a protocol for generating synthetic coins in the token shuffling
model with k > 1. Specifically, we show the following result.
▶ Theorem 10. There is a synchronous 2-token shuffling protocol for the leader election task
that stabilises in O(log2 n) rounds with high probability, uses O(log n) states per node and
two token types.

For exact majority in the token shuffling model, we give an algorithm that simulates
two-way interactions in a population of 2n virtual agents. The algorithm uses the classic
cancellation-doubling dynamics used in the clique model [13, 34], yielding the following result.
▶ Theorem 11. There is a synchronous 2-token shuffling protocol for the exact majority
task that stabilises in O(log2 n) rounds with high probability, uses O(log n) states and five
token types.
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8 Conclusions

In this work, we established a general framework for simulating clique-based protocols in
arbitrary, connected regular graphs. We now conclude by briefly discussing some limitations
of our approach and summarise key problems left open by this work.

First, we focused on regular interaction graphs. The justification for this assumption is
two-fold. First, this assumption is only used once: in Section 5, to obtain clean bounds for
the skew of the phase clock. However, upon close inspection, we notice that this regularity
assumption can be relaxed in many cases if the minimum and maximum degrees do not
deviate too much from the average degree of the graph [6]. Second, regular graphs give a
natural extension of the notion of parallel time, since all nodes interact at the same rate.

The simulation overhead has a polylogarithmic dependency on n. We have made no
particular effort to optimise the degree of this polylogarithmic dependency. The dependency
can be improved by providing better bounds on the k-stack interchange process. Indeed,
even in the case of the well-studied (1-stack) interchange process, exact bounds on mixing
time have been – and still remain – an open question for many graph classes [38]. Improved
bounds for these processes imply better running time bounds for our simulations.

Finally, our complexity bounds have a quadratic dependency on d/β. We suspect a
polynomial dependency on the expansion properties is necessary for step complexity and
leave the investigation of tight space-time trade-offs for population protocols in the general
graphical setting as an intriguing open problem.
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1 Introduction

Subgraph detection is one of the most studied problems in the CONGEST and congested
clique models of distributed computing [23, 16, 33, 25, 26, 29, 28, 15, 14]. The complexity of
distributed subgraph detection is understood for many pattern graphs – for example, in the
CONGEST model, tight bounds are known for path [33, 26] and odd cycle detection [33, 25],
and it is known that pattern graphs requiring almost quadratic time exist [28]. However,
unresolved questions remain about the exact complexity of, e.g., triangle detection in either
CONGEST or congested clique, and even cycle detection in CONGEST.

In this work, we look at the closely related induced subgraph detection problem, which
has so far not received any attention in the distributed setting. In particular, we aim to
understand the complexity of induced subgraph detection for common pattern graphs, such
as paths and cycles, as well as how the situation contrasts with the non-induced case. It
is well known that in the centralized setting, induced subgraph detection is generally more
difficult than non-induced subgraph detection, so one would expect that situation is the same
also in the distributed setting.

1.1 Background and setting

Before presenting our results, we start by discussing the wider context of distributed subgraph
detection problems. As mentioned above, we work in the CONGEST and congested clique
models of distributed computing, and use G and n to denote the input graph and the number
number of nodes in the input graph, respectively.

In the paper, we mostly consider subgraph detection and induced subgraph detection
problems; we are given a pattern graph H with k nodes, known to all nodes in G, and the
task is to decide if the input graph G contains H as a subgraph or an induced subgraph;
more precisely, any node v that is part of an admissible copy of H should report that the
input is a yes-instance.

Fixed-parameter tractability. Subgraph and induced subgraph detection problems can be
viewed as parameterized problems; such problems are studied in centralized setting under the
field of parameterized complexity [20]. A parameterized problem is defined by the input and
a problem parameter k – formally, a (complexity) parameter k is a mapping from the input
instance to natural numbers. The basic question of centralized parameterized complexity
is to understand which problems are fixed-parameter tractable, i.e. have algorithms with
running time f(k)|x|O(1), where f is an arbitrary function and x is the binary encoding of the
input instance. For example, k-cycle detection can be viewed as a parameterized problem.

Similarly, one can consider fixed-parameter tractability in the distributed setting. The
strictest definition is to ask which problems have distributed algorithm where the running
time depends only on the parameter k [43, 10]. However, this arguably does not capture all
fixed-parameter tractability phenomena in distributed models – e.g. k-cycle detection cannot
be solved in f(k) rounds for any function f in the CONGEST model.

A more general perspective is to ask what is the smallest function T such that a parameter-
ized problem can be solved in f(k) ·T (n) rounds, for some function f : N → N. Several results
of this type are known for subgraph detection problems; for example, k-cycle detection can be
solved in O(k2kn) rounds in the CONGEST model [33, 26], and in 2O(k)n0.158 rounds in the
congested clique model [16], though these bounds are not tight for even-length cycles [15, 28].
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Parameters and graph structure. For subgraph and induced subgraph detection problems,
the natural complexity parameter is the number of nodes k in the pattern graph. However,
parameterized complexity frequently studies other complexity parameters – for our purposes,
the most relevant are structural graph parameters, in particular degeneracy d(G), treewidth
tw(G), and vertex cover number τ(G) (see Section 2 for the precise definitions). While
bounded degeneracy (equivalently, bounded arboricity) [7, 33, 8] has been studied in the
distributed setting, bounded treewidth and bounded vertex cover number less so.

Given a structural parameter p, we can consider the complexity of subgraph or induced
subgraph detection parameterized either by the structural parameter p(G) of the input graph,
or by the structural parameter p(H) of the pattern graph. Note that we have

d(G) ≤ tw(G) ≤ τ(G) .

For parameters p1 and p2 with p1(G) ≤ p2(G), upper bounds w.r.t. parameter p2 imply
upper bounds w.r.t. parameter p1, and lower bounds w.r.t. parameter p1 imply lower bounds
w.r.t. parameter p2.

Lower bounds and reductions. The standard technique for proving unconditional CONGEST
lower bounds is by reduction from communication complexity problems, most often using
families of lower bound graphs [42, 25, 17, 1, 30, 21] (see Section 2). By contrast, reductions
between problems are less useful in the CONGEST model, as the model can implement only
very limited reductions efficiently.

However, there are still uses for reductions in distributed complexity theory, which we
will apply in this work. First, in the congested clique, sub-polynomial round reductions can
be used to establish relative complexities of problems [34]. Second, as noted by Bacrach et
al. [6], centralized reductions can be used to transform families of lower bound graphs for
one problem into families of lower bound graphs for a second problem.

1.2 Results: induced subgraph detection on general graphs

First, we consider the hardness of induced subgraph detection on general graphs. We show
that for common pattern graphs, the induced version of the problem is at least as hard as
the non-induced version, and in many cases harder.

Unconditional lower bounds. We start with unconditional lower bounds for induced
subgraph detection in CONGEST; see Table 1 for a summary of these results.

For cycles of length at least 6, we show that the induced cycle detection problem requires
at least O(n/ log n) rounds in the CONGEST model. The result follows from a combination
of the existing lower bound construction for odd-length cycles, and a new construction for
induced even cycles. By comparison, the existing lower bounds for non-induced subgraph
detection in CONGEST are Ω(n1/2/ log n) for even cycle detection [33], and Ω(n/ log n) for
odd cycle detection excluding triangles [25]; it is also known that even cycles can be detected
in O(nδ) time, for δ < 1 that depends on the length of the cycle [28].

We also prove that there are pattern graphs for which induced subgraph detection (and
also non-induced detection) requires near-quadratic time in CONGEST, in similar spirit at
the hard pattern graphs for non-induced subgraph detection presented by Fischer et al. [28].
Moreover, we show that these pattern graphs can be constructed to have treewidth 2; contrast
this with the centralized setting, where low-treewidth patterns are easy to detect [5].
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Table 1 Lower bounds on general graphs. Improved lower bounds of Le Gall and Miyamoto [36]
are independent and concurrent work (see main text.)

Problem Bound

Induced 2k-cycle (k ≥ 3) Ω(n/ log n) Section 3.3
Induced H-detection

· any H with 4-clique Ω(n1/2/ log n) Section 3.2
· some H with tw(H) = 2† Ω(n2−ε) Section 3.4

Multicolored k-cycle (k ≥ 4) Ω(n/ log n) Section 4.2
Multicolored induced path of length k (k ≥ 6) Ω(n/ log n) Section 4.2

Induced k-cycle (k ≥ 4) Ω̃(n) [36]
Induced k-cycle (k ≥ 8) Ω̃(n2−Θ(1/k)) [36]

†holds for any ε > 0, for some H that is chosen depending ε

Table 2 Bounds w.r.t. structural graph parameters. Results attributed to [33] follow directly
from the proofs in that work, but are not stated in that work for induced subgraphs.

Problem Bound

Induced k-tree† 2O(kd(G))kk + O(log n) Section 5
(Induced) H-detection, Ω(n1−ε) holds for d(G) = 2 Section 5.2

some H with tw(H) = 2‡

(Induced) k-cycle (k ≥ 6) Ω(n1/2/ log n) holds for d(G) = 2 [33]
Induced 4-cycle O(d(G) + log n) [33]
Induced 5-cycle O(d(G)2 + log n) [33]

MCIS 2O(τ2) τ = τ(G) + τ(H) Section 6
Induced subgraph 2O((τ(G)+k)2) Section 6

†randomized algorithm, can be derandomized with extra assumptions and worse running time
‡holds for any ε > 0, for some H that is chosen depending ε

Unconditional lower bounds: recent independent work. After submitting this paper, we
learned about the independent and concurrent work of Le Gall and Miyamoto [36], which
gives lower bounds for induced cycle detection and diamond listing. In particular, they show
that detecting induced k-cycles requires Ω̃(n) rounds for any k ≥ 4, and Ω̃(n2−Θ(1/k)) rounds
for any k ≥ 8. These results subsume our lower bounds for induced cycle and treewidth-2
subgraph detection.

Reductions. Next, we turn our attention to conditional lower bounds for problems where
standard CONGEST lower bound techniques do not immediately yield unconditional lower
bounds. See Figure 1 for a summary of these results.

We adapt a centralized reduction of Dalirrooyfard et al. [22] between clique and indepen-
dent set detection and induced subgraph detection. Specifically, they show that detecting
an induced subgraph H that contains a k-clique (k-independent set) is as hard detecting
k-clique (k-independent set, resp.). We show that this reduction can also be implemented in
the congested clique model.
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It follows that detecting induced paths of length at least 5 in either the CONGEST or
congested clique model is at least as hard triangle detection in the congested clique model,
and more generally, detecting paths of length at least 2k −1 in CONGEST or congested clique
is as hard as detecting k-cliques in the congested clique. By comparison, the best known
upper bounds in the congested clique are O(n0.158) for triangle detection [16], and O(n1−1/k)
for k-clique detection [23]; while no lower bounds for the congested clique model are known,
improving over the O(n0.158)-round matrix multiplication based triangle detection would
have major implications for distributed algorithms. However, it is worth noting that induced
paths of length 2 can be detected in O(1) rounds in CONGEST, in contrast to triangles (see
Appendix A).

Moreover, the reduction allows us to lift the Ω(n1/2/ log n) CONGEST lower bound of
Czumaj and Konrad [21] for 4-clique detection to induced and non-induced detection of any
pattern graph H that contains a 4-clique.

Multicolored problems. Finally, we consider multicolored versions of subgraph detection
tasks. In multicolored (induced) H-detection, we are given a labelling of the input graph G

with k colors, and the task is to find a (induced) copy of H that contains exactly one node
of each color. Multicolored versions of problems have proven to be useful starting points
for reductions in fixed-parameter complexity, and algorithms for a multicolored version of a
problem can often be turned into an algorithm for the standard version via color-coding [5].

We observe that multicolored versions of k-clique and k-independent set are closely related
to their standard versions in the distributed setting, by adapting the simple centralized
reductions to distributed setting (see Figure 1). We then prove unconditional lower bounds
of Ω(n/ log n) in CONGEST for multicolored versions of k-cycle detection, for k ≥ 4, and
for detection of induced paths of length k, for k ≥ 6. These results imply that color-coding
algorithms cannot be used directly to improve the state of the art for these problems – for
comparison, note that k-cycle detection can be solved in CONGEST in o(n/ log n) rounds for
even k, non-induced multicolored paths can be detected in O(1) round in CONGEST, and we
have no unconditional lower bounds for induced path detection.

1.3 Results: induced subgraph detection with structural parameters
Next, we consider subgraph and induced subgraph detection tasks w.r.t. structural graph
parameters. We focus on the degeneracy d(G) and the vertex cover number τ(G) of the
input graph as the parameters in this section. See Table 2 for a summary of the results.

Bounded degeneracy. We show that induced subgraph detection for any tree on k nodes
can be solved in time 2O(kd(G))kk + O(log n) rounds in CONGEST. As with the prior results
on non-induced path, tree and cycle detection algorithms in CONGEST, this upper bound is
based on centralized fixed-parameter algorithms, in this case using color-coding and random
separation techniques [4, 13].

On the lower bounds side, we show that there are treewidth 2 pattern graphs that require
near-linear time to detect as induced and non-induced subgraphs in CONGEST on input
graphs of degeneracy d(G) = 2, via a slight modification of the proof for the general case
discussed above. Note that any fixed pattern graph can be detected in O(n) rounds when
degeneracy is bounded, by having all nodes gather their distance-k neighborhood.

For cycles, we note that results of Korhonen and Rybicki [33] can be easily seen to imply
that detecting induced k-cycles for k ≥ 6 requires at least Ω(n1/2/ log n) rounds to detect
in CONGEST on graphs of degeneracy d(G) = 2, as well as that induced 4-cycles can be
detected in O(d(G) + log n) rounds, and induced 5-cycles in O(d(G)2 + log n) rounds.
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Figure 1 Relationships between problems in CONGEST and congested clique. Results hold for any
sufficiently large constant k. Upper bound indicates an Õ(nδ) round algorithm for the problem for
specified δ; lower bound family indicates that there is a lower bound family giving Ω̃(nδ) lower bound
for the problem for specified δ; algorithmic reduction from P1 to P2 indicates that an algorithm
solving P2 in O(nδ) rounds implies the existence of an algorithm solving P1 in Õ(nδ) rounds, for
any δ > 0, and lower bound reduction from P1 to P2 indicates that a lower bound family giving
Ω(nδ) lower bound for P1 implies the existence of a lower bound family giving Ω̃(nδ) lower bound
for P2 for any δ > 0. Notation Õ and Ω̃ hides polylogarithmic factors in n, as well as factors only
depending on k, as we assume k to be constant.

Bounded vertex cover number. For a more restrictive parameter than degeneracy, we
consider induced subgraph detection parameterized by the vertex cover number τ(G) of the
input graph. More precisely, we show a more general problem of maximum common induced
subgraph (MCIS) can be solved fast; in this problem, we are given two graphs G = (VG, EG)
and H = (VH , EH) as input, and the task is to find the maximum-size graph G∗ such that
G∗ appears as induced subgraph of both G and H. In the distributed setting, we assume
that G is the input graph, and the second graph H is known to every node.

In more detail, we show that a centralized branching algorithm from MCIS of Abu-Khzam
et al. [3] can be implemented in 2O((τ(G)+τH)2) rounds, i.e. without dependence on n, in
the CONGEST model. This immediately implies that induced subgraph detection for any
pattern graph H on k nodes can also be solved in 2O((τ(G)+k)2) rounds.

1.4 Additional related work

Centralized subgraph and induced subgraph detection. Subgraph detection has been
widely studied in the centralized parameterized setting. Fixed-parameter algorithms, pa-
rameterized by the number of nodes k of the pattern graph, are known for example for
paths [38, 5, 45, 11], trees [5], even cycles [46], odd cycles [5], and patterns of constant
treewidth [5]. By contrast, k-clique detection is known to be W[1]-hard, suggesting that it
does not have a fixed-parameter algorithm [24].

Induced subgraph detection, on the other hand, is W[1]-hard even for paths of length k [19].
Any induced or non-induced subgraph on k nodes can be detected in nωk/3+O(1) time, where
ω < 2.3729 is the matrix multiplication exponent, due to a classical result of Nešetřil and
Poljak [39].
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Distributed subgraph detection. As mentioned above, distributed subgraph detection has
also received attention in the distributed setting recently. In CONGEST, non-trivial upper
bounds are known e.g. for path and tree detection [33, 26], cycle detection [29, 33, 28] and
clique detection [14]. Likewise, lower bounds have been studied for cycle detection [25, 33]
and cliques [21], and pattern graphs requiring near-quadratic time are known to exist [28].
Triangle detection remains a particularly interesting open question––the best known upper
bound is n1/3+o(1) rounds [18], but no lower bounds are known.

In the congested clique, triangles can be detected in O(n0.158) rounds and odd k-cycles
in 2O(k)n0.158 rounds using fast matrix multiplication [16]. Even cycles can be detected
even faster, in O(k2) rounds for k = O(log n) [15]. Moreover, any induced or non-induced
subgraph detection for k-node patterns can be solved in O(n1−2/k) rounds in congested
clique [23].

Distributed parameterized complexity. Parameterized distributed algorithms have ap-
peared implicitly in many of the above-mentioned subgraph detection works, and recently
Ben-Basat et al. [10] and Siebertz and Vigny [43] have explicitly studied aspects of distributed
parameterized complexity. In terms of structural parameters, maximum degree is a standard
parameter in distributed setting, and algorithms parameterized degeneracy has been studied
for various problems and models [9, 7, 31]. Recently, Li [37] has show that the treewidth
of the input graph can be approximated in Õ(D) rounds in CONGEST, and many classical
optimization problems that are fixed-parameter tractable w.r.t. treewidth can be solved in
Õ

(
tw(G)O(tw(G))D

)
rounds in CONGEST, where Õ hides polylogarithmic factors in n.

2 Preliminaries

Degeneracy. A graph G is called d-degenerate if every induced subgraph of G has a vertex
of degree at most d. The minimum number d for which G is d-generate is called degeneracy
of G, denoted by d(G). It is easy to see that every d-degenerate graph admits an acyclic
orientation such that the out-degree of each vertex is at most d.

Vertex cover number. A vertex cover of G is a subset of vertices S ⊆ V (G) such that every
edge in E(G) is incident with at least one vertex in S. The vertex cover number τ(G) of G

is the minimum size of a vertex cover of G.

Treewidth. A tree decomposition of a graph G = (V, E) is a pair (X, T ), where X =
{X1, X2, . . . , Xm} is a collection of subsets of V and T is a tree on {1, 2, . . . , m}, such that
1.

⋃m
i=1 Xi = V ,

2. for all edges e ∈ E there exist i with e ⊆ Xi

3. for all i, j and k, if j is on the (unique) path from i to k in T , then Xi ∩ Xk ⊆ Xj .
The width of a tree-decomposition (X, T ) is defined as maxi |Xi| − 1. The treewidth of a
graph G is the minimum width over all possible tree decompositions of G. Connected graphs
of treewidth 1 are trees, and connected graphs of treewidth 2 are series-parallel graphs (see
e.g. [12].)

Lower bound families. For unconditional lower bounds in the CONGEST model, we use the
standard framework of reducing from two-party communication complexity. Let f : {0, 1}2k →
{0, 1} be a Boolean function. In the two-party communication game on f , there are two
players who receive a private k-bit string x0 and x1 as input, and the task is to have at least
one of the players compute f(x) = f(x0, x1).
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The template for these reductions is captured by families of lower bound graphs:

▶ Definition 1 (e.g. [25, 30, 1]). Let fn : {0, 1}2k(n) → {0, 1} and C : N → N be functions and
Π a graph predicate. Suppose there is n0 such that for any n ≥ n0 and all x0, x1 ∈ {0, 1}k(n)

there exists a (weighted) graph G(n, x0, x1) satisfying the following properties:
1. G(n, x0, x1) satisfies Π if and only if fn(x0, x1) = 1,
2. G(n, x0, x1) = (V0 ∪ V1, E0 ∪ E1 ∪ S), where

a. V0 and V1 are disjoint and |V0 ∪ V1| = n,
b. Ei ⊆ Vi × Vi for i ∈ {0, 1},
c. S ⊆ V0 × V1 is a cut and has size at least C(n), and
d. subgraph Gi = (Vi, Ei) only depends on i, n and xi, i.e., Gi = Gi(n, xi).

We then say that F = (G(n))n∈I is a family of lower bound graphs, where

G(n) = {G(n, x0, x1) : x0, x1 ∈ {0, 1}k(n)} .

Deterministic communication complexity CC(f) of a function f is the maximum number
of bits the two players need to exchange in the worst case, over all deterministic protocols
and input strings, in order to compute f(x0, x1). Randomized communication complexity
RCC(f) is the worst-case complexity of protocols which compute f with probability at least
2/3 on all inputs.

▶ Theorem 2 (e.g. [25, 30, 1]). Let F be a family of lower bound graphs. Any algorithm
deciding Π on a graph family H containing

⋃
G(n) for all n ≥ n0 in the CONGEST model

with bandwidth b(n) needs Ω (CC(fn)/C(n)b(n)) and Ω (RCC(fn)/C(n)b(n)) deterministic
and randomized rounds, respectively.

We reduce from the two-player set disjointness function DISJn : {0, 1}2n → {0, 1}, defined
as DISJn(x0, x1) = 0 if and only there is i ∈ [n] such that x0(i) = x1(i) = 1. The
communication complexity of set disjointness is CC(DISJn) = Ω(n) and RCC(DISJn) =
Ω(n) [35, 41].

3 Induced subgraph detection on general graphs

3.1 Patterns with cliques and independent sets: framework
For the complexity results on detecting pattern graphs that contain large independent sets
or clique, we borrow the centralized reduction of of Dalirrooyfard et al. [22]. We present the
reduction here in full, as we will need to analyze its implementation in distributed setting.

We will start from instance G of s-clique detection. The reduction will transform G into
an instance of (induced) H-detection, where the pattern graph H contains a clique of size s,
while increasing the number of nodes by a small factor. We first need the following definition:

▶ Definition 3 ([22]). Let G = (V, E) be a graph. A family C ⊆ 2V is an s-clique cover if
1. for each s-clique K in G, there is a C ∈ C that contains the nodes of K, and
2. the induced subgraph G[C] is s-colorable for each C ∈ C.

We say that C is a minimum s-clique cover if all s-clique covers of G have at least |C| sets.

Note that if C is a minimum s-clique cover, all induced subgraphs G[C] for C ∈ C contain
an s-clique, and thus require exactly s colors to color.
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Reduction overview. Let G = (VG, EG) be the original graph and let H = (VH , EH) be the
pattern graph. Let C = {C1, C2, . . . , Ct} be a minimum s-clique cover of H. We construct a
graph G∗ as from the input graph G follows:

1. The node set VG∗ of G∗ consists of the following nodes:
a. For each i ∈ C1, there is a copy VG,i = VG × {i} of the node set of G.
b. For each j ∈ VH \ C1, there is a copy j∗ of the node j in G∗.

2. The edge set of G∗ is defined by the following rules:
a. Each VG,i is an independent set.
b. For each i, j ∈ C1 and v, u ∈ VG, we add edge between (v, i) and (u, j) if both

{i, j} ∈ EH and {v, u} ∈ EG.
c. For each i ∈ C1 and j ∈ VH \ C1 with {i, j} ∈ EH , we add edges between j∗ and all

nodes (v, i) for v ∈ VG.
d. For each i, j ∈ VH \ C1 with {i, j} ∈ EH , we add edge between i∗ and j∗.

Note that the graph G∗ has sn + |VH | nodes.

▶ Lemma 4 ([22]). If G has an s-clique, then G∗ has H as an induced subgraph, and if G∗

has H as a subgraph, then G has an s-clique. (✄ See full version.)

3.2 Patterns with cliques and independent sets: implications
Implementing the reduction in the congested clique. Let H be a pattern graph on k nodes
containing an s-clique. We now show that the reduction we gave above can be implemented
efficiently in the congested clique model.

Assume we have algorithm A for (induced) H-detection running in O(nδ) rounds in the
congested clique. We now show that we can implement the above reduction in the congested
clique to obtain an algorithm for detecting an s-clique, as follows:
1. Each node v ∈ VG simulates nodes (v, i) for i ∈ C1, as well as one node from VH .
2. Since the incident edges of (v, i) for i ∈ C1 and nodes in VH \ C1 in G∗ only depend on

the pattern graph H and on the edges incident to v in G, node v can construct the inputs
of its simulated nodes locally.

3. Nodes then simulate the execution of A on a congested clique with O(sn + k) = O(kn)
nodes. The running time of A on the simulated instance is O

(
(kn)δ

)
, and the simulation

incurs additional overhead of O(k2), for a total running time of O(k2δnδ).

Thus, we obtain the following:

▶ Theorem 5. Let H be a pattern graph with k nodes that has a clique of size s. Then if we
can solve H-detection or induced H-detection in the congested clique model in O(nδ) rounds,
we can find an s-clique in the congested clique in O(k2δnδ) rounds.

As an immediate corollary, we obtain a similar hardness result for induced subgraph
detection for pattern graphs with large independent set, by observing that we can simply
complement the pattern and input graphs. Note that this version only applies for induced
subgraph detection.

▶ Corollary 6. Let H be a pattern graph with k nodes that has an independent set of size s.
Then if we can solve induced H-detection in the congested clique model in O(nδ) rounds, we
can find an s-clique in the congested clique in O(k2δnδ) rounds.
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Induced path detection. Corollary 6 immediately implies a conditional lower bound for
induced path detection in the CONGEST model, as paths contain large independent sets:

▶ Corollary 7. Let k be fixed. If an induced 2k-edge path or an induced (2k + 1)-edge path
can be detected in O(nδ) rounds in the CONGEST model, then a k-clique can be detected in
O(nδ) rounds in the congested clique model. In particular, if an induced 4-edge path can
be detected in O(nδ) rounds in the CONGEST model, then triangles can be detected O(nδ)
rounds in the congested clique model.

Patterns with cliques in CONGEST. As a further application of the reduction of Dalirrooy-
fard et al. [22], we can transform the unconditional lower bound of Czumaj and Konrad [21]
for 4-clique detection in CONGEST into a lower bound for induced subgraph detection for
any pattern containing a 4-clique.

▶ Lemma 8 ([21]). Let Π the graph predicate for existence of a 4-clique. There exists a
family of lower bound graphs for Π with fn = DISJΘ(n2) and C(n) = Θ(n3/2).

▶ Lemma 9. Let H be a pattern graph on k nodes that contains a 4-clique, and let Π the
graph predicate for existence of either induced or non-induced copy of H. Then there exists a
family of lower bound graphs for Π with fn = DISJΘ(n2) and C(n) = Θ(n3/2).

(✄ See full version.)

Theorem 2 and Lemma 9 now immediately imply the following:

▶ Theorem 10. Let H be a pattern graph that contains a 4-clique. Any CONGEST algorithm
solving either H-detection or induced H-detection needs at least Ω(n1/2/ log n) rounds.

3.3 Induced even cycle detection
We next prove an unconditional lower bound for induced even cycle detection in CONGEST.
Note that for induced odd cycles, one can easily verify that the construction of Drucker et
al. [25] immediately implies a Ω(n/ log n) lower bound.

▶ Lemma 11. Let k ≥ 3 be fixed, and let Π the graph predicate for existence of an induced 2k-
cycle. There exists a family of lower bound graphs for Π with fn = DISJΘ(n2) and C(n) = n.

(✄ See full version.)

Theorem 2 and Lemma 11 immediately imply the following:

▶ Theorem 12. Any CONGEST algorithm solving induced 2k-cycle detection for k ≥ 3 needs
at least Ω(n/ log n) rounds.

3.4 Induced subgraph detection for bounded treewidth patterns
Finally, we consider subgraph and induced subgraph detection for pattern graphs of low
treewidth. Recall that in centralized setting, a subgraph H with treewidth t can be detected
in time 2O(k)nt+1 log n [5], implying that detecting constant-treewidth subgraphs is fixed-
parameter tractable. However, in CONGEST model, turns out that pattern of treewidth 2
are already maximally hard.

Our construction for the hard pattern graph uses similar ideas as the hard non-induced
subgraph detection instances presented by Fischer et al. [28]. However, the pattern graphs
they use a fairly dense and have treewidth higher than 2.
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▶ Theorem 13. For any k ≥ 2, there exists a pattern graph Hk of treewidth 2 such that
CONGEST algorithm solving either Hk-detection or induced Hk-detection needs at least
Ω(n2−1/k) rounds.

Let k ≥ 2 be fixed. We construct the graph Hk as follows:
1. We start with four triangles A1, A2, B1 and B2 with nodes labelled by 1, 2 and 3.
2. Nodes 1 of A1 and A2 are connected by an edge, and nodes 1 of B1 and B2 are connected

by an edge.
3. Nodes 2 of A1 and B1 are connected with k disjoint paths of length 3. Likewise, Nodes 2

of A2 and B2 are connected with k disjoint paths of length 3.
The graph Hk is a series-parallel graph, and thus has treewidth 2 [12].

▶ Lemma 14. Let k ≥ 2 be fixed. There exists a family of lower bound graphs for Hk-detection
and induced Hk-detection with fn = DISJΘ(n2) and C(n) = Θ(n1/k). (✄ See full version.)

Theorem 13 now follows immediately by Theorem 2.

4 Multicolored problems

In the multicolored (induced) subgraph detection, we are given a pattern graph H on k nodes
and an input graph G with a (not necessarily proper) k-coloring, and the task is to find a
(induced) copy of H that is multicolored, i.e. a copy where all nodes have different colors.

4.1 Reductions

We first prove that the complexities of multicolored k-clique and k-independent set are closely
related to their standard versions also in the distributed setting. These results follow from
standard fixed-parameter reductions [40, 27].

▶ Theorem 15. If multicolored k-clique can be solved in T (n) rounds in CONGEST, then
k-clique can be solved O(k2T (kn)) rounds in CONGEST. If k-clique can be solved in T (n)
rounds in CONGEST, then multicolored k-clique can be solved T (n) rounds in CONGEST.
(✄ See full version.)

In the centralized setting, clique and independent set are equivalent, so the above
reductions work also for independent set. However, in the distributed setting, only one
direction works immediately, by essentially the same proof.

▶ Theorem 16. If multicolored k-independent set can be solved in T (n) rounds in CONGEST,
then k-independent set can be solved O(k2T (kn)) rounds in CONGEST.
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4.2 Lower bounds
Next, we prove some simple unconditional lower bounds for multicolored (induced) cycle
detection and multicolored induced path detection.

▶ Theorem 17. For any k ≥ 4, any CONGEST algorithm solving multicolored (induced)
k-cycle detection needs at least Ω(n/ log n) rounds. (✄ See full version.)

▶ Theorem 18. For any k ≥ 6, any CONGEST algorithm solving multicolored induced k-edge
path detection needs at least Ω(n/ log n) rounds. (✄ See full version.)

5 Induced subgraph detection on bounded degeneracy graphs

5.1 Induced tree detection
We start by giving a parameterized distributed algorithm for detecting induced trees, param-
eterized by the degeneracy d = d(G) of the input graph. This result is based on the random
separation algorithm of Cai et al. [13], adapted to distributed setting. For this result, we
assume for convenience that all nodes are given the parameter d as input; we discuss at the
end how to remove this dependence for the randomized version of the algorithm.

Preliminaries. Let G = (V, E) be a graph. We say that an orientation σ of the edges of G

is an α-bounded orientation, or simply α-orientation, if every node v ∈ V has out-degree at
most α in σ, and σ is acyclic. A graph G is d-degenerate if and only if has an d-orientation;
moreover, an O(d)-orientation can be computed fast in the CONGEST model:

▶ Lemma 19 ([7]). Let G be a d-degenerate graph, and let ε > 0. We can compute a
(2 + ε)d-orientation of G in O(log n) rounds in the CONGEST model, assuming d is known to
all nodes. If d is not known, we instead can compute a (4 + ε)d-orientation of G in O(log n)
rounds.

Multicolored induced trees with orientation. Let T be a tree on k nodes. We first to
show how to solve a specific multicolored version of induced T -detection, given an acyclic
orientation of G as input.

More precisely, let the graph G, let σ be an α-bounded orientation of G, and let χ : V →
{0, 1, . . . , k} be a (not necessarily proper) (k + 1)-coloring of G. Moreover, assume that the
tree T is labelled in a bottom-up manner with 1, 2, . . . , k with an arbitrary node as a root –
that is, the root has label k, and each node has a smaller label than their parent. We say
that an induced copy H of T in G is proper w.r.t σ and χ if the node in H corresponding
to node i in T has color i, and every node that is an out-neighbor of some node in H has
color 0.

▶ Lemma 20. Given a graph G = (V, E), an orientation σ of G, and a coloring χ as input,
we can find a proper induced copy of a tree T in O(k) rounds using O(1)-bit messages in
CONGEST model. (✄ See full version.)

Induced trees. Using Lemma 20 as a subroutine, we now show how to detect induced copies
of any tree T . We use random separation [13] and color-coding [5] techniques to reduce the
general problem to detection of proper induced copies of T .

▶ Theorem 21. Finding induced copy of a tree T on k nodes in a d-degenerate graph G

can be done in k2O(dk)kk + O(log n) rounds in the CONGEST model using a randomized
algorithm. (✄ See full version.)
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Derandomization. Finally, we note that the algorithms can be derandomized using standard
derandomization tools from fixed-parameter algorithms. Specifically, we use the derandom-
ization of Alon and Gutner [4] to avoid incurring extra O(log n) factor that would follow
from the original derandomization of Cai et al. [13].

▶ Theorem 22. Finding induced copy of a tree T on k nodes in a d-degenerate graph G can
be done in f(d, k) + O(log n) rounds in the CONGEST model using a deterministic algorithm
for some function f , assuming d is known to all nodes. (✄ See full version.)

Unknown degeneracy. The only part where the randomized algorithm uses the knowledge
of d(G) is for deciding how many repeats of the random coloring it performs; Lemma 19
can be used without knowing d(G). Without knowledge of d(G), nodes can determine the
largest out-degree in orientation σ in their radius-k neighborhood and use that as a proxy
for d(G) to determine how many repeats of the random coloring they should participate in;
it is easy to verify that this still retains the correctness of the algorithm. The only caveat is
that different nodes can terminate at different times, and cannot determine when all nodes
have terminated.

The deterministic algorithm, on the other hand, requires that all nodes know the degen-
eracy d(G), or the same upper bound for this value. While we can compute an O(κ(G))-
orientation σ for G in O(log n) rounds, all nodes do not necessarily learn the largest out-degree
in σ; indeed, one can trivially see that having all nodes learn d(G) requires Ω(D) rounds in
the worst case.

5.2 Induced subgraph detection for bounded treewidth patterns
We now show that with slight modification, the hard treewidth 2 patterns presented in
Section 3.4 can be adapted to bounded degeneracy setting. Recall that as mentioned in the
introduction, any pattern graph on k nodes can be detected in O(kd(G)n) rounds by having
all nodes gather full information about their distance-k neighborhood; thus, the following
lower bound is almost tight.

▶ Theorem 23. For any k ≥ 2, there exists a pattern graph Hk of treewidth 2 such
that CONGEST algorithm solving either H-detection or induced H-detection on graphs of
degeneracy 2 needs at least Ω(n1−1/k) rounds.

We use the same construction for k ≥ 2 for the pattern graph as in Lemma 13, but add
paths of length 5 instead of paths of length 3 between triangles A1 and B1, and triangles A2
and B2. Let us denote the resulting graph by H ′

k.

▶ Lemma 24. Let k ≥ 2 be fixed. There exists a family of lower bound graphs of degeneracy
2 for H ′

k-detection and induced H ′
k-detection with fn = DISJΘ(n) and C(n) = Θ(n1/k).

(✄ See full version.)
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6 Bounded vertex cover number and MCIS

Finally, we consider induced subgraph detection parameterized by vertex cover number τ(G).
Specifically, we show that a more general problem of maximum common induced subgraph
(MCIS) can be solved in constant rounds on graphs of constant vertex cover number, which
implies our results for induced subgraph detection.

Maximum common induced subgraph. In the centralized version of maximum common
induced subgraph, we are given graphs G = (VG, EG) and H = (VH , EH) as input, and the
task is to find the maximum-size graph G∗ such that G∗ appears as induced subgraph of
both G and H . More precisely, the output should be a function f : VG → VH ∪ {⊥} such that
for the set UG = {v ∈ VG : f(v) ̸= ⊥}, the function f restricted to UG is an isomorphism
between G[UG] and H[f(UG)].

In this section, we consider MCIS parameterized by the sum of the vertex cover numbers
τ(G) + τ(H). Note that when H is complete graph and |G| = |H|, the problem is equivalent
to maximum clique and hence NP-hard. It is W[1]-hard when parameterized by the solution
size k, and W[1]-hard parameterized by the size of a minimum vertex cover of only one of the
input graphs, even when restricted to bipartite graphs (see e.g. [2, 3] for more discussion).

Distributed MCIS. In the distributed version of the MCIS problem, the input graph
G = (VG, EG) is the communication network, and full information about the second input
graph H = (VH , EH) is given to every node as local input. Each node v needs to give a local
output f(v) ∈ VH ∪ {⊥} such that the global function f satisfies the conditions of MCIS
solution.

▶ Theorem 25. Solving the maximum common induced subgraph problem on communi-
cation graph G and target graph H can be done in 2O(τ2) rounds in the CONGEST model
deterministically, where τ = max(τ(G), τ(H)). (✄ See full version.)

Induced subgraph detection on bounded vertex cover number graphs. As an immediate
consequence of the MCIS algorithm, we obtain a parameterized distributed algorithm for
detecting an induced copy of H, for any pattern graph H, as a graph H on k nodes has
vertex cover number at most k.

▶ Theorem 26. Let H be a pattern graph on k nodes. Finding induced copy H can be done
in 2O((τ(G)+k)2) rounds in the CONGEST model deterministically.

7 Conclusions and open problems

A central takeaway of this work is that centralized parameterized complexity offers both
algorithmic techniques and perspectives for distributed computing. In particular, we believe
that the study of structural graph parameters is a valuable paradigm for understanding
sparse and structured networks in general. However, we note that there still remain open
research directions related to topics studied in this paper:

In terms of immediate open questions left by our work, we note that we currently do
not have any systematic results on separation between the hardness of induced and
non-induced subgraph detection for a given pattern H. For example, the induced cycle
detection lower bound of Le Gall and Miyamoto [36] gives a near-linear – or super-linear,
in case of even cycles – gap between induced and non-induced cycle detection, but it
would be interesting to explore similar results for other pattern graphs in systematic
fashion.
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More generally, we do not understand the complexity of subgraph detection type problems
in distributed setting as well as in the centralized setting. For example, the complexity
of k-independent set detection in CONGEST remains open, whereas in the centralized
setting, it is equivalent to k-clique – a correspondence that does not hold in CONGEST.
Besides degeneracy and vertex cover number, there are many other structural graph
parameters commonly studied in parameterized complexity – for example, feedback vertex
and edge sets, treewidth and pathwidth. Whereas Li [37] provides a framework for using
treewidth for global optimization problems, it does not directly imply results for local
problems such as subgraph detection; one might expect that considering something akin
to local treewidth of a graph would be more appropriate for local graph problems. A
secondary question is understanding what structural graph parameters are relevant from
the perspective of real-world networks.
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A Induced short paths

Induced paths with two edges can be detected in O(1) rounds, in contrast to the situation
with e.g. triangle detection. The proof follows the centralized algorithm of Vassilevska [44].

▶ Theorem 27. Given a graph G on n nodes, detecting an induced path of length 2 on G

can be done in O(1) rounds in the broadcast CONGEST model.
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Proof. As the first step, we assign a label ℓ(v) for each node as follows. First, each node
v ∈ V broadcast its identifiers to all its neighbors N(v), and then each node v picks the label
ℓ(v) to be the smallest identifier from the set that it received, or its own identifier if that is
smaller. The nodes then broadcast their label ℓ(v) and and their degree deg(v) to all their
neighbors.

Each node v then checks the following conditions, and reports that induced 2-path exists
if at least one of them is satisfied:
1. The exists a neighbor u ∈ N(v) with deg(v) ̸= deg(v).
2. There exists neighbors u, w ∈ N(v) with ℓ(u) ̸= ℓ(w).

For the correctness of the algorithm, we first observe that a graph does not contain an
induced 2-path if and only if each connected component is a clique. If none of the nodes
report an induced 2-path, then by conditions (a) and (b), each connected component is clique.
Likewise, if G consists of disjoint cliques, no node will report an induced 2-path. Finally, we
note that the algorithm takes 3 rounds in CONGEST. ◀
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Abstract
Spanners have been shown to be a powerful tool in graph algorithms. Many spanner constructions
use a certain type of clustering at their core, where each cluster has small diameter and there are
relatively few spanner edges between clusters. In this paper, we provide a clustering algorithm
that, given k ≥ 2, can be used to compute a spanner of stretch 2k − 1 and expected size O(n1+1/k)
in k rounds in the CONGEST model. This improves upon the state of the art (by Elkin, and
Neiman [TALG’19]) by making the bounds on both running time and stretch independent of the
random choices of the algorithm, whereas they only hold with high probability in previous results.
Spanners are used in certain synchronizers, thus our improvement directly carries over to such
synchronizers. Furthermore, for keeping the total number of inter-cluster edges small in low diameter
decompositions, our clustering algorithm provides the following guarantees. Given β ∈ (0, 1], we
compute a low diameter decomposition with diameter bound O

( log n
β

)
such that each edge e ∈ E is

an inter-cluster edge with probability at most β · w(e) in O
( log n

β

)
rounds in the CONGEST model.

Again, this improves upon the state of the art (by Miller, Peng, and Xu [SPAA’13]) by making the
bounds on both running time and diameter independent of the random choices of the algorithm,
whereas they only hold with high probability in previous results.
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1 Introduction

Clustering has become an essential tool in dealing with large data sets. The goal of clustering
data is to identify disjoint, dense regions such that the space between them is sparse. When
working with graphs, this translates to partitioning the vertex set into clusters with relatively
few edges between clusters such that the clusters satisfy a particular property. One can
for example demand that the clusters have low diameter [4, 2, 9, 31], high conductance
[22, 24, 36, 12, 13, 35, 14], or low effective resistance diameter [1]. In this paper, we focus on
the low diameter decomposition and its connection to spanners. Low diameter decompositions
are formally defined as follows.
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16:2 Spanners and Low Diameter Decompositions

▶ Definition 1. Let G = (V, E) be a weighted graph. A probabilistic (β, δ)-low diameter
decomposition of G is a partition of the vertex set V into subsets V1, . . . , Vl, called clusters,
such that

each cluster Vi has strong diameter at most δ, i.e., dG[Vi](u, v) ≤ δ for all u, v ∈ Vi
1;

the probability that an edge e ∈ E is an inter-cluster edge is at most β · w(e), i.e., for
e = (u, v), the probability that u ∈ Vi and v ∈ Vj for i ̸= j is at most β · w(u, v).

In an unweighted graph, another typical definition of the low diameter decomposition
replaces the second condition with an upper bound on the number of inter-cluster edges [31].
In this fashion, a probabilistic low diameter decomposition has O(βm) inter-cluster edges in
expectation.

Originally, low diameter decompositions were developed for distributed models, where they
have been proven useful by reducing communication significantly in certain situations [4, 6].
Later, they also have shown to be fruitful in other models; they have been applied in shortest
path approximations [15], cut sparsifiers [27], and tree embeddings with low stretch [2, 9, 10].

The clustering technique used for computing low diameter decompositions has implicitly
been used to develop sparse spanners [11, 30, 17] and synchronizers [4, 7]. The main idea is
to create the clusters, and add some, but not all, of the inter-cluster edges. In a sense, the
inter-cluster edges are sparsified. We formalize this concept as follows.

▶ Definition 2. Let G = (V, E) be an unweighted graph. A sparsified (ζ, δ)-low diameter
decomposition of G is a partition of the vertex set V into subsets V1, . . . , Vl, called clusters,
together with a set of edges F ⊆ E such that

each cluster Vi has strong diameter at most δ, i.e., dG[Vi](u, v) ≤ δ for all u, v ∈ Vi;
for every edge, one of its endpoints has an edge from F into the cluster of the other
endpoint, i.e., ∀e = (u, v) ∈ E, we have either (u′, v) ∈ F for some u′ ∈ Cu or (u, v′) ∈ F

for some v′ ∈ Cv
2.

|F | ≤ ζ.
Moreover, we say that a sparsified (ζ, δ)-low diameter decomposition is tree-supported if for
each cluster Vi we have a cluster center ci ∈ Vi and a tree of height at most δ/2 spanning the
cluster. All these trees together are called the support-forest.

Our main result is a clustering algorithm that produces a sparsified low diameter decom-
position.

▶ Theorem 3. There exists an algorithm, such that for each unweighted graph G = (V, E) and
parameter k ≥ 2 it outputs a tree-supported sparsified (ζ, 2k − 2)-low diameter decomposition,
with ζ = O(n1+1/k) in expectation. The algorithm runs in k rounds in the CONGEST model,
and in O(k log∗ n) depth and O(m) work in the PRAM model.

An important feature of this result is that the bounds on the strong diameter and
number of rounds are not probabilistic; they are independent of the random choices in the
algorithm. We show two applications of this theorem: constructing spanners and constructing
synchronizers.

1 For U ⊆ V , we write G[U ] for the graph induced by U , i.e., G[U ] := (U, U × U ∩ E).
2 For v ∈ V , we write Cv for the cluster containing v.
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Spanners. Given a graph G = (V, E), we say that H ⊆ G is a spanner of stretch α, if
dH(u, v) ≤ α · dG(u, v), for every u, v ∈ V . It is straightforward that a tree-supported
sparsified (ζ, 2k − 2)-low diameter decomposition gives a spanner of size ζ + n and stretch
2k − 1, for details we refer to Section 3.1. This gives us the following corollary.

▶ Corollary 4. There exists an algorithm, such that for each unweighted graph G = (V, E)
and parameter k ≥ 2 it outputs a spanner H of stretch 2k − 1. The expected size of H

is at most O(n1+1/k). The algorithm runs in k rounds in the CONGEST model, and in
O (k log∗ n) depth and O(m) work in the PRAM model.

Spanners themselves have been useful in computing approximate shortest paths [5, 16],
distance oracles and labeling schemes [38, 32], and routing [33]. A simple greedy algorithm [3]
gives a spanner of stretch 2k − 1 and of size O(n1+1/k), which is an optimal trade-off under
the girth conjecture [18]. However, its fastest known implementation in the RAM model takes
O(kn2+1/(2k+1)) time [34]. Halperin and Zwick [23] gave a linear-time algorithm to construct
spanners with an optimal trade-off for unweighted graphs in the RAM model. However,
this algorithm does not adapt well to distributed and parallel models of computation. This
problem can be overcome by exploiting the aforementioned relation with sparsified low
diameter decompositions. This was (implicitly) done by Baswana and Sen [11], who provide
an algorithm that computes a spanner of stretch 2k − 1 and of size O(kn1+1/k) in O(k)
rounds. The state of the art is by Elkin and Neiman [17], which builds off [30], and is also
based on low diameter decompositions. They provide an algorithm that with probability
1 − 1/c computes a (2k − 1)-spanner of expected size O(c1/kn1+1/k) in k rounds. Standard
techniques of boosting the failure probability to something inverse polynomial (or “with high
probability”) will require a logarithmic overhead. Alternatively, one can view the algorithm of
Elkin and Neiman as an algorithm that outputs an α-spanner of expected size O(c1/kn1+1/k)
in O(α) rounds, such that with probability 1 − 1/c we have that α = 2k − 1.

Corollary 4 improves on the result of Elkin and Neiman by making the bounds on
the stretch and the running time independent of the random choices in the algorithm. In
particular, the algorithm of Elkin-Neiman involves sampling vertex values from an exponential
distribution. The exponential distribution introduces an (as we show) unnecessary amount
of randomness; we demonstrate that the geometric distribution suffices. We replace the extra
random bits the exponential distribution provides by a tie-breaking rule on the vertex IDs,
which we believe contributes to a more intuitive construction.

Synchronizers. The second application of Theorem 3 is in constructing synchronizers in
the CONGEST model. A synchronizer gives a procedure to run a synchronous algorithm on
an asynchronous network. More precisely, the goal is to run any synchronous R(n)-round
M(n)-message complexity CONGEST model algorithm on an asynchronous network with
minimal time and message overhead. The first results on synchronizers are by Awerbuch [4],
called synchronizers α, β, and γ. Subsequently, these results were improved by Awerbuch
and Peleg [8], and Awerbuch et al. [7], both having O(R(n) log3 n) time and O(M(n) log3 n)
message complexity.

The synchronizer γ from [4] essentially consists of running a combination of the simple
synchronizers α and β on a sparsified (ζ, δ)-low diameter decompositions. In that case, the
bound ζ on the sparsified inter-cluster edges goes into the bound for the communication
overhead of the synchronizer and the strong diameter bound δ goes into the bound for the
time overhead of the synchronizer. Applying synchronizer γ on our clustering, we obtain the
following result.
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16:4 Spanners and Low Diameter Decompositions

▶ Theorem 5. There exists an algorithm that, given k ≥ 2, can run any synchronous
R(n)-round M(n)-message complexity CONGEST model algorithm on an asynchronous
CONGEST network. In expectation, the algorithm uses a total of O(M(n) + R(n)n1+1/k)
messages. Provided that each message incurs a delay of at most one time unit, it takes
O(R(n)k) rounds. The initialization phase takes O(k) time, using O(km) messages.

The running time claimed in this theorem is independent of the random choices in our
algorithm, which is a direct result of Theorem 3. The previous sparsified low diameter
decompositions (implicit in [17]) would provide similar bounds on the running time, but only
with constant probability.

Low Diameter Decompositions. Perhaps unsurprisingly, we show that, with the right
choice of parameters, our clustering algorithm can also compute unsparsified low diameter
decompositions.

▶ Theorem 6. There exists an algorithm, such that for each graph G = (V, E) with integer
weights w : E → {1, . . . , W } and parameter β ∈ (0, 1] it outputs a low diameter decomposition,
whose components are clusters of strong diameter of at most O

(
log n

β

)
. Moreover, each edge

is an inter-cluster edge with probability at most β · w(u, v). The algorithm runs in O
(

log n
β

)
rounds in the CONGEST model, and in O

(
log n log∗ n

β

)
depth and O(m) work in the PRAM

model.

Similar to our spanner algorithm, the bounds on the running time and strong diameter
hold independent of the random choices within the algorithm, as opposed to the previous
state of the art [31], where they only hold with high probability. In the low diameter
decomposition as discussed above, the trade-off between β and diameter bound O

(
log n

β

)
is

essentially optimal [9].

Technical Overview
Our clustering algorithm follows an approach known as ball growing, related to the prob-
abilistic partitions of [9, 10]. In a sequential setting, this consists of picking a vertex, and
repeatedly adding the neighbors of the current vertices to the ball. This stops when a
certain bound is reached, such as a bound on the diameter of the ball or on the number of
edges between the current ball and the remainder of the graph. The algorithm repeats this
procedure with the remainder of the graph until this is empty. Miller, Peng, and Xu [31]
showed that this can be parallelized by letting each vertex create its own ball, but after
a certain start time delay. In [31], this has been done by sampling the delays from the
exponential distribution, which leads to the aforementioned probabilistic diameter guarantee,
as the exponential distribution can take infinitely high values – albeit with small probability.
Furthermore, multiple authors (see e.g. [19, 31]) argue that one can round the sampled values
from the exponential distribution for most of the algorithm and solely use that the fractional
values of the sampled value induce a random permutation of the nodes. In this paper, we
show that even fewer random bits are needed: we do not require a random permutation of
the nodes. We demonstrate that a tie-breaking rule based on the IDs is enough.

We sample with a capped-off geometric distribution, also used in [28, 7]. As opposed to
the standard geometric distribution, the capped-off version can only take a finite number
of values. We believe this leads to a more direct proof of the spanner algorithm of [17] and
of the decomposition algorithm of [31]. Moreover, by making the sparsifier low diameter
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decomposition explicit, the application to synchronizers is almost immediate. In the remainder
of this paper, we will not think of the sampled values as start time delays, but as the distance
to some conceptual source s, similar to the view in [31]. The rest of the clustering algorithm
then consists of computing a shortest path tree rooted at s, which is easily calculated, both
in the CONGEST and PRAM model. The clusters consists of the trees that remain when we
disconnect the shortest path tree by removing the root s.

As an anonymous reviewer pointed out, in the case of low diameter decompositions, the
algorithm of Miller et al. [31] admits an alternative approach. We can exploit the fact that
the exponential delays are bounded with high probability. In case the delays exceed the
bound, we could return a sub-optimal clustering, without any central communication. As this
only happens with low probability, it does not impact the expected number of inter-cluster
edges. Note however, that the spanner construction of Elkin and Neiman [17] is not in
this high-probability regime, therefore this straightforward approach would not work. We
additionally believe that, beyond the result itself, our algorithm provides a more streamlined
view.

2 The Clustering Algorithm

Let G = (V, E) be a graph with integer weights w : E → {1, . . . , W }. Let p ∈ (0, 1) and
r ∈ N be parameters, to be chosen according to the application of our algorithm. In the
following, we provide an algorithm for computing a clustering, where the strong diameter of
these clusters will be 2r. In particular, we will show that each cluster is tree-supported by a
tree of height r. The number of inter-cluster edges depends on both p and r, and can be
bounded in two ways. The first approach, detailed in Section 3, shows we have a sparsified
low diameter decomposition. Here, for each vertex we compute the expected number of edges
in the sparsified set of inter-cluster edges, which gives a bound that does not depend on
m, but only on n, p and r. The second approach, detailed in Section 4, shows we have a
probabilistic low diameter decomposition, by computing the probability that any edge is an
inter-cluster edge.

2.1 Construction
First we conceptually add a node s to the graph G to form the graph G′. The node s will
function as an artificial source for a shortest path tree. Each vertex will have a distance to s

in G′ depending on some random offset. Hereto, each vertex samples a value δv from the
capped exponential distribution GeomCap(p, r), defined by

P [GeomCap(p, r) = i] =


p(1 − p)i if 0 ≤ i ≤ r − 1;
(1 − p)r if i = r;
0 else.

This distribution corresponds to the model where we repeat at most r Bernoulli trials, and
measure how many trials occur (strictly) before the first success, or whether there is no
success in the first r trials. We check that GeomCap is indeed a probability distribution on
{0, 1, . . . , r}:

r∑
i=0

P [GeomCap(p, r) = i] =
r−1∑
i=0

p(1 − p)i + (1 − p)r = p
1 − (1 − p)r

1 − (1 − p) + (1 − p)r = 1.
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As the intuition suggests, GeomCap has a memoryless property as long as the cap is not
reached, i.e., P [GeomCap(p, r) = i | GeomCap(p, r) ≥ i] = p for i ≤ r − 1. The proof is
completely analogous to the proof of the memoryless property of the geometric distribution.

For each vertex v ∈ V , we conceptually add an edge (s, v) to G′, with weight w(s, v) :=
r − δv. We define d(u)(s, x) := w(s, u) + dG(u, x), which is the minimal path length, for a
path from s to x over u. Now we have that the distance from s to x equals dG′(s, x) =
minu∈V {d(u)(s, x)}. We call this the level of x, ranging from 0 (closest to s) to r (furthest
from s). Moreover, we define pu(x) to be the predecessor of x on an arbitrary but fixed
shortest path from u to x. Next, we construct a shortest path tree T rooted at s. When
necessary, we do tie-breaking according to IDs: let v be such that dG′(s, x) = d(v)(s, x)
and ID(v) < ID(u) for all u ∈ V satisfying dG′(s, x) = d(u)(s, x). Then we connect x to
the shortest path tree using the edge (pv(x), x). Moreover, we add x to the cluster of v

and write cx := v for the corresponding cluster center. Intuitively, the clusters correspond
to the connected components that remain when we remove the source s from the created
shortest path tree. The formal argument for this can be found in the proof of Lemma 7. The
computation of this shortest path tree is model-specific, we provide details in Section 2.3.

The algorithm outputs the shortest path tree T , and for each x ∈ V , the center of its
cluster center cx and its level. The knowledge of cluster centers immediately gives a clustering,
where – by the remark above – each cluster has radius at most r. In Section 3, we show how
to construct a set of edges F ⊆ E from the cluster centers and levels, such that H := T ∪ F

is a spanner.
In the above, we only need an arbitrary ordering of the vertices. If we assume that each

vertex v ∈ V has a unique identifier, ID(v) ∈ {1, . . . , N}, we can provide an alternative
way of constructing the same shortest path tree. We construct a graph where w(s, v) =
r − δv + ID(v)/(N + 1), and compute a shortest path tree rooted at s. This embeds the
tie-breaking rule in the weight of the added edges, and thus in the distances. For generality –
and suitable implementation in distributed models with limited bandwidth – the remainder
of this paper relies on the former characterization using the tie-breaking rule.

2.2 Tree-Support
Next, we will show that the created clusters are tree-supported by a tree of height r. We
have already chosen cluster centers, and we will show that we can identify trees rooted at
these centers that satisfy the tree-support condition.

▶ Lemma 7. Each cluster is tree-supported by a tree of height at most r.

Proof. Let v ∈ V be a vertex, which is part of the cluster centered at cv. We show that there
is a path from cv to v contained in this cluster, which has length at most dG(cv, v) ≤ r.We
proceed to show by induction on dG(cv, v) that there is a path from cv to v contained in
their cluster, which has length at most dG(cv, v). The base case, v = cv, is trivial. Let u be
the predecessor of v on some path from cv to v of length dG(cv, v). It suffices to show that u

is in the same cluster, then the result follows from the induction hypothesis. By definition of
cv, we have that

dG′(s, v) = dG′(s, cv) + dG(cv, v) = dG′(s, cv) + dG(cv, u) + w(u, v) = d(cv)(s, u) + w(u, v).

By the triangle inequality we have dG′(s, v) ≤ dG′(s, u) + w(u, v). Combining this, we see
d(cv)(s, u) ≤ dG′(s, u). As the distance dG′(s, u) is minimal, by definition we have d(cv)(s, u) =
dG′(s, u). Now suppose that u is part of some cluster cu. Then we have d(cu)(s, u) = dG′(s, u)
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and ID(cu) ≤ ID(cv). However, this implies that d(cu)(s, v) ≤ d(cu)(s, u) + w(u, v) =
d(cv)(s, u) + w(u, v) = d(cv)(s, v). Hence by the tie-breaking for v we have ID(cv) ≤ ID(cu)
and thus cu = cv. ◀

As an immediate corollary, we obtain a bound on the strong diameter of the clusters.
▶ Corollary 8. Each cluster has a strong diameter of 2r.

2.3 Implementation and Running Time
For the RAM model, the implementation is straightforward and can be done in linear time [37].
The implementation in distributed and parallel models requires a little more attention. For
both models, the computational aspect is very similar to prior work [31, 17].

2.3.1 Distributed Model
The algorithm as presented, can be implemented efficiently both in the LOCAL and in the
CONGEST model. It runs in r + 1 rounds as follows. In the initialization phase, each
vertex v samples its value δv and sets its initial distance to the conceptual vertex s as r − δv.
In the first round of communication, v sends the tuple (r − δv, ID(v)) to its neighbors. In
each round, v updates its distance to s according to received messages. It then broadcasts
the tuple of its updated distance and the ID corresponding to the first vertex on the path
from s to v. Note that at the end of the algorithm, each node knows its own level and cluster
center, and the level and cluster center of each of its neighbors.

When the algorithm is applied with r = O(n) (if r ≥ n, we can simply return the
connected components of the graph as clusters), we maintain a bound on the message size of
O(log n), so there are no digit precision consideration for the CONGEST model. Moreover,
each vertex v has distance at most r − δv ≤ r to s, the algorithm terminates within r + 1
rounds.3

2.3.2 PRAM Model
The implementation in the PRAM model is slightly different to the CONGEST model.
Instead of broadcasts by each vertex in each round, a vertex v updates its distance only
once: either after one of its neighbors updated its distance, or after time r + 1 − δv it sets its
distance to r − δv. The total required depth differs on the exact model of parallelism, it is
O(r log∗ n) in the CRCW model of parallel computation. To show this, we follow the general
lines of [25], but we have to be careful: during the shortest path computation, we might need
to apply our tie-breaking rule, i.e., finding the minimum ID among all options. Note that in
the PRAM model, we can assume without loss of generality that the IDs are labeled 1 to n in
the adjacency list representation. Finding the minimum can be done with high probability in
O(log∗ n) depth and O(n) work, as we can sort a list of integers between 1 and n in O(log∗ n)
depth and O(n) work [21]. If we exceed the O(log∗ n) depth bound, we stop and output
the trivial clustering consisting of singletons. This clustering clearly satisfies the diameter
bound, and as we only output it with low probability, it has no effect on the expected
number of inter-cluster edges. So we can conclude that the additional sorting overhead for
the tie-breaking is a factor O(log∗ n). The algorithm has total work O

(
m + n

1−p

)
, where

the contribution of O
(

n
1−p

)
comes from sampling from the geometric distribution. In this

paper, this factor vanishes as we always have p such that O
(

n
1−p

)
= O(m).

3 The “+1” appears, as nodes in the lowest level have distance 0 to the source s.
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3 Constructing a Sparsified Low Diameter Decomposition

In this section, we show how the clustering algorithm leads to a sparsified low diameter
decomposition. The procedure is as follows: given k ≥ 2, we set r = k −1, p = 1−n−1/k, and
compute a clustering using the algorithm of Section 2. We denote F ⊆ E for the sparsified
set of inter-cluster edges. Intuitively, for each vertex v ∈ V , we add an edge to F for each
cluster in which we have a neighbor on one level below, or a neighbor on the same level as v

with the ID of the cluster center smaller than the ID of center of the cluster of v.

▶ Lemma 9. There exists a set of edges F ⊆ E of expected size O(n1+1/k), such that for
every edge, one of its endpoints has an edge from F into the cluster of the other endpoint.

Proof. We define, F :=
⋃

x∈V C(x), where C(x) consists of the following edges

C(x) :={(x, pu(x)) : d(u)(s, x) = dG′(s, x)}

∪ {(x, pu(x)) : d(u)(s, x) = dG′(s, x) + 1 and ID(u) < ID(cx)}.

First, we show that F satisfies the property stated in the lemma, then we consider its size.
Let (x, y) ∈ E, without loss of generality, we assume dG′(s, x) ≥ dG′(s, y), and in case of
equality we assume ID(cx) > ID(cy). We will show that there is an edge (x, pcy (x)) ∈ C(x)
to the cluster of y. First of all, notice that dG′(s, y) ≥ dG′(s, x) − 1 by the triangle inequality.
If dG′(s, y) = dG′(s, x) − 1, then d(cy)(s, x) ≤ dG′(s, x). Because of minimality of dG′(s, x),
we have d(cy)(s, x) = dG′(s, x), and thus (x, pcy

(x)) ∈ C(x) by definition of C(x). If
dG′(s, y) = dG′(s, x), we have ID(cx) > ID(cy). Moreover, we have d(cy)(s, x) ≤ dG′(s, x) + 1.
So again it follows that (x, pcy

(x)) ∈ C(x) by definition of C(x).
Now, we turn to the expected size of F . By linearity of expectation, we have E [F ] =∑

x∈V E [C(x)]. We will show that for each x ∈ V the expected size of C(x) is at most
2n1/k. For each u ∈ V , we potentially add an edge (x, pu(x)) to C(x). First, we calculate
the probability that at least t such vertices u contribute an edge. Hereto, we look at the
random variables Xu = d(u)(s, x) = k − δu + dG(u, x). According to these random variables,
we order all vertices: V = {u1, u2, . . . , un}, such that for i < j we satisfy one of the following
properties

Xui
< Xuj

;
Xui = Xuj and ID(ui) < ID(uj).

We calculate P[|C(X)| ≥ t], i.e., the probability that {(x, pu1(x)), . . . , (x, put
(x))} ⊆ C(x).

We do this by conditioning on ut = v. We observe

P [{(x, pu1(x)), . . . , (x, put(x))} ⊆ C(x) | ut = v] =
t−1∏
i=1

P [(x, pui
(x)) ∈ C(x) and (x, pv(x)) ∈ C(x) | ut = v] .

So we calculate P [(x, pui(x)) ∈ C(x) and (x, pv(x)) ∈ C(x) | ut = v] for i < t. By definition
of C(x), this can only hold if either x’s closest neighbors in the clusters centered at ui and
v are on the same level (in which case we have ID(ui) < ID(v), as v = ut and i < t) or
the neighbor from the cluster centered at ui is at a level lower and ID(v) < ID(ui). Note
that the level of the closest neighbor in the cluster of ui or v corresponds to the distance
d(ui)(s, x) = Xui

or d(v)(s, x) respectively. As the allowed distances depend on the ID of ui,
we split the vertices according to ID:

V< := {u ∈ V : ID(u) < ID(v)};
V> := {u ∈ V : ID(u) > ID(v)}.
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If ui ∈ V<, then we know Xui ≤ d(v)(s, x). If both (x, pui(x)) and (x, pv(x)) are in C(x), we
must have Xui

= d(v)(s, x). So for every i < t, we are looking at

P [(x, pui(x)) ∈ C(x) and (x, pv(x)) ∈ C(x) | ui ∈ V< and ut = v]

≤ P
[
Xui

= d(v)(s, x)
∣∣∣ ui ∈ V< and ut = v

]
,

= P
[
Xui

= d(v)(s, x)
∣∣∣ ui ∈ V< and Xui

≤ d(v)(s, x)
]

,

where the last equality holds as we only rewrote the condition using the order of the uj ’s.
We fill in the definition of Xui

and use that the probability of the event we are looking at is
independent of ID(ui):

P
[
Xui = d(v)(s, x)

∣∣∣ ui ∈ V< and Xui ≤ d(v)(s, x)
]

= P
[
k − δui + dG(ui, x) = d(v)(s, x)

∣∣∣ ui ∈ V< and k − δui + dG(ui, x) ≤ d(v)(s, x)
]

= P
[
k − δui + dG(ui, x) = d(v)(s, x)

∣∣∣ k − δui + dG(ui, x) ≤ d(v)(s, x)
]

= P
[
δui = k + dG(ui, x) − d(v)(s, x)

∣∣∣ δui ≥ k + dG(ui, x) − d(v)(s, x)
]

.

When k + dG(ui, x) − d(v)(s, x) ≤ k − 2, this equals p, by the memoryless property of the
geometric distribution. To distinguish this, we partition the vertices u with ID(u) < ID(v)
into two set

V<,1 := {u ∈ V : ID(u) < ID(v) and k + dG(ui, x) − d(v)(s, x) ≤ k − 2};

V<,2 := {u ∈ V : ID(u) < ID(v) and k + dG(ui, x) − d(v)(s, x) = k − 1}.

Now for ui ∈ V>, we obtain by the same reasoning

P [(x, pui(x)) ∈ C(x) and (x, pv(x)) ∈ C(x) | ui ∈ V> and ut = v]

= P
[
δui

= k + dG(ui, x) − d(v)(s, x) + 1
∣∣∣ δui

≥ k + dG(ui, x) − d(v)(s, x) + 1
]

.

As before, when k + dG(ui, x) − d(v)(s, x) + 1 ≤ k − 2, this equals p, by the memoryless
property of the geometric distribution. And again, we partition V> into two sets

V>,1 := {u ∈ V : ID(u) > ID(v) and k + dG(ui, x) − d(v)(s, x) + 1 ≤ k − 2};

V>,2 := {u ∈ V : ID(u) > ID(v) and k + dG(ui, x) − d(v)(s, x) + 1 = k − 1}.

If we define V1 = V<,1 ∪ V>,1 and V2 = V<,2 ∪ V>,2, we can summarize our results as

P [(x, pui(x)) ∈ C(x) and (x, pv(x)) ∈ C(x) | ui ∈ V1 and ut = v] ≤ p.

Next, we split the expected value of C(x) depending on V1 and V2:

E [|C(x)| | ut = v] = E [|C(x) ∩ V1| | ut = v] + E [|C(x) ∩ V2| | ut = v] .

We bound the first summand with n1/k, independent of v. Hereto, we observe that for any
non-negative discrete random variable X we have

E[X] =
∞∑

s=1
sP[X = s] =

∞∑
s=1

s∑
t=1

P[X = s] =
∞∑

t=1

∞∑
s=t

P[X = s] =
∞∑

t=1
P[X ≥ t].
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Using this, we obtain

E [|C(x) ∩ V1| | ut = v]

=
n∑

t=1
P [|C(x) ∩ V1| ≥ t | ut = v]

≤
n∑

t=1

t−1∏
i=1

P [(x, pui
(x)) ∈ C(x) and (x, pv(x)) ∈ C(x) | ui ∈ V1 and ut = v]

≤
n∑

t=1
pt−1

≤
∞∑

t=0
pt

= 1
1 − p

= n1/k,

where the last equality holds by definition of p. For the second summand, we look at all v

simultaneously.∑
v∈V

E [|C(x) ∩ V2| | ut = v]P [ut = v] ≤
∑
v∈V

E [|V2| | ut = v]P [ut = v]

≤
∑
v∈V

E [|{u ∈ V : δu = k − 1}| | ut = v]P [ut = v]

= E [|{u ∈ V : δu = k − 1}|] ,

where the last equality holds by the law of total probability. We bound this as follows

E [|{u ∈ V : δu = k − 1}|] ≤ nP [δu = k − 1] = n(1 − p)k−1 = n1/k,

where the last equality holds by definition of p. In total, this gives us E[|C(x)|] ≤ 2n1/k. ◀

Together Lemma 7 and Lemma 9 imply the following theorem.

▶ Theorem 3 (Restated). There exists an algorithm, such that for each unweighted graph
G = (V, E) and parameter k ≥ 2 it outputs a tree-supported sparsified (ζ, 2k − 2)-low diameter
decomposition, with ζ = O(n1+1/k) in expectation. The algorithm runs in k rounds in the
CONGEST model, and in O(k log∗ n) depth and O(m) work in the PRAM model.

3.1 Constructing a Spanner
Now, we can construct a spanner from the tree supported low diameter decomposition in
the following manner. Let T denote the support forest, and let F denote the set as given in
Lemma 9. We define the spanner H := (V, T ∪ F ). As any forest has at most n − 1 edges,
the expected size of H is at most O(n1+1/k). Actually, one could also show that T ⊆ F in
our construction of F , but this would not impact the asymptotic size bound. To show that
H is a spanner, we show its of limited stretch.

▶ Lemma 10. H is a spanner of stretch 2k − 1.
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Proof. We will show that for every edge (x, y) ∈ E, there exists a path from x to y in H

of length at most 2k − 1. Consequently we have that dH(x, y) ≤ (2k − 1)dG(x, y) for every
x, y ∈ V , hence H is a spanner of stretch 2k − 1.

Let (x, y) ∈ E. By definition of F , one of the endpoints has an edge in F into the cluster
of the other endpoint. Without loss of generality, let there be an edge (x, z) ∈ F with z in
the cluster of y. By Corollary 8, there is path of length at most 2(k − 1) from z to y, so in
total we have a path of length at most 2(k − 1) + 1 = 2k − 1 from x to z to y. ◀

Now, the following corollary follows from Theorem 3 and Lemma 10.

▶ Corollary 11 (Restated). There exists an algorithm, such that for each unweighted graph
G = (V, E) and parameter k ≥ 2 it outputs a spanner H of stretch 2k − 1. The expected size
of H is at most O(n1+1/k). The algorithm runs in k rounds in the CONGEST model, and
in O (k log∗ n) depth and O(m) work in the PRAM model.

3.2 Constructing a Synchronizer
Suppose we are given a synchronous CONGEST model algorithm, but we want to run it on an
asynchronous CONGEST network. That is, the messages sent in the network can now have
arbitrary delays and, in an event-driven manner, nodes become active each time they receive
a message. For the purpose of analyzing the time complexity of the algorithm, it is often
assumed that the delay is at most one unit of time, however, the algorithm should behave
correctly under any finite delays. In this situation, a node should start simulating its next
(synchronous) round when it has received all the messages from the previous round from its
neighbors. The problem is that it cannot tell the difference between the situation if a message
from a particular neighbor has not arrived yet or if this same neighbor is not sending any
message in that round at all. We say that a node is safe if all the messages it has sent have
arrived at their destination. In order to determine whether all neighboring nodes are safe,
additional messages are sent. The procedure governing these additional messages is called
the synchronizer. There are two things to take into account when analyzing synchronizers.
First, the time overhead: how much time is needed to send the additional messages for each
synchronous round. Second, the message-complexity (or communication) overhead: how
many additional messages are sent. For more details on synchronizers see e.g. [29, 26].

Let us first consider two simple synchronizers: synchronizer α and synchronizer β, see [4].
In synchronizer α, when a node receives a message from a neighbor, it sends back an
“acknowledge” message. When a node has received acknowledge messages for all its sent
messages, it marks itself safe and reports this to all its neighbors. The synchronizer α uses,
for each simulated synchronous round, additional O(1) time, and O(m) messages.

Synchronizer β will produce a different trade off between time and message overhead.
It uses an initialization phase in which it creates a rooted spanning tree, where the root is
declared the leader. Now after sending messages of a certain synchronous round, again nodes
that receive messages reply with an acknowledge message to each. Nodes that are safe, and
whose children in the constructed tree are also safe communicate this to their parent in the
tree. Eventually the leader will learn that the whole graph is safe, and will broadcast this
along the spanning tree. Synchronizer β uses O(D) time and O(n) messages per synchronous
round.

Now we are ready to consider a little more involved example, called synchronizer γ,
see [4]. This synchronizer makes use of clustering, where within each cluster synchronizer
β is used and between clusters synchronizer α is used. In the LOCAL model, the cluster
centers can simply select a communication link for each neighboring cluster to communicate
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individually with the neighboring cluster centers [4]. However, in the CONGEST model,
communicating information about neighboring clusters to the cluster center might lead to
congestion problems. Using a slightly more careful analysis, the procedure can be adapted
to the CONGEST model.

▶ Lemma 11 (Implicit in [4]). Given a T (n)-round synchronous CONGEST model algorithm
for constructing a sparsified (ζ, δ)-low diameter decomposition, any synchronous R(n)-round
M(n)-message complexity CONGEST model algorithm can be run on an asynchronous
CONGEST network with a total of O(M(n) + R(n)(ζ + n)) messages, and, provided that
each message incurs a delay of at most one time unit, in time O(R(n)δ). The initialization
phase takes O(T (n)) time, using O((T (n) + δ)m) messages.

For a sketch of the algorithm, we refer to Appendix A. If we plug in our clustering, we
obtain the following theorem.

▶ Theorem 5 (Restated). There exists an algorithm that, given k ≥ 2, can run any synchron-
ous R(n)-round M(n)-message complexity CONGEST model algorithm on an asynchronous
CONGEST network. In expectation, the algorithm uses a total of O(M(n) + R(n)n1+1/k)
messages. Provided that each message incurs a delay of at most one time unit, it takes
O(R(n)k) rounds. The initialization phase takes O(k) time, using O(km) messages.

4 Constructing a Low Diameter Decomposition

In this section, we show that for an integer weighted graph the computed clustering is
a probabilistic low diameter decomposition. To be precise, if we set p = β

4 , and r =⌈
1
p ln

(
n2

p

)
+ 1

4p

⌉
we obtain a

(
β, O

(
log n

β

))
-low diameter decomposition. By Corollary 8,

we know that each of the clusters has a strong diameter of at most 2r = 2
⌈

1
p ln

(
n2

p

)
+ 1

4p

⌉
=

O
(

log n
β

)
. Now, we show that the probability that an edge e ∈ E is an inter-cluster edge is

at most 4p · w(e) = β · w(e). We use a general proof structure from [31], but make it more
streamlined; we avoid an artificially constructed “midpoint” on the edge (u, v). Further, our
proof borrows the idea of conditioning on the event Eu′,v′,α from Xu [39], which we adapt to
our situation.

▶ Lemma 12. For (u, v) ∈ E, the probability that u and v belong to different clusters is at
most 4p · w(u, v).

Proof. Suppose (u, v) is an inter-cluster edge. Without loss of generality, we assume
dG′(s, v) ≤ dG′(s, u). By the triangle inequality, we have dG′(s, u) ≤ dG′(s, v) + w(u, v),
hence we have dG′(s, u)−dG′(s, v) ≤ w(u, v). Using this, we can upper bound the probability
that an edge (u, v) is an inter-cluster edge by the probability that this inequality holds. Note
that we can assume 4p · w(u, v) < 1, otherwise the statement is trivially true.

We want to condition on the cluster center v′ that satisfied d(v′)(s, u) = dG′(s, v), and
on the cluster center u′ ̸= v′ that minimizes d(u′)(s, u). Moreover, we ask that these cluster
respect the tie-breaking rule, i.e., both have minimal ID among all centers with equal distance.
Finally, we condition on the value of dG′(s, u), which we set to α. We call this event Eu′,v′,α,
which we formally define to hold when the following four conditions are satisfied
1. d(v′)(s, u) ≤ α;
2. for w′ ∈ V \{v′} we either have d(w′)(s, v) > d(v′)(s, v), or we have d(w′)(s, v) = d(v′)(s, v)

and ID(v′) < ID(w′);
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3. d(u′)(s, v) = α;
4. for w′ ∈ V \ {u′, v′} we either have d(w′)(s, u) > d(u′)(s, u), or we have d(w′)(s, u) =

d(u′)(s, u) and ID(u′) < ID(w′).
Now, we condition on Eu′,v′,α and use the law of total probability:

P [(u, v) is an inter-cluster edge]

=
∑

u′∈V

∑
v′∈V \{u′}

∑
α

P [(u, v) is an inter-cluster edge | Eu′,v′,α]P [Eu′,v′,α]

≤
∑

u′∈V

∑
v′∈V \{u′}

∑
α

2P
[
d(u′)(s, u) − d(v′)(s, v) ≤ w(u, v)

∣∣∣ Eu′,v′,α

]
P [Eu′,v′,α] .

For simplicity, we omit the bounds for the sum over α, which is a finite sum as we always
have α ≤ r + m. The factor two appears because the event assumes dG′(s, v) ≤ dG′(s, u),
hence we gain a factor two by symmetry of u and v. We look at the first probability more
closely. We can loosen some of the event’s restrictions, and just maintain d(v′)(s, v) ≤ α,
as the event we examine is independent of conditions 2, 3, and 4 of the event Eu′,v′,α. We
obtain

P
[
d(u′)(s, u) − d(v′)(s, v) ≤ w(u, v)

∣∣∣ Eu′,v′,α

]
= P

[
α − d(v′)(s, v) ≤ w(u, v)

∣∣∣ d(v′)(s, v′) ≤ α
]

= P [δv′ ≤ r + dG(v′, v) − α + w(u, v) | δv′ ≥ r + dG(v′, v) − α] ,

where the last equality holds by definition of d(v′)(s, v). Now if r +dG(v′, v)−α +w(u, v) ≤ r

(or equivalently, α ≥ dG(v′, v) + w(u, v)), we stay away from our cap on the geometric
distribution, and hence we can apply the memoryless property of the geometric distribution
to obtain

P [δv′ ≤ r + dG(v′, v) − α + w(u, v) | δv′ ≥ r + dG(v′, v) − α]

= 1 − (1 − p)w(u,v)

≤ pw(u, v),

where the last step holds by Bernoulli’s inequality. If we have r + dG(v′, v) − α + w(u, v) > r
(or equivalently, α < dG(v′, v) + w(u, v)), we show that the probability P [Eu′,v′,α] of the
event taking place is already small:

P [Eu′,v′,α] ≤ P
[
d(v′)(s, v) ≤ α and d(u′)(s, u) = α

]
= P

[
δv′ ≥ r + dG(v′, v) − α

]
P

[
d(u′)(s, u) = α

]
(since the events are independent)

≤ P [δv′ ≥ r − w(u, v)]P
[
d(u′)(s, u) = α

]
,

where the last equality holds as r + dG(v′, v) − α + w(u, v) > r. We bound this probability
as follows:

P [δv′ ≥ r − w(u, v)]P
[
d(u′)(s, u) = α

]
≤ (1 − p)r−w(u,v) P

[
d(u′)(s, u) = α

]
.
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Now we use that r =
⌈

1
p ln

(
n2

p

)
+ 1

4p

⌉
, to obtain

(1 − p)r−w(u,v) ≤ (1 − p)
1
p ln

(
n2
p

)
+ 1

4p −w(u,v)

≤
(

(1 − p)1/p
)ln

(
n2
p

)
(as 4p · w(u, v) ≤ 1)

≤ p

n2 .

Combining all of this, we obtain

P [(u, v) is an inter-cluster edge]

≤2
∑

u′∈V

∑
v′∈V \{u′}

∑
α≥dG(v′,v)+w(u,v)

P
[
d(u′)(s, u) − d(v′)(s, v) ≤ w(u, v)

∣∣∣ Eu′,v′,α

]
P [Eu′,v′,α]

+ 2
∑

u′∈V

∑
v′∈V \{u′}

∑
α<dG(v′,v)+w(u,v)

P
[
d(u′)(s, u) − d(v′)(s, v) ≤ w(u, v)

∣∣∣ Eu′,v′,α

]
P [Eu′,v′,α]

≤2
∑

u′∈V

∑
v′∈V \{u′}

∑
α≥dG(v′,v)+w(u,v)

p · w(u, v)P [Eu′,v′,α]

+ 2
∑

u′∈V

∑
v′∈V \{u′}

∑
α<dG(v′,v)+w(u,v)

p

n2 P
[
d(u′)(s, u) = α

]
≤2p · w(u, v)

∑
u′∈V

∑
v′∈V \{u′}

∑
α

P [Eu′,v′,α] + 2 p

n2

∑
u′∈V

∑
v′∈V \{u′}

∑
α

P
[
d(u′)(s, u) = α

]
.

Next, we notice that all events Eu′,v′,α are disjoint by design, so∑
u′∈V

∑
v′∈V \{u′}

∑
α

P [Eu′,v′,α] = 1.

Clearly we have
∑

α P
[
d(u′)(s, u) = α

]
= 1, as this is just a sum over all possible values of

d(u′)(s, u). Filling both in, we conclude

P [(u, v) is an inter-cluster edge] ≤ 2p · w(u, v) + 2
∑

u′∈V

∑
v′∈V \{u′}

p

n2 ≤ 4p · w(u, v). ◀

Together with Corollary 8, this gives us the following theorem.

▶ Theorem 6 (Restated). There exists an algorithm, such that for each graph G = (V, E)
with integer weights w : E → {1, . . . , W } and parameter β ∈ (0, 1] it outputs a low diameter
decomposition, whose components are clusters of strong diameter of at most O

(
log n

β

)
.

Moreover, each edge is an inter-cluster edge with probability at most β · w(u, v). The
algorithm runs in O

(
log n

β

)
rounds in the CONGEST model, and in O

(
log n log∗ n

β

)
depth

and O(m) work in the PRAM model.

5 Conclusion

We have presented an algorithm that computes a clustering, more precisely, a tree-supported
sparsified low diameter decomposition. This directly leads to a sparse spanner and can
be applied to compute a synchronizer for the CONGEST model. Moreover, we show that
we also improve upon the state-of-the art for low diameter decompositions. By showing
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that clustering can be done using a capped geometric distribution, we improve on existing
algorithms for spanners and low diameter decompositions in two ways. First, we obtain
bounds on the diameter/stretch and running time that are independent of the random choices
of the algorithm. Second, the discreteness of the geometric distribution fits the discrete
nature of graph theoretical problems better than a continuous distribution. We believe this
leads to a more intuitive algorithm.

A natural question that remains is whether it would be possible to give a with-high-
probability bound on the total number of inter-cluster edges or the size of the spanner rather
than an in-expectation bound. A more ambitious goal is to develop a completely deterministic
algorithm with the same bounds, improving on the work of Ghaffari and Kuhn [20].
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A Using Sparsified Low Diameter Decompositions for Synchronization

In the following, we turn to the algorithm realizing Lemma 11, i.e., we show how we can
run a synchronous CONGEST algorithm on an asynchronous CONGEST network, using
a sparsified low diameter decomposition. Hereto, we present an implementation of the
synchronizer γ in the CONGEST model, using sparsified low diameter decompositions for
the communication. We refer to [4] for a proof of correctness of the synchronizer γ.

The initialization phase consists of three steps. First, we compute the sparsified (ζ, δ)-low
diameter decomposition. To do this in the asynchronous CONGEST model, we use the
synchronizer α (for details see [4], or textbooks, e.g., [29, 26]). Hence this takes O(T (n)) time,
and O(T (n)m) messages. Second, we pick a cluster center for each cluster and construct a
tree rooted at the cluster center spanning the cluster. We can do this in O(δ) time, using
O(δm) messages, again using the synchronizer α. Note that if the computed decomposition
was tree-supported, these trees are already given. As a third and final step of the initialization
phase, each vertex needs to be aware of its incident sparsified inter-cluster edges, as it will use
these to communicate to neighboring clusters. This might be already determined during the
construction of the clustering. It could also be the case that for each sparsified inter-cluster
edge, only one of the two incident vertices knows this. In O(1) time, using O(m) messages,
this can be communicated using the synchronizer α. In total, we use O(T (n)) time for the
initialization phase, and O((T (n) + δ)m) messages.

Now we are set up for the simulation of the R(n)-round, M(n)-message complexity
synchronous CONGEST model algorithm. In each simulation of a synchronous round of
this algorithm, vertices respond to each message with an acknowledge message, same as in
the synchronizers α and β. When a vertex has received acknowledge messages for each sent
message, it declares itself safe. If a vertex and all its children in the cluster tree are safe, it
notifies its parent in the cluster tree. Once the cluster center has received confirmation that
the whole cluster is safe, it down-casts this information to the whole cluster. Each vertex
communicates that its cluster is safe over its sparsified inter-cluster edges. Once a vertex
received a message of being safe over each sparsified inter-cluster edge, it declares itself ready.
When a vertex and all its children in the cluster tree are ready, it sends a ready-message to
its parent in the cluster tree. Once a cluster center received ready-messages from the whole
cluster, it down-casts a message “cluster ready” to all cluster vertices.

Assuming that each message incurs a delay of at most one time unit, we need at most
O(δ) time for this procedure, as we send information along the trees of height δ for a total of
four times. See [4] for the argument explaining why confirmation that neighboring clusters
are done suffices. Moreover, the only communication links participating in this procedure, are
the edges from the sparsified low diameter decomposition (consisting of at most ζ inter-cluster
edges and n tree edges). Each of these edges sends up to four messages in total, giving a
total bound on the number of messages of O(R(n)(ζ + n)) for the synchronization. This gives
a total time bound of O(R(n)δ), and message complexity bound of O(M(n) + R(n)(ζ + n)).
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Abstract
We provide CONGEST model algorithms for approximating the minimum weighted vertex cover and
the maximum weighted matching problem. For bipartite graphs, we show that a (1 + ε)-approximate
weighted vertex cover can be computed deterministically in poly

( log n
ε

)
rounds. This generalizes a

corresponding result for the unweighted vertex cover problem shown in [Faour, Kuhn; OPODIS ’20].
Moreover, we show that in general weighted graph families that are closed under taking subgraphs
and in which we can compute an independent set of weight at least λ · w(V ) (where w(V ) denotes
the total weight of all nodes) in polylogarithmic time in the CONGEST model, one can compute a
(2 − 2λ + ε)-approximate weighted vertex cover in poly

( log n
ε

)
rounds in the CONGEST model. Our

result in particular implies that in graphs of arboricity a, one can compute a (2−1/a+ε)-approximate
weighted vertex cover problem in poly

( log n
ε

)
rounds in the CONGEST model.

For maximum weighted matchings, we show that a (1−ε)-approximate solution can be computed
deterministically in time 2O(1/ε) · poly log n in the CONGEST model. We also provide a randomized
algorithm that with arbitrarily good constant probability succeeds in computing a (1−ε)-approximate
weighted matching in time 2O(1/ε) · poly log(∆W ) · log∗ n, where W denotes the ratio between the
largest and the smallest edge weight. Our algorithm generalizes results of [Lotker, Patt-Shamir, Pettie;
SPAA ’08] and [Bar-Yehuda, Hillel, Ghaffari, Schwartzman; PODC ’17], who gave 2O(1/ε) · log n and
2O(1/ε) · log ∆

log log ∆ -round randomized approximations for the unweighted matching problem.
Finally, we show that even in the LOCAL model and in bipartite graphs of degree ≤ 3, if ε < ε0

for some constant ε0 > 0, then computing a (1 + ε)-approximation for the unweighted minimum
vertex cover problem requires Ω

( log n
ε

)
rounds. This generalizes a result of [Göös, Suomela; DISC ’12],

who showed that computing a (1 + ε0)-approximation in such graphs requires Ω(log n) rounds.
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17:2 Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings

best polynomial-time approximation algorithms have an approximation ratio of 2 − o(1) [41].
The MVC problem is known to be APX-hard [17,36], and if the unique games conjecture
holds, the current (2 − o(1))-approximation algorithms are essentially best possible [43].

In the distributed context, most prominently, the problems have been studied in the stan-
dard message passing models in graphs, in the LOCAL model and the CONGEST model [53].
In both models, the graph G = (V, E) on which we want to solve some graph problem also
represents the network and it is assumed that the nodes V of G can communicate with each
other in synchronous rounds by exchanging messages over the edges E of G. In the LOCAL
model, the size of those messages is not restricted, whereas in the CONGEST model, it is
assumed that each message has to consist of at most O(log n) bits, where n = |V | is the
number of nodes of the network graph G. In the following discussion of existing work on
distributed matching and vertex cover algorithms, we concentrate on polylogarithmic-time
distributed algorithms that also work for the weighted variants of the problems.

Distributed Complexity of Weighted Matchings. While the unweighted versions of both
problems can be approximated within a factor of 2 by computing a maximal matching, a little
more work is needed for weighted matchings and vertex covers. The first polylogarithmic-time
distributed algorithm for computing a constant approximation for the maximum weighted
matching (MWM) problem was presented in [56]. This algorithm was then improved in [50]
and in [49], where it is shown that a (1/2 − ε)-approximation for MWM can be computed in
O(log(1/ε) log n) rounds in the CONGEST model. In [7], it was further shown that can one
compute a 1/2-approximation for MWM in time O

(
log W · TMIS

)
in the CONGEST model,

where W is the ratio between the largest and smallest edge weight and where TMIS is the
time for computing a maximal independent set. The paper also shows that for constant
ε, a (1/2 − ε)-approximation can be computed in only O

( log ∆
log log ∆

)
rounds. Note that as

shown in [47], this time complexity is best possible for any constant approximation algorithm,
even in the LOCAL model. All the above algorithms are randomized. In [25], Fischer
gave a deterministic CONGEST algorithm to compute a (1/2 − ε)-approximate weighted
matching with a round complexity of O(log2 ∆ · log 1/ε + log∗ n). This algorithm was refined
in [2], where it was shown that in time O

( log2(∆/ε)+log∗ n
ε + log(∆W )

ε2

)
, it is even possible to

deterministically compute a (2/3−ε)-approximation for the MWM problem in general graphs
and a (1 − ε)-approximation for the MWM problem in bipartite graphs, in the CONGEST
model. To the best of our knowledge, this is the only existing polylogarithmic-time CONGEST
algorithm to obtain an approximation ratio that is better than 1/2. It has been observed
already in [45,49,52] that in the LOCAL model, better approximations for maximum weighted
matching can be computed efficiently. In particular, [49, 52] show that even in general
graphs, a (1 − ε)-approximation can be computed in poly

( log n
ε

)
rounds. It has later been

shown that this can also be achieved deterministically [31]. The best known LOCAL MWM
approximation algorithms are by Harris [35], who shows that a (1 − ε)-approximation can
be computed in randomized time Õ

( log ∆
ε3

)
+ poly log

( log log n
ε

)
and in deterministic time

Õ
( log2 ∆

ε4 + log∗ n
ε

)
. Those algorithms are based on computing large matchings in hypergraphs

defined by paths of length O(1/ε) and they unfortunately cannot directly turned into efficient
CONGEST algorithms. To the best of our knowledge, even for constant ε > 0, the only
efficient CONGEST algorithms are for the unweighted maximum matching problem. Lotker,
Patt-Shamir, and Pettie [49] give an algorithm to compute a (1 − ε)-approximation for
the unweighted maximum matching problem in time only 2O(1/ε) · log n in the randomized
CONGEST model. In [7] (full version), this was improved to 2O(1/ε) · log ∆

log log ∆ . We obtain
similar algorithms for the weighted matching problem. Obtaining a (1 − ε)-approximation



S. Faour, M. Fuchs, and F. Kuhn 17:3

in poly
( log n

ε

)
CONGEST rounds is one of the key open questions in understanding the

distributed complexity of maximum matching. Fischer, Mitrović, and Uitto [26] recently
settled a related problem for unweighted matchings in the streaming model and in the latest
version of their paper, they even obtain a poly

( log n
ε

)
-round CONGEST algorithm for the

unweighted matching problem.

Distributed Complexity of Weighted Vertex Covers. The first distributed constant-factor
approximation algorithm for the minimum weighted vertex cover (MWVC) problem is due to
Khuller, Vishkin, and Young [44]. They describe a simple deterministic algorithm to obtain a
(2 + ε)-approximation for MWVC. The algorithm can directly be implemented in O(log(n) ·
log(1/ε)) rounds in the CONGEST model. The time for computing a (2 + ε)-approximation
has subsequently been improved to O(log(∆)/ poly(ε)) in [47] and to O(log ∆/ log log ∆)
in [9–11] (with a very minor dependency on ε in [11]). Note that as for maximum matching,
this dependency on ∆ is optimal for any constant-factor approximations [46]. The algorithm
of [11] can also be used to compute a 2-approximate weighted vertex cover in time O(log n).
Other polylogarithmic-time algorithms to compute 2-approximations for MWVC appeared
in [34, 44, 45]. In the LOCAL model, one can use generic techniques from [30, 54] (or the
techniques from this paper) to deterministically compute a (1 + ε)-approximate minimum
weighted vertex cover in time poly

( log n
ε

)
. Further, in [32], it was shown that even on

bipartite graphs with maximum degree 3, there exists a constant ε0 > 0 such that computing
a (1 + ε0)-approximate (unweighted) vertex cover requires Ω(log n) rounds, even in the
LOCAL model and even when using randomization. We generalize this result and show
that for computing a (1 + ε)-approximation, one requires Ω(log(n)/ε) rounds. While for
maximum matching, there are several CONGEST algorithms that achieve approximation
ratios that are better than 1/2, for the minimum vertex cover problem, efficiently achieving an
approximation ratio significantly below 2 in general graphs might be a hard problem. In this
case, computing an exact solution even has a lower bound of Ω̃(n2) rounds in the CONGEST
model and it is therefore basically as hard as any graph problem can be in this model [13].
To what extent we can achieve approximation ratios below 2 in the CONGEST model for
variants of the minimum vertex cover problem is an interesting open question. There recently
has been some progress. In [12], it is shown that the minimum vertex cover problem (and
also the maximum matching problem) can be solved more efficiently if the optimal solution
is small. In particular, if the size of an optimal vertex cover is at most k, a minimum
vertex cover can be computed deterministically in time O(k2) and a (2 − ε)-approximate
solution can be computed deterministically in time O(k + (εk)2) (and slightly more efficiently
with randomization). This was the first efficient CONGEST algorithm that achieves an
approximation ratio below 2 for the minimum vertex cover problem for some graphs. In [23],
it was shown that in bipartite graphs, a (1 + ε)-approximation can be computed in time
poly

( log n
ε

)
. One of the main results of this paper is a generalization of this result to the

weighted vertex cover problem. Further, it has recently been shown that on the square graph
G2, it is possible to compute a (1 + ε)-approximate (unweighted) vertex cover in time O(n/ε)
in the CONGEST model (on G) [8].

1.1 Our Contributions
We next state our main contributions in detail. We prove new CONGEST upper bounds for
approximating minimum weighted vertex cover and maximum weighted matching (MWM).
We start by describing our results for the vertex cover problem. In [23], it was shown that
in bipartite graphs, the unweighted vertex cover problem can be (1 + ε)-approximated in
poly log

( log n
ε

)
time in the CONGEST model. The following theorem is a generalization of

the result of [23] to weighted graphs.
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▶ Theorem 1. For every ε ∈ (0, 1], there is a deterministic CONGEST algorithm to compute
a (1 + ε)-approximation for the minimum weighted vertex cover problem in bipartite graphs
in time poly

( log n
ε

)
.

The next theorem shows that in graph families that are closed under taking (induced)
subgraphs and in which we can efficiently compute large (or heavy) independent sets, we can
efficiently approximate minimum (weighted) vertex cover with an approximation ratio that
is better than 2.

▶ Theorem 2. Let G be a family of weighted graphs that is closed under taking induced
subgraphs and such that for some λ ∈ (0, 1/2] and any n-node graph G = (V, E, w) of G,
there is a Tλ(n)-round CONGEST algorithm to compute an independent set S of weight
w(S) ≥ λw(V ). Then, there is Tλ(n) + poly

( log n
ε

)
-round CONGEST algorithm to compute

a (2 − 2λ + ε)-approximate weighted vertex cover for graphs of G. If the independent set
algorithm is deterministic, then also the vertex cover algorithm is deterministic.

Note that the algorithm of Theorem 2 uses the bipartite vertex cover algorithm of
Theorem 1 as a subroutine. Theorem 2 in particular implies that for graphs for which we can
compute a coloring with a small number of colors, we can efficiently compute a non-trivial
vertex cover approximation.

▶ Corollary 3. Let G be a family of weighted graphs such that for some non-negative integer
C, for any n-node graph G = (V, E, w) of G, there is a TC(n)-round CONGEST algorithm to
compute a vertex coloring of G with C colors. Then, there is a TC(n) + poly

( log n
ε

)
-round

CONGEST algorithm to compute a (2 − 2/C + ε)-approximation of the minimum weighted
vertex cover problem for graphs of G. If the coloring algorithm is deterministic, then also the
vertex cover algorithm is deterministic.

In order to efficiently compute an independent set S of weight w(S) ≥ w(V )/C from
a C-coloring, we need the graph to be of small diameter. However, by using standard
clustering techniques (which we anyways need to apply also for our bipartite vertex cover
algorithm), one can reduce the minimum (weighted) vertex cover problem on general n-
node graphs to graphs of diameter poly

( log n
ε

)
. In particular, in graphs of arboricity a,

we can (deterministically) compute a (2 + ε)a-coloring in time O(log3 a · log n) [29]. As a
consequence, we get a deterministic poly

( log n
ε

)
-round CONGEST algorithm for computing a

(2 − 1/a + ε)-approximation of minimum weighted vertex cover in graphs of arboricity a.
In addition to our CONGEST algorithms for approximating minimum weighted vertex

cover, we also provide new CONGEST algorithms for approximating maximum weighted
matching. The following theorem can be seen as a generalization of Theorem 3.15 in [49]
and of Theorem B.12 in [7] (full version).

▶ Theorem 4. For every ε, δ ∈ (0, 1], there is a randomized CONGEST algorithm that
with probability at least 1 − δ computes a (1 − ε)-approximation to the maximum weighted
matching problem in 2O(1/ε) ·

(
log(W∆) + log2 ∆ + log∗ n

)
· log3(1/δ) rounds. Further, there

is a deterministic CONGEST algorithm to compute a (1 − ε)-approximation for the minimum
weighted matching problem in time 2O(1/ε) · poly log n.

Note that except for the log∗ n term, for constant error probability δ, the round complexity
of our randomized algorithm is independent of the number of nodes n. Moreover, for constant
ε and δ, in bounded-degree graphs with bounded weights, the round complexity of the
randomized algorithm is only O(log∗ n). For unweighted matchings, a round complexity that
is completely independent of n was obtained by [7]. Interestingly, Göös and Suomela in [32]
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showed that such a result is not possible for the minimum vertex cover problem, even in the
LOCAL model. They show that even for bipartite graphs of maximum degree 3, there exists
a contant ε0 > 0 such that any randomized distributed (1 + ε0)-approximation algorithm
for the (unweighted) minimum vertex cover problem requires Ω(log n) rounds. As our last
contribution, we generalize the result of [32] to computing (1 + ε)-approximate solutions for
any sufficiently small ε > 0.

▶ Theorem 5. There exists a constant ε0 > 0 such that for every ε ∈ (0, ε0], any randomized
LOCAL model algorithm to compute a (1 + ε)-approximation for the (unweighted) minimum
vertex cover problem in bipartite graphs of maximum degree 3 requires Ω

( log n
ε

)
rounds.

Theorem 5 is obtained by a relatively simple reduction to the (1 + ε0)-approximation
lower bound proven in [32] for bipartite graphs of maximum degree 3. We note that if we
only require the approximation factor to hold in expectation, as discussed at the end of
Section 3, in the LOCAL model the theorem is tight even for general graphs and even for the
weighted vertex cover problem.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2,
we define the communication model and we introduce all the necessary mathematical notations
and definitions. In Section 4, we give an overview over our minimum weighted vertex cover
algorithms and in Section 5, we discuss the most important ideas to derive our maximum
weighted matching result. Many of the technical details regarding our algorithms have to be
omitted in this extended abstract and they only appear in the full version [22] of this paper.
In Section 6, we prove the lower bound on approximating vertex cover in bipartite graphs in
the LOCAL model. Finally, in Appendix A, we give some basic algorithmic tools that we
need for our algorithms.

2 Model and Preliminaries

2.1 Mathematical Notation
Let G = (V, E, w) be an undirected weighted graph, where w is a non-negative weight
function. We will use node and edge weights in the paper and depending on the context, we
will use w to assigns weights to nodes and/or edges. Generally for a set X of nodes and/or
edges, we use w(X) to denote the sum of the weights of all nodes/edges in X. For example,
if we have node weights, w(V ) denotes the sum of the weights of all the nodes. Throughout
the paper, we assume that all weights are integers that are polynomially bounded in the
number of node of the graph. However, as long as we can communicate a single weight in a
single message, all our algorithms can be adapted to also work at no significant additional
asymptotic cost for more general weight assignments. We further use the following notation
for graphs. For a node v ∈ V , we use N(v) ⊆ V to denote the set of neighbors of v and we
use E(v) ⊆ E to denote the set of edges that are incident to v.

For a graph G = (V, E), the bipartite double cover is defined as the graph G2 := G×K2 =
(V × {0, 1}, E2), where there is an edge between two nodes (u, i) and (v, j) in E2 if and
only if {u, v} ∈ E and i ≠ j. Hence, in G2, every node u of G is replaced by two nodes
(u, 0) and (u, 1) and every edge {u, v} of G is replaced by the two edges {(u, 0), (v, 1)} and
{(u, 1), (v, 0)}. Moreover, if G is a weighted graph with weight function w, we assume that
the bipartite double cover G2 is also weighted and that the corresponding nodes and/or
edges have the same weight as in G. That is, in case of node weights, for every u ∈ V , we
define w((u, 0)) = w((u, 1)) = w(u) and in case of edge weights, for every {u, v} ∈ E, we
define w({u, i}, {v, 1 − i}) = w({u, v}) for i ∈ {0, 1}.
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17:6 Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings

2.2 Problem Definitions
In this paper, we consider the minimum weighted vertex cover (MWVC) and the maximum
weighted matching (MWM) problems. Formally, in the MWVC problem, we are given a
weighted graph G = (V, E, w) with positive node weights. A vertex cover of G is a set
S ⊆ V of nodes such that for every edge {u, v} ∈ E, S ∩ {u, v} ≠ ∅. The goal of the MWVC
problem is to find a vertex cover S of minimum total weight w(S). In the MWM problem,
we are given a weighted graph G = (V, E, w) with positive edge weights. A matching of
G is a set M ⊆ E of edges such that no two edges in M are adjacent. The goal of the
MWM problem is to find a matching M of maximum total weight w(M). The unweighted
versions of the two problems are closely related to each other as their natural fractional linear
programming (LP) relaxations are duals of each other. In the paper, we will also use the
fractional relaxation of the MWVC problem and its dual problem. In the fractional MWVC
problem on G, every node u ∈ V is assigned a value xu ∈ [0, 1] such that for every edge
{u, v} ∈ E, xu + xv ≥ 1 and such that the sum

∑
u∈V w(u) · xu is minimized. The dual LP

of this problem, which for a given weight function w, we in the following call the fractional
w-matching problem, is defined as follows. Every edge e ∈ E is assigned a (fractional) value
ye ≥ 0 such that for every node u ∈ V , we have

∑
e:u∩e̸=∅ ye ≤ w(u) and such that the sum∑

e∈E ye is maximized. We use the vector y to refer to a fractional solution that assigns
a fractional value ye to every edge. Further for convenience, for a set of edges F , we also
use the short notation y(F ) :=

∑
e∈F ye. LP duality directly implies that the value of any

fractional w-matching cannot be larger than the weight of any vertex cover:

▶ Lemma 6. Let G = (V, E, w) be a node-weighted graph and let y be a fractional w-matching
of G. It then holds that y(E) ≤ w(S) for every vertex cover S of G.

Proof. We have

w(S) =
∑
v∈S

w(v) ≥
∑
v∈S

∑
e:v∈e

ye ≥
∑
e∈E

ye = y(E).

The first inequality holds because the values ye form a valid fractional w-matching and the
second inequality holds because S is a vertex cover. ◀

The approximation ratio of an approximation algorithm for the MWVC or MWM problem
is defined as the worst-case ratio between the total weight of a vertex cover or matching
computed by the algorithm over the total weight of an optimal vertex cover or matching.
That is, we define the approximation ratio such that it is ≥ 1 for minimization and ≤ 1 for
maximization problems.

2.3 Low-Diameter Clustering
Many of our algorithms have some components that require global communication in the
network. In order the achieve a polylogarithmic round complexity, we therefore need a graph
with polylogarithmic diameter. We achieve this by applying standard clustering techniques.
Formally, we use the clusterings as in [23] described in the following. Let G = (V, E, w)
be a weighted graph with non-negative node and edge weights. A clustering of G is a
collection {S1, . . . , Sk} of disjoint node sets Si ⊆ V . For λ ∈ [0, 1], a clustering {S1, . . . , Sk}
is called λ-dense if the total weight of all nodes and edges in the induced subgraphs G[Si]
for i ∈ {1, . . . , k} is at least λ(w(V ) + w(E)). Further, for an integer h ≥ 1, a clustering
{S1, . . . , Sk} is called h-hop separated if for any two clusters Si and Sj (i ̸= j) and any pair
of nodes (u, v) ∈ Si × Sj , we have dG(u, v) ≥ h, where dG(u, v) denotes the hop-distance
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between u and v. Further for two integers c, d ≥ 1, a clustering {S1, . . . , Sk} is defined
to be (c,d)-routable if we are given a collection of T1, . . . , Tk trees in G such that for each
i ∈ {1, . . . , k}, the nodes Si are contained in Ti, every tree Ti has diameter at most d, and
every edge e ∈ E of G is contained in at most c of the trees T1, . . . , Tk. Note that this implies
that each cluster of a (c, d)-routable clustering has weak diameter at most d and if the nodes
of Ti are all contained in Si, it implies that the strong diameter of cluster Si is at most d.

2.4 Communication Model
Throughout the paper, we assume a standard synchronous message passing model on graphs.
That is, the network is modeled as an undirected n-node graph G = (V, E). Each node is
equipped with a unique O(log n)-bit identifier. The nodes V communicate in synchronous
rounds over the edges E such that in each round, every node can send an arbitrary mesage
to each of its neighbors. Internal computations at the nodes are free. Initially, the nodes
do not know anything about the topology of the network. When computing a vertex cover
or a matching, at the end of the algorithm, every node must output if it is in the vertex
cover or which of its edges belong to the matching. The time or round complexity of an
algorithm is defined as the number of rounds that are needed until all nodes terminate. If
the size of the messages is not restricted, this model is known as the LOCAL model [53]. In
the more restrictive CONGEST model, all messages must consist of at most O(log n) bits [53].
In several of our algorithms, we will first compute a clustering as defined above in Section 2.3
and we afterwards run CONGEST algorithms on the clusters. If we are given a (c, d)-routable
clustering, we are only guaranteed that the diameter of each cluster Si is small if we add
the nodes and edges of the tree Ti to the cluster. For running our algorithms on individual
clusters, we therefore need an extension of the classic CONGEST model, which has been
introduced as the SUPPORTED CONGEST model in [27,55]. In the SUPPORTED CONGEST
model, we are given two graphs, a communication graph H = (VH , EH) and a logical graph
G = (V, E), which is a subgraph of H. When solving a graph problem such as MWVC or
MWM in the SUPPORTED CONGEST model, we need to solve the graph problem on the
logical graph G, we can however use CONGEST algorithms on the underlying communication
graph H to do so. Note that if we are given a (c, d)-routable clustering, we can define
Gi := G[Si] and Hi as the union of the graph Gi and the tree Ti for each cluster and we
can then in parallel run 1 round of a SUPPORTED CONGEST algorithm on each cluster in c

CONGEST rounds on G.

3 Reducing to Small Diameter

We start the presentation of our results by describing how we can use clusterings to reduce the
problem of approximating MWVC or MWM on general graphs to the case of approximating
the same problems on graphs of small diameter. The high-level idea that we use to reduce
the diameter is a classic one. We find a disjoint and sufficiently separated collection of low-
diameter clusters such that only a small fraction of the graph is outside of the clusters (see,
e.g., [6, 48, 51, 53, 54] for constructions of such clusterings). We then compute a good
approximation for a given problem inside each cluster and we use a coarse approximation to
extend the solution to the parts of the graph outside of the clusters. If we want this to work
in general graphs, we have to adapt the standard clustering constructions such that the part
of the graph that is outside of the clusters contains only a small fraction of a solution to
the actual problem that we want to approximate, rather than simply a small fraction of the
number of nodes and/or edges of the graph. A generic way to achieve this in the LOCAL
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model has been described in [30] and a method that can also be used in the CONGEST model
has recently been described in [23] for the unweighted minimum vertex cover problem. The
following theorem shows how to extend the approach of [23] to work also for weighted vertex
cover and matching. The theorem shows that at the cost of a (1 + ε)-factor, the problems of
approximating MWVC and MWM can efficiently be reduced to approximating the problems
in the SUPPORTED CONGEST model with a small-diameter communication graph. We here
use the SUPPORTED CONGEST model because we compute clusters by adapt a network
decomposition algorithm of [54], which only creates clusters of weak diameter. Due to lack
of space, the proof of the following theorem is omitted and deferred to the full version of this
paper [22].

▶ Theorem 7 (Diameter Reduction). Let T α
SC(n, D) be the time required for computing an

α-approximation for the MWVC or the MWM problem in the SUPPORTED CONGEST model
with a communication graph of diameter D. Then, for every ε ∈ (0, 1], there is a poly

( log n
ε

)
+

O
(

log n ·T α
SC

(
n, O

( log3 n
ε

)))
-round CONGEST algorithm to compute a (1−ε)α-approximation

of MWM or an (1 + ε)α-approximation of MWVC in the CONGEST model. If the given
SUPPORTED CONGEST model algorithm is deterministic, then the resulting CONGEST
model algorithm is also deterministic. Also, if we want to solve MWVC or MWM in the
CONGEST model on a bipartite graph, then it is sufficient to have a SUPPORTED CONGEST
model algorithm that works for a bipartite communication (and thus also logical) graph.

▶ Remark. We note that by using a variant of the randomized clustering algorithm of Miller,
Peng, and Xu [51], one can compute a

(
1, O

( log n
ε

))
-routable, 3-hop separated clustering with

expected density 1 − ε in time O
( log n

ε

)
(also cf. [23]). In combination with the argument in

the above proof, this in particular implies that it in O
( log n

ε

)
rounds in the LOCAL model,

it is possible to compute weighted matchings and weighted vertex covers with expected
approximation ratios 1 − ε and 1 + ε, respectively.

4 Weighted Vertex Cover Algorithms

We next describe our results on approximating the minimum weighted vertex cover. We
start by describing a distributed approximation scheme for bipartite graphs.

4.1 Basic Weighted Vertex Cover Algorithm
It is well-known that in bipartite graphs, the size of a maximum matching is equal to the
size of a minimum vertex cover (this is known as Kőnig’s theorem [16, 42]). The theorem
was also independently discovered in [20] by Egerváry, who also more generally proved that
on node-weighted bipartite graphs, the total value of an optimal (fractional) w-matching is
equal to the weight of a minimum weighted vertex cover, where a fractional w-matching of a
node-weighted graph G = (V, E, w) is an assignment of fractional values ye ≥ 0 to all edges
such that the edges of each node v sum up to at most w(v). In both cases, the theorem can
be proven in a constructive way. Given a maximum matching or more generally a maximum
fractional w-matching, there is a simple (and efficient) algorithm to compute a vertex cover
of the same size or weight.

Moreover as shown in [24], if we are given a good approximate matching or w-matching
with some additional properties, the constructive proof of [20,42] can be adapted to obtain a
good approximate (weighted) vertex cover. For the unweighted case, this method is at the
core of the CONGEST model bipartite vertex cover algorithms of [23]. We next describe how
to use this technique to approximate MWVC in the CONGEST model.
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Let G = (V, E, w) be a node-weighted graph, where w is a non-negative node weight
function. For a node v ∈ V and a given fractional w-matching ye for e ∈ E, we define
the slack of v as s(v) := w(v) −

∑
e:v∈e ye. Given a fractional w-matching ye for e ∈ E,

an augmenting path is an odd length path P = (v0, . . . , v2k+1) where the end nodes v0
and v2k+1 have positive slack s(v0), s(v2k+1) > 0, and for i ∈ {1, 2, ..., k}, each even edge
e = (v2i−1, v2i) has a positive fractional value ye > 0. Assume that we are given a bipartite
graph G = (A ∪ B, E, w) and that we are given a fractional w-matching y of G such that
there are no augmenting paths of length at most 2k − 1 for some integer k ≥ 1. We can then
apply the following algorithm to compute a vertex cover S of G. The algorithm computes
disjoint sets A0, A1, . . . , Ak ⊆ A and disjoint sets B1, . . . , Bk ⊆ B. In the following for a set
of nodes X, we use Ny>0(X) to denote the set of nodes that are connected to a node in X

through an edge e with ye > 0.

Algorithm 1 Basic Approximate Weighted Vertex Cover Algorithm.

1. Define A0 := {v ∈ A : s(v) > 0} as the nodes in A with positive slack and B0 := ∅.
2. For every i ∈ {1, . . . , k}, define Bi :=

{
v ∈ B \

⋃i−1
j=0 Bj : v ∈ N(Ai−1)

}
.

3. For every i ∈ {1, . . . , k}, define Ai :=
{

v ∈ A \
⋃i−1

j=0 Aj : v ∈ Ny>0(Bi)
}

.
4. Define i∗ := arg mini∈{1,...,k} w(Bi).
5. Output S :=

⋃i∗

i=1 Bi ∪
(
A \

⋃i∗−1
i=0 Ai

)
.

That is, the sets A0, B1, A1, B2, A2 . . . are the levels of a BFS traversal of the graph
starting at the nodes in A0 and where steps from Bi to Ai have to be over an edge e with
positive fractional value ye > 0.

▶ Lemma 8. Given a weighted bipartite graph G = (A∪B, E, w), an integer k ≥ 1, and a frac-
tional w-matching of G with no augmenting paths of length at most 2k−1, the above algorithm
computes a (1 + 1/k)-approximate weighted vertex cover of G. Further, the above algorithm
can be deterministically implemented in O(D + k) rounds in the SUPPORTED CONGEST
model if the communication graph is also bipartite and has diameter at most D.

Proof. We first prove that S is a valid vertex cover. For this, we need to show that there is
no edge between A \ S and B \ S. We have A \ S =

⋃i∗−1
j=0 Aj and B \ S =

⋃k
j=i∗+1 Bj ∪ B,

where B = B \
⋃k

i=1 Bi. We therefore need to show that there cannot be an edge between a
set Aj for j < i∗ and

∑k
j=i∗+1 Bj ∪ B. However, by construction, all neighbors of nodes in

Aj are in B1, . . . , Bi∗ and we can thus conclude that S is a vertex cover.
We next show that S is a (1 + 1/k)-approximate weighted vertex cover of G. First

observe that for all i ∈ {1, 2.., k}, all nodes v in Bi are saturated nodes with zero slack, i.e.,
w(v) =

∑
e∈E(v) ye. From the construction of the sets A0, B1, A1, . . . , we otherwise get an

augmenting path of length at most 2k − 1. Moreover since the sets of edges incident to the
sets B1, . . . , Bk are disjoint, the sum of the fractional values of all those edges is at most
y(E) =

∑
e∈E ye. By the choice of i∗, we therefore know w(Bi∗) =

∑
v∈Bi∗

∑
e∈E(v) ye ≤

y(E)/k. Moreover, from the BFS construction of the sets Ai and Bi it follows that the only
edges e with ye > 0 for which both nodes are in S are edges that are incident to nodes in B∗

i .
We can therefore conclude that w(S) ≤ y(E)+w(Bi∗) ≤ (1+1/k) ·y(E). The approximation
ratio now follows from LP duality (i.e., from Lemma 6).
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Finally, we discuss how the above algorithm can be efficiently implemented in time
O(D + k) rounds in the SUPPORTED CONGEST model, where D is the diameter of the
communication graph H. In O(D) rounds, one can compute a BFS spanning tree of H and
use it to compute the bipartition of the nodes of H and thus of G into sets A and B. Then
in O(k) rounds, the algorithm constructs the sets Ai and Bi for i ∈ {1, 2.., k} by running
the first 2k iterations of parallel BFS on G starting from set A0 (where edges from Bi to
Ai need to have positive fractional values). Finally in another O(D + k) rounds, we use the
precomputed BFS spanning tree on H and a standard pipelining scheme for the root to
compute the weights of all the sets Bi, determine the index i∗ of the smallest weight amongst
them, and broadcast it to all nodes in G. ◀

We remark that although the above algorithm only requires a BFS traversal from all
nodes in A0 for k levels, the algorithm still requires time D for two reasons. First, the
algorithm needs to know the bipartition A ∪ B of G and computing the bipartition requires
Ω(D) time. Second, even if the bipartition is given initially, the algorithm still needs Ω(D)
time to determine the optimal level i∗.

4.2 Getting Rid of Short Augmenting Paths

The basic MWVC algorithm described in Section 4.1 basically converts a good approximation
of fractional w-matching into a good MWVC approximation. However the algorithm needs a
fractional w-matching with the additional property that there are no short augmenting paths.
For the unweighted setting, there exists a randomized CONGEST algorithm to compute
an integral matching with no short augmenting paths [49]. It is however not clear if the
algorithm of [49] can be generalized to the fractional w-matching problem. Further, even
in the unweighted case, we do not have a deterministic CONGEST algorithm to compute
such a matching. As in the deterministic, unweighted MVC algorithm of [23], we therefore
use a different approach. In the unweighted setting, we first compute a (1 − δ)-approximate
matching that can potentially have short augmenting paths. We then get rid of those short
augmenting paths by removing at least one unmatched node or both nodes of a matching
edge from the graph. The removed nodes are at the end added to the vertex cover to make
sure that all edges are covered. The selection of a smallest possible number of unmatched
nodes and matching edges that hit all short augmenting paths can be phrased as a minimum
set cover problem, which we can approximate efficiently in the CONGEST model. In the
weighted case, we use a generalization of this approach. Because of the weights, the process
and its analysis however becomes more subtle and we have to be more careful.

Assume that we want to compute a (1 + O(ε))-approximate weighted vertex cover for
a node-weighted bipartite graph G = (A ∪ B, E, w). In a first step, we compute a (1 − δ)-
approximate fractional w-matching y := {ye : e ∈ E} of G for some parameter δ ≪ ε. We
can do this efficiently by using Theorem 12. The fractional w-matching y however might have
short augmenting paths. In a second step, we then convert our graph G and the fractional
w-matching y such that we obtain an instance with no short augmenting paths and that we
can thus apply Lemma 8. More concretely, we decrease some of the weights w(v) and some of
the fractional values ye such that for the resulting weights w′(v) and the resulting w′-matching
y′, the graph G has no short augmenting paths and such that a (1 + ε)-approximate weighted
vertex cover of G with the weights w′(v) is a (1 + O(ε))-approximate weighted vertex cover
of G for the original weights. We next describe the main ideas of this transformation.
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Formally, the conversion can be defined by a set X ⊆ {v ∈ A ∪ B : s(v) > 0} of nodes
with positive slack and a set F ⊆ {e ∈ E : ye > 0} of edges with positive fractional value.
The new fractional values y′

e and the new weights w′(v) are defined as follows:

y′
e :=

{
0 if e ∈ F

ye if e ̸∈ F
, w′(v) :=

{
w(v) − s(v) − y(E(v) ∩ F ) if v ∈ X

w(v) − y(E(v) ∩ F ) if v /∈ X
(1)

▶ Lemma 9. Any augmenting path of G w.r.t. the weight function w′ and the fractional
w′-matching y′ is also an augmenting path w.r.t. the original weight function w and the
original fractional w-matching y.

Proof. First note that whenever we decrease a value ye to y′
e < ye for some edge e = {u, v},

we also decrease the weights of u and v by the same amount. Therefore, the slack of a
node v w.r.t. w′ and y′ cannot be larger than the slack of v w.r.t. w and y. Therefore any
odd-length path P in G that starts and ends at a node with positive slack w.r.t. w′ and y′

also starts and ends at a node with positive slack w.r.t. w and y. Further, if every even edge
e of such a path P has a positive fractional value y′

e > 0, then it also holds that ye > 0. ◀

Note that the definition of w′ and y′ in (1) guarantees that all nodes v ∈ X have slack 0
w.r.t. the new weights w′ and the new fractional values y′. Consider some augmenting path
P = (v0, . . . , v2ℓ+1) of G w.r.t. w and y. If we have v0 ∈ X or v2ℓ+1 ∈ X or if we have e ∈ F

for one of the even edges {v2i−1, v2i} of P , then P is not an augmenting path of G w.r.t. w′

and y′. In order to get rid of all short augmenting paths, we therefore need to choose one
of the end nodes or one of the even edges of each such path and add them to X or F . We
can then use Lemma 8 to efficiently compute a good vertex cover approximation for G w.r.t.
the new weights w′. The quality of such a vertex cover w.r.t. the original weights w can be
bounded as follows.

▶ Lemma 10. Let S∗ be an optimal weighted vertex cover of G = (V, E) w.r.t. the weights
w and assume that for some α ≥ 1, S is an α-approximate weighted vertex cover of G w.r.t.
the weights w′. It then holds that

w(S) ≤ α · w(S∗) + s(X) + y(F ), where s(X) :=
∑
v∈X

s(v).

Proof. Let S′ be an optimal weighted vertex cover of G w.r.t. the weights w′. Because any
vertex cover must contain at least one node of every edge in F , we have w′(S′) ≤ w(S∗)−y(F ).
We therefore have

w(S) ≤ w′(S) + s(X) + 2y(F ) ≤ αw′(S′) + s(X) + 2y(F ) ≤ αw(S∗) + s(X) + y(F ). ◀

In order to optimize the approximation, we thus need to determine the sets X and F

such that s(X) + y(F ) is as small as possible and such that we “cover” all short augmenting
paths. The problem of finding the best possible sets X and F can naturally be phrased
as a weighted set cover problem. One can further show that if the parameter δ that
determines the quality of the fractional w-matching y is chosen sufficiently small (but still
as δ = poly(ε/ log n)), even a logarithmic approximation to this weighted set cover instance
guarantees that s(X) + y(F ) = O(ε · w(S∗)). Further, by sequentially going over the possible
short augmenting path lengths and adapting existing algorithms of [49] and [23], a variant of
the greedy algorithm for this weighted set cover instance can be implemented efficiently in
the CONGEST model on G. Given an efficient algorithm to find appropriate sets X and F ,
the claim of Theorem 1 then follows almost immediately by combining with Theorem 7 and
Lemma 8. The technical details appear in the full version [22].
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4.3 Generalization to Non-Bipartite Graphs
For approximating the MWVC problem in general graphs, we employ a standard approach
that is for example described in [37]. We describe the details for completeness. The minimum
fractional (weighted) vertex cover problem is the natural LP relaxation of the minimum
(weighted) vertex cover problem. That is, a fractional vertex cover of a graph G = (V, E) is
an assignment of values xv ∈ [0, 1] to all nodes such that for every edge {u, v}, xu + xv ≥ 1.
While the integrality gap of the (weighted and unweighted) vertex cover can be arbitrarily
close to 2, it is well-known that there are optimal fractional solutions that are half-integral
That is, there are optimal fractional solutions such that for all nodes v, xv ∈ {0, 1/2, 1}.
Given such a fractional solution, let Sx be the set of nodes v with xv = x for x ∈ {0, 1/2, 1}.
Let I1/2 be an independent set of the induced subgraph G[S1/2] of the half-integral nodes. It
is not hard to see that S := S1 ∪S1/2 \ I1/2 is a vertex cover of G and if w(I1/2) ≥ λ ·w(S1/2),
then the set S is a (2 − 2λ)-approximate solution for the MWVC problem on G with weights
w. If the half-integral fractional solution is only an α-approximate fractional weighted vertex
cover, the resulting approximation is (2 − 2λ) · α.

The core to proving Theorem 2 is therefore to first compute a (1 + ε)-approximate
half-integral fractional solution for a given weighted graph G = (V, E, w). The following
lemma uses a standard approach to achieve this by first computing an approximate solution
to the (integral) MWVC problem for the bipartite double cover G2 of G (see definition in
Section 2).

▶ Lemma 11. Let G = (V, E, w) be a weighted graph and let G2 = (V2, E2) be the bipartite
double cover of G, where each node (v, i) ∈ V2 for v ∈ V gets assigned weight w(v). Let
S be a vertex cover of G2 and define xv := | {(v, 0), (v, 1)} ∩ S|/2 for every v ∈ V . If S is
an α-approximate weighted vertex cover of G2 for some α ≥ 1, then x = {xv : v ∈ V } is a
half-integral α-approximate fractional weighted vertex cover of G.

Proof. We first show that the weight
∑

v∈V w(v) · zv of an optimal fractional weighted vertex
cover z of G = (V, E, w) is exactly half the weight of an optimal fractional weighted vertex
cover of G2 with weights assigned as defined by the claim of the lemma. To see this, let z be
a fractional vertex cover of G. We can then get a valid fractional vertex cover of G2 by setting
z(v,0) = z(v,1) = zv for every node v ∈ V of G and the corresponding nodes (v, 0) and (v, 1) in
G2. In the other direction, for a fractional vertex cover z in G2, we obtain a fractional vertex
cover of G by setting zv := (z(u,0) + z(u,1))/2. Note that because G2 is a bipartite graph, an
optimal (integral) weighted vertex cover of G2 is also an optimal fractional weighted vertex
cover of G2 and therefore the vertex cover S is an α-approximate fractional weighted vertex
cover of G2. The fractional vertex cover x of G as given by the lemma statement is of half
the weight of S in G2 and it therefore is an α-approximate fractional weighted vertex cover
of G. Clearly, x is half-integral. ◀

We can now prove Theorem 2 and Corollary 3.

Proof of Theorem 2. As discussed, given a weighted graph G = (V, E, w), we first construct
the bipartite double cover G2 = (V2, E2, w), where the weight function w is extended to G2
in the obvious way (and as described in Section 4.3). Note that since every node of G only
needs to simulate 2 nodes in G2 and every edge of G is replaced by 2 edges in G2, CONGEST
algorithms on G2 can be simulated on G with only constant overhead. By using Theorem 1,
we can therefore compute a (1 + ε)-approximation of MWVC on G2 in time poly

( log n
ε

)
. By

Lemma 11, this can directly be turned into a half-integral (1 + ε)-approximate fractional
weighted vertex cover of G. Let S1 be the nodes of G that have a fractional vertex cover
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value of 1 and let S1/2 be the nodes of G that have a fractional vertex cover value of 1/2.
Assume further that I1/2 is an independent set of the induced subgraph G[S1/2]. Clearly,
S := S1 ∪ S1/2 \ I1/2 is a vertex cover of G. If the weight w(I1/2) is w(I1/2) ≥ λ · w(S1/2),
then the weight of the vertex cover S can be bounded as

w(S) = w(S1) + w(S1/2) − w(I1/2)
≤ w(S1) + (1 − λ) · w(S1/2)

≤ (2 − 2λ) ·
(

w(S1) + 1
2 · w(S1/2)

)
≤ (2 − 2λ) · (1 + ε) · w(S∗),

where S∗ is an optimal weighted vertex cover of G. The claim of the theorem now follows. ◀

Proof of Corollary 3. By Theorem 7, we can first reduce the diameter of the communication
graph in time poly

( log n
ε

)
while only losing a (1 + ε/2)-factor in the approximation. Now

assume that we are given a weighted graph G with a C-coloring, that we have a communication
graph H of diameter D, and that we can use the SUPPORTED CONGEST model. In time
O(D) in the SUPPORTED CONGEST model, we can then use the C-coloring to compute an
independent set of weight at least w(V (G))/C by just keeping the heaviest color class. The
corollary therefore follows directly by combining Theorem 7 and Theorem 2. ◀

5 Weighted Matching Approximation

We provide a randomized and a deterministic CONGEST algorithm to approximate the MWM
problem. Both algorithms are based on the following key idea that was developed for the
unweighted maximum matching problem by Lotker, Patt-Shamir, and Pettie [49] and that
was extended by Bar-Yehuda et al. [7]. We iteratively adapt an initial matching M0 of a given
weighted graph G = (V, E, w) as follows. We repeatedly sample bipartite subgraphs of G and
we then find a good matching on this bipartition to improve the matching of G. In [7,49], the
matching is improved by finding short augmenting paths in the sampled bipartite subgraph
and augmenting the existing matching along those paths. While, as discussed below, also for
maximum weighted matching, it is in principle possible to find augmenting paths and cycles,
in the weighted case, we do not know how to do this efficiently in the CONGEST model.
Instead, we use the bipartite MWM approximation algorithm of [2] to find a good matching
in each sampled bipartite graph. Unlike when using augmenting paths, this approach can
potentially also lead to a worse matching (if the existing matching is already a very good
matching of the sampled bipartite graph). We will however see that when computing a
sufficiently good approximation in each sampled bipartition, we can use the approach to
improve the matching of G sufficiently often.

Before explaining our algorithms in more detail, we need to introduce the notion of
augmenting paths and cycles for weighted matchings. Given a matching M , a path or cycle
in which the edges alternate between edges ∈ M and edges ̸∈ M is called an alternating
path or cycle w.r.t. matching M . An alternating path or cycle is called an augmenting path
or cycle w.r.t. M if swapping the matching edges with the non-matching edges increases
the weight of the matching. This increase is termed the gain of an augmenting path/cycle
w.r.t. M (we will omit the qualification ’w.r.t.’ if it is clear from the context). By definition,
the gain of an augmenting path is positive. Note that alternating cycles (and therefore also
augmenting cycles) are always of even length.
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Let M∗ be a maximum weighted matching in G. Consider the symmetric difference
F = M∗△M of M∗ and some arbitrary matching M . The set F consists of (vertex-disjoint)
alternating paths and cycles where the edges alternate between M and M∗. All of those
alternating paths and cycles are either augmenting paths/cycles, or their M -edges have
exactly the same weight as their M∗-edges. The total gain of all the (vertex-disjoint)
augmenting paths and cycles induced by F is therefore exactly w(M∗) − w(M).

Dealing with augmenting paths and cycles in the context of edge-weighted graphs is much
more challenging than in the unweighted case. Every augmenting path in unweighted graphs
improves the matching by exactly one and augmenting cycles do not exist. Further, the classic
results of Hopcraft and Karp [39] imply that if the shortest augmenting path is of length ℓ,
augmenting over an augmenting path of length ℓ cannot create new augmenting paths of
length ≤ ℓ and after augmenting over a maximal set of vertex-disjoint augmenting paths of
length ℓ, one gets a matching with a shortest augmenting path length ≥ ℓ + 2. If in some
matching M , the shortest augmenting path has length ℓ = 2k − 1 ≥ 1, we further know that
M already is a (1 − 1

k )-approximation of the optimal matching. The (1 − ε)-approximation
algorithm for unweighted matching in [49] heavily relies on all those properties.

Some of the properties of augmenting paths for unweighted matchings also carry over to
the weighted case. In the full version [22] we show that there exists a set of vertex-disjoint
augmenting paths and cycles of length at most ℓ for some ℓ = O(1/ε) such that augmenting
over all those paths/cycles improves the current matching by at least ε

4 · w(M∗). Basically,
the existence of this collection of short augmenting paths can be proven by breaking long
augmenting paths and cycles in the symmetric difference F = M△M∗ into short augmenting
paths. However, while in the unweighted case, a large set of vertex-disjoint short augmenting
paths can be computed efficiently in the CONGEST model (see [7, 49]), it is not clear how
to efficiently compute such a set of augmenting paths/cycles for weighted matchings in the
CONGEST model, even in bipartite graphs (there are efficient algorithms in the LOCAL
model and this has also been exploited in the literature, e.g., in [31, 49, 52]). Fortunately,
there still is an efficient CONGEST algorithm for computing a (1 − ε)-approximate weighted
matching in bipartite graphs [2]. Unlike the existing CONGEST algorithms that are based
on the Hopkroft/Karp framework, the algorithm of [2] is even deterministic. It is however
not based on augmenting along short augmenting paths or cycles. Instead, it is based on
linear programming and on a deterministic rounding scheme that was introduced in [25]. As
a result, the matching computed by the algorithm of [2] does not have the nice structural
properties of the matchings computed by algorithms based on the Hopkraft/Karp framework
(such as not having any short augmenting paths or cycles).

Our randomized weighted matching algorithm. The general idea of our approach is as
simple as the algorithm for the unweighted case in [49].1 We first describe the randomized
version of our algorithm. We start with an initial matching M0 of the given weighted graph
G = (V, E, w) and it then consists of iterations i = 1, 2, . . . . In each iteration, we update the
given matching such that at the end of iteration i, we have matching Mi. In each iteration
i, we sample a bipartite subgraph Hi = (V̂i, Êi) of G as follows. Every node v ∈ V colors
itself black or white independently with probability 1/2. An edge is called monochromatic
if both of its endpoints have the same color, otherwise, we call the edge bichromatic. To
preserve good intermediate results, we keep all the matching edges of the previous matching
not occurring in the bipartition, i.e., we keep monochromatic matching edges. We call a
node free regarding to matching M if none of its incident edges are ∈ M .

1 Our algorithm is essentially the same one as the one in [7, 49]. We just replace the bipartite matching
algorithm used as a subroutine. The analysis is then however different from the analysis in [7, 49].
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Algorithm 2 Construct bipartite subgraph Hi = (V̂i, Êi) of G based on matching Mi−1.

1. Color each node black or white.
2. V̂i := {u ∈ V | u is free or ∃{u, v} ∈ Mi−1 s.t. {u, v} is bichromatic}.
3. Êi := {{u, v} ∈ E | u, v ∈ V̂i and {u, v} is bichromatic}.

After sampling the bipartite subgraph Hi, we use the algorithm of [2] to compute a
(1 − λ)-approximate weighted matching of Hi for a sufficiently small parameter λ > 0 (λ will
be exponentially small in 1/ε). We then update the existing matching Mi−1 by replacing
the bichromatic matching edges with the matching edges of the newly computed matching
of Hi. Because there is a collection of short augmenting paths and cycles with total gain
Θ(w(M∗) − w(Mi−1)) (where M∗ is an optimal matching of G), we have a reasonable chance
of sampling such paths and cycles so that the matching on Hi can potentially be improved
by a sufficiently large amount. Note however that our algorithm does not guarantee that
the quality of the matching improves monotonically during the algorithm. However, because
the algorithm of [2] has deterministic guarantees if we choose λ sufficiently small, we have
the guarantee that w(Mi) cannot be much worse than w(Mi−1). With the right choice of
parameters, it turns out that 2O(1/ε) iterations are sufficient to obtain a (1 − ε)-approximate
matching with at least constant probability.

Our deterministic weighted matching algorithm. The basic idea of our deterministic
algorithm is the same as for the randomized algorithm. However, we now have to compute
the bipartition into black and white nodes in each iteration deterministically. For this
purpose, we prove in Lemma 13 that for some T = 2O(1/ε) · ln n, there exist a collection of
bipartitions H1, . . . , HT such that every path/cycle of length at most O(1/ε) (and thus also
every augmenting path/cycle of this length) of G appears in at least one of these bipartitions.
Of course, after changing the matching, also the set of augmenting paths and cycles changes
and one can therefore not just iterate over all bipartitions H1, . . . , HT , improve the matching
for each bipartition by using a generic MWM approximation algorithm, and guarantee
that at the end the resulting matching is a sufficiently good approximation. However, the
property of H1, . . . , HT guarantees that for a fixed initial matching M , when going over all T

bipartitions, there exists one bipartition that can improve the weight of M by Θ(w(M)/T ).
We therefore proceed as follows. We iterate O(T ) times through the sequence H1, . . . , HT of
bipartitions. For each bipartition, we use the (deterministic) algorithm of [2] to compute a
(1 − λ)-approximate weighted matching of the current bipartite graph. We then however only
switch to the new matching if it improves the old one by a sufficiently large amount. Checking
if a given bipartition leads to a sufficiently large improvement of the current matching can
be done efficiently by first applying the diameter reduction technique given by Theorem 7.

6 Vertex Cover Lower Bound

Göös and Suomela in [32] showed that there exists a constant ε0 > 0 such that computing a
(1+ε0)-approximation of minimum (unweighted) vertex cover in bipartite graphs of maximum
degree 3 requires Ω(log n) rounds even in the LOCAL model. We next describe how to extend
this lower bound to show that for ε ≤ ε0, computing a (1 + ε)-approximate vertex cover for
any ε > 0. That is, we next proof Theorem 5, i.e., we prove that even in bipartite graph
of maximum degree 3, there exists a constant ε0 > 0 such that for ε ∈ (0, ε0], computing a
(1 + ε)-approximate vertex cover requires Ω

( log n
ε

)
rounds in the LOCAL model.
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Proof of Theorem 5. in [32], Göös and Suomela showed that there exists a bipartite graph
G = (VG, EG) with maximum degree 3 and a constant ε0 > 0 such that no randomized
distributed algorithm with running time o(log n) can find a (1 + ε0)-approximate vertex cover
on G. To extend this proof to smaller approximation ratios, we proceed as follows. Given a
positive integer parameter k, we construct a new lower bound graph H as follows. Graph H

is obtained from graph G by replacing every edge e of G by a path Pe of length 2k + 1.
We first describe a method to transform a given vertex cover SH of G into a vertex cover

S′
H of H such that |S′

H | ≤ |SH | and such that S′
H has the following form. For each edge e

of G, S′
H contains exactly k of the inner nodes of the path Pe in H and it contains at least

one of the end nodes of Pe. The transformation is done independently for each path Pe as
follows. Let Pe = (v0, v1, . . . , v2k+1) be the path that replaces edge e = {v0, v2k+1} in G. If
SH ∩ {v0, v2k+1} ≠ ∅, we add the nodes SH ∩ {v0, v2k+1} also to S′

H . If SH ∩ {v0, v2k+1} = ∅,
we arbitrarily add either v0 or v2k+1 to S′

H . Further S′
H contains exactly k of the inner

nodes v1, . . . , v2k of Pe in such a way that every edge of Pe is covered by some node in S′
H .

If v0 ∈ S′
H , we add all v2i for i ∈ {1, . . . , k} and otherwise we add all v2i−1 for i ∈ {1, . . . , k}.

Clearly S′
H is a vertex cover of H. To see that |S′

H | ≤ |SH |, observe that in order to cover
all 2k + 1 edges of Pe, every vertex cover of H must contain at least k + 1 of the nodes of Pe

and it also must contain at least k of the inner nodes of Pe. If SH ∩ {v0, v2k+1} ≠ ∅, S′
H only

differs in terms of the inner nodes of Pe from SH and we know that also SH must contain at
least k inner nodes of Pe. If SH ∩ {v0, v2k+1} = ∅, we add either v0 or v2k+1 to S′

H . However
in this case, SH contains at least k + 1 inner nodes of Pe and S′

H only contains k inner nodes
of Pe. The transformation from SH to S′

H can be done independently for each of the paths
Pe of length 2k + 1 and it can therefore be done in O(k) rounds in the LOCAL model.

Let eG be the number of edges of G and let sG be the size of an optimal vertex cover of
G. Because the maximum degree of G is 3 and we have an optimal vertex cover of G, we get
that eG = c · sG for some constant c ≤ 3. By the observation above, any vertex cover SH of
H can be transformed into an equally good vertex cover S′

H with a nice structure. Note that
S′

H consists of exactly k inner nodes of each path Pe for e ∈ EG and it consists of at least
one of the end nodes of each such path (i.e., of a vertex cover of G). We therefore obtain
that there is an optimal vertex cover of H that consists of an optimal vertex cover of G and
of k inner nodes of each (2k + 1)-hop path Pe replacing an edge e of G. The size sH of an
optimal vertex cover of H is therefore exactly sH = sG + k · eG = (1 + ck) · sG.

Assume now that we have a T -round algorithm to compute a (1 + ε)-approximate vertex
cover SH on graph H for some ε ≤ ε0/(1 + 3k) ≤ ε0/(1 + ck). By the above observation,
in O(k) rounds, we can transform this vertex cover into a vertex cover S′

H , which contains
k · eG = ck · sG inner path nodes and at least one of the end nodes of each (2k + 1)-hop
path replacing an edge of G in H. The vertex cover S′

H of H therefore induces a vertex
cover of G of size |S′

H | − k · eG = |S′
H | − ck · sG. Because we assumed that ε ≤ ε0/(1 + ck),

we have |S′
H | ≤ (1 + ε) · (1 + ck) · sG ≤ (1 + ε0)sG + ck · sG. The vertex cover S′

H of H

therefore induces a (1+ε0)-approximate vertex cover of G. We next show that this implies an
O(1 + T/k)-round algorithm to compute a (1 + ε0)-approximate vertex cover of G. Assume
that we want to compute a vertex cover of G. To do this, the nodes of G can simulate graph
H by adding 2k virtual nodes on each edge of G. An R-round algorithm on H can then be
run in O(⌈R/k⌉) = O(1 + R/k) rounds on G. We can therefore compute the vertex cover S′

H

on the virtual graph H in O(1 + (T + k)/k) = O(1 + T/k) rounds on G. Since k = Θ(1/ε),
the lower bound of [32] implies a lower bound of Ω

( log n
ε

)
on the time T for computing a

(1 + ε)-approximate vertex cover on H . Finally note that since G is bipartite, then H is also
bipartite and if the maximum degree of G is 3, then the maximum degree of H is also 3. ◀
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24 U. Feige, Y. Mansour, and R.Ẽ. Schapire. Learning and inference in the presence of corrupted
inputs. In Proc. 28th Conf. on Learning Theory (COLT), pages 637–657, 2015.

25 M. Fischer. Improved deterministic distributed matching via rounding. In Proc. 31st Symp.
on Distributed Computing (DISC), pages 17:1–17:15, 2017.

26 M. Fischer, S. Mitrovic, and J. Uitto. Deterministic (1 + ε)-approximate maximum matching
with poly(1/ε) passes in the semi-streaming model. CoRR, abs/2106.04179, 2021. arXiv:
2106.04179.

27 K.-T. Foerster, J. H. Korhonen, J. Rybicki, and S. Schmid. Brief announcement: Does
preprocessing help under congestion? In Proc. 38th ACM Symp. on Principles of Distributed
Computing (PODC), pages 259–261, 2019.

28 M. Ghaffari, C. Jin, and D. Nilis. A massively parallel algorithm for minimum weight vertex
cover. In Proc. 32nd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
pages 259–268, 2020.

29 M. Ghaffari and F. Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and
without network decomposition. In Proc. 62nd IEEE Symp. on Foundations of Computer
Science (FOCS), 2021.

30 M. Ghaffari, F. Kuhn, and Y. Maus. On the complexity of local distributed graph problems.
In Proc. 39th ACM Symp. on Theory of Computing (STOC), pages 784–797, 2017.

31 M. Ghaffari, F. Kuhn, Y. Maus, and J. Uitto. Deterministic distributed edge-coloring with
fewer colors. In Proc. 50th ACM Symp. on Theory of Comp. (STOC), pages 418–430, 2018.

32 M. Göös and J. Suomela. No sublogarithmic-time approximation scheme for bipartite vertex
cover. Distributed Computing, 27(6):435–443, 2014.

33 F. Grandoni, J. Könemann, and A. Panconesi. Distributed weighted vertex cover via maximal
matchings. ACM Trans. Algorithms, 5(1):6:1–6:12, 2008.

34 F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-dual bicriteria distributed
algorithm for capacitated vertex cover. SIAM J. Comput., 38(3):825–840, 2008.

35 D. G. Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. SIAM J. Computing, 49(4):711–746, 2020.

36 J. Håstad. Some optimal inapproximability results. J. of the ACM, 48(4):798–859, 2001.
37 D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, 1997.
38 J.H. Hoepman, S. Kutten, and Z. Lotker. Efficient distributed weighted matchings on trees. In

Proc 13th Coll. on Structural Inf. and Comm. Complexity (SIROCCO), pages 115–129, 2006.
39 J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput., 2(4):225–231, 1973.
40 A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal matching.

Inf. Process. Lett., 22(2):77–80, 1986.
41 G. Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans.

Algorithms, 5(4):41:1–41:8, 2009.
42 D. Kőnig. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.
43 S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon. J.

Comput. Syst. Sci., 74(3):335–349, 2008.
44 S. Khuller, U. Vishkin, and N. E. Young. A primal-dual parallel approximation technique

applied to weighted set and vertex covers. J. Algorithms, 17(2):280–289, 1994.
45 C. Koufogiannakis and N. E. Young. Distributed algorithms for covering, packing and maximum

weighted matching. Distributed Computing, 24(1):45–63, 2011.

http://arxiv.org/abs/2111.10577
http://arxiv.org/abs/2106.04179
http://arxiv.org/abs/2106.04179


S. Faour, M. Fuchs, and F. Kuhn 17:19

46 F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Proc.
23rd ACM Symp. on Principles of Distributed Computing (PODC), pages 300–309, 2004.

47 F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceedings
of 17th Symp. on Discrete Algorithms (SODA), pages 980–989, 2006.

48 N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–454,
1993.

49 Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching. J.
ACM, 62(5):38:1–38:17, 2015.

50 Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approximate matching. SIAM Journal
on Computing, 39(2):445–460, 2009.

51 G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions using random shifts. In
Proc. 25th ACM Symp. on Parallelism in Alg. and Arch. (SPAA), pages 196–203, 2013.

52 T. Nieberg. Local, distributed weighted matching on general and wireless topologies. In Proc.
Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pages 87–92, 2008.

53 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
54 V. Rozhoň and M. Ghaffari. Polylogarithmic-time deterministic network decomposition and

distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing (STOC),
pages 350–363, 2020.

55 S. Schmid and J. Suomela. Exploiting locality in distributed SDN control. In Proc. 2nd ACM
SIGCOMM Works. on Hot Topics in Software Defined Netw. (HotSDN), pages 121–126, 2013.

56 M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In Proc. 18th Conf. on
Distributed Computing (DISC), pages 335–348, 2004.

A Basic Tools

A.1 Fractional Approximation Algorithm
In all our upper bounds, we need an efficient deterministic distributed approximation scheme
for the fractional variants of the MWVC and the MWM problem. In [2], Ahmadi, Kuhn, and
Oshman showed that for every instance of the MWM problem with weights in the range [1, W ]
and for every ε ∈ (0, 1], it is possible to deterministically compute a (1 − ε)-approximate
fractional solution in time O(log(∆W )/ε2) in the CONGEST model. In our algorithm to solve
the MWVC problem, we need a variant of this algorithm, which works for the (unweighted)
fractional w-matching problem. The following theorem shows that this can be done with the
same asymptotic cost that we have for the fractional MWM problem.

▶ Theorem 12. Let G = (V, E, w) be an undirected n-node graph with integer node weights
w(v) ∈ {1, . . . , W }. Then, for every ε ∈ (0, 1], there is a deterministic O(log(∆W )/ε2)-round
CONGEST algorithm to compute a (1 − ε)-approximate solution to the fractional w-matching
problem in G and a (1 + ε)-approximate solution to the minimum fractional weighted vertex
cover problem.

Proof. The theorem could be proven for arbitrary weights in the range [1, W ] by adapting
the algorithm of [2]. We here give a generic reduction, which works for integer weights and
which allows to use the result of [2] (almost) in a blackbox manner.

We define an unweighted graph G′ = (V ′, E′) as follows. For every node v ∈ V , V ′

contains w(v) nodes (v, 1), . . . , (v, w(v)). Further, for every edge {u, v} ∈ E, we add a
complete bipartite graph between the corresponding nodes to G′, that is, E′ contains
all edges {(u, i), (v, j)} for i ∈ {1, . . . , w(v)} and j ∈ {1, . . . , w(u)}. We then apply the
unweighted fractional matching algorithm of [2] to compute a (1 − ε)-approximate fractional
matching of G′. The maximum degree of any node in G′ is at most ∆ · W and when running
the algorithm in the CONGEST model on G′, the round complexity of the algorithm is
therefore O(log(∆W )/ε2) as claimed (cf. Theorem 2 in [2]).

OPODIS 2021



17:20 Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings

For an edge e ∈ E′ of G′, assume that ze is the fractional matching value of e in
the computed fractional matching of G′. We can transform the fractional matching of
G′ into a fractional w-matching of G as follows. For each edge {u, v} ∈ E of G, we
define y{u,v} :=

∑w(u)
i=1

∑w(v)
j=1 z{(u,i),(v,j)}. Note that we obtain a valid fractional w-matching

because for every node u ∈ V of G, the sum of the fractional values of its edges is at most equal
to number of copies of u in G′, which is equal to w(u). In the other direction, given a fractional
w-matching ye of G, we can compute a fractional matching ze′ of G′ of the same size in the
following way. For each edge {u, v} ∈ E of G, we assign z{(u,i),(v,j)} := y{u,v}/(w(u) · w(v)).
The size of a maximum fractional w-matching on G is therefore equal to the size of a maximum
fractional matching on G′ and given a (1−ε)-approximation of maximum fractional matching
on G′, we therefore also obtain a (1 − ε)-approximation of maximum fractional w-matching
on G.

It remains to show that we can efficiently run the fractional matching algorithm of [2]
in the CONGEST model on G. Since every node of G has potentially a large number of
copies in G′, it is not true that any CONGEST algorithm on G′ can be run efficiently in the
CONGEST model on G. However, the behavior of the algorithm of [2] is independent of the
node IDs and since the algorithm is deterministic, all copies of a node u ∈ V are symmetric
and therefore behave in exactly the same way. Each node of G can therefore simulate all its
copies in G′ at no additional cost.

We note that the same reduction has also been used in [33], where a maximal matching
of G′ is used to compute a 2-approximate weighted vertex cover of G. ◀

A.2 Bipartitions to Cover all Paths
The following lemma is used as a tool for our deterministic maximum weighted matching
algorithms. It shows that there exists a sequence of bipartitions that is “good” in every
graph and for every collection of short augmenting paths and cycles.

▶ Lemma 13. Let N > 0 and k ≤ N be two integers. There exists a collection of T = O(k ·2k ·
log N) functions f1, . . . , fT ∈ [N ] → {0, 1} such that for every vector (x1, . . . , xk) ∈ [N ]k with
pairwise disjoint entries, there exists a function fi in the collection such that fi(xj) = j mod 2
for every 1 ≤ j ≤ k.

Proof. We will prove the lemma with a probabilistic argument. The probability that a
randomly chosen fi maps some xj to 0 respectively 1 is 1/2. We say an function fi takes care
of (x1, . . . , xk) if (fi(x1), . . . , fi(xk)) ∈ (0, 1, 0, 1, . . .). The probability that fi takes care for
a specific vector is 2−k. Further, the probability that no function in a collection of T random
function takes care of a fixed vector is (1 − 2−k)T ≤ e−T/2k . Since there are Nk different
vectors, the probability that there exits a vector such that no function fi takes care of it, is
at most Nk · e−T/2k . Choosing T > k · 2k · ln N pushes this probability below 1, which shows
that there must exist a collection of T functions f1, . . . , fT s.t. for every possible vector at
least one of those functions will take care. ◀
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Abstract
We prove new bounds on the distributed fractional coloring problem in the LOCAL model. A fractional
c-coloring of a graph G = (V, E) is a fractional covering of the nodes of G with independent sets
such that each independent set I of G is assigned a fractional value λI ∈ [0, 1]. The total value of all
independent sets of G is at most c, and for each node v ∈ V , the total value of all independent sets
containing v is at least 1. Equivalently, fractional c-colorings can also be understood as multicolorings
as follows. For some natural numbers p and q such that p/q ≤ c, each node v is assigned a set of
at least q colors from {1, . . . , p} such that adjacent nodes are assigned disjoint sets of colors. The
minimum c for which a fractional c-coloring of a graph G exists is called the fractional chromatic
number χf (G) of G.

Recently, [Bousquet, Esperet, and Pirot; SIROCCO ’21] showed that for any constant ε > 0, a
fractional (∆ + ε)-coloring can be computed in ∆O(∆) + O(∆ · log∗ n) rounds. We show that such a
coloring can be computed in only O(log2 ∆) rounds, without any dependency on n.

We further show that in O
( log n

ε

)
rounds, it is possible to compute a fractional (1 + ε)χf (G)-

coloring, even if the fractional chromatic number χf (G) is not known. That is, the fractional coloring
problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For
the standard coloring problem, it is only known that an O

( log n
log log n

)
-approximation can be computed

in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring
approximation algorithm is best possible. We show that in trees, which have fractional chromatic
number 2, computing a fractional (2 + ε)-coloring requires at least Ω

( log n
ε

)
rounds.

We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot;
SIROCCO ’21], it is shown that in regular grids of bounded dimension, a fractional (2 + ε)-
coloring can be computed in time O(log∗ n). We show that such a coloring can even be computed in
O(1) rounds in the LOCAL model.
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1 Introduction & Related Work

The distributed graph coloring problem is at the heart of the area of distributed graph
algorithms and it is one of the prototypical problems to study distributed symmetry breaking.
Already in [31], Linial showed that deterministically coloring a ring network with O(1)
colors and thus more generally coloring n-node graphs of maximum degree ∆ with a number
of colors that only depends on ∆ requires Ω(log∗ n) rounds. In [39], Naor extended this
lower bound to randomized algorithms. Subsequently, over the last three decades, the
distributed coloring problem has been studied intensively and we now have a quite good
understanding of the complexity of the problem. Mostly, researchers focused on the problem
of computing a coloring with ∆ + 1 colors, i.e., with the number of colors that can be
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obtained by a simple sequential greedy algorithm. In light of the Ω(log∗ n) lower bounds
of [31, 39], there is a long line of research to (deterministically) solve (∆ + 1)-coloring in
time f(∆) + O(log∗ n) for some function f (see, e.g., [5, 8, 9, 17, 21, 29, 36, 45]), where the
current best bound of O(

√
∆ log ∆ + log∗ n) was proven in [8, 17, 36]. The complexity of

distributed (∆ + 1)-coloring has also been studied as a function of n. The randomized
complexity has been known to be O(log n) since the 1980s [1, 25,31,35] and it has recently
been improved to O(log3 log n) [10, 13, 20, 23] and even to O(log∗ n) for graphs of maximum
degree ∆ ≥ log2+ε n [22]. For a long time, the best deterministic (∆ + 1)-coloring algorithms
had a complexity of 2O(

√
log n) [3, 28,40] and it was only recently shown in a breakthrough

paper by Rozhoň and Ghaffari [42] that the distributed (∆ + 1)-coloring problem (and
many other distributed graph problems) can be solved in time poly log n deterministically.
Subsequently, the deterministic complexity of the distributed (∆ + 1)-coloring problem has
even been improved to O(log2 ∆ · log n) [20].

While much of the existing work on distributed vertex coloring is on the (∆ + 1)-coloring
problem, it is of course also relevant to understand the complexity of more restrictive or
more relaxed variants of the problem, for example by considering vertex colorings with more
or fewer colors. Already in [31], Linial showed that an O(∆2)-coloring can be computed
deterministically in time only O(log∗ n). Over the years, there were several papers that
considered distributed coloring algorithms to color graphs with at least ∆ + 1 colors (e.g.,
[6, 9, 15,26,28,37,44]). One however needs to use ω(∆) colors to obtain significantly faster
distributed coloring algorithms. Colorings with less than ∆ + 1 colors however require
significantly more time. In [31], Linial shows that even on ∆-regular trees, computing an
O(

√
∆)-coloring requires Ω(log∆ n) rounds deterministically.1 This was improved in [12],

where it is shown that even computing a ∆-coloring of ∆-regular trees requires Ω(log∆ n)
rounds deterministically and Ω(log∆ log n) rounds with randomization. There are algorithms
that nearly match those bounds [19, 20, 41]. Further, by using network decompositions [3,
14,33,40,42], it is possible to efficiently approximate the best possible vertex coloring [7].2

In particular, in poly log n rounds, it is possible to compute a coloring of a graph G with
O

( log n
log log n

)
· χ(G) colors.

Another natural relaxation of the vertex coloring problem is the fractional coloring
problem. A c-coloring of the nodes V of a graph G = (V, E) can be seen as a partition of V

into c independent sets. A fractional c-coloring is an assignment of positive weights λI to the
independent sets I of G such that for every node v ∈ V , the total weight of the independent
sets that contain v is equal to (at least) 1 and such that the total weight of all independent
sets is equal to c. The smallest c for which a graph G has a fractional c-coloring is called the
fractional chromatic number χf (G) of G. Alternatively, a fractional coloring can be defined
as a multicoloring as follows. For two integer parameters p and q (p ≥ q), a (p : q)-coloring
is an assignment of (at least) q colors to each node such that adjacent nodes are assigned
disjoint sets of colors and such that the total number of distinct colors is equal to p. A
(p : q)-coloring directly gives a fractional (p/q)-coloring and for any graph G with fractional
chromatic number χf (G), there exists a pair of integers p and q for which a (p : q)-coloring
of G with p/q = χf (G) exists.

1 Linial uses an explicit construction of regular high-girth graphs with large chromatic number for his
lower bound, but he remarks that by using the right probabilistic construction, the lower bound on the
number of colors can be improved to Ω(∆/ log ∆).

2 This approach exploits the standard distributed communication models, which in particular allow
unbounded internal computations at all nodes.
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From the distributed computing perspective, we believe that fractional colorings are
interesting and relevant for two reasons. First, in some cases, where graph colorings are
needed in practice, one can also use a fractional coloring. For example, if G describes the
possible conflicts between the wireless transmissions of nodes in a radio network, a c coloring
of the nodes of G can be used to obtain a TDMA schedule for the nodes of G. The length of
such a schedule is equal to the number of colors c and every node can therefore be active in
a 1

c -fraction of all time slots. A (p : q)-coloring of the nodes of G can also directly be used
to obtain a TDMA schedule of length p and in which every node is active in q of the time
slots (i.e., in all the time slots corresponding to its colors). Each node is therefore active
in a q/p-fraction of all time slots. By computing a fractional coloring instead of a standard
coloring, we can therefore potentially increase the fraction of active slots for each node and
thus also the usage of the communication channel. Further, understanding the complexity of
distributed fractional coloring will generally improve our understanding of the complexity of
distributed coloring: what parts of the difficulty in computing vertex colorings stem from the
fact that we need to assign exactly one color to every node (and that we thus need to break
symmetries) and what parts of the difficulties remain if we compute fractional colorings,
where we can “average” over a possibly larger total number of colors.

We are aware of three previous publications that studied the distributed fractional coloring
problem. In [27], it is shown that in any graph G, a fractional (degree + 1)-coloring with
support N ! can be computed in a single deterministic communication round (where N is
the number of IDs). That is, there is a 1-round algorithm that computes a multicoloring
with N ! colors such that every node v gets assigned a set of at least N !/(degG(v) + 1) colors.
That is, when considering fractional colorings, the standard (∆ + 1)-coloring problem can be
solved in a single time step. It is further shown that a fractional (1 + ε)(degree + 1)-coloring
with support O(∆2 log N/ε2) can also be computed in 1 round. In both bounds, N can be
replaced by C if an initial proper C-coloring of G is given. Similar results were also shown
in [24]. Very recently, Bousquet, Esperet, and Pirot [11] made some interesting further
progress on the distributed fractional coloring problem.

In [11], it is shown that although a fractional (∆ + 1)-coloring can be computed in a single
communication round, in ∆-regular graphs that do not contain K∆+1 as a subgraph, the
fractional ∆-coloring problem requires time Ω(log∆ n) deterministically and Ω(log∆ log n)
rounds with randomization. That is, for the fractional ∆-coloring problem, the same lower
bounds as for the standard ∆-coloring problem hold.3 It is also shown that in graphs that do
not contain (∆+1)-cliques, a (q∆+1 : q)-coloring can be computed in time O(q3∆2q +q log∗ n)
deterministically. By setting q = 1/ε, this implies that for any ε > 0, a fractional (∆ + ε)-
coloring can be computed in time O

(
∆O(1/ε) + 1

ε · log∗ n
)
. In addition, the paper shows

that, for any constant ε > 0 and constant integer d > 0, in regular d-dimensional grids, it
is possible to compute a fractional (2 + ε)-coloring in O(log∗ n) rounds. Hence, while in
bounded degree graphs, deterministically computing a fractional ∆-coloring requires Ω(log n)
rounds, one can get arbitrarily close in only O(log∗ n) rounds. Moreover, in graphs from
a minor-closed family of graphs and with sufficiently large girth, it is possible to compute
a fractional (2 + ε)-coloring in O

( log n
ε

)
rounds, for any constant ε > 0. Those results in

particular imply that in some graphs, fractional colorings that are arbitrarily close to the
best such colorings can be computed.

3 It has to be noted that for the standard ∆-coloring problem, the lower bounds hold in ∆-regular trees,
but for the fractional ∆-coloring problem, the known lower bounds (presented in [11]) only hold for
graphs in which every node is contained in some K∆.
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In this paper, we improve on the results of [11] in several ways. We here give an overview
over our results, for a detailed statement of the results, we refer to Section 3. First, we
improve the time to compute a fractional (∆ + ε)-coloring. We show that a coloring of
the same quality as in [11] (i.e., a (q∆ + 1 : q)-coloring for q = 1/ε) can be computed
in time O

( 1
ε2 ·

√
∆ · poly log ∆ + 1

ε · log∗ n
)

and a slightly worse (q∆ : q − 1)-coloring
for q = Θ(∆/ε) can be computed deterministically in O

(
log2 ( 1

ε

)
·
√

∆ poly log ∆ +
(
1 +

log∆
1
ε

)
· log∗ n

)
communication rounds. Moreover, if we further increase the total number

of colors, a fractional (∆ + ε)-coloring can even be computed deterministically in time
O

(
log2 ∆ + log2 ( 1

ε

)
+ log3 ( 1

ε

)
/ log ∆

)
, i.e., we can improve the time dependency on ∆ to

polylogarithmic and we can drop the dependency on the number of nodes n altogether. We
further show that the dependency on n can also be removed in the algorithm for fractionally
coloring grids. In d-dimensional grids, for constant ε > 0 and constant d, a (2 + ε) can be
computed in O(1) time. In addition, we study the problem of computing fractional colorings
that are arbitrarily close to the best possible fractional colorings. For any ε > 0, we show
that it is always possible to deterministically compute a fractional (1 + ε) · χf (G)-coloring
of a graph G in time O

( log n
ε

)
and we show that computing such a fractional coloring on

trees requires Ω
( log n

ε

)
rounds even with randomization. Note that this is in contrast to the

standard coloring problem for which we are not aware of a poly log n-time algorithm that
computes an approximation to the minimum vertex coloring problem with an approximation
ratio that is better than O

( log n
log log n

)
.

The remainder of this paper is organized as follows. In Section 2 we describe the LOCAL
model of distributed computing and we give some useful definitions. Section 3 contains the
detailed statements of our contributions. In Section 4 we present some generic results that
are then used in our algorithms. Section 5 contains deterministic algorithms for computing a
fractional (∆ + ε)-coloring. In Appendix A we show randomized and deterministic algorithms
for computing arbitrarily good approximations of the chromatic number of a graph. Then,
in Section 6 we present a lower bound of Ω(log n/ε) rounds for computing a fractional
(2 + ε)-coloring. Finally, Appendix B contains our constant-time algorithm for fractional
(2 + ε)-coloring on d-dimensional grids.

2 Model and Definitions

2.1 LOCAL model
The model of computation that we consider is the well-known LOCAL model of distributed
computing. A distributed network is modeled as a graph where nodes are the computing
entities, and edges represent communication links. Each node is equipped with a unique
identifier (ID) from {1, . . . , nc} where n is the total number of nodes in the graph and c ≥ 1
is a constant. Initially, each node knows its own ID and degree, the maximum degree ∆ of
the graph, and the total number n of the nodes. The computation proceeds in synchronous
rounds, where at each round each node sends messages to its neighbors, receives messages
from its neighbors, and performs some local computation. In the LOCAL model the size of
the messages and the local computation is not bounded. We say that an algorithm correctly
solves a task in this model (e.g., a vertex coloring) in time T if each node provides a local
output (e.g., a color) within T communication rounds, and the local outputs together yield a
correct global solution (e.g., a proper coloring). In the randomized version of the LOCAL
model, additionally, each node is equipped with a random bit string. In this paper we will
consider both Monte Carlo and Las Vegas randomized algorithms. A T -rounds Monte Carlo
algorithm must always terminate within T rounds, and the global output it produces must
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be correct with high probability, that is, with probability at least 1 − 1/nc, for an arbitrary
constant c ≥ 1. A T -rounds Las Vegas algorithm must terminate within T rounds with high
probability, and it must always produce a correct solution. Notice that, since the size of the
messages is not bounded, we can see a T -round deterministic or a randomized Monte Carlo
algorithm that runs at some node u as a mapping of the T -hop neighborhood of u into an
output. This does not hold for Las Vegas algorithms, since there the running time is only
bounded with high probability.

2.2 Definitions
We start by defining the notion of (p : q)-coloring. Informally, this coloring is an assignment
of colors to the nodes of a graph, such that the colors come from a palette of p colors, and
such that to each node are assigned at least q different colors. Neighboring nodes must have
disjoint sets of colors.

▶ Definition 1 ((p : q)-coloring). Let p ≥ q ≥ 1. A (p : q)-coloring of a graph G = (V, E) is
an assignment of a set Xv ⊂ [p] to each node v ∈ V such that for all v ∈ V , |Xv| ≥ q, and
for all edges {u, v} ∈ E, Xu ∩ Xv = ∅.

Sometimes we are not interested in the total number of colors, but just in the ratio
between the total number of colors and the number of colors assigned to the nodes. This
notion is captured by the definition of fractional coloring.

▶ Definition 2 (Fractional c-coloring). A fractional c-coloring is a (p : q)-coloring satisfying
p/q ≤ c.

Given a (p : q)-coloring, we call p the support of the coloring. Naturally, apart from
minimizing the ratio p/q and the time for computing a fractional coloring, we also want to
minimize the support p.

The minimum value c for which there exists a fractional c-coloring is called fractional
chromatic number.

▶ Definition 3 (Fractional chromatic number). The fractional chromatic number χf (G) of a
graph G is defined as

χf (G) := inf
{

p

q
: G has a (p : q)-coloring

}
= min

{
p

q
: G has a (p : q)-coloring

}
.

▶ Definition 4 (Partial coloring). A partial c-coloring is a coloring of the vertices of a graph
such that each node is either colored from a color in {1, . . . , c}, or is uncolored. Similarly, a
partial (p : q)-coloring is a coloring of the vertices of a graph such that each node, either has
at least q colors in {1, . . . , p}, or is uncolored.

We now provide some additional definitions that will be useful when describing our
algorithms. Given a graph G, we denote with degG(v) the degree of node v in G.

▶ Definition 5 (List coloring). In the cv-list (vertex) coloring problem, each node v is equipped
with a list of arbitrary cv colors, and the goal is to assign to each node a color from its list,
such that the resulting outcome is a proper coloring of the graph G. In particular, in the
(degree + x)-list coloring problem, each node v has a list of size at least degG(v) + x.

▶ Definition 6 (Degree-choosability). A graph G = (V, E) is degree-choosable if it admits a
cv-list coloring for any list assignment satisfying |cv| ≥ degG(v), ∀v ∈ V .
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▶ Definition 7 (Network decomposition). A (c, d)-network decomposition of the graph G is a
partition of the vertices of G into at most c disjoint color classes such that each connected
subgraph induced by nodes of color i has strong diameter at most d.

▶ Definition 8 (Distance). Let G = (V, E) be a graph. For a pair of nodes u, v ∈ V , we
denote with dist(u, v) the hop-distance between u and v in G. We also denote the distance
between a node v ∈ V and a set of nodes S ⊆ V as dist(v, S) = min{dist(v, u) | u ∈ S}.

▶ Definition 9 (Ruling set). An (α, β)-ruling set is a set of nodes satisfying that the nodes in
the set are at distance at least α between each other, and nodes not in the set are at distance
at most β from nodes in the set.

3 Our Results

Our first main contribution, presented in Section 5, is in the improvement of the main
algorithm of [11]. In particular, we start by showing that a fractional (∆ + ε)-coloring, with
small support, can be obtained in a time that depends only polynomially in ∆ and ε. In [11],
this dependency is exponential. In the following, we assume ∆ ≥ 3 4.

▶ Theorem 10. A (q∆ : q−1)-coloring, for an arbitrary integer q > 0, can be deterministically
computed in time O(α2 log ∆ · T + α log∗ n) in the LOCAL model, where T is the time required
to solve the (degree + 1)-list coloring problem given an O(∆2)-coloring in input, and where
α = O(1 + log∆ q).

If we set q = Θ(∆/ε), we obtain the following corollary.

▶ Corollary 11. For any ε > 0, the fractional (∆+ε)-coloring problem, with support O(∆2/ε),
can be solved deterministically in time

O

((
log ∆ + log2(1/ε)

log ∆

)
· T +

(
1 + log(1/ε)

log ∆

)
· log∗ n

)
,

where T is the time required to solve the (degree + 1)-list coloring problem given an O(∆2)-
coloring in input.

Since the (degree + 1)-list coloring problem, given an O(∆2)-coloring, can be solved in
O(

√
∆ poly log ∆) rounds deterministically [8, 17,36], we obtain the following corollary.

▶ Corollary 12. For any constant ε > 0, the fractional (∆+ε)-coloring problem, with support
O(∆2), can be solved in O(

√
∆ poly log ∆ + log∗ n) deterministic rounds.

Then, we show that we can obtain a different tradeoff between the support and the
running time.

▶ Theorem 13. A (q∆+1 : q)-coloring, for an arbitrary integer q > 0, can be deterministically
computed in time O(q2 log ∆ · T + q log∗ n) in the LOCAL model, where T is the time required
to solve the (degree + 1)-list coloring problem given an O(∆2)-coloring in input.

If we set q = Θ(1/ε), since T = O(
√

∆ poly log ∆), we obtain the following corollary, that
shows that at the cost of a slightly worse running time, we obtain a better support.

4 We note that trivial adaptations of our algorithms also work for ∆ = 2.
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▶ Corollary 14. For any ε > 0, the fractional (∆ + ε)-coloring problem, with support O(∆/ε),
can be solved deterministically in time O

(
1
ε2 ·

√
∆ · poly log ∆ + 1

ε · log∗ n
)

.

We then prove that, at the cost of drastically increasing the number of colors, it is possible
to improve the dependency on ∆, and to entirely remove the dependency on n.

▶ Theorem 15. For any ε > 0, the fractional (∆ + ε)-coloring problem can be solved
deterministically in time

O

((
log ∆ + log2(1/ε)

log ∆

)
· log(∆/ε)

)
= O

(
log2 ∆ + log2 1

ε
+ log3(1/ε)

log ∆

)
.

▶ Corollary 16. For any ε > 1/∆c, where c > 0 is an arbitrary constant, the fractional
(∆ + ε)-coloring problem can be solved in O(log2 ∆) deterministic rounds.

Our second contribution, presented in Appendix A, is in showing that, by allowing a
logarithmic dependency on n in the running time, we can obtain fractional colorings that are
arbitrarily close to the optimum. We provide both randomized and deterministic algorithms,
that differ in the required support and in the running time. Let p/q = χf (G) be the fractional
chromatic number of G. The algorithms that we provide do not require to know p and q, but
if these values are provided, or even if just the value of χf (G) is provided, then our algorithms
obtain a fractional coloring with smaller support. In particular, if p and q are known to the
nodes, let p′ = p and q′ = q. Otherwise, let p′ = χc log n/ε2 and q′ = (1 − ε)p′/χf (G), where
χ = χf (G) if χf (G) is known to the nodes, and ∆ + 1 otherwise. We first show the following.

▶ Theorem 17. Let G = (V, E) be a graph that admits a (p : q) coloring, and let t =
O(log n/ε), for an arbitrary ε > 0. There is a randomized LOCAL algorithm that, with high
probability, computes a (tp′ : (1 − ε)tq′)-coloring, that is, a fractional (1 + O(ε)) p

q -coloring,
in O(log n/ε) rounds.

We then show two different deterministic algorithms, that provide different tradeoffs
between the support and the running time.

▶ Theorem 18. Let G = (V, E) be a graph that admits a (p : q)-coloring, and let t =
O(poly n/ε), for an arbitrary ε > 0. There is a deterministic LOCAL algorithm that computes
a (tp′ : (1 − ε)tq′)-coloring, that is, a fractional (1 + O(ε)) p

q -coloring, in O(log n/ε) rounds.

▶ Theorem 19. Let G = (V, E) be a graph that admits a (p : q) coloring, and let t =
O(log n/ε), for an arbitrary ε > 0. There is a deterministic LOCAL algorithm that computes
a (tp′ : (1−ε)tq′)-coloring, that is, a fractional (1+O(ε)) p

q -coloring, in O(log n(log2 n+ND)/ε)
rounds, where ND ≤ poly log n is the time required to compute an (O(log n), O(log n))-network
decomposition.

In Section 6 we prove that the O(log n/ε) time dependency for computing an almost
optimal fractional coloring is necessary, even on trees, and even for randomized algorithms.

▶ Theorem 20. Computing a fractional (2+ε)-coloring on trees in the LOCAL model requires
Ω(log n/ε), even for randomized algorithms.

Finally, in Appendix B, we consider grids. In [11], it has been shown that, for any constant
ε and d, in d-dimensional grids, it is possible to compute a fractional (2 + ε)-coloring in time
O(log∗ n). We show that the same problem can be solved in constant time.

▶ Theorem 21. Let G be a d-dimensional grid. For any ε > 0, there is a deterministic
LOCAL algorithm that computes a fractional (2 + ε)-coloring on G, that runs in 2O(d2+d log 1

ε )

rounds.
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4 Generic results

In this section, we prove some generic statements that will be useful in the following sections.

4.1 From partial colorings to fractional colorings
We start by showing that, given an algorithm that computes a partial fractional coloring
satisfying that each node has some fixed probability of being colored, then it is possible, at
the cost of increasing the total number of colors, to compute a proper fractional coloring.

▶ Lemma 22. Assume there exists a randomized algorithm A(n, ε) that runs in T (n, ε)
rounds and, with probability at least 1 − f , such that f = f(n, ε) ≤ ε, computes a partial
(p : q)-coloring satisfying that each node is uncolored with probability at most ε. Then, there
exists a randomized algorithm that runs in T (n, ε/4)-rounds and, for an arbitrary f ′, with
probability at least 1 − f ′, computes a (p′ : q′)-coloring, where p′ = pt, q′ = (1 − ε)qt, and
t = O( 1

ε log n
f ′ ).

Proof. We run A(n, ε/4) for t = 6
ε log n

f ′ times in parallel. Clearly, the running time is still
T (n, ε/4). For each execution, we use an independent palette of colors of size p, and hence
we obtain a palette of pt total colors. We need to prove that, with probability at least 1 − f ′,
we assign at least (1 − ε)qt colors to each node.

Consider an arbitrary node u. Let Xi = 1 if node u is uncolored during execution
i, and Xi = 0 otherwise. By assumption, a node is uncolored with probability at most
ε/4+f(n, ε/4) ≤ ε/2, hence P (Xi = 1) ≤ ε/2. Let X =

∑t
i=1 Xi. By linearity of expectation,

we get that E[X] ≤ εt/2. By a Chernoff bound, we get that:

P (X ≥ εt) ≤ e
−εt

6 ≤ f ′

n
.

By a union bound we get that each node is uncolored in at most εt colorings with probability
at least 1 − f ′. Hence, with probability at least 1 − f ′, each node receives q colors for at
least (1 − ε)t times. ◀

4.2 From private randomness to shared randomness
We now prove a useful lemma, that allows us to reduce the number of random bits used by
a randomized algorithm. We will later use this lemma to derandomize fractional coloring
algorithms without increasing the support too much. Note that, in the statement of the
lemma, the number of bits used by the original algorithm does not play a role in the resulting
algorithm. In fact, as a starting point, we essentially only need to know that the amount of
randomness, as a function of n, can be bounded.

▶ Lemma 23. Let A be a randomized algorithm that runs in T rounds and solves some
problem P with probability of success at least 1 − f , by using b = b(n) bits of private
randomness, where nodes have no private inputs except for their random bit strings and their
identifiers. Then, there exists a randomized algorithm A′ that uses only O(log n

f ) bits of
shared randomness and solves P in T rounds with probability of success at least 1 − 2f .

Proof. The proof follows a standard argument along the lines of Newman’s theorem in
communication complexity (see, e.g., [30]). Let B = Nb, where N = nc, for some constant
c ≥ 1, is the size of the ID space. Note that any algorithm that uses b bits of private
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randomness can be trivially converted into an algorithm that uses B bits of shared randomness.
Also, note that by fixing the string of shared randomness used by the nodes, we obtain a
deterministic algorithm.

Let ℓ = 2B, and let R = {R1, . . . , Rℓ} be the set of possible shared random bit string
assignments. We will prove below, using the probabilistic method, that there is a set S ⊆ R

of size k = O( n2

f ) satisfying that, for any graph G of n nodes, algorithm A fails for at most a
2f fraction of the strings in S. This means that we can construct an algorithm A′ that, given
a bit string of shared randomness of length O(log k) = O(log n

f ), chooses an element from S

uniformly at random, and then executes the T -round algorithm A by using that bit string.
This algorithm A′ runs in T rounds and solves P with a failure probability of at most 2f .

We now prove that, by choosing S at random, there is non-zero probability that it satisfies
the requirements. We construct S = {s1, . . . , sk} by sampling with replacement k strings
from R. Consider an arbitrary graph G of n nodes. Let Xi = 1 if the execution of A on
G by using the bit string si would fail. Otherwise, let Xi = 0. Since si has been chosen
uniformly at random, and since the failure probability of A is at most f , then P (Xi = 1) ≤ f .
By linearity of expectation, it holds that E[X] ≤ fk. Let X =

∑
1≤i≤k Xi. Note that the

variables are clearly independent. Hence, by a Chernoff bound, we get that

P (X ≥ 2fk) ≤ e− fk
3 .

If X ≥ 2fk we say that S is bad for G. Note that there are at most 2n2 graphs of n nodes
with no private inputs, and that there are at most

(
N
n

)
possible ID assignments on each

graph. Hence, by a union bound, the probability that S is bad for some graph of n nodes is
at most(

N

n

)
· 2n2

· e− fk
3 ≤ ecn ln n+n2− fk

3 .

Choosing k = 6n2/f ensures that the above expression is strictly less than 1, for n sufficiently
large. Note that k = O( n2

f ). ◀

4.3 From randomized fractional colorings to deterministic fractional
colorings

We now show that, given a randomized algorithm for fractional coloring, it is possible to
obtain a deterministic algorithm with the same running time, at the cost of increasing the
support.

▶ Lemma 24. Assume there exists a randomized T -round algorithm A that computes a
(p : q)-coloring with probability at least 1 − f . Then, there exists a deterministic T -round
algorithm that computes a (p′ : q′)-coloring, where p′ = pt, q′ = (1 − 2f)qt, and t = 2O(log n

f ).

Proof. We first apply Lemma 23 to reduce the amount of randomness required by algorithm
A to B = O(log n

f ) bits of shared randomness, obtaining a new algorithm A′ that runs in T

rounds and computes a (p : q) coloring with probability at least 1 − 2f . We cannot directly
run A′: since nodes are not provided with shared randomness, this is not possible. Instead,
we run A′ in parallel for all possible t = 2B values of the shared random bit string assignment.
In each run, we use an independent palette of p colors, and hence we use pt colors in total.
Since algorithm A′ succeeds with probability at least 1 − 2f , then in at least a fraction 1 − 2f

of the executions all nodes receive at least q colors. Hence, we obtain that each node receives
at least (1 − 2f)qt colors in total. ◀
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5 Fast algorithm

In this section, we present an algorithm that is able to compute a fractional (∆ + ε)-coloring,
with a running time that depends only polynomially in ∆, and that requires small support.
Later, we will show how to modify the algorithm to obtain a logarithmic dependency in ∆,
at the cost of having a much larger support. More formally, we start by proving the following
theorem.

▶ Theorem 10. A (q∆ : q−1)-coloring, for an arbitrary integer q > 0, can be deterministically
computed in time O(α2 log ∆ · T + α log∗ n) in the LOCAL model, where T is the time required
to solve the (degree + 1)-list coloring problem given an O(∆2)-coloring in input, and where
α = O(1 + log∆ q).

High level idea

Our algorithm, on a high level, works as follows. We first compute a clustering of the graph
by computing an (α, β)-ruling set, for suitable parameters α and β, and by connecting each
node to the cluster centered at the nearest ruling set node. We then proceed by coloring
the nodes in a special way. In particular, we compute q different colorings, such that each
coloring is a ∆-coloring of the graph, where some nodes are allowed to be uncolored, and
such that each node is uncolored in at most one of the q colorings.

In order to prove that such a coloring can be computed efficiently, we will exploit an
important property of the computed clustering: for each cluster, it holds that it either
contains many nodes (at least q), or it contains a degree-choosable component. We will
show that this implies that we can color the nodes such that, in each cluster that contains a
degree-choosable component, the ∆-coloring problem is solved properly, while in the other
clusters we can choose a specific node to leave uncolored. If the cluster is large enough, we
can have a different uncolored node for each of the q colorings, obtaining that each node is
uncolored for at most one coloring.

The computed coloring allows us to assign at least q − 1 colors to each node of the
graph, where the colors come from a palette of size q∆, and hence we obtain a (q∆ : q − 1)-
coloring. By choosing the right size of the clusters, we can also prove that the running time
is polynomial in ∆, and more precisely that it is only slightly worse than the time required
to solve the (degree + 1)-list coloring problem, which we use as a subroutine.

5.1 The clustering
We start by proving that it is possible to compute a clustering of a graph in such a way that
it satisfies some desirable properties. In particular, we prove the following lemma.

▶ Lemma 25. Let α = c(1 + log∆ q), for some constant c and an arbitrary integer q > 0. It
is possible to compute a clustering of a graph G such that the following holds.

Each cluster has a strong diameter of at most 2α2 log ∆.
Each cluster contains:

at least q nodes, or
a node of degree at most ∆ − 1, or
a degree-choosable component, such that all neighbors of the nodes in the degree-
choosable component are also contained in the cluster.

This clustering can be computed in O(α2 log ∆ + α log∗ n) deterministic rounds.

In order to prove this lemma, we will use the following lemmas present in the literature.
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▶ Lemma 26 (Lemma 8 of [19]). Let G = (V, E) be a graph and v ∈ V be a node such that
inside the r-radius neighborhood of v there are no degree-choosable components and every
node has degree ∆. Then, for each even r, there are at least (∆ − 1)r/2 nodes at distance r

from v.

▶ Lemma 27 (Ruling sets, [4, 43]). A (2, β)-ruling set can be computed in time O(β∆2/β +
log∗ n) deterministic rounds.

We are now ready to prove Lemma 25.

Proof. We start by computing an (α, (α − 1)α log ∆)-ruling set, by computing a (2, α log ∆)-
ruling set on Gα−1, the (α − 1)th power of G. By applying Lemma 27 with β = α log ∆, this
ruling set can be computed in T = O(α2 log ∆ + α log∗ n) deterministic rounds. Then, in
additional O(α2 log ∆) rounds, each node finds the nearest ruling set node (breaking ties
arbitrarily), and joins its cluster.

Clearly, the running time requirement is satisfied. We need to prove that this clustering
satisfies the required properties. The first property is clearly satisfied, since α2 log ∆ is an
upper bound on the distance between an arbitrary node and its nearest ruling set node.

We now show that the second property is also satisfied. Let v be the ruling set node of
an arbitrary cluster C, that is, its center. By the definition of (α, β)-ruling set, all nodes at
distance at most ⌊α/2 − 1⌋ from v are all contained in C. Consider the set S of nodes at
distance at most k from v, where k ∈ {⌊α/2 − 2⌋, ⌊α/2 − 3⌋} is even. If there is a node of
degree at most ∆ − 1 in S, then the property is clearly satisfied. Otherwise, all nodes in S

have degree ∆, and by Lemma 26 we get that either there is a degree-choosable component
in S, or there are at least (∆ − 1)k/2 nodes in S. In the first case, note that the neighbors of
nodes in S are all contained in C, and hence the property is satisfied. In the second case, we
obtain that the cluster contains at least (∆ − 1)⌊c(1+log∆ q)/2−3⌋/2 nodes, that, for a large
enough constant value of c, is at least q, and hence the property is satisfied in this case as
well. ◀

5.2 The algorithm
We now describe an algorithm that computes a fractional (∆ + ε)-coloring. In the following,
we will make use of the notion of partial ∆-coloring (see Definition 4).

On a high level, the main idea of the algorithm is to compute q (possibly) different partial
∆-colorings (where each of the colorings come from a different palette), such that each node
is uncolored in at most 1 of the colorings. In this way, we can assign q − 1 colors to each
node, from a palette of q∆ total colors. We now show how the properties stated in Lemma 25
can be used for this purpose.

▶ Lemma 28. Let G be a graph that is clustered according to Lemma 25, where each cluster
that contains at least q nodes also contains a special marked node. Let T be the time required
to solve the (degree + 1)-list coloring problem, and let R be the bound on the diameter of the
clusters. Then, in O(T · R) deterministic rounds it is possible to solve the partial ∆-coloring
problem such that only marked nodes remain uncolored.

Proof. We prove this lemma by slightly modifying the core of the deterministic ∆-coloring
algorithm presented in Ghaffari et al. [19]. Each node v starts by spending R rounds to
gather its entire cluster Cv. In this way, it can see if there is a marked node, or a node with
degree at most ∆ − 1, or a degree-choosable component (at least one of these cases must
apply). If there is a marked node z in Cv, let SCv

= {z}, otherwise, if there is a node z′
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with degree at most ∆ − 1, then let SCv = {z′}, otherwise, let SCv be the set of nodes of an
arbitrary degree-choosable component guaranteed to exist by Lemma 25. Note that, without
additional communication, v can compute its distance from the nearest node s in SCv

.
Let Gi be the subgraph induced by nodes at distance i from their nearest node in the set,

that is, Gi = {u | dist(u, SCu
) = i}. Let G>i (resp. G≥i) be the graph induced by all nodes

contained in Gj , for all j > i (resp. j ≥ i). Note that, for all i > 0, the nodes of Gi, in G≥i,
have degree at most ∆ − 1, since the maximum degree in G is ∆, and all nodes in Gi have at
least one neighbor in Gi−1. Also, note that G>R is empty.

We proceed as follows. Assume that G>i is properly ∆-colored (we start with i = R,
where the statement trivially holds, since G>R is empty), and let c(u) be the color of a node
u in G>i. We show that we can ∆-color G≥i. For each node v in Gi, we define its list of
available colors as Lv = {1, . . . , ∆} \ {c(u) | u ∈ N(v) ∩ G>i}. Since the degree of nodes of
Gi in G≥i is at most ∆ − 1, then Lv defines a (degree + 1)-list coloring instance of Gi, that
can be solved in T rounds. By iterating this procedure for i = R, . . . , 1, we obtain that all
nodes of G, except the ones in S =

⋃
{SCv | v ∈ V }, are properly ∆-colored.

Finally, we handle the nodes in S. If SCv
contains a marked node, we just leave it

uncolored. Otherwise, if SCv
contains a node with degree at most ∆ − 1, we color it with an

arbitrary available color. Otherwise, if SCv
contains a degree-choosable component, then,

for each node u ∈ SCv
, we define Lu as above. This time, Lu defines a degree-list coloring

instance. Note that, in general, the degree-list coloring problem may be unsolvable, but this
is never the case in a degree-choosable component, by definition. Since, for each pair of
clusters C1, C2, SC1 and SC2 are non-adjacent, then it is possible to solve all the degree-list
coloring instances in parallel, by brute force, in R rounds. ◀

We are now ready to describe the algorithm. First of all, nodes start by computing
an O(∆2)-coloring. Then, nodes compute the clustering described in Lemma 25. Let
R = O(α2 log ∆) be the maximum diameter of the clusters. Then, nodes spend R rounds to
check the type of their cluster, that is, if there is a degree-choosable component satisfying the
required property, or if there are at least q nodes, or if there is a node with degree at most
∆ − 1. In all clusters C containing at least q nodes, we choose q arbitrary distinct nodes
{vC,1, . . . , vC,q}. Then, we apply Lemma 28 for q times in parallel. During the application i,
the nodes that are considered marked are {vC,i}. We obtain C1, . . . , Cq partial ∆-colorings
of G, such that each node is uncolored in at most one coloring. Hence, we use a palette of q∆
colors, such that each node has at least q − 1 colors, that is, we obtain a (q∆ : q − 1)-coloring.

Time complexity

The previously described algorithm computes a (q∆ : q −1)-coloring. Hence, in order to prove
Theorem 10, we need to give a bound on its running time. Computing the O(∆2)-coloring
can be done in O(log∗ n) rounds. Computing the clustering requires O(α2 log ∆ + α log∗ n)
rounds. Gathering the cluster requires O(α2 log ∆) rounds. The application of Lemma 28
requires O(T · α2 log ∆) rounds, where T is the time for solving a (degree + 1)-list coloring
instance given an O(∆2)-coloring. Recall that α = c(1 + log∆ q). Hence, we obtain an overall
time complexity of O(α2 log ∆ · T + α log∗ n), where α = O(1 + log∆ q).

5.3 Faster algorithm
We now show that, at the cost of drastically increasing the number of colors, we can improve
the dependency on ∆, and entirely remove the dependency on n. In particular, we will prove
the following.
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▶ Theorem 15. For any ε > 0, the fractional (∆ + ε)-coloring problem can be solved
deterministically in time

O

((
log ∆ + log2(1/ε)

log ∆

)
· log(∆/ε)

)
= O

(
log2 ∆ + log2 1

ε
+ log3(1/ε)

log ∆

)
.

We start by explaining how to remove the O(α log∗ n) dependency from the algorithm of
Theorem 10, obtaining the following intermediate result.

▶ Lemma 29. For any ε > 0, the fractional (∆ + ε)-coloring problem can be solved deter-
ministically in time O

((
log ∆ + log2(1/ε)

log ∆

)
· T

)
, where T is the time required to solve the

(degree + 1)-list coloring problem given an O(∆2)-coloring in input.

Proof. On a high level, the log∗ n dependency appears in the time complexity of the algorithm
for two reasons:

The algorithm spends O(α log∗ n) rounds for computing the clustering, and this is because,
in order to compute an (α, β)-ruling set, we first need to find an O(∆2α)-coloring of Gα.
The algorithm spends O(log∗ n) rounds to find an O(∆2) coloring of G. Note that, given
an O(∆2α)-coloring of Gα, we can reduce this runtime to O(log∗ ∆2α).

Hence, if, in Gα, nodes are already provided with an O(∆2α)-coloring, then we can get
rid of the log∗ n dependency, obtaining a faster algorithm, that requires only O(α2 log ∆ ·
T + log∗ ∆2α) = O(α2 log ∆ · T ) rounds. Unfortunately, finding such a coloring requires
Ω(log∗ n) rounds [32]. In order to overcome this issue, we do the following. We first spend a
constant number of rounds to find a color randomly, such that each node has a large enough
probability of being colored. Then, we run Theorem 10 on the subgraph induced by nodes
that are colored correctly. In this way, we obtain an algorithm that computes a partial
fractional coloring, satisfying that each node is uncolored with some fixed probability. We
can then apply Lemma 22 and Lemma 24 to obtain a deterministic algorithm that finds a
proper fractional coloring.

In order to find the required coloring, we proceed as follows. Each node picks a color
uniformly at random from a palette of c colors, for some value c to be fixed later. Then, each
node v checks its α-radius neighborhood, and if there is a node u with the same color, then v

becomes uncolored. For any node u contained in the α-radius neighborhood of v, we have that
P (u and v pick different colors) ≥ 1 − 1/c. Let ∆̄ = ∆α be an upper bound on the degree of
Gα. Then, P (u is colored) ≥ (1 − 1/c)∆̄, that by the Bernoulli inequality is at least 1 − ∆̄/c.
Hence, by applying the algorithm of Theorem 10 on the subgraph induced by colored nodes,
we obtain an algorithm that runs in O(α2 log ∆·T ) rounds and computes a partial (q∆ : q−1)-
coloring where each node is uncolored with probability at most ∆̄/c. We can now apply
Lemma 22 (note that, since our algorithm never fails, then f = 0), obtaining a randomized
algorithm that terminates in O(α2 log ∆ ·T ) rounds and computes a (q∆t : (1− ∆̄/c)(q −1)t)-
coloring, for some t that depends on the target failure probability f ′ and n. Then, we can
apply Lemma 24 to obtain a deterministic algorithm that runs in O(α2 log ∆ · T ) rounds
and computes a (q∆t′ : (1 − 2f ′)(1 − ∆̄/c)(q − 1)t′)-coloring, for some t′ that depends on f ′

and n. By fixing c = q∆̄ and f ′ = 1
2q , we obtain a deterministic algorithm for computing a

fractional q∆
(1−1/q)2(q−1) -coloring, that, for q = O(∆/ε), is a fractional (∆ + O(ε))-coloring.

The running time, for such a value of q, is O((log ∆ + log2(1/ε)/ log ∆) · T ), as required. ◀

OPODIS 2021



18:14 Improved Distributed Fractional Coloring Algorithms

Proof of Theorem 15

Proof. We now explain how to remove the dependency on T , and obtain Theorem 15. Let
q = Θ(∆/ε). In order to obtain a faster algorithm, we start by showing that we can replace
the dependency on T in Lemma 28, with O(log q), at the cost of leaving some nodes uncolored.
Hence, we obtain a “sloppy” version of Lemma 28. Recall that T is the time required to
run a procedure that solves a (degree + 1)-list coloring instance. Instead of running such
a procedure, we run a procedure that partially solves an instance in O(log q) = O(log ∆

ε )
rounds, such that a node remains uncolored with probability at most 1/q. This can be
achieved by letting each node try to pick an available color uniformly at random for O(log q)
times [25].

We now show that it is possible to obtain an algorithm that computes a partial (∆ : 1)-
coloring satisfying that each node is uncolored with probability at most 2/q. First, we
compute the clustering as in the original algorithm, that is, by applying Lemma 25. Then,
on clusters of size at least q, we mark a node of the cluster chosen uniformly at random. By
applying the sloppy version of Lemma 28, we obtain what we need.

Finally, by applying Lemma 22 and Lemma 24, we obtain a deterministic algorithm that
solves fractional (∆ + O(ε))-coloring in time O((log ∆ + log2(1/ε)

log ∆ ) · log(∆/ε)), proving the
theorem. ◀

5.4 Better support
We now provide a different algorithm, that has slightly worse running time compared to the
one of Theorem 10, but that is able to give a fractional (∆ + ε)-coloring with smaller support.
In particular, we will prove the following theorem.

▶ Theorem 13. A (q∆+1 : q)-coloring, for an arbitrary integer q > 0, can be deterministically
computed in time O(q2 log ∆ · T + q log∗ n) in the LOCAL model, where T is the time required
to solve the (degree + 1)-list coloring problem given an O(∆2)-coloring in input.

We will exploit the following lemma, first presented in [2], and used also in [11].

▶ Lemma 30 (Proposition 8 of [2]). Let q ≥ 1 be an integer and let P = (v1, . . . , v2q+1) be a
path. Assume that for i ∈ {1, 2q + 1} the vertex vi has a list Lvi

of at least q + 1 colors, and
for any 2 ≤ i ≤ 2q, vi has a list Lvi

of at least 2q + 1 colors. Then, each vertex vi of P can
be assigned a subset Si ⊆ Lvi

of q colors, so that adjacent vertices are assigned disjoint sets.

Similarly as in the algorithm of Theorem 10, we start by computing an (α, (α−1)α log ∆)-
ruling set, by computing a (2, α log ∆)-ruling set on Gα−1, the (α − 1)-th power of G. This
time, we choose α = 4q + 4. Then, we also compute an O(∆2) coloring. Then, we form
clusters by letting each node u join the cluster Cv centered at the nearest ruling set node
v. By the definition of (α, β)-ruling set, all nodes at distance at most ⌊α/2 − 1⌋ from v

are contained in Cv. Hence, in Cv, there exists at least one induced path of ⌊α/2 − 1⌋
nodes satisfying that all neighbors of nodes in P are fully contained in Cv (that is, the path
obtained by taking v and the nodes contained in some shortest path from v to some node at
distance ⌊α/2 − 2⌋ from v). Note that ⌊α/2 − 1⌋ = 2q + 1. Let Sv be the set of nodes of the
path.

Similarly as in the proof of Lemma 28, we can spend O(α2 log ∆ · T ) rounds to find a
partial ∆-coloring that leaves uncolored only nodes in

⋃
Sv. This partial coloring can be

trivially converted into a partial (q∆ : q)-coloring where each colored node has exactly q

colors. Then, for each node u contained in some Sv, we can define its list of available colors
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as {1, . . . , q∆ + 1} \ {C(z) | z ∈ N(u)}, where C(z) is the set of colors assigned to node
z. Note that, from the list of available colors of u, we removed at most q colors for each
neighbor of u. Hence, the endpoints of the path satisfy |Lu| ≥ q + 1 since they have at most
∆ − 1 colored neighbors, and the inner nodes satisfy |Lu| ≥ 2q + 1 since they have at most
∆ − 2 colored neighbors. Hence, by applying Lemma 30 we get that nodes can complete the
coloring by brute force, since paths are not connected to each other.

We spend O(q2 log ∆ + q log∗ n) rounds to compute a ruling set, O(log∗ n) rounds to
compute the O(∆2) coloring. The rest of the algorithm requires O(q2 log ∆ · T ) rounds. Each
node receives q colors, from a palette of total q∆ + 1 colors. Hence, the theorem follows.

6 Lower bound

In this section, we show a lower bound of Ω(log n/ε) rounds for computing a fractional
(2 + ε)-coloring, which holds already on trees, and even for randomized algorithms. We first
show that there exist graphs with girth Ω(log n/ε) and fractional chromatic number strictly
larger than 2 + ε. Then we argue that, if we take an algorithm that, on trees, achieves a
fractional (2 + ε)-coloring in o(log n/ε) rounds, and we execute it on such graphs, it must fail,
since the obtained fractional coloring would be too good. We get our contradiction on the
existence of such an algorithm by arguing that, in time o(log n/ε), a node cannot distinguish
whether it is on a tree or on these graphs.

We start by describing a graph family of interest. Let G∗ be a graph family that contains
all graphs with n nodes, m = O(n) edges, girth Ω(log n), and where the largest independent
set has size at most n/c, for some large constant c, and for infinite values of n. Such a family
of graphs is known to exist [34]. Starting from a graph G = (V, E) ∈ G∗, we construct a graph
H by replacing all edges of G with a path of length 2k + 1, for some k = Θ(1/ε). In other
words, let e = {u, v} be an edge in G. We replace e by a path P e = (u, we

1, we
2, . . . , we

2k, v).
We refer to nodes in P e as path nodes, and we refer to the we

1, we
2, . . . , we

2k nodes as inner
path nodes. Let G be the family that contains all such graphs. By construction, a graph
H ∈ G has N = n + 2km nodes and girth Ω(log n/ε). We now show the following lemma
about the fractional chromatic number of these graphs.

▶ Lemma 31. Let H be a graph in G. The fractional chromatic number of H is strictly
larger than 2/(1 − c′ε), for some constant c′ > 0.

Proof. Let S be any independent set of H. We modify S and compute a new independent
set S′ of H such that |S′| ≥ |S| and S′ contains exactly mk inner path nodes. Note that this
implies that for each path P e = (u, we

1, we
2, . . . , we

2k, v), at most one of the two endpoints can
be in S′. Let P e = (u, we

1, we
2, . . . , we

2k, v) be a path in H where at most k − 1 inner path
nodes are in S. There are two cases: either at most one of the two endpoints is in S, or both
u and v are in S.

In the former case, we modify S in the following way. W.l.o.g., let u be a node not in S.
We start from u and compute an optimal independent set inside P e sequentially, by starting
with we

1 in the independent set and then putting every other node in the set. This procedure
puts in the independent set k inner path nodes of P e, and note that the obtained set is still
independent.

In the latter case, we remove node u from the set, and then we proceed as in the former
case. Note that the obtained set is still independent, and it is not smaller. In fact, before
the modification, there were at most k − 1 nodes of P e \ {u, v} in S, and hence at most k

nodes of P e \ {v} in S, and after the modification we have k nodes of P e \ {u, v} in the set.
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We call S′ the independent set resulting from the above operations. Notice that |S′| ≥ |S|.
Recall that each graph in G is obtained from a graph G ∈ G∗ where the largest independent
set has size at most n/c. Note also that, by construction, if we project S′ onto G, then we
obtain and independent set of G. Hence,

|S′| ≤ n

c
+ mk = N

2 − (c − 2)n
2c

= N

2

(
1 − 2(c − 2)n

2cN

)
= N

2

(
1 − (c − 2)n

c(n + 2km)

)
= N

2

(
1 − (c − 2)n

c(n + 2 c1
ε c2n)

)
where k = c1

ε
and m = c2n

= N

2

(
1 − c − 2

c(1 + 2 c1
ε c2)

)
<

N

2 (1 − c3ε) for some c3 > 0 that depends on c1 and c.

Hence, any color can be assigned to strictly less than a fraction (1 − c3ε)/2 of the nodes,
implying that the fractional chromatic number of H is strictly larger than 2/(1 − c3ε). ◀

From the above lemma we get the following corollary.

▶ Corollary 32. There exists an infinite family of graphs of girth Ω(log n/ε) and fractional
chromatic number strictly larger than 2 + ε.

We are now ready to prove our main theorem.

▶ Theorem 33. Computing a (2+ε)-fractional coloring on trees in the LOCAL model requires
Ω(log n/ε), even for randomized algorithms.

Proof. The proof follows a standard indistinguishability argument, already used to prove, e.g.,
that coloring trees with o(∆/ log ∆) colors requires Ω(log∆ n) rounds, even for randomized
algorithms [32]. For simplicity we prove our claim for the deterministic case, but it can be
extended to the randomized case with standard techniques.

Suppose there exists an algorithm AT that, on trees, computes a fractional (2+ε)-coloring
in o(log n/ε) rounds. Let G be a graph satisfying Corollary 32. In o(log n/ε) rounds, each
node in G does not see any cycle, and hence we could run algorithm AT on G and it would
not notice that it is being run on a graph that is not a tree. However, AT must fail on G,
since, by Corollary 32, the fractional chromatic number of G is strictly larger than 2 + ε.
Hence, suppose we run AT on G and it fails on the neighboring nodes u and v who, as an
output of AT , got some common color (note that the algorithm may also fail on just one
node by assigning to it too few colors, but the lower bound argument follows in the same
way).

Recall that a t-round algorithm in the LOCAL model can be seen as a mapping from
t-radius neighborhoods into outputs. Let Bu and Bv be the views of radius t of nodes u

and v, respectively, that AT then maps into the outputs of u and v. Let B = Bu ∪ Bv. The
subgraph in B does not contain cycles and it has radius o(log n/ε). Starting from B, we
construct a tree that contains B, and where we add additional nodes in order to obtain an
n-node tree T (note that the additional nodes can be added without altering the t-radius
views of u and v, since, in B, there exists at least one node at distance at least t from both
of them). Nodes u and v in T have the same exact view as in G, hence they output the same
improper fractional coloring, meaning that AT fails on T , which is a contradiction. Hence,
AT cannot exist, proving the theorem. ◀
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A Approximating the fractional chromatic number

In this section, we show that it is possible to find arbitrarily good approximations of the
fractional chromatic number. In particular, given a graph G with fractional chromatic
number χf (G) = p/q, we provide randomized and deterministic algorithms that are able to
find a fractional (1 + ε)χf (G)-coloring, for any ε > 0. Our algorithms use a different amount
of total colors, depending on whether the nodes know p and q or not, or if they know χf (G).

On a high level, we show that it is possible to cluster a graph such that each node
is unclustered with probability at most ε, and such that any pair of clusters is at least 2
hops apart (that is, for any two nodes that are in different clusters it holds that they do
not share an edge). In this way, inside each cluster, we can optimally solve the fractional
χf (G)-coloring, or find a good-enough approximation if p and q are not known. Then, by
applying Lemma 22 and Lemma 24, we obtain randomized and deterministic algorithms for
computing a fractional coloring that approximates the fractional chromatic number.

A.1 Computing a clustering

In order to obtain a clustering of the graph, we slightly modify the clustering algorithm of
Miller, Peng, and Xu [38] (MPX), to make it compute clusters that are 2 hops apart, such
that each node is unclustered with probability at most ε, and each cluster has weak diameter
O(log n/ε).

▶ Lemma 34. Given a graph G = (V, E), there is a randomized algorithm that computes a
2-hops-apart clustering of G such that each node is unclustered with probability at most ε, and
each cluster has weak diameter O(log n/ε) with high probability. This algorithm terminates
in O(log n/ε) rounds with high probability.

Proof. Since we are going to use a modified version of the MPX procedure, we start by
describing the standard MPX procedure.

Each node u chooses independently a shift δu from an exponential distribution with
parameter γ = ε/2. Let the shifting distance from u to v be denoted as dist_δ(u, v) =
dist(u, v) − δu. Each node v is then assigned to the cluster Cu centered at the node u that,
among all nodes in G, minimizes the value of the shifted distance dist_δ(u, v), breaking ties
arbitrarily. Miller, Peng, and Xu [38] proved that, with high probability, each cluster has
radius O(log n/ε). While the original procedure is designed to work in the PRAM model,
it is folklore that it can be easily converted into a distributed algorithm that terminates
in O(log n/ε) rounds with high probability. This procedure obtains a partitioning of the
vertices into clusters satisfying the following properties.

Each cluster is connected, that is, for any two nodes u and v it holds that, if both are in
the same cluster C, then the nodes in the shortest path between u and v are also in C.
Each cluster has strong diameter O(log n/ε) with high probability.
Each edge has probability at most ε to be an intercluster edge.
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We run this procedure, and then we modify the obtained clustering in the following way.5

Let {u, v} ∈ E be an edge such that its endpoints u and v are on different clusters. For each
such edge, we choose the endpoint with the smallest identifier and we remove it from the
cluster. We say that these nodes are unclustered. After this operation it holds that, for any
two nodes that are in different clusters, they do not share an edge, meaning that the clusters
are at least 2 hops apart, as desired. Notice that, by removing nodes from the clusters we
may lose the guarantee on the strong diameter of the clusters. However, it still holds that
the weak diameter of each cluster is O(log n/ε) w.h.p., and this is enough for our purposes.

What is left to show is that each node is unclustered with probability at most ε. Consider
an unclustered node u. Let Cu′ be the cluster centered at node u′ where u belonged to
before being removed. Since u is unclustered, it means that there is a node w neighbor
of u such that, before removing nodes from the clusters, nodes u and w were assigned to
different clusters (otherwise u would not be unclustered). Let Cw′ be the cluster centered
at w′ that was initially assigned to node w. By construction of these clusters, we have that
dist_δ(u′, u) ≤ dist_δ(w′, w) + 1 and, at the same time, dist_δ(w′, w) ≤ dist_δ(u′, u) + 1.
Hence, |dist_δ(u′, u) − dist_δ(w′, w)| ≤ 1, implying that |dist_δ(u′, u) − dist_δ(w′, u)| ≤ 2.
In other words, the absolute value of the difference between the smallest and the second
smallest shifting distance of an unclustered node is at most 2. In [38] it has been proven that,
for each node, the probability that this event happens is at most 2γ = ε. We thus obtain
that each node is unclustered with probability at most ε. ◀

In the remaining of this section we use the variables p′ and q′, that are defined as follows.
If p and q are known to the nodes, then p′ = p and q′ = q.
Otherwise, let p′ = χc log n/ε2 and q′ = (1 − ε)p′/χf (G), where χ = χf (G) if χf (G) is
known to the nodes, and ∆ + 1 otherwise.

A.2 Solving a partial fractional coloring
We now prove that, by using the clustering algorithm of Lemma 34, it is possible to find a
partial (p′ : q′)-coloring.

▶ Lemma 35. There exists a randomized O(log n/ε)-round algorithm A that computes a
partial (p′ : q′)-coloring satisfying that, with probability at least 1−1/n, each node is uncolored
with probability at most ε.

Proof. Note that the algorithm described in Lemma 34 is Las Vegas, but we can turn it
into a Monte Carlo algorithm by truncating its execution after O(log n/ε) steps, and leave
unclustered every node that did not terminate. Since the original algorithm terminates in
O(log n/ε) rounds with high probability (that is, at least 1 − 1/n), then this new algorithm
always terminates in O(log n/ε) rounds, which is also an upper bound on the diameter of
the clusters, and leaves each node unclustered with probability at most ε + 1/n by a union
bound. Hence, by slightly scaling ε, we obtain the same guarantees as the original algorithm.

Hence, we start by running the (Monte Carlo variant of the) clustering algorithm. Then,
since each cluster has weak diameter at most R = O(log n/ε), we can spend R rounds for
computing in parallel, in each cluster, by brute force, a (p′ : q′)-coloring (we will later argue
why such a coloring always exists). Note that this is possible even if q′ is not known to the
nodes, as they can just find the best possible solution. Since unclustered nodes do not get a
color, and since clusters are 2 hops apart, then there are no neighboring nodes that get the
same color.

5 A similar modification has been used, for example, in [16].
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We need to argue why a (p′ : q′)-coloring always exists. Let G be a graph that is
(p : q)-colored. We show that there is a randomized process that, with non-zero probability,
produces a (p′ : q′)-coloring. By the probabilistic method, this implies that G admits a
(p′ : q′)-coloring, and hence that also each cluster admits a (p′ : q′)-coloring.

We sample with replacement p′ colors from p colors. Consider an arbitrary node u.
Let Xi = 1 if, during the i-th sampling, we sample a color that node u has among its
colors. Otherwise, let Xi = 0. Since node u has at least q out of the p possible colors,
then P (Xi = 1) ≥ q/p. Let X =

∑p′

i=1 Xi. By linearity of expectation, it holds that
E[X] ≥ p′q

p = p′

χf (G) = q′/(1 − ε). By a Chernoff bound, we get that

P (X ≤ q′) ≤ e
− ε2

2 · p′
χf (G) = e

− ε2cχ log n

ε22χf (G) ≤ n−c/2.

By a union bound, we have that each node has less than q′ colors with probability at most
n1−c/2. By choosing c ≥ 4 we get that each node has at least q′ colors with probability at
least 1 − 1/n. ◀

A.3 Putting things together
We now prove the existence of randomized and deterministic algorithms for approximating
the fractional chromatic number, with running time O(log n/ε). Note that, for ε < 1/n, we
can trivially solve the problem by gathering the entire graph on a node and brute forcing a
solution. Hence, in the following, assume ε ≥ 1/n.

Lemma 35 guarantees the existence of a randomized algorithm that runs in O(log n/ε)
rounds, and with probability at least 1 − f , where f = 1/n, computes a partial (p′ : q′)-
coloring satisfying that each node is uncolored with probability at most ε. By applying
Lemma 22, we obtain that there exists a randomized algorithm, that also runs in O(log n/ε)
rounds and, with probability at least 1 − f ′, where f ′ = 1/nc for an arbitrary constant c ≥ 1,
computes a partial (p′′ : q′′)-coloring, where p′′ = p′t, q′′ = (1 − ε)q′t, and t = O(log n/ε).
Hence, we obtain the following.

▶ Theorem 17. Let G = (V, E) be a graph that admits a (p : q) coloring, and let t =
O(log n/ε), for an arbitrary ε > 0. There is a randomized LOCAL algorithm that, with high
probability, computes a (tp′ : (1 − ε)tq′)-coloring, that is, a fractional (1 + O(ε)) p

q -coloring,
in O(log n/ε) rounds.

Then, starting from this algorithm, we can apply Lemma 24, where f = 1/nc for an
arbitrary constant c ≥ 1, and obtain that there exists a deterministic algorithm that also
runs in O(log n/ε) rounds, and computes a partial (p′′′ : q′′′)-coloring, where p′′′ = p′′t′,
q′′′ = (1 − 2f)q′′t′, and t′ = poly n. Since ε ≥ 1/n ≥ f , then this means that, compared to
the randomized algorithm, we lose at most an O(ε) fraction of colors. Hence, we obtain the
following.

▶ Theorem 18. Let G = (V, E) be a graph that admits a (p : q)-coloring, and let t =
O(poly n/ε), for an arbitrary ε > 0. There is a deterministic LOCAL algorithm that computes
a (tp′ : (1 − ε)tq′)-coloring, that is, a fractional (1 + O(ε)) p

q -coloring, in O(log n/ε) rounds.

A.4 Less colors
We now show an alternative way for derandomizing the algorithm of Theorem 17, obtaining
the same guarantees on the number of colors, but with a slightly worse running time. For
this purpose, we use the following result of Ghaffari, Harris, and Kuhn [18].
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▶ Theorem 36 (Theorem 1.1 of [18]). Any r-round randomized LOCAL algorithm for a locally
checkable problem can be transformed into a deterministic LOCAL algorithm with complexity
O(r(log2 n+ND)), where ND is the time required to compute an (O(log n), O(log n))-network
decomposition.

We note that Theorem 1.1 of [18] applies to randomized algorithms that satisfy the following
requirements.
1. They always terminate within r rounds.
2. Each node sets a flag to 1 if its output is incorrect, and to 0 otherwise. With high

probability, the flag should be 0.
3. Each node should be able to check, in O(1) rounds, whether its flag has the correct value.
In order to apply Theorem 36 and derandomize the algorithm of Theorem 17, we need to
show that we can tweak the algorithm to satisfy the above requirements. The algorithm
presented in Theorem 17 clearly satisfies the first requirement. However, it is not compatible
with the second one, since the guarantee on the quality of the coloring does not always hold.
More precisely, the number of colors obtained by a node only holds with high probability,
and for this reason, if q′ is not known, a node may not notice that its output is incorrect,
and it fails to set its flag correctly. Let us see how to handle this issue.

If q′ is known to the nodes, then they can just set their flag to 1 if they have strictly less
than (1 − ε)q′t colors, and 0 otherwise. If q′ is not known, we perform a preprocessing step to
compute a value of q′ (that may be different for different nodes), that will then be used by the
nodes to decide whether to set their flag or not. The preprocessing step works as follows. Let
T be the running time of the algorithm that we want to derandomize. Each node v spends
2T rounds to gather its 2T -radius neighborhood. Then, it checks, in that neighborhood,
what is the maximum value q′ for which there exists a (p′t : (1 − ε)q′t)-coloring. Observe
that the obtained value q′ is a lower bound on the number of colors that v, while executing
the algorithm of Theorem 17, is able to obtain when it belongs to a cluster. This follows
from the fact that, any cluster where v belongs to must be fully contained in its 2T -radius
neighborhood. Note that the preprocessing step also guarantees that the third requirement
of Theorem 1.1 of [18] is satisfied, since each node can just check whether the flag is set
correctly depending on the number of colors that it has and the value of q′.

Hence, by combining Theorem 36 with the obtained variant of the algorithm of Theorem 17,
we obtain the following theorem.

▶ Theorem 19. Let G = (V, E) be a graph that admits a (p : q) coloring, and let t =
O(log n/ε), for an arbitrary ε > 0. There is a deterministic LOCAL algorithm that computes
a (tp′ : (1−ε)tq′)-coloring, that is, a fractional (1+O(ε)) p

q -coloring, in O(log n(log2 n+ND)/ε)
rounds, where ND ≤ poly log n is the time required to compute an (O(log n), O(log n))-network
decomposition.

B Grids

In [11], it has been shown that, for any constant ε and d, in d-dimensional grids, it is possible
to compute a fractional (2 + ε)-coloring in time O(log∗ n). We show that the same problem
can be solved in constant time.

The algorithm of [11] computes a (2q+4·6d : q)-coloring that runs in O(dℓ(2ℓ)d +dℓ log∗ n)
rounds, where ℓ = q + 2 · 6d. The running time is dominated by the time required to
compute a maximal independent set on Gℓ, where the distance is taken w.r.t. the infinity
norm (that is, for two nodes u and v with coordinates (u1, . . . , ud) and (v1, . . . , vd) their
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distance is max1≤i≤d{|ui − vi|}). In fact, a maximal independent set can be computed
in time O(∆ + log∗ n), and on Gℓ we have that ∆ = (2ℓ + 1)d, and hence there is an
overhead of O(dℓ) in the runtime. After computing the independent set, the rest of the
algorithm requires just O(dℓ(2ℓ)d) rounds. By setting q = 2O(d+log 1

ε ), this algorithm gives
a fractional (2 + ε)-coloring in time Tcoloring,n + Trest, where Tcoloring,c = 2O(d+log 1

ε ) log∗ c

and Trest = 2O(d2+d log 1
ε ). Similarly as in the proof of Lemma 29, we can replace the log∗ n

dependency with log∗ c, if nodes are provided with a distance-dℓ c-coloring.
We compute a partial distance-dℓ coloring by letting nodes pick a color uniformly at

random. Nodes that obtain an invalid coloring, uncolor themselves. We would like to execute
the algorithm of [11] on the subgraph induced by colored nodes, but we cannot, since the
subgraph is not a grid anymore. In order to solve this issue, we consider only nodes satisfying
that, within their running time, they cannot notice that the graph is not a grid. We call
these nodes happy. In other words, a node is happy if and only if, within the running
time of the algorithm, it does not see any uncolored node. On these nodes, by a standard
indistinguishability argument, the algorithm must work correctly. Note that this running
time depends on c, but we will pick a value of c satisfying that the total running time is
anyways strictly less than kTrest, for some large enough constant k. The probability that a
node is colored is at least 1 − ∆/c. Since a node sees at most dkTrest nodes within its running
time, the probability that a node is happy is at least 1 − ∆

c dkTrest , meaning that a node is
unhappy with probability at most ∆

c dkTrest . We want this probability to be at most ε, and for
that, we can pick c = ∆dkTrest/ε. Note that, for such a value of c, Tcoloring,c + Trest ≤ kTrest,
as required.

Hence, there is an algorithm that in 2O(d2+d log 1
ε ) rounds computes a partial fractional

(2+ε)-coloring satisfying that each node is uncolored with probability at most ε. By applying
Lemma 22 and Lemma 24, we obtain the following.

▶ Theorem 21. Let G be a d-dimensional grid. For any ε > 0, there is a deterministic
LOCAL algorithm that computes a fractional (2 + ε)-coloring on G, that runs in 2O(d2+d log 1

ε )

rounds.
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Abstract
One of the fundamental and most-studied algorithmic problems in distributed computing on networks
is graph coloring, both in bounded-degree and in general graphs. Recently, the study of this problem
has been extended in two directions. First, the problem of recoloring, that is computing an
efficient transformation between two given colorings (instead of computing a new coloring), has been
considered, both to model radio network updates, and as a useful subroutine for coloring. Second,
as it appears that general graphs and bounded-degree graphs do not model real networks very well
(with, respectively, pathological worst-case topologies and too strong assumptions), coloring has
been studied in more specific graph classes. In this paper, we study the intersection of these two
directions: distributed recoloring in two relevant graph classes, interval and chordal graphs.

More formally, the question of recoloring a graph is as follows: we are given a network, an input
coloring α and a target coloring β, and we want to find a schedule of colorings to reach β starting
from α. In a distributed setting, the schedule needs to be found within the LOCAL model, where
nodes communicate with their direct neighbors synchronously. The question we want to answer is:
how many rounds of communication are needed to produce a schedule, and what is the length of
this schedule?

In the case of interval and chordal graphs, we prove that, if we have less than 2ω colors, ω being
the size of the largest clique, extra colors will be needed in the intermediate colorings. For interval
graphs, we produce a schedule after O(poly(∆) log∗n) rounds of communication, and for chordal
graphs, we need O(ω2∆2 log n) rounds to get one.

Our techniques also improve classic coloring algorithms. Namely, we get ω + 1-colorings of
interval graphs in O(ω log∗n) rounds and of chordal graphs in O(ω log n) rounds, which improves on
previous known algorithms that use ω + 2 colors for the same running times.
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1 Introduction

Finding a proper coloring of the network is one of the most studied problems in the LOCAL
model of distributed computing. It is a typical symmetry-breaking problem, and it can be
used as a building block to solve many other problems [4]. It also has direct applications,
and a popular one since [31] is the assignment of frequencies (or time slots) in wireless
networks. Consider a network of stations using radio communication. A simple model
consists in considering that either two stations are close enough to communicate, but then
they should use different emission frequencies to avoid collisions, or they are far apart, cannot
communicate, and can safely use the same frequency. An assignment of frequencies that
avoids conflict is equivalent to a proper coloring. (Note that this is the simplest model, one
could also consider that communication and collision happen at different distances.)

Simply computing a coloring is not enough in some contexts. Indeed, suppose that we
have an algorithm for the classic coloring task: starting from a coloring with a high number
of colors (for example, unique identifiers), we get a coloring with fewer colors. Now, how do
we update the frequencies of the network? If we do it simultaneously without stopping all
communications, there might be conflicts during the transition period, between the nodes
still using the old frequencies and the ones using the new frequencies. Thus, we need to
stop all communications during the transition period, which is inconvenient if the network is
performing other tasks in parallel. Therefore, instead of just a new coloring, we would like to
have a series of colorings, such that at any step the color change is safe, that is old and new
colors do not conflict. In this paper, we aim at finding such schedules in a distributed way.
More precisely, we tackle the following more general recoloring question: how to go from an
input coloring to a target coloring, such that at each step, the coloring is proper and the
vertices whose colors are changing form an independent set of the network. To do so, it will
sometimes be necessary to assume that we are allowed to use a few additional colors, that
are not present in the input and target colorings.

For this problem, three questions naturally arise: Do we need extra colors to be able to
produce a schedule, and if yes, how many? Can we find a new schedule locally? And how
long the recoloring schedule needs to be? We study the problem from the point of view of the
LOCAL model, thus we want our algorithms to use a sublinear number of communication
rounds. For this setting, it is known that in general graphs we sometimes need to use many
additional colors (e.g. k − 1 extra colors to go from a k-coloring to another). This is bad
news, as using extra colors can be considered as costly (e.g. because we need to reserve
frequencies to make the transitions). Fortunately, radio networks have topologies that are
more constrained than general graphs, and we want to exploit these properties to design
schedules that use less extra colors.

In a first approximation, radio networks can be modeled as intersection graphs of (unit)
disks in the plane (see Figure 1). In a unit disk graphs, we associate to each node a location
on the plane, and two nodes are in conflict (i.e., linked by an edge) if their (unit) disks
intersect. Unit disks can always be colored with 3ω colors [30], where ω is the size of the
maximum clique of the graph. In contrast, there exists triangle-free graphs with arbitrarily
large chromatic number. However, deciding if there exists a k-coloring remains NP-complete
in the centralized setting, even in unit disks graphs. In general, we do not have a good
understanding of the coloring of unit-disk graphs, and we know very little about recoloring,
even in the centralized setting.

One can then wonder what happens in other simpler geometric graph classes. For instance,
if we assume that all the centers are on the same line in the plane, the obtained graphs are
called interval graphs. An interval graph is an intersection graph of intervals of the real line
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(see Figure 1). In other words, an interval of the real line is associated to every node of
the graph and there is an edge between two nodes if their corresponding intervals intersect.
Interval graphs can be colored with ω colors in polynomial time in the centralized setting.
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Figure 1 Illustrations of the different intersection graph classes mentioned. On each column, the
geometric intersection model is on top, and the corresponding graph on the bottom. The left-most
column is for unit-disk graph, the middle one for interval graphs, and the right-most for chordal
graphs. For the chordal intersection model, the base tree uses plain edges, a is the wavy subtree, b

is the dashed one, and c the bold one. (This last intersection model is simplistic, to allow a readable
drawing. In general the subtrees are not paths, and for this specific graph, a simpler geometric
representation exists.)

A natural generalization of interval graphs are chordal graphs. Chordal graphs are one
of the most-well studied classes in graph theory, with deep structures, fast algorithms, and
many important applications [21, 6, 33]. They are intersection graphs of subtrees of a tree.
In other words, given a tree T , every vertex of a chordal graph G is associated to a subtree
of T and two nodes of G are adjacent if their corresponding subtrees intersect (see Figure 1).

Our main results are recoloring algorithms for interval and chordal graphs. Our techniques
also yield coloring algorithms that improve on the state of the art.

1.1 Our results
Our main results are recoloring algorithms for interval and chordal graphs. Let us describe a
bit more formally what a distributed recoloring algorithm is. We use the definition introduced
in [9]. A valid recoloring schedule from a coloring α to a coloring β consists in a sequence of
colorings that starts with α and ends in β such that, at every step, the coloring is proper
and the vertices whose colors are modified at a given step (called the recolored vertices) form
an independent set of the graph. A distributed recoloring algorithm is an algorithm such
that every node computes its own schedule. In this paper, we compute the schedule in the
LOCAL model. Each node can check the validity of the schedule by comparing its own with
its neighbors: they check that at each step, the coloring is locally proper, and that if it
changes its own color during a step, none of its neighbors does the same.

In this paper, we will study how many rounds are used in the LOCAL model to produce
a schedule of some length. We first focus on interval graphs and then extend our result to
chordal graphs. We first prove the following:
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▶ Theorem 1. Let G be an interval graph and α, β be two proper k-colorings of G. It is
possible to find a schedule to transform α into β in the LOCAL model in O(poly(∆) log∗n)
rounds using at most:

c additional colors, with c = ω − k + 4, if k ⩽ ω + 2, with a schedule of length poly(∆),
1 additional color if k ⩾ ω + 3, with a schedule of length poly(∆),
no additional color if k ⩾ 2ω with a schedule of exponential-in-∆ length.
no additional color if k ⩾ 4ω with a schedule of length O(ω∆).

We also prove in Lemma 14 that the complexity of second item of Theorem 1 is optimal,
in the sense that with less than 2ω colors, the number of rounds (as well as a schedule) must
be linear in the size of the graph. Basically, when the number of colors is smaller than 2ω,
if we do not have additional colors, we might need to recolor vertices from the border of
a graph in order to be able to recolor vertices in the middle. On the contrary, when the
number is at least 2ω, we can save a color using only local modifications, and then proceed
as if we had one additional unused color. Unfortunately, in order to free this additional color,
we use a schedule of size exponential in ∆.1 On the positive side, this color saving step (and
actually the whole recoloring) can be performed with a short schedule when k ⩾ 4ω.

For the first item, as argued above, at least one additional color is needed. The colors
that we use in addition to that one come from a result of [10] that we use (almost) as a
black-box (see the next section). If the number of colors could be decreased in the context
of [10], then it could also be decreased in our work. We left as an open problem the question
of deciding if the numbers of additional colors can be reduced to 1.

One can naturally wonder what are the dependencies in ∆ and ω on our complexity and
schedule lengths, as we did not give them explicitly. We are using as a black-box the recoloring
result on chordal graphs of [10], which gives a centralized recoloring algorithm in O(ω4 · ∆ · n)
steps, where only one vertex can be recolored at each step. The schedule we produce contains
as subsequence a constant number of such black-box schedules, corresponding to subgraphs
containing about O(ω4 · ∆2) vertices. In order to keep the proofs as simple as possible, we
did not try to optimize this polynomial function. In particular, the recoloring procedure
of [10] can probably be adapted in the LOCAL model with a parallel schedule shorter than
O(ω4 · ∆ · n).

Since for interval graphs, the gap between ω and ∆ can be arbitrarily large, it would be
interesting to determine if the recoloring schedule (as well as the number of rounds) can be
reduced to a function of ω only.

Our second main result consists in extending this recoloring result to chordal graphs.
Namely, we prove:

▶ Theorem 2. Let G be a chordal graph and α, β be two proper k-colorings of G. It is
possible to find a schedule of length nO(log ∆) to transform α into β in O(ω2∆2 log n) rounds
in the LOCAL model using at most:

c additional colors, with c = ω − k + 4, if k ⩽ ω + 2,
1 additional color if k ⩾ ω + 3.

Note that while the recoloring schedule of Theorem 1 is polynomial, the one obtained in
Theorem 2 is superpolynomial in ∆ (but the number of rounds remains polynomial). We
left as an open problem the existence of polynomial schedule. In terms of number of rounds,

1 It is likely that the O(nd+1)-recoloring algorithm in the centralized setting for d-degenerate graphs can
be adapted in order to provide a polynomial schedule instead, but we did not do it to keep the proof as
short as possible.
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we also pay a logarithmic factor in comparison to the O(log∗n) rounds used for interval
graphs. It would be interesting to know if there exists a (ω +x)-coloring algorithm for chordal
graphs for a constant x, that only needs O(log∗ n) rounds. We will explain in the subsection
that follows, that these differences in schedule length and running time are inherent to our
approach, and going beyond those would require new techniques.

While designing tools for recoloring, we also produce improved algorithms for the coloring
problem. In a nutshell, it was known how to get (ω + 2)-colorings for interval and chordal
graphs, and we improve this to (ω + 1) colors. More precisely, it was proved in [23] that
an (ω + 2)-coloring of interval graphs can be obtained in the LOCAL model in O(ω log∗n)
rounds.2 Our first result consists in improving the result of Halldorsson and Konrad [23] by
proving:

▶ Theorem 3. Interval graphs can be colored with (ω + 1)-colors in O(ω log∗n) rounds in
the LOCAL model.

Note that (ω + 1) is the best we can hope for in sublinear time in paths (which are
interval graphs with ω = 2), since paths cannot be colored with 2 colors in less than Ω(n)
rounds [26, 4]. This can actually be generalized for any fixed ω, by considering the (ω − 1)-th
power of a path. The k-th power of a path is a graph with vertex set v1, . . . , vn where two
vertices vi, vj are adjacent if and only if |i − j| ⩽ k. Hence, each maximal clique corresponds
to ω consecutive nodes. An ω-coloring of such a graph would require the algorithm to put a
same color every ω nodes in the path, which again requires Ω(n) communication rounds.

For chordal graphs, Konrad and Zamaraev [24] proved that an (ω + 2)-coloring can be
found in O(ω log n) steps. Again, we can reduce the number of colors to ω + 1.

▶ Theorem 4. Chordal graphs can be colored with (ω + 1)-colors in O(ω log n) rounds in the
LOCAL model.

Again, the dependency in n is optimal for ω = 2 because (unoriented) trees cannot be
3-colored in o(log n) rounds [26, 4]. We leave as an open question if Ω(log n) communication
rounds are required to produce an (ω + 1)-coloring for ω > 2.

1.2 Our techniques
Our algorithms are using graph decompositions. Basically, we first split the graph into
components of controlled diameter, and then work on the different components, taking care
of not creating conflicts at the borders.

To get more into the details, let us start with coloring. For interval graphs, we use a
variation of a decomposition from [23]. It consists in proving that we can find some subsets
of vertices that cut the interval graphs into parts whose diameter is large enough, but not
too large, in O(log∗n) rounds (with a multiplicative factor depending on the diameter of
each part). See Figure 2. Our contribution is in the second part of the algorithm. We show
that we can start from an arbitrary coloring of the cuts, and extend this partial coloring into
a tight (ω + 1)-coloring of G, whereas previous algorithms needed some extra slack in the
number of colors.

For chordal graph, [24] provides a recursive decomposition into interval graphs, that we
adapt to our setting. The idea is to use a rake-and-compress strategy (in the spirit of [28])
to decompose the graph in O(log n) layers, each layer being a union of interval graphs. A

2 Actually, in [23] the result is stated as a (1 + ϵ)-approximation of the optimal ω-coloring, with the
condition that ϵ ⩾ 2/ω, which is equivalent to an (ω + 2)-coloring.
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Figure 2 Illustration of the interval decomposition of [23]. On top the interval representation,
and on the bottom, the graph. The decomposition consists in choosing cliques (the gray nodes)
whose removal decomposes the graphs into subgraphs of controlled diameter (the white nodes). Note
that the graph can then be seen as a path alternating between gray cliques and white subgraphs.
What we do is slightly different, as our cuts are not cliques, but the intuition is the same.

typical phase of rake-and-compress on a tree consists in removing the leaves (the rake part),
and removing or contracting the long paths (the compress part). After O(log n) such phases,
the tree is empty. In our algorithm, the tree structure is the underlying tree of the chordal
graph, like in Figure 1.3 We consider here as leaves the pending interval subgraphs. These
are subgraphs made by taking the intervals that are on the branches of the tree leading to
a leaf (see Fig. 3). On the other hand, long paths correspond to long separating interval
subgraphs, whose removal disconnects the graph, and that have large enough diameter.

Figure 3 Illustration of one step of the decomposition of chordal graphs into interval graphs (of
controlled diameter). The tree of plain edges is the underlying tree. The rectangles with rounded
corners correspond to the pending interval graphs. The rectangle with spiky corners correspond to a
separating interval graph. The gray rectangles are the ones that are too long and will be further
decomposed. The bold edges correspond to part of the graphs that are not pending, nor long and
separating. These part are the ones that are kept for the next phases, all the other vertices are
removed.

Let Vi be the set of nodes of the interval graph removed at phase i. The coloring algorithm
then consists in coloring recursively Vk, . . . , V1, in this order. That is, we start by coloring
the vertices that have been removed last. Assume that we have a coloring of Vi+1, . . . , Vk.

3 Actually, there are two such trees, the one that correspond to the geometric representation, that we use
in this introduction, and the clique tree, which has a more graph-theoretic definition, and that we use
in the proofs. The two are essentially equivalent.
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The key point is that when we consider a new interval subgraph, by construction, only its
borders can be already colored, and therefore we are back to the situation we had for interval
graphs. We then get the same number of colors. The logarithmic-in-n complexity comes
from the O(log n) layers of the rake-and-compress, that we must process sequentially.

Now, let us describe our recoloring techniques. For interval graphs, Theorem 1 is obtained
using two tools coming from the centralized setting. First, we use Kempe chains that have
been used in several graph coloring proofs in the last decades. Given a graph G and a coloring
c of G, an (a, b)-component is a connected component of G restricted to the vertices colored
a and b. A Kempe component is an (a, b)-component for some pair of colors a, b. One can
remark that, given a proper coloring and an (a, b)-component, permuting the colors a and
b still leaves a proper coloring. In recoloring, this permutation can be performed by using
one extra color as buffer. In a distributed setting, using directly those transformations can
be perilous, as components can be as large as the diameter of the graph. We adapt Kempe
components for distributed algorithms by using an additional color to cut these Kempe
components and then permute locally the colors on these components4. This will allow us to
color independently some parts of the graph with the target coloring.

Our second main tool is a recoloring technique introduced in [10] for recoloring interval
graphs in the centralized setting. We show how to adapt their technique to the distributed
setting. The result of [10] essentially ensures that if a large enough (that is, of size poly(∆))
number of consecutive vertices X are colored in a desirable way, then we can recolor all the
vertices around X with the target coloring by simply recoloring vertices locally. The idea of
the proof consists in sliding little by little the set of vertices X colored with the desirable
coloring from left to right in such a way that when a vertex leaves the set, it has its target
color.

For chordal graphs (Theorem 2), we use Theorem 1 as a black-box, as well as an adaptation
of the distributed partition of chordal graphs into interval pieces from [24]. We then prove
that if we have a recoloring schedule of G[∪j⩾i+1Vj ] then we can adapt it into a recoloring
schedule for G[∪j⩾iVj ] using Theorem 1 and classical recoloring tools.

Notice that the schedule for chordal graphs is large in comparison with the ones for
interval graphs (order of nO(∆) versus poly(∆ · log∗n)). This comes from the fact that in
the extension of the recoloring schedule of G[∪j⩾i+1Vj ] to G[∪j⩾iVj ], we need to leave a
polynomial amount of recoloring steps to recolor vertices of Vi between consecutive recolorings
of vertices of G[∪j⩾i+1Vj ].

The schedule having a log n factor instead of a log∗n factor originates once again from
the decomposition of [24] that uses a logarithmic number of layers.

1.3 Organization of the paper

We start with the related work in Section 2, and some preliminaries in Section 3. Then in
Section 4, we explain how to decompose interval graphs and how to modify colorings in such
graphs. As a corollary, we get our coloring result for interval graphs. Section 5 is devoted
to the recoloring of interval graphs, based on the decomposition. Finally, Section 6 tackles
chordal graphs, describing our decomposition, coloring and recoloring results. Many proofs,
as well as full subsections of Section 5, are deferred to the full version [11].

4 Kempe chains have already been used in the distributed setting, see e.g. [29].
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2 Related work

Distributed coloring

Distributed coloring in bounded-degree and general graphs has been extensively studied.
We refer to the monograph [4] for a general overview of the domain. In the LOCAL model,
the classic coloring problem is (∆ + 1)-coloring, where ∆ is the maximum degree of the
graph. In this paper, we are interested in coloring and recoloring with a nearly optimal
number of colors (which can be much lower than ∆). There are ways to cope with such
small color palette while preserving some locality: studying (multiplicative) approximation
of the optimal coloring [2, 5] and/or restricting to special graph classes, for example planar
graphs [20, 1, 15] or bounded arboricity graphs [3, 19].

The line of work that is the closest to ours is about coloring interval and chordal graphs. It
started with [22] who proved an 8-approximation of the optimal coloring, in time O(log∗n) in
interval graphs. This result was then improved to (1 + ϵ)-approximation in time O

( 1
ϵ log∗n

)
in [23]. The ϵ of this theorem can be as small as 2/ω, which means that [23] obtains an
(ω + 2)-coloring in time O(ω log∗n). Coloring in chordal graphs was considered in [24]. The
authors prove a (1 + ϵ)-approximation in time O

( 1
ϵ log n

)
. Again, the bounds on ϵ allow to

derive an (ω + 2)-coloring, and here the running time is O(ω log n) rounds.

Distributed Reconfiguration

The introduction of recoloring, i.e. reconfiguration of colorings, in the distributed setting
is due to [9]. They, for instance, provide algorithms to recolor trees and subcubic graphs
with one extra color, and an impossibility result for 3-colored toroidal grids with only one
extra color. In particular, they find a constant size schedule with O(log n) communication
rounds on trees if an extra color is allowed. Trees are chordal graphs with ω = 2, hence our
results relate directly to that, and we use a similar Rake-and-Compress approach. Then [13]
considered the distributed reconfiguration of maximal independent sets (MIS). Before these
papers, some results of [29] can be seen as recoloring, as they describe a way to find a
∆-coloring from a given (∆ + 1)-coloring by using “augmenting paths” that actually are
Kempe changes.

Centralized graph recoloring

In the centralized setting, graph recoloring received a considerable attention in the last
decades. In this overview, we will focus on single-vertex reconfiguration, that is, the model
where exactly one vertex is recolored at each step. In that model, it is known that every
k-coloring can be transformed into any other as long as k is at least the degeneracy d of
G plus two [17, 14]. However, the number of recoloring steps is a priori exponential in n.
Cereceda conjectured in [14] that, when k ⩾ d + 2, there exists a quadratic transformation
between any pair of k-colorings of any d-degenerate graph. Bousquet and Heinrich [12]
proved that there always exist O(nd+1) transformation between any pair of k-colorings when
k ⩾ d + 2.

Since chordal graphs are perfect graphs, it is well known that the degeneracy is related to
the cliques number by: d = ω − 1. For interval and chordal graphs, Bonamy et al. [8] proved
that there exists a quadratic transformation between any pair of vertices when k ⩾ ω + 1
and they provide a quadratic lower bound when k = ω + 1. This existence of a quadratic
transformation has been extended to bounded treewidth graphs [7]. Recently Bartier and
Bousquet proved in [10] that, when k ⩾ ω + 3, there always exists a linear transformation
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between any two colorings of a chordal graph. Moreover, in contrast to most of the centralized
recoloring algorithms, this algorithm is “local” and will be used as one of the blocks of our
proof.

Graph decompositions

The first phase of our algorithms consists in decomposing the graph into components of
small diameter with some additional properties. These decompositions are close to what is
known as network decompositions, which are partitions of the nodes of the graph into few
classes, such that every class has all its connected components of small diameter (see [18]
for an overview of this topic, and in particular the recent advances). For geometric graphs,
such as interval, unit-disks graphs, it is known that a network decomposition with a constant
number of classes and constant diameter can be obtained in O(log∗n) rounds [25, 32], which
implies that all the classic problems such as (∆ + 1)-coloring or maximal matching can be
solved in O(log∗n) rounds. For trees, [9] establishes a network decomposition with constant
size components in time O(log n), which is enough for recoloring. For our purpose, which is
to (re)color interval and chordal graphs with few colors, standard network decompositions
are not powerful enough, and we need to build more constrained decompositions. Our
decompositions are inspired by the ones of [23] and [24].

3 Basic properties of interval and chordal graphs

Interval graphs are intersection graphs of intervals of the real line. Proper interval graphs
are the intersection graphs of a set of intervals of size one. Equivalently, they correspond to
interval graphs where no interval is included in the other. It is easy to check that, starting
from an interval graph, and keeping only the intervals that are maximal for inclusion, we get
a proper interval graph.

An interval graph can also be characterized as an intersection graph of subpaths of a
path, and we can extend this definition to define chordal graphs. A graph is chordal if it is
an intersection graph of subtrees of a tree. Equivalently, it is the class of graphs for which
all the cycles of length at least 4 has a chord.

Before we list some properties of interval, proper intervals and chordal graphs, let us
define the notion of degeneracy.

▶ Definition 5. A graph G is d-degenerate if there exists an ordering v1, . . . , vn of V such
that for every i ⩽ n − 1, the number of neighbors of vi in {vi+1, . . . , vn} is at most d.

Let us remind a few facts about interval graphs.

▶ Observation 6. The following holds.
1. Any chordal graph can be colored with ω colors and is (ω − 1)-degenerate [27].
2. The max degree ∆ can be as large as n, even if ω is small (consider n − 1 disjoint small

intervals contained in a big one).
3. In an interval graph, the set of intervals that are minimal for inclusion corresponds to a

proper interval. The same holds for “maximal for inclusion” [23].
4. In any proper interval graph, ∆ ⩽ 2ω − 2 (since every neighboring interval should cross

one of the extremities of the vertex interval.)
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Clique trees, clique paths and borders

An essential tool to study chordal graphs is the notion of clique tree.

▶ Definition 7 (See e.g. [6]). Let G be a chordal graph. A clique tree of G is a tree T

together with a function that associates to every vertex a connected subtree of T . Two vertices
x and y are connected in G if and only if the subtrees of x and y intersect. For each node
u ∈ T , the subset of nodes in G whose subtree contains u is called the bag of u. Note that
each bag of a node of T forms a clique in G, so each bag contains at most ω vertices (and
there always exists a clique tree on at most n nodes).

For interval graphs, the tree T is a path, and it is called the clique path of G (see Figure 4
for an illustration).

We introduce two more notions. Let G be an interval graph. A set of vertices X is said
to be consecutive if it consists in the union of the vertices contained in consecutive cliques of
the clique path of G. The border of X is the subset of X connected to at least one vertex
which is not in X. In other words, it is the set of vertices of the first and last clique of the
clique path containing X that have a neighbor not in X. One can easily notice that all the
vertices of the border of X can be partitioned into two cliques (the ones that belong to the
first and the last clique of the set of bags).
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1, 2 2, 3, 4 3, 4, 5 4, 5, 6 5, 7, 8 7, 9 9, 10 9, 11 11, 12 12, 13, 14 13, 15

Figure 4 The first picture represents a set of intervals. The arrows correspond to points of the
axis where there is a maximal clique. The second picture describes the clique path of the graph,
whose nodes are the maximal cliques.

We will need the following remarks about interval graphs:

▶ Remark 8. Let G be an interval graph given with an interval representation of G. Let x

be a vertex of G. Then:
N(x) contain all the vertices v whose intervals intersect the interval of x.
The removal of N(x) ∪ {x} separates the vertices with interval at the left of x with the
vertices with interval at the right of x.5 A direct consequence is that, for each node x that
is not contained in a bag of a node of one extremity of the clique path, its box separates
the graph.
For every r ⩾ 2, consider the set Y = ∪i⩽rN i(x). The subset of vertices of Y that are
incident to any vertex of V \ Y is composed of at most two cliques A, B. Moreover, there
is a clique path of G[Y ] where A is the first clique and B is the last clique.

5 Note that there might be more components since, for instance, the “left graph” might not be connected.
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4 Decomposing and coloring interval graphs

In the sequential setting, it is easy to compute an interval representation of the graph,
and such a representation is often useful in the design of algorithms. For example, one
can compute a maximum independent set in a greedy manner, scanning the interval by
the increasing right-most endpoint. In our setting, the nodes do not have access to such
a representation, and it is not possible to compute one locally. We will build a weaker
local version of the interval representation to facilitate the design of coloring and recoloring
algorithms. This idea originates from [23, 22].

We now introduce the notion of boxes. Remember that an (a, b)-ruling-set is a set of
nodes S, such that for any u, v ∈ S u and v are at distance at least a, and any node is at
distance at most b from a node of S.

▶ Definition 9. Given a (4, 5)-ruling-set S, for every node v of S, we define its box as its
closed neighborhood in the graph.
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Figure 5 An example of a box decomposition. The boxes are the gray areas. The other areas are
interboxes. The nodes of the ruling sets are the bold intervals. The intervals 6, 8, 10 and 14, are
included into other interval thus they are not considered for the computation of the ruling set.

▶ Proposition 10. For a (4, 5)-ruling-set S in an interval graph G, the following holds:
1. The boxes of the nodes in S are disjoint, and two nodes from two different boxes cannot

be adjacent.
2. The removal of all the boxes leaves a set of connected components, that we call interboxes.

We have a path alternating boxes and interboxes (by defining adjacency between boxes and
interboxes by the existence of an edge linking the two). We call the virtual path the path
on vertex set S whose adjacency is given by the sequence of boxes defined above.

3. The interboxes have diameter at most 11.

The proof, as well as all the other missing proof of this section, can be found in the full
version [11].

Now from a distributed point of view, we say that the nodes compute a box decomposition
if they compute a (4, 5)-ruling-set S, and for every node, either it is in a box, and then it
knows the two adjacent boxes, and the structure of the graph between these boxes, or it
is not in a box, and knows between which two boxes it is, and the structure of the graph
between these boxes.

Let S be a (4, 5)-ruling set of G. If we replace every box a by a single vertex and every
interbox by an edge, the resulting graph is a path called the ruling path. Two vertices of S

are said to be consecutive if they are adjacent in the ruling path and at distance at most r if
they are at distance at most r in the ruling path.

▶ Lemma 11. A box decomposition can be found in O(log∗n) rounds in the LOCAL model.
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Let M be a box decomposition. As in the proof of Lemma 11, there is a natural virtual
path between these boxes. Let B, B′ be two boxes of a box decomposition. We say that
the boxes B, B′ are at distance r, if they are at distance r in the virtual path of the box
decomposition. The subgraph between B and B′ is the subgraph of G composed of the boxes
B, B′, all the boxes B and B′ (in the virtual path) and all the interboxes between B and B′.
Note that if the boxes B and B′ are at distance r, then the subgraph between B and B′ can
be computed in O(r) rounds in the LOCAL model.

We will now provide a technical lemma that will be helpful in several places of the paper.

▶ Lemma 12. Let A, B be two boxes of two nodes at distance 3 and H be the subgraph
between A and B. Let α be a proper k-coloring of H, and let x and y be two arbitrary colors.
Let β be the k-coloring of H made by permuting x and y in α. There exists a (k + 1)-coloring
of H, that corresponds to α on A and β on B.

▶ Lemma 13. Consider the subgraph H induced by the nodes of two boxes A and B, separated
by at least 3k other boxes, and all the nodes in between. Consider also two arbitrary proper
k-coloring α and β of H. Then there exists a (k + 1)-coloring of H, that corresponds to α

on A and β on B.
Given this tool, we easily get the following theorem.

▶ Theorem 3. Interval graphs can be colored with (ω + 1)-colors in O(ω log∗n) rounds in
the LOCAL model.

Proof. One first computes the box decomposition in time O(log∗n), then, given the paths
of boxes, one can iterate an MIS algorithm for paths (e.g. Cole-Vishkin algorithm [16]) to
compute a (3ω, 6ω)-ruling set S of boxes. This uses O(ω log∗n) rounds. Then the nodes of
the boxes of S computes an ω-coloring of their own box. Finally, we use the lemma above to
fill the gaps, which also takes O(ω) rounds. ◀

5 Recoloring interval graphs

The goal of this section is to prove the following theorem.

▶ Theorem 1. Let G be an interval graph and α, β be two proper k-colorings of G. It is
possible to find a schedule to transform α into β in the LOCAL model in O(poly(∆) log∗n)
rounds using at most:

c additional colors, with c = ω − k + 4, if k ⩽ ω + 2, with a schedule of length poly(∆),
1 additional color if k ⩾ ω + 3, with a schedule of length poly(∆),
no additional color if k ⩾ 2ω with a schedule of exponential-in-∆ length.
no additional color if k ⩾ 4ω with a schedule of length O(ω∆).

The result is tight in terms of number of colors for the two last items, because of the
following lemma:

▶ Lemma 14. In interval graphs of clique number ω, if no additional color is allowed, then
finding a recoloring from a c-coloring to a c′-coloring with c, c′ < 2ω requires Ω(n/ω) rounds
in the LOCAL model and a schedule of length Ω(n/ω).

Proof. We will consider the ω-th power of a path. We can build an interval representation of
such a graph, by representing every vertex at position i by the interval [i + 1/4, i + k + 3/4].
If we consider a power of a path of clique number ω, and color its i-th vertex with color i

mod 2ω −1, all the vertices but the first and the last ω ones are frozen (i.e. we cannot change
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their color without changing the color of some vertex in its neighborhood before). Thus, a
recoloring can only happen little by little starting from the extremities of the interval graph.
Thus, a recoloring schedule has length Ω(n) and the nodes in the middle of the power path
cannot stop before Ω(n) rounds, as their slot in the schedule will depend on the length of
the power path. Moreover, a node in the middle needs to know its distance to an extremity,
which takes Ω(n) rounds in the LOCAL model. ◀

5.1 Outline of the proof
We now give an outline of the proof of Theorem 1. The full version [11] contains detailed
explanations and complete proofs for each step of this outline. Let α, β be two k-colorings.

Step 1. Compute a (4, 5)-ruling set S in O(log∗n) rounds.

Step 2. In graph recoloring, instead of transforming α into β, a classical method consists
in proving that both α and β can be recolored into a so-called canonical coloring γ with
desirable properties (see e.g. [8, 10]). If transformations S1, S2 from respectively α and β to
γ exist, then α can be transformed into β via the transformation S1S−1

2 .
Theorem 3 ensures that an (ω + 1)-coloring of G can be found in O(ω log∗n) rounds. Let us
denote by γ such a coloring. The goal of the proof will consist in proving that we can find a
transformation from α to γ.

Step 3. We show that if k ⩾ 2ω, then we can reduce the number of colors without any
additional color. We first compute an independent set S′ of S at constant distance. The
main idea of this step consists in proving that all the vertices in the interboxes between two
consecutive vertices of S′ but the vertices of the boxes of S′ can be recolored with a color
smaller than 2ω without recoloring the boxes of S′ (which guarantees that we can perform
this recoloring simultaneously everywhere in the graph). By repeating this operation twice,
we then prove that all the vertices are recolored with a color smaller than 2ω.

When the number is at least 4ω, we prove a stronger result, since we directly provide a
transformation from α to β in O(ω∆) rounds.

Step 4. At this point, after applying Step 3 if k ⩾ 2ω, we can assume that we have one
additional color. Indeed, in the two first cases of Theorem 1, we are allowed to use at least
one extra color, and when k ⩾ 2ω, we have freed at least one color at Step 3.

The goal of Step 4 consists in coloring some boxes with their colors in γ. To do that, we
will perform some Kempe changes, cut at some large enough distance, using one additional
color. By repeating this process several times, we will prove that a box plus all its neighbors
at distance Ω(poly ∆) can be colored with the target coloring.

Using this technique, we can prove that some portions of diameter Ω(poly(∆)) of the
interval graph which are at distance f(∆) from each other are colored with the target
coloring γ.

Step 5. By Step 4, we can assume that some portions of diameter Ω(poly(∆)) of the interval
graph which are at distance f(∆) from each other are colored with the target coloring γ. We
can now use as a black-box a result of Bartier and Bousquet [10] that ensures that we can
recolor all the vertices between a consecutive set of boxes with the target coloring without
recoloring the border of these sets as long as a sufficiently large number of consecutive vertices
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of the initial coloring are colored “nicely”. Since many consecutive vertices of the initial
coloring are colored with the target coloring and such a coloring is “nice”, we can use the
result of [10] as a blackbox.

After Step 5, all the vertices have received their final color, which concludes the proof.

6 Decomposing, coloring and recoloring chordal graphs

We now investigate how to extend the results from the previous sections to chordal graphs.
The algorithms for coloring and recoloring proceed in roughly two steps. The first step
computes a partition of the chordal graph, obtained by iteratively removing interval subgraphs
with controlled diameter. During the computation of this decomposition, we will assume
that the nodes of the graph have access to a local view of a clique tree of the graph G. These
local views can be computed in a distributed fashion with a constant number of rounds using
the method from [24] (see Section 6.1 for more details).

In the second step, the coloring algorithm consists in adding back step by step the vertices
which have been deleted in the previous phase. Informally speaking, for each connected
component, either the vertices that have been removed are attached to a single clique,
and then we know that all the vertices attached to that clique form a (ω − 1)-degenerate
graph, and we can then give them a color between 1 and ω greedily. Either those vertices
are attached to two cliques at large enough distance, and we can then use the machinery
introduced in Section 4 to color them with ω + 1 colors in total. Since at each step, each
set has bounded diameter, one leader can decide of the coloring for all the vertices of that
set. For the recoloring algorithm, the idea is almost the same. The algorithm constructs
iteratively a recoloring schedule by adding back step by step the vertices which were removed
in the previous phase either using degeneracy or the tools of Section 5.

6.1 Interval decomposition of chordal graphs
▶ Definition 15. Let G be a chordal graph, and H a subgraph of G. We say that H is a
pending interval graph if H is an interval graph, and the border of H is a subset of the first
clique in a clique path of H. We say that H is a separator interval graph, if it is an interval
graph, and the vertices of the border all belong to either the first or the last clique of a clique
path of H.

An interval decomposition of width D and depth ℓ of a chordal graph G is a partition
V1, . . . , Vℓ of the vertices of G such that, G[Vi] is a disjoint union of interval graphs with
diameter at most 3D, and every connected component of G[Vi] is either:

a pending interval in G[V1, ..., Vi];
or a separator interval graph with diameter at least D, in G[V1, ..., Vi].

The result below is adapted from the proofs of [24].

▶ Lemma 16. For every D ⩾ 0, there exists a distributed algorithm which computes an
interval decomposition of width D and depth O(log n) in O(D log n) rounds in the LOCAL
model.

The proof can be found in the full version [11].

6.2 (ω + 1)-coloring chordal graphs
In this section, we show how an interval decomposition can be used to compute an (ω + 1)-
coloring of chordal graphs in the LOCAL model. Namely, we prove the following theorem.
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▶ Theorem 4. Chordal graphs can be colored with (ω + 1)-colors in O(ω log n) rounds in the
LOCAL model.

The proof of Theorem 4 follows from the decomposition of Lemma 16 and the lemma
below.

▶ Lemma 17. There is an algorithm that, given a graph G and an interval decomposition of
G of depth ℓ and width at least 15(ω + 1), computes a (ω + 1) coloring of G in O(ωℓ) rounds
in the LOCAL model.

The proof can be found in the full version [11].

6.3 Recoloring chordal graphs
In this section, we describe how to use an interval decomposition in order to compute a
recoloring schedule. We prove the following theorem:

▶ Theorem 2. Let G be a chordal graph and α, β be two proper k-colorings of G. It is
possible to find a schedule of length nO(log ∆) to transform α into β in O(ω2∆2 log n) rounds
in the LOCAL model using at most:

c additional colors, with c = ω − k + 4, if k ⩽ ω + 2,
1 additional color if k ⩾ ω + 3.

Theorem 2 uses our decomposition (Lemma 16) and the result below.

▶ Lemma 18. Let G be an interval graph and α, β be two proper ω + 3-colorings of G. We
suppose we are given an interval decomposition of width D = Ω(ω2∆2) and depth ℓ of G. It
is possible to find a schedule of length at most O(poly(∆)ℓ) to transform α into β in O(Dℓ)
rounds in the LOCAL model.

Proof. Let D chosen polynomial in ω and ∆ (its value will be specified later). Note that an
interval graph of diameter D = poly(ω, ∆) has a number of nodes that is O(poly ∆), because
this number is upper bounded by D∆ and ω ⩽ ∆. Also let k′ be the total of number of colors
used (including the additional colors). Let us denote by V1, . . . , Vℓ the interval decomposition
of G, and Gi = G[V1 ∪ . . . Vi]. Let α and β the two colorings given as input, and let αi to
βi be the restrictions of α and β to Gi. The algorithm proceeds by building successively
a recoloring schedule λi for Gi from αi to βi, and progressively extending this recoloring
schedule for the rest of the graph. In order to simplify the proof, we will require that the
schedule produced by the algorithm has an additional property, namely that all the vertices
recolored at a step j of the schedule, are recolored with the color j mod k′. Note that we
can easily produce a schedule satisfying this property, up to multiplying its length by a factor
of k′. This property will be useful later in order to extend progressively the schedule.

Since G1 is a disjoint union of interval graphs of diameter O(D), we can compute a
recoloring schedule in G1 from α1 to β1 of length linear in the number of nodes by [10],
which is in O(poly ∆) in O(D) rounds.

Assume that we have computed a recoloring schedule in Gi−1. We now describe how to
extend this schedule to Gi. Before each step of λi−1, we insert t steps during which only the
vertices of Vi are recolored, where t = poly(∆) is the length of the schedule we produced for
interval graphs (multiplied by k′ to ensure the fact that the recolored vertices in each step
go to the same color). Finally, after the last step of λi−1, we insert again t steps where only
the vertices of Vi are recolored such that they can reach their target coloring.
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Let us consider the step j of λi−1, and let σ be the coloring of Gi just before this step.
Let c = j mod k′ be the color with which vertices recolored at this step are recolored with.
We know that σ|Vi

uses only ω + 3 colors. Our goal is to recolor the vertices of Vi so that no
vertex is colored c, and the recoloring step of λi−1 can be safely applied.

Since Gi−1 is obtained from Gi by removing pending interval graphs, and separating
interval graphs of diameter at least D, there is a coloring σ′ of Gi which agrees with σ

on Gi−1 and which uses at most ω + 1 colors, all different from c for the vertices in Vi.
Taking D = 240ω2∆2, the same conditions as for interval graphs are satisfied, and there is
a recoloring schedule from σ to σ′ of length t. Similarly, after the last step of λi−1, if σ is
the current coloring, then only ω + 1 colors are used in Vi, and by Theorem 1, there is a
recoloring schedule from σ to βi in Gi of length t.

This new schedule can be computed for each component of G[Vi] in a centralized way, and
up to multiplying the length of the schedule by k′, we can assume that at step j, vertices are
recolored with the color j mod k′. In a distributed setting, this requires O(D) steps, since
each component has diameter O(D). Since we need O(D) steps to extend the recoloring
schedule from Gi−1 to Gi, the algorithm uses at most O(Dℓ) rounds in total. Moreover, the
schedule has length at most tℓ = (poly ∆)ℓ. ◀

Now, for Theorem 2, from Lemma 16, we get ℓ in O(log n), and we set D in O(ω2∆2),
hence we have an algorithm in O(ω2∆2 log n) rounds that produces a schedule of length
(poly ∆)log n that is nO(log ∆).

References
1 Pierre Aboulker, Marthe Bonamy, Nicolas Bousquet, and Louis Esperet. Distributed coloring

in sparse graphs with fewer colors. Electron. J. Comb., 26(4):P4.20, 2019.
2 Leonid Barenboim. On the locality of some np-complete problems. In Artur Czumaj, Kurt

Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, ICALP 2012, volume 7392,
pages 403–415, 2012. doi:10.1007/978-3-642-31585-5_37.

3 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. Distributed Comput., 22(5-6):363–379, 2010. doi:
10.1007/s00446-009-0088-2.

4 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2013. doi:10.2200/S00520ED1V01Y201307DCT011.

5 Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-decomposition algorithm
and its applications to constant-time distributed computation. Theor. Comput. Sci., 751:2–23,
2018. doi:10.1016/j.tcs.2016.07.005.

6 Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.

7 Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions. Eur. J.
Comb., 69:200–213, 2018. doi:10.1016/j.ejc.2017.10.010.

8 Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël Paulusma.
Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb.
Optim., 27(1):132–143, 2014. doi:10.1007/s10878-012-9490-y.

9 Marthe Bonamy, Paul Ouvrard, Mikaël Rabie, Jukka Suomela, and Jara Uitto. Distributed
recoloring. In DISC 2018, volume 121, pages 12–1, 2018.

10 Nicolas Bousquet and Valentin Bartier. Linear transformations between colorings in chordal
graphs. In ESA 2019, volume 144 of LIPIcs, pages 24:1–24:15, 2019. doi:10.4230/LIPIcs.
ESA.2019.24.

11 Nicolas Bousquet, Laurent Feuilloley, Marc Heinrich, and Mikaël Rabie. Distributed recoloring
of interval and chordal graphs. CoRR, abs/2109.06021, 2021. arXiv:2109.06021.

https://doi.org/10.1007/978-3-642-31585-5_37
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1016/j.tcs.2016.07.005
https://doi.org/10.1016/j.ejc.2017.10.010
https://doi.org/10.1007/s10878-012-9490-y
https://doi.org/10.4230/LIPIcs.ESA.2019.24
https://doi.org/10.4230/LIPIcs.ESA.2019.24
http://arxiv.org/abs/2109.06021


N. Bousquet, L. Feuilloley, M. Heinrich, and M. Rabie 19:17

12 Nicolas Bousquet and Marc Heinrich. A polynomial version of cereceda’s conjecture. CoRR,
abs/1903.05619, 2019.

13 Keren Censor-Hillel and Mikaël Rabie. Distributed reconfiguration of maximal independent
sets. Journal of Computer and System Sciences, 112:85–96, 2020.

14 L. Cereceda. Mixing Graph Colourings. PhD thesis, London School of Economics and Political
Science, 2007.

15 Shiri Chechik and Doron Mukhtar. Optimal distributed coloring algorithms for planar
graphs in the LOCAL model. In SODA 2019, pages 787–804. SIAM, 2019. doi:10.1137/1.
9781611975482.49.

16 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Inf. Control., 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

17 M. Dyer, A. D. Flaxman, A. M Frieze, and E. Vigoda. Randomly coloring sparse random graphs
with fewer colors than the maximum degree. Random Structures & Algorithms, 29(4):450–465,
2006.

18 Mohsen Ghaffari. Network decomposition and distributed derandomization (invited paper).
In SIROCCO 2020, volume 12156, pages 3–18, 2020. doi:10.1007/978-3-030-54921-3_1.

19 Mohsen Ghaffari and Christiana Lymouri. Simple and near-optimal distributed coloring for
sparse graphs. In DISC 2017, volume 91 of LIPIcs, pages 20:1–20:14, 2017. doi:10.4230/
LIPIcs.DISC.2017.20.

20 Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel symmetry-breaking
in sparse graphs. SIAM J. Discret. Math., 1(4):434–446, 1988. doi:10.1137/0401044.

21 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 1980.
22 Magnús M. Halldórsson and Christian Konrad. Distributed algorithms for coloring interval

graphs. In DISC 2014, volume 8784, pages 454–468, 2014. doi:10.1007/978-3-662-45174-8_
31.

23 Magnús M. Halldórsson and Christian Konrad. Improved distributed algorithms for coloring
interval graphs with application to multicoloring trees. Theor. Comput. Sci., 811:29–41, 2020.
doi:10.1016/j.tcs.2018.11.028.

24 Christian Konrad and Viktor Zamaraev. Distributed minimum vertex coloring and maximum
independent set in chordal graphs. In MFCS 2019, volume 138 of LIPIcs, pages 21:1–21:15,
2019. doi:10.4230/LIPIcs.MFCS.2019.21.

25 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On the locality of bounded
growth. In PODC 2005, pages 60–68. ACM, 2005. doi:10.1145/1073814.1073826.

26 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

27 Frédéric Maffray. On the coloration of perfect graphs. In Recent Advances in Algorithms and
Combinatorics, pages 65–84. Springer, 2003.

28 Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. Adv. Comput.
Res., 5:47–72, 1989.

29 Alessandro Panconesi and Aravind Srinivasan. The local nature of δ-coloring and its algorithmic
applications. Combinatorica, 15(2):255–280, 1995.

30 Marinus Johannes Petrus Peeters. On coloring j-unit sphere graphs. Technical report, Tilburg
University, School of Economics and Management, 1991.

31 Ram Ramanathan. A unified framework and algorithm for channel assignment in wireless
networks. Wirel. Networks, 5(2):81–94, 1999. doi:10.1023/A:1019126406181.

32 Johannes Schneider and Roger Wattenhofer. An optimal maximal independent set algorithm
for bounded-independence graphs. Distributed Comput., 22(5-6):349–361, 2010. doi:10.1007/
s00446-010-0097-1.

33 Lieven Vandenberghe and Martin S. Andersen. Chordal graphs and semidefinite optimization.
Found. Trends Optim., 1(4):241–433, 2015. doi:10.1561/2400000006.

OPODIS 2021

https://doi.org/10.1137/1.9781611975482.49
https://doi.org/10.1137/1.9781611975482.49
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1007/978-3-030-54921-3_1
https://doi.org/10.4230/LIPIcs.DISC.2017.20
https://doi.org/10.4230/LIPIcs.DISC.2017.20
https://doi.org/10.1137/0401044
https://doi.org/10.1007/978-3-662-45174-8_31
https://doi.org/10.1007/978-3-662-45174-8_31
https://doi.org/10.1016/j.tcs.2018.11.028
https://doi.org/10.4230/LIPIcs.MFCS.2019.21
https://doi.org/10.1145/1073814.1073826
https://doi.org/10.1137/0221015
https://doi.org/10.1023/A:1019126406181
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1561/2400000006




Non-Blocking Dynamic Unbounded Graphs with
Worst-Case Amortized Bounds
Bapi Chatterjee !

Indraprastha Institute of Information Technology Delhi, India

Sathya Peri !

Indian Institute of Technology Hyderabad, India

Muktikanta Sa !

Télécom SudParis – Institut Polytechnique de Paris, France

Komma Manogna !

Indian Institute of Technology Hyderabad, India

Abstract
Today’s graph-based analytics tasks in domains such as blockchains, social networks, biological
networks, and several others demand real-time data updates at high speed. The real-time updates
are efficiently ingested if the data structure naturally supports dynamic addition and removal of both
edges and vertices. These dynamic updates are best facilitated by concurrency in the underlying
data structure. Unfortunately, the existing dynamic graph frameworks broadly refurbish the static
processing models using approaches such as versioning and incremental computation. Consequently,
they carry their original design traits such as high memory footprint and batch processing that
do not honor the real-time changes. At the same time, multi-core processors–a natural setting for
concurrent data structures–are now commonplace, and the analytics tasks are moving closer to
data sources over lightweight devices. Thus, exploring a fresh design approach for real-time graph
analytics is significant.

This paper reports a novel concurrent graph data structure that provides breadth-first search,
single-source shortest-path, and betweenness centrality with concurrent dynamic updates of both
edges and vertices. We evaluate the proposed data structure theoretically – by an amortized analysis
– and experimentally via a C++ implementation. The experimental results show that (a) our
algorithm outperforms the current state-of-the-art by a throughput speed-up of up to three orders
of magnitude in several cases, and (b) it offers up to 80x lighter memory-footprint compared to
existing methods. The experiments include several counterparts: Stinger, Ligra and GraphOne. We
prove that the presented concurrent algorithms are non-blocking and linearizable.
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1 Introduction

A graph represents the pairwise relationships between objects or entities that underlie the
complex frameworks such as blockchains, social networks, semantic-web, biological networks
and many others. The contemporary applications of graph algorithms in real-time analytics,

© Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Komma Manogna;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 20; pp. 20:1–20:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bapi@iiitd.ac.in
https://orcid.org/0000-0002-2742-4028
mailto:sathya_p@cse.iith.ac.in
https://orcid.org/0000-0002-3471-7929
mailto:muktikanta.sa@gmail.com
https://orcid.org/0000-0002-7070-8210
mailto:cs18mtech11021@iith.ac.in
https://doi.org/10.4230/LIPIcs.OPODIS.2021.20
https://arxiv.org/abs/2003.01697
https://github.com/sngraha/PANIGRAHAM
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Non-Blocking Dynamic Unbounded Graphs

such as product recommendation or influential user tracking [31] over social network graphs,
demand dynamic addition and removal of vertices and/or edges over time. Existing approaches
for graph analytics can be broadly classified in batch analytics, e.g. GraphTinker [29], where
a graph operation is performed over a static temporal snapshot of the data structure, and
stream analytics e.g. Kineograph [14], where a temporal window of incoming data is studied.
In general, these approaches inherently assume that the dynamic updates are monotonic:
the structure of the graph largely remaining unaffected. A deviation from the assumed
data ingestion pattern severely affects their design optimizations. Notwithstanding, in such
techniques concurrency is predominantly limited in a “true” real-time sense. Furthermore, in
anticipation of growing number of edges, they allocate a large chunk of memory. Recent trends
show that there is an emerging niche for the analytics tasks closer to the data sources, such
as mobile and edge devices [8]. On such platforms, though multi-core is getting progressively
ubiquitous [40], unlike data-center-based settings, memory is limited and therefore the
graph applications with unlimited dynamic updates must aim to have a lightweight memory
footprint. In substance, the pursuit of an efficient lightweight real-time concurrent graph
analytics framework with a fresh design approach is imperative.

Concurrent Data Structures
With the rise of multi-core computers, concurrent data structures have become popular, for
they are able to harness the power of multiple cores effectively. Several concurrent data
structures have been developed in recent years such as: stacks [23], queues [4, 24, 32, 35],
linked-lists [13, 21, 22, 48, 49, 50], hash tables [37, 38], binary search trees [6, 10, 13, 19, 39, 43],
etc. On concurrent graphs, Kallimanis et al. [30] presented dynamic traversals and Chatterjee
et al. [12] presented reachability queries. However, graph analytics queries, for example,
single-source-shortest-path (SSSP) queries, which appertain to link-prediction in social
networks or betweenness centrality, which finds applications in stock markets [44], are much
more complex than reachability. The aforementioned queries inherently scan through (almost)
the entire graph. In a dynamic setting, a concurrent update of a vertex or an edge can
potentially render the output of such queries inconsistent.

To elucidate, consider computing the shortest path between two vertices. It requires
exploring all possible paths between them, followed by returning the set of edges that make
the shortest path. It is easy to see that an addition of an edge to another path can make it
shorter than the one returned, and similarly, a removal of an edge (from it) could make it no
longer the shortest. Imagine the addition and removal to be concurrent with the query, which
can certainly benefit the application. Clearly, the return of the query can be inconsistent
with the latest state of the graph.

In a concurrent dynamic graph, we require the updates and queries be consistent. To
motivate, consider the computation of the risk-adjusted performance of a stock-portfolio via
betweenness centrality [44]. In a dynamic setting, where the results of such analytics tasks
influence the high-stake financial decisions, it is significant that a user is supplied with a
consistent query result.

A commonly accepted correctness-criterion for concurrent data structures is lineariz-
ability [27], which intuitively infers that the output of a concurrent execution of a set of
operations should appear as executed in a certain sequential order. Separating a graph
query from concurrent updates by way of locking the shared vertices and edges can achieve
linearizability. However, locking the portion of the graph that requires access by a query,
which often could very well be its entirety, would obstruct a large number of concurrent fast
updates. Even an effortful interleaving of the query- and update-locks at a finer granularity
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does not protect against pitfalls such as deadlock, convoying, etc [25]. A more attractive
option is to implement non-blocking (lock-free) progress, which ensures that some non-faulty
(non-crashing) threads complete their operations in a finite number of steps [26]. Surprisingly,
non-blocking linearizable design of queries that synchronize with concurrent updates in a
dynamic graph are difficult.

Proposed work. In this paper, we describe the design and implementation of a graph data
structure, which provides (a) three useful operations – breadth-first search (BFS), single-
source shortest-path (SSSP), and betweenness centrality (BC), (b) dynamic updates of edges
and vertices concurrent with the operations, (c) non-blocking progress with linearizability,
and (d) a light memory footprint. We call it PANIGRAHAM a: Practical Non-blocking
Graph Algorithms.

Algorithm Overview
In a nutshell, we implement a concurrent non-blocking dynamic directed graph data structure
as an adjacency-list formed by a composition of lock-free sets: a lock-free hash-table and
multiple lock-free binary search trees (BSTs). The set of outgoing edges Ev from a vertex
v ∈ V is implemented by a BST, whereas, v itself is a node of the hash-table (as shown in
Figure 1). Addition/removal of a vertex amounts to the same operation of a node in the
lock-free hash-table, whereas, addition/removal of an edge translates likewise to a lock-free
BST. Although lock-free progress is composable [16], thereby ensuring lock-free updates
in the graph, however, optimizing these operations is nontrivial as shown by us in this
paper. The operations – BFS, SSSP, BC – are implemented by specialized partial snapshots
of the composite data structure. In a dynamic concurrent non-blocking setting, we apply
multi-scan/validate [1] to ensure the linearizability of a partial snapshot. We prove that these
operations are non-blocking. The empirical results show the effectiveness of our algorithms.

Related work
Libraries of parallel implementation of graph operations are abundant in literature. A
relevant survey can be found in [5]. To mention a few well-known ones: PowerGraph [20],
Galois [33], Ligra [45], Ligra+ [46], MGraph [51], Congra [42], Congra+ [41]. However, they
primarily focus on static queries and natively do not allow updates to the data structure, let
alone concurrency.

Broadly, these libraries use the compressed sparse row (CSR) format, a read-only repre-
sentation, to implement a graph. In principle, the basic designs of an adjacency list and the
CSR are almost identical [47], however, in practice the CSR exhibits better cache efficiency
due to locality [7]. In a dynamic setting, a serious drawback of the CSR format is the
need for reprocessing the entire structure for vertex updates and the array that stores edge
information for edge updates.

To our knowledge, Stinger [18] was the first large-scale practical implementation that
supported dynamic updates in a graph. They implement a graph as an edge-list: edges
incident on a vertex are stored in a linked-list of edge-blocks. The vertices constitute a
logical vertex array, thereby the edge-blocks are referenced. The edge-blocks contain the
metadata such as timestamps and mark of valid edges. In practice, they allocate a big chunk

a Panigraham is the Sanskrit translation of Marriage, which undoubtedly is a prominent event in our
lives resulting in networks represented by graphs.
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of memory (by default, half of the available system memory) to minimize cost of allocation
for addition of edges after initialization. The removal of both edges and vertices is provided
via metadata-based marks. However, vertex addition requires copying the entire structure.
Furthermore, by design update operations are not allowed to be concurrent with queries.
In contrast, PANIGRAHAM is concurrent, non-blocking, uses a hash-table for vertex-list
and BSTs to contain edge-nodes. Moreover, the memory consumption is determined by the
actual data contained in the data structure. Stinger was extended and optimized in some
recent works such as GraphOne [34], GraphTinker [29]. GraphOne hybridizes an edge-list
and an adjacency-list to support batch processing. Their methodology maintains versions of
these lists to provide intermittent batch updates to an analytics engine. Clearly, for real-time
lightweight settings, this method suffers from similar drawbacks as Stinger. On the other hand,
GraphTinker builds upon Stinger and replaces linear probing with better hashed searches
on the edge-lists. Their approach also shows some load balancing as the data structure
grows. Nevertheless, none of these methods are efficient for dynamic vertex additions, and
updates and queries are inherently sequentialized. By contrast, PANIGRAHAM provides fully
concurrent queries and updates as a fundamental design component and ensures correctness
(linearizability). Aspen [17] is another recent framework that extends Stinger to support
graph updates with graph queries. However, the interface provided by them is very different -
acquire, set and release. It is not immediately clear how to use their framework for concurrent
graph updates and compare it with our framework.

Contributions and paper summary

First, we describe the non-blocking directed graph data structure as a composition of
lock-free hash table and binary search trees. (Section 2)

After that, we introduce our novel framework as an interface operation with its cor-
rectness and progress guarantee (Section 3) followed by the descriptions of concurrent
implementation of BFS, SSSP, and BC.

We present an experimental evaluation of our algorithm comparing it against the existing
parallel graph libraries Ligra [45] and Stinger [18] with respect to the throughput and
memory footprint (Section 4). Our experiments demonstrate the power of non-blocking
concurrency for dynamic updates in an application. Utilizing the parallel compute
resources – 56 threads – in a standard multi-core machine, our implementation performs
in some cases (a) up to 5x better than Graphone (b) up to 10x better than Ligra and
(c) 40x better than Stinger for BFS, SSSP, and BC algorithms. Significantly, for an
identically initialized data structure and an identical random orderly selection of graph
operations, we achieve up to 80x lighter memory footprint compared to Stinger (Section 4).
In comparative terms, the most recent counterpart of our work is GraphTinker [29], who
report up to 4x speedup in comparison with Stinger. Thus, the presented algorithm
outperforms its latest competitor.

Finally, we present an amortized analysis (Section 5) to theoretically contrast the worst
case cost of our method against that of Ligra and Stinger. To the best of our knowledge,
this is the first work on amortized upper bound for concurrent dynamic graph operations.
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2 Non-blocking Graph Data Structure

Preliminaries
Our discussion uses a standard shared-memory model that supports atomic read, write,
fetch-and-add (FAA), and compare-and-swap (CAS) instructions.

Background on the Graph Operations. A graph is represented as a pair G = (V, E), where
V is the set of vertices and E is the set of edges. An edge e ∈ E, e := (u, v) represents a
pair of vertices u, v ∈ V . In a directed graphb e := (u, v) is an ordered pair, thus has an
associated direction: emanating (outgoing) from u and terminating (incoming) at v. We
denote the set of outgoing edges from v by Ev. Thus, ∪v∈V Ev = E. Each edge e ∈ E has a
weight we. A node v ∈ V is said reachable from u ∈ V : v ←↩ u if there are consecutive edges
{e1, e2, . . . , en} ⊆ E such that e1 emanates from u and en terminates at v.
1. Breadth First Search (BFS): Given a query vertex v ∈ V , output each vertex u ∈ V −v

reachable from v. The collection of vertices happens in a BFS order : those at a distance
d1 from v are collected before those at a distance d2 > d1.

2. Single Source Shortest Path (SSSP): Given a vertex v ∈ V , find a shortest path with
respect to total edge-weight from v to every other vertex u ∈ V − v. Note that, given a
pair of nodes u, v ∈ V , the shortest path between u and v may not be unique.

3. Betweeness Centrality (BC): Given a vertex v ∈ V , compute BC(v) =
∑

s,t∈V
σ(s,t|v)
σ(s,t) ,

where σ(s, t) is the number of shortest paths between vertices s, t ∈ V and σ(s, t|v) is
that passing through v. BC(v) indicates the prominence of v in V and finds several
applications where influence of an entity in a network is to be measured.

The Abstract Data Type (ADT)
Consider a weighted directed graph G = (V, E) as defined before. A vertex v ∈ V has an
immutable unique key drawn from a totally ordered universe. For brevity, we denote a vertex
with key v: v(v) by v itself. Extending on the notations used in Section 1, we denote a directed
edge with weight w from the vertex v1 to v2 as (v1, v2|w) ∈ E. We consider an ADT A

as a set of operations: A = {PutV(v), RemV(v), GetV(v), PutE(v1, v2|w), RemE(v1,

v2), GetE(v1, v2), BFS(v), SSSP(v), BC(v)} on G.

1. A PutV(v) updates V to V ∪ v and returns true if v /∈ V , otherwise it returns false
without any update.

2. A RemV(v) updates V to V − v and returns true if v(v) ∈ V , otherwise it returns false
without any update.

3. A GetV(v) returns true if v ∈ V , and false if v /∈ V .
4. A PutE(v1, v2|w)

1. updates E to E ∪ (v1, v2|w) and returns ⟨true,∞⟩ if v1 ∈ V ∧ v2 ∈ V ∧ (v1, v2|·) /∈ E,
2. updates E to E − (v1, v2|z) ∪ (v1, v2|w) and returns ⟨true,z⟩ if (v1, v2|z) ∈ E,
3. returns ⟨false,w⟩ if (v1, v2|w) ∈ E without updates,
4. returns ⟨false,∞⟩ if v1 /∈ V ∨ v2 /∈ V without updates.

5. A RemE(v1, v2) updates E to E − (v1, v2|w) and returns ⟨true,w⟩ if (v1, v2|w) ∈ E,
otherwise it returns ⟨false,∞⟩ without any update.

6. A GetE(v1, v2) returns ⟨true,w⟩ if (v1, v2|w) ∈ E, otherwise it returns ⟨false,∞⟩.

b In this paper we confine the scope of discussion to directed graphs only.
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struct bucket {
VNode vn;

}
struct HNode {

bucket [];
int size;
HNode pred;

}
class VNode {

int v;
VNode vnxt;
ENode enxt;
OpItem oi;

}

(a)

class OpItem {
int ecnt, VisA [];
· · · // Other fields

}
class ENode {

int e;
double w;
ENode el, er;
VNode ptv;

}
class SNode {

VNode n;
SNode nxt, p;
int ecnt;

}
(b)

4

3
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(c)

B[0] B[1] B[2] B[3]

4 1

5

7

4

1

ENode

VNode

7

3

(d)

Figure 1 (a) and (b) Data structure components, (c) A sample directed graph, (d) Our imple-
mentation of (c).

7. A BFS(v), if v ∈ V , returns a sequence of vertices reachable from v arranged in a BFS
order as defined before. If v /∈ V , it returns NULL.

8. An SSSP(v), if v ∈ V , returns a set S(v) = {d(vi)}vi∈V , where d(vi) is the summation of
the weights of the edgesc on the shortest-path between v and vi if vi ←↩ v, and d(vi) =∞,
if vi ̸←↩ v. Note that d(v) = 0. There can be multiple paths between v and vi with the
same sum of edge-weights. If v /∈ V , it returns NULL.

9. A BC(v) returns the betweenness centrality of v as defined before, if v ∈ V . It returns
NULL if v /∈ V .

A precondition for (v1, v2|w) ∈ E is v1 ∈ V ∧ v2 ∈ V .

Data Structure Components
To facilitate both an efficient traversal and lock-freedom, we build the data structure based
on a composition of a lock-free hash-table implementing the vertex-list, and lock-free BSTs
implementing the edge-lists. On a skeleton of this composition, we include the design
components for efficient traversals and (partial) snapshots. This is a more efficient design
as compared to Chatterjee et al.’s approach [12] where the component dictionaries are
implemented using lock-free linked-lists only.

More specifically, the nodes of the vertex-list are instances of the class VNode, see
Figure 1(a). A VNode contains the key of the corresponding vertex along with a pointer to a
BST implementing its edge-list. The most important member of a VNode is a pointer to an
instance of the class OpItem, which facilitates anchoring of the traversals as described above.

The OpItem class, see Figure 1(b), encapsulates an array VisA of the size equal to the
number of threads in the system, a counter ecnt, and other algorithm specific indicators,
which we describe in Section 3 while specifying the queries. An element of VisA simply keeps
a count of the number of times the node is visited by a query performed by the corresponding

c We limit our discussion to positive edge-weights only.
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thread. The counter ecnt is incremented every time an outgoing edge is added or removed
at the vertex. This serves an important purpose of notifying a thread if the same edge is
removed and added since the last visit.

The class ENode, see Figure 1(b), structures the nodes of an edge-list. It encapsulates
a key, the edge-weight, the left- and right-child pointers and a pointer to the associated
VNode where the edge terminates; the key in the ENode is that of the VNode; thus each ENode
delegates a directed edge. The VNodes are bagged in a linked-list being referred to by a
pointer from the buckets, see Figure 1(a). A resizable hash-table is constructed of the arrays
of these buckets, wherein arrays are linked in the form of a linked-list of HNodes.

At the bare-bones level, our resizable vertex-list derives from the lock-free hash-table of
Liu et al. [37], whereas the edge-lists extend the lock-free BST of Howley et al. [28]. We
introduce the OpItem fields in hash-table nodes. To facilitate non-recursive traversal in the
lock-free BST, we use stacks. As we explain later, aligning the operations of the hash-table
to the state of OpItem therein brings in nontrivial challenges.

The last but a significant component of our design is the class SNode, see Figure 1(b). It
encapsulates the information to validate a scan of the graph to output a consistent specialized
partial snapshot. More specifically, it packs the pointers to VNodes visited during a scan
along with two pointers nxt and p to keep track of the order of their visit. The field ecnt
records the ecnt counter of the corresponding visited VNode, which enables checking if the
visited VNode has had any addition or removal of an edge since the last visit.

Non-blocking Data Structure Construction
Having these components in place, we construct a non-blocking graph data structure in
a modular fashion. Refer to Figure 1(d) depicting a partial implementation of a sample
directed graph shown in Figure 1(c). The ENodes, shown as circles in Figure 1(d), with their
children and parent pointers make lock-free internal BSTs corresponding to the edge-lists. For
simplicity we have only shown the outgoing edges of vertex 5 in Figure 1(d) while the edges
of other vertices are represented by small triangles. Thus, whenever a vertex has outgoing
edges, the corresponding VNode, shown as small rectangles therein, has a non-null pointer
pointing to the root of a BST of ENodes. The VNodes themselves make sorted lock-free
linked-lists connected to the buckets of a hash-table. The buckets are cells of a bucket-array
that implement the lock-free hash-table. When required, we add/remove bucket-arrays for
an unbounded resizable dynamic design. The lock-free VNode-lists have two sentinel VNodes:
vh and vt initialized with keys -∞ and ∞, respectively.

We adopt the well-known technique of pointer marking – using a single-word CAS– via
bit-stealing [28, 37] to perform lazy non-blocking removal of nodes. Concretely, on a common
x86-64 architecture, memory has a 64-bit boundary and the last three least significant bits
are unused; this allows us to use the last significant bit of a pointer to indicate first a logical
removal of a node and thereafter detaching it from the data structure. Specifically, an HNode,
a VNode, and an ENode is logically removed by marking its pred, vnxt, and el pointer,
respectively. We call a node alive which is not logically removed.

3 PANIGRAHAM Framework

In this section, we describe a non-blocking algorithm that implements the ADT A . The
operations M :={PutV, RemV, GetV, PutE, RemE, GetE }⊂ A use the interface
of the hash-table and BST with interesting non-trivial adaptation to our purpose. In the
permitted space we describe the execution, correctness and progress property of the operations
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1: Operation Op(v)
2: tid ← GetThId();// get thread-id
3: if (isMrkd(v)) then
4: return NULL; //Vertex is not present
5: return Scan(v, tid);//Invoke Scan

6: Method Scan(v, tid)
7: list⟨SNode⟩ ot, nt ; //Trees to hold the nodes
8: ot ← TreeCollect (v, tid); //1st Collect
9: while (true) do //Repeat the tree collection

10: nt ← TreeCollect (v, tid); //2nd Collect
11: if (CmpTree (ot, nt)) then
12: return nt;//return if two collects are equal
13: ot ← nt;
14: Method CmpTree(ot, nt)
15: if (ot = NULL ∨ nt = NULL) then
16: return false;
17: oit ← ot.head, nit ← nt.head;
18: while (oit ̸= ot.tail ∧ nit ̸= nt.tail ) do
19: if (oit.n ̸= nit.n ∨ oit.ecnt ̸= nit.ecnt ∨

oit.p ̸= nit.p) then
20: return false; //Both the trees are not equal
21: oit ← oit.nxt; nit ← nit.nxt;
22: if (oit.n ̸= nit.n ∨ oit.ecnt ̸= nit.ecnt ∨ oit.p
̸= nit.p) then //Both the trees are not equal

23: return false ;
24: else return true ; //Both the trees are equal

25: Method ChkVisit(adjn, tid, count)
26: if (adjn.oi.VisA [tid] = count) then
27: return true;
28: else return false ;
29: Method TreeCollect(v, tid)

30: queue ⟨SNode ⟩ que; //Queue used for traversal
31: list⟨SNode ⟩st; cnt ←cnt + 1; //List to keep

of the visited nodes
32: v.oi.VisA [tid] ← cnt;
33: sn←new CTNode(v,NULL,NULL,

v.oi.ecnt);//Create a new SNode
34: st.Add(sn);que.enque(sn);
35: while (¬que.empty()) do //Iterate all vertices
36: cvn ← que.deque(); // Get the front node
37: if (isMrkd (cvn)) then
38: continue;// If marked then continue
39: itn ← cvn.n.enxt; //Get the root ENode
40: stack ⟨ENode ⟩ S; // stack for inorder traversal
41: /*Process all neighbors of cvn in the order of
42: inorder traversal, as the edge-list is a BST*/
43: while (itn ∨ ¬S.empty()) do
44: while (itn ) do
45: if (¬isMrkd(itn)) then
46: S.push(itn); // push the ENode

47: itn ← itn.el;
48: itn ← S.pop();
49: if (¬isMrkd(itn)) then //Validate it
50: adjn ← itn.ptv;
51: if (¬isMrkd (adjn)) then //Validate it
52: if (¬ChkVisit (adjn, tid, cnt)) then
53: adjn.oi.VisA [tid] ← cnt; //Mark it
54: //Create a new SNode
55: sn ← new CTNode(adjn,

cvn,NULL,adjn.oi.ecnt);
56: st.Add(sn); //Insert sn to st

57: que.enque(sn); //Push sn into the que

58: itn ← itn.er;
59: return st; //The tree is returned to the Scan

Figure 2 Framework interface operation for graph queries.

Q := {BFS, SSSP, BC} ⊂ A . To de-clutter the presentation, we encapsulate the three
queries in a unified framework. The framework comes with an interface operation Op. Op is
specialized to the requirements of the three queries. The functionality of Op is presented
in pseudo-code in Figures 2. Due to space constraints pseudo-code of the operations BFS,
SSSP, and BC and detail descriptions are presented in the technical report [11].

Before describing the algorithm, it is important to specify its correctness and progress
guarantee. In essence, we need to establish that during any execution the invariants corre-
sponding to a consistent state of the data structure are satisfied, which are: (a) each edge-list
maintains a BST order based on the ENode’s key e, and alive ENodes are reachable from enxt
of the corresponding VNode, (b) a VNode that holds a pointer to a BST containing any alive
ENode is itself alive, (c) each alive VNode is reachable from vh and vertex-lists connected to
buckets are sorted based on the VNode’s keys v, and (d) an HNode which contains a bucket
holding a pointer to an alive VNode is itself alive and an alive HNode is always connected to
the linked-list of HNodes.

To prove linearizability [27], we describe the execution generated by the data structure as
a collection of method invocation and response events. We assign an atomic step between
the invocation and response as the linearization point (LP) of a method call (operation).
Ordering the operations by their LPs provide a sequential history of the execution. We
prove the correctness of the data structure by assigning a sequential history to an arbitrary
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execution which is valid, i.e., it maintains the invariants. Furthermore, we argue that the
data structure is non-blocking by showing that the queries would return in a finite number
of steps if no update operation happens and hence is obstruction-free [26]. Moreover in an
arbitrary execution at least one update operation returns in a finite number of steps and as
a result is lock-free [26]. The details are provided in technical report [11].

Pseudo-code convention. We use p.x to denote the member field x of a class object
pointer p. To indicate multiple return objects from an operation we use ⟨x1, x2, . . . , xn⟩.
To represent pointer-marking, we define three procedures: (a) isMrkd(p) returns true if
the last significant bit of the pointer p is set to 1, else, it returns false, (b) Mrk(p) sets
the last significant bit of p to 1, and (c) UnMrk(p) sets the same to 0. An invocation of
CVnode(v), CEnode(e) and CTNode(v), creates a new VNode with key v, a new ENode
with key e and a new SNode with a VNode v(v) respectively. For a newly created VNode,
ENode and SNode the pointer fields are initialized with NULL value.

The execution pipeline of Op is presented at lines 1 to 5 in Algorithm 2. Op intakes a
query vertex v. It starts with checking if v is alive at Line 3. In the case v was not alive, it
returns NULL. For this execution case, which results in Op returning NULL, the LP is at the
atomic step (a) where Op is invoked in case v was not in the data structure at that point,
and (b) where v was logically removed using a CAS in case it was alive at the invocation of
Op.

Now, if v was alive, it proceeds to perform the method Scan, Line 6 to 13. Scan repeatedly
performs (specialized partial) snapshot collection of the data structure along with comparing
every consecutive pair of scans, stopping when a consecutive pair of collected snapshots are
found identical. Snapshot collection is structured in the method TreeCollect, Line 29
to 59, whereas comparison of collected snapshots in performed by the method CmpTree,
Line 14 to 24.

Method TreeCollect performs a BFS traversal in the data structure to collect pointers
to the traversed VNodes, thereby forming a tree. A cell of VisA corresponding to thread-id is
marked on visiting it; notice that it is adaptation of the well-known use of node-dirty-bit for
BFS [15]. The traversal over VNodes in facilitated by a queue: Line 30, whereas, exploring
the outgoing edges at each VNode, equivalently, traversing over the BST corresponding to its
edge-list uses a stack: Line 40. The snapshot collection for the queries BFS and BC are
identical. For SSSP, where edge-weights are to be considered, the snapshot collection is
optimized in each consecutive scan based on the last collection. At the core, the collected
snapshot is a list of SNodes, where each SNode contains a pointer to a VNode, pointers to the
next and previous SNodes and the value of the ecnt field of the OpItem of the VNode.

Method CmpTree essentially compares two snapshots in three aspects: whether the
collected SNodes contain (a) pointers to the same VNodes (b) have the same SNode being
pointed by previous and next, and (c) have the same ecnt. The three checks ensure that a
consistent snapshot is the one which has its collection lifetime not concurrent to (a) a vertex
either added to or removed from it, (b) a path change by way of addition or removal of
an edge, and, (c) an edge removed and then added back to the same position, respectively.
Thus, at the completion of these checks, if two consecutive snapshots match, it is guranteed
to be unchanged during the time of the last two TreeCollect operations. Clearly, we can
put a linearization point just after the atomic step where the last check is done: Line 19
or 22, where CmpTree returns.

Now, it is clear that any q ∈ Q does not engage in helping any other operation. Fur-
thermore, an m ∈M does not help a q ∈ Q. Thus, given an execution E as a collection of
operation calls belonging to A , by the fact that the data-structures hash-table and BST are

OPODIS 2021



20:10 Non-Blocking Dynamic Unbounded Graphs

lock-free, and whenever no PutV, PutE, RemV, and RemE happen, a q ∈ Q returns, we
infer that the presented algorithm is non-blocking. In Appendix A, we present the details of
each of the operations.

Fundamentally, the functionalities of BFS, SSSP and BC queries are tailored by spe-
cialized construction of corresponding OpItem objects according to the requirements of their
respective partial snapshots. As mentioned above, these queries are obstruction-free. In the
technical report [11], we present the details of each of the queries.

4 Experiments

In this section, we describe the experimental evaluation of our non-blocking graph algorithms
against three well-known existing batch analytics methods: (a) Stinger [18], (b) Ligra [45],
and (c) GraphOne [34].

Dataset. We use (a) a standard synthetic dataset – R-MAT graphs [9] – with power-law
distribution of degrees, and (b) real-life SNAP{EmailEuAll, Slashdot0811, socEpinions1,
and WikiVot} [36] graph dataset.

Algorithms. While Stinger provides dynamic edge addition and removal and vertex removal
operations, Ligra is built for static queries. However, these libraries do not allow concurrent
updates with queries: we execute dynamic vertex and edge updates by intermittent sequential
addition and removal. As explained earlier, we needed the repeated snapshot collection
and validation methodology to guarantee linearizability of graph queries. However, if the
consistency requirement is not as strong as linearizability, we can still have non-blocking
progress if we collect the snapshots only once, i.e., we stop the scan algorithm after a single
round of snapshot collection. At the cost of theoretical consistency, we gain a lot in terms of
throughput, which is the primary demand of the analytics applications, who often go for
approximate queries. Thus, the experiments include the following methods: (1) PG-Cn:
Linearizable PANIGRAHAM, (2) PG-Icn: Inconsistent PANIGRAHAM, (3) Ligra, (4)
Stinger, and (5) GraphOne. Note that, while all the libraries provide BFS queries, only
Ligra supports SSSP and BC.

The choice of the competitors. One clear advantage of PANIGRAHAM over each of the
lately developed dynamic graph frameworks, such as GraphOne [34] and GraphTinker [29],
is that in a dynamic setting these frameworks do not provide any direct or intuitive method
for vertex removal. The dynamic property of the graph in these frameworks is primarily with
regards to the edges. While keeping the requirement for having support of dynamic vertex
and edges, we zeroed on Ligra [18] and Stinger [45] for comparisons. We also compare
the results of BFS on GraphOne [34] with concurrent PutE, and RemE operations by
keeping a fixed number of vertices.

Experimental Setup. We conducted our experiments on a system with Intel(R) Xeon(R)
E5-2690 v4 CPU packing 56 cores with a clock speed of 2.60GHz. There are 2 logical threads
for each core and each having a private 64KB L1 and 256KB L2 cache. The 35840KB L3
cache is shared across the cores. The system has 32GB of RAM and 1TB of hard disk. It
runs on a 64-bit Linux operating system. All implementationsdare in C++ without garbage
collection. We used Posix threads for multi-threaded implementation.

d The source code is available on https://github.com/PDCRL/PANIGRAHAM.

https://github.com/PDCRL/PANIGRAHAM
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Figure 3 Latency of the executions containing Op: (1) BFS ((a), (b), and (c)) on a graph of size
|V |= 131K and |E|= 2.44M , (2) SSSP ((d), (e), and (f)) on a graph of size |V |= 8K and |E|= 80K,
and (3) BC ((g), (h), and (i)) on a graph of size |V |= 16K and |E|= 160K. X-axis and Y-axis units
are the number of threads and time in second, respectively.

The experiments start with a graph instance populating the data structure. At the
execution initialization, we spawned a fixed set of threads (7, 14, 28 and 56). During
the runtime, each thread randomly performed a set of operations chosen from a certain
random workload distribution. The random workload pre-constructed and the same across
all experiments. Each experiment was executed for 5 iterations. After ignoring the initial 5%
operations for warm-up and we took the average of the remaining operations. We considered
two evaluation metrics: (i) the latency: total time taken to complete the set of operations,
after a fixed warm-up – 5% of the total number of operations, and (ii) the memory footprint.

Workload Distribution. In each micro-benchmark, first we loaded a graph instance, there-
after performed warm-up operations, followed by an end-to-end run of 104 operations in
total, assigned in a uniform random order to the threads. We used a range of distribu-
tions over an ordered (family of) set of operations: {Op, Vertex-Updates:={PutV, RemV },
Edge-Updates:={PutE, RemE }}. A sample label, say, 20/60/20 on a performance plot refers
to a distribution {Op : 20%, {PutV : 30%, RemV : 30%}, {PutE : 10%, RemE : 10%}}.
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Figure 4 Latency of the executions containing Op: BFS ((a), (b), and (c)) on a graph of size
|V |= 65K and |E|= 500K. Total 104 operations were performed with given distributions. The
distributions for each cases is: BFS/PutE/RemE, e.g., 2/49/49 : {BFS : 2%, PutE : 49%, RemE :
49%}. X-axis unit is the number of threads.

Experimental Observations and Discussion

Figure 3 to 10 show the evaluation results. In the following we highlight the significant
experimental observations.
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Figure 5 The memory footprint during the run-time corresponding to the workload distribution
10/45/45 as plotted in Figures 3(c), 3(f) and 3(i).

Scalability. See Figure 3; the concurrent methods scale well with the number of threads
irrespective of the workload and graph size, whereas Stinger shows negligible scalability.
With higher proportion of queries in the workload, Ligra starts scaling. This shows that
concurrency in dynamic analytics is a natural way to scale-up.

GraphOne vs PANIGRAHAM. GraphOne [34] does not allow vertex updates. Unlike
Stinger and Ligra, wherein copying the allocated graph structure to a new memory-location
was a workaround, the GraphOne interface does not let the structure of the allocated graph
be retrieved, thus disallowing any obvious possibility of PutV and RemV operations. Thus,
the only experimental comparison of PG-Cn and PG-Icn with GraphOne was in regards to
concurrent executions of BFS, PutE and RemE operations by fixing the number of vertices.
Figure 4 depicts different workloads and with a graph having a fixed number of vertices. We
observe that for the chosen graphs sizes and the common workload, that well represent a
dynamic size, GraphOne exhibits severely limited scalability with the number of threads, in
comparison to PG-Cn and PG-Icn.
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Figure 6 Consistent concurrent analytics of PG-Cn against Stinger: the execution latency of BFS
is plotted for 56 threads for different graph-sizes as labeled on x-axis: {(V/E), (1) : 1K/10K, (2) :
8K/80K, (3) : 16K/160K, (4) : 32K/320K, (5) : 65K/500K}.

Memory footprint. Figure 5 shows that Stinger has approximately 80x heavier memory
footprint in comparison with PG-Cn or PG-Icn for executions with BFS queries. The reason
can be traced in the design of Stinger, whereby it pessimistically allocates a large chunk
of memory. For SSSP and BC queries, wherein the OpItem object gets bigger to facilitate
partial snapshot collection, Ligra gets advantage of compact CSR representation. However,
in no case the allocated memory by PG-Cn or PG-Icn spills as drastically as Stinger.

Concurrency vs. Batch analytics. Figure 6 shows that PG-Cn offers two to four orders of
magnitude speed-up in comparison with state-of-the-art Stinger for a given standard system
setting. It clearly implies that a concurrent analytics framework can vastly improve on the
existing methods of batch analytics.
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Figure 7 Latency of the executions containing Op: BFS. In the 3D-plots, z-axis indicates the
total time in seconds for an end-to-end run of 104 operations uniformly distributed according to the
respective distributions. The dataset sizes as labeled on the y-axis are {(V/E), {(1) : 1K/10K, (2) :
8K/80K, (3) : 16K/160K, (4) : 32K/320K, (5) : 65K/500K}.

Overall advantage of Concurrency. Having seen the comparative performance of Stinger-
based batch analytics and the proposed consistent concurrent analytics framework, now we
compare both the consistent and high performing inconsistent variants of PANIGRAHAM
with a lightweight static framework Ligra adopted to the batch analytics setting (as noted
earlier, Stinger and GraphOne do not support SSSP and BC queries). See Figures 7, 8, and
9. For smaller datasets, as well as for higher update workloads, both PG-Cn and PG-Icn
outperform Ligra. As the query workload grows i.e., the overall workload gets closer to static,
CSR based method exploits inline parallelization with lower cache misses, thus Ligra gets
advantage. Still, PG-Icn decisively performs better than Ligra over the entire range of graph
sizes and workload distribution. Notice that, in some cases, as we move from 28 to 56 threads,
hyperthreading activates leading to cache thrashing, which limits CSR’s optimization; in the
same way, in some cases, for higher thread contention PG-Cn’s performance also suffers.
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Figure 8 End-to-end latency of the executions containing Op: SSSP. The plotting description is
similar to that of Fig. 7. The graph sizes as labeled on the y-axis are {(V/E), (1) : 1K/10K, (2) :
4K/30K, (3) : 8K/50K, (4) : 8K/70K, (5) : 8K/80K}.
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Figure 9 End-to-end latency of the executions containing Op: BC. The plotting description is
similar to that of Fig. 7. The graph sizes as labeled on the y-axis are {(V/E), (1) : 1K/10K, (2) :
2K/20K, (3) : 4K/40K, (4) : 8K/80K, (5) : 16K/120K}.

7 14 28 56
0

50

100

150

#threads

#
m

od
ifi

ca
ti

on
s

#V = 66K,#E = 420K

60/20/20
40/40/20
20/60/20

(a) Op:BFS.

7 14 28 56
0

50

100

150

#threads

#
m

od
ifi

ca
ti

on
s

#V = 4K,#E = 30K

60/20/20
40/40/20
20/60/20

(b) Op:SSSP.

7 14 28 56
0

50

100

150

#threads

#
m

od
ifi

ca
ti

on
s

#V = 8K,#E = 50K

60/20/20
40/40/20
20/60/20

(c) Op:BC.

7 14 28 56
0

2

4

6

#threads

#
co

lle
ct

s

#V = 66K,#E = 420K

60/20/20
40/40/20
20/60/20

(d) Op:BFS.

7 14 28 56
0

2

4

6

#threads

#
co

lle
ct

s
#V = 4K,#E = 30K

60/20/20
40/40/20
20/60/20

(e) Op:SSSP.

7 14 28 56
0

1

2

3

#threads

#
co

lle
ct

s

#V = 8K,#E = 50K

(f) Op:BC.

Figure 10 Average number of concurrent modifications and scans during a query. Legends
60/20/20, etc. are identical to those in Fig. 7, 8 and 9.

5 Complexity Analysis

Given a graph G = (V, E), denote |V |= n, |E|= m, δ = maxv∈V (δv), where δv is the degree
of vertex v. As PANIGRAHAM (PG) consists of a hash-table and BSTs, Ligra uses CSR
format, and Stinger uses edge-lists to represent G, the worst-case cost of operations by each
of them in a static setting are given in Table 1.

Table 1 The static worst-case complexities.

Algo. PutV RemV PutE RemE GetV GetE BFS SSSP BC

PG O(n) O(n) O(n + δ) O(n + δ) O(n) O(n + δ) O(n + m) O(mn) O(mn + n2)

Ligra O(n + m) O(n + m) O(m) O(m) O(1) O(log δ) O(n + m) O(mn) O(mn + n2)

Stinger O(n + m) O(δ) O(δ) O(δ) O(1) O(δ) O(n + m) – –

The worst-case cost of PutV/RemV/GetV for PG is due to the hash-table, and that of
PutE/RemE/GetE is due to the BST and hash-table. The worst-case cost of PutV/RemV
for Ligra comes from copying and shifting the entire structure, whereas, that for PutE/RemE
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comes from shifting the edge array. GetV and GetE in Ligra relate to lookup in an index
and a sorted array, respectively. Stinger behaves similar to Ligra in terms vertex operations,
however, the edge-lists facilitate the worst-case linear cost in maximum degree δ only for
the operations RemV/PutE/RemE/GetE here. The queries in each of the data-structure
designs behave identically.

We define the state of a graph G as a tuple SG = (n, m, δ), where n, m, δ are as afore-
mentioned. Essentially, SG captures the size and shape of G. Now consider an execution –
set of operation calls – X such that invocations and responses of operations {o ∈ X} form a
valid history H [25]. Thus, for an o ∈ X, type(o) ∈ A , where type(o) denotes the type of o

and A is the ADT as described earlier. Denote the worst-case cost of o, given o is invoked
at an atomic time point when state of G was SG by Wo,SG

. The states of G, being tuples,
are ordered by dictionary order. In a dynamic setting, Wo,SG

is upper-bounded by the cost
of o as performed in a static setting over the worst-case state, during the lifetime of o, of G

as defined in Lemma 1.
Let Io and Co be the interval contention [2] and point contention [3], respectivelye, for

an o ∈ X. We name the execution cases – PG-Cn, PG-Icn, Ligra, and Stinger – as in section
4. Notice that, for an execution of Ligra and Stinger, Io = Co = 1 as there is no concurrency.
For PG-Icn, Co = 1 as even though the operations are performed concurrently, they are
essentially not obliged to maintain any consistency, thus, do not cause “restart” to their
peers though they may cause “cost escalation” which is captured by Io. Denote Ĩo = (Io− 1),
the total number of concurrent operation calls other than o itself (those responsible for a
possible cost escalation) that were invoked between the invocation and response of o. Lemma
1 is immediate:

▶ Lemma 1. If an operation call o ∈ X is invoked at a state SG,o = (n, m, δ) of G, the
worst-case state of G that o can encounter is SG,o = (O(n + Ĩo), O(m + Ĩo), O(δ + Ĩo)).

Denote XU = {o ∈ X | type(o) ∈ U , U ⊆ A }, where A is the ADT as defined in Section
2. Let Io,U and Co,U denote the interval and point contentions, respectively, of o pertaining
to the operation calls o ∈ {XU ∪ {o}}. Without loss of generality, we consider executions X,
s.t. type(o) ∈ M ∪ {q} ∀o ∈ X, where M ={PutV, RemV, PutE, RemE}⊂A , q∈Q and
Q={BFS, SSSP, BC }⊂A . This execution represents our experiments in section 4. The
worst-case cost Wo,SG,o

of operation calls belonging to different type(o), in a static setting,
are as listed in Table 1. Denote MV ={PutV, RemV}, ME={PutE, RemE}, and δo as
the degree of vertex v1, s.t. o ∈ {PutE(v1, v2|w), RemE(v1, v2)}. Using the fact that an
operation o ∈ X s.t. type(o) ∈ MV can be obstructed by only an operation o′ ∈ E s.t.
type(o′) ∈MV and similarly for the set ME , following the standard accounting method [13]
an amortization over the update operations XM gives Lemma 2.

▶ Lemma 2. The worst-case amortized cost per operation for an execution of XM , denoted
as AXM is

O

Co,MV

|XM |
∑

o∈XMV

Wo,SG,o
+ 1
|XM |

∑
o∈XME

Wo,SG,o
+ Co,ME

|XM |
∑

o∈XME

O(δe)

 .

e We are slightly adapting the original definitions of interval and point contention, where these notions
are defined for processes invoking o, to our terminologies.
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Notice that the worst-case costs for individual operation calls Wo,SG,o
consider a dynamic

setting. Lemma 2 essentially infers that a careful accounting for amortization should consider
only those concurrent operations that cause a CAS failure and thereby restart of an o ∈ X.
Furthermore, an o ∈ XME

restarts only from the vertex v1 as mentioned above. Using a
similar technique, and the fact that the queries by PG-Icn do not restart, we have Theorem 3

▶ Theorem 3. Denote

AX(M ) = Co,MV

|E|
∑

o∈XMV

Wo,SG,o
+ 1
|X|

∑
o∈XME

Wo,SG,o
+ Co,ME

|E|
∑

o∈XME

O(δe). (1)

The worst-case amortized cost per operation AX for an execution of o s.t. type(o) ∈
M ∪ {q} ∀o ∈ X, and q ∈ Q = {BFS, SSSP, BC} is

1. For q ∈ Q performed by PG-Icn,

AX = AX(M ) + 1
|X|

∑
o∈XQ

(
Wo,SG,o

+ Ĩo,M

)
. (2)

2. For q ∈ Q performed by PG-Cn,

AX = AX(M ) + Co,M

|X|
∑

o∈XQ

(
Wo,SG,o

+ Ĩo,M

)
. (3)

Now, different from the concurrent analytics by PANIGRAHAM, in a batch analytics
setting, the updates and queries selected at a random order are essentially performed
sequentially, thus we have Theorem 4.

▶ Theorem 4. For q ∈ Q performed by Ligra or Stinger is O
(

1
|X|

∑
o∈X Wo,SG,o

)
.

Plugging in the worst-case costs from Table 1 gives the amortized costs in terms of the
parameters n, m, δ of G.

▶ Remark 5 (Observed contention). Notice that the worst-case amortized cost per operation
for PG-Cn can be tightened by more careful accounting as one restart of a query execution
o ∈ XQ corresponds to all the modifications in G that might have happened during its scan
phase. We experimentally obtained the average number of concurrent modifications and
scans as in TreeCollect for the queries as shown in Figure 10. Clearly, the average number
of scans before a linearized response is much less than the average number of concurrent
modifications during the lifetime of a query.

▶ Remark 6 (Parallel speedup). Assuming that there are p non-faulty threads in the shared-
memory system, and each atomic step can be executed in a unit time-step, the worst-case
amortized number of time-steps per operation for an execution of both PG-Cn and PG-
Icn is roughly AX/p, where AX is as given in Theorem 3. For Ligra and Stinger, the
operation calls o ∈ XQ get speedup due to parallel executions, whereas o ∈ XM are executed
sequentially. If the parallel execution of an o ∈ XQ has a speedup s ≤ p, then the worst-case
amortized number of time-steps per operation for an execution of Ligra or Stinger will be
O

(
1
|X|

∑
o∈XM

Wo,SG,o
+ 1

s|X|
∑

o∈XQ
Wo,SG,o

)
. Clearly, the theoretical insights from the

amortized analysis is corroborated by our experiments where we observed that even for a
moderately sized graph, PG-Icn performs better than Ligra, whereas, for smaller graphs
despite of costly consistent queries, PG-Cn outperforms the batch analytic methods.
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6 Conclusion

In this paper, we presented a novel framework of concurrent dynamic graph analytics
PANIGRAHAM. We implemented commonly used graph algorithms: breadth-first search,
single-source-shortest-path, and betweenness centrality over this framework. The presented
framework is versatile enough such that it can be extended to other graph algorithms that
process the global information in a graph and are usually found in graph-based analytics. We
proved that the presented algorithms are non-blocking and linearizable. From the perspective
of higher performance at the cost of consistency, we presented an inconsistent variant as well.
We extensively evaluated a C++ implementation of the algorithms that shows scalability
of the method with parallel resources. Another important contribution of this paper is an
amortized analysis of the graph operations in a concurrent consistent non-blocking setting.
To the best of our knowledge, this is the first work to provide amortized upper bound
for concurrent dynamic graph operations. Unlike the well-known parallel batch analytics
libraries, our framework honors the real-time order of updates and most significantly provides
fully dynamic vertex additions, which has largely been unavailable previously. Its memory
footprint is up to 80x lighter compared to Stinger and it provides up-to-three orders of
magnitude better performance than Stinger.

The present work motivates two very important future works: (a) implementing lock-free
variant of CSR representation of graphs to take advantage of cache efficiency and concurrency,
and, (b) an amortized average-case analysis of these algorithm, which gives a more realistic
picture of the implementations with respect to their theoretical behavior.
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A The Non-blocking Graph Algorithm

In this section, we present a detailed implementation of our non-blocking directed graph
algorithm. The non-blocking graph composes on the basic structures of the dynamic non-
blocking hash table [37] and non-blocking internal binary search tree [28]. For a self-contained
reading, we present the algorithms of non-blocking hash table and BST. Because it derives
and builds on the earlier works [37] and [28], many keywords in our presentation are identical
to theirs. One key difference between our non-blocking BST design from [28] is that we
maintain a mutable edge-weight in each BST node, thereby not only the implementation
requires extra steps but also we need to discuss extra cases in order to argue the correctness
of our design. Furthermore, we also perform non-recursive traversals in the BST for snapshot
collections, which were already discussed as part of the graph queries. The pseudo-codes
pertaining to the non-blocking hash-table are presented in Figure 12, whereas those for the
non-blocking BST are presented in Figures 13.

A.1 Structures
The declarations of the object structures that we use to build the data structure are listed in
Figure 12 and 13. The structures FSet, FSetOp, and HNode are used to build the vertex-list,
whereas Node, RelocateOp, and ChildCASOp are the component-objects of the edge-list. The
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1: Operation PutV(v)
2: return HashAdd(v);
3: Operation RemV(v)
4: return HashRem(v);
5: Operation GetV(v)
6: ⟨st, v⟩ ← HashCon(v);
7: if (st = true) then
8: return ⟨true, v⟩;
9: else

10: return ⟨false, NULL⟩;
11: Operation GetE(v1, v2)
12: ⟨u, v, st⟩ ← ConVPlus(v1, v2);
13: if (st = false) then
14: return ⟨false,∞⟩;
15: ⟨st, e⟩ ← BSTCon(v2, v.enxt);
16: if (st = FOUND ∧ ¬ HashCon(v1) ∧ ¬ HashCon(v2)
∧ (e.ptv = u)) then

17: z ← e.w;
18: return ⟨true,z⟩;
19: else return ⟨false,∞⟩;
20: Method ConVPlus(v1, v2)
21: ⟨st1,u⟩ ← HashCon(v1); //Modified GetV, re-

turns status along with ref
22: ⟨st2,v⟩← HashCon(v2);
23: if (st1 = true ∧ st2 = true) then
24: return ⟨u, v, true⟩;
25: else return ⟨u, u, false⟩;
26: Operation PutE(v1, v2|w)
27: ⟨ u, v, st ⟩ ← ConVPlus(v1, v2);
28: if (st = false) then return ⟨false,∞⟩;
29: while (true) do
30: if ( isMrkd(u) ∨ isMrkd(v)) then
31: return ⟨false,∞⟩;
32: st ← Find(v2, pe, peOp, ce , ceOp, u.enxt);
33: if (GetFlag(pe) = MARKED) then
34: continue;
35: if (st = FOUND) then
36: if (ce.w = w) then return ⟨false,w⟩;
37: else
38: z ← ce.w;
39: CAS(ce.w, z, w);
40: u.ecnt.FetchAndAdd (1);
41: return ⟨true,z⟩;

42: else
43: ne ← CEnode (v2, w);
44: ne.ptv ← v;
45: Boolean ifLeft ← (st = NOTFOUND_L);
46: ENode old ← ifLeft ? ce.left : ce.right;
47: casOp ← new ChildCASOp(ifLeft, old, ne);
48: if (CAS(ce.op,ceOp,Flag(casOp,CHILDCAS)))

then
49: u.ecnt.FetchAndAdd (1);
50: HelpChildCAS(casOp, ce);
51: return ⟨true,∞⟩;
52: Operation RemE(v1, v2)
53: ⟨u, v, st⟩ ← ConVPlus(v1, v2);
54: if (st = false) then
55: return ⟨false,∞⟩;
56: while (true) do
57: if (isMrkd(u) ∨ isMrkd(v)) then
58: return ⟨false,∞⟩;
59: st ← Find(v2, pe, peOp, ce , ceOp, u.enxt);
60: if (st ̸= FOUND) then
61: return ⟨false,∞⟩;
62: if (IsNull(curr.right) ∨ IsNull( ce.left)))

then
63: if (CAS(ce.op, ceOp, Flag(ceOp, MARKED)))

then
64: u.ecnt.FetchAndAdd (1);
65: HelpMarked(pe, peOp, ce);
66: z ← ce.w;
67: break;
68: else
69: st ← Find(v2, pe, peOp, ce , ceOp, u.enxt);
70: if ((st = ABORT) ∨ (ce.op ̸= ceOp) then
71: continue;
72: relocOp ← new RelocateOp(ce, ceOp, v2,

replace.e);
73: if (CAS(replace.op, replaceOp, Flag (relocOp,

RELOCATE)) then
74: u.ecnt.FetchAndAdd (1);
75: if (HelpRelocate(relocOp,pe,peOp,replace))

then
76: z ← ce.w;
77: break;
78: return ⟨true,z⟩;

Figure 11 Pseudocodes of PutV, RemV, GetV, PutE, RemE, GetE and ConVPlus.

structure FSet, a freezable set of VNodes that serves as a building block of the non-blocking
hash table. An FSet object builds a VNode set with PutV, RemV and GetV operations,
and in addition, provides a Freeze method that makes the object immutable. The changes
of an FSet object can be either addition or removal of a VNode. For simplicity, we encode
PutV and RemV operation as FSetOp objects. The FSetOp has a state optype (PutV or
RemV), the key value, done a boolean field that shows the operation was applied or not,
and resp a boolean field that holds the return value.

The vertex-list is a dynamically resizable non-blocking hash table constructed with
the instances of VNodes, and it is a linked-list of HNodes (Hash Table Node). The HNode
composed of an array of buckets of FSet objects, the size field stores the array length and
the predecessor HNode is pointed to by the pred pointer. The head of the HNode is pointed
to by a shared Head pointer.

For clarity, we assume that a Resize method grows (doubles) or shrinks (halves) the
size of the HNode which amount to modifying the length of the bucket array. The hash
function uses modular arithmetic for indexing in the hash table, e.g. index = key mod
size.
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Based on the boolean parameter taken by Resize method, it decides the hash table either
to grow or shrink. The initBkt method ensures all VNodes are physically present in the
buckets. It relocates the HNodes to the hash table which are in the predecessor’s list.

The ith bucket of a given HNode h is initialized by initBkt method, by splitting or
merging the buckets of h′s predecessor HNode s, if s exists. The sizes of h and s are compared
and then this method decides whether h is shrinking or expanding with reference to s. Then
it freezes the respective bucket(s) of s before copying the VNodes. If h halves the size of s,
then ith and (i + h.size)th buckets of s are merged together to form the ith bucket of h.
Otherwise, h doubles the size of s, then approximately half of the VNodes in the (i mod
h.size)th bucket of s relocate to the ith bucket of h. To avoid any races with the other
helping threads while splitting or merging of buckets a CAS is used (Line 137).

The ENode structure is similar to that of a lock-free BST [28] with an additional edge
weight w and a pointer field ptv which points to the corresponding VNode. This helps direct
access to its VNode while doing a BFS traversal and also helps in deletion of the incoming
edges. The operation op field stores if any changes are being made, which affects the ENode.
To avoid the overhead of another field in the node structure, we use bit-manipulation: last
significant bits of a pointer p, which are unused because of the memory-alignment of the
shared-memory system, are used to store information about the state of the pointer shared
by concurrent threads and executing an operation that would potentially update the pointee
of the pointer. More specifically, in case of an x86-64 bit architecture, memory has a 64-bit
boundary and the last three least significant bits are unused. So, we use the last two
significant bits, which are enough for our purpose, of the pointer to store auxiliary data. We
define four different methods to change an ENode pointer: IsNull(p) returns true if the
last two significant bits of p make 00, which indicates no ongoing operation, otherwise, it
returns false; isMrkd(p) returns true if the last two significant bits of p are set to 01, else
it returns false, which indicates the node is no longer in the tree and it should be physically
deleted; IsChildCAS (p) returns true if last two bits of p are set to 10, which indicates one
of the child node is being modified, else it returns false; IsRelocate(p) returns true if the
last two bits of p make 11, which indicates that the ENode is undergoing a node relocation
operation.

A ChildCASOp object holds sufficient information for another thread to finish an operation
that made changes to one of the child – right or left – pointers of a node. A node’s op field
holds a flag indicating an active ChildCASOp operation. Similarly, a RelocateOp object holds
sufficient information for another thread to finish an operation that removes the key of a
node with both the children and replaces it with the next largest key. To replace the next
largest key, we need the pointer to the node whose key is to be removed, the data stored in
the node’s op field, the key to replacement and the key being removed. As we did in case of
a ChildCASOp, the op field of a node holds a flag with a RELOCATE state indicating an active
RelocateOp operation.

A.2 The Vertex Operations
The working of the non-blocking vertex operations PutV, RemV, and GetV are presented
in Figure 11. A PutV(v) operation, at Lines 1 to 2, invokes HashAdd(v) to perform an
insertion of a VNode v in the hash table. A RemV(v) operation at lines 3 to 4 invokes
HashRem(v) to perform a deletion of VNode v from the hash table. The method Apply,
which tries to modify the corresponding buckets, is called by both HashAdd and HashRem,
see Line 109 and 114. It first creates a new FSetOp object consisting of the modification
request, and then constantly tries to apply the request to the respective bucket b, see Lines
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138 to 146. Before applying the changes to the bucket it checks whether b is NULL; if it is,
initBkt method is invoked to initialize the bucket (Line 144). At the end, the return value
is stored in the resp field.

The algorithm and the resizing hash table are orthogonal to each other, so we used
heuristic policies to resize the hash table. As a classical heuristic we use a HashAdd
operation that checks for the size of the hash table with some threshold value, if it exceeds
the threshold the size of the table is doubled. Similarly, a HashRem checks the threshold
value, if it falls below threshold, it shrinks the hash table size to halves.

A GetV(v) operation, at Lines 5 to 10, invokes HashCon(v) to search a VNode v in
the hash table. It starts by searching the given key v in the bucket b. If b is NULL, it reads
t′s predecessor (Line 122) s and then starts searching on it. At this point it could return
an incorrect result as HashCon is concurrently running with resizing of s. So, a double
check at Line 123 is required to test whether s is NULL between Lines 120 and 122. Then, we
re-read that bucket of t (Line 124 or 126), which must be initialized before s becomes NULL,
and then we perform the search in that bucket. If b is not NULL, then we simply return the
presence of the corresponding VNode in the bucket b. Note that, at any point in time there
are at most two HNodes: only one when no resizing happens and another to support resizing
– halving or doubling – of the hash table.

A.3 The Edge Operations
The non-blocking graph edge operations – PutE, RemE, and GetE – are presented in
Figure 11. Before describing these operations, we detail the implementation of Find method,
which is used by them. It is shown in Figure 13. The method Find, at Lines 199 to 227, tries
to locate the position of the key by traversing down the edge-list of a VNode. It returns the
position in pe and ce, and their corresponding op values in peOp and ceOp respectively. The
result of the method Find can be one of the four values: (1) FOUND: if the key is present in
the tree, (2) NOTFOUND_L: if the key is not in the tree but might have been placed at the left
child of ce if it was added by some other threads, (3) NOTFOUND_R: similar to NOTFOUND_L
but for the right child of ce, and (4) ABORT: if the search in a subtree is unable to return a
usable result.

A PutE(v1, v2|w) operation, at Lines 26 to 51, begins by validating the presence of v1
and v2 in the vertex-list. If the validations fails, it returns ⟨false,∞⟩ (Line 28). Once the
validation succeeds, PutE operation invokes Find method in the edge-list of the vertex with
key v1 to locate the position of the key v2. The position is returned in the variables pe and
ce, and their corresponding op values are stored in the peOp and ceOp respectively. On that,
PutE checks whether an ENode with the key v2 is present. If it is present containing the same
edge weight value w, it implies that an edge with the exact same weight is already present,
therefore PutE returns ⟨false,∞⟩ (Line 36). However, if it is present with a different edge
weight, say z, PutE updates ce’s old weight z to the new weight w and returns ⟨true,z⟩
(Line 38). We update the edge-weight using a CAS to ensure the correct return in case there
were multiple concurrent PutE operations trying to update the same edge. Notice that,
here we are not freezing the ENode in anyway while updating its weight. The linearizability
is still ensured, which we discuss in the next section.

If the key v2 is not present in the tree, a new ENode and a ChildCASOp object are
created. Then using CAS the object is inserted logically into ce′s op field (Line 48). If the
CAS succeeds, it implies that ce′s op field hadn’t been modified since the first read. Which
in turn indicates that all other fields of ce were also not changed by any other concurrent
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thread. Hence, the CAS on one of the ce′s child pointer should not fail. Thereafter, using a
call to HelpChildCAS method the new ENode ne is physically added to the tree. This can
be done by any thread that sees the ongoing operation in ce′s op field.

A RemE(v1, v2) operation, at Lines 52 to 78, similarly begins by validating the presence
of v1 and v2 in the vertex-list. If the validation fails, it returns ⟨false,∞⟩. Once the
validation succeeds, it invokes Find method in the edge-list of the vertex having key v1 to
locate the position of the key v2. If the key is not present it returns ⟨false,∞⟩. If the key
is present, one of the two paths is followed. The first path at Lines 63 to 67 is followed if
the node has less than two children. In case the node has both its children present a second
path at Lines 69 to 77 is followed. The first path is relatively simpler to handle, as single
CAS instruction is used to mark the node from the state NONE to MARKED at this point the
node is considered as logically deleted from the tree. After a successful CAS, a HelpMarked
method is invoked to perform the physical deletion. It uses a ChildCASOp to replace pe′s
child pointer to ce′s with either a pointer to ce′s only child pointer, or a NULL pointer if ce is
a leaf node.

The second path is more difficult to handle, as the node has both the children. Firstly,
Find method only locates the children but an extra Find (Line 69) method is invoked to
locate the node with the next largest key. If the Find method returns ABORT, which indicates
that ce′s op field was modified after the first search, so the entire RemE operation is restarted.
After a successful search, a RelocateOp object replace is created (Line 72) to replace ce′s
key v2 with the node returned. This operation added to replace′s op field safeguards it
against a concurrent deletion while the RemE operation is running by virtue of the use of a
CAS (Line 73). Then HelpRelocate method is invoked to insert RelocateOp into the node
with v′2s op field. This is done using a CAS, after a successful CAS the node is considered as
logically removed from the tree. Until the result of the operation is known the initial state is
set to ONGOING. If any other thread either sees that the operation is completed by way of
performing all the required CAS executions or takes steps to perform those CAS operations
itself, it will set the operation state from ONGOING to SUCCESSFUL, using a CAS. If it has seen
other value, it sets the operation state from ONGOING to FAILED. After the successful state
change, a CAS is used to update the key to new value and a second CAS is used to delete the
ongoing RelocateOp from the same node. Then next part of the HelpRelocate method
performs cleanup on replace by either marking it if the relocation was successful or clearing
its op field if it has failed. If the operation is successful and ce is marked, HelpMarked
method is invoked to excise ce from the tree. At the end RemE returns ⟨true,ce.w⟩

Similar to PutE and RemE, a GetE(v1, v2) operation, at Lines 11 to 19, begins by
validating the presence of v1 and v2 in the vertex-list. If the validation fail, it returns
⟨false,∞⟩. Once the validation succeeds, it invokes Find method in the edge-list of the
vertex with key v1 to locate the position of the key v2. If it finds v2, it checks if both the
vertices are not marked and also the ceOp not marked; on ensuring that it returns ⟨true,ce.w⟩,
otherwise, it returns ⟨false,∞⟩.
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structFSetNode {int set; boolean ok; }
struct FSet { FSetNode node; }
struct FSetOp {int optype, key; boolean resp; }
struct HNode {FSet buckets;int size;HNode pred;}

79: Method GetResponse(op)
80: return op.resp;
81: Method HasMember(b, k)
82: o ← b.node; // local copy of b
83: return k ∈ o.set;
84: Method Invoke(b, op)
85: o ← b.node; // local copy of b
86: while (o.ok) do
87: if (op.optype = Add) then
88: resp ← op.key /∈ o.set;
89: set ← o.set ∪ {op.key};
90: else
91: if (op.optype = Remove) then
92: resp ← op.key ∈ o.set;
93: set ← o.set \ {op.key};
94: n ← new FSetNode(set, true);
95: if (CAS (b.node,o,n)); then
96: op.resp ← resp;
97: return true;
98: o ← b.node;
99: return false;
100: Method Freeze(b)
101: o ← b.node; // local copy of b
102: while (o.ok)) do
103: n ← new FSetNode(o.set, false);
104: if (CAS (b.node,o,n)); then
105: break;
106: o ← b.node;
107: return o.set
108: Operation HashAdd(key)
109: resp ← Apply(Add, key); ]

110: if (heuristic-policy) then
111: Resize (true);
112: return resp;
113: Operation HashRem(key)
114: resp ← Apply(Remove, key);
115: if (heuristic-policy) then
116: Resize (false);
117: return resp;
118: Operation HashCon(key)
119: t← Head;
120: b← t.buckets[key mod t.size ];
121: if (b = NULL) then
122: s ← t.pred;
123: if (s ̸= NULL ) then
124: b← s.buckets(key mod s.size);
125: else
126: b← t.buckets(key mod t.size);
127: return HasMember (b,key);
128: Method Resize(grow)
129: t← Head;
130: if (t.size > 1 ∨ grow = true) then
131: for (i ← 0 to t.size-1) do
132: initBkt(t,i);
133: t.pred ← NULL;
134: size ← grow ? t.size ⋆ 2 : t.size/2;
135: buckets ← new FSet[size ];
136: t′ ← new HNode(buckets, size, t);
137: CAS(Head, t, t′);
138: Method Apply(optype, key)
139: op ← new FSetOp(optype, key, false,−);
140: while (true) do
141: t← Head;
142: b← t.buckets[key mod t.size ];
143: if (b = NULL) then
144: b ← initBkt(t,key.mod t.size);
145: if (Invoke(b, op)) then
146: return GetResponse (op);

Figure 12 Strucure of FSet, FSetOp and HNode. Pseudocodes of Invoke, Freeze, Add, and
Remove methods based on dynamic sized non-blocking hash table[37].
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147: Method initBkt(t, key)
148: b← t.buckets[key];
149: s← t.pred;
150: if (b = NULL ∧ s ̸= NULL) then
151: if (t.size = s.size) then
152: m ← s.buckets[i mod s.size];
153: set ← Freeze(m) ∩ { x | x mod t.size

= i };
154: else
155: m ← s.buckets[i];
156: m′ ← s.buckets[i + s.size];
157: set ← Freeze(m) ∪ Freeze(m′);
158: b′ ← new FSet(set, true);
159: CAS(t.buckets[i], NULL, b′);
160: return t.buckets[i];

struct Node{int key;Operation op; Node left,right;}
struct RelocateOp {int state,removeKey,replaceKey;

Node dest; Operation destOp; }
struct ChildCASOp {boolean ifLeft;

Node expected, update; }
161: Operation Add(key)
162: Node pred, curr, newNode;
163: Operation predOp, currOp, casOp;
164: int result;
165: while (true) do
166: result← Find(key, pred, predOp, curr, currOp,

root);
167: if (result = FOUND) then return false;
168: newNode ← new Node(key);
169: Boolean ifLeft ← (result = NOTFOUND_L);
170: Node old ← ifLeft ? curr.left : curr.right;
171: casOp← new ChildCASOp(ifLeft, old, newNode);
172: if (CAS(curr.op, currOp, Flag(casOp,CHILDCAS)))

then
173: HelpChildCAS(casOp, curr);
174: return true;
175: Operation Remove(key)
176: Nodepred, curr, replace;
177: Operation predOp, currOp, replaceOp, relocOp;
178: while (true) do
179: if (Find(key, pred, predOp, curr, currOp, root)
̸= FOUND) then

180: return false;
181: if (IsNull(curr.right ∨ IsNull( curr.left)))

then
182: if (CAS(curr.op, currOp, Flag(currOp, MARKED)))

then
183: HelpMarked(pred, predOp, curr);

184: return true;
185: else
186: if ((Find(key, pred, predOp, replace,

replaceOp, curr) = ABORT) ∨ (curr.op ̸= currOp)
then

187: continue;
188: relocOp ← new RelocateOp(curr, currOp,

key, replace.key);
189: if (CAS(replace.op, replaceOp, Flag(relocOp,

RELOCATE)) then
190: if (HelpRelocate(relocOp, pred, predOp,

replace)) then
191: return true;
192: Operation Contains(key)
193: Node pred, curr;
194: Operation predOp, currOp;
195: if (Find(key, pred, predOp, curr, currOp, root)

= FOUND) then
196: return true;
197: else
198: return false;
199: Method Find(key, pred, predOp, curr, currOp,

root)
200: int result, currKey ; Node next, lastRight;
201: Operation lastRightOp; result ← NOTFOUND_R;
202: curr ← root; currOp ← curr.op;
203: if (GetFlag(currOp) ̸= NULL) then
204: if (root = root) then
205: HelpChildCAS(UnFlag(currOp), curr);
206: goto Line 201;
207: else return ABORT;
208: next ← curr.right; lastRight ← curr;
209: lastRightOp ← currOp;
210: while (¬ IsNull(next)) do
211: pred ← curr; predOp ← currOp;
212: curr ← next; currOp ← curr.op;
213: if (GetFlag(currOp) ̸= NULL) then
214: HelpList(pred, predOp, curr, currOp);
215: goto Line 201;
216: currKey ← curr.key;
217: if (key < currKey) then
218: result ← NOTFOUND_L; next ← curr.left;
219: else
220: if (key > currKey) then
221: result ← NOTFOUND_R; next ← curr.right;
222: lastRight ← curr; lastRightOp ← currOp;
223: else
224: result ← FOUND; break;
225: if ((result ̸= FOUND)

∧
(lastRightOp ̸=

lastRight.op) then goto Line 201;
226: if (curr.op ̸= currOp) then goto Line 201;
227: return result;

Figure 13 Strucure of Node, RelocateOp and ChildCASOp. Pseudocodes of Add, Remove,
Contains and Find methods based on non-blocking binary search tree[28]. Pseudocodes of Contains,
Resize, Apply and initBkt methods based on dynamic sized non-blocking hash table[37].
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Abstract
In distributed verification, our goal is to verify that the network configuration satisfies some desired
property, using pre-computed information stored at each network node. This is formally modeled as a
proof labeling scheme (PLS): a prover assigns to each node a certificate, and then the nodes exchange
their certificates with their neighbors and decide whether to accept or reject the configuration.
Subsequent work has shown that in some specific cases, allowing more rounds of communication – so
that nodes can communicate further across the network – can yield shorter certificates, trading off
the space required to store the certificate against the time required for verification. Such tradeoffs
were previously known for trees, cycles, and grids, or for proof labeling schemes where all nodes
receive the same certificate.

In this work we show that in large classes of graphs, every one-round PLS can be transformed
into a multi-round PLS with shorter certificates. We give two constructions: given a 1-round PLS
with certificates of ℓ bits, in graphs families with balanced edge separators of size s(n), we construct
a t-round PLS with certificates of size Õ(ℓ · s(n)/t), and in graph families with an excluded minor
and maximum degree ∆, we construct a t-round PLS with certificates of size Õ(ℓ · ∆/

√
t). Our

constructions are explicit, and we use erasure codes to exploit the larger neighborhood viewed by
each node in a t-round PLS.
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1 Introduction

Distributed proofs are a mechanism that allows a distributed network to verify that its
current configuration is legal: each node is equipped with a pre-computed certificate, which
serves as part of a global proof that the network configuration is legal. To verify the proof,
nodes examine the certificates in their neighborhoods and decide whether to accept or reject
the proof.

Most of the literature on distributed proofs assumes that in the verification phase,
each node can only view the certificates and the network structure in some constant-sized
neighborhood around itself: for example, in proof labeling schemes [16], nodes only see the
certificates of their immediate neighbors, and in locally-checkable proofs [10], nodes can see
their r-neighborhood for some constant r. However, under this restriction it is known that
some graph predicates require very large certificates, up to Ω(n2) bits per node [10]. This
gives rise to the following question, proposed by [18, 6]: can we trade time for space? In
other words, if we allow the verification phase of the proof to run for more rounds and collect
information about a larger neighborhood, can we decrease the certificate size?
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21:2 Explicit Space-Time Tradeoffs for PLS in Graphs with Small Separators

A distributed proof where the verifier runs in t rounds is called a t-proof-labeling scheme,
or t-PLS for short [18]. Our goal when proving space-time tradeoffs is to show that for some
problem or class of problems, as t grows, we can construct a t-PLS with smaller certificates.
Several such tradeoffs are shown in [18, 6]: for example, in [18] it is shown that every graph
property on n-vertex graphs can be verified using certificates of size O(n2/t), and in [6] it is
shown that in trees, cycles and grids, we can save a factor of O(t) in the certificate size of
any proof-labeling scheme. However, the general case remains open [6]: is it true that for
any network predicate we might wish to verify, the size of the certificate scales down as t

grows? In the current paper we take a step in this direction, and show that for a large class
of graphs the answer is positive.

Our main contributions are the following:
We show that erasure codes are a useful building block for constructing t-PLS, yielding
simple, explicit constructions with improved parameters.
We show that in two large classes of graphs – namely, any graph family that excludes a
fixed minor, and any graph family that admits a small balanced edge separator1 – we
can transform a 1-PLS into a t-PLS with reduced certificate size, depending on the exact
parameters of the graph. These families include, for example, planar graphs (and more
generally bounded-genus graphs), minor-closed graph famlies, bounded-treewidth graphs,
and others.
Our proof for graph families with an excluded minor generalizes to any graph family with
polynomial expansion, but for lack of space, we defer the more general case to the full
version of the paper.

Using erasure codes to construct t-proof-labeling schemes. Suppose we are given a 1-PLS
Π, and wish to construct from it a t-PLS Π′ with shorter certificates. A natural approach,
used in [18, 6], is to take the certificate av computed under Π for each node v, “chop it”
into pieces a1

v, . . . , ak
v of length |av|/k each (where k is a parameter of the construction), and

distribute the pieces to k nodes in v’s t-neighborhood. In the t-round verifier of Π′, node v

collects the pieces, reconstructs its certificate av, and uses the original verifier of Π to decide
whether to accept or reject.

The main difficulty when designing a t-PLS of this type is to decide, for each node v,
which nodes in v’s vicinity should receive which pieces of v’s certificate, so that no single
node u is given too many certificate pieces to store. Several such construction are given
in [18, 6], each tailored for a specific problem or class of graphs, and one construction in [6] is
non-explicit (i.e., the probabilistic method is used). Erasure codes offer a simple mechanism
for simplifying this process: an erasure code encodes a string w into pieces c1, . . . , cm, such
that from any sufficiently large subset ci1 , . . . , cid

of pieces, we can reconstruct the original
string w. This allows us not to worry about which nodes receive which pieces of a given
certificate: any subset of sufficiently many pieces allows us to reconstruct the certificate
in full. In Section 4 we show that using erasure codes, we can simplify, unify and slightly
improve two constructions from [18, 6], which transform a 1-PLS where all nodes receive the
same certificate (a uniform PLS [6]) into a t-PLS with shorter certificates.

Using codes has other advantages as well: for example, if we use error-correcting codes
(of which erasure codes are a special case) to encode the certificates of the nodes, we can
gain some degree of resilience against benign data corruption, a scenario where the network
configuration is still legal but the certificates of some nodes have become corrupted. In

1 We formally define the notion of balanced edge separators later in the paper, but informally, a graph is
said to have small balanced edge separators if there is a small set of edges, whose removal partitions the
graph into connected components that are not too large.
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Figure 1 A partition of the graph, with border nodes indicated in black.

Section 4 we define the notion of resilient t-proof-labeling schemes, and show that by compiling
a 1-PLS into a t-PLS using an error-correcting code, we can withstand up to O(b(t)) corrupted
certificates in each t-neighborhood, assuming the t-neighborhood is of size at least b(t).

Partition-based t-proof-labeling schemes. In [18, 6] it is shown that in trees, cycles and
grids, we can transform any 1-PLS with ℓ-bit certificates into a t-PLS with certificates of size
O(ℓ/t). The idea underlying the three constructions (for trees, cycles and grids) is similar,
and we refer to it as a partition-based t-PLS : we partition the graph into units U1, . . . , Uk,
such that each unit

Has diameter O(t),
Contains at least r nodes, where r is a parameter of the construction, and
Contains few border nodes – nodes that have neighbors outside the unit (see Fig. 1).

In the t-PLS, we take the 1-PLS certificate av of each border node v, and split av into smaller
pieces a1

v, . . . , as
v, where s = Θ(t).2 We distribute the pieces across the nodes of v’s unit,3

in such a way that each node receives O(1) certificate pieces in total (from all the border
nodes). The certificates of non-border nodes are simply ignored. In the resulting t-PLS, the
certificate size is reduced by a factor of Θ(t).

To verify the proof, each border node v first reconstructs its original certificate av by
collecting the s certificate-parts from its unit. Next, in each unit Ui, we check whether there
is an assignment Ai of certificates to the non-border nodes of Ui which would cause all nodes
of the unit to accept (including the border nodes, using the certificates they reconstructed
for themselves); if so, the nodes of the unit accept, and otherwise they reject. The soundness
of this scheme follows from the fact that since the certificates of the border nodes are fixed,
we can “stitch together” the assignments A1, . . . , Ak that we found for the units U1, . . . , Uk

into a global certificate assignment that would be accepted by the original 1-PLS.
In Section 5 we define a general scheme for transforming a 1-PLS into a t-PLS, which

codifies the strategy outlined above, and which we then instantiate for graph families that
have small separators.

2 We describe here the parameters used in the constructions of [6]; our constructions use different values.
3 In the case of trees, the construction from [6] may distribute the pieces across the nodes of an adjacent

unit, not necessarily v’s unit.
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21:4 Explicit Space-Time Tradeoffs for PLS in Graphs with Small Separators

Constructing t-proof-labeling schemes for graphs with small separators. The constructions
given in [6] for trees, cycles and grids exploit the fact that graphs of these classes can be
partitioned into vertex-disjoint units such that if a unit Ui contains b border nodes, then the
unit has at least Ω(b · t) nodes in total, allowing us to distribute pieces of the certificates of
the border nodes across the unit efficiently. What other classes of graphs can be partitioned
into units with large “area” and a small “perimeter”? It is natural to consider graphs with
bounded expansion, such as planar graphs, or graphs with bounded treewidth. We show that
indeed, there are two such classes of graphs for which we can construct a t-PLS with shorter
certificates compared to a 1-PLS. In Section 7, we handle graph families that admit a small
balanced edge separator (see Section 7 for the definition), and prove:

▶ Theorem 1. Fix a subgraph-closed family G and a function s : N → N, such that any
graph G ∈ G has a balanced edge separator of size s(|V (G)|). Let Π be a 1-PLS recognizing
some predicate P. Then for every t ≥ 2, there exists a t-PLS Π′ for P, such that for every
configuration (G, I) ∈ P of diameter at least t,

cost(Π′, (G, I)) = Õ

(
cost(Π, (G, I)) · s(n)

t

)
.

Here, cost(Π, (G, I)) denotes the length of the certificate assigned by the PLS Π to the nodes
of the graph G, when the input to each node is given by I : V (G) → I (see Section 3 for the
formal definitions).

Graphs that have small balanced edge separators include low-degree graphs with small
treewidth; for example, outerplanar graphs have treewidth 2, and are known to admit a
balanced edge separator of size at most O(∆), where ∆ is the maximum degree.

In Section 8 we handle graph families that excludes some constant-sized minor, and show:

▶ Theorem 2. Fix a family G of graphs that exclude some fixed minor H. Let Π be a 1-PLS
recognizing some predicate P. Then for every t ≥ 2, there exists a t-PLS Π′ recognizing P,
such that for every configuration (G, I) ∈ P of diameter at least t and maximum degree ∆,

cost(Π′, (G, I)) = Õ

(
cost(Π, (G, I)) · ∆√

t

)
.

Many interesting graph families can be described by a set of forbidden (excluded) minors;
perhaps the most famous example is planar graphs, and more generally, graphs of fixed genus.

Strictly speaking, the two constructions above could be implemented without using
erasure codes, but using erasure codes simplifies them.

We conjecture that the connection between the existence of an efficient t-PLS and bounded
expansion goes both ways, namely, in graphs that are good expanders,4 a t-PLS cannot
always have certificate size significantly smaller than a 1-PLS for the same predicate.

2 Related Work

Distributed proofs, proof-labeling schemes have been extensively studied under various
modeling assumptions (e.g. [2, 4, 5, 12, 13, 15, 14, 16, 19, 21, 7, 11, 17, 10]). In the current
section we discuss only prior work that is directly relevant to the current paper; we refer to
the surveys of Feuilloley and Fraigniaud [3] and of Suomela [22] for a more complete overview
of the field.

4 An expander is a graph where every sufficiently-small set S of vertices has a large boundary – e.g., S
has many outgoing edges, or many adjacent nodes, depending on the precise definition used.
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While almost all work on proof-labeling schemes assumes that the verifier runs for a
single round, Göös et al. [10] considered a model where the verifier may run for r rounds,
where r is a constant. Among other results, they showed a universal 1-PLS which uses
O(min(n2, m log n))-bit certificates by giving each node an encoding of the entire graph; this
can be used to locally check any property P. On the other hand, they showed that there
are properties that require a certificate size of Ω(n2) bits to be checked locally, such as the
existence of a non-trivial automorphism.

Ostrovsky et al. [18] introduced the notion of a t-PLS, in which the verification procedure
is allowed to use t rounds of communication instead of only one. They analyze the tradeoffs
between time (number of rounds), certificate size, and total communication, and show that
the certificate size of a universal t-PLS is O(min(n2, m log n)/t). In the universal t-PLS of [18],
the graph is divided into blocks, and the representation of the graph is distributed the between
the nodes in each block, such that each node can collect the entire graph representation from
its t-neighborhood. They also construct an optimal t-PLS that determines whether a graph
is acyclic using O(log n/t)-bit certificates, and prove a matching lower bound.

Feuilloley et al. [6] gives additional general tradeoffs for t-proof-labeling schemes. First,
they show near-linear scaling of the certificate size for any proof labeling scheme in trees,
cycles and grids (as outlined in Section 1). In the current paper we use a similar but
more general approach in larger classes of graphs. Feuilloley et al. [6] also show that every
uniform 1-PLS (a PLS in which the prover gives the same certificate to all the nodes) can
be transformed into a t-PLS with certificates smaller by a factor of O(log(n)/b(t)); here,
b(t) is the minimum number of nodes in a t-neighborhood of a node in the graph. Their
construction uses the probabilistic method: they show that if each node stores each bit of the
original certificate with probability roughly log(n)/b(t), then there is non-zero probability
that each node will have all bits of the certificate in its t-neighborhood, which allows all
nodes to recover the original certificate. In the current paper we use erasure codes to
simplify the scheme, eliminate the multiplicative factor of log(n), and obtain an explicit
construction. Finally, [6, 18] also construct t-PLS for specific problems (e.g., shortest paths
and cycle-freeness).

3 Preliminaries

Graph notation. Given a graph G, we let V (G) and E(G) denote the vertex set and edge
set of G, respectively. We let H ⊂ G denote the fact that H is a subgraph of G (that is,
V (H) ⊆ V (G) and E(H) ⊆ E(G)). We sometimes abuse notation by writing v ∈ G instead
of v ∈ V (G).

The neighborhood of a node v ∈ V (G) is denoted N(v). The t-neighborhood of a node
v ∈ V (G), i.e., the set of all the nodes with distance at most t from v, is denoted Bt(v) (“the
ball of size t around v”). We say that a graph G has growth b : N → N if for every v ∈ V

and t ≥ 1, |Bt(v)| ≥ b(t).
An I-configuration (or configuration for short) is a pair (G, I), where G = (V, E) is a

graph, and I : V → I is an assignment of inputs to the nodes of G. Given a family G of
graphs, we denote by GI the set of all I-configurations (G, I) where G ∈ G and I : V → I.

Proof labeling schemes. Let GI be a family of configurations, let P ⊆ GI be a predicate,
and let t > 1. A t-proof labeling scheme (t-PLS) for P is a pair Π = (Prv, Ver), where

Prv, the prover, is a mapping that takes a configuration (G, I) ∈ P and produces a
certificate assignment Prv(G, I) = {av}v∈V (G) for the nodes of G, where av ∈ {0, 1}∗ for
each v ∈ V (G).
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21:6 Explicit Space-Time Tradeoffs for PLS in Graphs with Small Separators

Ver, the verifier, is a t-round deterministic5 distributed algorithm that takes as input the
certificate av ∈ {0, 1}∗ at each node v, and outputs a Boolean value. We let Ver(G, I, a, v)
denote the output of the algorithm at node v ∈ V (G), when executed in configuration
(G, I), with certificates a = {av}v∈V (G).

We require:
Soundness: for every configuration (G, I) ∈ GI and certificate assignment a = {av}v∈V (G),
if Ver(G, I, a, v) = 1 for all v ∈ V (G), then (G, I) ∈ P.
Completeness: for every configuration (G, I) ∈ P and for every node v ∈ V (G) we have
Ver(G, I, Prv(G, I), v) = 1.

We note that the verifier may send arbitrarily large messages (i.e., the verifier is a t-round
LOCAL algorithm).

A 1-PLS is a restricted type of proof labeling scheme Π = (Prv, Ver), following the
original definition from [16]: the prover is the same as in the case of t-PLS for t > 1 above,
but the verifier is restricted to a single round, where each node v sends its certificate av to
all of its neighbors. In the case of a 1-PLS, we let Ver(v, I(v), N(v), av, {au}u∈N(v)) denote
the output of the verifier at node v, when node v’s input is I(v), its neighborhood is N(v),
its certificate is av, and its neighbors’ certificates are {au}u∈N(v).

We say a t-PLS is uniform if it gives the same certificates to all nodes in the graph, i.e.,
for every (G, I) ∈ GI and v, u ∈ V (G), Prv(G, I)(v) = Prv(G, I)(u).

Given a t-PLS Π = (Prv, Ver), the cost of Π in a configuration (G, I), denoted
cost(Π, (G, I)), is the length of the longest certificate in Prv(G, I). If Π is a t-PLS for
a predicate P, we define the cost of Π in a family of configurations GI as follows:

cost(Π, P, n) = max {cost(Π, (G, I)) : (G, I) ∈ P , |V (G)| = n}

Note that the cost is based only on configurations that satisfy P, as the prover has no
particular obligation otherwise.

Initial knowledge. Our techniques require the nodes to have unique identifiers, but generally
the nodes do not need to know in advance the size of the graph or the value of any other
graph parameter; accordingly, the t-PLS we construct in Section 4 does not assume that
nodes know the size of the graph. However, to simplify the presentation of the remainder of
our results, following Section 4 we do assume that the size n of the graph is known to all the
nodes. This is not essential, but it avoids some technical details.

Erasure codes. An erasure code is a type of code that allows us to recover from the erasure
of some symbols in the codeword:

▶ Definition 3. Given a prime number q ∈ N and parameters n, k, d ∈ N, an (n, k, d)q-erasure
code is a pair (Enc, Dec), where

Enc : Fk
q → Fn

q is an encoder,
Dec : (Fq ∪ {?})n → Fk

q is a decoder,
For each w ∈ Fk

q , if c ∈ (Fq ∪ {?})n is obtained from Enc(w) by replacing fewer than d

symbols by ’?’, then Dec(c) = w.

5 It is interesting to explore the case where the verifier is randomized, as this is known to help in some
contexts [8], but in the current paper the verifiers that we construct are deterministic.
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Note that n is used for both the size of the graphs we are working with and the length
of the code, and this suits our purposes, because whenever we apply an erasure code, the
length of the code will be the number of nodes in the graph: for convenience, we always
produce one piece for each node in the graph, even though not all the pieces are used in
every construction.

The codes that we use in the current paper are (n, k, n − k + 1)q-erasure codes, which are
optimal in the number of erasures that they can tolerate. For such a code to exist, it suffices
to have k ≤ n ≤ q [20]. The celebrated Reed-Solomon code is an example of such a code.

Definition 3 assumes that the decoder is given a string of length n where at most d

symbols have been erased, i.e., replaced by ’?’. For our purposes here, it is more convenient to
think of the decoder as a function that takes a set of at most n pieces, which are numbered
symbols of the form (i, c) ∈ [n] × Fq, and reconstructs a word w ∈ Fk

q . Formally, given a set
S = {(i1, c1), . . . , (in′ , cn′)} such that n′ ≤ n and ij ̸= ij′ for every j ̸= j′, we abuse notation
by writing Dec(S) to represent the output of the following procedure: let c′ ∈ (Fq ∪ {?})n

be the string where

c′
j =

{
cj if (j, cj) ∈ S,

? otherwise.

Then we return Dec(c′). (Note that this is well-defined, because we assumed that there is at
most one value cj such that (j, cj) ∈ S for each j.)

From binary certificates to codewords over Fq. In the current paper we use erasure codes
to encode certificates that are represented as binary strings. To do so, we view the certificate
as a string over some finite field Fq, where q is a sufficiently large prime number. The size q

of the field we must take depends on the total number n of pieces, the length ℓ of the binary
certificate, and the number m ≤ n of pieces that suffice to reconstruct the certificate: given
n, ℓ, m ∈ N, let

q(n, ℓ, m) = max
(

n, 2⌈ℓ/m⌉
)

. (1)

Let ℓ′ = ⌈ℓ/ log qn,ℓ,m⌉ be the number of Fqn,ℓ,m
-elements required to represent an ℓ-bit string.

By choice of qn,ℓ,m we have ℓ′ ≤ m ≤ n ≤ qn,ℓ,m.
Throughout the paper, we fix a family {Cn,ℓ,m}n,ℓ,m∈N of erasure codes, where each

Cn,ℓ,m = (Encn,ℓ,m, Decn,ℓ,m) is an (n, ℓ′, n − ℓ′ + 1)qn,ℓ,m
-erasure code. (Such a code exists,

because ℓ′ ≤ m ≤ n ≤ qn,ℓ,m.) To encode a certificate a ∈ {0, 1}ℓ, we view a as an ℓ′-symbol
string over Fqn,ℓ,m

, and apply the encoder Encn,ℓ,m. To reconstruct the certificate from m or
more pieces, we apply the decoder Decn,ℓ,m to obtain an ℓ′-symbol string over Fqn,ℓ,m

, which
we then view as an ℓ-bit binary string.

When using the code Cn,ℓ,m, the length (in bits) of each piece that we produce is

log q(n, ℓ, m) = O((ℓ/m) + log n), (2)

matching the intuition that m pieces of size roughly ℓ/m are necessary and sufficient to
reconstruct an ℓ-bit string.

4 Space-Time Tradeoff for Uniform Proof Labeling Schemes

Recall that a uniform proof labeling scheme is one where the prover assigns the same label
to all nodes. To illustrate the usefulness of erasure codes, in this we use them to transform
a uniform 1-PLS Π for a graph family with growth b : N → N, into a t-PLS for the same
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21:8 Explicit Space-Time Tradeoffs for PLS in Graphs with Small Separators

predicate using certificates that are smaller by a factor of roughly b(t − 1). This is a simpler,
tighter and explicit proof for a similar claim from [6],6 and it also generalizes the universal
t-PLS from [18].

In this section we do not assume that the nodes of the graph know the size n of the graph
or the growth function b. (Since the size of the certificates does depend on these parameters,
we assume that certificates are encoded in some predetermined variable-length encoding.)
Instead, we ask the prover to provide n and b to each node; the prover may lie, but we can
show that this does not affect the soundness of our construction.

▶ Theorem 4. Let GI be a family of configurations, P ⊆ GI be a predicate and Π be a
uniform 1-PLS for P. Then for every t > 1, there exists a t-PLS Π′ for P, such that for
every configuration (G, I) ∈ P with n nodes and growth b : N → N,

cost(Π′, (G, I)) = O

(
cost(Π, P, n)

b(t − 1) + log n

)
.

Proof. Let Π = (Prv, Ver) be the uniform 1-PLS and fix t > 1. Let k(n) = cost(Π, P, n).
We define the t-PLS Π′ = (Prv′, Ver′) as follows.

Given an n-node configuration (G, I) ∈ P with growth factor b : N → N, let a ∈ {0, 1}k(n)

be the certificate assigned by Prv to the nodes {v1, . . . , vn} of G. For convenience we denote
k = k(n), b = b(t−1) and q = q(n, k, b). We use the erasure code Cn,k,b = (Encn,k,b, Decn,k,b)
to generate the encoding Encn,k,b(a) = (c1, . . . , cn) ∈ Fn

q .
The new prover Prv′ assigns each node v of G the certificate a′

v = (i, ci, b, n). The length
of the certificate is O(k/b + log n): encoding the index i ∈ [n], the ball size b = b(t − 1) ≤ n,
and the graph size n requires O(log n) bits. The piece ci ∈ Fq is of length O(k/b + log n),
by (2).

Next we describe the verifier Ver′. Each node v uses t rounds of communication to learn
the entire ball Bt(v) of radius t around itself, including all certificates of the nodes in Bt(v).
Node v verifies that:

All certificates in the ball are well-formed 4-tuples.
All certificates agree on the last two values (the claimed values of b and n), and
For any two certificates (i1, ci1 , b1, n1), (i2, ci2 , b2, n2) collected, we have i1 ̸= i2.

In the sequel, we denote by sx = (ix, cix
, b̃, ñ) the certificate of node x ∈ Bt(v). As we said

above, the values b̃, ñ are the same across all certificates in Bt(v), otherwise v rejects. Also
let k̃ = k(ñ) and q̃ = q(ñ, k̃, b̃).

For each u ∈ N(v) ∪ {v}, let Su = {(ix, cix
) : x ∈ Bt−1(u)} denote the pieces in the

(t − 1)-ball around node u. Node v verifies that |Su| ≥ b̃, ix ∈ [ñ], and cix
is an element of

Fq̃. Next, for each u ∈ N(v) ∪ {v}, node v uses the decoder Decñ,k̃,b̃ to reconstruct from Su

a certificate au = Decñ,k̃,b̃(Su) ∈ {0, 1}k̃.
Finally, node v verifies that: au = av for every u ∈ N(v), and that the original verifier

Ver(v, I(v), N(v), av, {au}u∈N(v)) accepts. If so, node v accepts, and otherwise it rejects.
For lack of space, we omit the detailed proof that Π′ is sound and complete here.

Completeness is straightforward; soundness is proven by showing that if all nodes accept,
then all have reconstructed the same certificate a ∈ {0, 1}k for themselves and their neighbors,
and the original verifier Ver accepts this certificate. ◀

6 In [6] it is claimed that the factor saved is b(t), but we believe it should be b(t − 1), as the verifier
requires one extra round to make sure that all nodes have reconstructed the same certificate.
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Bounding the message size. In the universal t-PLS construction from [18], the verifier uses
messages whose size is bounded by the size of the certificate, whereas our construction above
(and the corresponding one from [6]) requires nodes to learn their entire t-neighborhood,
which cannot be done using small messages. However, our construction is easily modified to
work with messages whose size is bounded by the certificate size: instead of learning the entire
neighborhood, we use pipelining to have each node collect t pieces from its t-neighborhood,
allowing us to save a factor of Θ(t) in the certificate size (instead of b(t − 1)). A bit of
additional effort is required to ensure that all nodes reconstruct the same certificate; the
details are deferred to the full version of the paper.

Handling benign data corruption. If we replace erasure codes by their more powerful
cousins, error-correcting codes, we gain the ability to withstand some bounded number of
corrupted certificates in every neighborhood. Since proof-labeling schemes are intended to
enable fault-tolerance and self-stabilization, this can be useful. We introduce the notion of a
resilient t-PLS :

▶ Definition 5. Let f : N → N, GI a family of graph configurations and P a Boolean predicate
over GI . An f -resilient t-PLS for P is a t-PLS Π = (Prv, Ver) satisfying:

Soundness, defined as in Section 3.
f -resilient completeness: for every configuration (G, I) ∈ P and node v ∈ V (G), if a′ is
a certificate assignment that agrees with Prv(G, I) on all but at most f(r) certificates in
Br(v) for every r ≤ t, then Ver(G, I, a′, v) = 1.

In the full version of the paper, we show that using error-correcting codes, we can withstand
f(t) potential corruptions in every t-neighborhood, and still save a factor of roughly b(t −
1) − 2f(t − 1) in the certificate size.

5 Partition-Based t-Proof-Labeling Schemes

Next, we introduce our constructions for t-PLS in graphs with small separators. We begin
by defining a class of t-PLS, called partition-based schemes, which codify the idea underlying
our constructions and several constructions from [18, 6], and in the following sections we
give the details of our two concrete constructions.

In a partition-based scheme, we partition the graph into vertex-disjoint connected
components C1, . . . , Cm, each with a small boundary Yi ⊆ Ci separating it from the rest
of the graph, and distribute the certificates of the boundary nodes across the nodes in
their component. The diameter of each component must be less than t, so that during the
verification phase, each node in the component can learn the entire component, and the
boundary nodes can recover the pieces of their certificate. Formally, we require the following
properties for each component Cj in the partition:
(P-1) The induced subgraph G[Cj ] is connected and has diameter at most r, where r < t − 1

is a parameter of the construction.
(P-2) Only boundary nodes may have neighbors outside their own component: if u ∈ Cj has

a neighbor v ∈ N(u) such that v ̸∈ Cj , then u, v ∈
⋃

i∈[m] Yi.

Given a 1-PLS Π = (Prv, Ver) with certificate length k, and a partition satisfying the
conditions above, we construct a t-PLS along the following outline.

Partition-based provers. Let k = k(n) and q = q(n, k, d), where n is the size of the input
graph (which we now assume is known to the nodes), k(n) is the certificate length of Π in
graphs of size n, and d is a parameter of our construction.

OPODIS 2021



21:10 Explicit Space-Time Tradeoffs for PLS in Graphs with Small Separators

Our new prover Prv′ begins by computing, for each boundary node x ∈
⋃

j Yj , the
certificate ax that the original prover Prv would give to node x. The prover then uses Cn,k,d

to encode ax across some nodes Ux ⊆ Bt(x) in x’s vicinity, giving each node v ∈ Ux a piece
of the encoding of ax. We refer to ax as the Prv-certificate of x, to distinguish it from the
certificate assigned by the new prover Prv′. The Prv-certificates of non-boundary nodes are
not used; the verifier will guess them.

In addition to the Prv-certificates of the boundary nodes, Prv′ specifies the partition
into components, by telling each node the index of the component to which it belongs, and
whether or not it is a boundary node. Thus, the certificate that Prv′ assigns to each node
v ∈ V is of the form (cidv, sv, Pv), where

cidv ∈ N is the index of the component to which v belongs,
sv ∈ {0, 1} indicates whether or not v is a boundary node, and
Pv ⊆ V × N × Fq is a collection of pieces of Prv-certificates for some boundary nodes in
v’s vicinity. Each piece is of the form (x, i, ci), where x is the ID of a boundary node, i is
the index of the piece, and ci is the i-th piece in the encoding Encn,k,d(ax) = (c1, . . . , cn).

The actual construction of the prover Prv′ depends on the graph family we want to
handle: specifically, Prv′ must be able to compute a “good” partition for graphs from the
family, and it must be able to assign pieces of the original certificates of the boundary nodes,
in such a way that no node receives too many pieces (to keep the certificates of Prv′ short).
In the current paper we construct two partition-based provers:

In Section 7 we construct a prover for graph families with a small edge separator, and
In Section 8 we construct a prover for graph families that exclude some fixed minor.

The partition-based verifier. We define a single verifier Vert
r,d, parameterized by:

The number of rounds t that the verifier may use,
An upper bound r < t − 1 on the diameter of each component Ci in the honest prover’s
partition,
The parameter d of the erasure codes Cn,k(n),d used by the honest prover.

The verifier Vert
r,d is sound whenever the original 1-PLS verifier Ver on which it is based is

sound. To yield a sound and complete t-PLS, it can be combined with any partition-based
prover that matches the parameters r, d, t and distributes certificate pieces in a way that
each node can reconstruct what it needs.

We formally define Vert
r,d in the next section, but on a high level, it operates as follows:

each node v learns its Θ(t)-neighborhood and the certificates in it, and verifies that the
component containing v is well-formed and has diameter at most r. Node v uses the certificate-
pieces in its Θ(t)-neighborhood to reconstruct an “original certificate” ax, purportedly
computed by the original prover Prv, for each boundary node x in v’s component. It then
checks if there exists an assignment of “original certificates” to the non-boundary nodes in
v’s component, that would cause all nodes in the component to accept; if so, v accepts, and
otherwise v rejects.

The soundness of this construction stems from the fact that we can “stitch together” the
original certificates reconstructed or guessed for the various components, into a certificate
assignment that is accepted by the original verifier Ver.

6 The Partition-Based Verifier

In this section we define the partition-based t-round verifier Vert
r,d, assuming we are given a

1-PLS verifier Ver.
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As explained in Section 5, we assume that every node v ∈ V is given a certificate of
the form (cidv, sv, Pv), where cidv ∈ N, sv ∈ {0, 1}, and Pv ⊆ V × [n] × Fq, where V is the
domain from which UIDs are drawn. We say that node v is a boundary node if sv = 1, and
otherwise node v is an inner node.

Each node v spends the first t − 1 rounds learning its entire (t − 1)-neighborhood Bt−1(v),
including the graph structure, the certificates and the inputs of the nodes. Define the
following subsets of Bt−1(v) (see Fig. 2):

C̃(v) = {u ∈ Bt−1(v) : cidu = cidv}. These are the nodes that the prover has indicated
belong to the same component as v.
Adj(v) =

(
Bt−1(v) ∩ N(C̃(v)

)
\ C̃(v). These are the nodes adjacent to C̃(v) which node

v can see in its (t − 1)-neighborhood.
Inner(v) =

{
u ∈ C̃(v) : su = 0

}
,

Boundary(v) =
(
C̃(v) \ Inner(v)

)
∪ Adj(v),

All(v) = Inner(v) ∪ Boundary(v).
Intuitively, the nodes in Inner(v) are the nodes for which v will “guess” certificates, and
the nodes in Boundary(v) are the nodes for which v will reconstruct certificates from pieces
given by the prover.

Figure 2 The sets Inner(v), Boundary(v) and Adj(v) computed by the verifier at node v. The
bold lines indicate the partition into components,

{
C̃(u)

}
u∈V

.

Node v verifies the following conditions:
(V-1) The subgraph induced by C̃(v) on v’s (t − 1)-neighborhood is connected and has

diameter at most r.
(V-2) All neighbors of v that are inner nodes are in C̃(v), that is, for every u ∈ N(v), if

su = 0, then cidu = cidv.
The requirements (V-1) and (V-2) mirror our requirements (P-1) and (P-2) from the partition-
based prover (see Section 5): if the prover constructed a partition satisfying (P-1) and (P-2),
then (V-1) and (V-2) will be satisfied at all nodes. We point out that (V-2), when verified at all
nodes, implies that every node in Boundary(v) is a boundary node: if x ∈

(
C̃(v) \ Inner(v)

)
then this is immediate, and if x ∈ Adj(v), then x ̸∈ C̃(v) but x has a neighbor y ∈ C̃(v). If
x were not a boundary node, then y would reject when verifying (V-2).

The next step is for node v to reconstruct original certificates for the nodes in Boundary(v),
as follows: for each x ∈ Boundary(v), let Av(x) = {(x, iu

x, cu
x) ∈ Pu : u ∈ Bt−1(v)} be the

pieces associated with node x that node v can see in its (t − 1)-neighborhood. Node v verifies
that |Av(x)| ≥ d, and that for every u ̸= u′ in Bt−1(v) we have iu

x ≠ iu′

x . Then, node v

applies the decoder Decn,k,d to Av(x) to reconstruct a string ãv(x) ∈ {0, 1}k.
After reconstructing a certificate ãv(x) for each x ∈ Boundary(v), node v sends the list

{(x, ãv(x)) : x ∈ Boundary(v)} to all of its neighbors, and receives from each neighbor u ∈
N(v) a list {(x, ãu(x)) : x ∈ Boundary(u)}. Node v verifies that for every x ∈ Boundary(v)∩
Boundary(u) the same certificate was reconstructed by v and u, that is, ãv(x) = ãu(x).
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Following the previous step, node v has an assignment ãv : Boundary(v) → {0, 1}k of
certificates to the boundary nodes. It now checks if there exists an extension of ãv to all nodes
in All(v), such that the original verifier Ver accepts ãv at every node in C̃(v). Formally,
we require that Ver(u, I(u), N(u), ãv(u), {ãv(w)}w∈N(u)) = 1 for every u ∈ C̃(v). If such an
extension exists, then node v accepts, and otherwise it rejects.

In Appendix A, we prove that our verifier is sound, by showing that if Vert
r,d accepts at

all nodes, then there is a Prv-certificate assignment that causes the original verifier Ver to
accept at all nodes.

7 A Partition-Based t-PLS for Graphs with Small Edge Separators

In this section we construct a partition-based prover Prvt
sep for graph families that admit

small balanced edge separators:

▶ Definition 6. Fix α ∈ (1/2, 1). A set S of edges S ⊆ E is an α-edge separator for a graph
G = (V, E) if the graph G′ = (V, E \ S) that remains after the edges in S are removed has
no connected components of size larger than α|V |.

We note that in our construction we always choose a minimal balanced edge separator, that
is, an edge separator S such that the removal of any edge e ∈ S would yield a set S \ {e}
that is not a balanced edge separator. This will be important for correctness.

The cost of an edge separator. We define the cost of an edge separator S ⊆ E to be the
number of nodes incident to edges in S: cost(S) = |{u ∈ V : ∃v(u, v) ∈ S}|.

We note that this differs from the standard definition – usually, one tries to find a
set S ⊆ E of minimum cardinality (i.e., the smallest number of edges). However, in our
construction, it is the number of nodes incident to S that matters, not the size of S itself,
because the prover will need to specify a certificate for every node incident to S. Our notion
of cost is never greater than the standard notion (the number of edges), but it can be smaller.

Given a graph family G that is closed under taking subgraphs, we say that G admits a
balanced edge separator of cost s : N → N (where s is a non-decreasing function) if every
graph G ∈ G has a minimal (2/3)-balanced edge separator of cost at most s(|V (G)|).

For a graph family that admits balanced edge separators of cost s, we construct a
partition-based prover Prvt

sep, as follows.

The decomposition tree. Let d = ⌊t/2⌋ − 1. We recursively decompose the input graph G

into smaller subgraphs using balanced edge separators, until only components of size smaller
than d remain; these components are the partition that will be used by our prover.

The recursive decomposition is represented by a labeled tree T , where
Each vertex of T is a connected subgraph of G, and the root of T is G itself.
Each non-leaf vertex C ⊆ G is labeled by a minimal (2/3)-balanced edge separator
SC ⊆ E(C) of cost ≤ s(|V (C)|).
If a vertex C of T has size |V (C)| ≥ d, then C is an inner vertex, and its children are the
maximal connected components of the graph (V (C), E(C) \ SC).
If a vertex C of T has size |V (C)| < d, then C is a leaf of T . For convenience, in this
case we let SC = ∅.

For each tree vertex C, let XC ⊆ V (C) denote the nodes incident to an edge in SC . The
nodes in XC will be boundary nodes in our partition.
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It is easy to see that the depth of T is O(log n): at each inner vertex C, the edge set SC

is a (2/3)-balanced edge separator, so the children of C have size at most (2/3)|V (C)|. We
state several additional properties of the decomposition, which will be needed for our t-PLS;
the proofs of these properties appear in Appendix B.

In the sequel, we say that C is an ancestor of C ′ if C is on the path from C ′ to the root
of T , including the case C = C ′.

▶ Lemma 7. Each tree vertex C is an induced subgraph of G, and the leafs L1, . . . , Lk of T

induce a partition V (L1), . . . , V (Lk) of the vertices V (G).

For a node v ∈ V , let C(v) denote the leaf C of T such that v ∈ V (C).

▶ Lemma 8. For each v ∈ V , C(v) is a connected subgraph of G of size at most d − 1.

▶ Corollary 9. The construction satisfies (P-1), with r = d − 1: for every node v ∈ V , the
induced subgraph G[C(v)] is connected and has diameter at most d − 1 < t − 1.

▶ Lemma 10. For every two vertices C, C ′ of T ,
If C is an ancestor of C ′ in T , then C ′ ⊆ C;
If C is not an ancestor of C ′ and C ′ is also not an ancestor of C, then C and C ′ are
vertex-disjoint.

Let S =
⋃

C∈T SC , X =
⋃

C∈T XC . The nodes in X serve as the boundary nodes from
Section 5.

▶ Lemma 11. The construction satisfies condition (P-2): for every node u ∈ V and neighbor
v ∈ N(u), if C(u) ̸= C(v), then u, v ∈ X.

Next, for a node v ∈ V , let

Up(v) =
⋃

ancestors C′ of C(v)

XC′ , and Down(x) = {v ∈ V : x ∈ Up(v)} .

In our t-PLS, every node v receives a piece of the certificate for each node in Up(v). Because
T has logarithmic depth, and the separator taken out at each vertex has size at most s(n),
we have:

▶ Lemma 12. For each node v ∈ V we have |Up(v)| ≤ s(n) log n.

On the other hand, it is also important that each node x ∈ X have at least Ω(t) nodes to
which we can give pieces of x’s certificate. If x ∈ X, then there is some inner vertex C of
T such that x ∈ XC . By definition, V (C) ⊆ Down(x). Since inner vertices are connected
subgraphs of size at least d, we have:

▶ Lemma 13. For each x ∈ X we have |Down(x) ∩ Bd(x)| ≥ d.

The prover. We now define the prover Prvt
sep, given a 1-PLS prover Prv for some predicate

P. Fix a configuration (G, I) ∈ P, and let av be the certificate assigned by Prv to v ∈ V .
Let n = |V |, k = k(n) be the length of the certificates produced by Prv, and let q = q(n, k, d)
(from Section 3). Finally, let us fix an erasure code Cn,k,d = (Enc, Dec) over Fq.

Using the decomposition tree T of G, our new prover assigns certificates as follows:
first, the prover assigns a unique identifier ID(C) ∈ [n] to each leaf C of T . Then, the
prover encodes the certificate of each node x ∈ X across the nodes in Down(x): the prover
computes the encoding Enc(ax) = (c1

x, . . . , cn
x) of x’s certificate ax, and assigns a unique
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index ℓx(u) ∈ [|Down(x)|] to each node u ∈ Down(x). We refer to a triplet (x, ℓ, cℓ
x) as

the ℓ-th piece of x’s certificate. Each node v ∈ Down(x) receives the piece (x, ℓx(v), c
ℓx(v)
x )

(among other information).7
The certificate of node v ∈ V is (cidv, sv, Pv) ∈ [n] × {0, 1} × 2V ×[n]×Fq , where
cidv = ID(C(v)), and
sv = 1 iff v ∈ X,
Pv is a collection of certificate pieces: Pv =

{
(x, ℓx(v), c

ℓx(v)
x ) : x ∈ Up(v)

}
.

Since |Up(v)| ≤ s(n) log n and log q = O(k(n)/d + log n), the size of each certificate is
bounded by O(log n + ((k(n)/d) + log n)s(n) log n) = Õ(k(n)s(n)/t).

In Appendix B, we prove that the t-PLS (Prvt
sep, Vert

r,d) is complete. Since we have
already shown that Vert

r,d preserves the soundness of the original verifier Ver, together this
proves Theorem 1 from Section 1.

8 A Partition-Based t-PLS for Graph Families with an Excluded Minor

In this section we show that graph families with an excluded constant-sized minor admit
a partition into components C0, . . . , Cm of size r = O(t), such that the boundary Yi ⊆ Ci

of each component Ci satisfies |Yi|/|Ci| = O(∆/
√

r). (Here, ∆ is the maximum degree in
the graph.) This allows the prover to split the certificate of each boundary node y ∈ Yi into
roughly

√
r/∆ pieces, and assign them to the nodes of Ci, so that each node receives only a

single certificate piece in total.
Our construction is based on the r-region decomposition of Frederickson [9], which takes a

planar graph G = (V, E) and produces O(n/r) sets of nodes, R1, . . . , Rm ⊆ V , called regions.
The regions are not necessarily vertex-disjoint; nodes that appear in more than one region
are called border nodes.8 The regions R1, . . . , Rm satisfy:

For each edge {u, v} ∈ E, there is some region Ri such that u, v ∈ Ri,
|Ri| ≤ r for each i, and
Each region contains at most O(

√
r) border nodes: |Ri ∩

⋃
j ̸=i Rj | = O(

√
r) for each i.

We note that G need not be a connected graph for Frederickson’s construction, and the
regions R1, . . . , Rm need not induce connected subgraphs.

Although Frederickson originally stated his results only for planar graphs, the r-region
decomposition from [9] relies only on the existence of a balanced weighted vertex separator of
size O(

√
n) (we omit the definition of this object here, as it is not needed directly for our

construction). Later, [1] showed that any graph family with a constant-size excluded minor
H admits a balanced weighted separator of size O(cH

√
n), where cH is a constant depending

on the minor H. Thus, Frederickson’s r-region decomposition applies to any graph family
with an excluded minor of constant size.9

The r-region decomposition is an excellent starting point for constructing a partition for
our prover, but there are two issues we need to solve:

7 Note that while the encoding Enc(ax) of x’s certificate comprises n pieces, only the first |Down(x)|
pieces will actually be used, and the rest are not given to any graph node. This is fine: because
|Down(x)| ≥ d (Lemma 13), we can still recover ax from the pieces that were actually used.

8 In [9] these nodes are called boundary nodes, but here we refer to them as border nodes, as we use
boundary nodes to mean something different in the context of Sections 5, 6.

9 In fact, Frederickson’s decomposition can be extended to any graph family with polynomial expansion,
as it is known that such graph families have sublinear vertex separators. This allows us to extend the
construction given here to any graph family with polynomial expansion, yielding a t-PLS with that
saves a factor of O(∆/tδ) for some δ ∈ (1/2, 1). The details are deferred to the full version of the paper.
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The subgraph G[Ri] induced by a region Ri is not necessarily connected, and
Regions can be arbitrarily small, so even though each region has size at most r and
contains O(

√
r) border nodes, the ratio between the size of the region and the number of

border nodes in it is unbounded. This means there may not be enough nodes inside the
region to allow us to partition the certificates of the border nodes across them.

To address these issues, we start from an r-region decomposition of the graph, and show
that we can carve out at least one component C of size O(r), which is connected and contains
at most O(|C|/

√
r) border nodes. We recurse on the connected components that remain

after C is removed, until we have covered the original graph in its entirety.

▶ Lemma 14. Let G be a family of graphs that exclude a fixed minor H. Then there exists a
constant α ∈ R+ such that for each r ≤ n, every graph G ∈ G admits a partition C0, . . . , Cm

of V (G), along with border sets X0 ⊆ C0, . . . , Xm ⊆ Cm, such that
(R-1) Condition (P-1) is satisfied: for each i, G[Ci] is a connected subgraph and |Ci| ≤ r.
(R-2) For each i ∈ [m], u ∈ Ci and v ∈ V \ Ci such that {u, v} ∈ E, either u ∈

⋃
j<i Xj or

v ∈
⋃

j<i Xj (or both).10

(R-3) For each i ∈ [m] we have |Ci|/|Xi| ≥ α
√

r (or |Xi| = 0).

Proof sketch. We describe how the partition is constructed; the proof that the conditions
of the lemma are satisfied is deferred to Appendix C.

Let c1, c2 ≥ 1 be the constants from Frederickson’s construction, so that for every graph
over at least r vertices, there is an r-region decomposition comprising at most c1n/r regions,
each of size at most r, and each containing at most c2

√
r border nodes.

Let α = 1/(c1c2). We build our partition recursively, by carving out a sequence of
components C0, . . . , Cm, each with a border set Xi ⊆ Ci, satisfying the conditions of the
lemma. Suppose we have already found and removed the first i ≥ 0 components, and let
Gi = G[Vi] be the remaining graph, where Vi = V \

⋃
j<i Cj .

If |Vi| < r, we cannot apply the region decomposition to Gi, as it is too small. In this
case we let Ci be some maximal connected component of Gi, and let Xi = ∅. It is easy to
see that the conditions of the lemma are satisfied.

If |Vi| ≥ r, then let R1, . . . , Rm be an r-region decomposition of Gi, comprising at most
c1|Vi|/r regions, each of size at most r and containing at most c2

√
r border nodes (here,

“border nodes” means nodes that appear in more than one region R1, . . . , Rm; we do not
consider regions removed in previous steps of the construction). Since we have at most
c1|Vi|/r regions that together cover all nodes of Vi, and since each region contains at most r

nodes, there is some region R∗ such that r/c1 ≤ |R∗| ≤ r. Let R− =
⋃

R′ ̸=R∗ R′ be the union
of all the regions except R∗, and let W1, . . . , Ws be the maximal connected components of
the induced subgraph Gi[R∗]. We claim that there is some maximal component Wj that has

|Wj |
|Wj ∩ R−|

≥
√

r

c1c2
, (3)

otherwise the total number of border nodes in R∗ would be too large:

|R∗ ∩ R−| =
s∑

j=1
|Wj ∩ R−| >

s∑
j=1

|Wj | · c1c2√
r

= c1c2√
r

|R∗| ≥ c1c2√
r

r

c1
= c2

√
r,

a contradiction to the fact that every region contains at most c2
√

r border nodes.

10 Note that this condition is weaker than (P-2).
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We define the component Ci to be some maximal connected component Wj satisfying (3),
and we let Xi = Wj ∩ R−, the border nodes in Wj . The proof that the conditions of the
lemma are satisfied appears in Appendix C. ◀

The prover. We are now ready to define the prover Prvt
minor, given a 1-PLS (Prv, Ver)

for some predicate P.
Let G be a family of graphs with an excluded minor H, and let α be the constant from

Lemma 14. Let r = ⌊t/2⌋ − 1 and let d = α
√

r/ (∆ + 1). Let Cn,k,d = (Encn,k,d, Decn,k,d)
where k = k(n) is the certificate size of the original PLS and let q = q(n, k, d) be the prime
from Section 3.

Given a configuration (G, I) ∈ GI over n nodes with maximum degree ∆, the prover
Prvt

minor computes the certificates {av}v∈V assigned by Prv to (G, I), and the partition
C0, . . . , Cm, X0, . . . , Xm from Lemma 14.

For each component Ci with border Xi ⊆ Ci, let Yi = Xi ∪ N(Xi). The prover partitions
Ci into |Yi| sets, {Dy}y∈Yi

, each of size at least d = α
√

r/ (∆ + 1). This is possible, because

|Yi| ≤ (∆ + 1)|Xi| ≤ (∆ + 1) |Ci|/(α
√

r).

For each node y ∈ Yi, the prover computes the encoding Encn,k,d(ay) = (c1
y, . . . , cn

y ) of
ay into n pieces. The prover also assigns a unique index ℓy(v) ∈ [d] to each node v ∈ Dy,
and node v ∈ Dy will then receive the piece (y, ℓy(v), c

ℓy(v)
y ) (among other information). The

certificate of node v ∈ Ci is given by (i, sv, Pv), where
sv = 1 iff v ∈ Yi,
Pv =

{
(y, ℓy(v), c

ℓy(v)
y ) : v ∈ Di

}
. This consists of a single certificate piece, because the

sets Dy, Dy′ are disjoint for y ̸= y′.
The certificate size is bounded by O(log n + log q) = O((k/d) + log n) = Õ(k∆/

√
t).

This completes the definition of Prvt
minor. The proof that the t-PLS (Prvt

minor, Vert
r,d,q)

is complete appears in Appendix C. Together, this proves Theorem 2 from Section 1.
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A Soundness of the Partition-Based Verifier

Fix a certificate assignment {(cidv, sv, Pv) : v ∈ V } that is accepted by all nodes under
Vert

r,d, and let us construct a certificate assignment {av : v ∈ V } ⊆ {0, 1}k that is accepted
by all nodes under the original verifier Ver: for each node v ∈ V , let zv ∈ C̃(v) be the node
that has the smallest ID in C̃(v). Then we define av = ãzv (v), where ãzv is the certificate
assignment found by zv during the verification phase (i.e., the certificate assignment that
makes Ver accept at all nodes in C̃(zv)). We now prove that our stitched-together certificate
assignment {av}V ∈V is indeed accepted by Ver at all nodes.

First, it is not hard to see that if u is in the component C̃(v), then u and v agree on the
structure of the component:

▶ Lemma 15. If u ∈ C̃(v) then C̃(u) = C̃(v), Boundary(u) = Boundary(v), and Adj(u) =
Adj(v).

Proof. Node v verifies that C̃(v) induces a connected component of size at most r inside
Bt−1(v). Since u ∈ C̃(v), for every w ∈ C̃(v) there is a path of length at most r between u and
w; therefore C̃(v) ⊆ Br(u) ⊆ Bt−1(u), and since all nodes w ∈ C̃(v) have cidw = cidv = cidu,
it follows that C̃(v) ⊆ C̃(u). In particular, v ∈ C̃(u), and the same reasoning now shows that
C̃(u) ⊆ C̃(v) as well. Together we have C̃(v) = C̃(u).
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Now consider Adj(v). By definition, w ∈ Adj(v) iff w ∈ (Bt−1(v) ∩ N(C̃(v))) \ C̃(v),
that is, w ̸∈ C̃(v) and there is a node x ∈ C̃(v) such that w ∈ N(x). Node v has
verified that C̃(v) induces a connected component of size at most r inside Bt−1(v), so
there is a path of length at most r < t − 1 between node x and node u, implying that
w ∈ N(x) ⊆ Bt−1(u). Together with the fact that C̃(u) = C̃(v), which we showed above, we
see that w ∈ (Bt−1(u) ∩ N(C̃(u))) \ C̃(u) = Adj(u). Containment in the other direction is
similar, with the roles of u and v exchanged.

Finally, what we showed above implies that Boundary(u) = Boundary(v): by definition,
Boundary(u) = (C̃(u) \ Inner(u)) ∪ Adj(u). We already showed that C̃(u) = C̃(v) and
Adj(u) = Adj(v). It is immediate that Inner(u) = Inner(v), as Inner(u) comprises all the
inner nodes in C̃(u), and similarly for v. The claim follows. ◀

Next, to show that we stitched together the certificates of the various components in
a consistent manner, it is crucial to prove that all nodes agree on the certificates they
reconstructed for all boundary nodes they have in common:

▶ Lemma 16. Let u, v ∈ V , and let x ∈ Boundary(u) ∩ Boundary(v). Then ãu(x) = ãv(x).

Proof. We show that there is a path πu between u and x, and a path πv between v and x,
such that all nodes w on both paths have x ∈ Boundary(w). Since every node w verifies that
it agrees with its neighbors on certificates they reconstructed for the nodes in Boundary(w),
this implies the claim.

We prove the existence of the path πu between u and x; πv is similar. Consider first
the case where x ∈ C̃(u). Node u has verified that C̃(u) is connected and that |C̃(u)| ≤ r,
so there is a path πu = u0, . . . , uℓ from u to x, such that ℓ ≤ r, u0 = u, uℓ = x, and
u0, . . . , uℓ ∈ C̃(u). By Lemma 15, each path node ui has Boundary(ui) = Boundary(u); and
since x ∈ Boundary(u), this shows that every node ui in the path has x ∈ Boundary(ui).

Now suppose that x ̸∈ C̃(u). Then we must have x ∈ Adj(u), as x ∈ Boundary(u) =(
C̃(u) \ Inner(u)

)
∪ Adj(u). By definition of Adj(u), node x has a neighbor y ∈ N(x) ∩ C̃(u).

Since ˜C(u) is connected and |C̃(u)| ≤ r, there is a path πu = u0, . . . , uℓ, uℓ+1 from u to x,
such that ℓ ≤ r, u0 = 0, uℓ = y, uℓ+1 = x, and u0, . . . , uℓ ∈ C̃(u). By Lemma 15, each path
node ui where i ≤ ℓ has Adj(ui) = Adj(u) and hence x ∈ Adj(ui) ⊆ Boundary(ui). And of
course the last node, uℓ+1 = x, also has x ∈ Boundary(x), as x ∈ C̃(x) \ Inner(x). ◀

Finally, we show that the “representative” zv, whose certificate assignment ãz we used to
define av, in fact has v in its component C̃(zv):

▶ Lemma 17. For each v ∈ V we have v ∈ C̃(zv).

Proof. Let z = zv. By definition, z ∈ C̃(v), so by Lemma 15, C̃(v) = C̃(z). Since v ∈ C̃(v),
we also have v ∈ C̃(z). ◀

We can now conclude that under the original verifier Ver, all nodes accept the certificate
assignment a that we defined:

▶ Lemma 18. For each node v ∈ V we have Ver(v, I(v), N(v), av, {au}u∈N(v)) = 1.

Proof. Let v ∈ V , and let z = zv ∈ C̃(v). Since v ∈ C̃(z) (Lemma 17), node z verifies that
v accepts ãz: formally, node z verifies that Ver(v, I(v), N(v), ãz(v), {ãz(u)}u∈N(v)) = 1. We
now prove that the certificate assignments ãz and a agree on the certificates of v and all of
its neighbors: that is, ãz(u) = au for each node u ∈ {v} ∪ N(v).
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For v itself, we defined av = ãz(v).
For a neighbor u ∈ N(v)∩ C̃(v) inside v’s component, Lemma 15 shows that C̃(u) = C̃(v).
In particular, zu = zv = z (the node with the smallest ID in the component), and
therefore au = ãzu(u) = ãz(u).
For a neighbor u ∈ N(v) \ C̃(v) outside v’s component, node u must be a boundary node
(su = 1), otherwise condition (V-2) would cause u to reject. Also, u ∈ Adj(v), by definition
of Adj(v). Lemma 15 shows that Adj(z) = Adj(v). and hence u ∈ Adj(z) ⊆ Boundary(z).
Now let z′ = zu be the node “responsible” for u; we defined au = ãz′(u). By Lemma 17
we have u ∈ C̃(z′), and since u is a boundary node, u ∈ Boundary(z′). We now have that
u ∈ Boundary(z) ∩ Boundary(z′), and therefore, by Lemma 16, au = ãz′(u) = ãz(u).

Since node z has verified that Ver(v, I(v), N(v), ãz(v), {ãz(u)}u∈N(v)) = 1, and we have
shown that au = ãz(u) for every u ∈ {v} ∪ N(v), we immediately see that the verifier at
node v accepts the assignment a, i.e., Ver(v, I(v), N(v), av, {au}u∈N(v)) = 1. ◀

B Missing Proofs from Section 7

Proof of Lemma 7. It is easy to see that at each level of the tree, the vertices C1, . . . , Ck at
that level induce a partition V (C1), . . . , V (Ck) of V (G), because the children of each vertex
are the connected components that remain after removing some edges (but no vertices are
removed). Thus, in particular, the leafs of T induce a partition of V (G).

Next we show that each vertex C is an induced subgraph of G, by induction on the
distance from the root to C. The base case is immediate, because the root of the tree is G

itself. For the induction step, suppose that C is an induced subgraph of G, and let D be a
child of C. Suppose for the sake of contradiction that there is an edge {u, v} ∈ E(G), such
that u, v ∈ V (D), but {u, v} ̸∈ E(D). Recall that by definition of the tree, D is a maximal
connected component of the graph (V (C), E(C) \ SC). Since D ⊆ C, we have u, v ∈ V (C),
and since C is an induced subgraph of G, we must have {u, v} ∈ E(C); therefore {u, v} must
have been removed in the recursive step at C as part of the edge separator, i.e., {u, v} ∈ SC .
But since u, v are in the same connected component C of the graph (V (C), E(C) \ SC),
there is some path πu,v between u and v that does not include any edge from SC . We argue
that this contradicts the minimality of SC , as taking out only the edges SC \ {{u, v}} yields
exactly the same maximal connected components as taking out all of SC .

To see this, let us abuse notation slightly, and denote by D\F the graph (V (D), E(D)\F ).
We claim that for any two nodes x, y ∈ D, node x is reachable from y in D \ SC iff it is
reachable from y in D \ (SC \ {{u, v}}): clearly, if x is reachable from y in D \ SC , then it is
also reachable from y in D \ (SC \ {{u, v}}). For the other direction, if x is reachable from
y in D \ (SC \ {{u, v}}), then we can also reach x from y by a path that does not include
any edge of SC : given a path that avoids all edges in SC \ {{u, v}} but does include {u, v},
we simply replace {u, v} by the path πu,v whose existence we showed above, which does not
include any edges of SC . ◀

Proof of Lemma 8. Since C(v) is a leaf of the decomposition tree, |C(v) ≤ d − 1. Also,
every vertex of the decomposition tree is a connected subgraph of G. ◀

Proof of Lemma 10. If C is an ancestor of C ′, an easy induction on the distance between
C and C ′ in T shows that C ′ is a subgraph of C: the children of every inner vertex D of
T are subgraphs of D. If C, C ′ are not ancestors of one another, then let D be the lowest
common ancestor of C and C ′. We have D ̸= C, D ̸= C ′. Let D′ be the child of D that is
an ancestor of C, and let D′′ be the child of D that is an ancestor of C ′. Then D′, D′′ are
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vertex-disjoint, as they are both maximal connected components of the graph obtained from
D by removing the edges in SD. Since we have already shown that C ⊆ D′ and C ′ ⊆ D′′, it
follows that C and C ′ are also vertex-disjoint. ◀

Proof of Lemma 11. Let D be the lowest common ancestor of C(u) and C(v) in T , and
let Du, Dv be the children of D that are ancestors of C(u), C(v), respectively. Of course,
Du ̸= Dv. By Lemma 10, we have C(u) ⊆ Du ⊆ D and C(v) ⊆ Dv ⊆ D, and hence u ∈ Du,
v ∈ Dv, and u, v ∈ D. And since D is an induced subgraph of G (Lemma 7), and we know
that {u, v} ∈ E (as v ∈ N(u)), it must be that {u, v} ∈ E(D). But Du and Dv are maximal
connected components of (V (D), E(D)\SD), and so the edge {u, v} must be in SD, otherwise
u, v would be in the same child of D. It follows that u, v ∈ XD ⊆ X. ◀

Proof of Lemma 12. T has depth O(log n), and at every ancestor C ′ of C(v) we have
|XC′ | ≤ s(|C ′|) ≤ s(n). The claim follows. ◀

Proof of Lemma 13. Since x ∈ X, there is some inner vertex C such that x ∈ XC , and by
definition, for every v ∈ C we have x ∈ Up(v). Therefore V (C) ⊆ Down(x). In particular,
since C is a connected subgraph of size at least d, and since x ∈ XC ⊆ V (C), we have
|V (C) ∩ Bd(x)| ≥ d. Therefore |Down(x) ∩ Bd(x)| ≥ |V (C) ∩ Bd(x)| ≥ d. ◀

Completeness of the prover Prvt
sep. To show that the honest prover Prvt

sep causes all
nodes to accept, we relate the values that nodes compute during their verification to the
decomposition tree computed by the prover. We continue to refer to nodes as ’inner’ or
’boundary’ nodes, except that now, since we are working with the honest prover, we know
that v is a boundary node (i.e., sv = 1) iff v ∈ X.

▶ Lemma 19. For each inner node v we have C̃(v) = C(v).

Proof. Recall that C̃(v) is the set of nodes u in Bt−1(v) that have cidu = cidv. By definition,
the prover assigns cidu = ID(C(u)) to each node u. Therefore, cidu = cidv iff C(u) = C(v),
that is, iff u ∈ C(v). It follows that C̃(v) = C(v) ∩ Bt−1(v). But by Lemma 8 we have
C(v) ⊆ Bd(v), implying that C(v) ∩ Bt−1(v) = C(v), and therefore, C̃(v) = C(v). ◀

▶ Lemma 20. Conditions (V-1) and (V-2) are satisfied at every node v ∈ V .

Proof. Fix v ∈ V , and let us verify that the conditions hold.
V-1: By Lemma 19 we have C̃(v) = C(v), and since C(v) is a leaf of the decomposition tree,

it is a connected component of size |C(v)| ≤ r = d − 1. Thus, C̃(v) induces a connected
component of size at most r in Bt−1(v).

V-2: Let u ∈ N(v) be an inner node (su = 0). Then u ̸∈ X, and by Lemma 11, every neighbor
of u must be in the same component, C(u) = C(v). This implies that cidu = cidv. ◀

Next we show that the checks associated with the reconstruction of the boundary nodes’
certificates succeed:

▶ Lemma 21. Let v ∈ V . For each x ∈ Boundary(v) we have |Av(x)| ≥ d, and all piece
indices that appear in Av(x) are distinct. Moreover, the reconstructed certificate ãv(x) is the
true certificate ax.

Proof. First, note that x is a boundary node (sx = 1): if x ∈ C̃(v) \ Inner(v) then this is
immediate by definition of Inner(v). Otherwise, we have x ∈ Adj(v), meaning that x ̸∈ C̃(v)
and there is some neighbor y ∈ C̃(v) such that x ∈ N(y). Inner nodes cannot have neighbors
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from a different component (by (V-2), which as we proved in Lemma 20 is satisfied). Therefore
x is a boundary node, and the prover disperses pieces of ax across all the nodes in Down(x).

By Lemma 13, there are at least d nodes in Down(x) ∩ Bd(x). All these nodes are in
Bt−1(v): because |C̃(v)| ≤ r = d − 1 (Lemma 8) and x ∈ N(C̃), we have x ∈ Bd(v), and
therefore Bd(x) ⊆ B2d(v) ⊆ Bt−1(v) (as d = ⌊t/2⌋ − 1). Consequently, Av(x) includes at
least d distinct pieces of ax, and the decoder D reconstructs ax successfully. ◀

▶ Lemma 22. The verifier Vert
r,d accepts at all nodes v ∈ V .

Proof. We have already shown that conditions (V-1) and (V-2) are satisfied at all nodes,
and that the reconstruction step succeeds. It remains to prove that for every node v ∈ V ,
there is some certificate assignment ãv that agrees with the certificates that v reconstructed
for each boundary node x ∈ Boundary(v), and which causes Ver to accept at all nodes in
C(v). Naturally, we define ãv(u) = au for each u ∈ All(v). By Lemma 21, this indeed agrees
with the certificates that v reconstructed for its boundary nodes.

Since we know that Ver(u, I(u), N(u), au, {aw}w∈N(u)) = 1 for all u ∈ V , we get that for
every u ∈ C(v), we have Ver(u, I(u), N(u), ãv(u), {ãv(w)}w∈N(u)) = 1. ◀

C Missing Proofs from Section 8

Conditions (R-1)–(R-3) in the case where |Vi| < r. We prove that Ci, Xi satisfy the
requirements:
(R-1) (P-1): clearly, |Ci| ≤ |Vi| < r, and Ci is a maximal connected component of Gi, which

is an induced subgraph of G. Therefore G[Ci] is a a connected subgraph of size at
most r,as required.

(R-2) Let u ∈ Ci and v ∈ V \ Ci be such that {u, v} ∈ E. It cannot be that v ∈ Vi, because
Vi is an induced subgraph of G, so this would imply that {u, v} ∈ E[Gi], contradicting
the fact that Ci is a maximal connected component of Gi. Thus, v ̸∈ Vi, meaning
that v ∈ Cj for some j < i. In addition, since Cj ∩ Vi = ∅ and u ∈ Ci ⊆ Vi, we have
u ̸∈ Cj . Because Cj satisfies the requirements of the lemma, this implies that either
u ∈

⋃
j′<j Xj′ or v ∈

⋃
j′<j Xj′ . And since j < i, the requirement is satisfied for Ci

as well.
(R-3) We have |Xi| = 0.

Conditions (R-1)–(R-3) in the case where |Vi| ≥ r. Let us prove that the requirements
are satisfied:
(R-1) We have |Ci| ≤ |R∗| ≤ r, and since Ci is a maximal connected component of Gi[R∗],

and Gi is itself an induced subgraph of G, we see that G[Ci] is a connected subgraph
of size at most r, as required.

(R-2) Let u ∈ Ci and v ∈ V \ Ci such that {u, v} ∈ E. There are two cases:
v ∈ Gi: note that since Ci is a maximal connected component of Gi[R∗] and Gi is
itself an induced subgraph of G, we must have v ̸∈ R∗, otherwise the presence of
the edge {u, v} ∈ E would mean that u, v are both in the same maximal connected
component. Thus, there is some region R′ ̸= R that covers the edge {u, v}, that is,
u, v ∈ R′. But this implies that u ∈ R∗ ∩ R′, so u is a border node, and u ∈ Xi.
v ̸∈ Gi: then since Gi is the graph induced by Vi = V \

⋃
i′<i Ci′ , there is some

component Ci′ , i′ < i, such that v ∈ Ci′ . Since Ci′ satisfies (R-2), we have either
u ∈

⋃
i′′<i′ Xi′′ or v ∈

⋃
i′′<i′ Xi′′ , and since i′ < i, this implies that (R-2) is

satisfied for Ci as well.
(R-3) Holds by choice of Ci as a maximal connected component Wj that satisfies (3).
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Completeness of the prover Prvt
minor. Suppose that (G, I) ∈ P , and let us show that all

nodes accept the honest prover’s certificates. As in Section 7, we do so by relating the values
that nodes compute during their verification to the partition the prover computed.

▶ Lemma 23. For each node v ∈ Ci we have C̃(v) = Ci.

Proof. By definition, the prover assigns the same index cidu = i to all nodes u ∈ Ci.
Therefore C̃(v) = C(v) ∩ Bt−1(v). In addition, we know that |Ci| ≤ r < t − 1 and that G[Ci]
is connected, so Ci ⊆ Bt−1, implying that Ci ∩ Bt−1(v) = Ci, and therefore, C̃(v) = Ci. ◀

▶ Corollary 24. Condition (V-1) is satisfied at all nodes.

Proof. For each node v, Lemma 23 implies that C̃(v) = Ci for some part Ci in the partition.
By the conditions of Lemma 14, |Ci| ≤ r and G[Ci] is connected, as required. ◀

▶ Lemma 25. Condition (V-2) is satisfied at all nodes.

Proof. Fix v ∈ V , and let u ∈ N(v) be such that cidu ̸= cidv. By Lemma 23, there are
two distinct parts Ci ̸= Cj such that u ∈ Ci and v ∈ Cj . Thus, from condition (R-2) of
Lemma 14, either u ∈ Xi or v ∈ Xj (or both). Since the prover marks all border nodes and
also their neighbors, we therefore have su = sv = 1. ◀

Finally, we show that each boundary node has enough certificate-pieces in its vicinity:

Lemma 21, for the current construction. As in the proof of Lemma 21 for Prvt
sep, for any

v ∈ V and x ∈ Boundary(v), we must have sx = 1. (This part of the proof depends only on
the verifier, which is the same in both proof systems.) Thus, there is some i such that x ∈ Yi,
and the prover distributes pieces of x’s proof across the nodes in Di. Recall that |Di| = d.
Moreover, Di ⊆ Ci ⊆ Br(x), and x ∈ Br+1(v) (because x ∈ Boundary(v) ⊆ C̃(v) ∪ N(C̃(v))
and C̃(v) is a connected subgraph comprising at most r nodes). Thus, Di ⊆ B2r+1(x) ⊆
Bt−1(x), by choice of r = ⌊t/2⌋ − 1. This proves that node v indeed sees at least d distinct
pieces of x’s proof in Av(x), and is able to successfully reconstruct ãv(x) = ax. ◀

This suffices to prove completeness of Prvt
minor, similar to that of Prvt

sep in Appendix B.
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Local certification consists in assigning labels to the nodes of a network to certify that some given
property is satisfied, in such a way that the labels can be checked locally. In the last few years,
certification of graph classes received a considerable attention. The goal is to certify that a graph G
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1 Introduction

Local certification is an active field of research in the theory of distributed computing. On a
high level, it consists in certifying global properties in such a way that the verification can be
done locally. More precisely, for a given property, a local certification consists of a labeling
(called a certificate assignment), and of a local verification algorithm. If the configuration of
the network is correct, then there should exist a labeling of the nodes that is accepted by the
verification algorithm, whereas if the configuration is incorrect no labeling should make the
verification algorithm accept.

Local certification originates from self-stabilization, and was first concerned with certifying
that a solution to an algorithmic problem is correct. However, it is also important to
understand how to certify properties of the network itself, that is, to find locally checkable
proofs that the network belongs to some graph class. There are several reasons for that. First,
because certifying some solutions can be hard in general graphs, while they become simpler
on more restricted classes. To make use of this fact, it is important to be able to certify that
the network does belong to the restricted class. Second, because some distributed algorithms
work only on some specific graph classes, and we need a way to ensure that the network does
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belong to the class, before running the algorithm. Third, the distinction between certifying
solutions and network properties is rather weak, in the sense that the techniques are basically
the same. So we should take advantage of the fact that a lot is known about graph classes to
learn more about certification.

In the domain of graph classes certification, there have been several results on various
classes such as trees [26], bipartite graphs [23] or graphs of bounded diameter [8], but until
two years ago little was known about essential classes, such as planar graphs. Recently,
it has been shown that planar graphs and graphs of bounded genus can be certified with
O(log n)-bit labels [17, 18, 13]. This size, O(log n), is the gold standard of certification, in
the sense that little can be achieved with o(log n) bits, thus O(log n) is often the best we
can hope for.

Planar and bounded-genus graphs are classic examples of graphs classes defined by
forbidden minors, a type of characterization that has become essential in graph theory since
the Graph minor series of Robertson and Seymour [31]. Remember that a graph H is a
minor of a graph G, is it possible to obtain H from G by deleting vertices, deleting edges,
contracting edges. At this point, the natural research direction is to try to get the big picture
of graph classes certification, by understanding all classes defined by forbidden minors. In
particular, we want to answer the following concrete question.

▶ Question 1 ([18, 14]). Can any graph class defined by a finite set of forbidden minors be
certified with O(log n)-bit certificates?

This open question is quite challenging: there are as many good reasons to believe that
the answer is positive as negative.

First, the literature provides some reasons to believe that the conjecture is true. Properties
that are known to be hard to certify, that is, that are known to require large certificates, are
very different from minor-freeness. Specifically, all these properties (e.g. small diameter [8],
non-3-colorability [23], having a non-trivial automorphism [23]) are non-hereditary. That
is, removing a node or an edge may yield a graph that is not in the class. Intuitively,
hereditary properties might be easier to certify in the sense that one does not need to encode
information about every single edge or node, as the class is stable by removal of edges and
nodes. Minor-freeness is a typical example of hereditary property. Moreover, this property,
that has been intensively studied in the last decades, is known to carry a lot of structure,
which is an argument in favor of the existence of a compact certification (that is a certification
with O(log n)-bit labels).

On the other hand, from a graph theory perspective, it might be surprising that a
general compact certification existed for minor-free graphs. Indeed, for the known results,
obtaining a compact certification is tightly linked to the existence of a precise constructive
characterization of the class (e.g. a planar embedding for planar graphs [17, 13], or a canonical
path to the root for trees [26]). Intuitively, this is because forbidden minor characterizations
are about structures that are absent from the graphs, and local certification is often about
certifying the existence of some structures. While such a characterization is known for some
restricted minor-closed classes, we are far from having such a characterization for every
minor-closed class. Note that there are a lot of combinatorial and algorithmic results on
H-minor free graphs, but they actually follow from properties satisfied by H-minor free
graphs, not from exact characterizations of such graphs. For certification, we need to rule out
the graphs that do not belong to the class, hence a characterization is somehow necessary.
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1.1 Our results
Answering Question 1 seems unfortunately out of reach, at the current state of our knowledge.
We have explained above about why designing compact certification is hard for classes that
do not have a constructive characterization. We will later give some intuition about why
lower bounds seem equally difficult to get. In this paper, we intend to build the foundations
needed to tackle Question 1. More precisely, we have four types of contributions.

First, we show how to certify some graph decompositions. Such decompositions state
how to build a class based on a few elementary graphs and a few simple operations. They
are essential in structural graph theory, and more specifically in the study of minor-closed
classes. Amongst the most famous examples of these theorems is the proof of the 4-Color
Theorem [2] or the Strong Perfect Graph Theorem [10].

Second, we show that by directly applying these tools, we can design compact certification
for several H-minor free classes, for which a precise characterization is known. See Fig. 1
and 2. That is, we answer positively Question 1, for several small minors, and show that our
decomposition tools can easily be used.

Class Optimal size Result

K3-minor free Θ(log n) Equivalent to
acyclicity [26, 23].

Diamond-minor-free Θ(log n) Corollary 20
K4-minor-free Θ(log n) Corollary 20

K2,3-minor-free Θ(log n) Corollary 20
(K2,3, K4)-minor-free

(i.e. outerplanar) Θ(log n) Corollary 20

K2,4-minor-free Θ(log n) See full version.

Figure 1 Our main results for the certification of minor-closed classes.

Figure 2 From left to right: the diamond, the clique on 4 vertices K4, and the complete bipartite
graph K2,3.

Third, we do a systematic study of small minors to identify which is the first one that we
cannot tackle. We first prove the following theorem.

▶ Theorem 2. H-minor-free classes can be certified in O(log n) bits when H has at most 4
vertices.

Then, we extend this theorem to minors on five vertices with a specific shape, proving
along the way new purely graph-theoretic characterizations for the associated classes. After
this study, we can conclude that the next challenge is to understand K5-minor free graphs.

Finally, we prove a general Ω(log n) lower bounds for H-minor-freeness for all 2-connected
graphs H. This generalizes and simplifies the lower bounds of [17] which apply only to Kk

and Kp,q-minor-free graphs, and use ad-hoc and more complicated techniques.
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At the end of the paper, we discuss why the current tools we have, both in terms of upper
and lower bounds, do not allow settling Question 1. We list a few key questions that we need
to answer before we can fully understand the certification of minor-closed classes, from the
certification of classes with no tree minors to the certification k-connectivity, for arbitrary k.

1.2 Our techniques
General approach and challenges

To give some intuition about our techniques, let us focus on a concrete example: K4-minor-
free graphs. Remember that a graph has K4-minor if we can get a K4 by deleting vertices
and edges, and contracting edges. An alternative definition is that a graph has a K4-minor, if
it is possible to find four disjoint sets of vertices, called bags, such that: each bag is connected,
there is a path between each pair of bags, these paths and bags are all vertex-disjoint (except
for the endpoints of the paths that coincide with vertices of the bags). See Figure 3.

Figure 3 The graph on the left has a K4 minor. Indeed, the bags of the second definition are
depicted in the picture in the middle, and it is easy to find the six disjoint paths that link them.
Alternatively, one can get a K4 like the one of the right-most picture by contracting all the edges
inside the bags, contracting the wavy paths between bags into edges, and deleting the dotted vertices
and edges.

An important observation is that, if we take a collection F1, ..., Fk of K4-minor-free
graphs, and organize them into a tree, by identifying pairs of vertices like in Figure 4, we get
a K4-minor-free graph.

Figure 4 The five graphs with plain edges on the left picture are K4-minor free. Organizing them
into a tree by identifying the nodes linked by dotted edges makes a larger K4-minor-free graph.

To see that, suppose that the graph we created has a K4-minor. Then there exist bags
and paths as described above. If the bags and paths are all contained in the same former Fi,
then this Fi would not be K4-minor-free, which is a contradiction. If it is not the case, then
the bags and paths use vertices that belong to different subgraphs Fi and Fj . And because
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of connectivity, they should use a vertex v that connects two such subgraphs (gray vertices
in Figure 4). Then the bags and paths cannot be vertex-disjoint as required, because at least
two of them should use the vertex v.

As a consequence of the observation above, a classic way to study K4-minor-free graphs
(as well as other classes) is to decompose the graph into maximal 2-connected components
organized into a tree. This is called the block-cut tree of the graph, where every maximal
2-connected component is called a block. (Figure 4 actually show the block-cut structure of
the right-most graph.) This is relevant here because 2-connected K4-minor-free graphs have
a specific structure; we will come back to this later.

Now, from the certification point of view, there is a natural strategy: first certify the
structure of the block-cut tree, and then certify the special structure of each block. There
are several challenges to face with this approach. First, to certify the block-cut tree, it is
essential to be able to certify the connectivity of the blocks. Second, we need to avoid what
we call certificate congestion, which is the issue of having too large certificates because we
use too many layers of certification on some nodes. We now detail these two aspects, starting
with the latter.

Avoiding certificate congestion

In the block-cut tee of a graph, the blocks are attached to each other by shared vertices,
the cut vertices. There is no bound on the number of blocks that are attached to a given
cut vertex, and this is problematic for certification. Indeed, we cannot give to every node
the list of the blocks it belongs to, as we aim for O(log n) certificates, and such a list could
contain Ω(n) blocks. And even if we could fix the certification of the block-cut tree, the same
problem would appear with the certification of the specific structure of each block: the cut
vertices would have to hold a piece of certification for each block.

We basically have two tools to deal with this problem. The first one is not new, it is a
degeneracy argument that already appeared in [17, 18]. A graph is k-degenerate if in every
subgraph there exists a vertex that has degree at most k. Intuitively (and a bit incorrectly),
this means that when we need to put a large certificate on a vertex, we can spread it on
its some of its neighbors that have lower degree. A more precise statement is that, for
k-degenerate graphs, we can transform a certification with O(f(n)) labels on the edges of
the graphs, into a classic certification with O(k · f(n)) labels on the vertices. This is relevant
for our problem, as a priori there is less congestion on the edges, and minor-free classes
have bounded degeneracy. Unfortunately, this is not enough for our purpose. We then
build a second, more versatile tool. It consists in proving that it is possible to transform
in mechanical way any certification of a graph or subgraph, into a certification that would
put an empty certificate on some given vertex. Once we have this tool, we can adapt the
certification of the blocks to work well in the block-cut tree: build the block-cut tree by
adding blocks iteratively, making sure that the connecting node has an empty label in the
certification of the newly added block.

See Section 3 for the details on this topic.

Certifying connectivity properties

Connectivity properties have been studied before in distributed certification. Specifically,
certifying that for two given vertices s and t, the st-connectivity is at least k has been studied
in [26] and [23]. But here we are interested in the connectivity of the graph itself, or in other
words, in the st-connectivity between any pair of vertices. Clearly, proving st-connectivity for
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any pair using the schemes of the literature would lead to huge certificates. Instead, we use
the characterizations of k-connected graphs that are known for small values of k. There are
various such characterizations, but they are all based on the same idea of ear decomposition.

To explain ear decompositions, consider a graph that we can build the following way (see
Figure 5). Start from an edge, and iteratively apply the following process: take two different
nodes of the current graph and link them by a path whose internal nodes are new nodes of
the graph. It is not hard to see that such a graph is always 2-connected. Remarkably, the
converse is also true: any 2-connected graph can be built (or decomposed this way). This is
called an open ear decomposition, and similar constructions characterize 2-edge connected
graphs and 3-vertex-connected graphs.

Figure 5 Illustration of an open ear decomposition. The graph on the left can be built with the
ear decomposition described on the right. First, put the bold edge. Then add the path of plain
edges. Finally, add the dotted path, and the wavy path, which is just one edge.

The good thing about these constructions is that we can certify them, by describing and
certifying every step. This requires some care, as when certifying a new path, we could
increase the size of the certificates of the endpoints, that are already in the graph. Fortunately,
the tools developed to avoid certificate congestions allow us to control the certificate size.

The details about the connectivity certification can be found in Section 4.

Putting things together

Combining these techniques, we can prove the following theorem.

▶ Theorem 3. For any 2-connected graph H, if the 2-connected H-minor-free graphs can be
certified with f(n) bits, then the H-minor-free graphs can be certified with O(f(n) + log n)
bits.

Going back to our example, K4-minor-free graphs, given Theorem 3, we are left with
certifying the 2-connected K4-minor-free graphs. As said above, these have a specific shape.
More precisely, 2-connected K4-minor-free graphs have a nested ear decomposition, which
is yet another type of ear decomposition, this time with additional constraints related
to outerplanarity. We can certify this structure by adapting a construction from [17] for
outerplanar graphs.

More generally the 2-connected graphs corresponding to most of the classes of Figure 1
have specific shapes that we can certify quite easily, which imply our compact certification
schemes. We do this in Section 5. For example, the 2-connected C4-minor-free graphs are
K2 and K3, and the 2-connected diamond-minor-free graphs are the induced cycles. A
special case is K2,4, that has a more complicated structure, requiring to consider 3-connected
components, and some more complicated substructures. Due to space constraints, this section
is deferred to the full version [4].

The full version also contains the study all the minors on at most 4 vertices, and all the
minors on 5 vertices of some simple form. For these, we do not need new techniques on the
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certification side, but we need to work on the graph theory side to establish new charac-
terizations, as for these minors the literature does not help. This might be of independent
interest as we study the natural notion of H-minimal graph, which are the graph that have
H as a minor, but for which any vertex deletion would remove this property.

Lower bounds

Towards the end of the paper, we show that Ω(log n)-bit labels are necessary to certify
(2-connected) minor-free graph classes. When it comes to Ω(log n) lower bounds in our
model, there are basically two complementary techniques (called cut-and-plug techniques
in [14]). Both techniques basically show that paths cannot be differentiated from cycles, if the
certificates use o(log n) bits. First, in [23], the idea is to use many correct path instances, and
to prove that we can plug them into an incorrect cycle instance, thanks to a combinatorial
result from extremal graph theory. Second, in [19], the idea is to consider a path, to cut it
into small pieces, and to show via Sterling formula, that there exists a shuffle of these pieces
that can be closed into a cycle.

Previous lower bounds for minor-free graphs in [17] followed the same kind of strategies
as [23] and [19], with the same type of counting arguments, more complicated constructions,
and tackled only minors that were cliques or bicliques.

In this paper, we are able to do a black-box reduction between the path/cycle problem and
the H-minor-freeness for any 2-connected H . This way we avoid explicit counting arguments,
and get a more general result with a simpler proof.

1.3 Related work
Local certification first appeared under the name of proof-labeling schemes in [26], inspired
by works on self-stabilizing algorithms (see [11] for a book on self-stabilization). It has then
been generalized under the name of locally checkable proofs in [23], and the field has been
very active since these seminal papers. In the following, we will focus on the papers about
local certification of graph classes, but we refer to [14] and [16] for an introduction and a
survey of local certification in general.

As said earlier, certification was first mostly about checking that the solution to an
algorithmic problem was correct, a typical example being the verification of a spanning
tree [26]. Some graph properties have also been studied, for example symmetry in [23], or
bounded diameter in [8]. Very recently, classes that are more central in graph theory have
attracted attention. It was first proved in [30], as an application of a more general method,
that planar graphs can be certified with O(log n) bits in the more general model of distributed
interactive proofs. Then it was proved in [17] that these graphs can actually be certified with
O(log n) bits in the classic model, that is, without interaction. This result was extended
to bounded-genus graphs in [18]. Later, [13] provided a simpler proof of both results via
different techniques. It was also proved in [29] that cographs and distance-hereditary graphs
have compact distributed interactive proofs.

Still in distributed computing, but outside local certification, the networks with some
forbidden structures have attracted a lot of attention recently. A popular topic is the
distributed detection of some subgraph H , which consists, in the CONGEST (or CONGEST-
CLIQUE) model to decide whether the graph contains H as a subgraph or not (see [7] and
the references therein). A related task is H-freeness testing, which is the similar but easier
task consisting in deciding whether the graph is H-free or far from being H-free (in terms
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of the number of edges to modify to get a H-free graph). This line of work was formalized
by [6] after the seminal work of [5] (see [20] and the references therein). To our knowledge,
no detection/testing algorithm or lower bounds have been designed for H-minor-freeness.

Finally, we have mentioned in the introduction that certifying that the graph belongs to
some given class is important because some algorithms are specially designed to work on
some specific classes. For example, there is a large and growing literature on approximation
algorithms for e.g. planar, bounded-genus, minor-free graphs. We refer to [15] for a
bibliography of this area. There are also interesting works for exact problems in the
CONGEST model, e.g. in planar graphs [21], graphs of bounded treewidth or genus [24]
and minor-free graphs [25]. In particular the authors of [25] justify the focus on minor-free
graphs by the fact that this class allows for significantly better results than general graphs,
while being large enough to capture many interesting networks. Very recently, [22] proved
general tight results on low-congestion short-cuts (an essential tool for algorithms in the
CONGEST model) for graphs excluding a dense minor.

2 Preliminaries

In this section, we define formally the notions we use and describe some useful known
certification building blocks.

2.1 Graphs and minors
Let G = (V, E) be a graph. Let X ⊆ V . The subgraph of G induced by X is the graph with
vertex set X and edge set E ∩ X2. The graph G \ X is the subgraph of G induced by V \ X.
A graph G′ is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. For every v ∈ V , N(v) denotes the
neighborhood of v that is the set of vertices adjacent to v. The graph G is d-degenerate if there
exists an ordering v1, . . . , vn of the vertices such that, for every i, N(vi) ∩ {vi+1, . . . , vn} has
size at most d. It refines the notion of maximum degree since any graph of maximum degree
∆ are indeed ∆-degenerate (but the gap between ∆ and the degeneracy can be arbitrarily
large). Let u, v ∈ V , a path from u to v is a sequence of vertices v0 = u, v1, . . . , vℓ = v such
that for every i ≤ ℓ − 1, vivi+1 is an edge. It is a cycle if vℓv0 also exists.

A graph G is connected if there exists a path from u to v for every pair u, v ∈ V . All
along the paper, we only consider connected graphs. Indeed, in certification, the nodes can
only communicate with their neighbors, so no node can communicate with nodes of another
connected component.

A vertex v is a cut-vertex if G\{v} is not connected. If G does not contain any cut-vertex,
G is 2-(vertex)-connected. If the removal of any edge does not disconnect the graph, we say
that G is 2-edge-connected. A graph is k-(vertex)-connected if there does not exist any set
X of size k − 1 such that G \ X is not connected. To avoid cumbersome notations, we will
simply write k-connected for k-vertex-connected.

A graph H is a minor of G if H can be obtained from G by deleting vertices, deleting
edges and contracting edges. Equivalently, it means that, if G is connected, there exists a
partition of V into connected sets V1, . . . , V|H| such that there is (at least) an edge between
Vi and Vj if hihj is an edge of H . We say that V1, . . . , V|H| is a model of H. The graph G is
H-minor-free if it does not contain H as a minor.

2.2 Local computation and certification
We assume that the graph is equipped with unique identifiers in polynomial range [1, nk],
thus these identifiers can be encoded on O(log n) bits.



N. Bousquet, L. Feuilloley, and T. Pierron 22:9

Local certification is a mechanism for verifying properties of labeled or unlabeled graphs.
In this paper we will use a local certification at distance 1, which is basically the model called
proof-labeling schemes [26]. A convenient way to describe a local certification is with a prover
and a verifier. The prover is an external entity that assigns to every node v a certificate
c(v). The verifier is a distributed algorithm, in which every node v acts as follows: v collects
the identifiers and the certificates of its neighbor and itself, and outputs a decision accept
or reject. A local certification certifies a graph class C if the following two conditions are
verified:
1. For every graph of C, the prover can find a certificate assignment such that the verifier

accepts, that is, all nodes output accept.
2. For every graph not in C, there is no certificate assignment that makes the verifier accept,

that is, for every assignment, there is at least one node that rejects.
The size of the certificate of C is the largest size of a certificate assigned to a node of a graph
of C.

Note that to describe a local certification, the only essential part is the verifier algorithm,
the prover is just a way to facilitate the description of a scheme.

In this paper, we are going to use a variant of the model above, called edge certification,
where the certificates can be assigned on both the nodes and the edges. See Subsection 3.1.

2.3 Known building blocks for graph certification
There are few known certification schemes that we are going to use intensively as building
blocks in the paper.

▶ Lemma 4 ([26, 1]). Acyclicity can be certified in O(log n) bits.

The classic way to certify that the graph is acyclic, is for the prover to choose a root
node, and then to give to every node as its certificate its distance to the root. The nodes can
simply check that the distances are consistent.

The same idea can be used to certify a spanning tree of the graph, encoded locally at
each node by the pointer to its parent, which is simply the ID of this parent. The scheme is
the same, except that the prover, in addition to the distances, gives the ID of the root, and
the verification algorithm checks that all nodes have been given the same root-ID, and only
takes into account the edges that correspond to pointers (also the root checks that its ID
is the root-ID). A spanning tree is a very useful tool to broadcast the existence of a vertex
satisfying a locally checkable property: simply choose a spanning tree rooted at the special
vertex, encode it locally with pointers and certify it. Then the root can check that indeed it
has the right property, and all the other vertices know that such a vertex exists.

Finally, with the same ideas, one can easily deduce O(log n) certification for paths. We
just add to the acyclicity scheme the verification that the degree of every node is at most 2.
Note that cycles do not need certificates to be verified: every node just checks that it has
degree exactly 2.

Let us now define a graph class that will appear in several decompositions.

▶ Definition 5. A path-outerplanar graph is a graph that admits a path P that can be drawn
on a horizontal line, such that all the edges that do not belong to P can be drawn above that
line without crossings. The edges are said to be nested.

We are going to use the two following classic results as black boxes.

▶ Lemma 6 ([17]). Path-outerplanar graphs can be certified with O(log n)-bit certificates.
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▶ Lemma 7 ([26]). Every graph class can be certified with O(n2) bits.

The idea of the scheme is that the prover gives to every node v the map of the graph, e.g.
as an adjacency matrix, along with the position of v in this map. Then every node can check
that it has been given the same map as its neighbors, and that the map is consistent with its
neighborhood in the network.

Organization of the paper

The full version of the paper contains more material than this short version. First, we had to
remove the majority of the proofs from the short version. As a consequence, some parts of
the paper are mainly lists of lemmas, but the intuition provided in the introduction should be
enough to follow the articulation of the reasoning. Also, as said before, several full sections
of the paper appear only in the full version [4].

3 Avoiding certificate congestion

One can obtain many structured graph classes like minor free graphs with “gluing” operations,
for instance, by identifying vertices of two graphs of the class. If we have a certification for
both graphs, we would like to simply take both certificate assignments to certify the new
graph. However, for the vertex on which the two graphs are glued, the size of the certificate
might have doubled. While it is not a problem for bounded degree graphs, it can become
problematic if many gluing operations occur around the same vertex, since this vertex would
get an additional certificate from each operation. In this section, we present two ways to
tackle these issues, that will be used in the forthcoming sections.

The first one consists in shifting the certification on edges instead of vertices, which helps
in the sense that when gluing on vertices the edge certificate can remain unchanged. As
we will see, the edge setting is equivalent to the usual vertex certification for nice enough
classes. The second option uses that one can (almost) freely assume that a given vertex has
an empty label in a correct certification.

3.1 Edge certification and degeneracy
Transforming a node certification into an edge certification can always be done without
additional asymptotic costs: just copy on every edge the certificate of the two endpoints, and
adapt the verification algorithm accordingly. Transforming an edge certification into a node
certification is also always possible, by giving a copy of the edge label to each of its endpoint.
But this transformation can drastically increase the certificate size: if an edge certification
uses Ω(f(n))-bit labels, the associated node certification might use Ω(n · f(n))-bit if the
maximum degree of the graph is linear. The following theorem ensures that in degenerate
graph classes there is a more efficient transformation that permits to drastically reduce the
size of the certificate.

▶ Theorem 8 ([18]). Consider an edge certification of a graph class C where the edges are
labeled with f(n)-bit certificates. If C is d-degenerate, then there exists a (node) certification
with d · f(n)-bit certificates.

Note that H-minor free graphs have degeneracy O(h
√

log h) where h = |V (H)| [27, 33].
Therefore, we can freely put labels on edges when certifying classes defined by forbidden
minors.
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3.2 Certification with one empty label
In this part, our goal is to erase the certificate of a node. To this end, we first consider
certification of spanning trees and strengthen both Lemma 4 and the discussion that followed
in Subsection 2.3. We then extend this intermediate step to every graph class in Lemma 10.

▶ Lemma 9. Let T be a spanning tree of G. There exists a certification of T that does not
assign a label to the root, and uses the same certificate as the classic tree certification (cf.
Subsection 2.3) on the other nodes.

A pointed graph is a graph with one selected node. Given a class, one can build its pointed
version by taking for each graph all the pointed versions of it.

▶ Lemma 10. Consider a class C that can be certified with certificates of size f(n). One can
certify the pointed class of C with O(f(n) + log n) bits, without having to put certificates on
the selected node.

The previous results can be easily iterated: one can always remove the labels of k nodes (as
long as they are pairwise non-adjacent) to the cost of a factor k in the size of the certificates.
Therefore, the result extends to the case of k-independent pointed classes (i.e. where an
independent set of size at most k is selected instead of only one vertex).

▶ Corollary 11. Consider a class that can be certified with certificates of size f(n). One can
certify the k-independent pointed class with O(kf(n) + k log n) bits, without having to put
certificates on the selected nodes.

Moreover, with more constraints on the structure of the set of pointed vertices (for
instance if they are all at distance at least 3), one could even obtain certificate of size
O(f(n) + k log n) (since every node receives the certificate of at most one selected node).

4 Connectivity and connectivity decompositions

In this section, we study the certification of connectivity properties and connectivity decom-
positions, in particular the block-cut tree mentioned in the introduction.

An ear decomposition is a way to build a graph by iteratively adding paths, the so-called
ears. Ear decompositions are central tools for decades in structural graph theory and are used
in many decomposition or algorithmic results. There exists various variants of this process,
that characterize different classes and properties. For certification, these decompositions
happen to be easier to manipulate than some other types of characterizations since they
are based on iterative construction of the graph, and use paths, which are easy to certify.
These paths are convenient since we can “propagate” some quantity of information on them
as long as every vertex belongs to a bounded number of paths. In this section, we remind
several such decompositions, and use them to certify various connectivity properties and
decompositions.

Let us start with 2-connectivity. A graph G has an open ear decomposition if G can be
built, by starting from a single edge, and iteratively applying the following process: take two
different nodes of the current graph and link them by a path whose internal nodes are new
nodes of the graph (such a path is called an ear). Note that this path can be a single edge,
and then there is no new node. Let an inner node of an ear be a vertex that is created with
this ear, and let a long ear be an ear with at least one inner node.

▶ Theorem 12 ([35] reformulated). A graph is 2-connected if and only if it has an open ear
decomposition.
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As described in the introduction, we use this characterization to certify vertex and edge
2-connectivity.

▶ Lemma 13. 2-connected graphs can be certified with O(log n) bits.

▶ Corollary 14. 2-edge-connected graphs can be certified with O(log n) bits.

A more refined type of ear decomposition characterizes the 3-vertex-connected graphs,
based on Mondshein sequences.

▶ Definition 15 ([32, 28, 9]). Let ru and rt be two edges of a graph G. A Mondshein
sequence through rt, avoiding u is an open ear decomposition of G such that:
1. rt is in the first ear.
2. the ear that creates node u is the last long ear, u is its only inner vertex, and it does not

contain ru.
3. the ear decomposition is non-separating, that is, for every long ear except the last one,

every inner node has a neighbor that is created in a later ear.

▶ Theorem 16 ([9, 32]). Let ru and rt be two edges of a graph G. The graph G is 3-vertex-
connected if and only if it has a Mondshein sequence through rt avoiding u, and there are
three internally vertex-disjoint path between t and u.

We can translate this theorem into a compact certification.

▶ Corollary 17. 3-connectivity can be certified with O(log n) bits on vertices and O(1) bits
on edges.

With the tools we previously introduced, we can now certify a well-known decomposition
into parts of higher connectivity, called the block-cut tree. This allows to prove the following
result. Due to space constraint, the needed definition and proof only appear in the full
version [4].

▶ Theorem 3. For any 2-connected graph H, if the 2-connected H-minor-free graphs can be
certified with f(n) bits, then the H-minor-free graphs can be certified with O(f(n) + log n)
bits.

5 Application to C4, C5, Diamond, K4 and K2,3 minor-free graphs

This section is devoted to the certification of C4-minor-free, diamond-minor-free graphs,
K4-minor-free graphs and K2,3-minor-free graphs. All the proofs can be found in the full
version [4]. They will all follow the same structure: prove that the 2-connected components,
which are more structured, can be certified with small labels, and then use Theorem 3 to
conclude for the general case.

A nested ear decomposition is an open ear decomposition that starts from a path, with
two properties: (1) both ends of an ear have to be connected to the same ear, and (2) for
every ear, the ears that are plugged onto it are nested. Eppstein proved in [12] that, for
2-connected graphs, being K4-minor-free is equivalent to having a nested ear decomposition.
Therefore, we get the following.

▶ Theorem 18. 2-connected K4-minor-free graphs can be certified with O(log n)-bit labels.

We now extend the techniques to other small graphs, but before we prove a simple
statement for the case of C5.
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▶ Lemma 19. 2-connected C5-minor free graphs are either graphs of size at most 4 or K2,p

or K ′
2,p which is the complete bipartite graph K2,p plus an edge between the two vertices on

the set of size 2.

▶ Corollary 20. The following classes of graphs can be certified with O(log n) bit certificates:
C4-minor-free graphs, C5-minor free graphs, diamond-minor-free graphs, house-minor free
graphs1, outerplanar graphs (that is (K2,3, K4)-minor-free graphs), K2,3-minor-free and
K4-minor-free graphs.

6 Lower bounds

In this section, we show logarithmic lower bounds for H-minor-freeness for every 2-connected
graph H. These results generalize the lower bounds of [17] for Kk and Kp,q. Our technique
is a simple reduction from the certification of paths, via a local simulation. In contrast, the
proofs of [17] were ad-hoc adaptations of the constructions of [23] and [19], with explicit
counting arguments. Moreover, our lower bounds apply in the stronger model of locally
checkable proofs, where the verifier can look at a constant distance.

▶ Theorem 21. For every 2-connected graph H, certifying H-minor-freeness requires Ω(log n)
bits.

Let us start by proving a couple of lemmas. Let H be a 2-connected graph, and let e = uv

be an arbitrary edge of H. Let H− be the graph H \ e. Note that H− is connected. We are
going to consider copies of H−, that we index as H−

i ’s, and where the copies of the nodes
u and v will be called ui and vi. Let P be the class of all the graphs that can be made by
taking some k copies of H−, and by identifying for every i ∈ [1, k − 1], vi with ui+1. In other
words, P is the set of paths, where every edge is a copy of H−. The class C is the same as P
except that we close the paths into cycles, that is, we identify vk with u1.

▶ Lemma 22. The graphs of P are all H-minor-free, and the graphs of C all contain H as a
minor.

Proof. Let G be a graph of P. Note that every vertex vi (identified with ui+1) for i ∈
{1, ..., k − 1}, is a cut vertex of G. Therefore, since H is 2-connected, a model of H can only
appear between two such nodes. By construction this cannot happen, as the graphs between
the cut vertices are all H−. Thus G is H-minor-free.

Now let G be a graph of C. We claim that G contains H as a minor. Consider the
following model of H . Any H−

i is a model of H except for the edge uv. Since we have made
a cycle of H−

i ’s, there is a path between vi and ui outside H−
i , and this path finishes the

model of H. ◀

▶ Lemma 23. Let H be a 2-connected graph. If there is a certification with O(f(n)) bits for
H-minor-free graphs, then there is a O(f(n)) certification for paths.

Now Theorem 21 follows from the fact that paths cannot be certified with o(log n)
bits [26, 23]. Note that this also applies in the locally checkable proof setting, as soon as
the number of copies of H− is large enough, since the lower bound for paths also applies to
locally checkable proofs.

1 The house being a C4 plus a vertex connected to two consecutive vertices of the C4.
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7 Discussion

Milestones to go further

In this paper, we develop several tools and use them to show that some minor closed graph
classes can be certified with O(log n) bits. While these tools probably permit certifying new
classes, we simply wanted to illustrate their interest. Let us now discuss the tools that are
missing in order to tackle the general question on H-minor-freeness and which steps can be
interesting to tackle it.

First, as we explained in the section of the full version concerned with 5 vertices, certifi-
cation of H-minor free classes seems easier when H is sparse. One first question that might
be interested to look at is the following:

▶ Question 24. Let T be a tree. Can T -minor free graphs be certified with O(log n) bits?

The answer to this question for small graphs H (up to 5 vertices) is not very interesting,
since the number of vertices of degree at least 3 is bounded (and then the whole structure of
the graph is “simple”). Even if it remains simple for any H, there is no trivial argument
allowing us to certify these nodes with O(log n) bits.

A natural approach to tackle Conjecture 1 would consist in an induction on the size of
H. Indeed, knowing how to certify H \ x for any possible x may help to certify H. The
basic idea would consist in separating two cases. 1) When H is not heavily connected where
we can heavily use the fact that we can H \ x can be certified. And 2) when H is heavily
connected, try to use a more general argument. A first step toward step 1) would consist in
proving that if H-minor-freeness can be certified, then so is H + K1-minor-freeness2. We
proved it for five vertices in the full version, but the proof heavily uses the structure of the
graphs on four vertices. One can then naturally ask the following general question:

▶ Question 25. Let H be a graph. Can (H + K1)-minor free graphs be certified with O(log n)
bits when H can be certified with O(log n) bits?

As in the proof of the analogue theorem for 5 vertices in the full version, we know that
we can assume that G is H-minimal. Even if most of the techniques we use are specific, some
(basic) general properties of H-minimal graphs which might be useful to tackle this question.

In structural graph theory, a particular class of H-minimal graphs received a considerable
attention which are minimally non-planar graphs, in order words, graphs G that are minimal
and that contains either a K5 or a K3,3 as a minor. It might be interesting to determine if
minimally non-planar graphs can be certified with O(log n) bits.

Note that if we can answer positively Question 25 positively, the second step would
consist in proving the conjecture when we add to H a vertex attached to a single vertex of
H. Proving this case would, in particular, imply a positive answer to Question 24.

If we want to consider dense graphs, the questions seem to become even harder. In
particular, one of the first main complicated H-minor class to deal with is probably the class
of K5-free graphs. There are several reasons for that. First, it is the smallest 4-connected
graph and the hardness to certify seem to be highly related to the connectivity of the graph
that is forbidden as a minor. The second reason is that it is the smallest graph for which
H-minor free graphs is a super class of planar graphs. In other words, we cannot take
advantage of the “planarity” of the graph (formally or informally) to certify the graph class.
We then ask the following question:

2 H + K1 is the graph H plus an isolated vertex.
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▶ Question 26. Can K5-minor free graphs be certified with O(log n) bits?

Wagner proved in [34] that a graph is K5-minor-free if and only if it can be built from
planar graphs and from a special graph V8 by repeated clique sums. A clique sum consists in
taking two graphs of the class and gluing them on a clique, and then (potentially) remove
edges of that clique. While it should have been easy to certify this sum if we keep the edges
of the clique, the fact that they might disappear makes the work much more complicated for
certification.

More generally, many decompositions are using the fact that we replace a subgraph by
a smaller structure (a single vertex or an edge for instance) only connected to the initial
neighbors of that structure in the graph. Certifying such structures is a challenging question
whose positive answer can probably permit to break several of the current hardest cases.

Obstacles towards lower bounds

There are also several obstacles preventing us to prove super-logarithmic lower bounds for
the certificate size of H-minor-free graphs. Basically, the only techniques we know consist in
(explicit or implicit) reductions to communication complexity. In particular, communication
complexity.

Let us remind what these reductions look like. In such a reduction, one considers a family
of graphs with two vertex sets A and B, with few edges in between. These graphs are defined
in such a way that the input of Alice for the disjointness problem can be encoded in the
edges of A and the input of Bob in the edges of B. Then, given a certification scheme, Alice
and Bob can basically simulate the verification algorithm, and deduce an answer for the
disjointness problem. If a certification with small labels existed for the property at hand,
then the communication protocol would contradict known lower bounds, which proves a
lower bound for certification.

The difficulty of using this proof for H-minor free graphs comes from the fact that it
is difficult to control where a minor can appear, that is, to control the models of H. For
example, it is difficult to control that if H appears in the graph, then the nodes Vi associated
with some node i of H are on Alice’s side. As a comparison, for proving properties on the
diameter, [8] used a construction where all the longest paths in the graph had to start from
Alice side and finish in Bob side, but such a property seems difficult to obtain for minors.

Connectivity questions

A large part of the paper is devoted to certify connectivity and related notions that are of
independent importance, for instance to certify the robustness of a network. For these, we
do not have lower bounds, and leave the following question open.

▶ Question 27. Does the certification of k-connectivity require Ω(log n) bits?

For this question, it is tempting to try a construction close to the one we have used
for H-minor-free graphs. For example, one could think that the nodes of the path/cycle
could simulate the k-th power of the graph, which is k-connected if and only if the graph
is a cycle. But this does not work: we want the yes-instances for the property (e.g. the
k-connected graphs) to be in mapped to yes-instances for acyclicity (e.g. paths), and not
with the no-instances, which are the cycles.

An interesting open problem about k-connectivity also is on the positive side:

▶ Question 28. Can k-connectivity be certified with O(log n) bits for any k ≥ 4?
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Beyond the question of certifying the connectivity itself, we would like to be able to
decompose graphs based on k-connected components, like what we did with the block-cut tree
for 2-connectivity. Such decomposition are more complicated and less studied than block-cut
trees, but for 3-connectivity such a tool is SPQR trees [3]. Unfortunately, similarly to the
clique sum operation we mentioned earlier, some steps of the SPQR tree construction are
based on edges that can be removed in later steps, making it hard to certify this structure.
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Abstract
Multi-party random number generation is a key building-block in many practical protocols. While
straightforward to solve when all parties are trusted to behave correctly, the problem becomes much
more difficult in the presence of faults. This paper presents RandSolomon, a partially synchronous
protocol that allows a system of N processes to produce an unpredictable common random number
shared by correct participants. The protocol is optimally resilient, as it allows up to f = ⌊ N−1

3 ⌋ of
the processes to behave arbitrarily, ensures deterministic termination and, contrary to prior solutions,
does not, at any point, expect faulty processes to be responsive.
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1 Introduction

In a Byzantine fault-tolerant random number generator (BFT-RNG) protocol, a set of
participating processes agree on a single random number that cannot be manipulated or
halted, despite the presence of Byzantine failures, i.e., assuming that a faulty process may
arbitrarily deviate from the prescribed algorithm. We distinguish between commission and
omission failures [15]. Intuitively, a commission fault occurs when a process sends messages
a correct process would not send, whereas an omission fault occurs when a process does not
send messages a correct process would send.

A BFT-RNG protocol is typically divided into three phases:

1. Generation and Commitment Phase – each process locally generates some random
value and then publicly commits to this value without revealing it.

2. Reveal Phase – the values previously committed are revealed.
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3. Computation Phase – using the values revealed, the processes decide on the resulting
random number.

The idea is to make sure that at the moment the committed random values are revealed,
it is already too late for the adversary to manipulate the output. Furthermore, assuming
that the local random numbers are uniformly distributed, so should be the distribution of
the output.

To the best of our knowledge, this paper describes the first partially synchronous BFT-RNG
protocol that maintains optimal resilience (up to ⌊ N−1

3 ⌋ Byzantine processes in a system of
N) that ensures deterministic termination. Unlike prior solutions [10, 31], our protocol does
not expect that faulty processes remain responsive in the generation phase, i.e., it tolerates
omission faults.

State of the art. In designing a BFT-RNG algorithm, we face two major challenges:
(i) how to share random inputs despite omission failures, so that Byzantine processes cannot
learn them before the reveal phase begins, and (ii) how to compute correct results despite
commission faults of Byzantine processes. Existing protocols solve the first challenge by using
techniques such as secret sharing [28], verifiable delay functions [4], threshold signatures [3, 5],
and fully homomorphic encryption [13] and the second – by requiring a verifiable proof that
a shared data was generated correctly.

Techniques. A (f, N)-secret sharing [28] scheme allows a process during the generation and
commitment phase to share a secret s with N processes so that any subset of size f +1 among
them can retrieve s, while no subset of f or less can. This way, even if a process refuses to
disclose the original secret it has committed, the correct processes in the system can still
reconstruct it in the reveal phase by using the shares they received earlier. Moreover, the
values cannot be learned too early as the number of shares held by the Byzantine processes
does not surpass f . Threshold-signature schemes, such as Schnorr [3] or BLS [5], are also
very helpful in this context, as they allow to efficiently verify that a number of processes
surpassing a given threshold agree with a certain value.

One can also make sure that the processes commit to a value without revealing it
beforehand and provide a mechanism to retrieve commitments of Byzantine processes by
using verifiable delay functions [4]. This technique guarantees that Byzantine processes
cannot use the data shared by the correct processes to change change their inputs and affect
the result. Once a stipulated verifiable delay has expired, the correct processes can access
the information presented by any process guaranteeing that the protocol is not halted.

The two homomorphic structures of most interest for BFT-RNG are Fully Homomorphic
Encryption (FHE) [13] and homomorphic hashes. Given two sets A and B, a map f : A → B

is said to be (◦-)homomorphic if it preserves an existing operation ◦ on both sets: ∀x, y ∈
A, f(x ◦ y) = f(x) ◦ f(y) [6]. FHE allows processes to make operations in ciphertexts without
knowing the plaintexts and can be then used instead of secret sharing for solving the same
problem of preventing misbehaving parties from accessing data too early on and denying
the access of correct participants to the data when it must be shared. As for homomorphic
hashes, they are, as the name indicates, hash functions with homomorphic properties (i.e.
by performing some operations over some data and their associated hashes, one obtains a
result and a consistent associated hash). Homomorphic hashes allow to solve the second
challenge of BFT-RNG design: they provide a mean to check that an operation was correctly
executed by observing the hashes of the inputs and the hash of the outputs and can therefore
contribute in detecting commission failures.
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Other kinds of proofs of well formed data include Verifiable Random Functions (VRF) or
Public Verifiable Secret Sharing (PVSS). VRF [21] are functions that once provided with
an input x, output both a random number y and a proof π that allows any process using
π to verify whether y was generated using x or not. Algorand’s VRF [14] uses a common
coin (generated by the Algorand consensus) to correctly generate verifiable random numbers.
PVSS-based proof [27] exchange together with secret shares some additional information
that prove the data integrity without revealing any information of the original secret.

Protocols. In Table 1, which is a modified and expanded version of the table given in [26], we
present a comparison including several existing BFT-RNG algorithms and the solution we
present in this paper: RandSolomon. In some of these protocols, the networks (with N nodes)
are partitioned into clusters of size c, this parameter appears in some of the complexity
bounds given in the table.

Table 1 Comparison of distributed RNG solutions.

RNG Sync. Vulnerability Term.
Communication

Complexity
(Overall)

Computation
Complexity

(per process)
Resilience Techniques

Cachin et al. [10] A Trusted
key dealer Det. O(N2) O(N) f < N

3
Unique threshold

signatures (eg BLS)[5]

RandShare [31] A No ommission
in commit. Det. O(N3) O(N3) f < N

3 PVSS [27]

RandHound[31] A No ommission
in commit. Prob. O(c2N) O(c2N) f < N

3
PVSS [27]

Multisignatures [3]

RandHerd[31] A No ommission
in commit. Prob. O(c2 log N) O(c2 log N) f < N

3
PVSS [27]

Multisignatures [3]

SCRAPE[11] S None Det. O(N3) O(N2) f < N
2 PVSS [27]

DFinity[16] S None Prob. O(cN) O(c) f < N
2 BLS signatures [5]

HydRand[26] S No ommission
in commit. Det. O(N2) O(N) f < N

3 PVSS [27]

ProofOfDelay[8] S None Det. O(N) +
Ethereum High f < N

2 Delay functions [4]

No-Dealer[18] S None Det. O(N2) O(N2) f < N
2

Shamir [28]
Homomorphic Hash

Nguyen et al.[22] S Trusted
Requester Prob. O(N) O(1) f < N FHE [13], VRF [21]

Ouroboros
Praos[12] P Weaker

properties Det. O(N) +
Ourob. Praos

O(1) +
Ourob. Praos f < N

3 VRF [21]

Algorand[14] P Weaker
properties Prob. O(cN) +

Algorand
O(c) +

Algorand f < N
3 VRF [21]

RandSolomon P None Det. O(N)×
Consensus

O(N)×Erasure
Correcting Code f < N

3

PK crypto
ReedSolomon
Retraceability

Synchrony (Sync). The second column of the comparison table shows which kind of synchrony
the underlying system must provide in order to allow the deployment of each protocol. Here
we distinguish A=Asynchronous, S=Synchronous and P=Partially Synchronous algorithms.

Vulnerability. It might seem impossible to have asynchronous implementations of BFT-RNG
as we have already stated that this problem is impossible in the presence of at least one
Byzantine participant in asynchronous systems [18]. Notice, one might introduce additional
assumptions on the failure model for these solutions to exist.

This is the case with the solution by Cachin et al. [10] which assumes that there exists a
special process capable of generating and distributing a key.

OPODIS 2021
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Other asynchronous solutions, such as RandShare, RandHound and RandHerd [31],
assume that every entity initially publishes some information about their secret. The
asynchronous protocols in [31] are therefore not fully BFT, as they do not tolerate omission
failures in the generation phase. This assumption that Byzantine processes will not omit
during the commitment phase of the protocol is also an exploitable vulnerability in the
synchronous protocol HydRand [26], although it can be modified to restart once there are
missing contributions. Nguyen et al.’s proposal [22], also a synchronous protocol, assumes a
Requester, a trusted entity generating FHE keys, which can be considered as a client using
the system.

Algorand [14] and Ouroboros Praos [12], maintain weak forms of RNG: common coin [14]
and random beacon [12], RNG mechanisms in these protocols may not reach perfect agreement
on the random value, and the coins values may be manipulated by the adversary to some
extent or even be changed due to network asynchrony without affecting the correctness of
their respective systems.

Termination (Term). A protocol ensures deterministic termination (Det) if it terminates in
every execution, in contrast to probabilistic termination (Prob), when a protocol terminates
with a fixed probability. RandHound, RandHerd [31] and Dfinity [16] allow a small probability,
depending on the parameters of the system, of the Byzantine adversary fully corrupting
a cluster, which results in prematurely halting the protocol. In the case of Algorand, a
failure happens when the set (of expected cardinality c) of nodes chosen to be proposers is
empty. In the protocol by Nguyen et al. [22], this happens when all selected contributors
are Byzantine.

Complexity. Communication complexity corresponds to the amount of messages exchanged
and can be loosely translated into how many bits must be sent in the network for producing
a result, while Computation Complexity measures how much time would it take to perform
local computations given an input. In the table, we use term High to refer to the complexity
of delay functions, which, though independent of the number of processes in the system
(strictly speaking, their complexity is O(1)), are very computationally heavy by design.

No-Dealer [18] specifies that the protocol must be restarted in case of certain Byzantine
behavior, but does not include this fact in its complexity. As there are at most N

2 Byzantine
nodes, it might be necessary to restart this number of times, increasing their claimed
complexity to the one presented in the table.

The protocol by Nguyen et al. [22] employs a summation on the secrets shared by the
contributors, which results in linear computation complexity.

Finally, the two last columns Resilience and Techniques show how many Byzantine
processes can be tolerated among the N participants and the main techniques employed in
each solution.

Contributions. RandSolomon is the first BFT-RNG protocol providing deterministic termina-
tion in a partially synchronous system with f < N

3 Byzantine processes, which is the optimal
level of resilience [18]. Interestingly, the protocol relies only on standard cryptographic
primitives: a public key infrastructure [25], block erasure correcting codes which can be
interpreted as our version of secret-sharing [20] and standard digital signatures. The name
of the protocol is inspired by the potential use of Reed-Solomon codes [24].

Our coding approach carries some similarities with SCRAPE [11] in the sense that they
also recognised the potential of using codes such as Reed-Solomon to perform secret sharing.
However the similarities stop there as, in RandSolomon, we not only propose a partially
synchronous solution, but also introduce a new technique to cope with Byzantine commission
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failures: retraceability, which circumvents the need for verification of the secret sharing. In a
nutshell, we consider the secrets produced by Byzantine processes without checking their
integrity until the last phase of the protocol, when we compute the final result. At this
moment, we can retrace all the steps that should have been taken and detect a commission
failure. This then results in discarding incorrectly formed data in order to ensure a correct
result, based on the inputs of non-Byzantine processes.

2 Formal system model and properties

Before turning to the RandSolomon protocol description, let us first duly formalise the system
model as well as a set of properties that a protocol must have to be considered a distributed
Byzantine fault-tolerant random number generator.

Our system is made up of N nodes which run our protocol as a process which executes a
prescribed sequence of steps. Among the participants, a portion f < N

3 of them might be
Byzantine who can collaborate with each other but have limited computing power.

The nodes can communicate with each other via messages that are sent through a point
to point network. This network is available for all running processes and guarantees that if a
message is sent through a channel, then it must be eventually delivered (in agreement with
the partial-synchrony assumption). Whenever a process executes a broadcast it does so by
just sending a message to every other process (we use a best effort broadcast).

Recall that in a BFT-RNG protocol, every process proceeds through clearly demarcated
phases: (1) generation and commitment, (2) reveal, and (3) result computation. A phase
begins with the first correct process entering it. In this setup, a BFT-RNG protocol satisfies
the following properties:

Agreement. Every correct process decides on the same random number;
Unpredictability. Before the beginning of the reveal phase, no process can distinguish
an execution that generates RAND as a random number, from an execution that generates
RAND′, for any RAND′ ̸= RAND;
Randomness. The values decided by correct processes follow a uniform distribution;
Termination. Eventually, every correct process decides on a value.

Although not an intrinsic property of BFT-RNGs, our protocol differs from existing
protocols because it provides retraceability. It means that after the reveal phase, a process
can verify that all the steps taken to generate the shared data used to produce the final
random number were correctly followed.

3 The RandSolomon protocol

Overview. From a high-level viewpoint, the protocol aggregates enough locally generated
random numbers, so that enough inputs inputs are truly random and the final result observes
all the properties desired. Numbers are produced locally, then encoded using an erasure
correcting code and encrypted before sharing. All non-Byzantine processes agree on which
numbers should be used by solving consensus, while the result remains secret (sealed under
an encryption layer) as no process holds all the information necessary for computing it prior
to the reveal phase. The protocol cannot be stopped by f (or less) Byzantine processes, as
prior to the consensus the progress of correct processes depends solely on themselves and
after it, thanks to our use of the erasure correcting code, the correct processes can retrieve
data without using the information held by their Byzantine counterparts.
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Notation. We shall use [N ] = {1, 2, · · · , N}, (·)i to indicate that the value enclosed by the
parenthesis contains a signature of process pi and {·}i to indicate that the value enclosed
by the curly brackets was encrypted using pi’s public key. Furthermore, b will denote the
number of symbols in the encoded value to be encrypted in a given encryption key; z the
size of the symbols used in a code; t is the number of erasures a code can correct; l is the
length of a code; d the number of data symbols in a code.

3.1 Primitives
The system requires a deterministic encryption infrastructure where every process knows the
public key of every other processes in the system, but each of them maintains its private key
secret. Deterministic means here that at every time two processes encrypt the same number
using the same key, they get the same result [2].

Although the use of deterministic encryption is crucial for the correct execution of the
protocol, these primitives are used only to encrypt long-enough (at least 256 bits) sequences
of uniformly random bits. As such, the source of randomness in cleartext mitigates the
security issues which crop up when using deterministic encryption [23].

We use a consensus protocol to ensure that each correct process disposes of the same
information. The consensus protocol used here must ensure that eventually every correct
process outputs a value (Termination) and that not two correct processes outputs different
values (Agreement). Further, the protocol must ensure external validity [9]: only a valid
value can be output, i.e., the output must satisfy a predefined valid predicate:

▶ Definition 1 (Predicate valid). valid(v) is true iff v contains N − f inputs signed by N − f

different processes.

Any partially-synchronous algorithm that tolerates f Byzantine failures among 3f + 1
processes can be used [7, 32, 14].

Finally, let us consider a different perspective on secret sharing mechanisms [28]. In a
classical Shamir secret-sharing protocol, when a dealer shares a secret s with N processes
p1, p2, · · · , pN using a threshold of N − t, it sends the shares s1, s2, · · · , sN to their respective
processes. Any N − t of these shares are sufficient to retrieve s, while less than N − t can
reveal nothing on the secret in question. Indeed, one could consider the string s1s2 · · · sN

as a code, the non-received values as erasures and hence conclude that, in fact, the secret
sharing scheme can be also analysed as an Erasure Correcting Code capable of correcting t

erasures [20].
In Information Theory, the number of substitutions required to change one string into

another is known as Hamming Distance [19]. We can then conclude that we need in fact an
Erasure Correcting Code with Hamming distance at least t + 1. The class of error-erasure
correcting codes known as Reed-Solomon (RS)[24] with the required distance is capable of
correcting t erasures (notice we do not treat it as an error correcting code, but an erasure
correcting: an error correcting code is capable of correcting a string with corrupted data
placed in unknown locations, while an erasure correcting code needs to know the positions of
the string which were corrupted). Therefore, this class provides optimal block size known
as Singleton Bound [29]. From a more pragmatic viewpoint, Reed-Solomon codes have free
library implementations in many programming languages, they have deterministic parameters
and encoding which are ideal for our requirements. Furthermore, most applications running
our protocol will have relatively small block sizes and one can enhance the performances
through hardware implementations [17]. It should be noted however, that any code complying
with the following Abstract Code requirements can be used in our protocol.
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Abstract Code.
Have a code-word of size b × N symbols;
Be able to correct up to b × f symbol erasures;
b × z ≥ 256

Considering that we make use of Reed-Solomon codes we briefly present their general
parameters:

Abstract Reed-Solomon code.
The symbols have size z bits
The data has length d symbols
The code-word has length l where l ≤ 2z − 1 symbols
It can correct up to t erasures where, t = l − d

Adjusting the above Abstract RS code to match the Abstract code and the system
requirements, leads to the following Concrete Reed-Solomon Code which is suitable for
implementing our protocol.

Concrete Reed-Solomon code.
The symbols have size z bits;
Each block to be encrypted has a size b of at least 256

z symbols;
The data has a length of b(N − f)-symbols;
The code-word has a length of b × N symbols.

It should be noted that as our protocol allows correct processes to retrace the execution
followed by Byzantine processes and detect when they generate incorrect messages, we can
use erasure correction instead of error correction. This drastically improves the coding
performance as every error-erasure correcting code can correct two times more erasures than
errors. This has two implications on our protocol: first we need fewer parity bits; second, if we
were to unnecessarily use the code for errors correction, the protocol would only tolerate up
to ⌊ N−1

4 ⌋ Byzantine processes. The reason for the potential loss of resilience comes from the
fact that we would need to correct 2f errors: f errors introduced by the Byzantine member
during the generation and f more for the missing blocks due to asynchrony. Therefore the
number of parity blocks would have to be at least 2(2f) = 4f blocks, while the code must
have length N blocks. Because the length of a code is larger than the number of parity
symbols, N > 4f . This illustrates the contribution of retraceability: it implies simpler data
reception by eliminating the need to generate proofs and to check them, and guarantees
better resilience whilst maintaining the correctness of the protocol.

3.2 Algorithm
Generation and commitment. Each process pi taking part in the protocol begins by
generating a random number ri of b(N − f) symbols and encoding it using a Reed-Solomon
encoder complying with the specification given in subsection 3.1 obtaining a number si of
b × N symbols (lines 1, 2). This encoded number si is then split in N blocks of b symbols
and each of these blocks are encrypted using the public key of the different processes in the
system in order, signing the final result and obtaining the variable si (line 3).

Each process pi share their si (line 4) and collect N − f numbers of this type, coming
from N − f distinct processes according to their signatures. With this set of N − f -numbers
they can engage in consensus and learn the same set, say RNL, of (N −f) numbers generated
by N − f distinct processes (line 6).
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Algorithm 1 RandSolomon code for process pi.

Each function is entirely executed before executing the next
Static Local Variables:
RNL := 0: set of encoded and encrypted shared random numbers learnt in Consensus
SEEN := ∅: map where the key is the index of a process and the value is the value it
produced σi [1 ..N ][1 ..N ] := ⊥: array of plain random number shares used in
reconstruction RANDi := 0: random number decided by pi

{Generation and Commitment Phase}
1 Generate random number ri of b(N − f) symbols of z-bits
2 Encode ri into si with Desired RS
3 si = ({si[1]}1, {si[2]}2, · · · , {si[N ]}N )i

4 Broadcast ⟨GENERATED, si⟩

upon receiving ⟨GENERATED, sj⟩
5 SEEN [j] := sj

6 if |SEEN | = N − f then RNL := Consensus(SEEN)

{Reveal Phase}
upon RNL ̸= ∅
7 ∀sj ∈ RNL do
8 Decrypt sj [i] from sj into sj [i]
9 σi[j][i] := sj [i]
10 Broadcast ⟨REVEAL, (σi[:][i])i⟩

upon receiving ⟨REVEAL, (σj)j⟩, j ̸= i execute after RNL ̸= ∅
11 ∀sk ∈ RNL do
12 If {σj [k][j]}j = sk[j] from sk then σi[k][j] := σj [k][j]

{Result Computation Phase}
upon RNL ̸= ∅ ∧ ∀sj ∈ RNL, ∃K ⊆ [N ], |K| = N − f : σi[j][k] ̸= ⊥
13 step := 0
14 PRE := 0
15 ∀sj ∈ RNL sorted by j do
16 Decode σi[j] into r̃j using Desired RS
17 If r̃j encoded with Desired RS and blockwise encrypted doesn’t match sj

then r̃j := 0
{Circular right shift by step blocks or b × step symbols}

18 PRE := PRE ⊕ (r̃j ≫ step)
19 step++
{XOR blocks pairwise with triple in the end if necessary}
20 for k := 1; 2k − 1 < N − f ; k := k + 2
21 RANDi[k] := PRE[2k − 1] ⊕ PRE[2k]
22 if 2k − 1 = N − f then RANDi[k] := RANDi[k] ⊕ PRE[N − f ]
23 Decide RANDi
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Reveal. After obtaining the RNL set, each process can decrypt the blocks it is responsible
for (line 8) and reveal them to the system via a broadcast (line 10).

(A best-effort broadcast in which a process simply sends the message to every other
process will suffice.)

The processes gather the shares necessary for decoding the erasure correcting code,
making sure that they truly are the decrypted versions of the RNL shares (line 12).

Result computation. Once a process has gathered at least N − f shares of each of the
numbers in the RNL set, it can reconstruct all of them (line 16). If the decoded version r̃j of
a RNL number is again encoded and encrypted, leading to the same value for sj , then this
implies that any N − f shares obtained by any correct process will give the same r̃j making
it consistent to be used in the final step computations.

Importance of verification. Notice that if pi is Byzantine, then it can generate a number
ri and insert f blocks with errors in si. By colluding with other Byzantine processes in
the system, a correct process pj might get no response from f Byzantines and get these
f erroneous blocks, essentially receiving a number with 2f incorrect blocks, which leads
it to decode a number r̃′

i ̸= ri. Meanwhile a process pk can get the Byzantine processes’
correct shares instead of the blocks with errors, decoding r̃′′

i = ri, which would lead these two
different correct processes producing two different random numbers in the end. This attack
is nullified by the simple verification done in the line 17 and setting this number produced
by a Byzantine process to 0, which is done by every process. It should be noted that because
at least N − f numbers are used and that there are at most f Byzantines, at least f + 1
numbers will not be nullified.

Cyclic XOR. Finally the correct processes will hold the same decoded versions of the RNL
numbers which are well formed and can produce the same final random number by first
cyclically shifting each number to the right by increasing steps of blocks (remember a block
has b symbols) and then taking an XOR of them (line 18). Here, the reason for the shift is
that for Byzantine processes might know the full contents of up to f numbers and f positions
from each of the other numbers before the reveal phase. Assuming all the numbers produced
by Byzantines were chosen, then the shift ensures that at least f + 1 different positions from
the numbers created by correct processes will be used, hence including at least one unknown
value for the malicious participant before the reveal.

Pairwise (triple) XOR and decision. The final step is to XOR the last three blocks together
and the remaining blocks pairwise when N − f is odd and XOR all the blocks pairwise
when N − f is even. Suppose this last step was not taken and the shifted XOR blocks were
returned. Then if the 2f positions known by the Byzantine could potentially be used in the
computation of a position pos in the result and these blocks XOR to a value x, they can
assure that by promoting any unknown value different than x ⊕ y to be the last operand
used in pos assures that the value y will not appear in pos. Because of the deterministic
encryption they can immediately check the candidate values for being different than x ⊕ y,
although it is computationally unfeasible to determine their value. In our solution, however,
because we guarantee that the Byzantine do not know at least two values used, there are
2b×z pairs that XOR to any given value and it is unfeasible to test the two values for being
different than all of them (as b × z ≥ 256 in real scale instantiations of the protocol), let
alone read, which would take 22×b×z tests.
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3.3 Execution example

We present now an example of a possible execution of our protocol with one Byzantine process
and four processes in total illustrated in Figure 1. For pedagogical reasons we assume that
the symbols have 8-bits and that each block to be encrypted contains 1 symbol (b = 1, z = 8),
relaxing the requirement that b × z ≥ 256.

The beginning of the protocol and the Generation and Commitment Phase, corresponding
to lines from lines 1 to 3 of the algorithm is shown in Figure 1a. The correct processes p1, p2
and p3 produce each a 3 bytes random number, correctly encoding into a 4 bytes reed-solomon
codeword. The values s1, s2, s3 ready to be shared are obtained by encrypting each of the 4
bytes from the codewords with the public keys of the p1, p2, p3 and p4, respectively. On the
other hand, process p4, who is Byzantine, maliciously produces two bad values: s′

4 with an
error in its third byte and s′′

4 with an error on its second byte.

Figure 1b then shows lines 4 and 5 where processes share their produced values and collect
values coming from other processes. Notice that contrary to correct processes, Byzantine
processes might send different values to different destinations.

Once each process has gathered three (N-f) different values, they propose what they know
to the consensus component (line 6 and Figure 1c). Nothing prevents the Byzantine process
p4 of making more than one proposal to consensus, but any proposal which is not composed
by N − f signatures is discarded. Once the consensus algorithm terminates, any valid value
might be returned, but all processes will get the same result (decided value equal to s1, s2
and s′

4).

The Reveal Phase illustrated in Figure 1d then begins, comprising lines 7 to 12. At this
point processes openly share the symbols that were previously encrypted in their public keys.
One deviation Byzantine processes might do is to send wrong numbers that do not correspond
to the agreed values counterparts. However, because of the deterministic encryption, the
receiver can detect it by asserting that the encrypted version does not match the plain value
received and discard it. Moreover, even if the Byzantine process does not send its share to
every participant it does not matter, as N − f shares are available nonetheless.

Once processes gather three shares for each of the numbers agreed upon in consensus
they can start the Result Computation Phase executing lines 15 to 23. Figure 1e shows how
they first obtain the decoded version of the numbers and then redo both the reed-solomon
encoding and the encryption of the blocks to check that they correspond to the value decided
in consensus. At this point they discard the value generated by p4 nullifying its contribution
and computing the final random number by XORing the other values as shown in Figure 1f.

On the right column of the same figure we can see that the processes sort the agreed
numbers by their origin, in this case they take r1, r2 and r′′

4 in this order. They proceed
by cyclically shifting the first number by 0 blocks, the second by 1 block and the last by
2 blocks. They obtain the same number DD, 81, 8B and produce the same final random
number D7 by XORing all three blocks, as these are the last three blocks. Note that if the
system had f = 3 and N = 10, for example, the result from the cyclic XOR would have
N − f = 7 blocks B1|B2|B3|B4|B5|B6|B7 and the final random number would have three
blocks: B1 ⊕ B2|B3 ⊕ B4|B5 ⊕ B6 ⊕ B7.
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(a) (b)

(c) (d)

(e)

(f)

Figure 1 Example of a RandSolomon execution with one Byzantine process among a system of 4
processes.
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4 Formal analysis of the protocol

4.1 Correctness
This section is devoted to the proof that RandSolomon is a correct partially-synchronous
BFT-RNG. We do so by showing that the protocol satisfies the set of properties stated in
Section 2.

▶ Proposition 1. RandSolomon achieves Agreement.

Proof. Because of the consensus using the external validity property , every correct process
has the same RNL set. Correct processes then use shares that have been verified and match
the values agreed upon (line 12), allowing them to only access the original values generated
in line 2.

If a RNL number sj passes the test in line 17, any N − f correctly decrypted shares of
this number shall yield the same number, as the encoded value contains no errors. It follows
that every correct process will only use correctly decrypted shares and every correct process
will hold the same number r̃j which will pass the test by our hypothesis.

If, however, this RNL number sj does not pass the test, then there is an error in its
encoding, as the test is merely checking if it was correctly done, and it will be visible to all
correct processes in the system which will all proceed to ignore this number.

Therefore all RANDi are equal, as they are formed by XORing and shifting the same
RNL numbers which every correct process agrees upon. ◀

▶ Proposition 2. RandSolomon achieves Unpredictability.

Proof. A process with limited computational power has negligible probability of determining
the plain value corresponding to an encrypted value it does not possess the decryption key
of. It can however test that it does not correspond to a certain value.

If Byzantine processes collude and share each others values before the different processes
agree on which N − f values at the end of the generation phase will compose the final result,
they will know at most f full values. They will also possess f shares of each of the remaining
f + 1 chosen values corresponding to their positions but it is impossible for them to get
any more shares prior to correct processes entering the reveal phase and sending them this
information. Thus, they cannot determine the value of any given position in the decided
value as the shifts makes so that at least 2f + 1 positions from the operands are needed in
order to determine a position from the result and as established, the Byzantine can know
at most 2f of them. It can still determine that the result is different than some specific
value though, but as each position is then determined by the XORed with at least one other
position, this possibility is then nullified as it would require the Byzantine processes to test
2b×z pairs of numbers in order to eliminate a value, which is computationally unfeasible with
real scale protocol parameters (b × z ≥ 256). ◀

▶ Proposition 3. RandSolomon achieves Randomness.

Proof. By hypothesis, correct processes are capable of generating uniformly random numbers.
The result of XORing a uniformly distributed random variable X in D with a constant
c in D is a uniformly distributed random variable in D. Also, the result of XORing two
independent uniformly distributed variables X and Y over D is uniformly distributed. As we
already established in the final two paragraphs of subsection 3.2, each position in the final
result is independent from each other and uses at least two uniform random numbers coming
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from correct processes unknown to the Byzantine before the reveal phase. This means no
proposed values are preferred over others and the randomness of the operands is transferred
to the output. ◀

▶ Proposition 4. RandSolomon achieves Termination.

Proof. Every correct process generates their random numbers and propose a set of N − f of
them to the consensus component. This means that there will be at least N − f processes
engaging in it, and because it can tolerate up to f failures, it will eventually give all correct
processes their RNL sets.

Once N − f correct processes learn what the RNL set is, they will share their shards,
meaning that each correct process is guaranteed to receive at least N −f correct shares of each
of their RNL numbers, satisfying the conditions for entering the computation phase, where
their progress becomes purely local as they do not depend on other processes anymore. ◀

4.2 Complexity
We shall analyse our algorithm in terms of message complexity: the maximum number of
messages transmitted per random number generated; bit complexity: the maximum number
of bits exchanged over the network per random bit generated; time complexity: the number of
message round trips required per random number generated; and computational complexity:
the number of operations to be executed per process per random number generated.

In the generation and commitment phase, each process executes one broadcast, meaning
that there are O(N2) messages being sent at this phase. After consensus is reached on
the value of RNL, each process executes exactly one more broadcast, leaving the message
complexity of this part of the protocol on O(N2). The result computation phase in done
locally. Hence the message complexity of our protocol is O(N2) outside consensus.

In terms of bit complexity, RandSolomon produces random numbers of O(N) bits, therefore
we consider the number of bits exchanged divided by N . The messages of the generation
phase contain random numbers whose lengths are proportional to the number of processes in
the system by design. Therefore, the bit complexity of this step is O(N2). Afterwards in the
reveal phase, each process includes one decrypted block per number in the RNL set. Each
decrypted block has constant size and the cardinality of RNL is f +1, so the bit complexity of
this stage is also O(N2). Therefore, without taking consensus into account, the bit complexity
of our protocol is O(N2). The inputs for consensus are comprised of N − f values of O(N)
bits and therefore the bit complexity (used in the Table 1) is O(N)×Consensus.

With respect to time complexity, our protocol requires outside consensus two message
delays given the two aforementioned broadcasts, each executed by all processes in parallel.
Consensus might require view-changes in the worst case bringing its time complexity to
O(f) which corresponds to our overall time complexity. As for computational complexity we
present the analysis split on the three phases of the protocol in Table 2.

Table 2 Computational complexity.

Operation Generation Reveal Result

Encryption O(N) O(N2) O(N2)
Decryption 0 O(N) 0

ECC encoding O(1) 0 O(N)
ECC decoding 0 0 O(N)
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If the erasure correcting code used is indeed Reed-Solomon, then the encoding and
decoding complexities of a single number with length O(N) is O(N log N) [30], meaning that
the per-process computational complexity is O(N2 log N) when this particular code is used.

When considering the complexity of the Consensus protocol, one can easily adopt last
generation PBFT consensus protocols developed in the context of blockchain-type ledgers. In
this context, the Tendermint (analysed in detail in [1]) or Hotstuff [32] consensus protocols
can be used within RandSolomon. Doing so leads to an overall message complexity of O(N2)
and bit complexity of O(N3) accounting view-changes with the complexity of consensus
dominating that of our protocol for both protocols considered. As such, any system which
already has the protocol machinery to solve consensus can implement RandSolomon without
incurring a significant performance impact.

In a run where the system is synchronous (after passed GST) and the consensus leader
is correct, the protocol terminates in constant number of message delays and incurs only
O(N2) bit complexity, comparable to that of synchronous protocols.

The complexity analysis of RandSolomon is summarised in Table 3.

Table 3 RandSolomon Protocol complexities integrating Consensus as in [32].

Complexity Generation Consensus Reveal Result Total

Message O(N2) O(N2) O(N2) 0 O(N2)
Bit O(N2) O(N3) O(N2) 0 O(N3)

Time 1 msg delay O(f) 1 msg delay 0 O(f)
Computation O(N) O(N) O(N2) O(N2 log N) O(N2 log N)

5 Conclusion

We presented RandSolomon, a Byzantine fault-tolerant protocol capable of generating a
common random number in a partially-synchronous system. As we have previously shown in
section 1, although the problem of generating randomness in multi-party systems has already
been extensively discussed, the partially-synchronous systems still lacked a BFT solution
with the optimal resilience of f Byzantine participants among 3f + 1 with deterministic
termination. Not only did we provide such a solution but we also employed very simple
public key cryptography, not relying on a random oracle, by means of what we have called
retraceability. Our approach is modular, using Consensus as a black box, which facilitates
future implementations of the protocol with improved complexity metrics.
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Abstract
Given a boolean predicate Π on labeled networks (e.g., proper coloring, leader election, etc.), a
self-stabilizing algorithm for Π is a distributed algorithm that can start from any initial configuration
of the network (i.e., every node has an arbitrary value assigned to each of its variables), and
eventually converge to a configuration satisfying Π. It is known that leader election does not
have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for
some networks, some of their nodes must have registers whose sizes grow with the size n of the
networks. On the other hand, it is also known that leader election can be solved by a deterministic
self-stabilizing algorithm using registers of O(log log n) bits per node in any n-node bounded-degree
network. We show that this latter space complexity is optimal. Specifically, we prove that every
deterministic self-stabilizing algorithm solving leader election must use Ω(log log n)-bit per node
registers in some n-node networks. In addition, we show that our lower bounds go beyond leader
election, and apply to all problems that cannot be solved by anonymous algorithms.
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1 Introduction

1.1 Context
Self-stabilization is a paradigm suited to asynchronous distributed systems prone to transient
failures. The occurrence of such a failure (e.g., memory corruption) may move the system to
an arbitrary configuration. An algorithm is self-stabilizing if it guarantees that whenever the
system is in a configuration that is illegal w.r.t. some given boolean predicate Π, the system
returns to a legal configuration in finite time (and remains in legal configuration as long as
no other failures occur). In this paper, we study self-stabilization in networks. The network
is modeled as a graph, and we consider predicates defined on labeled graphs. For instance, in
proper k-coloring, a configuration is legal if every node is labeled by a color {1, . . . , k} that is
different from the colors of all its neighbors. Given a boolean predicate Π, a self-stabilizing
algorithm for Π is a distributed algorithm enabling every node, given any input state, to
construct a label such that the resulting labeled graph satisfies Π.
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During the execution of a self-stabilizing algorithm, the nodes exchange information along
the links of the network, and this information is stored locally at every node. Specifically,
processes in a distributed system have two types of memory: the persistent memory, and
the mutable memory. The persistent memory is used to store the identity of the process
(e.g., its globally unique MAC address), its port numbers, and the code of the algorithm
executed on the process. Importantly, this section of the memory is not write enabled during
the execution of the algorithm. As a consequence it is less likely to be corruptible, and most
work in self-stabilization assumes that this part of the memory is not subject to failures.
The mutable memory is used to store the variables used by the algorithm, and is subject to
failures, that is, to the corruption of these variables. The space complexity of a self-stabilizing
algorithm is the total size of all the variables used by the algorithm, including those used to
encode the output label of the node. For instance, the space complexity of the algorithm
for k-coloring is at least Ω(log k) bits per node, for encoding the colors in {1, . . . , k}. The
question addressed in this paper is: under which circumstances is it possible to reach a space
complexity as low as the size of the labels? And if not, what is the smallest space complexity
that can be achieved?

Preserving small space complexity is indeed very much desirable, for several reasons. First,
it is expected that self-stabilizing algorithms offer some form of universality, in the sense that
they are executable on several types of networks. Networks of sensors as used in IoT, as well
as networks of robots as used in swarm robotics, have the property to involve nodes with
limited memory capacity, and distributed algorithms of large space complexity may not be
executable on these types of networks. Second, a small space complexity is the guarantee to
consume a small bandwidth when nodes exchange information, thus reducing the overhead
due to link congestion [1]. In fact, a self-stabilizing algorithm is never terminating, in the
sense that it keeps running in the background in case a failure occurs, for helping the system to
return to a legal configuration. Therefore, nodes may be perpetually exchanging information,
even after stabilization, and even when no faults occur. Limiting the amount exchanged
information, and thus, in particular, the size of the variables, is therefore of the utmost
importance for optimizing time, and even energy. Last but not least, increasing robustness
against variable corruption can be achieved by data replication [17]. This is however doable
only if the variables are reasonably small. Said otherwise, for a given memory capacity, the
smaller the space complexity the larger the robustness thanks to data replication.

1.2 Contributions of the paper
In this paper, we focus on one of the arguably most important problems in the context of
distributed computing, namely leader election. The objective is to maintain a unique leader
in the network, and to enable the network to return to a configuration with a unique leader
in case there are either zero or more than one leaders. Interestingly, encoding legal states
consumes one single bit at each node. Indeed, in leader election, every node has a label
with value 0 or 1, and these labels form a legal configuration if there is one and only one
node with label 1. As a consequence, up to an additive constant, the space complexity is
exactly the space used to encode the variables of the algorithm (which is not the case for
other problems where the output itself uses some non-trivial space to be encoded).

We establish the lower bound of Ω(log log n) bits per node for the space complexity of
leader election. This improves the only lower bound known so far (see [3]), which states that
leader election has non-constant space complexity, i.e., complexity ω(1), where f = ω(g) if
g(n)/f(n) → 0 when n → ∞. More importantly, our bound matches the best known upper
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bound on the space complexity of leader election, which is O(log log n) bits per node in
bounded degree networks [6], and in particular invalidates the folklore conjecture stating
that leader election is solvable using only O(log∗ n) bits of mutable memory per node.

We obtain our lower bound by establishing an interesting connection between self-
stabilizing algorithms with small space complexity, and self-stabilizing algorithms performing
in anonymous networks, that is, in networks in which nodes have no identifiers. (Recall
that space complexity counts solely the size of the mutable memory, and does not include
the immutable persistent memory where the identifiers are stored). More specifically, the
technical ingredient used for establishing our results are the following. It is known that
many self-stabilization problems, including vertex coloring, leader election, spanning tree
construction, etc., require that the nodes are provided with identifiers, for breaking symmetry.
Indeed, no algorithm can solve these problems in anonymous networks (under a standard
distributed scheduler). We show that, for any self-stabilizing algorithm in a network with
node identifiers, if the space complexity of the algorithm is too small, then the algorithm
does not have more power than a self-stabilizing algorithm running in an anonymous network.
More precisely, let A be an algorithm in a network with node identifiers, and let us assume
that A has space complexity o(log log n) bits per node. Such a small space complexity does
not prevent A from exchanging identifiers between nodes, but they must be transferred as a
series of smaller pieces of information that are pipelined along a link, each of size o(log log n)
bits. On the other hand, a node cannot store the identifier of even just one of its neighbors.
We show that, with spacial complexity o(log log n) bits per node, there exist graphs and
assignments of identifiers to the nodes of these graphs such that, in these graphs and for
these assignments, A has the same behavior as an algorithm executed in these graphs but in
the absence of identifiers (i.e., in the anonymous version of these graphs). We then show
that no algorithms can solve leader election in these graphs in absence of identifiers, from
which it follows that A cannot solve leader election in these graphs with identifiers as long as
its space complexity is o(log log n) bits per node.

1.3 Related work
Space complexity of self-stabilizing algorithms has been extensively studied for silent algo-
rithms, that is, algorithms that guarantee that the content of the variables of every node does
not change once the algorithm has reached a legal configuration. For silent algorithms, Dolev
and al. [11], proved that finding the centers of a graph, electing a leader, and constructing a
spanning tree require registers of Ω(log n) bits per node. Silent algorithms have later been
related to a concept known as proof-labeling scheme (PLS) [23]. Any lower bound on the
size of the proofs in a PLS for a predicate Π on labeled graph implies a lower bound on
the size of the registers for silent self-stabilizing algorithms solving Π. A typical example is
the Ω(log2 n)-bit lower bound on the size of any PLS for minimum-weight spanning trees
(MST) [22], which implies the same bound for constructing an MST in a silent self-stabilizing
manner [4]. Thanks to the tight connection between silent self-stabilizing algorithms and
proof-labeling schemes, the space complexity of a vast collection of problems is known, for
silent algorithms. (See [14] for more information on proof-labeling schemes.)

On the other hand, to our knowledge, the only lower bound on the space complexity of
problems for general self-stabilizing algorithms (without the requirement of being silent) that
is corresponding to our setting has been established by Beauquier et al. [3] who proved that
registers of constant size are not sufficient for leader election algorithms. Interestingly, the
same paper also contains several other space complexity lower bounds for models different
from ours – e.g., anonymous networks, or harsher form of asynchrony.
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The literature dealing with upper bounds is far richer. In particular, [5] recently presented
a self-stabilizing leader election algorithm using registers of O(log log n) bits per node in
n-node rings. This algorithm was later generalized to networks with maximum degree ∆,
using registers of O(log log n + log ∆) bits per node [6]. It is worth to notice that spanning
tree construction and (∆ + 1)-coloring have the same space complexity O(log log n + log ∆)
bits per node [6]. Prior to these work, the best upper bound was a space complexity
O(log n) bits per node [5], and it has then been conjectured that, by some iteration of
the technique enabling to reduce the space complexity from O(log n) bits per node to
O(log log n) bits per node, one could go all the way down to a space complexity of O(log∗ n)
bits per node. Arguments in favor of this conjecture were that such successive exponential
improvements have been observed several times in distributed computing. A prominent
example is the time complexity of minimum spanning tree construction in the congested clique
model [24, 16, 15, 21]. Complexities O(log∗n) do exist in the self-stabilizing framework [2],
and it seemed at first that the technique in [11] could indeed be iterated (in a similar fashion
as in [7]). Our results shows that this is not the case, and that Θ(log log n) is the right
answer.

2 Model and definitions

In this paper, we are considering the state model for self-stabilization [9]. The asynchronous
network is modeled as a simple n-nodes graph G = (V, E), where the set of the nodes
V represents the processes, and the set of edges E represents pairs of processes that can
communicate directly with each other. Such pairs of processes are called neighbors. The
set of the neighbors of node v is denoted N(v). Each node has local variables and a local
algorithm. The variables of a node are stored in its mutable memory, also called register. In
the state model, each node v has read/write access to its register. Moreover, in one atomic
step, every node reads its own register and the registers of its neighbors, executes its local
algorithm and updates its own register if necessary. Note that the values of the variables of
one node v ∈ V are called the state of v, and denoted by S(v).

Each node v ∈ V has a distinct identity, denoted by ID(v) ∈ {1, . . . , nc} for some constant
c > 1. For each adjacent edge, each node has access to a locally unique port number. No
assumption is made on the consistency between port numbers on each node. The mutable
memory is the memory used to store the variables, while the immutable memory is used to
store the identifier, the port numbers, and the code of the protocol. As a consequence, the
identity and the port numbers are non corruptible constants, and only the mutable memory
is considered when computing the memory complexity because it corresponds to the memory
readable by the neighbors of the nodes, and thus correspond to the information transmitted
during the computation. More precisely, an algorithm may refer to the identity, or to the
port numbers, of the node, without the need to store them in the variables. If at least one
rule of an algorithm refers to the identity of the node, we call this algorithm an ID-based
algorithm. Otherwise, if the rules do not refer to the identity of the node we say it is an
anonymous algorithm.

The output of the algorithm for a problem is carried through local variables of each node.
The output of the problem may use all the local variables, or only a subset of them. Indeed,
the algorithm must have local variables that match the output of the problem, we call these
variables the specification variables. But the algorithm may also need some extra local
variables, that may be necessary to compute the specification variables. For example, if we
consider a silent BFS spanning tree construction, the specification variables are the variables
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dedicated to pointing out the parent in the BFS. However, to respect the silent property, the
algorithm needs in each node a variable dedicated to the identity of the root of the spanning
tree and a variable dedicated to the distance from the root. As a consequence, we define
the specification of problem P as a description of the correct assignments of specification
variables, for this specific problem P .

A configuration is an assignment of values to all variables in the system, let us denote by Γ
the set of all the configurations. A legal configuration is a configuration γ in Γ that respects the
specification of the problem, we denote by Γ∗ the set of legal configurations. A local algorithm
is a set of rules the node can apply, each rule is of the form <label>:<guard>→<command>.
A guard is a Boolean predicate that uses the local variables of the node and of its neighbors,
and a command is an assignment of variables. A node is said to be enabled if one of its guard
is true and disabled otherwise.

We consider an asynchronous network, the asynchrony of the system is modeled by an
adversary called scheduler or daemon. The scheduler chooses, at each step, which enabled
nodes will execute a rule. Several schedulers are proposed on the literature depending on
their characteristics. Dubois and al. in [12] presented a complete overview of these schedulers.
Since we are interested in showing a lower bound, we aim for the least challenging scheduler.
Our lower bound is established under the synchronous distributed scheduler, a strongly fair
distributed scheduler. The synchronous distributed scheduler activates, at each step, all the
enabled nodes. The synchronous distributed scheduler is captured by the weakly fair and
unfair distributed schedulers, but not by the central scheduler that activates only one at
each step.

A configuration γ ∈ Γ is a legal configuration for the leader election problem if one single
node is elected. More formally:

▶ Definition 1 (Leader election). Leader election in G = (V, E) is specified by a boolean
variable ℓv at each node v ∈ V . A configuration {(v, ℓv) : v ∈ V } is legal if there is a node
v ∈ V such that ℓv = true, and for every other node u ∈ V ∖ {v}, ℓu = false.

3 Formal Statement of the Results

3.1 Lower bounds
Our first result is an Ω(log log n) lower bound for leader election on the cycle.

▶ Theorem 2. Let c > 1. Every deterministic self-stabilizing algorithm solving leader election
in the state model under a strongly fair distributed scheduler requires registers on Ω(log log n)
bits per node in n-node graphs with unique identifiers in [1, nc].

This bound improves the only lower bound known so far [3], from Ω(1) to Ω(log log n),
and it is tight, as it matches the upper bound of [5]. In particular, it invalidates the
folklore conjecture stating that the aforementioned problems are solvable using only O(log∗n)
memory.

Optimality of the assumptions

Our lower bound is actually optimal not only in term of size, but also in terms of the
assumptions we make on the setting. More precisely, our theorem has three restrictions: it
works for deterministic algorithms only, with the distributed scheduler, and with identifiers
in a large enough range. We will now discuss why these limitations are actually necessary.
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Randomization is a common tool for symmetry breaking, and our problem is one example.
Namely, [18] proved that using randomization, one can solve leader election using constant
memory, which implies that our result cannot be generalized in that direction.

An important aspect of the self-stabilizing setting is the scheduler, which is the adversary
that decides which nodes can take a step at each round. Different schedulers model different
assumptions on the asynchrony of the setting. For example, a fully adversarial scheduler
can take any decision, as long as at least one node can take a step at each round. Weaker
schedulers can delay arbitrarily the step of a node but are forced to eventually activate any
node, etc. Our lower bound is valid under a very weak scheduler, which means that we need
a weak assumption on the asynchrony, which in turn means that our result is strong on this
aspect. Precisely, what we need in our proof is that it is possible for the scheduler to activate
all the nodes at every round. One type of scheduler for which this property does not hold
is the so-called centralized scheduler, that activates exactly one node at every round. In
this context the symmetry is broken by the scheduler itself (if two nodes are in the same
situation, one will be activated first, and this breaks the symmetry). Although the proof
of Theorem 2 in Section 4 does not apply to the centralized scheduler, the more genereal
Theorem 3 will allow us to extend our result to the central daemon.

Finally, and this is probably more surprising, we need to consider identities between
1 and nc, for c > 1. In particular, our technique does not work if the identifiers are in
O(n). This is not an artifact of our proof: it is actually necessary for the result to hold.
Indeed, if the identifier range is [1, n], then an algorithm may use the node with identifier
1 as a designated node, and have a special code for it. Algorithms using such designated
nodes are called semi-uniform algorithms and they can achieve space complexity below our
lower bound [8, 20]. Even without the possibility of having a designated node, one can take
advantage of smaller identifier range: there actually exists an algorithm in constant memory
if the identities are in [1, n + k] for a constant k [3].

A general result on the power of the identifiers

Actually, our technique goes beyond the setting of Theorem 2. First, we do not need the
harshest aspects of the self-stabilizing model which is that the initial configuration can be
arbitrary. If we start from an empty configuration, our technique still holds. Second, the
technique works for basically any problem that requires minimal symmetry breaking, not
just leader election. Third, as hinted above the type of scheduler is not really important, as
long as it does not break symmetry. We prove the more general following theorem.

▶ Theorem 3. Let c > 1, and let ∆(n) ∈ o(log n) be a function. If there exists a deterministic
self-stabilizing algorithm A that solves a problem P in the state model and uses registers of
size o( log log n

∆ ), then there exists a deterministic self-stabilizing anonymous algorithm Aa that
solves P on every large-enough graph with maximum degree ∆(n).

What our paper is really about, is the power of identifiers, in a scenario where very
little space/communication is used. Our core result is that below Θ(log log n), identifiers
are useless, in the sense that in the worst-case the performance of an algorithm using these
identifiers is the same as the performance of an anonymous algorithm. Remember that the
Naor-Stockmeyer order-invariance theorem [25], that states that in the LOCAL model, for
local problems, constant-time algorithms that use the exact values of the identifiers are not
more powerful than the order-invariant algorithm that only use the relative ordering of the
identifiers. In some sense our paper and [25] have the same take-home message, in two
different contexts: if you do not have enough resources, you cannot use the (full) power of
the identifiers.
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Theorem 3 establishes that proving a Ω(log log n) lower bounds in the ID-based setting
boils down to proving that anonymous algorithms cannot solve the problem. This is useful,
because indistinguishability arguments are easier to establish for anonymous algorithms than
for algorithms using identifiers.

Finally, one aspect that is not explicit in the statement of the theorem but follows from
the proof, is that actually this result also holds if the nodes have inputs. In particular, our
result applies to the semi-uniform setting where exactly one node has a special input.

About the port number model

Our general theorem, Theorem 3, holds in the model where a node knows its port-numbers
but not the ones of its neighbors. Intuitively, this implies that a node u cannot specify that
some piece of information is intended to the node of port number p, because that node does
not know it has been assigned port-number p.

In some graphs, the port number assignment can be chosen in such a way that knowing
the port-number assignment of the neighbors does not help. For example in the cycle of
Theorem 2, we can arrange the port numbers such that every edge is assigned port number 1
by one endpoint, and port number 2 by the other. This allows to generalize our first result
to the model where a node knows both port numbers on every adjacent edge.

Central scheduler

In a celebrated paper [10], Dijkstra established, among other things, that one cannot break
symmetry with anonymous algorithms in composite rings (that is, in rings whose size n is
not a prime number). This results holds under a central strongly fair scheduler. A central
scheduler is somehow the opposite of the distributed scheduler used in Theorem 2: it activates
one node at every round instead of activating all of them. Yet, we can generalize Dijkstra’s
result. Indeed, as highlighted before, the core of our proofs, and the statement of Theorem 3,
is about proving that an algorithm with too little memory cannot perform better than an
anonymous algorithm, and this does not depend on the scheduler. Therefore, by combining
Dijkstra’s result and Theorem 3, we directly get the following corollary, that complements
Theorem 2.

▶ Corollary 4. Let c > 1. Every deterministic self-stabilizing algorithm solving leader election
in the state model under a strongly fair central scheduler requires registers on Ω(log log n)
bits per node in n-node composite rings with unique identifiers in [1, nc].

Note that assuming that the ring is composite is essential, since [19] builds a constant
memory algorithm for leader election on anonymous prime rings, under a central scheduler.

3.2 Intuition of the proofs
Challenge of lower bounds for non-silent algorithms

Almost all lower bounds for self-stabilization are for silent algorithms, that are required to
stay in the same configuration once they have stabilized. These lower bounds are then about
a static data structure, the stabilized solution. The question boils down to establishing how
much memory is needed to locally certify the global correctness of the solution, and this is
well-studied [13].

When we do not require that the algorithm should converge to one correct configuration,
and stay there, there is no static structure on which we can reason. It is then unclear how we
can establish lower bounds. One way is to think about invariants. Consider a property that
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we can assume to hold in the initial configuration, and that is preserved by the computation
(if it follows some memory requirement hypothesis). If no correct output configuration has
this property, then we can never reach a correct output configuration.

In our proof, the property that will be preserved is that every node has the same state.
This can clearly be assumed for the original configuration, and we show that basically if the
memory is limited then this is preserved at each step. As the specification we use for leader
election is that the leader should output 1, and the other nodes should output 0, then it is
not possible that all nodes have the same state in a proper output configuration.

Intuition on a toy problem

Let us now give some intuition about why we can replace ID-based algorithms by anonymous
ones. The code of an ID-based algorithm A may refer to the identifier of the node that is
running it. For example, a rule of the algorithm could be:

if the states of the current node and of its left and right neighbors are respectively x, y,
and z, then: if the identifier is odd the new state is a, otherwise it is b.

Now suppose you have fixed an identifier, and you look at the rules for this fixed identifier.
In our example, if the identifier is 7, the rule becomes:

if the states of the current node and of its left and right neighbors are respectively x, y,
and z, then: the new state is a.

This transformation can be done for any rule, thus, for an identifier i, we can get an
algorithm Ai specific to this identifier. When we run A on every node, we can consider that
every node, with some identifier i is running Ai. Note that Ai does not refer in its code to
the identifier.

The key observation is the following. If the amount of memory an algorithm can use
is very limited, then there is very limited number of different behaviors a node can have,
especially if the code does not refer to the identifier. Let us illustrate this point by studying
an extreme example: a ring on which states have only one bit. In this case the number of
input configurations for a node, is the set of views (x, y, z) as above, with x, y, z ∈ {0, 1}.
That is there are 23 = 8 different inputs, thus the algorithm can be described with 8 different
rules. Since the output of the function is the new state, the output is also a single bit.
Therefore, there are at most 28 = 256 different sets of rules, that is 256 different possible
behaviors for a node. In other words, in this extreme case, each specific algorithm Ai is
equal to one of the behaviors of this list of 256 elements. This implies that, if we take a ring
with 257 nodes, there exist two nodes with two distinct identifiers i and j, such that the
specific algorithms Ai and Aj are equal.

This toy example is not strong enough for our purpose, as we want to argue about
instances where all the nodes run the same code, and as we want non-constant memory. But
the idea above can be strengthened to get our theorem. The key is to use the hypothesis
that the identifiers are taken from a polynomially large range. As we have a pretty large
palette of identifiers, we can always find, not only 2, but n distinct identifiers in [1, nc], such
that all the specific algorithms Ai correspond to the exact same behavior. In this case it is
as if the algorithm were anonymous.

Note that the larger the memory is, the more different behaviors there are, and the
smaller the set of identical specific algorithms we can find. This trade-off implies that for
polynomial range, the construction works as long as the memory is in o(log log n).
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4 Proof of Theorem 2

Consider a ring of size n, and an ID-based algorithm A using f(n) bits of memory per node
to solve leader election. An algorithm can be seen as the function that describes the behavior
of the algorithm. This function takes an identifier, a state for the node, a state for its left
neighbor and a state for its right neighbor, and gives the new state of the node. Formally:

A : [nc] × {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n)

(ID , state , left-state , right-state) 7→ new-state

Note that in general, we consider non-directed rings thus the nodes do not have a global
consistent definition for right and left. As we are dealing with a lower bound with a worst-case
on the port numbering, assuming such a consistent orientation only makes the result stronger.
Now we can consider that for every identifier i, we have an algorithm of the form:

Ai : {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n)

(state , left-state , right-state) 7→ new-state

Thus a specific algorithm Ai boils down to a function of the form: {0, 1}3f(n) → {0, 1}f(n).
Let us call such a function a behaviour, and let Bn be the sets of all behaviours.

▶ Lemma 5. |Bn| = 2f(n)×23f(n)

Proof. The inputs are basically binary strings of length 3f(n), thus there are 23f(n) possi-
bilities for them. Similarly the number of possible outputs is 2f(n). Thus the number of
functions in |Bn| is

(
2f(n))23f(n)

= 2f(n)×23f(n) . ◀

Lemma 5 implies that the smaller f , the fewer different behaviors. Let us make this more
concrete with Lemma 6.

▶ Lemma 6. If f(n) ∈ o(log log n), then for every n large enough, nc−1 > |Bn|.

Proof. Consider the expression of nc−1 and |Bn| after applying the logarithm twice:

log log(nc−1) = log(c − 1) + log log n

∼ log log n

log log(|Bn|) = log log
(

2f(n)×23f(n)
)

= log
(
f(n) × 23f(n)) = log(f(n)) + 3f(n)

∼ 3f(n)

As the dominating term in the second expression is of order f(n) ∈ o(log log n), asymp-
totically the first expression is larger. As log log(·) is an increasing positive function for large
values, this implies that asymptotically nc−1 > |Bn|. ◀

The next lemma shows that if f(n) ∈ o(log log n), we can find a large number of identifiers
that have the same specific algorithm.

▶ Lemma 7. If nc−1 > |Bn|, then there exist a behavior function b, and a set S of n different
identifiers, such that: ∀i ∈ S, Ai = b.

Proof. Let the function φ : [nc] → Bn be the function that associates each identifier to its
corresponding behavior function. Let S be the function that associates to each behavior b,
the set of identifiers i such that φ(i) = b. Since φ is a function from [nc] to Bn, its inverse
function S satisfies: ∪b∈BnS(b) = [nc]. Thereby, the average size of a set S(b) is
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1
|Bn|

∑
b∈Bn

|S(b)| = 1
|Bn|

· nc.

Because of Lemma 6, this quantity is strictly larger than n. Thus, the average of |S(b)|
among all b is larger than n, and there must exist at least one behavior b such that |S(b)| > n.
We take this b and S = S(b) for the lemma. ◀

Combining the three lemmas we get that, if f(n) ∈ o(log log n), then for any large
enough n we can find n different identifiers in [1, nc], such that the nodes have the exact
same behavior.

Now, consider a large enough graph, with identifiers taken from the set S. As we are
in a self-stabilizing scenario, we can chose from which configuration we start. We actually
do not need intricate configuration: we start from a configuration where all states are the
same, say some string x. This cannot be a proper leader election output, because in leader
election (with our specification) a leader and a non leader have different output. Therefore,
at least one node is activable. Note that every node sees the same states x for itself, and its
two neighbors, and that by construction they have the same behavior. Therefore if one node
is activated, all nodes are activated. Now, the scheduler decides to activate all the nodes.
Necessarily, all the nodes take the exact same step, and end up in a configuration where
every node has the same state.

We can iterate this argument forever. In other other words, the network cannot escape the
set of configurations where all nodes have the same state (as long as the scheduler activates
all the nodes together, which is allowed). Therefore, the network will never reach a proper
leader election configuration configuration, and this proves Theorem 2.

5 Proof of Theorem 3

In this section, we prove our general result, that relates ID-based algorithms with small
memory to anonymous algorithms. The proof of Theorem 3 follows from the same idea as
the one of Theorem 2, but in a more general way. (The constants of the statement have not
been optimized.) Consider an algorithm A that solves a problem P in the state model and
uses registers of size o( log log n

∆ ) (where the ∆ is the maximum degree of the graphs treated
by A, and is bounded as a function of n by ∆(n) ∈ o(log n)).

As before an algorithm can be seen as a function that maps the view of the node to an
output. But now, since the degree is not the same for every node, we would have to consider
a different function for each degree d ∈ [∆]. This not very convenient for us, so let us take
another point of view. We take a unique function, that takes as input: an identifier, a state,
an integer δ that represents the degree degree of the vertex at hand, and ∆ states.

A : [nc] × {0, 1}f(n) × [∆] ×
(
{0, 1}f(n))∆ → {0, 1}f(n)

(ID , state , degree , ∆ states) 7→ new-state

To compute the output of a node with degree δ < ∆, the function simply ignores the last
(∆ − δ) inputs.

Note that this corresponds to the single-port setting: in the function, each neighboring
state is identified. In particular, it is not a set of neighboring states. But it is not a
double-port setting: which port a neighbor assigns to a node is unknown.
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Now if we fix the identifier i, we get:

Ai : {0, 1}f(n) × [∆] ×
(
{0, 1}f(n))∆ → {0, 1}f(n)

(state , degree , ∆ states) 7→ new-state

Now the equivalent of Lemma 5 is that the number of such behaviors Ai is:

|Bn| ≤
(

2f(n)
)2(∆+1)f(n)∆

We bound the double logarithm of this expression:

log log |Bn| ≤ log log
[(

2f(n)
)2(∆+1)f(n)∆

]
≤ log

[
f(n)2(∆+1)f(n)∆

]
≤ (∆ + 1)f(n) + log f(n) + log ∆(n)
∈ o(log log n)

We get that for any large enough n, nc−1 > |Bn|, and by Lemma 7, we directly get that
there exists an identifier assignment such that all nodes have the same behavior. In other
words, on this identifier assignment, the algorithm behaves like anonymous. As a consequence
any impossibility result for anonymous algorithms also holds here. This completes the proof
of Theorem 3.

6 Conclusion

In this paper, we have established a lower bound Ω(log log n) bits per node on the size of the
registers for self-stabilizing algorithms solving leader election in the state model. This bound
matches the upper bound O(log log n) bits per node for bounded-degree graphs [6]. The
same upper bound on the size of the registers is known to hold in bounded-degree graphs
for vertex coloring and spanning tree construction [6]. An interesting open problem is to
determine the space complexity of vertex coloring and spanning tree construction.
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of consistency is followed by an undeniable evidence of misbehavior of a faulty replica. The system
can then be seamlessly reconfigured by evicting faulty replicas, adding new ones and merging
inconsistent states. We believe that this paper opens a direction towards asynchronous “self-healing”
systems that combine accountability and reconfiguration.

2012 ACM Subject Classification Theory of computation Ñ Distributed algorithms

Keywords and phrases Reconfiguration, accountability, asynchronous, lattice agreement

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.25

Funding Luciano Freitas de Souza was supported by Nomadic Labs, and Petr Kuznetsov by
TrustShare Innovation Chair.

1 Introduction

There are two major ways to deal with failures in distributed computing:
Fault-tolerance: we anticipate failures by investing into replication and synchronization, so

that the system’s correctness is not affected by faulty components.
Accountability: we detect failures a posteriori and raise undeniable evidences against faulty

components.
Accountability in computing has been proposed for generic distributed systems [18,19] as
a mechanism to detect deviations of system nodes from the algorithms they are assigned
with. It has been shown that a large class of deviations of a given process from a given
deterministic algorithm can be detected by maintaining a set of witnesses that keep track of
all observable actions of the process and check them against the algorithm [20].

The generic approach can be, however, very expensive in practice and one may look for a
more tractable, application-specific accountability mechanism. Indeed, instead of pursuing
the ambitious goal of detecting deviations from the assigned algorithm, we might want to
only care about deviations that violate the specification of the problem the algorithm is
trying to solve.
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The idea has been successfully employed in the context of Byzantine Consensus [11]. The
accountable version of consensus guarantees correctness as long as the number of faulty
processes does not exceed some fixed f . But if correctness is violated, e.g., honest processes
take different decisions, then at least f `1 Byzantine processes are presented with undeniable
evidences of misbehavior. This is not surprising: a decision in a typical f -resilient consensus
protocol must receive acknowledgements from a quorum of processes, and any two quorums
must have at least f ` 1 processes in common [31]. The fact that two processes took different
decisions implies that at least f`1 processes in the intersection of the corresponding quorums
equivocated, i.e., acknowledged conflicting decision values. Assuming that every decision is
provided with a cryptographic certificate containing the set of signed acknowledgements from
a quorum of processes, we can immediately construct a desired evidence. Polygraph [11], a
recent accountable Byzantine Consensus protocol, naturally builds upon the classical PBFT
protocol [9]. One may ask – okay, we have detected a faulty process, but what should we
do next? Ideally, we would like to reconfigure the system by evicting the faulty process and
reinitializing the system state.

Reconfigurable replicated systems [15,16,21,35] allow the users to dynamically update the
set of replicas. It has been recently shown that reconfiguration can be implemented in purely
asynchronous environments [1, 2, 15, 21, 23, 35]. The idea was first applied to (read-write)
storage systems [1,2,15], and then extended to max-registers [21,35] and more general lattice
data types, first in the crash-fault context [23] and then for Byzantine failures [24].

Contribution. In this paper, we propose a framework that can be used to implement a
large class of replicated services that are both accountable and reconfigurable. Following
recent work on reconfiguration [21,23,24], we build atop the fundamental lattice agreement
abstraction. Lattice agreement [4, 14] (LA) takes arbitrary inputs in a lattice (a partially
ordered set equipped with a join operator) and returns outputs that are (1) joins of the
inputs, and (2) ordered with respect to the lattice partial order. The LA abstraction is
weaker than consensus and can be implemented in an asynchronous system.

Lattice agreement appears to be a perfect match for both desired features: accountability
and reconfiguration. Indeed, a quorum-based LA implementation enables detection of
misbehaving parties: as soon as two correct users learn two incomparable values, they also
obtain a proof of misbehavior of all replicas that signed both values. Furthermore, the
very process of reconfiguration can be represented as agreement defined on a lattice of
configurations [21, 23]. These two observations inspire the design of our system.

We propose an accountable and reconfigurable implementation that reaches agreement
on a joint lattice: an object lattice (defining the current state of the replicated object) and
a configuration lattice (defining the current configuration of the replicas). Assuming that
the number of failures is less than half of the system size, our implementation is alive. It is
also safe if only benign (crash) failures occur. Once safety is violated, i.e., two correct users
learn two incomparable object states, some Byzantine replicas are inevitably confronted with
an undeniable proof of misbehavior. The system is then seamlessly reconfigured by evicting
the detected replicas, adding new ones and merging inconsistent states. Once the state is
merged, the system comes back to providing safety and liveness, as long as no new replicas
exhibits Byzantine behavior. Eventually all Byzantine replicas are detected and the system
comes back to maintaining both liveness and safety.

Outdated configurations are harmless. Our system prevents users from accessing outdated
configurations with the use of forward-secure digital signature scheme [5, 13]. A member of
each new configuration is assigned a new secret key. Furthermore, honest members of an old
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configuration are expected to destroy their old keys before moving to a new one. Thus, if
they are later compromised, they will not be able to serve clients’ requests, and the remaining
Byzantine replicas will not constitute a quorum.

On Byzantine clients. For simplicity, our solution assumes that service replicas are subject to
Byzantine failures, but clients are benign: they can only fail by crashing. This assumption has
already been made in designs of fault-tolerant storage systems [29]. In our case, it precludes
the cases when a Byzantine client brings the system into a compromised configuration or
slows down the system by issuing excessive reconfiguration requests. In Appendix A we also
describe a one-shot version of accountable lattice agreement, without reconfiguration, in which
both clients and replicas can be Byzantine. Marrying reconfiguration and accountability in a
long-lived service that can be accessed by Byzantine clients remains an important challenge.
One way to address it is to assume an external access control mechanism [36] ensuring that
only “authentic” configurations are accepted as inputs to the reconfiguration procedure. We
discuss this issue in more detail in Section 6.

Summary. Altogether, we believe that this paper opens a new area of asynchronous “self-
healing” systems that combine accountability and reconfiguration. Such a system either
preserves safety and liveness or preserves liveness and compensates safety violations with
eventual detection of Byzantine replicas. It also exports a reconfiguration interface that
allows the clients to replace compromised replicas with new, correct ones. In this paper, we
show that both mechanisms, accountability and reconfiguration, can be implemented in a
purely asynchronous (in the modern parlance – responsive) way.

Road map. The rest of the paper is organized as follows. In Section 2, we introduce our
system model. In Section 3, we state the problem of reconfigurable and accountable lattice
agreement (RALA) and in Section 4.1, we describe our RALA implementation analysing its
correctness. In Section 5, we discuss related work, and in Section 6 we present an overview
of possible improvements and interesting open questions. In Appendix A, we present our
one-shot accountable lattice agreement (A1LA) that assumes that both clients and replicas
can be Byzantine and analyse its correctness.

2 System Model

We assume that the system is asynchronous and that it is composed by a set Π of processes
that communicate over reliable message-passing channels exchanging authenticated messages.
These processes are split into a set Σ of replicas that maintain a replicated service and a set
Γ of clients that use the service. We assume the existence of a global clock with range N,
but the processes do not have access to it.

In each run, a process can be: (1) correct (C) if it faithfully follows the algorithm it
is assigned with, (2) benign (B) if it can only deviate from the algorithm by prematurely
stopping taking steps of its algorithm, or (3) malicious (M) or Byzantine if it skips steps or
takes a step not prescribed by its algorithm.

We assume a forward-secure digital signature scheme [5, 6, 13, 28]. In the scheme, the
public key of a process p is fixed while its secret key skp

t evolves with its timestamp t, a natural
number bounded by a fixed natural parameter T , usually taken sufficiently large (e.g., 264),
to accommodate any possible system lifetime. For any t1, t ă t1 ď T , the process can update
its secret key and obtain skp

t1 from skp
t . However, we assume that it is computationally
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25:4 Accountability and Reconfiguration: Self-Healing Lattice Agreement

infeasible to “downgrade” the key to a lower timestamp, from skp
t1 to skp

t . In particular, once
a process updates its timestamp from t to t1 ą t, and then destroys skp

t , it is no longer able
to sign messages with timestamp less than t1, even if it turns Byzantine later.

More formally, we model a forward-secure signature scheme as an oracle which associates
every process p with a timestamp tp. The oracle provides process p with three operations:
(1) UpdateFSKeysptq sets tp to t if t is greater than the current value of tp but less or equal
to T (2) FSSignpm, tq returns a signature s for message m and timestamp t, assuming t ě tp;
(3) FSVerifypm, t, s, qq returns true iff the message m provides a signature s generated by a
valid call FSSignpm, tq by process q.

We also make use of a weak broadcast primitive that ensures that once a correct process
broadcasts a message, all correct processes eventually receive it, e.g., via a gossip mechanism.
Notice that, unlike reliable broadcast [7, 8], we only require the primitive to disseminate
messages broadcast by correct processes, not to make them eventually agree on the set of
delivered ones.

We assume that all clients are benign. For the sake of simplicity, we assume that once a
correct process learns an output, it eventually proposes a new input, and that there are only
finitely many correct clients.1

3 Reconfigurable and Accountable Lattice Agreement: Specification

A lattice is a partially ordered set where any pair of elements has a unique join, or supremum,
and a unique meet, or infinum. We denote O the object lattice corresponding to the data type
the user wishes to implement using the system (such as a counter, a set or commit-abort)
and K the configuration lattice.

A configuration κ is a finite set of pairs pσ, inoutq|σ P Σ, inout P t`,´u. Intuitively,
pσ,`q P κ means that σ has been earlier added to the configuration and pσ,´q means that
σ has been removed from it. We say that a replica σ is a member of κ if pσ,`q P κ and
pσ,´q R κ.

|κ| is defined as the cardinality of the set of pairs representing the configuration; κ.excluded
returns all the replicas excluded from it; κ.included that were at some moment included
on it; κ.members :“ κ.includedzκ.excluded. We only consider well-formed configurations κ:
κ.excluded Ď κ.included (a replica can be removed only if it has been previously added).

In the reconfigurable accountable (long-lived) lattice agreement (RALA) abstraction,
defined on a product lattice pL, Ďq “ pO ˆK, ĎO ˆ ĎK), a client ci periodically proposes
inputs pι, κq|ι P O, κ P K to replicas in Σ and obtains, as output, a value υ P L.

Additionally, the client locally maintains an accusation set αi “ pA, P q where A Ă Σ is
a set of replicas and P P P is a proof (here P is the set of proofs). The system provides
a Boolean map verify-proof : p2Π ˆ Pq Ñ ttrue, falseu that can be used by any process or
third party to verify a proof. For example, a proof can be a set of messages that, for every
replica in r P A, contains one or more messages signed by r that cannot be sent by r in any
execution of our algorithm.

When a client c receives an input v from the upper-level application we say that c proposes
v. When c outputs a value v P L, we say that c learns (or decides) v. When c sets its
accusation set to pA, P q, we say that c accuses A with P .

1 Our specification can be easily refined to accommodate infinitely many correct clients under the
assumption that the number of concurrently proposed values is bounded.
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Given a client ci, let Ii “ xpιi
0, κi

0q, pι
i
1, κi

1q, ¨ ¨ ¨ y denote the sequence of inputs and
Υi “ xυi

0, υi
1, ¨ ¨ ¨ y denote the sequence of outputs. If for some client ci and k P N, κi

k ‰ κi
k`1,

i.e., ci proposes to change the configuration, we say that ci issues a reconfiguration request.
Now a RALA system must ensure the following properties:

Validity. Each value υi
k, k ě 0, learned by a client ci is a join of the k-prefix of its input

sequence and some values from other client’s inputs.
Completeness. If a correct client learns a value that is incomparable with a value learnt
by another correct client then it eventually accuses some replicas it had not yet accused
before.

@ci, cj P C X Γ,@k, l P N,␣
´

υi
k Ď υj

l _ υj
l Ď υi

k

¯

, where ci learns υi
k at time t

ùñ Dt1 ą t : Airts Ĺ Airt1s

Accusation Stability. The accusation sets monotonically increase.

@ci P Γ, t, t1 P N, t ă t1 : Airts Ď Airt1s

Accuracy. If a client accuses a set of replicas A, then it has a valid proof against each
replica in A:

@ci P Γ,@t P N, verify-proofpAirts, P irtsq

Authenticity. It is computationally infeasible to accuse a benign process, i.e., to
construct P P P s.t. verify-proofpA, P q “ true and AXB ‰ H.
Agreement. The correct clients eventually agree on the replicas they accuse.

@t P N, @ci, cj P Γ, Dt1 P N, t1 ą t : Airts Ď Ajrt1s

Liveness. If the system reconfigures only finitely many times, every value proposed by a
correct client is eventually included in the value learned by every correct client.

@ci P Γ,@k P N,@cj P Γ, Dℓ P N|ιi
k Ď υj

l

A configuration κ is said to be active (at a given moment of time t) if (1) it is a join
of configurations proposed and learnt by time t, (2) and no other correct process learns
a configuration κ1|κ Ă κ1 by time t. Liveness guarantees of our algorithm rely upon the
following condition:
Configuration availability: For all times t, any configuration that is active at all t1 ą t

contains a majority of correct processes.
This is a conventional assumption in asynchronous reconfigurable systems [1, 23, 35]. The
intuition behind it is the following. If an active configuration remains active forever, i.e., it is
never superseded, then it should contain enough correct replicas. On the other hand, a once
active but later superseded configuration may contain arbitrarily many Byzantine processes:
the clients’ requests will be served by the new configuration.

Notice that the properties above imply that either the values learnt by correct processes
are comparable or eventually some Byzantine replicas are detected. If from some point on,
no more Byzantine faults take place, we ensure that all new learnt values are comparable.
Our requirement of finite number of reconfigurations is standard in the corresponding
literature [2, 23,35] and, in fact, can be shown to be necessary [34]. In practice, we ensure
liveness in “sufficiently long” time intervals without reconfiguration.
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Notice that the choice of new configurations to propose is left entirely to the clients, as
long as the condition above is satisfied. In Section 6, we discuss possible reconfiguration
strategies the clients may want to choose. However, it is important to emphasize that
regardless of this strategy, the system does not allow the accused replicas to affect
the system’s safety and liveness anymore.

4 Reconfigurable and Accountable Lattice Agreement:
Implementation

4.1 Algorithm
Our RALA implementation is given in Algorithm 2, Algorithm 3, and Algorithm 4. We
assume that every method in the algorithms is executed by the process sequentially, without
being interrupted by other methods of this process. Moreover, we consider that the processes
ignore accused replicas, messages with invalid signatures and messages whose signatures do
not match the configuration content.

Algorithm 1 Example of Verify-proof Operation.

operation Verify-Proof(accusation(A,P))
1 foreach Process b P A do
2 let MSG be the union of all messages by b in P
3 Check if every m in MSG has a valid signature continue if not
4 Get all ACKs in MSG and check if they are comparable, continue if not
5 Get all Proposal in MSG and check if they obey the description continue if not
6 Get all Decision in MSG and check if their ACKs hold continue if not
7 return false
8 return true

Overview. The clients propose values to the replicas which can either accept them by issuing
an ACK or reject them by issuing a NACK. Once enough responses are gathered by the
proposing client, it can accordingly either proceed to learn the value it proposed or to refine
its proposal so it contains the missing information replicas raised. If no malicious replica
tries to deviate, the values learnt are comparable and no accusations are raised. On the other
hand, once a replica induces clients to learn incomparable values it is eventually detected
and an accusation against it is produced.

The following definitions and boolean map are used in the algorithm and proofs of
correctness:

▶ Definition 1 (S satisfies configurations). Let S be a set of replicas, κ a configuration, and
D a set of configurations. We say that S satisfies D upon κ iff, for each d Ď D, S contains
a majority of replicas in each configuration in the set κYYd.

▶ Definition 2 (Pending Configurations). A configurations is called pending as long as a client
has received it but has not yet included it in the most recent decided configuration (lines 38
and 44). This set is comprised of the current client proposal, as well as configurations coming
from ACKs (line 13 and 24).

The map verify_maj : pΣˆK ˆ 2Kq Ñ ttrue, falseu where verify_majpS , κ, Dq “ true iff
S satisfies D upon κ. This map is used to indicate that the client gathered all the responses
it needed.
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Ledgers. Every client maintains a local ledger, called ackL, reserved to keep track of signed
ACK messages the client received and their senders. Also, clients and replicas maintain two
more ledgers to register the values introduced in the system by their origin processes called
objL and confL. By indexing a ledger l by a process p (lrps), one can recover all the values
signed by p present in l.

Algorithm 2 Reconfigurable Accountable Lattice Agreement: Code for client c part 1.

Local variables:
status, initially waiting { Boolean indicating status: waiting or proposing }
dest, initially H { Set of replicas that must be contacted }
nackBool, initially false { Flag indicating whether a NACK has already been received or not }
activePropNb, initially ´1 { Index of the current active proposal }
activeOutNb, initially 0 { Index of the next value to be learnt }
propV, initially K { Value currently being proposed }
objL, initially empty { Ledger matching object values in the system to their original proposer }
confL, initially containing Initial Conf signed by c { Analogous to objL for configurations }
ackL, initially empty { Ledger matching acks to the replicas that issued them }
pendConf, initially H { Set of pending configurations }
RESPSet, initially H { Set of replicas that responded }
lastDec, initially pK, intialConfigq { Last decided value }
Input:
inBuffer { Values received by the client from an external source to insert in the system }
Outputs:
outV, initially K { Array of values learnt by the client }
accusation, initially H { Set of accusations issued by the client }

upon status “ waiting AND inBuffer ‰ K

9 extract and sign objects from inBuffer and include them to objL
10 extract and sign configurations from inBuffer and include them to confL
11 Propose

operation Propose
12 propV :“ extractLedgerpobjL, confL, cq
13 include propV .conf to pendConfSet
14 status :“ proposing
15 activePropNb :“ activePropNb ` 1
16 clear ackL[activeOutNb]
17 clear RESPSet
18 nackBool :“ false

19 dest :“ propV .conf .included ´ lastDec.conf .excluded
20 multicast xPROPOSAL, pobjL, confL, lastDec, activeP ropNbqy to replicas in dest

upon verify_majpRESP Set, lastDec.conf, pendConf q “ true
21 if nackBool “ true then Propose else Decide

upon receive xACK, pHASHppropV q, lastDec, pendConf 1, activePropNbqy
from replica r AND status “ proposing AND r R ackL AND r P dest

22 if propV .conf P pedingConf 1 then
23 append r’s ACK message to ackLractiveOutNbs
24 include elements from pendConf 1 which aren’t subset of lastDec.conf in pendConfSet
25 append r to RESPSet
26 else xACCUSATION, paccusationqy

27 include pr, ACKq to accusation
28 broadcast xACCUSATION, paccusationqy

OPODIS 2021
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Issuing a proposal. A client starts in a waiting status and listens for values in its inBuffer to
include them in a new proposal (lines 9 and 10), not taking any values from the buffer while
the executing a proposal. Additionally, it must also listen for decisions made by other clients
(lines 45 and 46) including them in its proposal, preventing malicious replicas from keeping
values from it. It then proceeds to multicast its propV to the replicas that might satisfy the
pending configurations (variable dest) it has seen upon the last decided configuration it came
by (line 20) and waits for them to respond.

Algorithm 3 Reconfigurable Accountable Lattice Agreement: Code for client c part 2.

upon receive xNACK, pHASHppropV q, ∆objL1, ∆confL1, activePropNbqy from replica r

AND status “ proposing AND r P dest
29 nackV :“ extractLedgerp∆objL1, ∆confL1, rq

30 if nackV Ď propV return
31 objL :“ objL Y objL1

32 confL :“ confL Y confL1

33 nackBool :“ true

34 append r to RESPSet

operation Decide
35 outV ractiveOutNbs :“ propV
36 broadcast xDECISION , pobjL, confL, ackLractiveOutNbsqy
37 lastDec :“ outV ractiveOutNbs
38 pendConfSet :“ H

39 activeOutNb :“ activeOutNb ` 1
40 status :“ waiting

upon receive xDECISION, pobjL1, confL1, ackL1
qy from client c1

41 outV 1 :“ extractLegerpobjL1, confL1
q

42 lastDecOld :“ lastDec
43 lastDec :“ lastDec Y outV 1

44 Eliminate from pendConf subsets of lastDec.conf
45 objL :“ objL1

Y objL
46 confL :“ confL1

Y confL
47 @i | outV 1

Ę outV ris && outV ris Ę outV 1

48 let M “ tm|m P ackLris && m P ackL1 && m R accusationu

49 foreach m P M do include pm, tackLrms, ackL1
rmsquq to accusation

50 if |M | ą 0 then broadcast xACCUSATION, paccusationqy

51 if lastDec.conf Ę lastDecOld.conf _ outV 1
Ę propV then Propose

operation extractLedger pobjL1, confL1, senderq
52 if D process p P objL1 or confL1 with invalid signature then
53 accusation :“ accusation Y tpsender , getMSGpobjL1

q Y getMSGpconfL1
qu

54 broadcast xACCUSATION, paccusationqy

55 return H

56 let receivedValue “ p\rv|Dp, objL1
rps “ vs,\rc|Dp, confL1

rps “ csq

57 return receivedValue

upon receive xACCUSATION, paccusation1
qy from client q

58 ∆Proof :“ H

59 foreach process b accused in accusation’ with p and who isn’t present in accusation do
60 include pb, pq in ∆Proof
61 if ∆P roof ‰ H then
62 accusation :“ accusation Y ∆P roof
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Treating Client Proposals. The replicas that receive the proposal extract the value from
the ledger (line 65). This makes use of the operation extractLedger which verifies that all the
values came from existing clients, making these values valid. Each replica then checks whether
the new proposal contains the join values it has already seen proposed (repV ), in which case
they ack it (line 73) or not, in which case they nack it (line 76), sending a complement to
the ledger allowing the client to update its proposal. Benign replicas always forward their
keys, destroying the old ones in the process, before responding to clients (line 72).

A replica cannot provide a client with outdated information because the timestamp used
in the signature of its messages is only valid if it has been forwarded to the content it proposes
and cannot be rolled back. Moreover, if a benign replica sees that a client isn’t aware of
a decision it has already come by, it will ignore the client proposal until it includes newer
information (line 63).

The function getMSG (line 53) takes a set of input values and returns the set of proposals
or NACK messages that originally contained them.

Algorithm 4 Reconfigurable Accountable Lattice Agreement: Code for replica r.

Local variables:
objL, initially empty { Object Ledger }
confL, initially empty { Configuration Ledger }
repV initially K { Value held by replica }
pendConf, initially H { Pending Configurations }
lastDec, initially K

signature timestamp tr initially |Initial Configuration|

sign all outgoing messages m with FSSignpm, trq

upon receive xPROPOSAL, pobjL1, confL1, lastDec1, activePropNb1
qy from client c

63 if lastDec1
Ď lastDec then return

64 lastDec :“ lastDec Y lastDec1

65 propV 1 :“ extractLedgerpobjL1, confL1
q

66 objL :“ objL Y objL1

67 confL :“ confL Y confL1

68 if repV Ď propV 1 then
69 repV :“ propV 1

70 Include propV 1.conf to pendConf
71 tr :“ |repV.conf |
72 UpdateFSKeysDestroyOldptrq

73 send xACK, pHASHppropV 1
q, lastDec, pendConf, activePropNb1

qy to c

74 else
75 repV :“ repV \ propV 1

76 send xNACK, pHASHppropV 1
q, objL ´ objL1, confL ´ confL1, activePropNb1

qy to c

upon receive xDECISION, pobjL1, confL1, ackL1
qy from client c

77 lastDec :“ lastDecY extractLedger pobjL1, confL1
q

78 Eliminate from pendConf subsets of lastDec.conf
79 objL :“ objL1

Y objL
80 confL :“ confL1

Y confL

operation extractLedger pobjL1, confL1
q

81 let receivedValue “ p\rv|Dp, objL1
rps “ vs,\rc|Dp, confL1

rps “ csq

82 return receivedValue
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Treating Replica Responses. Once the client gets an ACK from a replica, it includes the
message in its ackL (line 23) and registers the replica in its response set (line 25). Upon
reception of a NACK, a client complements its objL and confL (lines 31 and 32) and sets the
NACK bool, including the replica in its response set (lines 33 and 34). When a client sees
that it has gathered responses from a set of replicas that satisfies the pending configurations,
it proceeds to check its NACK bool, as the presence of a NACK means that it cannot decide
yet, and if it is false, then it will decide (line 21).

Each proposal gets a unique number (activePropNb) so clients consider only reactions to
the active proposal, ignoring late messages they might receive. Clients also ignore messages
coming from replicas they already accused, as well as messages signed using timestamps that
do not correspond to the configuration in their contents.

A client either waits until it gets responses from a set of replicas (keeping track via RE-
SPSet) that satisfies the pending configurations or until it gets a newer decided configuration
from another client broadcast. It is necessary to get majorities in all those combinations of
system configurations because the client doesn’t know if any combination of them was learnt
by another client and must be sure that it has reached all possible active configurations that
can be learnt before it learns one by itself. Furthermore, the state transfer from one replica
to another will be directly provided by this procedure, as once a client learns a configuration
the object information is already in place, which is one of the advantages of this solution. It
becomes then necessary to keep track of the state of the system by including information
about which was the last combination of decisions seen (variable lastDec), as well as pending
configurations (variable pendConf ).

Issuing and Treating Convictions. We keep an array of all output values instead of just the
current one, as well as their corresponding ack ledgers, indexing the currently active entry
by activeOutNb. This is necessary in order to monitor that after long delays in the network
when two correct clients re-establish their connection they can still check if in this period
their decisions were comparable (line 47) and be able to accuse processes that lead them to
this incomparable state. The clients broadcast their accusations as well as their decisions.

They avoid issuing redundant accusations by keeping track of the variations (line 61). If a
process gets new misbehavior proofs, it includes them on its accusations (line 62). Algorithm 1
shows one possible implementation of the verify_proof function, checking that every issued
accusation was made after a process tried to forge some signature, issued incoherent ACKs,
tried to input values in the system in discordance with the specification or decided something
without gathering the necessary acknowledgements.

Once a replica is accused by a client, the client begins to ignore the replica and the
underlining application can for instance issue a reconfiguration effectively replacing it by one
or more new replicas. The clients will then eventually learn comparable values once they join
their values and the malicious replicas that try to subvert the system have been accused.

4.2 Correctness
We claim that the system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 solves RALA.

▶ Definition 3. Let’s define a state s as being the value of the variable propV. A state
s is considered as decided when the first client c in state s broadcasts its decision at line
36. Moreover, we define s.lastDec and s.pendConf as being the value of these variables on
the client c at the moment of the state decision. Finally, s.confComb is defined as the set
ts.lastDec.conf Y tYdu|d P 2s.pendConfu



L. Freitas de Souza, P. Kuznetsov, T. Rieutord, and S. Tucci-Piergiovanni 25:11

▶ Definition 4. We define then a graph Gs whose vertices are the different decided states of
the system plus the state pK, initConfq and whose edges exist between two vertices s and s1

whenever the following is true:

s Ñ s1 ô s Ĺ s1 ^ s.conf P s1.confComb

▶ Lemma 5. At every benign replica, the variables repV, pendConf and lastDec are mono-
tonically increasing.

Proof. The variable repV is updated in line 69 where it is assigned a new value which has
passed the test in line 68, so the new value contains the old one.

The other updates involving these variables in lines 64, 70 and 75 are joins where one of
the operands is the old value, so the new values must contain the old ones. ◀

▶ Lemma 6. Given decided states s, s and s1 in Gs, if s Ñ s, s Ñ s1, s1.lastDec Ď s,
s.lastDec Ď s1 then either there is an edge between s and s1 or there is an accusation.

Proof. From s Ñ s, s Ñ s1 we derive that:

s.conf P s.confComb ^ s.conf P s1.confComb ùñ s.conf P s.confComb X s1.confComb

Because the decision only happens after triggering the event that begins in line 21, then
it must be that the clients who decided these states got responses from replicas forming
majority quorums in s.conf and they must therefore intersect in at least a replica r.

Let us assume for now that r followed the algorithm and behaved correctly. Let cs be the
client that decided s and cs1 be the client that decided s1. Assuming w.l.o.g that the replica
r served the client cs before, using lemma 5 and observing that s and s1 correspond to the
first decision of these values, s Ĺ s1. Since s1 passed the test in line 63 in replica r, it means
that s.lastDec Ď s1.lastDec, moreover because we assume that s1.lastDec Ď s we can write:

s.conf “
ğ

pts.lastDec.confu Y s.pendConfq Ď
ğ

pts1.lastDec.confu Y s.pendConfq

Ď
ğ

pts.confu Y s.pendConfq “ s.conf

Furthermore, we see that all pending configurations in s which weren’t included by the last
decided configuration in s1 must also be pending in s1 because this information will be carried
by the ack from replica r (line 24). We can then conclude:

s.conf “
ğ

pts1.lastDec.confu Y s.pendConfq

“
ğ

pts1.lastDec.confu Y tu P s.pendConf, u Ę s1.lastDec.confuq

P
ğ

pts1.lastDec.confu Y C|C Ď s1.pendConfq “ s1.confComb

Hence there is an edge from s to s1 in Gs in this scenario.
If the replica r didn’t follow the algorithm and issued incomparable acks, then this event

shall be detected and r will be accused. r’s ack would be included in both clients cs and cs1

ackLs being broadcasted together with the decision in line 36 and once the first client who
decided and then received the other’s decision go through the line 49, it would find r in both
ledgers and accuse it. ◀
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▶ Lemma 7. All the infinite connected components of Gs have the same suffix.

Proof. Because we assume that the system reconfigures finitely many times, there is a point
where all the decisions regarding the different configurations the system passed, which were
broadcasted in line 36, arrive at the recipient clients. They’ll process the configuration
included in these values in lines 43 and 46 and the use of the forward secure signatures will
prevent them from processing messages of old replicas. As a result, all the clients will have
the same values of lastDec.conf and propV.conf, meaning that they will contact the same
replicas and need to form a majority in the active configuration lastDec.conf \ propV.conf ,
where their majority quorums intersect. As seen in the lemma 6 if any malicious replica tries
to issue incomparable ACKs the clients will accuse it and ignore it from this point onward.
They will retry the proposal again until none of the replicas in the majority misbehaves.

Let s be the first state decided in this scenario, henceforth the states will be totally
ordered, sharing the same configuration which is always present in confComb, meaning that
these states are connected. The graph will only have one growing branch and any new state
s1 in it will be a descendant of s. Finally, this branch will be infinite because the clients
never stop proposing. ◀

▶ Theorem 8. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides validity.

Proof. The learnt values by a client are extracted from its objL and confL.
First of all, at the beginning of a proposal (lines 9 and 10) the value present in the input

buffer is read and put into the ledgers, guaranteeing that when a decision is made it shall be
present in it.

These variables are then modified in lines 31, 32, 45 and 46. Therefore, the values included
into them either come from the the input buffer from the clients where they are signed,
or they are informed by replicas nacking proposals after passing signature check or by the
information of other clients decisions. We conclude that the values learnt always come from
the client input buffers directly or indirectly. ◀

▶ Theorem 9. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides completeness.

Proof. By Lemma 6 whenever the graph Gs forks an accusation is issued. Each fork occur
when clients learn incomparable values and are caused by some Byzantine replicas which are
eventually accused. Moreover, by lemma 7 the system cannot be indefinetely forked and all
inconsistencies are eventually solved when no new accusations are issued as required. ◀

▶ Theorem 10. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides accusation stability.

Proof. The set of accused processes is reflected in the algorithm via the variable accusation
which is updated in lines 49, 53, and 62. As one can see, they either attribute this variable to
a union where one of the operands is itself or a value is explicitly included into it. Therefore
after each update the new value must, by the definition of these operations, include the old
one, i.e. the accusation set is monotonically increasing. ◀

▶ Theorem 11. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides accuracy.
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Proof. An accusation can be issued in lines 27, 49 and 53.
The first occurrence checks that an ACK was issued but the matching configuration

proposal wasn’t added by the replying replica as described in line 70 meaning that this line
was skipped.

On the second case the decision of incomparable values requires, as seen earlier in
Theorem 9 that a replica acknowledged incomparable values, violating the behavior of
benign replicas described by Lemma 5. Having two ACKs signed by the same process
for incomparable values characterises an irrefutable proof and the replicas in it will be a
non-empty subset of M because they deviated from the algorithm.

On the last case a replica will be caught providing fake signatures, which is by itself
enough to accuse it as this is a clear deviation from the algorithm. ◀

▶ Theorem 12. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides authenticity.

Proof. Authenticity follows from our cryptographic assumptions and specially from three
properties of the underlying system:

Every message contains a signature;
The signatures can be verified by a public function;
No other process can sign on behalf of a correct process. ◀

▶ Theorem 13. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides agreement.

Proof. Agreement is a direct consequence of the dissemination of information implemented in
the algorithm. Every accusation is broadcasted and every message containing an accusation
is analysed and, if it holds, leads to the adoption of the information (line 60). ◀

▶ Theorem 14. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 is alive.

Proof. After the system stops reconfiguring a client can eventually receive the last configura-
tion learnt by the broadcast in line 36 and then every client will contact active configurations.
If a client then starts a proposal when receiving a value v in its input buffer, a majority
of replicas in all active configurations shall eventually respond to this client, following our
majority of correct replicas assumption in this scenario. From this point on, all decisions
shall contain v as the last learnt configuration all clients contact will provide a majority of
replicas that include v. ◀

5 Related Work

Accountability. In security terms, accountability ensures that the actions of an entity can
be traced solely to that entity. This supports non-repudiation, deterrence, fault detection,
and after-action recovery. Distributed computing research has focused for many years on
failure detection [10,12,22], a close relative of accountability. By identifying faulty processes,
failure detection helps the distributed computation to make progress in a safe way, but does
not provide evidences of misbehaviors that can be verified by a third party. To the best
of our knowledge, PeerReview [20] was the first proposing a general solution to provide
accountability as an add-on feature for any distributed protocol. In PeerReview each process
in the system records messages in tamper-evident logs: an auditor can challenge a process,
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retrieve its logs, and simulate the original protocol to ensure that the process behaved
correctly. By doing so, any observable deviating action can be traced back to at least one
Byzantine process that was responsible for it. The main issue is that for an auditor to prove
that a process is Byzantine it must receive a response to the challenge from the process. If no
response is received, the auditor cannot determine whether the process is faulty or not. As a
result, some Byzantine processes might be suspected forever and never proven guilty. This
limitation is common to distributed protocols that are not designed to provide accountability.

Polygraph [11] equips Byzantine Consensus with an accountability mechanism. As in our
system, the very messages sent during the protocol execution carry the necessary information
to construct a proof in case of Consensus agreement violation. This way, there is no need
to query processes to collect evidences and construct a proof. Fairledger [25] and LLB
(Long-Lived Blockchain) [32] are consensus-based state-machine replication protocols that are
able to detect consistency violations in consensus instances and reconfigure themselves. In
contrast, we do not rely on consensus for reconfiguration and propose a purely asynchronous
accountable and reconfigurable service.

Lattice agreement. Attiya et al. [4] introduced the (one-shot) lattice agreement abstraction
and, in the shared-memory context, described a wait-free reduction of lattice agreement to
atomic snapshot. Falerio et al. [14] introduced the long-lived version of lattice agreement
(adopted in this paper), called generalized lattice agreement, and described an asynchronous
message-passing implementation of lattice agreement assuming a majority of correct processes.
In the Byzantine failure model, Di Luna et al [27] proposed for the first time a solution for
Byzantine asynchronous generalized lattice agreement, later improved by [36]. All these
algorithms propose a fault-tolerant approach where safety and liveness are guaranteed with
f ă n{3 Byzantine processes and authenticated channels. In our accountability approach,
liveness and recovery from safety violations are guaranteed with f ă n{2 Byzantine processes
and authenticated channels.

Asynchronous reconfiguration. Dynastore [1] was the first solution emulating a reconfig-
urable atomic read/write register without consensus: clients can asynchronously propose
incremental additions or removals to the system configuration. Since proposals commute,
concurrent proposals are collected together without the need of deciding on a total order.
In [21] it has been observed that asynchronous reconfiguration can be handled using an
external reliable lattice-agreement object. Reconfigurable lattice agreement [23] enables
reconfigurable versions of a large class of objects and abstractions, including state-based
CRDTs [33], atomic-snapshot, max-register, conflict detector and commit-adopt.

In the Byzantine fault model, Dynamic Byzantine storage [3,30] allows a trusted adminis-
trator to issue ordered reconfiguration calls that might also change the set of replicas. More
recently, [24] describes a generic Byzantine fault-tolerant reconfigurable lattice agreement,
implemented without assuming a trusted administrator.

The reconfiguration technique used in this paper takes inspiration from [23] while been
enriched with the use of forward-secure signatures as proposed in [24] to protect the system
from Byzantine replicas belonging to old configurations. Note that none of the cited work
provide proof-of-misbehavior of Byzantine processes.
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6 Concluding remarks

In this paper, we propose the first design of an asynchronous replicated system that not only
detects misbehavior that affects its safety properties, but is also able to mitigate misbehaving
replicas by reconfiguration. Compare to earlier [16, 25] and concurrent [32] work, we do not
employ consensus to agree on the evolving configurations. The algorithm described in this
paper can be improved and generalized in multiple ways. Below we discuss some of them.

Garbage collection. In the current version of our algorithm, every process locally maintains
a complete history of updates, and periodic reinitialization of the system is an important
issue. In particular, it appears challenging to reinitialize the set of accusations, as a slow
client may never be able to be convinced that a compromised replica is not trustful anymore.
One may think, e.g., of a periodic instances of a consensus protocol among the clients to
agree on the new initial system state, running in parallel with our algorithm. Altogether,
periodic “truncation” of the ever-growing state in an asynchronous protocol remains an
interesting question for the future work.

Complexity. Similar to earlier solutions of (generalized) lattice agreement [14, 23], the
latency of learning a value in our algorithm (in the number of asynchronous query-response
rounds, assuming that the configuration does not change) is proportional to the number
of concurrently proposed values. It remains unclear if there is an asymptotically faster
algorithm. There are interesting solutions for one-shot Byzantine lattice agreement that
take log k rounds for k proposed values [37], but we do not have a comparable long-lived
implementation.

For simplicity, in our algorithm, the sizes of messages grow linearly with the number
of distinct values learnt by the clients. One can improve this by sending relative updates
instead of complete histories in PROPOSE and DECISION messages. The size of ACK and
NACK messages already grow much slower, as they use digests of corresponding proposals
and only contain information about changes: in the case of ACKs, these changes consist of
the pending configurations since last decision and in the case of NACKs – with respect to
the proposed value the replica is responding to. An ACCUSATION message has asymptotic
complexity of an ACK message. The issue of maintaining bounds on ever-growing message
sizes is related to the more general question of garbage-collection and reinitialization.

Clients: Byzantine and heavy. Early proposals of quorum-based fault-tolerant storage
systems typically assumed that clients are benign (see, e.g., [29]). While the effect of
Byzantine writers can be mitigated using erasure coding [17] or voting [26], it appears
nontrivial to handle malicious reconfiguration requests. Indeed, a Byzantine client can block
progress by plunging the system in constant reconfiguration, or break safety of the replicated
data by rendering the system to a compromised configuration. How to handle such attacks
is an intriguing challenge.

Assuming that the clients are benign enables assigning them with a major part of the
total work. This results in linear message complexity: the replicas only passively respond to
clients’ queries.

Alternatively, we may follow earlier work on asynchronous Byzantine reconfiguration [24],
and assume an external access control mechanism ensuring that inputs from the clients
(including reconfiguration calls) are “acceptable”. In particular, the proposed configurations
should satisfy the configuration availability condition (Section 3): every combination of
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candidate configurations should contain enough correct replicas. Also, the access control
mechanism should provide a verification procedure that would allow the third party to verify
validity of reconfiguration requests. The clients are then only responsible for submitting valid
to the set of replicas. The resulting algorithm will, however, likely to be more costly in terms
of message complexity, as each reconfiguration will have to handle each of the valid requests.

Our algorithm can also be easily extended to accommodate partitions of the clients into
(benign) administrators and (Byzantine-prone) users, along the lines of [25,30].

For completeness, in Appendix A, we describe a specification and a corresponding
implementation of a one-shot lattice agreement abstraction that assumes that both clients and
replicas can be Byzantine. Our system is particularly well suited for the client-administrator
approach as the reconfiguration requests are issued by the proposing entities (in this case an
administrator) and not the entities maintaining the system (the replicas).

Reconfiguration strategy. In this paper, we delegated the task of choosing new configura-
tions to the clients. The clients are free to reconfigure the system even if no new misbehaving
replicas are detected. The only requirement we impose on the configurations proposed by
the clients is that resulting configurations must remain available (Section 3). But one may
think of more explicit reconfiguration strategies. For example, each time a new misbehaving
replica is detected, it is replaced with a new one taken from a “pool” of correct replicas (a
similar approach is proposed in LLB [32] for consensus-based reconfiguration).
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A Accountable Lattice Agreement with Byzantine Clients

In this section, we discuss a one-shot static version of accountable lattice agreement that
considers that both clients and replicas might be Byzantine.

A.1 Problem statement
The general accountable one-shot lattice agreement (A1LA) abstraction, defined on a lattice
pL, Ďq, takes, as a single input, an element in L and produces, as an output, a pair of an
element in L and a set of accusations. Again, an accusation is a pair pA, P q where A Ă Π
and P is a proof of misbehavior. And we assume that the proof can be independently verified
by a third party through a boolean map verify-proof : p2Π ˆ Pq Ñ ttrue, falseu.

We say that this version is general because both clients and replicas can be malicious.
The system contains N replicas where a majority of them are correct. Let U Ď B be the finite
set of benign clients that proposed values in that run, and let ui denote the value proposed
by a process pi P U . Let VB and VC be the sets of, respectively, benign and correct clients
that learned values in that run, and let vi denote the value learned by a process pi P VB

(obviously, VC Ď VB Ď U). The A1LA abstraction satisfies the following properties:

Validity. The value learnt by a benign client ci with input value ui is a join of values
proposed by clients in U (including ci), at most |M | values coming from M , and ui:

@ci P VB : ui Ď vi ^ vi Ď \ptuj |cj P Uu Y F q, F Ď L, |F | ď |M |.

Consistency. Either the values learned by the correct clients are totally ordered:

@ci, cj P VC : vi Ď vj _ vi Ď vj .

or every correct process eventually accuses a set of processes.
Accuracy. If a benign process pi accuses A (with P ), then A is a subset of M and P

contains a proof against each process in A.

@pi P B, A Ď M ^ verify-proofpA, P q

Authenticity. It is computationally infeasible to construct AXB ‰ H and P P P such
that verify-proofpA, P q “ true.
Liveness. If a correct client proposes a value, it eventually learns a value or accuses a
set of processes.

One can see that a benign client can accuse a set of processes only if there is at least
one Malicious process (M ‰ H) and in the absence of malicious processes no proofs of
misbehavior are created. The Consistency property guarantees that either correct clients
learn comparable values or some malicious process will be accused. Notice that we cannot
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avoid executions in which a Benign but not correct client learns a value that is inconsistent
with a value learnt by another benign client if there are malicious processes without issuing
accusations.

A.2 The algorithm
Our solution to A1LA is presented in Algorithm 5, Algorithm 6 and Algorithm 7. As before,
each method is executed in its entirety without being interrupted. Each client might be in
an active state where it proposes values and takes steps towards learning something new,
re-proposing if necessary or in a passive state where it only reacts to other client proposals.
On start-up clients that receive input values from the application sign them and put them to
their input ledgers (line 84) and proceed to propose it to the system by multicasting (91).

When a replica receives a proposal with a ledger, it extracts the proposed value by the
other process merging the new inputs to its own ledger (117). Before treating the ledger a
verification is made to guarantee its integrity (113). Once the message is validated, there
might be inconsistencies in the ledger introduced by malicious processes that tried to insert
more than one value in the system and an accusation might be issued (118). Otherwise
the ledger is consistent and an ACK can then be produced if the proposal comprises the
previously received ones (126), otherwise a NACK shall be sent informing the proposer of
values that it didn’t include in its proposal via a complement to its ledger (130).

Received ACKs are discarded if they correspond to old proposals, or if they come from a
process whose ACK has already been accounted in the current proposal, or if they don’t match
the proposed value they were sent for. Note that the latter is in itself a sign of byzantine
behavior but doesn’t constitute an irrefutable proof of misbehavior as the conflicting messages,
i.e. the proposal and the ACK, are signed by different processes. When the ACK is valid
it is included in the ackL (97) and the respective counter is incremented (98). Similarly,
outdated NACKs are ignored when received, as well as empty ledgers, ledgers who don’t
include new values (101). Once the ledger is validated, the proposed value is set to include
the information patch (87) and the counter of NACKs is incremented (103).

After a client has received responses from at least a majority of replicas (99 and 104)
for its proposal it proceeds to evaluate if it can decide on a value or not, in case it has not
accused any malicious processes along the way. If a NACK has been received, it tries to learn
its new proposal (92) which includes the missing values in the previous attempt, otherwise it
decides upon its proposal and broadcasts it alongside the ledger of ACKs it has collected (96).
At this point clients who are proposing incomparable values to the one decided check the
ACKs they received so far as byzantine processes can lead the system to decide incomparable
values by issuing contradictory ACKs for different processes, which can be detected at this
point and lead to their accusation (110).
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Algorithm 5 Accountable One-Shot Lattice Agreement: Code for client c part 1.

Local variables:
status, initially passive { Boolean for the current state: passive or active }
ackCnt, initially 0 { The number of acks received for the active proposal }
nackCnt, initially 0 { The number of nacks received for the active proposal }
activePropNb, initially ´1 { The number of nacks received for the active proposal }
propV, initially K { The value being proposed }
inL, initially empty { KV table (ledger) init. w/ proposed values signed by their originators }
ackL, initially empty { Key value table holding received signed acks by replicas }
Input:
initV { Value initially proposed by the process, provided by external source }
Outputs:
outV, initially K { Value learnt by the client }
accusation, initially H { Proofs of misbehavior gathered }

upon startup if initV ‰ K

83 propV :“ initV
84 include signed initV to inL
85 Propose

operation Propose
86 status :“ active
87 propV :“ extractLedgerpinL, cq
88 activePropNb :“ activePropNb ` 1
89 clear ackL
90 ackCnt :“ nackCnt :“ 0
91 multicast xPROPOSAL, pinL, activeP ropNbqy to Servers

operation EvaluateDecision
92 if nackCnt ą 0 then Propose
93 else
94 outV :“ propV
95 status :“ passive
96 multicast xDECISION , poutV , ackLqy to Servers

upon receive xACK, ppropV, activePropNbqy
from given replica r AND r R ackL status “ active

97 append q’s ack to ackL
98 ackCnt :“ ackCnt ` 1
99 if ackCnt ` nackCnt ě r N`1

2 s then EvaluateDecision

upon receive xNACK, p∆Ledger , activePropNbqy from process q

AND status “ active AND ∆Ledger ‰ H

100 ∆Value “ extractLedgerp∆Ledger , qq

101 if ∆Value Ď propV return
102 inL :“ inL Y pinL1

q

103 nackCnt :“ nackCnt ` 1
104 if ackCnt ` nackCnt ě r N`1

2 s then EvaluateDecision
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Algorithm 6 Accountable One-Shot Lattice Agreement: Code for client c part 2.

upon receive xDECISION, poutV 1, ackL1
qy from process q

105 if Dpp, vq P ackL1
|v ‰ outV 1

106 accusation :“ accusation Y tpq, DECISION qu

107 status “ passive
108 return
109 if outV 1

Ę propV && propV Ę outV 1 then
110 let M “ tm|m P ackL && ackL1

u do
111 foreach m P M do include pb, tackLrbs, ackL1

rbsuq to accusation
112 if |M | ą 0 then status :“ passive

operation extractLedger pinL1, senderq
113 if D process p P inL1 with invalid signature then
114 accusation :“ accusation Y tpsender , getPropNACKMSGpinL1

qu

115 status :“ passive
116 return H

117 inL2 :“ inL Y pinL1
q

118 let M “ tm|m P inL2 && |inL2
rms| ą 1u do

119 foreach m P M do include pm, getPropNACKMSGpinL2
rmsqq to accusation

120 status :“ passive
121 return H

122 let receivedValue “ \rv|Dp, inL1
rps “ vs

123 return receivedValue

Algorithm 7 Accountable One-Shot Lattice Agreement: Code for replica r.

Local variables:
inL, initially empty

{ Key value table holding initially proposed values signed by their originators }
repV initially K { Value held by the replica }
accusation, initially H { Proofs of misbehavior gathered by the replica }

upon receive xPROPOSAL, pinL1, activePropNb1
qy from process q

124 propV 1 :“ extractLedgerpinL1
q

125 if repV Ď propV 1 then
126 send xACK, ppropV 1, activePropNb1

qy to q

127 repV :“ propV 1

128 else
129 repV :“ repV \ propV 1

130 send xNACK, pinL ´ inL1, activePropNb1
qy to q

operation extractLedger pinL1, senderq
{ Identitical to client operation with the same name without lines 115 and 120 }
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A.3 Correctness
We claim that the algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7 solves
the General Accountable One-Shot Lattice Agreement.

▶ Lemma 15. At every benign process, the variable propV is monotonically increasing.

Proof. The variable is updated only in line 87. As one can see, it is a join operation where
one of the operands is the previous value, hence the new value by definition contains the old
value. ◀

▶ Lemma 16. If a benign process p learns a value v, then v cannot contain two or more
values signed by the same process.

Proof. A process adds values to its proposal propV, when it receives a nack response. The
insertion is then subject to verification following line 118. Process p will only proceed to a
deciding a value if the list comprehension yields an empty list, in which case there is at most
one value introduced on its proposal per process in the system. ◀

▶ Lemma 17. At every benign process, the variable repV is monotonically increasing.

Proof. The variable is updated in lines 127 and 129. The first update assigns to this variable
a new value which has passed the test in line 125, so the new value contains the old one.
Similarly to propV, the second update is a join where one of the operands is the old value, so
the new value must contain the old one. ◀

▶ Theorem 18. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides consistency.

Proof. Suppose, by contradiction, that two benign processes p and q learned two incomparable
values v1 and v2. The majority that acknowledged v1 at p must intersect with the majority
that acknowledged v2 at q. Let r be any process in the intersection. If r is not Byzantine
then by Lemma 17, v1 and v2 must be comparable and consistency will hold.

Otherwise, r must have acked incomparable values, which shall be detected in line 110
meaning that the processes that output incomparable values will accuse r. ◀

▶ Theorem 19. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides validity.

Proof. The inclusion of the process own proposal follows from Lemma 15 with the initialisa-
tion of propV to initV, remarking that outV is but one of the values taken by propV.

As for the cap on the number of values coming from byzantine processes, suppose that
there are at least |M |` c, where c P N˚, values coming from byzantine processes. It means
that at least one byzantine process b signed two or more initial values that are output by a
benign process. Because of Lemma 16, this is impossible. ◀

▶ Theorem 20. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides accuracy.

Proof. An accusation can be issued in lines 114, 119, 111.
On the first case it will have a proposal signed by a process which doesn’t hold valid

signed origins for its values. One of the values can come from the process itself, in which
case a benign process would have signed it and put in its ledger on the initialisation. The
other values must come through NACKs that also provide signed origins obtained in line 117
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which benign processes include in its ledger. Having a proposal signed by a process which
provided fake signatures to the origin of its values consist as an irrefutable proof and M 1 will
be a non-empty subset of M .

The second scenario tracks processes that have inserted more than one value in the system.
A benign process would only do it once during initialisation and having two inclusions signed
by the same process consists as irrefutable proof and M 1 will be a non-empty subset of M .

Finally, the decision of incomparable values requires, as seen earlier in Theorem 18 that
a process acknowledged incomparable values, violating the behavior of benign processes
described by Lemma 17. Having two ACKs signed by the same process for incomparable
values characterises as irrefutable proof and M 1 will be a non-empty subset of M . ◀

▶ Theorem 21. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides authentiticy.

Proof. This property is exactly the same as Theorem 12. ◀

▶ Theorem 22. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides liveness.

Proof. Following Theorem 19 combined with Lemma 15, each run can have at most |U |
different values being proposed. Since by the end of this many proposals a client shall propose
the join of all these values, it will get ACKs from a majority of processes proceeding to learn
a value or gather enough information for accusing at least one byzantine process, as at this
byzantine clients must have introduced more than one value in the system for the proposal
not to go through and Theorem 20 holds. ◀
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1 Introduction

Distributed replication systems based on the replicated state machine model [24] have become
ubiquitous as the foundation of modern, fault-tolerant data storage systems. In order for
these systems to ensure availability in the presence of faults, they must be able to dynamically
replace failed nodes with healthy ones, a process known as dynamic reconfiguration. The
protocols for building distributed replication systems have been well studied and implemented
in a variety of systems [4, 7, 9, 30]. Paxos [12] and, more recently, Raft [22], have served
as the logical basis for building provably correct distributed replication systems. Dynamic
reconfiguration, however, is an additionally challenging and subtle problem [1] that has
not been explored as extensively as the foundational consensus protocols underlying these
systems. Variants of Paxos have examined the problem of dynamic reconfiguration but
these reconfiguration techniques may require changes to a running system that impact
availability [14] or require the use of an external configuration master [15]. The Raft consensus
protocol, originally published in 2014, provided a dynamic reconfiguration algorithm in its
initial publication, but did not include a precise discussion of its correctness or include
a formal specification or proof. A critical safety bug [20] in one of its reconfiguration
protocols was found after initial publication, demonstrating that the design and verification
of reconfiguration protocols for these systems is a challenging task.

MongoDB [17] is a general purpose, document oriented database which implements
a distributed replication system [27] for providing high availability and fault tolerance.
MongoDB’s replication system uses a novel consensus protocol that derives from Raft [34].
Since its inception, the MongoDB replication system has provided a custom, legacy protocol
for dynamic reconfiguration of replica members that was not based on a published algorithm.
This legacy protocol managed configurations in a logless fashion i.e. each server only stored
its latest configuration. In addition, it decoupled reconfiguration processing from the main
database operation log. These features made for a simple and appealing protocol design,
and it was sufficient to provide basic reconfiguration functionality to clients. The legacy
protocol, however, was known to be unsafe in certain cases. In recent versions of MongoDB,
reconfiguration has become a more common operation, necessitating the need for a redesigned,
safe reconfiguration protocol with rigorous safety guarantees. From a system engineering
perspective, a primary goal was to keep design and implementation complexity low. Thus, it
was desirable that the new reconfiguration protocol minimize changes to the legacy protocol
to the extent possible. In this paper, we present MongoRaftReconfig, a novel dynamic
reconfiguration protocol that achieves the above design goals.

MongoRaftReconfig provides safe, dynamic reconfiguration, utilizes a logless approach
to managing configuration state, and decouples reconfiguration processing from the main
database operation log. Thus, it bears a high degree of architectural and conceptual
similarity to the legacy MongoDB protocol, satisfying our original design goal of minimizing
changes to the legacy protocol. We provide rigorous safety guarantees of MongoRaftReconfig,
including a proof of the protocol’s main safety properties along with a formal specification
in TLA+ [16], a specification language for describing distributed and concurrent systems.
To our knowledge, this is the first published safety proof and formal specification of a
reconfiguration protocol for a Raft-based system. We also verified the safety properties of
finite instances of MongoRaftReconfig using the TLC model checker [33], which provides
additional confidence in its correctness. Finally, we discuss the conceptual novelties of
MongoRaftReconfig, related to its logless design and decoupling of reconfiguration processing.
In particular, we discuss how it can be understood as an optimized and generalized variant of
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the single server Raft reconfiguration protocol. We also include a preliminary experimental
evaluation of how these optimizations can provide performance benefits over standard Raft,
by allowing reconfigurations to bypass the main operation log.

To summarize, in this paper we make the following contributions:
We present MongoRaftReconfig, a novel, logless dynamic reconfiguration protocol for the
MongoDB replication system.
We present a proof of MongoRaftReconfig’s key safety properties. To our knowledge, this
is the first published safety proof of a reconfiguration protocol for a Raft-based system.
We present a formal specification of MongoRaftReconfig in TLA+. To our knowledge, this
is the first published formal specification of a reconfiguration protocol for a Raft-based
system.
We present results of model checking the safety properties of MongoRaftReconfig on finite
protocol instances using the TLC model checker.
We discuss the conceptual novelties of MongoRaftReconfig, and how it can be understood
as an optimized and generalized variant of the single server Raft reconfiguration protocol.
We provide a preliminary experimental evaluation of MongoRaftReconfig’s performance
benefits, demonstrating how it improves upon reconfiguration in standard Raft.

2 Background

2.1 System Model
Throughout this paper, we consider a set of server processes Server = {s1, s2, ..., sn} that
communicate by sending messages. We assume an asynchronous network model in which
messages can be arbitrarily dropped or delayed. We assume servers can fail by stopping but
do not act maliciously i.e. we assume a “fail-stop” model with no Byzantine failures. We
define both a member set and a quorum as elements of 2Server . Member sets and quorums
have the same type but refer to different conceptual entities. For any member set m, and
any two non-empty member sets mi , mj , we define the following:

Quorums(m) ≜ {s ∈ 2m : |s| · 2 > |m|} (1)
QuorumsOverlap(mi , mj ) ≜ ∀qi ∈ Quorums(mi), qj ∈ Quorums(mj ) : qi ∩ qj ̸= ∅ (2)

where |S | denotes the cardinality of a set S . We refer to Definition 2 as the quorum overlap
condition.

2.2 Raft
Raft [19] is a consensus protocol for implementing a replicated log in a system of distributed
servers. It has been implemented in a variety of systems across the industry [21]. Throughout
this paper, we refer to the original Raft protocol as described and specified in [19] as standard
Raft.

The core Raft protocol implements a replicated state machine using a static set of servers.
In the protocol, time is divided into terms of arbitrary length, where terms are numbered
with consecutive integers. Each term has at most one leader, which is selected via an election
that occurs at the beginning of a term. To dynamically change the set of servers operating
the protocol, Raft includes two, alternate algorithms: single server membership change
and joint consensus. In this paper we are only concerned with single server membership
change. The single server change approach aims to simplify reconfiguration by allowing only
reconfigurations that add or remove a single server. Reconfiguration is accomplished by
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writing a special reconfiguration entry into the main Raft operation log that alters the local
configuration of a server. In this paper, when referring to reconfiguration in standard Raft,
we assume it to mean the single server change protocol.

2.3 Replication in MongoDB

MongoDB is a general purpose, document oriented database that stores data in JSON-like
objects. A MongoDB database consists of a set of collections, where a collection is a set
of unique documents. To provide high availability, MongoDB provides the ability to run a
database as a replica set, which is a set of MongoDB servers that act as a consensus group,
where each server maintains a logical copy of the database state.

MongoDB replica sets utilize a replication protocol that is derived from Raft, with
some extensions. We refer to MongoDB’s abstract replication protocol, without dynamic
reconfiguration, as MongoStaticRaft. This protocol can be viewed as a modified version of
standard Raft that satisfies the same underlying correctness properties. A more in depth
description of MongoStaticRaft is given in [34, 27], but we provide a high level overview here,
since the MongoRaftReconfig reconfiguration protocol is built on top of MongoStaticRaft.
In a replica set running MongoStaticRaft there exists a single primary server and a set of
secondary servers. As in standard Raft, there is a single primary elected per term. The
primary server accepts client writes and inserts them into an ordered operation log known as
the oplog. The oplog is a logical log where each entry contains information about how to apply
a single database operation. Each entry is assigned a monotonically increasing timestamp,
and these timestamps are unique and totally ordered within a server log. These log entries
are then replicated to secondaries which apply them in order leading to a consistent database
state on all servers. When the primary learns that enough servers have replicated a log entry
in its term, the primary will mark it as committed, guaranteeing that the entry is permanently
durable in the replica set. Clients of the replica set can issue writes with a specified write
concern level, which indicates the durability guarantee that must be satisfied before the write
can be acknowledged to the client. Providing a write concern level of majority ensures that
a write will not be acknowledged until it has been marked as committed in the replica set. A
key, high level safety requirement of the replication protocol is that if a write is acknowledged
as committed to a client, it should be durable in the replica set.

3 MongoRaftReconfig: A Logless Dynamic Reconfiguration Protocol

In this section we present the MongoRaftReconfig dynamic reconfiguration protocol. First,
we provide an overview and some intuition on the protocol design in Section 3.1. Section 3.2
provides a high level, informal description of the protocol along with a condensed pseu-
docode description in Algorithm 1. Sections 3.3 and 3.4 provide additional detail on the
mechanisms required for the protocol to operate safely, and the TLA+ formal specification
of MongoRaftReconfig is discussed briefly in Section 3.5.

The complete description of MongoRaftReconfig is left to the full version of the paper [28].
The pseudocode presented in Algorithm 1 describes the reconfiguration specific behaviors of
MongoRaftReconfig, which are the novel aspects of the protocol and the contributions of this
paper.
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3.1 Overview and Intuition
Dynamic reconfiguration allows the set of servers operating as part of a replica set to be
modified while maintaining the core safety guarantees of the replication protocol. Many
consensus based replication protocols [29, 14, 22] utilize the main operation log (the oplog,
in MongoDB) to manage configuration changes by writing special reconfiguration log entries.
The MongoRaftReconfig protocol instead decouples configuration updates from the main
operation log by managing the configuration state of a replica set in a separate, logless
replicated state machine, which we refer to as the config state machine. The config state
machine is maintained alongside the oplog, and manages the configuration state used by the
overall protocol.

In order to ensure safe reconfiguration, MongoRaftReconfig imposes specific restrictions
on how reconfiguration operations are allowed to update the configuration state of the replica
set. First, it imposes a quorum overlap condition on any reconfiguration from C to C ′, which
is an approach adopted from the Raft single server reconfiguration algorithm. This ensures
that all quorums of two adjacent configurations overlap with each other, and so can safely
operate concurrently. In order to allow the system to pass through many configurations over
time, though, MongoRaftReconfig imposes additional restrictions which address two essential
aspects required for safe dynamic reconfiguration: (1) deactivation of old configurations and
(2) state transfer from old configurations to new configurations. Essentially, it must ensure
that old configurations, which may not overlap with newer configurations, are appropriately
prevented from executing disruptive operations (e.g. electing a primary or committing
a write), and it must also ensure that relevant protocol state from old configurations is
properly transferred to newer configurations before they become active. The details of these
restrictions and their safety implications are discussed further in Section 3.3.

In the remainder of this section we give an overview of the behaviors of MongoRaftReconfig,
along with a pseudocode description of the protocol. We discuss its correctness in more
depth in Section 4.

3.2 High Level Protocol Behavior
At a high level, dynamic reconfiguration in MongoRaftReconfig consists of two main aspects:
(1) updating the current configuration and (2) propagating new configurations between
servers. Configurations also have an impact on election behavior which we discuss below, in
Section 3.4. Formally, a configuration is defined as a tuple (m, v , t), where m ∈ 2Server is a
member set, v ∈ N is a numeric configuration version, and t ∈ N is the numeric term of the
configuration. For convenience, we refer to the elements of a configuration tuple C = (m, v , t)
as, respectively, C .m, C .v and C .t . Each server of a replica set maintains a single, durable
configuration, and it is assumed that, initially, all nodes begin with a common configuration,
(minit , 1, 0), where minit ∈ (2Server \ ∅).

To update the current configuration of a replica set, a client issues a reconfiguration
command to a primary server with a new, desired configuration, C ′. Reconfigurations can only
be executed on primary servers, and they update the primary’s current local configuration C
to the specified configuration C ′. The version of the new configuration, C ′.v , must be greater
than the version of the primary’s current configuration, C .v , and the term of C ′ is set equal
to the current term of the primary processing the reconfiguration. After a reconfiguration
has occurred on a primary, the updated configuration needs to be communicated to other
servers in the replica set. This is achieved in a simple, gossip like manner. Secondaries receive
information about the configurations of other servers via periodic heartbeats. They need to
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Algorithm 1 Pseudocode description of MongoRaftReconfig reconfiguration specific behavior.

Definitions
C(i) ≜ (config[i ], configVersion[i ], configTerm[i ])
Ci > Cj ≜ (Ci .t > Cj .t) ∨ (Ci .t = Cj .t ∧ Ci .v > Cj .v)
Ci ≥ Cj ≜ (Ci > Cj ) ∨ ((Ci .v , Ci .t) = (Cj .v , Cj .t))
Q1(i) ≜ ∃Q ∈ Quorums(config[i ]) : ∀j ∈ Q : (C(j).v , C(j).t) = (C(i).v , C(i).t) ▷ Config Quorum Check
Q2(i) ≜ ∃Q ∈ Quorums(config[i ]) : ∀j ∈ Q : term[j ] = term[i ] ▷ Term Quorum Check
P1(i) ≜ ∃Q ∈ Quorums(config[i ]) : all entries committed in terms ≤ term[i ] are committed in Q

1: State and Initialization
2: Let minit ∈ 2Server \ ∅
3: ∀i ∈ Server :
4: term[i ] ∈ N, initially 0
5: state[i ] ∈ {Pri ., Sec.}, initially Secondary
6: config[i ] ∈ 2Server , initially minit
7: configVersion[i ] ∈ N, initially 1
8: configTerm[i ] ∈ N, initially 0
9:

10: Actions
11: action: Reconfig(i , mnew )
12: require state[i ] = Primary
13: require Q1(i) ∧Q2(i) ∧ P1(i)
14: require QuorumsOverlap(config[i ], mnew )
15: config[i ]← mnew
16: configVersion[i ]← configVersion[i ] + 1
17:
18: action: SendConfig(i , j )

19: require state[j ] = Secondary
20: require C(i) > C(j)
21: C(j) ← C(i)

22:
23: action: BecomeLeader(i , Q)
24: require Q ∈ Quorums(config[i ])
25: require i ∈ Q
26: require ∀v ∈ Q : C(i) ≥ C(v)
27: require ∀v ∈ Q : term[i ] + 1 > term[v ]
28: state[i ]← Primary
29: state[j ]← Secondary , ∀j ∈ (Q \ {i})
30: term[j ]← term[i ] + 1, ∀j ∈ Q
31: configTerm[i ]← term[i ] + 1
32:
33: action: UpdateTerms(i , j )
34: require term[i ] > term[j ]
35: state[j ]← Secondary
36: term[j ]← term[i ]

have some mechanism, however, for determining whether one configuration is newer than
another. This is achieved by totally ordering configurations by their (version, term) pair,
where term is compared first, followed by version. If configuration Cj compares as greater
than configuration Ci based on this ordering, we say that Cj is newer than Ci . A secondary
can update its configuration to any that is newer than its current configuration. If it learns
that another server has a newer configuration, it will fetch that server’s configuration, verify
that it is still newer than its own upon receipt, and install it locally.

The above provides a basic outline of how reconfigurations occur and how configurations
are propagated between servers in MongoRaftReconfig. The pseudocode given in Algorithm 1
gives a more abstract and precise description of these behaviors. Note that, in order for the
protocol to operate safely, there are several additional restrictions that are imposed on both
reconfigurations and elections, which we discuss in more detail below, in Sections 3.3 and 3.4.

3.3 Safety Restrictions on Reconfigurations
In MongoStaticRaft, which does not allow reconfiguration, the safety of the protocol de-
pends on the fact that the quorum overlap condition is satisfied for the member sets of
any two configurations. This holds since there is a single, uniform configuration that is
never modified. For any pair of arbitrary configurations, however, their member sets may
not satisfy this property. So, in order for MongoRaftReconfig to operate safely, extra re-
strictions are needed on how nodes are allowed to move between configurations. First, any
reconfiguration that moves from C to C ′ is required to satisfy the quorum overlap condition
i.e. QuorumsOverlap(C .m, C ′.m). This restriction is discussed in Raft’s approach to recon-
figuration [19], and is adopted by MongoRaftReconfig. Even if quorum overlap is ensured
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between any two adjacent configurations, it may not be ensured between all configurations
that the system passes through over time. So, there are additional preconditions that must
be satisfied before a primary server in term T can execute a reconfiguration out of its current
configuration C :

Q1. Config Quorum Check: There must be a quorum of servers in C .m that are currently
in configuration C .

Q2. Term Quorum Check: There must be a quorum of servers in C .m that are currently in
term T .

P1. Oplog Commitment: All oplog entries committed in terms ≤ T must be committed on
some quorum of servers in C .m.

The above preconditions are stated in Algorithm 1 as Q1(i), Q2(i), and P1(i), and they
collectively enforce two fundamental requirements needed for safe reconfiguration: deactivation
of old configurations and state transfer from old configurations to new configurations. Q1,
when coupled with the election restrictions discussed in Section 3.4, achieves deactivation by
ensuring that configurations earlier than C can no longer elect a primary. Q2 ensures that
term information from older configurations is correctly propagated to newer configurations,
while P1 ensures that previously committed oplog entries are properly transferred to the
current configuration, ensuring that any primary in a current or later configuration will
contain these entries.

3.4 Configurations and Elections

When a node runs for election in MongoStaticRaft, it must ensure its log is appropriately up
to date and that it can garner a quorum of votes in its term. In MongoRaftReconfig, there is
an additional restriction on voting behavior that depends on configuration ordering. If a
replica set server is a candidate for election in configuration Ci , then a prospective voter in
configuration Cj may only cast a vote for the candidate if Ci is newer than or equal to Cj .
Furthermore, when a node wins an election, it must update its current configuration with its
new term before it is allowed to execute subsequent reconfigurations. That is, if a node with
current configuration (m, v , t) wins election in term t ′, it will update its configuration to
(m, v , t ′) before allowing any reconfigurations to be processed. This behavior is necessary
to appropriately deactivate concurrent reconfigurations that may occur on primaries in a
different term. This configuration re-writing behavior is analogous to the write in Raft’s
corrected membership change protocol proposed in [20].

3.5 Formal Specification

The complete, formal description of MongoRaftReconfig is given in the TLA+ specification
in the supplementary materials [26]. Note that TLA+ does not impose an underlying system
or communication model (e.g. message passing, shared memory), which allows one to write
specifications at a wide range of abstraction levels. Our specifications are written at a
deliberately high level of abstraction, ignoring some lower level details of the protocol and
system model. In practice, we have found the abstraction level of our specifications most
useful for understanding and communicating the essential behaviors and safety characteristics
of the protocol, while also serving to make automated verification via model checking more
feasible, which is discussed further in Section 4.4.
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4 Correctness

In this section we present a brief outline of our safety proof for MongoRaftReconfig. We do
not address liveness properties in this work. The full proof is left to [28].

The key, high level safety property of MongoRaftReconfig that we establish in this paper
is LeaderCompleteness, which is a fundamental safety property of both standard Raft and
MongoStaticRaft, and is stated below as Theorem 2. This property states that if a log
entry has been committed in term T , then it must be present in the logs of all primary
servers in terms > T . Essentially, it ensures that writes committed by some primary will be
permanently durable in the replica set. Below we give a high level, intuitive outline of the
proof.

4.1 Overview
Conceptually, MongoRaftReconfig can be viewed as an extension of the MongoStaticRaft
replication protocol that allows for dynamic reconfiguration. MongoRaftReconfig, however,
violates the property that all quorums of any two configurations overlap, which MongoStati-
cRaft relies on for safety. It is therefore necessary to examine how MongoRaftReconfig operates
safely even though it cannot rely on the quorum overlap property. In MongoStaticRaft, there
are two key aspects of protocol behavior that depend on quorum overlap: (1) elections of
primary servers and (2) commitment of log entries. Elections must ensure that there is at
most one unique primary per term, referred to as the ElectionSafety property. Additionally,
if a log entry is committed in a given term, it must be present in the logs of all primary
servers in higher terms, referred to as the LeaderCompleteness property. Both of these safety
properties must be upheld in MongoRaftReconfig.

LeaderCompleteness is the essential, high level safety property that we must establish
for MongoRaftReconfig. ElectionSafety is a key, auxiliary lemma that is required in order to
show LeaderCompleteness. So, this guides the general structure of our proof. Section 4.2
presents an intuitive outline of the ElectionSafety proof, followed by a similar discussion of
LeaderCompleteness in Section 4.3. The full proofs are left to [28].

4.2 Election Safety
In MongoStaticRaft, if an election has occurred in term T it ensures that some quorum of
servers have terms ≥ T . This prevents any future candidate from being elected in term T ,
since the quorum required for any future election will contain at least one of these servers,
preventing a successful election in term T . This property, referred to as ElectionSafety, is
stated below as Lemma 1.

▶ Lemma 1 (Election Safety). For all s, t ∈ Server such that s ̸= t , it is not the case that
both s and t are primary and have the same term.

∀s , t ∈ Server :
(state[s] = Primary ∧ state[t ] = Primary ∧ term[s] = term[t ]) ⇒ (s = t)

In MongoRaftReconfig, ensuring that a quorum of nodes have terms ≥ T after an election in
term T is not sufficient to ensure that ElectionSafety holds, since there is no guarantee that
all quorums of future configurations will overlap with those of past configurations. To address
this, MongoRaftReconfig must appropriately deactivate past configurations before creating
new configurations. Conceptually, configurations in the protocol can be considered as either or
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active or deactivated, the former being any configuration that is not deactivated. Deactivated
configurations cannot elect a new leader or execute a reconfiguration. MongoRaftReconfig
ensures proper deactivation of configurations by upholding an invariant that the quorums of
all active configurations overlap with each other. In addition to deactivation of configurations,
MongoRaftReconfig must also ensure that term information from one configuration is properly
transferred to subsequent configurations, so that later configurations know about elections
that occurred in earlier configurations. For example, if an election occurred in term T in
configuration C , even if C is deactivated by the time C ′ is created, the protocol must also
ensure that C ′ is “aware” of the fact that an election in T occurred in C . MongoRaftReconfig
ensures this by upholding an additional invariant stating that the quorums of all active
configurations overlap with some server in term ≥ T , for any past election that occurred in
term T .

Collectively, the two above invariants are the essential properties for understanding how
the ElectionSafety property is upheld in MongoRaftReconfig. The formal statement of these
invariants and the complete proof is left to [28]. In the following section, we briefly discuss
the LeaderCompleteness property and its proof, which relies on the ElectionSafety property.

4.3 Leader Completeness
LeaderCompleteness is the key high level safety property of MongoRaftReconfig. It ensures
that if a log entry is committed in term T , then it is present in the logs of all leaders in
terms > T . Essentially, it ensures that committed log entries are durable in a replica set.
It is stated below as Theorem 2, where committed ∈ N × N refers to the set of committed
log entries as (index , term) pairs, and InLog(i , t , s) is a predicate determining whether a log
entry (i , t) is contained in the log of server s.

▶ Theorem 2 (Leader Completeness). If a log entry is committed in term T , then it is present
in the log of any leader in term T ′ > T .

∀s ∈ Server : ∀(cindex , cterm) ∈ committed :
(state[s] = Primary ∧ cterm < term[s]) ⇒ InLog(cindex , cterm, s) (3)

In MongoStaticRaft, LeaderCompleteness is ensured due to the overlap between quorums
used for commitment of a write and quorums used for the election of a primary. In
MongoRaftReconfig, this does not hold, so the protocol instead upholds a more general
invariant, stating that, for all committed entries E , the quorums of all active configurations
overlap with some server that contains E in its log. MongoRaftReconfig also ensures that
newer configurations appropriately disable commitment of log entries in older terms. We defer
the statement of these invariants and the complete proof of Theorem 2 and its supporting
lemmas to [28].

4.4 Model Checking
In addition to the safety proof outlined above, we used TLC [33], an explicit state model
checker for TLA+ specifications, to gain additional confidence in the safety of the protocol.
We consider it important to augment the human reasoning process for protocols like this
with some type of machine based verification, even if the verification is incomplete, since it
is easy for humans to make subtle errors in reasoning when considering distributed protocols
of this nature.
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We verified fixed, finite instances of MongoRaftReconfig to provide a sound guarantee of
protocol correctness for given parameters. MongoRaftReconfig is an infinite state protocol,
so verification via explicit state model checking is, necessarily, incomplete. That is, it does
not establish correctness of the protocol for an unbounded number of servers or system
parameters. It does, however, provide a strong initial level of confidence that the protocol is
safe. A goal for future work is to develop a complete, machine checked safety proof using the
TLA+ proof system [5].

4.4.1 Methodology and Results
Formally, MongoRaftReconfig behaves as an extension of MongoStaticRaft that allows for
dynamic reconfiguration. Thus, it can be viewed as a composition of two distinct subprotocols:
one for managing the oplog, and one for managing configuration state. The oplog is maintained
by MongoStaticRaft, and configurations are maintained by a protocol we refer to below
as MongoLoglessDynamicRaft, which implements the logless replicated state machine that
manages the configuration state of the replica set. Algorithm 1 summarizes the behaviors of
MongoLoglessDynamicRaft. This compositional approach to describing MongoRaftReconfig is
formalized in our TLA+ specification which can be found in the supplementary materials [26].
Our verification efforts centered on checking the two key safety properties discussed in the
above sections, ElectionSafety and LeaderCompleteness. We summarize the results below,
leaving the full details to [28].

Checking Leader Completeness. We were able to successfully verify the LeaderCompleteness
property on a finite instance of MongoRaftReconfig with 4 servers, logs of maximum length 2,
maximum configuration versions of 3, and maximum server terms of 3. That is, we manually
imposed a constraint preventing the model checker from exploring any states exceeding these
finite bounds. Model checking this instance generated approximately 345 million distinct
protocol states and took approximately 8 hours to complete with 20 TLC worker threads on
a 48-core, 2.30GHz Intel Xeon Gold 5118 CPU.

Checking Election Safety. As evidenced by the above metrics, it was difficult to scale
verification of the LeaderCompleteness property to much larger system parameters. So, to
provide additional confidence, we checked the ElectionSafety property on the MongoLogless-
DynamicRaft protocol in isolation, which allowed us to verify instances with significantly
larger parameters. Due to the compositional structure of MongoRaftReconfig, verifying that
the ElectionSafety property holds on MongoLoglessDynamicRaft is sufficient to ensure that
it holds in MongoRaftReconfig. Intuitively, the additional preconditions imposed by Mongo-
RaftReconfig only restrict the behaviors of MongoLoglessDynamicRaft, but do not augment
them. We formalize and prove this fact via a refinement based argument, whose details are
left to [28]. This allows us to assume our verification efforts for MongoLoglessDynamicRaft
hold in MongoRaftReconfig, providing stronger confidence in the correctness of the overall
protocol.

We successfully verified the ElectionSafety property on a finite instance of MongoLog-
lessDynamicRaft with 5 servers, maximum configuration versions of 4, and maximum terms
of 4. Model checking this instance generated approximately 812 million distinct states and
took around 19.5 hours to complete with 20 TLC worker threads on a 48-core, 2.30GHz Intel
Xeon Gold 5118 CPU. The ability to check these considerably larger parameter values in only
several extra hours of wall clock time demonstrates the effectiveness of this compositional
model checking approach, helping us mitigate state space explosion [6].
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5 Conceptual Insights

MongoRaftReconfig can be viewed as a generalization and optimization of the standard
Raft reconfiguration protocol. To explain the conceptual novelties of our protocol and
how it relates to standard Raft, we discuss below the two primary aspects of the protocol
which set it apart from Raft: (1) decoupling of the oplog and config state machine and (2)
logless optimization of the config state machine. These are covered in Sections 5.1 and 5.2,
respectively. Section 6 provides an experimental evaluation of how these novel aspects can
provide performance benefits for reconfiguration, by allowing reconfigurations to bypass the
main operation log in cases where it has become slow or stalled.

5.1 Decoupling Reconfigurations
In standard Raft, the main operation log is used for both normal operations and reconfigu-
ration operations. This coupling between logs has the benefit of providing a single, unified
data structure to manage system state, but it also imposes fundamental restrictions on
the operation of the two logs. Most importantly, in order for a write to commit in one
log, it must commit all previous writes in the other. For example, if a reconfiguration
log entry Cj has been written at log index j on primary s, and there is a sequence of
uncommitted log entries U = ⟨i , i + 1, ..., j − 1⟩ in the log of s , in order for a reconfiguration
from Cj to Ck to occur, all entries of U must become committed. This behavior, however,
is stronger than necessary for safety i.e. it is not strictly necessary to commit these log
entries before executing a reconfiguration. The only fundamental requirements are that
previously committed log entries are committed by the rules of the current configuration,
and that the current configuration has satisfied the necessary safety preconditions. Raft
achieves this goal implicitly, but more conservatively than necessary, by committing the
entry Cj and all entries behind it. This ensures that all previously committed log entries, in
addition to the uncommitted operations U , are now committed in Cj , but it is not strictly
necessary to pipeline a reconfiguration behind commitment of U . MongoRaftReconfig avoids
this by separating the oplog and config state machine and their rules for commitment and
reconfiguration, allowing reconfigurations to bypass the oplog if necessary. Section 6 examines
this aspect of the protocol experimentally.

5.2 Logless Optimization
Decoupling the config state machine from the main operation log allows for an optimization
that is enabled by the fact that reconfigurations are “update-only” operations on the replicated
state machine. This means that it is sufficient to store only the latest version of the replicated
state, since the latest version can be viewed as a “rolled-up” version of the entire (infinite) log.
This logless optimization allows the configuration state machine to avoid complexities related
to garbage collection of old log entries and it simplifies the mechanism for state propagation
between servers. Normally, log entries are replicated incrementally, either one at a time, or
in batches from one server to another. Additionally, servers may need to have an explicit
procedure for deleting (i.e. rolling back) log entries that will never become committed. In
the logless replicated state machine, all of these mechanisms can be combined into a single
conceptual action, that atomically transfers the entire log of server s to another server t , if
the log of s is newer, based on the index and term of its last entry. In MongoRaftReconfig,
this is implemented by the SendConfig action, which transfers configuration state from one
server to another.
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6 Experimental Evaluation

In a healthy replica set, it is possible that a failure event causes some subset of replica set
servers to degrade in performance, causing the main oplog replication channel to become
lagged or stall entirely. If this occurs on a majority of nodes, then the replica set will be
prevented from committing new writes until the performance degradation is resolved. For
example, consider a 3 node replica set consisting of nodes {n0, n1, n2}, where nodes n1 and
n2 suddenly become slow or stall replication. An operator or failure detection module may
want to reconfigure these nodes out of the set and add in two new, healthy nodes, n3 and
n4, so that the system can return to a healthy operational state. This requires a series of
two reconfigurations, one to add n3 and one to add n4. In standard Raft, this would require
the ability to commit at least one reconfiguration oplog entry with one of the degraded
nodes (n1 or n2). This prevents such a reconfiguration until the degradation is resolved.
In MongoRaftReconfig, reconfigurations bypass the oplog replication channel, committing
without the need to commit writes in the oplog. This allows MongoRaftReconfig to successfully
reconfigure the system in such a degraded state, restoring oplog write availability by removing
the failed nodes and adding in new, healthy nodes.

Note that if a replica set server experiences a period of degradation (e.g. a slow disk),
both the oplog and reconfiguration channels will be affected, which would seem to nullify
the benefits of decoupling the reconfiguration and oplog replication channels. In practice,
however, the operations handled by the oplog are likely orders of magnitude more resource
intensive than reconfigurations, which typically involve writing a negligible amount of data.
So, even on a degraded server, reconfigurations should be able to complete successfully when
more intensive oplog operations become prohibitively slow, since the resource requirements
of reconfigurations are extremely lightweight.

6.1 Experiment Setup and Operation
To demonstrate the benefits of MongoRaftReconfig in this type of scenario, we designed an
experiment to measure how quickly a replica set can reconfigure in new nodes to restore
majority write availability when it faces periodic phases of degradation. For comparison,
we implemented a simulated version of the Raft reconfiguration algorithm in MongoDB by
having reconfigurations write a no-op oplog entry and requiring it to become committed
before the reconfiguration can complete [25]. Our experiment initiates a 5 node replica set
with servers we refer to as {n0, n1, n2, n3, n4}. We run the server processes co-located on
a single Amazon EC2 t2.xlarge instance with 4 vCPU cores, 16GB memory, and a 100GB
EBS disk volume, running Ubuntu 20.04. Co-location of the server processes is acceptable
since the workload of the experiment does not saturate any resource (e.g. CPU, disk) of the
machine. The servers run MongoDB version v4.4-39f10d with a patch to fix a minor bug [18]
that prevents optimal configuration propagation speed in some cases.

Initially, {n0, n1, n2} are voting servers and {n3, n4} are non voting. In a MongoDB
replica set, a server can be assigned either 0 or 1 votes. A non-voting server has zero votes
and it does not contribute to a commit majority i.e. it is not considered as a member of the
consensus group. Our experiment has a single writer thread that continuously inserts small
documents into a collection with write concern majority, with a write concern timeout of
100 milliseconds. There is a concurrent fault injector thread that periodically simulates a
degradation of performance on two secondary nodes by temporarily pausing oplog replication
on those nodes. This thread alternates between steady periods and degraded periods of time,
starting out in steady mode, where all nodes are operating normally. It runs for 5 seconds in
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Figure 1 Latency of majority writes in the face of node degradation and reconfiguration to
recover. Red points indicate writes that timed out i.e. failed to commit. Orange horizontal bars
indicate intervals of time where system entered a degraded mode. Thin, vertical blue bars indicate
successful completion of reconfiguration events.

steady mode, then transitions to degraded mode for 2.5 seconds, before transitioning back to
steady mode and repeating this cycle. When the fault injector enters degraded mode, the
main test thread simulates a “fault detection” scenario (assuming some external module
detected the performance degradation) by sleeping for 500 milliseconds, and then starting a
series of reconfigurations to add two new, healthy secondaries and remove the two degraded
secondaries. Over the course of the experiment, which has a 1 minute duration, we measure
the latency of each operation executed by the writer thread. These latencies are depicted
in the graphs of Figure 1. Red points indicate writes that failed to commit i.e. that timed
out at 100 milliseconds. The successful completion of reconfigurations are depicted with
vertical blue bars. It can be seen how, when a period of degradation begins, the logless
reconfiguration protocol is able to complete a series of reconfigurations quickly to get the
system back to a healthy state, where writes are able to commit again and latencies drop
back to their normal levels. In the case of Raft reconfiguration, writes continue failing until
the period of degradation ends, since the reconfigurations to add in new healthy nodes cannot
complete.

7 Related Work

Dynamic reconfiguration in consensus based systems has been explored from a variety of
perspectives for Paxos based systems. In Lamport’s presentation of Paxos [13], he suggests
using a fixed parameter α such that the configuration for a consensus instance i is governed
by the configuration at instance i − α. This restricts the number of commands that can be
executed until the new configuration becomes committed, since the system cannot execute
instance i until it knows what configuration to use, potentially causing availability issues if
reconfigurations are slow to commit. Stoppable Paxos [14] was an alternative method later
proposed where a Paxos system can be reconfigured by stopping the current state machine
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and starting up a new instance of the state machine with a potentially different configuration.
This “stop-the-world” approach can hurt availability of the system while a reconfiguration
is being processed. Vertical Paxos allows a Paxos state machine to be reconfigured in the
middle of reaching agreement, but it assumes the existence of an external configuration
master [15]. In [4], the authors describe the Paxos implementation underlying Google’s
Chubby lock service, but do not include details of their approach to dynamic reconfiguration,
stating that “While group membership with the core Paxos algorithm is straightforward, the
exact details are non-trivial when we introduce Multi-Paxos...”. They remark that the details,
though minor, are “...subtle and beyond the scope of this paper”.

The Raft consensus protocol, published in 2014 by Ongaro and Ousterhout [22], presented
two methods for dynamic membership changes: single server membership change and joint
consensus. A correctness proof of the core Raft protocol, excluding dynamic reconfiguration,
was included in Ongaro’s PhD dissertation [19]. Formal verification of Raft’s linearizability
guarantees was later completed in Verdi [32], a framework for verifying distributed systems
in the Coq proof assistant [3], but formalization of dynamic reconfiguration was not included.
In 2015, after Raft’s initial publication, a safety bug in the single server reconfiguration
approach was found by Amos and Zhang [2], at the time PhD students working on a project
to formalize parts of Raft’s original reconfiguration algorithm. A fix was proposed shortly
after by Ongaro [20], but the project was never extended to include the fixed version of the
protocol. The Zab replication protocol, implemented in Apache Zookeeper [29], also includes
a dynamic reconfiguration approach for primary-backup clusters that is similar in nature to
Raft’s joint consensus approach.

The concept of decoupling reconfiguration from the main data replication channel has
previously appeared in other replication systems, but none that integrate with a Raft-based
system. RAMBO [8], an algorithm for implementing a distributed shared memory service, im-
plements a dynamic reconfiguration module that is loosely coupled with the main read-write
functionality. Additionally, Matchmaker Paxos [31] is a more recent approach for reconfigu-
ration in Paxos based protocols that adds dedicated nodes for managing reconfigurations,
which decouples reconfiguration from the main processing path, preventing performance
degradation during configuration changes. There has also been prior work on reconfiguration
using weaker models than consensus [10], and approaches to logless implementations of
Paxos based replicated state machine protocols [23], which bear conceptual similarities to
our logless protocol for managing configuration state. Similarly, [11] presents an approach to
asynchronous reconfiguration under a Byzantine fault model that avoids reaching consensus
on configurations by utilizing a lattice agreement abstraction.

8 Conclusions and Future Work

In this paper we presented MongoRaftReconfig, a novel, logless dynamic reconfiguration
protocol that improves upon and generalizes the single server reconfiguration protocol
of standard Raft by decoupling the main operation and reconfiguration logs. Although
MongoRaftReconfig was developed for and presented in the context of the MongoDB system,
the ideas and underlying protocol generalize to other Raft-based replication protocols that
require dynamic reconfiguration. Goals for future work include development of a machine
checked safety proof of the protocol’s correctness with help of the TLA+ proof system [5], in
addition to running more in depth experiments to evaluate how MongoRaftReconfig behaves
under more varied workloads.
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Abstract
This paper explores the good-case latency of synchronous Byzantine Fault Tolerant (BFT) consensus
protocols in the rotating leader setting. We first present a lower bound that relates the latency of
a broadcast when the sender is honest and the latency of switching to the next sender. We then
present a matching upper bound with a latency of 2∆ (∆ is the pessimistic synchronous delay) with
an optimistically responsive change to the next sender. The results imply that both our lower and
upper bounds are tight. We implement and evaluate our protocol and show that our protocol obtains
similar latency compared to state-of-the-art stable-leader protocol Sync HotStuff while allowing
optimistically responsive leader rotation.
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1 Introduction

Byzantine fault tolerant (BFT) consensus protocols provide a consistent service despite some
malicious and arbitrary process failures. These protocols have been particularly useful in
developing infrastructures that span across multiple entities some of which may be incentivized
to act maliciously. Thus BFT protocols have been widely adopted to build decentralized
blockchain technologies that promise tamper-proof ledger services without a central authority.
In accordance, this problem has been studied for over 40 years under various system models
and assumptions [26, 2, 7, 22]. Among these, authenticated BFT protocols under synchrony
assumption are particularly interesting as these protocols can tolerate one-half Byzantine
failures [14, 15, 18] compared to partially synchronous or asynchronous protocols which
tolerate only upto one-third Byzantine failures [13].

When consensus is to be achieved for a sequence of values, a particularly well-studied
approach among BFT protocols is the stable-leader approach where a single replica takes
lead in coordinating all participating replicas into reaching consensus [7]. Stable-leader BFT
protocols usually provide better performance both in terms of throughput and latency as
they avoid a view-change process to switch leaders which incurs additional cost. From a
practical perspective, an important metric in these protocols is the good-case latency to
achieve consensus. Informally, good-case latency of a BFT protocol is the time for all honest
replicas to commit (over all executions and adversarial strategies), given an honest leader. A
recent work [3] provides a complete categorization of the good-case latency of BFT protocols
under different network settings and number of faults. In particular, assuming synchrony,
they provide matching upper and lower bounds of ∆ + O(δ) good-case latency where ∆ is
the known pessimistic network delay and δ is the unknown actual network delay.
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While the stable-leader approach is favored for their better performance, many applications
require a democracy favoring policy where the participating replicas take turn in being leader
to coordinate consensus decisions. We call this a rotating-leader approach. The rationale is
to obtain better fairness, censorship resistance, and uniform distribution of work. Indeed,
several recent protocols have been designed with this goal in mind [9, 10, 16, 17, 24, 8, 20].
In general, rotating-leader BFT protocols can broadly be classified into two categories. In
the first kind, multiple leaders are selected to propose values concurrently in different slots
wherein each leader proposes a value in their own instance in the common log. While the
value proposed by an honest leader can be decided with a small constant latency in the
good-case, the value proposed by a Byzantine leader can take a linear number of rounds
before it gets finalized in the worst case. In many state machine replication applications,
a value proposed in an instance is not useful until all prior instances in the log have been
finalized. Thus, such protocols always have worst-case latency which is linear.

The second kind utilizes the “block chaining” paradigm where a leader proposes a value
in the form of a block which explicitly extends a block B proposed by an earlier leader
by including hash of previous block B called its parent. In this paradigm, when a block
B is committed, all its ancestors are also committed and all blocks in the log up to block
B can be safely used. In addition, when the leader of block B is honest, block B and all
its ancestors can be committed with a small constant latency in the good-case. This is a
natural approach adopted by many existing protocols [26, 2, 8, 17, 25]. In this work, we
focus on such rotating-leader BFT protocols that utilize block chaining paradigm. Under
this paradigm, existing rotating-leader BFT protocols such as PiLi [10], Dfinity [17, 1] and
Streamlet [8] incur a latency of 65∆, 17∆ and 12∆ respectively to commit a single decision in
the good-case. While the good-case latency captures the latency of a commit given an honest
leader, a rotating-leader protocol keeps changing leaders through a view-change process each
time. Thus, the overall latency of a rotating-leader protocol depends on the combination
of good-case latency and the latency of the view-change. In this work, we initiate a study
to optimize the combined latency for rotating-leader protocols. A natural approach to
optimize the combined latency is to spend as little time during the view-change as possible.
Ideally, we want to change leaders and have the new leader propose responsively in O(δ) time
compared to waiting Ω(∆) delay during the view-change process. We refer to such property
as optimistically responsive rotating leader chained protocol defined as follows:

▶ Definition 1 (Optimistically Responsive Rotating Leader Chained Protocol, Informal). We
say that a rotating-leader chained protocol has optimistically responsive leader change if for
any two consecutive honest leaders pi and pi+1, pi+1 sends its input within O(δ) time after
receiving pi’s input.

Allowing consecutive leaders to propose responsively allows a protocol to progress at
network speed when the leaders are honest. In the context of stable-leader approach, a recent
work Sync HotStuff [2] allows a fixed leader to propose responsively. For the rotating-leader
approach, few recent works [25, 21] offer solutions that allow consecutive leaders to propose
responsively. However, these protocols require a special optimistic condition (where > 3n/4
replicas are expected to be honest) to provide responsiveness. Moreover, none of the prior
works formalize this notion to provide theoretical feasibility results w.r.t. the good-case
latency for the rotating-leader approach.

To close this gap, our paper explores the optimal good-case latency for rotating-leader
synchronous BFT protocols with responsive proposals. Specifically we ask,

What is the optimal good-case latency of optimistically responsive rotating-leader
chained consensus protocol?



I. Abraham, K. Nayak, and N. Shrestha 27:3

We answer this question by providing a lower bound relating the good-case latency for a
single slot with that of the view-change. Interestingly, we observe that if the protocol performs
view-change in O(δ), then the commit latency for a single slot cannot be < 2∆. We also
provide a matching upper bound protocol with 2∆ + O(δ) latency. In essence, our results are
tight (ignoring O(δ) terms). We also evaluate our upper bound protocol against state-of-the
art synchronous protocol and observe that our protocol provides similar latency metric
compared to Sync HotStuff which is the state-of-the art synchronous consensus protocol
that follows stable-leader approach and significantly better compared to its rotating-leader
counterpart.

A lower bound on the good-case latency of rotating-leader consensus protocols with
responsive proposals. Our first result presents a lower bound on the good-case latency of
a rotating-leader consensus protocols with responsive proposals. Specifically, we show the
following:

▶ Theorem 2 (Lower bound on the good-case latency of an optimistically responsive rotat-
ing-leader chained consensus protocol, Informal). There exists an execution in an optimistically
responsive rotating-leader chained consensus protocol in an unsynchronized start model toler-
ating n/3 ≤ f < n/2 faults where the following two conditions do not hold simultaneously
even in executions where messages between honest parties arrive instantaneously and all
parties start at time 0: (i) the good-case commit latency is less than 2∆, and (ii) honest
senders propose responsively in O(δ) time after receiving a proposal from the previous honest
sender.

Intuitively, our lower bound states that if a protocol performs view-change in O(δ) time,
then the commit latency for a single slot has to be at least 2∆ time; otherwise the safety of
a commit cannot be guaranteed. This lower bound applies to protocols in an unsynchronized
start model where parties do not all start the protocol at the same time (explained later).

Optimal responsively proposing rotating-leader protocol with 2∆-synchronous latency.
Our second result presents a matching upper bound protocol that achieves optimal commit
latency of 2∆ with responsive proposals. Our upper bound result is presented in the form
of state machine replication (SMR) protocol that decides on a sequence of values. In our
SMR protocol, the leaders are rotated after each proposal. A sequence of honest leaders can
propose within 2δ of previous proposal thus supporting responsive proposals. The good-case
commit latency for a single slot is optimal, i.e., 2∆. Due to responsive leader rotation, our
protocol changes leaders before prior proposed values have been committed. For a sequence
of k honest leaders, our protocols can commit k values in 2∆ + O(kδ) time.

Implementation and evaluation. We implement and evaluate the performance of our
protocol and compare it with Sync HotStuff [2] which is the state-of-art synchronous protocol
with stable-leader approach. In terms of latency, our protocol has similar latency profile
compared to Sync HotStuff, i.e., like Sync HotStuff, our protocol commits k values in
2∆ + O(kδ) time. We validate this in our evaluation by showing a latency comparable to
Sync HotStuff. However, Sync HotStuff being a stable-leader protocol does not provide
fairness and censorship resistance. To ensure fair comparison, we evaluate our protocol
against Sync HotStuff with leader rotation where leaders are rotated after each proposal.
Compared to this variation, we obtain four times better latency in all configurations.

OPODIS 2021
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2 Model and Definitions

We consider a system consisting of n replicas in a reliable, authenticated all-to-all network,
where up to f < n/2 replicas can be Byzantine faulty. The Byzantine replicas may behave
arbitrarily. A replica that is not corrupted is considered to be honest and executes the
protocol as specified.

Communication between honest replicas are synchronous. Thus, if a replica r sends a
message x to another replica r′ at time t, r′ receives the message by time t + δ if r is honest.
The delay parameter δ is upper bounded by ∆. The upper bound ∆ is known, but δ is
unknown to the system. δ can be regarded as an actual delay in the real-world network. We
assume all honest replicas have clocks moving at the same speed.

We make use of digital signatures and a public-key infrastructure (PKI) to validate
messages and detect equivocation. Message x sent by a node p is digitally signed by p’s
private key and is denoted by ⟨x⟩p. In addition, we use H(x) to denote the invocation of the
random oracle H on input x.
▶ Definition 3 (Byzantine Fault-tolerant State Machine Replication [23]). A Byzantine fault-
tolerant state machine replication protocol commits client requests as a linearizable log to
provide a consistent view of the log akin to a single non-faulty server, providing the following
two guarantees. (i) Safety. Honest replicas do not commit different values at the same log
position. (ii) Liveness. Each client request is eventually committed by all honest replicas.
▶ Definition 4 (Good-case Latency [3]). A Byzantine broadcast (or Byzantine reliable broad-
cast) protocol has good-case latency of T , if all honest parties commit within time T since
the broadcaster starts the protocol (over all executions and adversarial strategies), given the
designated broadcaster is honest.

Chained BFT SMR. As mentioned before, our work focuses on BFT protocols that utilize
the block chaining paradigm where a leader proposes a value in the form of a block by
explicitly extending a block Bk proposed by an earlier leader by including hash of previous
block Bk called its parent. A block determines a unique hash chain for all previous blocks in
the log. The first block in the chain is called the genesis block, and the distance from the
genesis block to a block B in the chain is called the height of block B. A block Bk at height
k has the format, Bk := (bk, H(Bk−1)) where bk denotes the proposed payload at height k,
Bk−1 is the block at height k − 1 and H(Bk−1) is the hash digest of Bk−1. A block Bk is
said to extend a block Bh if Bk = Bh or Bk is a descendant of Bh. All the blocks in the
chain from genesis block up to block Bk−1 are the ancestors of block Bk. In this paradigm,
when a block Bk is committed, all its ancestors are also committed.

With leaders proposing responsively in O(δ) time after receiving proposal from a prior
leader, an honest leader may propose a new block by extending on a block proposed by a
prior Byzantine leader without detecting conflicting block proposals made by the Byzantine
leader. When such inconsistencies are detected, a natural solution is to execute some
fallback mechanism to collect blocks possibly committed by some honest replicas as the new
leader could have proposed blocks extending conflicting proposals. However, such fallback
mechanisms worsen the good-case latency of a protocol as it involves notifying of misbehavior
by earlier Byzantine leaders and collecting possibly committed blocks to decide on a safe
value to extend. In this work, we focus on responsively proposing rotating leader chained
BFT SMR protocols that do not involve any fallback mechanism and always decide on blocks
proposed by honest leaders irrespective of inconsistencies introduced by an earlier Byzantine
leader. This allows our protocol to always commit with a small constant latency in the
good-case when the leader is honest.
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Rotating sender chained reliable broadcast. We formalize the rotating-leader chained BFT
SMR protocols in the form of rotating sender chained reliable broadcast as follows. Our
lower bound is presented in the form of rotating sender chained reliable broadcast.

▶ Definition 5 (Rotating Sender Chained Reliable Broadcast). In a rotating sender chained
reliable broadcast, there is a sequence of designated senders p1, . . . , pk for k ≥ 1 sending
messages such that when a sender pi broadcasts Bx at some height x in the log, then the
following conditions hold:
1. (Correctness) If some honest party q delivers message Bx at height x in the log, then

eventually every honest party delivers Bx at height x in the log.
2. (Validity) If sender pi is honest, then every honest party eventually delivers the input Bx

that pi broadcasts at height x.
3. (Sequentiality) If an honest sender pj with j < i sends message Bx′ , then the input Bx

sent by an honest sender pi must extend Bx′ .
4. (Extension) When an honest party q delivers a message Bx at height x in the log, it

delivers all the ancestors of message Bx.

Next, we formally define optimistically responsive rotating leader chained reliable broadcast
as follows.

▶ Definition 6 (Optimistically Responsive Rotating Sender Chained Reliable Broadcast). We
say that a rotating sender chained reliable broadcast is optimistically responsive if for any
two consecutive honest senders pi and pi+1, pi+1 starts the broadcast in the sequence within
O(δ) time after receiving pi’s input.

3 A Lower Bound on the Good-Case Latency of Optimistically
Responsive Rotating Sender Chained Reliable Broadcast

In this section, we provide a lower bound on the good-case latency of rotating leader
protocols where the next leaders propose responsively without waiting Ω(∆) time after
receiving proposals from previous leaders. In particular, the lower bound captures the
relationship between latency of the view-change and the good-case latency of a commit.
Essentially, it says that if a consensus protocol tolerating n/3 ≤ f < n/2 Byzantine faults
allows a new leader to propose responsively in α time, the commit latency for a single slot
cannot be less than 2∆ − α. Thus, the sum of latencies has to be at least 2∆.

Unsynchronized starts. Our lower bound assumes an unsynchronized start model [3, 25]
where honest parties may start the protocol execution at different times decided by an
adversary such that the following conditions hold: (i) each honest party starts the protocol
at time ≤ ∆ and (ii) an honest party starts the protocol before receiving a message from any
other party. Such a model captures state machine replication protocols where replicas move
to the next view/slot at different times. Byzantine parties, on the other hand, are assumed
to start the protocol execution at time 0. The parties start the protocol with a fixed state
independent of when the protocol execution started; in particular, they do not have access
to the execution start time.

Intuition. Any Byzantine fault tolerant consensus protocol tolerating f Byzantine faults
cannot wait to receive messages from more than n − f parties. For a synchronous consensus
protocol tolerating f < n/2, an honest party can wait for messages from at most f +1 parties,
assuming n = 2f + 1 for simplicity sake. Consider a set P of f honest parties and a set Q of
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f honest parties. Suppose the current sender s1 is Byzantine and sends some value Be which
arrives at parties in P at some time 0. The Byzantine sender s1 also sends conflicting values
B′

e to honest parties in Q which arrives only at time ∆ − α. Observe that messages from a
single Byzantine party s1 is sufficient for parties in P to form a quorum of f + 1 messages.
In addition, messages between parties in P and Q can be delayed by up to ∆ time. Thus,
parties in P may not learn about conflicting value B′

e before 2∆ − α time and will commit
to value Be before 2∆ − α time where 2∆ − α is the protocol commit latency.

The next sender s2 ∈ Q receives value B′
e at time ∆ − α and proposes value Be+1 by time

∆ with α being the view-change latency. Note that sender s2 may not learn about value Be

until time ∆. For sender s2, the first sender s1 appears to be honest until time ∆. Thus, by
sequentiality property (refer Definition 5), honest sender s2 extends B′

e and proposes value
Be+1 by time ∆. Observe that due to ∆ delay between messages exchanged between parties
in P and Q, parties in P does not receive either B′

e or Be+1 before time 2∆ − α and hence
cannot prevent parties in P to commit. Similarly, parties in Q does not receive value Be

before ∆ and does not prevent the next sender s2 from extending B′
e and proposing Be+1.

Since, our protocol always commits the value proposed by an honest sender, parties in Q

eventually commit Be+1 and by extension property commit Be. An important observation
here is that if the commit latency were at least 2∆ − α, parties in P would learn about value
B′

e by time 2∆ − α and would not commit. This implies the sum of responsive view-change
latency and good-case latency has to be at least 2∆.

▶ Theorem 7 (Lower bound on the good-case latency of optimistically responsive rotating sender
sequenced reliable broadcast). For any α < ∆, there exists an execution in an optimistically
responsive rotating sender chained reliable broadcast protocol in an unsynchronized start model
tolerating n/3 ≤ f < n/2 faults where the following two conditions do not hold simultaneously
even in executions where messages between honest parties arrive instantaneously and all
parties start at time 0: (i) the good-case commit latency is less than 2∆ − α, and (ii) honest
senders broadcast responsively in at most α time after receiving an input from the previous
honest sender.

Proof. Suppose for the sake of contradiction, there exists such a protocol. We will show a
sequence of worlds, and through an indistinguishability argument show a violation in the
last execution. Consider the parties being partitioned into the following 3 sets: (i) P : a set
of f parties, (ii) Q: a set of f parties which includes the second sender s2, and (iii) R: a set
of max(1, n − 2f) parties which includes the first sender s1.

World 1 (W1). Setup. Parties in P ∪ R are honest while parties in Q are crashed. An
honest sender s1 ∈ R sends value Be at some height e to all parties. Parties in P and R

start at time 0.
Message schedule. Messages exchanged between parties in P and R arrive instantaneously.
Execution and views of honest parties. This execution satisfies (i), so parties in P commit
Be before 2∆ − α time.

World 2 (W2). Setup. Parties in Q ∪ R are honest while parties in P have crashed. An
honest sender s1 ∈ R sends value B′

e at height e to all parties. Parties in Q and R start at
time 0.
Message schedule. Messages exchanged between parties in Q and R arrive instantaneously.
Execution and views of honest parties. The next sender s2 ∈ Q receives B′

e at time 0. By
sequentiality, the next sender s2 extends B′

e and sends value Be+1 by time α. Since, sender s2
is honest, by validity, parties in Q ∪ R eventually commit Be+1 at height e + 1. By extension,
parties in Q ∪ R commit B′

e at height e.
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Figure 1 Latency of Optimistically responsive rotating sender chained reliable broadcast. Dotted
circles represent Byzantine parties. Crossed circles represent crashed parties. Value of k = n − 2f .

World 2-shifted (W2s). Setup. Parties in Q ∪ R are honest while parties in P have crashed.
An honest sender s1 ∈ R sends value B′

e to all parties. All parties start at time ∆ − α.
Message schedule. Messages exchanged between parties in Q and R arrive instantaneously.

▷ Claim 8. Parties in Q ∪ R cannot distinguish between World 2 and World 2-shifted.

Proof. Observe that in an unsynchonized start model, parties start with a fixed state
independent of when the protocol execution started and parties do not have access to the
starting time. Moreover, all parties in Q ∪ R start at time ∆ − α in World 2-shifted. Thus,
for parties in Q ∪ R, this execution is indistinguishable to World 2. ◁

Execution and views of honest parties. By Claim 8, parties in Q ∪ R cannot distinguish
between World 2 and World 2-shifted. Thus, the next sender s2 sends value Be+1 by time
∆ − α + α = ∆ by extending on B′

e. Since, this execution is identical to World 2, parties in
Q ∪ R eventually commit Be+1 at height e + 1.

World Hybrid (WH). Setup. Parties in R are Byzantine. All other parties are honest. The
Byzantine sender s1 ∈ R sends value Be to parties in P and value B′

e to parties in Q. Parties
in P start at time 0 while parties in Q start at time ∆ − α.
Message schedule. Parties in P receive sender’s value at time 0 while parties in Q receive
sender’s value at time ∆ − α.

Parties in R perform a split-brain attack where they behave like World 1 towards parties
in P , and behave like World 2-shifted towards parties in Q. We denote each brain of R as
R1 and R2 such that R1 only communicate with P and R2 only communicate with Q.

Messages between parties in P and R1 arrive instantaneously (like in World 1). Parties
in R2 sends messages to parties in Q only after time ∆ − α and messages between Q and R2
arrive instantaneously (like in World 2-shifted). Messages exchanged between parties in P

and Q is delayed by ∆.

▷ Claim 9. The parties in P cannot distinguish between World 1 and World Hybrid until
2∆ − α time.

OPODIS 2021



27:8 Optimal Good-Case Latency Rotating Leader Synchronous BFT

Proof. In World 1, parties in P start at time 0 and messages exchanged with parties in
R arrive instantaneously. Since, parties in Q are crashed, parties in P do not receive any
messages from parties in Q. Similarly, in World Hybrid, parties in P start at time 0 and
messages exchanged with parties in R1 arrive instantaneously where parties in R1 behave
identical to World 1 for parties in P . Moreover, since parties in Q start at time ∆ − α and
messages between parties in P and Q are delayed by ∆, parties in P do not receive any
messages from parties in Q until 2∆ − α time. Thus, parties in P cannot distinguish between
World 1 and World Hybrid until 2∆ − α time. ◁

▷ Claim 10. The parties in Q cannot distinguish between World 2-shifted and World Hybrid
until time ∆.

Proof. In World 2-shifted, parties in Q start at time ∆ − α and messages exchanged with
parties in R arrive instantaneously. Since, parties in P are crashed in World 2-shifted, parties
in Q receive no messages from parties in P . Similarly, in World Hybrid, parties in Q start at
time ∆ − α. Parties in R2 send messages only at time ∆ − α and messages between R2 and
Q arrive instantaneously. Observe that parties in P start at time 0 and messages between P

and R are delayed by ∆. Thus, parties in Q receive no messages from parties in P until time
∆. Thus, parties in Q cannot distinguish between World 2-shifted and World Hybrid until
time ∆. ◁

Execution and views of honest parties. By Claim 9, parties in P cannot distinguish between
World 1 and World Hybrid until 2∆ − α time. Thus, parties in P commit Be by time 2∆ − α

at height e.
By Claim 10, parties in Q cannot distinguish between World 2-shifted and World Hybrid

until ∆ time. Thus, the next sender s2 ∈ Q sends input Be+1 that extends B′
e by time ∆.

By validity, parties in Q eventually commit B′
e+1 at height e + 1. By extension, parties in Q

also commit B′
e at height e. This violates correctness property between parties in P and Q

at height e. A contradiction. ◀

4 Optimal Rotating-Leader BFT SMR with 2∆-synchronous Latency

In this section, we present a rotating-leader chained BFT SMR protocol with optimal 2∆-
synchronous latency that allows responsive leader rotation while tolerating f < n/2 Byzantine
faults. Prior synchronous protocols such as Sync HotStuff follow stable-leader paradigm
and can make progress at network speed in the steady-state i.e., it can commit k proposals
in 2∆ + O(kδ) where 2∆ is the commit latency for a single proposal. However, when the
protocol changes leaders, they require a synchronous wait of Ω(∆) time during view-change
process. Protocols such as OptSync [25] can perform responsive leader rotation. However,
they require optimistic conditions where > 3n/4 replicas behave honestly. In the absence
of optimistic conditions, they incur a synchronous delay of Ω(∆) time. In contrast, our
protocol support responsive leader rotation in the absence of optimistic conditions while still
tolerating f < n/2 Byzantine faults.

In addition, the commit step in our protocol is non-blocking i.e., we do not require replicas
to commit before moving into higher epoch. Thus, our protocol can make progress at network
speed while supporting responsive leader rotation and can commit k proposals in 2∆ + O(kδ)
time with different leaders when there is a sequence of honest leaders. In this regard, our
protocol can be viewed as rotating-leader version of Sync HotStuff.
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Epochs. Our protocol progresses through a series of numbered epochs with each epoch e

coordinated by a distinct leader Le. Epochs are numbered by non-negative integers starting
with 1. The leaders for each epoch are rotated irrespective of the progress made in each epoch.
For simplicity, we use round-robin leader election and the leader of epoch e, represented as
Le, is determined by e mod n. The leaders can also be selected at random by using public
known function such as random beacons [12] which allows leader election in O(δ) time. When
the leader of an epoch is honest, the protocol progresses through epoch responsively, i.e., in
O(δ) time; otherwise each epoch lasts for 7∆ time.

Blocks and block format. We represent a proposal in an epoch in the form of a block.
Each block references its predecessor with the exception of the genesis block which has
no predecessor. A block Bk is said to be valid if (i) its predecessor block is valid, or if
k = 1, predecessor is ⊥, and (ii) the payload in the block meets the application-level validity
conditions. Note that a leader Le proposes a single block in an epoch.

Certified blocks, and locked blocks. A block certificate on a block Bk consists of t + 1
distinct signatures in an epoch e and is represented by Ce(Bh). We define a simple ranking
rule as leaders propose a single block in each epoch. Block certificates are ranked by epochs,
i.e., blocks certified in a higher epoch has a higher rank. During the protocol execution, each
replica keeps track of all certified blocks and keeps updating the highest certified block to its
knowledge. Replicas will lock on highest ranked certified blocks and do not vote for blocks
that do not extend highest ranked block certificates to ensure safety of a commit.

Block extension and equivocation. A block Bk extends a block Bl (k ≥ l) if Bl is an
ancestor of Bk. Note that a block Bk extends itself. Two blocks Bk and B′

k′ proposed in the
same epoch equivocate one another if they are not equal.

4.1 Protocol Details

Protocol 1 Rotating-leader BFT SMR.

For each epoch e = 1, 2, · · · :, replica r performs following operations:
1. Epoch Advancement. When epoch-timere reaches 0, broadcast ⟨clock, e + 1⟩r. Replica r

advances to epoch e + 1 using following rules:
On receiving f + 1 votes for epoch e block.
On receiving f + 1 epoch e clock messages.

Upon entering epoch e + 1, broadcast an epoch e certificate and send highest ranked block
certificate to Le+1, set epoch-timere+1 to 7∆ and start counting down. Abort epoch-timere.

2. Propose. If leader Le of epoch e has Ce−1(Bl) propose immediately; otherwise wait for 2∆ time.
Broadcast ⟨propose, Bk, e, Ce′ (Bl)⟩L where Bk extends highest certified block Bl known to Le.

3. Vote. Upon receiving the first proposal ⟨propose, Bk, e, Ce′ (Bl)⟩L, if Bk extends the highest
ranked certificate known to replica r, broadcast a vote in the form of ⟨vote, Bk, e⟩r.

4. (Non-blocking) Commit. If epoch-timere > 2∆ and replica r receives Ce(Bk), set
commit-timere to 2∆ and start counting down. When commit-timere reaches 0, if no epoch-e
equivocation has been detected, commit Bk and all its ancestors.

5. Equivocation. Forward the equivocating hashes signed by Le and abort commit-timere. While
still in epoch e, broadcast ⟨clock, e + 1⟩r.

OPODIS 2021
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Our protocol (refer Protocol 1) is simple and includes following five steps for an epoch e.

Epoch advancement. Each replica r keeps track of epoch duration epoch-timere for epoch
e. When its epoch-timere−1 expires, replica r broadcasts an epoch e clock message, i.e.,
⟨clock, e⟩r to all replicas. Replica r enters epoch e when it receives either f + 1 distinct
⟨clock, e⟩ messages (i.e., an epoch e clock certificate) or when it receives an epoch e block
certificate Ce(Bl) for some block Bl. Upon entering epoch e, replica r broadcasts an epoch
e certificate (either clock certificate or block certificate) to perform epoch synchronization
among all honest replicas. Replica r also sends its highest ranked certificate Ce(Bl) to the
leader Le if it sent a clock certificate while entering epoch e. In addition, it aborts all timers
below epoch e and sets epoch-timere to 7∆ and starts counting down.

Propose. Upon entering epoch e, if Leader Le has an epoch e−1 block certificate, it proposes
immediately; otherwise, it waits for 2∆ time to ensure it can receive the highest ranked
certificate from all honest replicas. The leader Le proposes a block Bk := (bk, H(Bk−1)) by
broadcasting ⟨propose, Bk, v, Ce′(Bl)⟩Le

where Ce′(Bl) is the highest ranked certificate known
to Le.

Vote. When a replica r receives the first proposal for Bk either from Le or through some
other replica, if r hasn’t received a proposal for an equivocating block, i.e., it has not detected
a leader equivocation in epoch e, it forwards the proposal to all replicas. If block Bk extends
the highest ranked certificate known to replica r, it broadcasts a vote for Bk in the form of
⟨vote, Bk, e⟩r.; otherwise, replica r does not vote for the proposed block. Voting for blocks
that extends the highest ranked certificate ensures safety of committed blocks.

Commit. When replica r receives f + 1 distinct vote messages for an epoch e block Bk

(denoted by Ce(Bk)) and when epoch-timere is large enough (2∆), it sets its commit-timere

to 2∆ and starts counting down. Note that replica r moves to epoch e + 1 as soon as it
receives Ce(Bk) while its commit-timere for block Bk is still running. When commit-timere

reaches 0, if no equivocation for epoch-e has been detected, replica r commits Bk and all
its ancestors. Waiting for 2∆ wait before commit ensures no honest replica has voted for
an equivocating block in epoch e. In addition, honest replicas start their commit-timere

only when their epoch-timere ≥ 2∆. This ensures no honest replica entered an higher epoch
without receiving Ce(Bk).

Equivocation. At any time in epoch e, if a replica r detects an equivocation, it broadcasts
equivocating hashes signed by leader Le along with an epoch e clock message. Replica r also
stops performing epoch e operations.

How does our protocol support responsive leader rotation? In general, consensus protocols
require that all honest replicas receive and lock on a unique certificate for a block to be
committed in an epoch before moving to higher epoch and not vote for blocks that do not
extend this unique certificate to ensure safety of a commit. Prior synchronous protocols such
as Sync HotStuff [2] achieve this property by adding a synchronous wait of at least 1∆ while
moving to higher epoch. In Sync HotStuff [2], a replica starts its commit-timer of 2∆ as soon
as it votes for the proposed block and commits when it does not detect any equivocation
in the epoch before its commit-timer expires. While the replica that committed may not
have detected an equivocation before its commit, other honest replicas might have detected
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an equivocation. Waiting for ∆ time before moving to higher epoch ensures all honest
replicas receive at least f + 1 votes for the committed block. However, a synchronous wait of
full ∆ during epoch-change makes protocols non-responsive. To achieve responsive epoch-
change, our protocol instead waits for a certificate for the proposed block before starting the
commit-timer and forwards the received certificate. Thus, replicas can responsively receive
the certificate. In addition, a single block is proposed in an epoch. Thus, if the next leader
receives the certificate for the current proposed block, it can propose immediately as it is
already the highest ranked block certificate and all honest replicas will vote for the block
extending this certificate. Initiating the commit-timer only upon receiving a certificate for
the proposed block has also been explored in prior protocols such as Flexible BFT [19] which
works in hybrid model (with both synchronous and partial synchronous assumptions) and
follows stable-leader approach. In contrast, our protocol follows rotating-leader approach
under synchrony assumption.

How does 2∆ wait ensure safety? Consider an honest replica r that commits a block
Bk in epoch e at time t. Replica r must have received Ce(Bk) at time t − 2∆ and did not
detect any block e equivocation by time t. This implies no honest replica either received or
voted for an equivocating block in epoch e by time t − ∆; otherwise, replica r would have
detected an epoch e equivocation by time t. In addition, since all honest replicas receive
proposal for Bk by time t − ∆, no honest replica will vote for an equivocating block in epoch
e. This ensure the certificate for block Bk is unique. In addition, since replica r committed
in epoch e, its epoch-timere must have been epoch-timere > 2∆ at time t − 2∆. Since, honest
replicas are synchronized withing ∆ time, honest replicas that are still in epoch e must have
epoch-timere > ∆ by time t − 2∆. Replica r broadcasts Ce(Bk) at time t − 2∆ when it starts
its commit-timer at t − 2∆. Thus, these replicas will receive Ce(Bk) before entering epoch
e + 1. This ensures all honest replicas receive Ce(Bk) before entering epoch e + 1 and hence,
no honest replica will vote for blocks that do not extend Ce(Bk). This ensures safety of
committed block Bk.

Note that it is not required for all honest replicas to commit block Bk in the same epoch
e. A Byzantine leader may send equivocating blocks to other honest replicas after time t − ∆
and replica r may not receive such equivocation before its commit-timer expires. However, if
an honest replica r commits a block Bk, our protocol ensures that all honest replicas receive
a unique certificate for Bk before entering epoch e + 1 and no honest replica vote for blocks
that do not extend Bk in higher epoch. Eventually, due to leader rotation, there will an
honest leader and this honest leader will propose block Bh extending Bk. All honest replicas
will commit block Bh proposed by an honest leader and all honest replicas will commit Bk

via ancestor rule (since Bh extends Bk).
▶ Remark. Our protocol can be extended with an additional commit rule that commits a
block Bℓ proposed in epoch e − f at the end of epoch e if the highest ranked chain in epoch
e extends Bℓ, assuming there is a set of unique f + 1 leaders in the last f + 1 epochs. Such a
commit rule can be used to commit faster when there is a set of f + 1 consecutive honest
leaders and progressing through f + 1 epochs is faster than waiting for 2∆ time and obtain
better commit latency.

The rationale behind the commit rule is the following. Out of last f + 1 honest leaders,
there will at least one honest leader between epochs e − f and e. Consider an epoch e′ (with
e − f < e′ < e and its honest leader Le′ . The leader Le′ will extend on the highest ranked
chain certificate and propose some block Bk in a timely manner. Assume Bk extends Bℓ.
Thus, all other honest replicas will vote for the proposed block Bk and all honest replicas will
receive and lock on Ce′(Bk) before entering epoch e′ + 1. Hereafter, no honest replica will
vote for a block that does not extend Bk, and all certified blocks after epoch e′ must extend
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Bk, i.e., a conflicting chain of rank higher than Ce′(Bk) cannot form. Thus, the highest
ranked chain in epoch e must extend Bk and since Bk extends Bℓ, Bℓ is safe to commit. A
recent work, Apollo [4] uses such a commit rule to obtain better latency when there are a
sequence of consecutive honest leaders. In their work, the protocol proposes without waiting
for a certificate and can obtain O(fδ) latency with a sequence of honest leaders. In contrast,
our protocol requires waiting for a certificate to obtain a good-case latency of 2∆.

Due to space constraints, we present security analysis in Appendix A.

5 Evaluation

In this section, we compare the performance of our protocol with state-of-art synchronous
protocol Sync HotStuff in both stable leader mode and rotating-leader mode.

5.1 Implementation Details and Methodology
Our implementation is an adaption of the open-source implementation of Sync HotStuff [11].
We modify the core consensus logic to our protocol and extend it to support leader rotation.
We also extend Sync HotStuff protocol to support leader rotation after each block proposal. In
this modified version, the leader is rotated every 5∆ time (2∆ wait for the next leader before
proposing in the new epoch, 2∆ time to commit a block and 1∆ wait during epoch-change.)

Each block consists of a batch of client commands. Each command contains a unique
command identifier and an associated payload. The number of commands in a block
determines its batch size. The throughput and latency results were measured from the
perspective of external clients that run on separate machines from that of the replicas. The
clients broadcast a configurable number of commands to every replica at certain configurable
time interval. In all of our experiments, we ensure that the performance of replicas are not
limited by lack of client commands.
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Figure 2 Throughput vs. latency at varying batch sizes and payload at ∆ = 50ms and f = 1.

Experimental Setup. All our replicas and clients were installed on Amazon EC2 c5.2xlarge
instances. Each instance has 8 vCPUs supported by Intel Xeon Platinum 8000 processors
with maximum network bandwidth of upto 10Gbps. The network latency between two
machines is measured to be less than 1ms. We used secp256k1 for digital signatures in votes
and a quorum certificate consists of an array of f + 1 signatures.

Baselines. We make comparisons with the state-of-the-art synchronous protocol (Sync Hot-
Stuff) in two modes: (i) Sync HotStuff with a stable leader which is the default protocol, and
(ii) Sync HotStuff with rotating-leaders with each leader making one block proposal per epoch.
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In general, stable leader protocols have better performance in terms of throughput. For fair
comparision with our rotating-leader protocol, we also compare against a rotating-leader
version of Sync HotStuff protocol where a new leader proposes a block every 5∆ time.

5.2 Basic Performance
We first evaluate the basic performance of our protocol when tolerating f = 1 fault at
∆ = 50ms. We measure the observed throughput (i.e., number of committed commands per
second) and the end-to-end latency for clients. In our first experiment (Figure 2a), each
command has a zero-byte payload and we vary batch size at different values: 100, 400, and
800 as represented by the three lines in the graph.

Each point in the graph represents the measured throughput and latency for a run with
a given load sent by clients. The load is increased by sending more number of commands in
a given time interval. As seen in the graph, the throughput increases with increasing load
without increasing latency upto a certain point before reaching saturation. After saturation,
the latency increases while the throughput either remains consistent or slightly degrades.
We observe that the throughput is maximum at around 113 Kops/sec when the batch size
is 400 with a latency of around 107ms. We set the batch size to be 400 for our following
experiments.

In our second experiment (Figure 2b), we vary the command request/response payload
at different values in bytes 0/0, 128/128 and 1024/1024 with a fixed batch size of 400. We
observe that as the payload size increases, the throughput, measured in number of commands,
decreases. We also observe a marginal drop in latency with increasing payload.
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Figure 3 Performance as function of faults at ∆ = 50ms, 400 batch size, and 0/0 payload.

5.3 Scalability and Comparison with Prior Work
Next, we evaluate our protocol scales as the number of replicas increase. We compare our
protocol against standard Sync HotStuff (Sync-HS) and rotating-leader version of Sync Hot-
Stuff (Sync-HS-R). First, we evaluate the protocol performance with zero-payload commands
to understand the raw overhead incurred by the underlying consensus mechanism at different
values of f (Figure 3). Then, we study how the protocols perform at a higher payload of
1024/2024 (Figure 4). We use a batch size of 400 and ∆ of 50ms for both these experiments.
For Sync-HS-R, we use a batch size of 2000. Each data point in the graphs represent the
throughput and latency at the saturation point without overloading the replicas.

Comparison with Sync HotStuff. Figures 3 and 4 compares the throughput and latency
of Sync Hotstuff with our protocol at two different payloads: 0/0 and 1024/1024. We
observe the latency of the our protocol is similar to Sync HotStuff as both protocols have
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Figure 4 Performance as function of faults at ∆ = 50ms, optimal batch size, and 1024/1024
payload.

2∆ commit latency. However, Sync HotStuff has much better throughput compared to our
protocol. This is due to following reasons: (i) the performance of Sync HotStuff depends on
the f + 1 fastest replicas in the system, (ii) being a stable-leader protocol, the leader can
schedule block proposals as soon as sufficient commands to form a block are available. In
contrast, the performance of our protocol is bottlenecked due to following reasons: (i) the
performance depends on the slowest replica in the system due to round-robin leader rotation
(ii) a leader can only schedule a block proposal after it has been elected as a leader, and (iii)
since commands arrive in a different order at different replicas, an additional processing is
required to filter out proposed commands (the additional processing incur around 150µs).
Although, the stable-leader Sync HotStuff provides better throughput, it is worth to note
the stable-leader approach does not provide fairness and censorship resistance. Next, we
compare our protocol against Sync HotStuff with leader rotation after each block proposal
which provides better fairness and censorship resistance.
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Figure 5 Latency of Sync HotStuff with leader rotation at varying batch sizes at ∆ = 50ms and
f = 1.

Comparison with Sync HotStuff with leader rotation. In Sync HotStuff with leader
rotation, a leader proposes a block every 5∆ time i.e., every 250ms at ∆ = 50ms. Thus, the
throughput of the protocol is essentially 4 times the proposal batch size. We first perform an
experiment (Figure 5) to find a batch size for which the latency does not adversely worsen.
We observe that at the batch size of 2000, the latency is similar to the latency at batch size
of 400. At higher batch sizes, the latency of the protocol worsens as can be seen in the figure.
For other experiments (Figures 3 and Figure 4), we set the batch size to be 2000; thus the
throughput of the protocol was always 8000. The latency of the protocol is also very high
at around 400ms. This is because the leader proposes a block every 5∆ while clients sent
commands much earlier. Since, our protocol supports responsive leader rotation, the next
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leader can propose as soon it receive a certificate for previous block. Thus, our protocol
performs much better compared to Sync HotStuff with leader rotation in terms of latency
and throughput.

6 Related Work

There has been a long line of work in designing efficient BFT SMR protocol [10, 8, 25, 21, 4,
3, 2, 5]. Most of these BFT SMR solutions [2, 3, 25] focus in increasing the performance of
the system during steady state and hence follow a stable-leader paradigm. Our work focuses
in improving the performance of system while rotating-leaders every epoch as rotating-leader
protocol provide better fairness and censorship resistance compared to stable leader protocols.
We review the most recent and closely related works below. Compared to all of these protocol,
our work commits in 2∆ time when the leaders are honest and the new leaders can propose
responsively in O(δ) time. In addition, we do not require optimistic conditions to change
leaders responsively.

The protocols due to PiLi [10] and Streamlet [8] provide BFT SMR protocols that change
leaders after every epoch. Their leader selection is randomized. Both of these protocol
assume lock-step execution in epochs. In PiLi, each epoch lasts for O(δ) (resp. 5∆) under
optimistic (resp. synchronous) conditions. PiLi commits 5 blocks after 13 consecutive honest
epochs. PiLi has a responsive (resp. synchronous) latency of at least 16δ-26δ (resp. 40∆-65∆).
Streamlet commits a single blocks after 6 consecutive honest epochs with each epoch taking
2∆ time. However, under f < n/2 corruption, getting 6 or 13 consecutive honest epochs is
extremely unlikely and these protocols may never progress. In contrast, our protocol requires
a single honest epoch to make progress.

The protocols due to OptSync [25] and Hybrid-BFT [21] provide rotating-leader BFT
SMR protocols. However, they change leaders responsively only during optimistic conditions.
During normal conditions when f < n/2 Byzantine faults are present, these protocol wait for
at least 7∆ in an epoch before moving to the next leader even when there is a sequence of
honest leaders. With a sequence of honest leaders, our protocol can progress through epochs
in O(δ) time despite tolerating f < n/2 Byzantine faults.

Apollo [4] provides a rotating-leader BFT SMR protocol. In their protocol, the leader is
rotating after every proposal in δ time and the proposed blocks are committed after f + 1
epochs irrespective of whether the leader is honest or Byzantine. If all the leaders in the next
f + 1 epochs are honest, their protocol commits with a latency of (f + 1)δ. However, when
f = O(n), even in the good-case O(f) out of the next f + 1 leaders may be Byzantine, thus
yielding a latency of O(f∆) even when messages between honest parties are instantaneous.
Thus, in the good-case, they fail to satisfy the first condition (latency of a single-slot) of our
lower bound.

RandPiper [5] also provides a rotating-leader BFT SMR protocol. In their protocol, they
present a BFT SMR protocol that achieve quadratic communication without using threshold
signatures. However, it incurs 11∆ in every epoch and cannot progress responsively.

A recent work Internet Computer Consensus [6] provides a rotating leader BFT SMR
in partially synchronous model. Similar to our work, their protocol also progresses to
higher epoch as soon as a certificate is formed in the current epoch while the committing a
block in the hindsight only when sufficient parties acknowledge the block certificate. In our
protocol, we commit only when no equivocation is detected for 2∆ time after receiving a
block certificate. In both cases, the protocols check to see if the block certificate is unique
and sufficient parties have received the block certificate.
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A Safety and Liveness

We say a block Bk is committed directly in epoch e if it is committed as a result of its own
commit-timere expiring. We say a block Bk is committed indirectly if it is a result of directly
committing a block Bl (l > k) that extends Bk.

▷ Claim 11. If an honest replica enters an epoch e at time t, then all honest replicas enter
epoch e by time t + ∆.

Proof. Suppose an honest replica r enters epoch e at time t and broadcasts an epoch e − 1
certificate. Suppose for the sake of contradiction, an honest replica r′ does not enter epoch e

by time t + ∆. Since replica r broadcasts epoch e − 1 certificate at time t, the epoch e − 1
certificate arrives all honest replicas by time t + ∆. This implies replica r′ receives epoch
e − 1 certificate and moves to epoch e by time t + ∆. A contradiction. ◁

▶ Corollary 12. The epoch timers of two honest replicas may differ by up to ∆ time.

▷ Claim 13. If an honest replica broadcasts ⟨clock, e + 1⟩ in epoch e, no honest replica
directly commits a block in epoch e.

Proof. Suppose an honest replica r sends ⟨clock, e+1⟩r in epoch e. Replica r sends ⟨clock, e+
1⟩r on two cases (i) when its epoch-timere expires before receiving epoch e block certificate,
and (ii) when it receives an epoch e equivocation while still in epoch e.

Suppose for the sake of contradiction, an honest replica, say replica r′, commits a block
Bk in epoch e at time t. Since replica r′ committed block Bk in epoch e at time t, it must
have received a Ce(Bk) such that its epoch-timere ≥ 2∆ at time t − 2∆ and did not detect
an epoch e equivocation by time t. By Corollary 12, replica r’s epoch-timere must be ≥ ∆ at
time t−2∆ in the worst case. In addition, no honest replica detected an epoch e equivocation
by time t − ∆ and sent a ⟨clock, e + 1⟩r due to epoch e equivocation; otherwise replica r′

would have detected epoch e equivocation by time t and would not commit. All honest
replicas will receive an epoch e certificate for Bk by time t − ∆. Thus, replica r would not
send ⟨clock, e + 1⟩r in epoch e. A contradiction. ◁

▶ Corollary 14. If a clock certificate exists in epoch e, no honest replica directly commits a
block in epoch e.
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▶ Lemma 15. If an honest replica commits a block Bk in epoch e, then (i) an equivocating
block certificate does not exist in epoch e (ii) every honest replica receives Ce(Bk) before
entering epoch e + 1.

Proof. Suppose an honest replica r directly commits an epoch-e block Bk at time t. Replica
r must have received a Ce(Bk) at time t − 2∆ such that its epoch-timere ≥ 2∆. All honest
replicas receive the proposal for Ce(Bk) by time t − 2∆.

For part (i), observe that after time t − ∆, no honest replica will vote for an equivocating
block in epoch e. If an honest replica voted for an equivocating block B′

k′ before t − ∆
in epoch e, replica r would have received the equivocating proposal for B′

k′ by time t and
would not commit. This contradicts the hypothesis of r committing Bk directly in epoch e.
Therefore, an equivocating block will not get any honest vote and will not be certified in
epoch e.

By part(i) of the Lemma, there does not exists an equivocating block certificate and by
Corollary 14, epoch-e certificate must be a block certificate. Thus, all honest replicas receive
Ce(Bk) and enter epoch e + 1. ◀

▶ Lemma 16 (Unique Extensibility). If an honest replica directly commits Be in epoch e, then
any certified block that ranks higher than Ce(Bk) must extend Be.

Proof. The proof is by induction on epochs e′ > e. For an epoch e′, we prove that if Ce′(Bk′)
exists then it must extend Bk . A simple induction shows that all later block certificates
must also extend Bk.

For the base case, where e′ = e + 1, the proof that Ce′(Bk′) extends Bk follows from
Lemma 15. The only way Ce′(Bk′) forms is if some honest replica votes for Bk′ using Step 3
in Protocol 1. Honest replica votes in epoch e′ only if it extends a highest certified block. By
Lemma 15, there does not exist an equivocating block certificate in epoch e and all honest
replicas receive Ce(Bk) before entering epoch e + 1. Thus, no honest will vote for a block
that does not extend Bk.

Given that the statement is true for all epoch below e′, the proof that Ce′(Bk′) extends
Bk follows from the induction hypothesis because the only way such a block certificate forms
is if some honest replica votes for it. Since honest replicas vote in epoch e′ with a valid epoch
e′ − 1 certificate and by induction hypothesis on certificates of epoch e < e” < e′, Ce′(Bk′)
must extend Bk. ◀

▶ Theorem 17 (Safety). Honest replicas do not commit conflicting blocks for any epoch e.

Proof. Suppose for the sake of contradiction two distinct blocks Bk and B′
k are committed

in epoch e. Suppose Bk is committed as a result of Bk′ being directly committed in epoch
e′ and B′

k is committed as a result of B′
k′′ being directly committed in epoch e′′. Without

loss of generality, assume k′ < k′′. Note that all directly committed blocks are certified. By
Lemma 16, B′

k′′ extends Bk′ . Therefore, Bk = B′
k. ◀

▶ Theorem 18 (Liveness). All honest replicas keep committing new blocks.

Proof. Each epoch lasts for 7∆ time. If the leader is Byzantine and does not propose any
blocks or proposes equivocating blocks, an epoch change will trigger and change the leader.
Due to round robin leader election, there will be an honest leader.

Consider an honest epoch e and its leader Le. Let t be the time when the first honest
replica enters epoch e. By Claim 11, all honest replicas enter epoch e by time t + ∆. If
Le has Ce−1(Bl), it proposes immediately, otherwise it waits for 2∆ to receive the highest
ranked block certificate Ce′(Bl). In any case, Le proposes by time t + 3∆ which arrives all
honest replicas by time t + 4∆.
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Since, leader Le is honest, it proposes a block Bk that extends highest ranked certificate
Ce′(Bl), all honest replicas will vote for it by time t + 4∆. Thus, all honest replicas will
receive Ce(Bk) by time t + 5∆ and move to epoch e + 1. Observe that epoch-timere ≥ 2∆ for
all honest replicas by time t + 5∆. Thus, all honest replicas start their commit-timere. Since
leader Le is honest, an epoch e equivocation does not exist. Thus, all honest replicas will
commit. ◀
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Abstract
Strong linearizability is a correctness condition conceived to address the inadequacies of linearzability
when using implemented objects in randomized algorithms. Due to its newfound nature, not many
strongly linearizable implementations of data structures are known. In particular, very little is
known about what can be achieved in terms of strong linearizability with strong primitives that are
available in modern systems, such as the compare-and-swap (CAS) operation.

This paper kick-starts the research into filling this gap. We show that Harris’s linked list and
Michael and Scott’s queue, two well-known lock-free, linearizable data structures, are not strongly
linearizable. In addition, we give modifications to these data structures to make them strongly
linearizable while maintaining lock-freedom. The algorithms we describe are the first instances of
non-trivial, strongly linearizable data structures of their type not derived by a universal construction.
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1 Introduction and Related Work

Linearizability [9] is the correctness condition of choice for asynchronous shared memory
algorithms. Intuitively, it requires that an operation on a concurrent object appears to
take effect instantaneously at some point (the linearization point) between the operation’s
invocation and response. Arranging the operations by these points must result in a sequential
history that is valid respective to the object’s specification. Due to this notion of “taking
effect at a point in time”, linearizability was considered to be practically equivalent to
atomicity. In fact, atomic and linearizable objects can be interchanged without altering the
worst-case behaviour of an algorithm [9]. Importantly, linearizability has been proven to be
a local property [9]. Informally, a property is local if the system satisfies the property given
that each object used by the system satisfies the property. Linearizability is also composable,
meaning that a linearizable object implemented using atomic objects is still linearizable
when the atomic objects are replaced with linearizable ones. These two properties make
linearizability desirable for modular programming.

Unfortunately, linearizability is not as suitable for use in randomized algorithms: Golab,
Higham and Woelfel [5] showed that the probability distributions over the set of outcomes
can change when atomic objects are replaced with linearizable ones.

They proposed strong linearizability, which when satisfied maintains the same probability
distribution over the set of outcomes as with atomic objects, under a strong adaptive adversary.
In fact, strong linearizability is sufficient and necessary for that. Strong linearizability
demands that future events do not change the linearization points of the past. Strong
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linearizability is also local and composable [5], further motivating the search for such
implementations.

Until now, most work on strong linearizability assumed that processes communicate only
using atomic (read/write) registers. Helmi, Higham and Woelfel [7] have shown that essentially
no non-trivial object has a deterministic wait-free strongly linearizable implementation from
single-writer registers. Using multi-writer registers, a number of strongly linearizable lock-free
algorithms have been devised, such as bounded max-registers [7], counters [2] and single-writer
snapshots [2, 12]. On the other hand, for none of these objects, strongly linearizable wait-free
implementations exist [2].

The impossibility result of wait-free consensus [3, 10] established that atomic read/write
registers are too weak to solve fundamental shared memory problems. Even simple data
structures, such as queues or stacks, have no lock-free linearizable algorithms [8]. On the
other hand, so-called universal constructions, such as Herlihy’s [8], show that n-process
consensus objects can be used to obtain wait-free linearizable implementations of any type
with a deterministic sequential specification. In fact, Herlihy’s universal construction is even
strongly linearizable [5].

Almost all of today’s systems provide strong synchronization primitives, such as atomic
compare-and-swap, which allows wait-free solutions to the consensus problem for arbitrary
many processes. Therefore, all types with a deterministic sequential specification have
wait-free strongly linearizable implementations (using the universal construction). But the
universal construction is not practical, as it is neither space nor time efficient.

Employing strong synchronization primitives (most commonly compare-and-swap), many
efficient linearizable solutions to fundamental data structure problems have been devised.
But it is generally not known whether these data structures are also strongly linearizable,
and thus whether they can safely be used in randomized algorithms against a strong adaptive
adversary.

Essentially no efficient strongly linearizable implementations are known for fundamental
data structures that require strong synchronization primitives (or at least it is not known,
whether existing linearizable implementations are also strongly linearizable). This paper aims
to kick-start the research needed to fill this gap. We investigate two well known standard
data structures: Harris’s linked list [6], and Michael and Scott’s queue [11]. Both algorithms
use compare-and-swap objects, and are linearizable and lock-free. We show that they are
not strongly linearizable (see Section 3 for Harris’s linked list and Section 5 for Michael and
Scott’s queue). We then show that relatively simple modifications to these data structures
yield strong linearizability (see Sections 4 and 6 respectively).

1.1 Other Related Work
As mentioned earlier, most non-trivial results on strong linearizability assume that processes
cannot perform strong atomic operations (only atomic reads and writes are permitted). An
exception is a recent randomized implementation of a double-compare-and-swap (DCAS)
object from compare-and-swap objects [4], which uses as a build block (and implements) a
strongly linearizable restricted DCAS object. Moreover, Attiya, Castañeda, and Hendler [1]
proved that wait-free strongly linearizable implementations of stacks and queues from
“readable” base objects, require that these base objects have consensus number infinity.

2 Preliminaries

We consider a distributed shared memory system with n processes communicating through
shared objects. Each shared object has a type, which outlines a set of operations, and is
defined by a sequential specification, a set of valid sequences of operations. An operation
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op consists of an invocation event, denoted inv(op), and possibly a matching response event
denoted rsp(op).

A transcript is a sequence of invocation and response events of operations. For transcripts
T and Y , we denote T ◦ Y as the concatenation of the two transcripts. A projection of a
transcript T onto a process p is denoted T |p, and is the sequence of invocation and response
events by p in T . A projection of T onto an object O, denoted as T |O, is the sequence
of invocation and response events of operations in T performed on O. An operation op

is complete in some transcript T if T contains its invocation and matching response. A
transcript is complete if every operation in the transcript is complete. In a transcript, an
operation op is atomic if rsp(op) immediately follows inv(op). An object O is atomic if every
operation on O in any transcript is atomic. On the other hand, an object O is implemented
if each operation op on O is a method using other implemented or base objects (objects
provided by the system). Formally, a method is associated with a sequence of operations
such that when op is called, the sequence of operations are executed.

A transcript T defines a happens before order T−→ for operations op1, op2 ∈ T , where
op1

T−→ op2 if and only if rsp(op1) occurs before inv(op2) in T . Note that this is a partial
order.

A history is a transcript where for every process p, every operation in H|p is atomic. A
history S is sequential if every operation in S is atomic. A sequential history S is valid if and
only if for any object O, H|O is in the sequential specification of the type of O. For every
incomplete operation in H, if either the operation is discarded, or a response is appended,
we obtain a complete history H ′ called a completion of H.

An interpreted history Γ(T ) can be derived from a transcript detailing an algorithm
execution using an implemented object O. It is obtained by iterating through all p, and
removing all events by p after inv(op) and not after its matching response rsp(op) for any
operation op by p. Intuitively, the interpreted history consists of invocation and response
events of ”high level” operations in T ; all intermediate steps for methods are removed from
the transcript. For a set of transcripts T , Γ(T ) = {Γ(T ) | T ∈ T }.

Consider H ′, a completion of a history H. A linearization [9] of H ′ is a sequential history
S satisfying all of the following:

All operations in H ′ are in S.
For all operations op1 and op2 in H, if op1

H′

−−→ op2, then op1
S−→ op2.

S is valid.

For an implementation of a shared object to be linearizable, every possible history on the
object must have a linearizable completion. A function f , mapping each history H from a
set H of histories to a linearization f(H) of H, is called linearization function for the set H.

Given a transcript T , if an event e is the t-th element of T , then we say that e occurs at
time t in T , or that timeT (e) = t. If e is not present in T , then we define timeT (e) = ∞.
For an atomic operation am in a transcript T , we say that am occurs at timeT (rsp(am)).
If an implemented operation op performs an atomic operation on line x of the method
corresponding to the operation, we refer to this atomic operation as opx. If op is complete
in a transcript T , then by timeT (opx), we refer to the last time at which opx is executed
during op.

Linearizability can also be expressed through linearization points. Consider a transcript T ,
and a linearizable object O. A linearization point function pt for O maps op ∈ Γ(T |O) to ∞
or a time in T such that
1. pt(op) ∈ [timeT (inv(op)), timeT (rsp(op))], and
2. there is a valid sequential history S of Γ(T |O) where for all op1, op2 ∈ S, if op1

S−→ op2
then pt(op1) ≤ pt(op2). (This property ensures that S preserve the happens-before-order
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of T . It is possible to have pt(op1) = pt(op2): this simply means that op1 and op2 can
appear in S in either relative order without violating the happens-before-order.)

We call pt(op) the linearization point of op. Intuitively, this is the point in time where
operation op ”appears” to take effect. For a set of transcripts T , the prefix closure of T
is the set containing all prefixes of transcripts in T . We denote the prefix closure of T as
close(T ). A function f : T → T ′, where T and T ′ are sets of transcripts, is prefix preserving
if for any two transcripts T, Y ∈ T where T is a prefix of Y , f(T ) is a prefix of f(Y ).

A function f is a strong linearization [5] function for a set of transcripts T if:
f is a linearization function for Γ(close(T )), and
f is prefix preserving.

An implemented object O is strongly linearizable if and only if the set of transcripts on O

has a strong linearization function.
A method of an implemented object is lock-free if it guarantees that if a process executing

a method takes infinitely many steps, then infinitely many method calls finish within a finite
number of steps. An object is lock-free if every operation on the object is lock-free. An
implemented object is wait-free if every method call terminates after taking finitely many
steps.

Our algorithms use an atomic compare-and-swap object, which has an operation denoted
as CAS. The operation takes two arguments: old and new. If the value of the object is
equal to old, then the operation overwrites the value of the object to new. Otherwise, the
operation has no effect. In addition, the object also allows reads and writes.

3 Harris’s linked list is not strongly linearizable

Nodes in Harris’s linked list implementation have the following fields: key and succ. Field
key stores the value of the node, and is taken as the argument by the node’s constructor.
Once set, the value of key never changes for a particular node. The successor field, succ, is
a CAS object which contains next, the next node in the list, and marked, a boolean value
to indicate whether the node has been “logically deleted”. A node is marked before being
excised (“physically deleted”) from the linked list. As a shorthand, we access different parts
of the succ field of a node v by v.next or v.marked. The successor field is initialized to
(null, false).

There are two shared variables Head and Tail, which represent the head and tail sentinel
nodes of the list. Head has a key value of −∞, and the Tail has a key value of ∞. Initially,
Head and Tail are the only nodes in the linked list, where Head.succ = (Tail, false) and
Tail.succ = (null, false).

The sequential specification of the linked list we consider is as follows. The linked list
consists of three methods: delete, insert and find. All three operation return a boolean
value to designate whether the operation has failed or succeeded. The nodes are sorted by
their keys, and all keys in the linked list are unique. An insert operation fails if the key
being inserted is already in the linked list, and otherwise it succeeds. Likewise, a delete

operation fails if the key being deleted is not in the linked list. The return value of find

indicates whether a key is in the linked list.
Harris’s linked list uses helper function search(search_key), which returns nodes left

and right with the following guarantees: at some point in time during the execution of
search,
1. left.key < search_key ≤ right.key,
2. left and right are unmarked and
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3. left.next = right.
The search method is used to locate the nodes of interest for each operation of the linked
list. For example, a successful insert adds a new node between left and right returned
by search. It is also used to verify existence of keys in the linked list. Since the keys are
in sorted order, at points in time when the search conditions are met, left contains the
largest key less than search_key and right contains the smallest key less than or equal to
search_key. If right.key = search_key then the linked list contains search_key at a point
in time when the search conditions held; if right.key ̸= search_key, then the linked list does
not contain search_key at such a point in time. These are precisely the points when find,
a failed delete and a failed insert should linearize.

Recall that, intuitively, strong linearizability requires that future events do not affect the
linearization order of the past. That is, events that occur after a linearization point should
not affect the position of that linearization point in a history. However, at the point in time
when the search conditions hold, Harris’s linked list does not guarantee which nodes will be
returned by search. In other words, if time t is when the search conditions are true, it is
possible to change the history after t (i.e. change the ”future”) such that search(search_key)
returns a different pair of nodes, which can change the response of the operation invoking
search. This suggests that the linked list is not strongly linearizable. By altering the response
of an operation through future events, the linearization order of the past will likely need to
change to maintain validity. We use this observation in our proof of Lemma 1.

Note that a successful insert linearizes when a new node is inserted by a successful CAS
on line 61. Likewise, a successful delete linearizes when a node is marked by a successful
CAS on line 45. These linearization points are already strongly linearizable; events that
occur after a CAS cannot influence whether the CAS succeeds. Thus our modifications in
the next section focus on the search function.

▶ Lemma 1. The linked list implementation by Harris (Figure 1) is not strongly linearizable.

A full proof of the lemma is provided in Appendix A. The high level idea is as follows.
Let f be a linearization function for the linked list. We denote nodei as the node

containing key i, inp(x) as a transcript of an insert of key x by process p and delp(x) as a
transcript of a delete of key x by p.

Consider the following transcripts for processes p and q:

S = inp(3) ◦ (delq(2) to the first execution of line 15) ◦ inp(2)
T1 = S ◦ delp(3) ◦ (delq(2) from line 16 to completion)
T2 = S ◦ (delq(2) from line 16 to completion)

Note that in S, the search(2) call in delq(2) will return Head and node3 if node3 is unmarked
when line 16 is executed. Otherwise, search will restart.

Here transcripts T1 and T2 have the same prefix (the ”past”) S, with the only difference
(in the ”future”) being that T1 has delp(3) before q finishes delq(2). In T2, when delq(2)
continues to completion, node3 is unmarked and is returned as right. Thus delq(2) fails
in T2 (search_key < right.key), and must be ordered before inp(2) in f(T2) to preserve
validity. However in T1, delp(3) marks node3 and the search(2) call in delq(2) restarts its
traversal. Eventually search(2) returns Head and node2. In this case, delq(2) succeeds and
delq(2) must be ordered after inp(2) in f(T1) to preserve validity. Then f cannot be a strong
linearization function since delq(2) must be ordered before inp(2) for f(S) to be a prefix of
f(T1), but then f(S) is not a prefix of f(T2). Transcript S is a prefix of both T1 and T2, but
f(S) is not a prefix of f(T2) in this case.
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Function search(search_key):
1 search_again
2 while true do
3 curr ← Head
4 (curr_next, curr_marked) ←

Head.succ
5 repeat
6 if not curr_marked then
7 left ← curr
8 left_next ← curr_next
9 curr ← curr_next

10 if curr = Tail then
11 break
12 (curr_next, curr_marked) ←

curr.succ
13 until curr_marked or curr.key <

search_key
14 right ← curr
15 if left_next = right then
16 if right ̸= Tail and

right.succ.marked then
17 goto search_again
18 else
19 return (left, right)

20 if left.succ.CAS(left_next, right) then
21 if right ̸= Tail and

right.succ.marked then
22 goto search_again
23 else
24 return (left, right)

Function find(search_key):
32 left, right ← search (search_key)
33 if right = Tail or right.key ̸= search_key

then
34 return false
35 else
36 return true

Function delete(search_key):
38 while true do
39 left, right ← search (search_key)
40 if right = Tail or right.key ̸=

search_key then
41 return false
42 end
43 (right_next, right_marked) ←

right.succ
44 if not right_marked then
45 if right.succ.CAS((right_next,

false), (right_next, true)) then
46 break
47 end
48 end
49 end
50 if not left.succ.CAS((right, false),

(right_next, false)) then
51 left, right ← search (right.key)
52 end
53 return true

Function insert(search_key):
54 new_node ← new Node(search_key)
55 while true do
56 left, right ← search (search_key)
57 if right ̸= Tail and right.key =

search_key then
58 return false
59 end
60 new_node.succ ← (right, false)
61 if left.succ.CAS((right, false),

(new_node, false)) then
62 return true
63 end
64 end

Figure 1 Harris’s Linked List.

4 A strongly linearizable linked list

In this section we describe modifications to Harris’s linked list to yield a strongly linearizable
variant. The modified algorithm (Figure 2) uses the same node object as in Harris’s algorithm.
In addition, the list elements are still sorted by their keys, and the list uses Head and Tail

sentinels in the same manner as the original.
The largest modification can be seen in the search method. The changes guarantee

different search conditions: at the last shared memory step when executing search,
1. left.key ≤ search_key < right.key,
2. left is unmarked, and
3. left.next = right.
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Recall that in Harris’s list the condition guaranteed that left.key < search_key ≤ right.key

and that right is also unmarked. Similar to Harris’s implementation, if left is returned with
left.key = search_key, then the linked list contains search_key when the search conditions
are true; if left.key < search_key then the linked list does not contain search_key when
the search conditions are true.

Since search can only exit on line 74, the last shared memory step in search is either line 67
or line 77, when curr.succ is read. If search exits, we know that left.key ≤ search_key <

right.key (by line 72) and this was true at the last shared memory step (since key does not
change). In addition, we know that left = curr was unmarked at the last shared memory step
(by line 73), and that right = curr_next was adjacent to left. Thus the search conditions
are true. Observe that at every execution of line 67 or line 77, it is known whether it is
the last shared memory step; when curr.succ is read, all values used in the exit conditions
for search are known. Thus, events after the last shared of memory step of search do not
influence which nodes are returned. This is the crux of why the new implementation is
strongly linearizable.

The other methods are nearly identical to Harris’s counterparts; the methods check
whether a key is in the linked list by looking at the left node. One noteworthy change is
that SLdelete no longer attempts to excise the marked node. This is because left is now
the node to delete, and the predecessor of left is not readily available to “swing” the pointer
to right.

We define the following terms to use in the proofs below. Let T be a transcript containing
operations on O, an implementation of the algorithm in Figure 2. At time t, we say that
a node v is reachable if either v = Head, or there exists a reachable node u such that
u.next = v. A node v is pre-inserted if it was initialized in line 88 of SLinsert, but has not
been an argument of a successful CAS operation in line 94.

For a transcript T containing operations on O, we say that at time t, the interpreted
value of O is the sorted sequence of keys of all unmarked, reachable nodes excluding Head

and Tail. Intuitively, the interpreted value describes the keys that are currently “in” the
linked list. To prove strong linearizability, we will show that any operation that linearizes at
time t should behave as if it is acting on a linked list with the keys in the interpreted value
at t (Lemmas 7- 9). In addition, we show that the interpreted value at time t is consistent
with the operations that have linearized before t (Lemma 10).

For the proof of strong linearizability, we assume without loss of generality that an
operation op responds at the time of its last shared memory operation, i.e. if line x of op

is the last shared memory operation, timeT (opx) = rsp(op). Note that the response of an
operation is uniquely determined by the time of its last shared memory operation.

We define the function pt(op) for any operation op in a transcript T on a linked list
outlined in Figure 2 in the following way:

1. If op is a successful SLinsert operation, then pt(op) is the time at which the CAS
operation in SLinsert succeeds. That is, pt(op) = timeT (op61).

2. If op is a successful SLdelete operation, then pt(op) is the time at which the CAS
operation in SLdelete succeeds. That is, pt(op) = timeT (op45).

3. If op is a failed SLinsert or SLdelete, or an SLfind operation, then pt(op) = rsp(op)
(i.e. at its last shared memory step).

4. Otherwise, op is pending in T and pt(op) = ∞.
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Function search(search_key):
65 while true do
66 curr ← Head
67 (curr_next, curr_marked) ←

Head.succ
68 while true do
69 if not curr_marked then
70 start ← curr
71 start_next ← curr_next
72 if curr.key ≤ search_key <

curr_next.key then
73 if not curr_marked then
74 return (curr, curr_next)
75 break
76 curr ← curr_next
77 (curr_next, curr_marked) ←

curr.succ
78 while curr_marked do
79 curr ← curr_next
80 (curr_next, curr_marked) ←

curr.succ
81 start.succ.CAS((start_next, false),

(curr, false))

Function SLinsert(search_key):
88 new_node ← Node(search_key)
89 while true do
90 left, right ← search(search_key)
91 if left.key = search_key then
92 return false
93 new_node.succ ← (right, false)
94 if left.succ.CAS((right, false),

(new_node, false)) then
95 return true

Function SLdelete(search_key):
96 while true do
97 left, right ← search(search_key)
98 if left.key ̸= search_key then
99 return false

100 if left.succ.CAS((right, false), (right,
true)) then

101 return true

Function SLfind(search_key):
102 left, right ← search(search_key)
103 if left.key ̸= search_key then
104 return false
105 else
106 return true

Figure 2 A Strongly linearizable linked list.

For any complete SLinsert, SLdelete or SLfind operation op, note that pt(op) corres-
ponds to the execution of an atomic operation in op. Thus if op1, op2 ∈ T , pt(op1) ̸=
∞, pt(op2) ̸= ∞ and op1 ̸= op2, then pt(op1) ̸= pt(op2). Also note that pt(op) ∈
[timeT (inv(op)), timeT (rsp(op))].

Let T be the set of all transcripts on an implementation of the algorithm in Figure 2. For
all T ∈ T , define a sequential history f(T ) such that for all op1, op2 ∈ Γ(T ) with pt(op1) ̸= ∞
and pt(op2) ̸= ∞, op1

f(T )−−−→ op2 if and only if pt(op1) < pt(op2). By the above observation
that two different operations map to different times by pt, the history f(T ) is unambiguous.

The following four claims show that the invariants (e.g. the linked list is always sorted)
maintained by Harris’s implementation hold for the modified implementation as well. The
proofs of these lemmas are postponed to Appendix B.

▶ Lemma 2. A marked node’s succ field never changes.

▶ Lemma 3. Keys are strictly sorted; For any two nodes v1 and v2, if v1.next = v2 then
v1.key < v2.key.

▶ Corollary 4. The linked list never contains duplicate keys.

▶ Lemma 5. All unmarked, not pre-inserted nodes are reachable.

▶ Lemma 6. Consider a search call that returns and let t be the last time line 67 or line 77
is executed. If curr.key < search_key < curr_next.key at t, then the interpreted value does
not contain search_key at t. Otherwise, if curr.key = search_key, the interpreted value
contains search_key at t.
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Proof. Since search returns, curr_marked = false was read on time t. Suppose curr.key <

search_key < curr_next.key. Since curr is unmarked at t, by Lemma 5, it is reachable
and curr_next is also reachable. To show a contradiction, suppose that search_key is in
the interpreted value at time t. Consider the sequence of nodes

v1, . . . , vk, vk+1, . . . vm

where v1 = Head, vk = curr, vk+1 = curr_next, vm = Tail and vi.next = vi+1 for all
i < m. The sequence contains all reachable nodes at time t, thus i /∈ {k, k + 1} exists such
that vi.key = search_key. However, if such an i existed then the linked list is not strictly
sorted and Lemma 3 is violated.

Now suppose that curr.key = search_key. Then the interpreted value at t contains
search_key since curr is unmarked. ◀

▶ Lemma 7. A SLfind(k) operations fails if and only if the interpreted value does not
contain k at pt(SLfind(k)).

Proof. A SLfind fails if left.key ̸= search_key, and we know that either left.key =
search_key or left.key < search_key < right.key. Then at pt(SLfind(k)) the interpreted
value does not contain k by Lemma 6.

For the converse, SLfind succeeds if left.key = search_key. Similar to above, Lemma
6 implies that the interpreted value contains k at pt(SLfind(k)). ◀

▶ Lemma 8. A SLdelete(k) = op operation fails if and only if the interpreted value does
not contain k at pt(op).

Proof. When op fails, by the same reasoning as in the proof of Lemma 7, the interpreted
value does not contain k at pt(op).

Suppose op succeeds, meaning pt(op) = timeT (op100), and the CAS on line 100 succeeds.
This implies that left is unmarked at time(op100), therefore left.key is in the interpreted
value at this time. Since left.key = k, the interpreted value contains k. ◀

▶ Lemma 9. An SLinsert(k) = op operation fails if and only if the interpreted value contains
k at pt(op).

Proof. When op fails, by the same reasoning as in the proof of Lemma 7, the interpreted
value contains k at pt(op).

Suppose op succeeds, meaning pt(op) = time(op94), and the CAS on line 94 succeeds.
This implies that left.succ = (right, false) at time(op94), therefore both left and right are
reachable at this time. By Lemma 2 the interpreted value does not contain k. ◀

▶ Lemma 10. The interpreted value contains k at time t if and only if there exists a successful
insert SLinsert(k) = opin such that pt(opin) < t and no successful delete SLdelete(k) = opdel

exists such that pt(opin) < pt(opdel) < t.

Proof. Suppose opin with pt(opin) < t exists such that no delete opdel exists with pt(opin) <

pt(opdel) < t. By Lemma 5, the interpreted value contains k after pt(opin). To show a
contradiction, suppose that the interpreted value at t does not contain k. A node is not in
the interpreted value if it is not reachable, or it is marked. However, only marked nodes are
unreachable (when it is not pre-inserted), thus the node containing k must have been marked
between pt(opin) and t. However, nodes are only ever marked when the CAS on line 100
succeeds, with left.key = k. Such a successful CAS corresponds to a opdel operation with
pt(opin) < pt(opdel) < t, yielding a contradiction.
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To show the converse, first suppose that no successful SLinsert(k) = opin operation
exists such that pt(opin) < t in T . It is clear that the interpreted value does not contain k

at t by parsing the code; the only method which initializes a new node with search_key is
SLinsert, and only a successful CAS on line 94 will make the node reachable. Now suppose
that there exists a successful opdel such that pt(opin) < pt(opdel) < t for any successful
SLinsert(k) operation opin. At pt(opdel), a reachable, unmarked node with key k is marked.
There is only one such node at pt(opdel) by Corollary 4. To show a contradiction, suppose
that at t, the interpreted value contains k; a reachable, unmarked node with key k exists.
The interpreted value does not contain k immediately after pt(opdel), thus a new node was
inserted by a successful CAS in SLinsert in (pt(opdel), t). However, such a CAS corresponds
to a successful SLinsert operation with search_key = k. ◀

▶ Theorem 11. The linked list implementation in Figure 2 is strongly linearizable; f is a
linearization function for O, and f is prefix preserving.

Proof. For an operation op on O, Lemmas 7, 8 and 9 show that op responds in a way that
is consistent with the interpreted value of O at pt(op). By Lemma 10, at any pt(op), the
interpreted value contains k if and only if a successful SLinsert(k) linearized before pt(op)
with no successful SLdelete(k) that linearized between pt(op) and the insert. Therefore,
f(T ) is a linearization of the interpreted history Γ(T ).

Consider step t of T and operation op ∈ Γ(T ) where pt(op) = t. Then
1. operation op is a successful SLinsert operation and t is when a successful CAS on line 94

is executed
2. operation op is a successful SLdelete operation and t is when a successful CAS on line 100

is executed
3. operation op is either a SLfind operation, a failed SLinsert operation, or a failed

SLdelete operation and t is when op last executes line 67 or line 77. It is completely
determined by step t whether t is the last execution of line 67 or line 77; all values used in
the exit condition of search on lines 72 and 73 are known by t. Furthermore, the values
used in the exit conditions for a failed SLinsert (line 98) and a failed SLdelete (line 91)
are known by t.

At step t it is determined what operation op satisfies pt(op) = t. Therefore, if S is a
prefix of T , then f(S) is a prefix of f(T ). ◀

We prove that the algorithm in Figure 2 is lock-free. For any operation op, op finishes
within a finite number of steps after pt(op). Therefore, it suffices to show that if a process
p takes infinitely many steps during a method call, then infinitely many operations have
linearized.

The succ field of a reachable node is only changed by a CAS operation. We will call
such successful CAS operations an update to the linked list. Note that the CAS in search

may succeed, but if start_next = curr then start.succ does not change and this is not an
update. A successful CAS in search is an update if marked nodes were made unreachable
by the operation. Thus the number of updates by search is upperbounded by the number
of marked nodes, i.e. the number of successful SLdelete that have linearized. A successful
SLinsert does a single update, and unsuccessful SLinsert and SLdelete do not update the
linked list.

▶ Lemma 12. The search method is lock-free.

We prove this lemma in Appendix B.
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▶ Theorem 13. The linked list implementation in Figure 2 is lock-free.

Proof. It is clear that since search is lock-free by Lemma 12, SLfind is lock-free.
Without loss of generality, consider a SLdelete execution that lasts at least k iterations

(of the loop in SLdelete). For every iteration, left.key ̸= search_key and the CAS in
SLdelete must have failed. However left.succ = (right, false) when last read in search.
Thus an update occurred between when left.succ was read and CAS failed. Then at least
k/2 successful SLinsert or SLdelete have linearized. This implies that if infinitely many
steps are taken by a process executing SLdelete, then infinitely many successful SLinsert

or SLdelete have linearized. ◀

5 Michael and Scott’s queue is not strongly linearizable

Michael and Scott’s queue [11] is a linked list based algorithm. The node object consists of
two fields; value and next, where next is a pair containing a node (the next node in the
linked list) and a sequence number. The value contains the element that was enqueued, and
the next field is a CAS object. The queue maintains Head and Tail CAS objects which are
both initialized to (vdummy, 0), where vdummy is a dummy node. The sequence numbers are
present to prevent the ABA problem, but for brevity we will commonly refer to Head, Tail

and the next field as if they refer to nodes, instead of a node-sequence number pair.
At a high level, enqueued elements are appended to the Tail, and the Head is set to

Head.next to dequeue elements. The Head refers to the last element that was dequeued
(hence the dummy node) to simplify cases when the queue is empty. The queue also prevents
Tail from lagging behind Head. This ensures that freeing a dequeued node (by the call to
free on line 130) does not corrupt the data structure.

The linearization point of enqueue is when a new node is successfully appended to the
list (at CAS success on line 113). For a successful dequeue, it is when Head changes to
Head.next (line 129); for a failed dequeue it is when null was found when reading start.next

(line 121).
The linearization points for enqueue and successful dequeue are already strong linear-

ization points; similar to successful insert and delete for Harris’s implementation, they
correspond to to a successful CAS, after which the methods return. However, the lineariz-
ation point of a failed dequeue operation is not a strong linearization point. If Head was
changed between the execution of line 121 (the linearization point) and line 122, then the
dequeue restarts and may no longer fail. Similar to a failed delete in Harris’s linked list,
events after the linearization point can change the response of the operation. We have only
examined one particular linearization point for a failed dequeue, but this observation can be
extended to prove that the implementation is not strongly linearizable similar to the proof of
Lemma 1. We postpone the proof the next lemma to Appendix C.

▶ Lemma 14. Michael and Scott’s queue (Figure 3) is not strongly linearizable.

6 A strongly linearizable queue

As previously stated, Michael and Scott’s queue is not strongly linearizable only because the
linearization point for a failed dequeue is not strongly linearizable. The problem was that
because of the condition on line 122, events after the linearization point could change the
response of a failed dequeue operation.
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Function enqueue(x):
107 node ← new Node(x)
108 while true do
109 (end, endc) ← Tail
110 (next, nextc) ← end.next
111 if (end, endc) = Tail then
112 if next = null then
113 if end.next.CAS((next, nextc),

(node, nextc + 1)) then
114 break
115 else
116 Tail.CAS((end, endc), (next,

endc + 1))

117 Function dequeue():
118 while true do
119 (start, startc) ← Head
120 (end, endc) ← Tail
121 (next, nextc) ← start.next
122 if (start, startc) = Head then
123 if start = end then
124 if next = null then
125 return false
126 Tail.CAS((end, endc), (next,

endc+1))
127 else
128 value ← next.value
129 if Head.CAS((start, startc),

(next, startc+1)) then
130 free(start)
131 return true

Figure 3 Michael and Scott’s lock-free queue.

A simple modification that will yield a strong linearizable queue is to remove the condition
on line 122. The linearization point remains the same; it is when null is read on line 121.
Intuitively, if null is read then start refers to the last node, and so should Head and Tail

(thus start = end). This means that the method commits to failing exactly when null is read,
and at this point the queue is empty (recall that Head points to the last element dequeued).
Not checking whether Head changed since its last read (line 122) will not corrupt the queue
since if Head changed, the CAS on line 129 will fail. In our proof that the algorithm in
Figure 4 is strongly linearizable, we disregard line 157 (the free function call). Thus, if the
method exits on line 158, the CAS on line 156 is the last shared memory operation. Calling
free does not affect strong linearizability. For the proofs below, we assume that no ABAs
occur due to our use of sequence numbers. Let T be a transcript containing operations on
O, an implementation of the queue. We define whether a node is reachable identically as
with the linked list; a node is reachable at time t if it can be obtained by traversing the

Function dequeue():
146 while true do
147 (start, startc) ← Head
148 (end, endc) ← Tail
149 (next, nextc) ← start.next
150 if start = end then
151 if next = null then
152 return false
153 Tail.CAS((end, endc), (next, endc+1))
154 else
155 value ← next.value
156 if Head.CAS((start, startc), (next, startc+1)) then
157 free(start) // ignored in the proof of strong linearizability
158 return true

Figure 4 Dequeue operation of a strongly linearizable lock-free queue.
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sequence of nodes from Head (let no node be reachable if Head = null). We say that Head

(or Tail) is incremented if Head = (v, _) is changed to (v.next, _), where v is a node, and
v.next ̸= null. Suppose at time t, we have the following sequence of nodes

v1, . . . , vk

where Head = v1, vi−1.next = vi for i ∈ {2, . . . , k} and vk.next = null. The sequence is well
defined if Head ̸= null, (guaranteed by Lemma 16). We define the interpreted value of O at
time t as the following sequence of numbers:

v2.value, . . . , vk.value.

Once again, we assume without loss of generality an operation op responds at its last
shared memory operation.

The linearization function pt(op) for an operation op in T on an implementation of the
queue in Figure 4 (with enqueue from Figure 3 is defined as follows:
1. If op is an enqueue operation, then pt(op) is the time at which the CAS on line 113

succeeds.
2. If op is a dequeue operation, then pt(op) is the first time at which null is read on line 149

or the CAS on line 156 succeeds.
3. Otherwise, op did not perform its last shared memory step and pt(op) = ∞.
Let T be the set of all transcripts on an implementation of the queue in Figure 4. For
all T ∈ T , we define a sequential history f(T ) that orders operations according to pt, and
excludes all operations op with pt(op) = ∞. That is, for pt(op1) ̸= ∞ and pt(op2) ̸= ∞,
op1, op2 ∈ T , op1

f(T )−−−→ op2 if and only if pt(op1) < pt(op2). Again, f(T ) is unambiguous
since for every operation op ∈ Γ(T ) such that pt(op) ̸= ∞, the step of T at pt(op) is performed
by op.

The following two lemmas describe invariants of the queue which are used to argue strong
linearizability. Their proofs can be found in Appendix D.

▶ Lemma 15. Tail is always reachable.

▶ Lemma 16. Head is never null, and is only ever incremented.

▶ Lemma 17. Suppose the interpreted value of the queue is (x1, . . . , xk) at a CAS call on
line 113. Let t be the time at which this CAS call occurs. If the CAS call succeeds, then the
interpreted value immediately after t is (x1, . . . , xk, value), where value is the argument of
enqueue.

Proof. Suppose the CAS operation on line 113 succeeds, meaning end.next = null at t. By
Corollary 23, Tail.next is also null when it was assigned to end. Since Tail is only ever
incremented, and Tail.next = null up until the CAS operation, Tail and end refer to the
same node at t. By Lemma 15 end is a reachable node. Since end.next = null, end is the
last reachable node by Observation 24. Thus the interpreted value immediately after t is
(x1, . . . , xk, value). ◀

▶ Lemma 18. Suppose that at time t, start.next = null is read on line 121. Then the
interpreted value of the queue at t is empty.

Proof. This follows immediately from Lemma 16 and Corollary 23; since start.next = null

and Head is only ever incremented, Head cannot have changed between when it was assigned
to start and when start.next was read. ◀
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▶ Lemma 19. If start.next = null was read on line 149 then start = end.

Proof. As seen in the proof of Lemma 18, Head and start reference the same node when
start.next = null was read. Since Tail is always reachable (Lemma 15) and Head references
the last reachable node, Tail references the same node as Head during the execution of
lines 147 and 148. Thus when Tail is read on line 148, it references the same node as
start. ◀

▶ Lemma 20. Suppose at time t the interpreted value of the queue is (x1, . . . , xk), and a
successful CAS on line 156 is executed. Then immediately after time t, the interpreted value
of the queue is x2, . . . , xk.

Proof. By Lemma 16, upon CAS success the Head changes to head.next. ◀

▶ Theorem 21. The queue in Figure 3 but with the dequeue function from Figure 4 is
strongly linearizable and lock-free.

Proof. Michael and Scott showed that their queue (in particular enqueue) is lock-free [11].
The only method that was changed is dequeue, and the only change was the removal of
a condition which could have caused another iteration of the loop. Thus dequeue is still
lock-free.

We now show that the queue is strongly linearizable. For an enqueue and a successful
dequeue on O, Lemmas 17 and 20 ensure that both operations modify the interpreted value
appropriately at their linearization points. Lemma 18 guarantees that for a failed dequeue,
the interpreted value is empty at its linearization point. Thus, f(T ) is a linearization of the
interpreted history Γ(T ).

Consider a step t of T and an operation op ∈ Γ(T ) where pt(op) = t. Then
1. operation op is an enqueue operation and t is when a successful CAS on line 113 is

executed
2. operation op is a dequeue operation and t is when a successful CAS on line 156 is executed
3. operation op is a dequeue operation and t is when null is read on line 149. Notice that

by Lemma 19, reading null guarantees that op will fail.

At step t it is determined what operation op satisfies pt(op) = t. Therefore, if S is a
prefix of T , then f(S) is a prefix of f(T ). ◀

7 Discussion

We proved that Harris’s linked list and Michael and Scott’s queue, two well-known lock-free
data structures, are not strongly linearizable. We have carefully analyzed where the strong
linearizability breaks, and gave modifications to derive strongly linearizable variants.

An observation we made on the original data structures is that an operation exists
such that the response of the operation was not determined by the time of its linearization
point. Using this observation, we constructed transcripts where events after an operation’s
linearization point changed the linearization order of the past. It is currently unknown
whether such observations directly imply that a data structure is not strongly linearizable.

Simple modifications addressing these operations were given but the proofs of strong
linearizability were non-trivial. The minor changes required gives hope for future work on
deriving strongly linearizable data structures.

We hope that our insights can be used to develop techniques either for determining whether
other linearizable implementations are strongly linearizable, or to derive strongly linearizable
implementations from linearizable ones. For example, interpreted values have been used
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to great effect in this paper and by others [4, 12] in proving whether implementations are
strongly linearizable, albeit in an ad-hoc manner. A future direction could be to formalize
the concept of interpreted values, then develop techniques around it.
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A Proofs of claims from Section 3

▶ Lemma 1. The linked list implementation by Harris (Figure 1) is not strongly linearizable.

Proof. We denote nodei as the node containing key i, inp(x) as a transcript of an insert of
key x by process p and delp(x) as a transcript of a delete of key x by p.

Consider the following transcripts for processes p and q:

S = inp(3) ◦ (delq(2) to the first execution of line 15) ◦ inp(2)
T1 = S ◦ delp(3) ◦ (delq(2) from line 16 to completion)
T2 = S ◦ (delq(2) from line 16 to completion)

To show a contradiction, assume that the algorithm is strongly linearizable. Then there
exists a strong linearization function f for {S, T1, T2}. In S, the insert of 3 happens before
every other operation, thus inp(3) is the first operation in f(S). Either delq(2) is ordered
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before inp(2) in f(S), or it is not. We consider both cases below. For delq(2), we can see
from tracing the code that during its execution up to line 15, node3 is assigned to right.

Suppose delq(2) linearizes prior to inp(2) in S. Then we have

f(S) = inp(3) ◦ delq(2) ◦ inp(2).

In T1, p completes delp(3) before q finishes its delete. Note that while p executes delp(3), q

takes no steps. By the post-conditions of search, node3 is assigned to right on line 39 of
delp(3). This right will fail the if condition on the next line. During the execution of S, no
node is marked, and right.next does not change after its insertion. Thus, the if condition on
line 44 is satisfied during the execution of delp(3). For the same reason, delp(3) will succeed
its CAS call on line 45, and node3 is marked. Therefore, when q resumes its execution of
delq(2), right (node3) will be marked. The condition on line 15 succeeds, and q restarts
search.

From the post-conditions of search, line 56 of inp(2) assigns Tail to right, which will
fail the if condition on line 57. No shared memory operations have completed between p’s
execution of lines 56 and 61, thus the CAS call on line 61 will succeed, and inp(2) will
succeed (return true). Therefore, when q executes another search, right = node2, and the
CAS will succeed on line 45, thus delq(2) will succeed.

From our assumption that f is strongly linearizable, if delq(2) linearizes before inp(2) in
S, then delq(2) also linearizes before inp(2) in T1. We have,

f(T1) = inp(3) ◦ delq(2) ◦ inp(2) ◦ delp(3).

However, this sequential history is not valid since delq(2) succeeds when no node in the
linked list contains 2. This contradicts the assumption that delq(2) linearizes before inp(2).

Now suppose that delq(2) does not linearize before inp(2) in S; either delq(2) linearizes
after inp(2) in S, or it does not linearize in S. That is,

f(S) = inp(3) ◦ inp(2) ◦ delq(2) or f(S) = inp(3) ◦ inp(2).

No delete operation occurs in T2 other than delq(2), thus when q continues delq(2), it fails
the if condition on line 15 and returns node3 as right. The search key (2) and the key of
right_node (3) are different, and delq(2) returns false.

From our assumption that f is strongly linearizable, if f(S) = inp(3) ◦ inp(2) ◦ delq(2),
then f(T2) = inp(3) ◦ inp(2) ◦ delq(2). Otherwise, since delq(2) is complete in T2, delq(2)
linearizes in T2 but not in S. Since delq(2) still linearizes after inp(2) in T2, f(T2) is the
same as above. However, this sequential history is not in the sequential specification; a delete

method fails when the key being deleted is in the linked list. This contradicts the assumption
that delq(2) does not linearize before inp(2) in S.

Both cases contradict the assumption that f is a strong linearization function. Therefore,
no strong linearization function can be defined over {S, T1, T2}, and Harris’s linked list
implementation is not strongly linearizable. ◀

B Proofs of claims from Section 4

▶ Lemma 2. A marked node’s succ field never changes.

Proof. A succ field is only changed by the three CAS operations and on line 94. It is clear
that none of the three CAS operations will succeed if a node is marked. A node when
constructed is by default unmarked, and when changed on line 94 it is left unmarked. Thus
new_node on line 94 is always unmarked when it changes. ◀
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▶ Lemma 3. Keys are strictly sorted; For any two nodes v1 and v2, if v1.next = v2 then
v1.key < v2.key.

Proof. Initially, there are only Head and Tail where Head.key < Tail.key, thus the lemma
is true. The next field of a node is only ever altered on lines 94 and 95 in SLinsert, and on
line 86 in search. We show that if the lemma is true before each of the listed operations,
then it is true after the operation. For the lines corresponding to CAS operations, we assume
that the call succeeds since otherwise no change takes place.

Consider an SLinsert operation. The search call return only if left.key ≤ search_key <

right.key. Line 94 is executed if left.key ̸= search_key, thus left.key < search_key <

right.key. Then we have that after line 94, new_node.next = right and new_node.key =
search_key < right.key. Furthermore, if the CAS on line 95 succeeds, left.next =
new_node and we have already established that left.key < search_key = new_node.key.

For the CAS in search, consider the sequence of nodes

v1, v2, . . . , vk

where v1 = start, vk = curr at the execution of the CAS, and vi+1 is vi.next when it was
read on line 67, 80 or 84. The sequence is well defined since curr is set to curr_next after
curr.succ is read. After the CAS succeeds, start.next = curr. Since we assume that the
lemma is true before the CAS succeeds, v1.key < vk.key, thus it is still maintained. ◀

▶ Corollary 4. The linked list never contains duplicate keys.

Proof. If it contained duplicate keys Lemma 3 is violated. ◀

▶ Lemma 5. All unmarked, not pre-inserted nodes are reachable.

Proof. Reachability is only affected by the CAS on line 95, when a node is inserted, and on
line 86, when start.next is changed to curr.

At the CAS success on line 95, left is unmarked, and is thus reachable. The next field
of left is new_node, hence new_node is reachable. The node right is still reachable since
new_node.next = right. For the CAS in search, we want to show that no unmarked node
exists “between” start and curr on line 86. Again consider the sequence of nodes

v1, v2, . . . , vk

where start = v1, vk = curr and vi+1 is the node seen when vi.next is read. Note that for
1 < i < k, vi was seen to be marked when vi−1.next was read. Thus by Lemma 2, such vi

are marked at the execution of the CAS. We show that at the CAS execution, vi.next = vi+1
for all 1 ≤ i < k, proving that all nodes “between” start and curr are all marked.

Note that start_next = v2; when v1 was assigned to start, curr_next = v2 was assigned
to start_next (line 71). At CAS execution, start_next = start.next since it succeeds, so
v1.next = v2 at this time. For all other vi, vi.next = vi+1 at the CAS success since after
vi.succ has been read (and was seen to be marked), it cannot change by Lemma 2. ◀

▶ Lemma 12. The search method is lock-free.

Proof. Consider the first inner loop in search. After every iteration of the loop, curr advances
down the linked list by one node. For every search_key, Head.key < search_key <

Tail.key. The linked list is strictly sorted by their keys, and Tail is always reachable. Thus
the exit condition on line 72 is always met before Tail is assigned to curr. Consider an
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execution of the loop that lasts more than k iterations. At iteration k, the variable curr is
not Tail, and curr has advanced down the linked list k times. Since initially the linked list
consists only of Head and Tail, at least k SLinsert operations have linearized.

Now consider the second inner loop in search. After every iteration of the loop, curr

advances down the linked list by one node. The Tail node is unmarked, thus by the time
curr = Tail, the exit condition of the loop is met. By similar reasoning as above, if the loop
execution lasts more than k iterations, then at least k successful SLinsert have linearized.

Finally, consider the outer loop execution that lasts at least k > 2 iterations. For
clarity, we denote the node assigned to variable x on iteration j as xj . For an iteration
i < k, suppose that the CAS on line 81 86 fails; start.succ ̸= (start_next, false). Then
start.succ was modified by an update between the CAS execution and when start.succ

was read on line 67 or 77. Now suppose that the CAS succeeds. Observe that on line 81,
start.key ≤ search_key < curri.key, and at this point start is unmarked and therefore
reachable; no reachable node with key between start.key and curri.key exists. However on
iteration i + 1, when line 73 is executed to exit from the first inner loop, curri+1 is marked.
One of the following updates must have occurred between the CAS on iteration i and when
curri+1.marked was read:
1. starti was marked, or
2. A node v with start.key ≥ v.key < search_key was inserted.
Otherwise, curri+j = starti, starti is unmarked and search_key < curr_nexti+1.key,
meaning that search should return on iteration i. An update occurred for all cases, thus for
k iterations of the outer loop, k updates occurred. For k updates, at least k/2 successful
SLinsert or SLdelete operations have linearized. Then we have that if a process takes
infinitely many steps (infinitely many iterations of any loop) while executing the search

function, then infinitely many successful SLinsert or SLdelete operations have linearized. ◀

C Proofs of claims from Section 5

▶ Lemma 14. Michael and Scott’s queue (Figure 3) is not strongly linearizable.

Proof. Again, we denote nodei as a node containing value i. Similarly, deqp() as a transcript
of a dequeue operation by process p, and enqp(x) as a transcript of a enqueue operation of
value x by process p. For clarity, when tracing the execution of different processes, we denote
variable var from p’s execution varp.

Consider the following transcripts for processes p and q:

S = (deqp() to the first execution of line 121) ◦ enqq(1) ◦ enqq(2)
T1 = S ◦ deqq() ◦ (deqp() from line 122 to completion)
T2 = S ◦ (deqp() from line 122 to completion )

To show a contradiction, suppose that the algorithm is strongly linearizable with a strong
linearization function f over {S, T1, T2}. When we trace the execution outlined by S, vdummy

is assigned to startp and endp, and null is assigned to next (lines 119- 121). In addition,
enqq(1) and enqq(2) append their respective nodes to the linked list.

Now consider the rest of the execution in T1. The deqq() operation terminates successfully.
Head is assigned to startq and node2 is assigned to endq (thus startq ̸= endq). Head never
changed (Head = vdummy) thus the CAS on line 129 succeeds. When deqp() resumes its
execution, it fails the condition on line 122 (since Head was changed by deqq()) and restarts.
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During the next iteration of the loop, Head does not change, as q does not execute any
operations. In addition, startq = node1 and endq = node2 are read on lines 119-120. The
CAS on line 129 is therefore reached, and succeeds to change Head to node2.

For f(T1) to be a linearization of T1, deqp() cannot be ordered first. Otherwise, a dequeue

operation succeeded (as we saw when tracing the execution) when no enqueue operation
preceded before it. As S is a prefix of T1, for f(S) to be prefix-preserving, f(S) also cannot
start with deqp(). Now, we consider the transcript T2. Continuing from our tracing of S,
startp = vdummy and nextp = null. Head has yet to change (is still vdummy), thus the
condition on line 122 passes. The next two if statements (line 123-124) is also satisfied, and
the deqp() fails.

In order to preserve validity,

f(T2) = deqp() ◦ enqq(1) ◦ enqq(2).

Since f(S) is a prefix of f(T2) (S is a prefix of T2, and f is prefix-preserving, and S contains
complete operations enqq(1) and enqq(2),

f(S) = deqp() ◦ enqq(1) ◦ enqq(2).

However f(S) cannot start with deqp(), yielding a contradiction. ◀

D Proofs of claims from Section 6

▶ Observation 22. For a node v, if v.next ̸= null, then v.next does not change.

Proof. Initially, v.next = null. The next field of a node is only ever altered in enqueue

by a CAS in line 113. Such a CAS only succeeds if v.next = null, and after the CAS,
v.next ̸= null. ◀

▶ Corollary 23. For a node v, if v.next = null, then v.next never changed since v was
constructed.

Proof. Otherwise v.next was changed to a node u between v’s initialization and when
v.next = null. However by Lemma 22 v.next can never change back to null. ◀

▶ Observation 24. If node v is reachable and v.next = null, then v is the last reachable
node.

▶ Lemma 25. Tail is only ever incremented; if Tail = node, then Tail only ever changes
to node.next where node.next ̸= null.

Proof. Tail is only ever changed through CAS operations on lines 153 and 116. We show
that if such a CAS succeeds on either line, Tail is incremented.

For line 116, a successful CAS changes Tail from (end, endc) to (next, endc + 1), where
next ̸= null by the prior if condition. By Observation 22, at the time of CAS success,
end.next = (next, nextc). Next, we show that end.next = (next, nextc) on line 153. We
know that next ̸= null since the if condition on line 151 was not satisfied (otherwise the
method call would not reach line 153). By the if condition on line 150, start = end, meaning
start.next = end.next = next at CAS success (line 153) by Observation 22. ◀

▶ Observation 26. If Head changes from node v to node u, then v.next = u when Head

was changed.
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Proof. Head is only altered by a successful CAS on line 156, and it is changed to next.
Suppose the CAS operation succeeds and changes Head from v to u. Then, v was assigned
to start on line 147 and u ̸= null was assigned to next on line 149. By Observation 22,
v.next = u at the time of CAS success. ◀

▶ Lemma 15. Tail is always reachable.

Proof. Initially, Tail and Head refer to the same node. By induction, we show that the
lemma continues to hold even after Tail or Head is change by a successful CAS operation.
For every CAS operation that changes Tail or Head, suppose that Tail is reachable up until
the CAS operation. By Lemma 25, any time Tail changes it is changed to Tail.next. Since
Tail is reachable, Tail.next is also reachable. Thus, successful CAS operations on line 153
and 116 maintain the lemma.

We first prove that if the CAS on line 156 is reached, then next ̸= null. To show a
contradiction, suppose otherwise. By the induction hypothesis, Tail is reachable during
the execution of lines 147-148. By the assumption that next = null and Corollary 23,
start.next = null on lines 147-148 and start is the last node in the list in this duration. If
Head = start on line 148, then start is the last reachable node and start is assigned to end

on line 148 (since Tail is reachable at this line). Then dequeue exits on line 152 and line 156
is never reached, yielding a contradiction. Otherwise, Head ̸= start on line 148. Head must
have changed since its assigned to start, but Head ̸= null for Tail to be reachable. Then
we have that Head changed from start to a node u. However, this contradicts Lemma 26;
Head changed from start ̸= null to u ̸= null, but start.next = null ̸= u.

We now have that next ̸= null at the CAS operation on line 156. By Lemma 26, if the
CAS operation succeeds, then Head changes to Head.next. The only way such a change
can make Tail unreachable from Head is if Tail = Head at CAS success. To show a
contradiction, suppose that this is the case. For the CAS on line 156 to succeed, Head does
not change after it was assigned to start on line 147. Tail was assigned to end on line 148,
and start was evaluated to not equal end on line 150. The node pointed to by Tail must
have changed for Tail and Head to reference the same node at the CAS, but such a change
can only be an increment by Lemma 25. Thus Tail was unreachable from Head prior to the
CAS execution, which contradicts the inductive hypothesis. ◀

▶ Lemma 16. Head is never null, and is only ever incremented.

Proof. If Head was null, then Tail would be unreachable. Thus if Head changes, then it
changes from a node v to a node u. By Lemma 26, Head is then only ever incremented. ◀
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The emergence of systems with non-volatile main memory (NVRAM) increases the need for persistent
concurrent objects. Of specific interest are recoverable implementations that, in addition to being
robust to crash-failures, are also detectable. Detectability ensures that upon recovery, it is possible
to infer whether the failed operation took effect or not and, in the former case, obtain its response.

This work presents two recoverable detectable Fetch&Add (FAA) algorithms that are self-
implementations, i.e, use only a fetch&add base object, in addition to read/write registers. The
algorithms target two different models for recovery: the global-crash model and the individual-crash
model. In both algorithms, operations are wait-free when there are no crashes, but the recovery
code may block if there are repeated failures. We also prove that in the individual-crash model,
there is no implementation of recoverable and detectable FAA using only read, write and fetch&add
primitives in which all operations, including recovery, are lock-free.
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1 Introduction

Systems with byte-addressable non-volatile main memory (NVRAM ) combine the perform-
ance benefits of conventional main memory with the durability of secondary storage. The
emergence of commerical systems with NVRAM increased the interest in the crash-recovery
model, in which failed processes may be resurrected after they crash. For this model, the
goal is to design recoverable concurrent objects (also called persistent or durable): Objects
that are made robust to crash-failures by allowing operations to recover from such failures.

Persistent objects were hand-crafted for specific data structures, e.g., [15,26,28,29]. Other
work introduces general mechanisms to port existing algorithms and make them persistent,
e.g., by using transactional memory [6, 9, 24, 27], universal constructions [5, 8, 10], or for
specific families of algorithms [4,11,13]. These transformations rely on strong primitives such
as compare&swap, while their non-persistent counterparts may use only weaker primitives, in
terms of their level in the consensus hierarchy [21].

An alternative approach is to design persistent self-implementations, in which a recoverable
operation is implemented by using non-recoverable instances of the same primitive operation,
possibly with additional reads and writes on shared variables. Self-implementations can
be used to implement high-level persistent objects by plugging them within existing object
implementations. A recoverable implementations is detectable [15] if, in addition to being
robust to crash-failures, it ensures that it is possible to infer, upon recovery, whether the
failed operation took effect or not and, in the former case, obtain its response.
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For example, a detectable compare&swap (CAS) was used in a CAS-based generic
transformation that makes algorithms recoverable [4]. Detectable self-implementations were
presented in prior works for read, write, test&set, and CAS objects [2, 4]. An important
primitive, which is useful in several data structures, is fetch&add, whose consensus number
is two, i.e., it allows exactly two processes to solve consensus [21].

Our Contributions. This paper presents two detectable self-implementations of Fetch&Add
(FAA). The first algorithm is for the global-crash model, where the whole system crashes
and a single process is responsible for the recovery of all failed operations. The second
algorithm is for the individual-crash model, where some processes may crash while others
might not, and each process is responsible for restoring its own state in a consistent manner.
However, recovering processes may have to wait for other processes to make progress with
their operations or with their recovery code, and may never complete if such progress does not
occur. We also prove that in the individual-crash model, there is no lock-free implementation
of recoverable FAA objects from read, write and fetch&add primitives. In other words,
for every detectable self-implementation of an FAA object in this model, either the FAA
operation or the recovery code is not lock-free.

Our implementations satisfy nesting-safe recoverable linearizability (NRL) [2]. NRL was
originally defined for the individual-crash model, and we extend it to the global-crash model.
NRL implies that, following recovery, an implemented (higher-level) recoverable operation is
able to complete its invocation of a base-object operation and obtain its response.

Related Work. The notion of detectability was presented in [14, 15]. A strict version of
detectability, named nesting-safe recoverable linearizability (NRL), was formally defined by [2].
It requires that each process complete its operation and obtain its response before invoking
another operation even when it incurs crash-failures. There are NRL self-implementations of
recoverable read, write, test&set and compare&swap [2]. In a sense, FAA is a more complex
object since, in most cases, an FAA operation has a unique place in history where it must
be linearized, and its response is also unique based on this linearization point. Unlike
FAA, in compare&swap and test&set we have more freedom in choosing where to linearize
operations. For example, we can linearize a test&set operation that returns 1 at any point
after the first operation in the linearization order. Tracking this unique linearization point of
every crashed FAA operation and restoring the response based on it is the core challenge
of our self-implementations. It is known that there is no wait-free self-implementation of a
detectable test&set object [2]. Both this proof and our impossibility proof for FAA employ
valency arguments that rely on the loss of response values incurred by processes following
crash-failures.

Golab [16] defined recoverable consensus and revised the consensus hierarchy in the
presence of crash-recovery failures, for both the individual-crash model and the global-crash
model. (Recall that the wait-free consensus hierarchy [21] ranks shared objects according
to the maximum number of processes that can use them to solve consensus; fetch&add and
test&set are at level 2 of the hierarchy.) Golab showed that test&set drops to level 1 for the
individual-crash model, if the number of crashes is unbounded. Our impossibility result can
be adapted to prove an analogous result for fetch&add.

Other correctness conditions were suggested for shared objects that tolerate crash-recovery
failures. Strict linearizability [1] treats the crash of a process as a response, either successful
or unsuccessful, to the interrupted operation. Persistent atomicity [20] is similar to strict
linearizability, but allows an operation interrupted by a failure to take effect before the next
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invocation of the same process, possibly after the failure. Both conditions ensure that the
state of an object is consistent after a crash. Recoverable linearizability [5] ensures object
implementations can be composed, but may compromise program order following a crash.
They also present a universal construction using compare&swap in the individual-crash model.

In the recoverable mutual exclusion problem (RME) [18], processes may undergo individual
crashes during the execution of a mutual exclusion protocol. This paper also presents an RME
algorithm using only reads and writes whose remote memory references (RMRs) complexity is
logarithmic in the number of processes, n. There is an RME algorithm for the cache-coherent
(CC) model [17], using fetch&store and compare&swap, which incurs O( log N

log log N ) RMRs. An
RME algorithm with the same asymptotic RMR complexity was proposed for the distributed
shared memory (DSM) and CC models [25]; it uses fetch&store. There is also an RME
algorithm using only compare&swap and fetch&increment, with constant amortized RMR
complexity [7]. In the global crash model, RME can be solved in a constant number of
RMRs [19].

2 Model of Computation

We consider a system with N processes, p0, . . . , pN−1, which communicate by applying atomic
primitive operations (also called primitives) to shared base objects; the primitives applied
are read, write and fetch&add. All shared base objects are non-volatile. The state of each
process comprises its program counter and local variables; all local variables are volatile.1 A
configuration consists of the states of all processes and the values of all shared base objects.
Two configurations C1 and C2 are indistinguishable to a set of processes P , denoted C1

P∼ C2,
if every process in P has the same state in C1 and C2, and all shared objects hold the same
values in C1 and C2. The state of the system changes when processes take steps, each of
which is a local computation followed by an atomic operation on one shared object (ordinary
step), a crash step, or a recovery step.

Base objects and primitives are used to implement more complex objects, by specifying
an algorithm for each operation of the implemented object using primitives on base objects.
In this work, we implement a recoverable Fetch&Add (FAA) object that is detectable. The
sequential specification of fetch&add contains all sequences of FAA(v) operations in which
each operation returns the sum of the arguments of all preceding FAA operations. We refer
to the recoverable detectable operation that is implemented as Fetch&Add, while fetch&add
is the primitive operation supported by the system, which can be applied to non-volatile
variables.

An execution α is an alternating sequence of configurations and steps that follow the
algorithm. An execution α is crash-free if it contains no crash steps, and hence, also no
recovery steps. If a step s is possible in a configuration C at the end of a finite execution α,
then the sequence obtained by appending s to α is also an execution, denoted α ◦ s, whose
final configuration is denoted C ◦ s. Let α be an execution ending in configuration C and let
p be a process. If p’s last step in α is a crash step, then the only step by p that is possible in
C is a recovery step.

1 We assume the simple mode of shared caches, where updates to the persistent shared base objects
are immediate. There are standard ways to port algorithm from this model to more realistic models
capturing existing architectures [23].
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Process i invokes an operation Op on an object with an invocation step, and it completes
with a response step, in which Op’s response is stored to a local (volatile) variable of process
i. The return value is lost if process i crashes, unless process i writes it to a non-volatile
variable before the crash, thereby persisting it. An operation Op is pending if it is invoked
but not yet completed; each process has at most one operation pending.

We consider two models of recovery from crashes. In the individual crash model, at any
point during an execution, each process can incur a crash that resets all its local variables to
arbitrary values, but preserves the values of shared non-volatile variables. Recovery is done
by the same crashed process, so each recoverable operation, Op, is associated with a recovery
function, Op.RECOVER. In the global crash model, at any point during the execution,
a global crash can occur that resets all local variables of all processes, but preserves the
values of shared non-volatile variables. The recovery is done by a single process that is
responsible for recovering all processes. In this case, we have a global RECOVER function;
once RECOVER completes, processes can resume their execution.

One component of the processes’ state is Seq[N ]. For each process i, Seq[i] holds the
sequence number of its current FAA operation. Before an FAA operation is invoked, Seq[i] is
incremented by 1 by the process (or the system), externally to the operation itself. This is
essential in our model for determining, upon recovery, the progress made by FAA operations
before the crash. It has been proved [3] that detectable algorithms must keep auxiliary state,
provided from outside the operation, either by the system or by the caller of the operation
via arguments or a non-volatile variable accessible by them. This auxiliary state is used to
infer where the failure occurred.

We say that an operation op1 precedes another operation op2 in the real-time order of an
execution α, if op1 completes before op2 is invoked. Informally, a crash-free execution α is
linearizable [22] if we can order all completed operations, as well as a subset of the pending
operations, in a way that preserves the real-time order of the operations, and the return
values respect the sequential specification of the Fetch&Add object.

An execution α satisfies nesting-safe recoverable linearizability (NRL) if the execution
obtained by removing all crash and recovery steps from α is linearizable. NRL implies
detectability [15], namely, a recovering operation has an appropriate response.

In our algorithms, the operations are wait-free, i.e., the execution of an operation by a
process that does not incur a crash (global or individual) is guaranteed to complete in a
finite number of its steps, regardless of the steps or crashes of other processes. An algorithm
is lock-free if, whenever a set of processes take a sufficient number of steps and none of them
crashes, then it is guaranteed that one of them will complete its operation.

3 FAA Implementation in the Global-Crash Model

Our algorithm implements a recoverable detectable FAA operation sing a fetch&add base
object of unbounded size. An FAA operation receives, as its single argument, a value val
that should be added to the global unbounded counter. FAA atomically adds val and returns
the previous value of the counter.

The challenge in implementing a recoverable and detectable FAA operation is that some
return values may be lost upon a crash, if they were not persisted. Such operations may
have already affected the global counter, i.e., the return values of other operations. Upon
recovery, it is necessary to figure out the return values of incomplete operations so that
all operations (completed and pending) can be linearized. For example, in Figure 1, all
operations, including pending ones, must be linearized after the system recovers from the
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Figure 1 Challenges in detectable FAA implementation. We use the notation op = F AA(V1) : V2

to denote an F AA invocation with argument V1 that returns V2 as its response. An empty V2 means
that op is pending when the crash occurs.

crash. This is because all of them succeeded in adding their argument to the counter, and
thus, have impacted other operations. Note that p0’s pending operation must be linearized
right before the first operation of p1 that is affected by it. On the other hand, we can choose
where to linearize the pending operations of p2 and p3, as long as they are linearized before
the operation of p4, which is affected by both. We track and identify this information using
a combination of sequence numbers and vector timestamps, as explained next.

Each FAA operation by a process has a strictly increasing sequence number; thus, it is
uniquely identified by the pair ⟨process id, sequence number⟩. Linearizing FAA operations
is facilitated with a global unbounded fetch&add base object. This object holds a vector
timestamp with the sequence numbers of the last FAA operation of each process. Each
FAA operation updates this object, and obtains a timestamp that precisely tracks the FAA
operations affecting it. This tracking allows to ensure consistency with completed operations
whose arguments were already added to the implemented counter. Since sequence numbers
are unbounded, the fetch&add base object is unbounded as well.

The algorithm also uses two arrays: the first holds details of each FAA operation and the
other helps to persist the operation and ensure consistency during recovery.

An FAA operation has three stages: it is first announced in the first array; then, its
sequence number is updated at the fetch&add base object; finally, its vector timestamp,
which can be used to compute its return value, is persisted in the second array.

Recovery is done by a single process, which is responsible for determining the return
values of all operations that were pending when the crash occurred, depending on which
stage they were at. If the operation did not modify the base fetch&add object, its return
value indicates that it should be re-executed. If the operation wrote to the second array, it
has been persisted and its return value is known. The main challenge is to determine the
return value of an operation that modified the base fetch&add object but did not persist
its return value in the second array. To handle these operations, the recovery process first
orders the persisted operations, and then finds a place to insert each of these operations, so
that its return value is consistent with the return values of the persisted operations.

3.1 Shared Data Structures
The algorithm maintains a global array Seq[N ] holding the sequence numbers of the current
FAA operation of each process, all initially zero.

The Res[N ] array is used only in case of a crash, and it holds return values for all
processes after the recovery ends; ⊥ indicates that the FAA operation did not take effect
and should be re-executed. All components in Res[N ] are initially ⊥.

OPODIS 2021



29:6 Recoverable and Detectable Fetch&Add

Figure 2 The organization of W : Process 0’s assigned bits, 0 and N , store 11(2), while process
N − 1’s assigned bits, N − 1 and 2N − 1, store 10(2).

The TotalContrib[N ][∞] array stores the intermediate sums of contributions of each
process. TotalContrib[i][k] holds the sum of the additions of all FAA operations executed
by process i until and including the k-th operation. All components in TotalContrib[i] are
initially zero.

▶ Definition 1. A vector timestamp (VTS) holds N sequence numbers, one for each process.
V TS1 ≺ V TS2 if V TS2 is larger than or equal to V TS1 in each component and V TS1 ̸=
V TS2. Two V TSs are comparable if one of them is larger than the other, in the ≺ order.

Each FAA op by process i has an associated V TSop, indicating the sequence numbers
of the FAA operations that precede it: V TSop[j] is the sequence number of the last FAA
operation by process j that precedes op.

An OpVTS[N ][∞] array stores the persistence information of operations of each process.
OpVTS[i][k] holds the VTS associated with process i’s k-th FAA operation; all components
in OpVTS[i] are initially ⊥.

These data structures are accessed only with read and write primitives: process i reads
and writes only the i-th component of each of them, while the recovery process reads and
writes all the components.

The base fetch&add object. The algorithm uses an unbounded-size register W that is
accessed by all processes with fetch&add primitives. W holds for each process i the sequence
number of the last FAA operation process i executed. W ’s value is numeric and is changed
with fetch&add. Since the sequence numbers stored in W are unbounded, they are stored
and manipulated as follows (see Figure 2):

The sequence number of process i is stored in bits k ∗N + i, k ∈ [0,∞). To increment its
sequence number in W , process i has to add a value that will set and clear corresponding
bits, considering the previous stored value, so the new value is stored correctly in i’s bits. For
example, assume process 0’s bits store 101(2), i.e, bits 0 and 2N are set. After the increment,
process 0’s bits should store 110(2) so bitN should be set and bit 2N should be cleared,
which is done by applying fetch&add with argument 2N − 22N .2.

Process i uses two functions to manipulate W :
ReadVTS: applies W.faa(0) in order to read W ’s content and returns a V TS of the N

sequence numbers stored in it.
IncrementSeqAndGetVTS: increments process i’s sequence number stored in W using a

single primitive atomic fetch&add. The function returns a V TS out of the previous value
of W returned by the fetch&add.

2 Although the number of bits assigned in W to each process is unbounded, the number of bits that are
actually used by process i can be determined according to the value of Seq[i]
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3.2 Code Description
The pseudo code appears in Algorithm 1. Recall that Seq[i] is incremented by 1, before
the FAA operation is invoked. Process i starts an FAA operation by reading its prior total
contribution, until the previous operation (Line 2). In Line 3, it declares the new operation
by storing the new total contribution in TotalContrib[i][Seq[i]]; this value is the sum of
prevTotalContrib and val, the argument of the current FAA operation by process i. In Line 4,
process i’s sequence number stored in W is incremented using IncrementSeqAndGetVTS,
which returns a vector, V TS, of N sequence numbers. These sequence numbers indicate,
for each process, the last FAA operation prior to process i’s operation ⟨i, Seq[i]⟩. Line 5
stores V TS in OpVTS[i][Seq[i]], thereby persisting the operation. Finally, the FAA operation
returns ComputeVal(V TS). As shown in Algorithm 1, ComputeVal with argument V TS sums
TotalContrib[p][V TS[p]], for all processes p, i.e., p’s total contribution until and including
the operation whose sequence number is stored in V TS[p].

▶ Definition 2. An operation is invisible if it did not perform the fetch&add primitive in
Line 4. An invisible operation does not update its sequence number in W and does not affect
other processes. An operation is effective if it performed the fetch&add primitive in Line 4,
and updated its sequence number in W . An effective operation is persisted if it performed
Line 5, so its VTS is persisted and its return value can be calculated based on it.

Incrementing Seq[i] before an FAA operation is invoked allows to distinguish, during
recovery, between an invisible operation that was just invoked and a prior persisted operation.

The RECOVER function is executed by a single process. In Line 10, it collects all
persisted operations in persistedOps. These are the operations whose V TSs appear in
OpVTS. Then, it creates an order, L0, of persistedOps according to the order of their VTSs
(Line 11). Note that the VTSs of persisted operations are comparable. The main loop
(Line 13) recovers the last operation of each process p, depending on its type; The sequence
number of the operation, seqp, is read from W , using ReadVTS(W)[p] (Line 14). If seqp is
smaller than Seq[p] (Line 15), then process p did not execute the fetch&add in Line 4 before
the crash. Thus, opp = ⟨p, Seq[p]⟩ is invisible and should be re-executed. Otherwise (Line 17),
if V TS is in OpVTS[p][seqp], then process p executed Line 5 and persisted its operation by
storing the corresponding V TS in OpVTS[p][seqp]. In this case, ComputeVal is applied to
the corresponding V TS in order to compute the return value. We note that processes that
did not invoke any FAA operation before the crash, with Seq[p] == 0, are skipped. The
remaining case is when the operation is effective but non-persisted. In this case, RECOVER
extends the order created in the previous iteration of the loop (initially, L0) by inserting the
operation into it. This is done with InsertOperationIntoOrder, explained next.

The function InsertOperationIntoOrder gets an operation opp = ⟨p, seqp⟩ to insert, L0,
the ordering of persisted operations,and Lk−1, the ordering after the previous effective
non-persisted operation was inserted. The function finds the barrier of opp, which is the
smallest operation in L0 that follows opp, i.e., with V TSbarrier[p] = seqp. The function
creates Lk by placing opp as the immediate predecessor of its barrier; if no such barrier
operation exists, then opp is placed at the end of Lk−1 to create Lk. This ensures consistency
with the persisted operations.

In Lines 25-30, the function derives the V TS corresponding to opp from its immediate
predecessor in Lk. If there is no immediate predecessor, then opp is the first operation
that applied fetch&add to W , and V TSp is defined as all zeros (Line 26). Otherwise,
let opt = ⟨t, seqt⟩ be the immediate predecessor. The function sets V TSp to be opt’s
corresponding vector time stamp, OpVTS[t][seqt], except that its t-th component is set to
seqt, indicating that opp is the immediate successor of opt. In Line 30, the function persists
V TSp in OpVTS[p][seqp], to safeguard against future crashes, and returns Lk.
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Algorithm 1 Recoverable detectable FAA, for the global-crash model.

1: procedure FAA(val) ▷ executed by process i

2: prevTotalContrib ← TotalContrib[i][Seq[i]-1]
3: TotalContrib[i][Seq[i]] ← prevTotalContrib + val ▷ Store current total contrib
4: V TS ← IncrementSeqAndGetV TS(W, i)
5: OpVTS[i][Seq[i]]← VTS ▷ Store V T S

6: return ComputeVal(VTS) ▷ Compute return value

7: procedure ComputeV al(V TS)
8: return

∑
process p TotalContrib[p][V TS[p]]

9: procedure RECOVER() ▷ executed by recovery process
10: persistedOps← all operations whose V TSs appear in OpVTS
11: L0 ← persistedOps ordered according to their V TSs
12: prevOrder ← L0
13: for p from 0 to N − 1 do
14: seqp ← ReadV TS(W )[p]
15: if seqp < Seq[p] then ▷ invisible operation
16: Res[p] = ⊥
17: else if OpVTS[p][seqp] ̸=⊥ then ▷ persisted operation
18: Res[p] = ComputeVal(OpVTS[p][seqp])
19: else ▷ effective but non-persisted operation
20: prevOrder ← InsertOperationIntoOrder(⟨p, seqp⟩, L0, prevOrder)
21: Res[p] = ComputeVal(OpVTS[p][seqp])
22: procedure InsertOperationIntoOrder(⟨p, seqp⟩, L0, Lk−1)
23: barrier ← smallest operation in L0 such that V TSbarrier[p] = seqp

24: Insert ⟨p, seqp⟩ as the immediate predecessor operation to barrier in Lk−1 to get Lk.
If there is no such barrier, append ⟨p, seqp⟩ at the end of the order to get Lk.

25: ⟨t, seqt⟩ ← immediate predecessor operation to ⟨p, seqp⟩ in Lk

26: if ⟨t, seqt⟩ =⊥⊥⊥ then V TSp ← all N components are zeros
27: else
28: V TSp = OpVTS[t][seqt]
29: V TSp[t] = seqt

30: OpVTS[p][seqp]← V TSp

31: return Lk
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Figure 3 Linearization construction. L0 orders op2, op3, op6; L1 is obtained by adding op1; L2 is
obtained by adding op5; L3 is obtained by adding op4.

Then, RECOVER applies ComputeVal to OpVTS[p][seqp], in order to compute the return
value. Notice that there are at most N effective non-persisted operations, at most one for
each process. The function recovers the processes from 0 to N − 1. By Line 24, effective
non-persisted operations with the same barrier are ordered in an ascending order of their
processes’ ids. Moreover, after the function finds the place for such operation, it builds its
corresponding V TS based on the V TS of its immediate predecessor. This implies that the
V TS of the immediate predecessor operation is already written when we use it.

In Lines 16, 18 and 21, the function saves the return values of each process in the Res

array so when the processes resume, they can read their correct return values. If Res[i] ==⊥
then the process should re-execute the FAA operation, i.e., proceed from Line 2. Otherwise,
Res[i] holds the correct return value for process i.

▶ Example 3. Consider the execution of Figure 1, ending with a crash. Assume all pending
operations are effective and non-persisted. Figure 3 illustrates the order of the operations build
by the RECOVER procedure, as follows. L0 orders the persisted operations {op2, op3, op6}
(empty circles). The effective non-persisted operations op1, op5, op4 which are represented
by squares, executed by processes p0, p2, p3, respectively, are considered in the order of
their processes’ identifiers. The barrier of op1 is op2, so op1 (filled square) is placed as op2’s
immediate predecessor to obtain L1. Next, the barrier of op5 is op6, so op5 (squares pattern)
is placed as op6’s immediate predecessor to obtain L2. Finally, op6 is also the barrier of
op4, so op4 (stripes pattern) is placed as op6’s new immediate predecessor with op5 as its
immediate predecessor to obtain L3. Note that operations with the same barrier could be
linearized arbitrarily, and we chose to follow an ascending order of process’ ids.

By Figure 1, the return values of op2, op3, op6 are 1, 3, 15, respectively. op1’s return value
is 0, as it is the first operation applied to the fetch&add object. op5’s return value is 6, which
is the sum of the return value of its predecessor op3 and op3’s contribution, that is, the sum
of the contributions of all op5’s preceding operations. op4’s return value is 11, which is the
sum of the return value of its predecessor op5 and op5’s contribution.

3.3 Correctness Proof
Let α be a crash-free execution of Algorithm 1. Each effective operation has an associated
V TS. We order V TSs by coordinate-wise comparison as defined in Definition 1.

▶ Lemma 4. The V TSs of two effective operations are comparable; furthermore, this order
respects the order in which the corresponding operations executed the atomic fetch&add in
Line 4, and hence, their real-time order.

Proof. The lemma follows from the atomicity of the fetch&add performed in Line 4 and
from the fact that each process executing Line 4 increments its sequence number stored in
W by 1. Thus, every time Line 4 is executed, exactly one sequence number in W is changed
and increased. That is, every time Line 4 is executed, the returned V TS is larger than its
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immediate predecessor in exactly one component. Thus, comparing two V TSs, at least one
component is larger than the other and all other components are larger or equal. Therefore
they are comparable. Furthermore, the V TS of an operation op2 that executes Line 4 after
another operation op1 is larger than the V TS of op1 by the ≺ order. Consequently, ≺
respects the execution’s real-time order. ◀

We linearize the effective operations in α according to their V TSs. Call this order L.
Since all persisted operations are effective, they are linearized. Non-effective operations, i.e.,
invisible operations, are omitted and not linearized.

▶ Lemma 5. The return values in L respect the sequential specification of Fetch&Add, i.e.,
they are the sum of the arguments of all preceding operations.

Proof. Let op′ be an effective operation and let V TSop′ be its associated V TS. The proof is
by induction on the position of op′ in L. The base case is that op′ is the smallest operation
in the order, i.e, is the first FAA operation that executed Line 4 on W . Therefore, all
components in V TSop′ , returned in Line 4, are zeros. For each i, TotalContrib[i][0] = 0
by the initialization of TotalContrib. Therefore, ComputeVal returns 0, which respects the
sequential semantics of Fetch&Add because initially, the value of the implemented object is 0.

Assume the lemma holds for all operations smaller than op′ in L. Assume operation op
is the immediate predecessor operation to op′ in L. Thus, by induction this implies that
resop = ComputeV al(V TSop) respects the sequential semantics of Fetch&Add. The previous
value of the implemented object, before operation op is performed, is resop. Assume op is
executed by process i, therefore by executing Line 4, i’s sequence number is incremented by
1. Therefore, V TSop′ [i] is larger than V TSop[i] by 1 and equals to the sequence number of
op, seqi. All other components are equal. For each process p, let contribp and contrib

′

p be
the total contributions of p, as functions ComputeV al(V TSop) and ComputeV al(V TSop′)
considered in their calculation, respectively. For each p ̸= i, contribp = contrib

′

p. For i,
TotalContrib[i][seqi] = TotalContrib[i][seqi−1]+valop, therefore, contrib

′

i = contribi +valop.
Therefore, ComputeV al(V TSop′) equals resop plus the new value was added by op.

This respects the sequential semantics of Fetch&Add because the value of the implemented
object before op′ is applied to it is its value immediately before op is applied to it plus the
value added by op. ◀

Let α′ be an execution that ends with a global crash. The VTS of any persisted operation
appears in OpVTS . Let L0 be the sequence of all persisted operations, ordered according to
their VTSs.

Next consider the last FAA operation of each process. If it is invisible, we assign the
return value ⊥. If it is persisted, we assign the return value computed by ComputeVal on
its associated VTS. Finally, for an effective operation that is non-persisted, we find a place
among the persisted operations and extend L0. Since each process has at most one effective
non-persisted operation, we can consider them by the order of their ids. Finding a place for
the k-th effective non-persisted operation yields Lk which extends Lk−1.

Given Lk−1, let op = ⟨i, seqi⟩ be the k-th effective non-persisted operation. The barrier
of op is the smallest operation in L0 that follows op, i.e., V TSbarrier[i] = seqi. op is inserted
right before its barrier in Lk−1, to get Lk. If there is no such operation, op is appended at
the end of Lk−1 to get Lk. Let L be the final linearization, after all effective non-persisted
operations were inserted. A simple induction on k proves the next claim:

▷ Claim 6. Let op be the effective non-persisted operation that is inserted in Lk. Its
immediate predecessor in Lk stays the same in L.
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We compute the return values of effective non-persisted operation, based on the return
value of the operation linearized immediately before them and its associated VTS, as follows:
assume op′ is an effective non-persisted operation and let op be its immediate predecessor
executed by process i. The return value of op′ is ComputeVal(V TSop′) while V TSop′ equals
V TSop except for the i-th component in which V TSop′ [i] = seqi, the sequence of op.

▷ Claim 7. Let op be a persisted operation ordered in L0. The operations preceding op in
L are consistent with its stored V TSop. That is, an operation of some process p precedes op
in L if and only if its sequence number is smaller than or equal to V TSop[p].

▶ Lemma 8. The return values in L satisfy the sequential specification of Fetch&Add.

Proof. The proof is by induction on the position of every effective operation op′ in L; note
that non-effective operations are not linearized in L.

Consider the operations in L; the base case is that op′ is the first operation in L. If
op′ is persisted, the V TS associated with op′ was stored in OpVTS before the crash. By
Claim 7, for each persisted op′, the operations preceding op′ in L are consistent with its
stored V TSop′ . That is, the return value of op′, which is ComputeVal(V TSop′) is the sum of
the arguments of all preceding operations in L.

Otherwise, op′ is non-persisted without preceding operations. By Line 26, all components
in V TSop′ are zeros. For every i, TotalContrib[i][0] = 0 by the initialization and ComputeVal
returns 0, respecting the sequential specification of Fetch&Add.

Assume the lemma holds for all operations that appear in L before op′. If op′ is
persisted, then the lemma holds as in the base case. Otherwise, let operation op executed
by process t be the operation immediately preceding op′ in L. By Claim 6, it is the
same immediate predecessor that was used to build V TSop′ . By the assumption, resop =
ComputeV al(V TSop) satisfies the lemma. The previous value of W before op was resop. By
the construction in Lines 28-29, V TSop and V TSop′ differ in the t-th component. V TSop[t] <

V TSop′ [t] = seqt, the sequence number of op. Thus, ComputeVal(V TSop′) takes for each
process k ̸= t, the same total contribution as ComputeV al(V TSop) and for t, takes the total
contribution of operation ⟨t, seqt⟩. The latter is equal to the total contribution of operation
⟨t, seqt−1⟩ plus valop. That is, ComputeV al(V TSop′) equals resop plus the argument added
by op. This respects the sequential specification because the value of W before op′ should be
the value before op plus the value added by op. ◀

▶ Theorem 9. Algorithm 1 implements a recoverable detectable FAA in the global-crash
model using only read, write and fetch&add primitive operations, and satisfies NRL.

Complexity. In a crash-free execution, an FAA operation executes one fetch&add operation,
a constant number of writes and O(N) reads from shared memory during the ComputeVal
function. The algorithm can be modified to store the total contribution values in W , using a
similar encoding scheme. This would allow to read all contributions using a single shared
memory access, yielding an FAA implementation with O(1) crash-free complexity.

4 FAA Implementation in the Individual-Crash Model

In the individual-crash model, each process can crash individually without affecting executions
of other processes, and then it also recovers individually. Thus, a process may crash and
recover without the other processes being aware of this.
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In addition to the data structures of Algorithm 1, we use the following data structures:
isInRecovery[N ] holds in the i-th entry the sequence number of the last operation during
whose execution process i crashed; all entries are initially 0. We also use mutex, an RME
lock implemented using only read and write primitives [18]. RME ensures that if process i

crashes while holding mutex, no other process can acquire the lock until i tries to acquire it
again; in this case i will succeed, i.e., mutex will still be held by i.

The pseudo code appears in Algorithm 2. FAA(val) is identical to the one for global
crashes (Algorithm 1) and is omitted. Process i manipulates W and the other data structures
using the same functions as in Section 3.1.

Algorithm 2 Recoverable Detectable FAA, for the individual-crash model.

32: procedure FAA.RECOVER(val) ▷ executed by process i
33: seqi ← ReadV TS(W )[i]
34: if seqi < Seq[i] then ▷ invisible operation
35: re-execute FAA(val)
36: else ▷ effective operation
37: isInRecovery[i] ← seqi

38: await(mutex.lock()) ▷ lock robust to failures
39: if OpVTS[i][seqi] ̸=⊥ then ▷ persisted operation
40: mutex.release()
41: return ComputeVal(OpVTS[i][seqi]) ▷ from Algorithm 1

42: recoveryW ← ReadVTS(W)
43: for k from 0 to N-1 do await(OpVTS[k][recoveryW[k]] ̸=⊥ or

isInRecovery[k] == recoveryW[k])
44: Ops ← all operations until sequence numbers in recoveryW .
45: persistedOps ← all operations in Ops, whose V TSs appear in OpVTS
46: L0 ← order persistedOps according to their V TSs
47: InsertOperationIntoOrder(⟨i, seqi⟩, L0, L0) ▷ from Algorithm 1
48: mutex.release()
49: return ComputeVal(OpVTS[i][seqi]) ▷ from Algorithm 1

FAA.RECOVER(val) is executed by each crashed process independently and includes
acquiring a lock. Thus, the algorithm must consider repeated crashes during FAA.RECOVER
of the same process such that a process that acquires the lock, crashes and then invokes
FAA.RECOVER again (possibly several times), will eventually release the lock at the end of
its recovery. Lines 33-35 have the same logic as Lines 14-16 in RECOVER() (Algorithm 1).
In Line 33, the function reads the sequence number of the last operation of process i, seqi,
from W using ReadVTS(W)[i]. In Line 34, the function checks if seqi is smaller than Seq[i].
If it is, process i did not execute the critical fetch&add inside IncrementSeqAndGetVTS
before crashing, implying opi = ⟨i, seqi⟩ is invisible and should be re-executed. Otherwise,
opi is effective and can be persisted or non-persisted. In Line 37, the function declares that
⟨i, seqi⟩ is in recovery by writing the sequence number of the current operation, seqi, in
isInRecovery[i]. Then, the process repeatedly attempts to acquire the mutex lock in Line 38
until it succeeds (if it ever does).

Once process i acquires mutex it proceeds to recover its operation opi. First, it checks
if opi is already persisted (Line 39). This may occur in two scenarios: either opi is a pure
persisted operation, that is, i crashed only after updating its V TS in OpVTS; or, opi was
an effective non-persisted operation but i has already recovered and persisted its VTS in



L. Nahum, H. Attiya, O. Ben-Baruch, and D. Hendler 29:13

OpVTS, but it crashed before returning, possibly while holding the lock. In both cases,
process i releases the lock and returns a response based on its VTS. Otherwise, the VTS
of opi is not persisted in OpVTS. The function reads W using ReadVTS and stores the
returned VTS in a local variable recoveryW [N ] consisting of N sequence numbers (Line 42).
recoveryW represents a value of W in a specific point in time. Process i treats recoveryW

similarly to how W is treated by the recovery code for the global-crash model and will order
opi according to it. In Line 43, process i waits until each process k persists the operation
with the sequence stored in recoveryW [k] or is in its recovery code on that operation. We
note that processes that did not invoke an FAA operation before the await condition, with
Seq[p] == 0, are skipped.

After the loop of Line 43 terminates, all operations in recoveryW are either persisted
or effective and non-persisted but in recovery. In Line 44, the function stores in the set
Ops, for each process, all its operations whose sequence number is smaller or equal to that
stored for the process in recoveryW . We then proceed in a way similar to the global-crash
algorithm. Process i collects into persistedOps all persisted operations in Ops, i.e., whose
V TSs appear in OpVTS (Line 45), and creates the order L0 on persistedOps based on their
V TSs (Line 46). Then, process i linearizes opi using InsertOperationIntoOrder while the
prevOrder parameter is also L0 because unlike the global-crash model, here, we insert a
single operation, opi. Note that each time a process acquires the lock and recovers its
effective non-persisted operation, op, it persists it in OpVTS, such that the next process
will consider op as a persisted operation and will order it as part of L0. Therefore, effective
non-persisted operations that have the same barrier are ordered by the real-time order of
processes capturing the lock. Finally, i orders opi, releases mutex (Line 48), and applies
ComputeVal to the corresponding VTS of opi to compute its response.

The correctness proof of this algorithm appears in Appendix A.1.

5 Impossibility of Wait-Free Recovery in the Individual-Crash Model

▶ Theorem 10. There is no detectable self-implementation of FAA in the individual-crash
model, such that both the FAA operation and the FAA.RECOVER function are lock-free.

Proof. We prove the theorem using valency arguments [2, 12]. Assume, by way of contradic-
tion, that there is such an implementation with lock-free FAA and FAA.RECOVER. In all
executions we consider, the initial value of the FAA object is 0 and both processes, p and q,
invoke FAA with argument 1. Hence, one process must return 0 and the other must return 1.

Given a configuration C and a process r ∈ {p, q}, we say that C is r-valent if there is a
crash-free execution starting from C in which the return value of FAA or FAA.RECOVER
by r is 0. C is bivalent if it is both p-valent and q-valent. C is p-univalent if it is p-valent
and not q-valent, and symmetrically for q-univalent. We say that C is univalent if it is either
p-univalent or q-univalent.

The initial configuration, C0, is bivalent because a solo execution of each process returns
0. Following a standard valency argument and since we assume that the FAA operation is
lock-free, there is an execution starting from C0 that leads to a bivalent configuration C1,
in which both p and q are about to take a critical step, i.e, a step that leads to a univalent
configuration, one of which is p-univalent while the other is q-univalent. A standard argument
can be used to show the following claim (see Appendix A.2):

▷ Claim 11. The critical steps of p and q apply fetch&add to the same base object.
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Figure 4 Illustration of one case in the proof of Theorem 10.

Assume, without loss of generality, that configuration C1 ◦ p is p-univalent while C1 ◦ q is
q-univalent. Consider the execution from C1 in which p takes a step followed by a step of q

and then p crashes: C2 = C1 ◦ p ◦ q ◦ CRASHp.
Consider also the execution from C1 in which q takes a step followed by a step of p and then
p crashes: C3 = C1 ◦ q ◦ p ◦ CRASHp.

A solo execution of FAA.RECOVER by p from both configurations C2 and C3 must
complete, since it is lock-free. Furthermore, these two configurations are indistinguishable to
p, because p’s response from the primitive fetch&add is lost, while the value of the fetch&add
base object is the same in both configurations. Therefore, an execution of FAA.RECOVER
by p from both C2 and C3 returns the same value – v.

Assume v is 0, and thus C3 is p-valent. The configuration C1 ◦ q ◦ p is q-univalent, while
C3 = C1 ◦ q ◦ p ◦ CRASHp is p-valent. However, these configurations are indistinguishable
to q because it is unaware of p’s crash, therefore a solo execution of q from C3 must return
0, that is, C3 is q-valent. This proves that C3 is bivalent (see Figure 4). The case v = 1 is
symmetric, since if p returns 1 this proves the configuration is q-valent, as a solo execution
of q after p completes must return 0; a similar argument proves that C2 is bivalent.

In this manner, we can keep extending the execution to obtain a crash-free execution of q

in which it performs an infinite number of steps without completing a single FAA operation,
contradicting the assumption that the algorithm is lock-free. ◀

6 Discussion

We present two self-implementations of a recoverable detectable FAA operation, one for
the global-crash model and the other for the individual-crash model. Both algorithms are
wait-free in crash-free executions. Recovery in both algorithms is blocking. In the global-crash
model, this is the result of a design choice to delegate recovery to a single process. For the
individual-crash model, we prove that a lock-free self-implementation of a detectable FAA
does not exist.
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The proof of Theorem 10 constructs an execution in which one process, repeatedly
crashing during its recovery, blocks another process that does not crash, from making
progress. This leaves open the question of making progress once no process crashes. We note
that Algorithm 2 may have an execution, where process i acquires the lock during its recovery
and then crashes; this means that another process j that crashes and tries to recover, cannot
complete its recovery, even when no further crashes occur. Finding an algorithm that makes
progress when processes stop crashing, or proving such an algorithm does not exist, is an
interesting question.

Our algorithms apply fetch&add primitives to a shared unbounded base object storing a
vector timestamp with N entries. It would be interesting to see if the amount of memory
storage can be bounded. This might be challenging, since the vector timestamp is used to
precisely track which operations affected each persisted FAA, and detect where they should
be linearized and with which return value. Another interesting open question is whether
there exists a self-implementation of a recoverable FAA object for the global-crash model
such that both the FAA operation and the recovery code are wait-free.

References
1 M. K. Aguilera and S. Frølund. Strict linearizability and the power of aborting. HPL-2003-241.
2 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizability:

Modular constructions for non-volatile memory. In PODC, pages 7–16, 2018.
3 Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and lower bounds on the

space complexity of detectable objects. In PODC, 2020.
4 Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free concur-

rency on faulty persistent memory. In SPAA, pages 253–264, 2019.
5 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-

volatile main memory. In OPODIS, pages 20:1–20:17, 2016.
6 Dhruva R. Chakrabarti, Hans-Juergen Boehm, and Kumud Bhandari. Atlas: leveraging locks

for non-volatile memory consistency. In OOPSLA, pages 433–452, 2014.
7 D. Y. C. Chan and P. Woelfel. Recoverable mutual exclusion with constant amortized RMR

complexity from standard primitives. In PODC, 2020.
8 Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. The inherent cost of remembering

consistently. In SPAA, pages 259–269, 2018.
9 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient algorithms for

persistent transactional memory. In SPAA, pages 271–282, 2018.
10 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and the rise of

universal constructions. In EuroSys, pages 5:1–5:15, 2020.
11 Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. Log-free concur-

rent data structures. In USENIX, pages 373–386, 2018.
12 Michael J. Fischer, Nancy A. Lynch, and Michael Paterson. Impossibility of distributed

consensus with one faulty process. J. ACM, 32(2):374–382, 1985.
13 Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez Petrank.

NVTraverse: In NVRAM data structures, the destination is more important than the journey.
In PLDI, pages 377–392, 2020.

14 Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. Brief announce-
ment: A persistent lock-free queue for non-volatile memory. In DISC, pages 50:1–50:4, 2017.

15 Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. A persistent
lock-free queue for non-volatile memory. In PPoPP, pages 28–40, 2018.

16 Wojciech Golab. The recoverable consensus hierarchy. In SPAA, pages 281–291, 2020.
17 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.

In PODC, pages 211–220, 2017.

OPODIS 2021



29:16 Recoverable and Detectable Fetch&Add

18 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In PODC, pages 65–74,
2016.

19 Wojciech M. Golab and Danny Hendler. Recoverable mutual exclusion under system-wide
failures. In PODC, pages 17–26, 2018.

20 R. Guerraoui and R. R. Levy. Robust emulations of shared memory in a crash recovery model.
In ICDCS, pages 400–407, 2004.

21 Maurice Herlihy. Wait free synchronization. ACM Transactions on Programming Languages
and Systems, 11(1):124–149, 1991.

22 Maurice P. Herlihy and Jennette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

23 J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent memory objects under
a full-system-crash failure model. In DISC, pages 313–327, 2016.

24 Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via JUSTDO logging. In ASPLOS, pages 427–442, 2016.

25 Prasad Jayanti, Siddhartha V. Jayanti, and Anup Joshi. Recoverable mutex algorithm with
sub-logarithmic RMR on both CC and DSM. In PODC, pages 177–186, 2019.

26 Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R. Chakrabarti,
and Michael L. Scott. Dalí: A periodically persistent hash map. In DISC, pages 37:1–37:16,
2017.

27 Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. Onefile: A wait-free
persistent transactional memory. In DSN, pages 151–163, 2019.

28 David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. Nvc-hashmap:
A persistent and concurrent hashmap for non-volatile memories. In VLDB Workshop on
In-Memory Data Mangement and Analytics, pages 4:1–4:8, 2015.

29 Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. Efficient
lock-free durable sets. In OOPSLA, pages 128:1–128:26, 2019.

A Additional Proofs

A.1 Sketch of Correctness Proof for Individual-Crash Model
Correctness for crash-free executions is the same as in Section 3.3. We now consider an
execution α with individual crashes.

▶ Observation 12. Let α be an execution where i crashes during operation opi. If opi is
effective non-persisted, its VTS is recovered and stored in OpVTS exactly once.

▶ Lemma 13. The return values of all operations executing Algorithm 2 satisfy the sequential
specification of Fetch&Add.

Proof. Note that in the individual-crash model, we do not refer to a final linearization order
L, as in the global-crash model because each process only recovers its own operation by
inserting it to an L0 order of the persisted operations it currently read. Consider the L0
order by process i. We say that a return value of each persisted operation, op, satisfies the
sequential specification of Fetch&Add although not all effective non-persisted operations that
op follows necessarily appear in L0.

The proof relies on the following argument. Assume process i orders its effective non-
persisted operation opi based on the L0 it computes, and let opj be the immediate predecessor
of opi in the new order. Then, i sets V TSopi to be identical to V TSopj except for the j-th
component where it is larger by 1. Therefore, the return value it computes is resopi

=
resopj + valopj . For any other non-persisted operation opk one of the following holds. Either
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opk has been observed by V TSopj , that is, V TSopj in its k-th component contains a sequence
number larger or equal to the sequence number of opk. In such case, the response of opj took
into consideration the value added by opk, and thus also the response of opi. Moreover, we
are guaranteed that if process k acquires the lock it will order opk before opi, since it orders
it before the first V TS that observed it. Otherwise, opk was not observed by V TSopj

, thus
not observed also by V TSopi , and both return values do not consider the value added by
opk. However, once k acquires the lock and orders opk it will order it after opi, since none of
the preceding operations observed opk.

This proves that resopi
satisfies the sequential specification of Fetch&Add, since its return

value considers all operations that precede it, and those operations will be ordered before opi

(if they are not persisted yet), and no other operation will be ordered before opi. ◀

A.2 Proof of Claim 11
We consider all possible steps: read, write and fetch&add. Assume sp and sq are critical steps
by process p and q, receptively, such that C1 ◦ sp is p-univalent while C1 ◦ sq is q-univalent.

Steps sp and sq access distinct registers. In this case, these configurations are indistin-
guishable to p and q, that is, C ◦ sp ◦ sq

p,q∼ C ◦ sq ◦ sp.
Steps sp and sq read the same register. Also in this case, C ◦ sp ◦ sq

p,q∼ C ◦ sq ◦ sp.
Step sp writes to some register r step and sq reads r. In this case, C ◦ sp

p∼ C ◦ sq ◦ sp

holds.
Step sp applies fetch&add and step sq reads r. In this case, C ◦ sp

p∼ C ◦ sq ◦ sp holds.
Steps sp and sq write to the same register. In this case, C ◦ sp

p∼ C ◦ sq ◦ sp holds.
Step sp applies fetch&add, step sq writes to the same register. In this case, C ◦ sq

q∼
C ◦ sp ◦ sq holds.
Step sp applies fetch&add with val = 0, step sq applies fetch&add to the same register.
In this case, C ◦ sq

q∼ C ◦ sp ◦ sq holds.
In each of the above cases, the configurations are indistinguishable to at least one process,
and therefore, must have the same valencies. Therefore, it must be that p and q apply
fetch&add to the same base object.
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Abstract
Transactional data structure libraries (TDSL) combine the ease-of-programming of transactions with
the high performance and scalability of custom-tailored concurrent data structures. They can be
very efficient thanks to their ability to exploit data structure semantics in order to reduce overhead,
aborts, and wasted work compared to general-purpose software transactional memory. However,
TDSLs were not previously used for complex use-cases involving long transactions and a variety of
data structures.

In this paper, we boost the performance and usability of a TDSL, towards allowing it to support
complex applications. A key idea is nesting. Nested transactions create checkpoints within a
longer transaction, so as to limit the scope of abort, without changing the semantics of the original
transaction. We build a Java TDSL with built-in support for nested transactions over a number of
data structures. We conduct a case study of a complex network intrusion detection system that
invests a significant amount of work to process each packet. Our study shows that our library
outperforms publicly available STMs twofold without nesting, and by up to 16x when nesting is
used.
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1 Introduction

1.1 Transactional Libraries
The concept of memory transactions [25] is broadly considered to be a programmer-friendly
paradigm for writing concurrent code [22, 39]. A transaction spans multiple operations,
which appear to execute atomically and in isolation, meaning that either all operations
commit and affect the shared state or the transaction aborts. Either way, no partial effects
of on-going transactions are observed.
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Despite their appealing ease-of-programming, software transactional memory (STM)
toolkits [6, 24, 37] are seldom deployed in real systems due to their huge performance
overhead. The source of this overhead is twofold. First, an STM needs to monitor all random
memory accesses made in the course of a transaction (e.g., via instrumentation in VM-based
languages [28]), and second, STMs abort transactions due to conflicts. Instead, programmers
widely use concurrent data structure libraries [40, 30, 21, 5], which are much faster but
guarantee atomicity only at the level of a single operation on a single data structure.

To mitigate this tradeoff, Spiegelman et al. [41] have proposed transactional data structure
libraries (TDSL). In a nutshell, the idea is to trade generality for performance. A TDSL
restricts transactional access to a pre-defined set of data structures rather than arbitrary
memory locations, which eliminates the need for instrumentation. Thus, a TDSL can exploit
the data structures’ semantics and structure to get efficient transactions bundling a sequence
of data structure operations. It may further manage aborts on a semantic level, e.g., two
concurrent transactions can simultaneously change two different locations in the same list
without aborting. While the original TDSL library [41] was written in C++, we implement
our version in Java. We offer more background on TDSL in Section 2.

Quite a few works [29, 9, 46, 31] have used and extended TDSL and similar approaches
like STO [26] and transactional boosting [23]. These efforts have shown good performance
for fairly short transactions on a small number of data structures. Yet, despite their improved
scalability compared to general purpose STMs, TDSLs have also not been applied to long
transactions or complex use-cases. A key challenge arising in long transactions is the high
potential for aborts and the large penalty that such aborts induce as much work is wasted.

1.2 Our Contribution

Transactional nesting. In this paper we push the limits of the TDSL concept in an attempt
to make it more broadly applicable. Our main contribution, presented in Section 3, is
facilitating long transactions via nesting [33]. Nesting allows the programmer to define nested
child transactions as self-contained parts of larger parent transactions. This controls the
program flow by creating checkpoints; upon abort of a nested child transaction, the checkpoint
enables retrying only the child’s part and not the preceding code of the parent. This reduces
wasted work, which, in turn, improves performance. At the same time, nesting does not
relax consistency or isolation, and continues to ensure that the entire parent transaction
is executed atomically. We focus on closed nesting [42], which, in contrast to so-called flat
nesting, limits the scope of aborts, and unlike open nesting [35], is generic and does not
require semantic constructs.

The flow of nesting is shown in Algorithm 1. When a child commits, its local state is
migrated to the parent but is not yet reflected in shared memory. If the child aborts, then
the parent transaction is checked for conflicts. And if the parent incurs no conflicts in its
part of the code, then only the child transaction retries. Otherwise, the entire transaction
does. It is important to note that the semantics provided by the parent transaction are not
altered by nesting. Rather, nesting allows programmers to identify parts of the code that are
more likely to cause aborts and encapsulate them in child transactions in order to reduce the
abort rate of the parent.

Yet nesting induces an overhead which is not always offset by its benefits. We investigate
this tradeoff using microbenchmarks. We find that nesting is helpful for highly contended
operations that are likely to succeed if retried. We also find that nested variants of TDSL
improve performance of state-of-the-art STMs with transaction friendly data structures.
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Algorithm 1 Transaction flow with nesting.

1: TXbegin()
2: [Parent code] ▷ On abort – retry parent
3: nTXbegin() ▷ Begin child transaction
4: [Child code] ▷ On abort – retry child or parent
5: nTXend() ▷ On commit – migrate changes to parent
6: [Parent code] ▷ On abort – retry parent
7: TXend() ▷ On commit – apply changes to shared state

NIDS benchmark. In Section 4 we introduce a new benchmark of a network intrusion
detection system (NIDS) [19], which invests a fair amount of work to process each packet.
This benchmark features a pipelined architecture with long transactions, a variety of data
structures, and multiple points of contention. It follows one of the designs suggested in [19]
and executes significant computational operations within transactions, making it more
realistic than existing intrusion-detection benchmarks (e.g., [27, 32]).

Enriching the library. In order to support complex applications like NIDS, and more
generally, to increase the usability of TDSLs, we enrich our transactional library in Section 3
with additional data structures – producer-consumer pool, log, and stack – all of which
support nesting. The TDSL framework allows us to custom-tailor to each data structure its
own concurrency control mechanism. We mix optimism and pessimism (e.g., stack operations
are optimistic as long as a child has popped no more than it pushed, and then they become
pessimistic), and also fine tune the granularity of locks (e.g., one lock for the whole stack
versus one per slot in the producer-consumer pool).

Evaluation. In Section 5, we evaluate our NIDS application. We find that nesting can
improve performance by up to 8x. Moreover, nesting improves scalability, reaching peak
performance with as many as 40 threads as opposed to 28 without nesting.

Summary of contributions. This paper is the first to bring nesting into transactional data
structure libraries and also the first to implement closed nesting in sequential STMs. We
implement a Java version of TDSL with built-in support for nesting. Via microbenchmarks,
we explore when nesting is beneficial and show that in some scenarios, it can greatly reduce
abort rates and improve performance. We build a complex network intrusion detection
application, while enriching our library with the data structures required to support it. We
show that nesting yields significant improvements in performance and abort rates.

2 A Walk down Transactional Data Structure Lane

Our algorithm builds on ideas used in TL2 [6], which is a generic STM framework, and in
TDSL [41], which suggests forgoing generality for increased efficiency. We briefly overview
their modus operandi as background for our work.

The TL2 [6] algorithm introduced a version-based approach to STM. The algorithm’s
building blocks are version clocks, read-sets, write-sets, and a per-object lock. A global
version clock (GVC) is shared among all threads. A transaction has its own version clock
(VC), which is the value of GVC when the transaction begins. A shared object has a version,
which is the VC of the last transaction that modified it. The read- and write-sets consist of
references to objects that were read and written, respectively, in a transaction’s execution.
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Version clocks are used for validation: Upon read, the algorithm first checks if the object
is locked and then the VC of the read object is compared to the transaction’s VC. If the
object is locked or its VC is larger than the transaction’s, then we say the validation fails,
and the transaction aborts. Intuitively, this indicates that there is a conflict between the
current transaction, which is reading the object, and a concurrent transaction that writes
to it.

At the end of a transaction, all the objects in its write-set are locked and then every object
in the read-set is revalidated. If this succeeds, the transaction commits and its write-set
is reflected to shared memory. If any lock cannot be obtained or any of the objects in the
read-set does not pass validation, then the transaction aborts and retries.

Opacity [18] is a safety property that requires every transaction (including aborted ones)
to observe only consistent states of the system that could have been observed in a sequential
execution. TL2’s read-time validation (described above) ensures opacity.

In TDSL, the TL2 approach was tailored to specific data structures (skiplists and queues)
so as to benefit from their internal organization and semantics. TDSL’s skiplists use small
read- and write-sets capturing only accesses that induce conflicts at the data strucutre’s
semantic level. For example, whereas TL2’s read-set holds all nodes traversed during the
lookup of a particular key, TDSL’s read-set keeps only the node holding this key. In addition,
whereas TL2 uses only optimistic concurrency-control (with commit-time locking), TDSL’s
queue uses a semi-pessimistic approach. Since the head of a queue is a point of contention,
deq immediately locks the shared queue (although the actual removal of the object from the
queue is deferred to commit time); the enq operation remains optimistic.

Note that TDSL is less general than generic STMs: STM transactions span all memory
accesses within a transaction, which is enabled, e.g., by instrumentation of binary code [1]
and results in large read- and write-sets. TDSL provides transactional semantics within
the confines of the library’s data structures while other memory locations are not accessed
transactionally. This eliminates the need for instrumenting code.

3 Adding Nesting to TDSL

We introduce nesting into TDSL. Section 3.1 describes the correct behavior of nesting and
offers a general scheme for making a transactional data structure (DS) nestable. Section 3.2
then demonstrates this technique in the two DSs supported by the original TDSL – queue
and skiplist. We restrict our attention to a single level of nesting for clarity, as we could
not find any example where deeper nesting is useful. However, deeper nesting could be
supported along the same lines if required, via migrating the descendant’s local state to
its ancestor as described in nCommit below. In Section 3.3 we use microbenchmarks to
investigate when nesting is useful and when less so, and to compare our library’s performance
with transactional data structures used on top of general purpose STMs. The nestable log,
stack, and producer-consumer pool are described in Section 3.4

3.1 Nesting Semantics and General Scheme

Nesting is a technique for defining child sub-transactions within a transaction. A child has
its own local state (read- and write-sets), and it may also observe its parent’s local state. A
child transaction’s commit migrates its local state to its parent but not to shared memory
visible by other threads. Thus, the child’s operations take effect when the parent commits,
and until then remain unobservable.
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Correctness. A nested transaction implementation ought to ensure that (1) nested oper-
ations are not visible in the shared state until the parent commits; and (2) upon a child’s
commit, its operations are correctly reflected in the parent’s state exactly as if all these
operations were executed as part of the parent. In other words, nesting part of a transaction
does not change its externally visible behavior.

Implementation scheme. In our approach, the child uses its parent’s VC. This way, the child
and the parent observe the shared state at the same “logical time” and so read validations
ensure that the combined state observed by both of them is consistent, as required for opacity.

Algorithm 2 introduces general primitives for nesting arbitrary DSs. The nTXbegin and
nCommit primitives are exposed by the library and may be called by the user as in Algorithm
1. When user code operates on a transactional DS managed by the library for the first
time, it is registered in the transaction’s childObjectList, and its local state and lockSet are
initialized empty. nTryLock may be called from within the library, e.g., a nested dequeue
calls nTryLock. Finally, nAbort may be called by both the user and the library.

We offer the nTryLock function to facilitate pessimistic concurrency control (as in TDSL’s
queues), where a lock is acquired before the object is accessed. This function (1) locks the
object if it is not yet locked; and (2) distinguishes newly acquired locks from ones that were
acquired by the parent. The latter allows the child to release its locks without releasing ones
acquired by its parent.

A nested commit, nCommit, validates the child’s read-set in all the transaction’s DSs
without locking the write-set. If validation is successful, the child migrates its local state to
the parent, again, in all DSs, and also makes its parent the owner of all the locks it holds.
To this end, every nestable DS must support migrate and validate functions, in addition to
nested versions of all its methods.

Algorithm 2 Nested begin, lock, commit, and abort.

1: procedure nTXbegin
2: alloc childObjectList, init empty
3: On first access to

obj in child transaction
4: add obj to childObjectList
5: procedure nAbort
6: for each obj in childObjectList do
7: release locks in lockSet
8: parent VC ← GVC
9: for each obj in childObjectList do

10: validate parent
▷ DS specific code

11: if validation fails
12: abort ▷ Retry parent
13: Restart child

14: procedure nCommit
15: for each obj in childObjectList do
16: validate obj with parent’s VC
17: if validation fails
18: nAbort
19: for each obj in childObjectList do
20: obj.migrate ▷ DS specific code
21: for each lock in lockSet do
22: transfer lock to parent
23: procedure nTryLock(obj)
24: if obj is unlocked
25: lock obj with child id
26: add obj to lockSet
27: if obj is locked but not by parent
28: nAbort ▷ Abort child

In case the child aborts, it releases all of its locks. Then, we need to decide whether
to retry the child or abort the parent too. Simply retrying the child without changing the
VC is liable to fail because it would re-check the same condition during validation, namely,
comparing read object VCs to the transaction’s VC. We therefore update the VC to the
current GVC value (line 8) before retrying. This ensures that the child will not re-encounter
past conflicts. But in order to preserve opacity, we must verify that the state the parent
observed is still consistent at the new logical time (in which the child will be retried) because
operations within a child transaction ought to be seen as if they were executed as part of
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the parent. To this end, we revalidate the parent’s read-set against the new VC (line 10).
This is done without locking its write-set. Note that if this validation fails then the parent is
deemed to abort in any case, and the early abort improves performance. If the revalidation
is successful, we restart only the child (line 13).

Recall that retrying the child is only done for performance reasons and it is always safe
to abort the parent. Specific implementations may thus choose to limit the number of times
a child is retried.

3.2 Queue and Skiplist
We extend TDSL’s queue with nested transactional operations in Algorithm 3. The original
queue’s local state includes a list of nodes to enqueue and a reference to the last node to
have been dequeued (together, they replace the read- and write-sets). We refer to these
components as the parent’s local queue, or parent queue for short. Nested transactions hold
an additional child queue in the same format.

Algorithm 3 Nested operations on queues.

1: Queue
2: sharedQ ▷ Shared among all threads
3: parentQ, childQ ▷ Thread local
4: procedure nEnq(val)
5: childQ.append(val)
6: procedure migrate
7: parentQ.appendAll(childQ)
8: procedure validate
9: return true

10: procedure nDeq()
11: nTryLock()
12: val ← next node in sharedQ

▷ stays in sharedQ
13: if val = ⊥
14: val ← next node in parentQ

▷ stays in parentQ
15: if val = ⊥
16: val ← childQ.deq()

▷ Removed from childQ
return val

Figure 1 Nested queue operations: dequeue returns objects from the shared, and then parent
states without dequeuing them, and when they are exhausted, dequeues from the child’s queue;
enqueue always enqueues to the child’s queue.

The nested enqueue operation remains simple: it appends the new node to the tail of the
child queue (line 5). The nested dequeue first locks the shared queue. Then, the next node
to return from dequeue is determined in lines 12 – 16, as illustrated in Figure 1. As long as
there are nodes in the shared queue that have not been dequeued, dequeue returns the value
of the next such node but does not yet remove it from the queue (line 12). Whenever the
shared queue has been exploited, we proceed to traverse the parent transaction’s local queue
(line 14), and upon exploiting it, perform the actual dequeue from the nested transaction’s
local queue (line 16). A commit appends (migrates) the entire local queue of the child to
the tail of the parent’s local queue. The queue’s validation always returns true: if it never
invoked dequeue, its read set is empty, and otherwise, it had locked the queue.

We note that acquiring locks within nested transactions may result in deadlock. Consider
the following scenario: Transaction T1 dequeues from Q1 and T2 dequeues from Q2, and
then both of them initiate nested transactions that dequeue from the other queue (T2 from
Q1 and vice versa). In this scenario, both child transactions will inevitably fail no matter
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how many times they are tried. To avoid this, we retry the child transaction only a bounded
number of times, and if it exceeds this limit, the parent aborts as well and releases the locks
acquired by it. Livelock at the parent level can be addressed using standard mechanisms
(backoff, etc.).

To extend TDSL’s skiplist with nesting we preserve its optimistic design. A child
transaction maintains read- and write-sets of its own, and upon commit, merges them into its
parent’s sets. As in the queue, read operations of child transactions can read values written
by the parent. Validation of the child’s read-set verifies that the versions of the read objects
have not changed. The skiplist’s implementation is straightforward, and its pseudo-code is
presented in the full version.

3.3 To Nest, or Not to Nest

Nesting limits the scope of abort and thus reduces the overall abort rate. On the other hand,
nesting introduces additional overhead. We now investigate this tradeoff using a synthetic
microbenchmark and further provide guidelines for nesting in transactional data structure
libraries.

Experiment setup. We run our experiments and measure throughput on an AWS m5.24xlarge
instance with 2 sockets with 24 cores each, for a total of 48 physical cores. We disable
hyperthreading.

We use a synthetic workload, where every thread runs 50,000 transactions, each consisting
of 10 random operations on a shared skiplist followed by 2 random operations on a shared
queue. Operations are chosen uniformly at random, and so are the keys for the skiplist
operations. We examine three different nesting policies: (1) flat transactions (no nesting);
(2) nesting skiplist operations and queue operations; and (3) nesting only queue operations.

We examine two scenarios in terms of contention on the skiplist. In the low contention
scenario, the skiplist’s key range is from 0 to 50,000. In the second scenario, it is from 0 to
50, so there is high contention. Every experiment is repeated 10 times.

Compared systems. We use the Synchrobench [15] framework in order to compare our
TDSL to existing data structures optimized for running within transactions. Specifically,
we run ε-STM (Elastic STM [13]) with the three transactional skiplists available as part of
Synchrobench – transactional friendly skiplist set, transational friendly optimized skiplist
set, and transactional Pugh skiplist set – and to the (single) available transactional queue
therein. In all experiments we ran, the friendly optimized skiplist performed better than the
other two, and so we present only the results of this data structure. This skiplist requires
a dedicated maintenance thread in addition to the worker threads. To provide an upper
bound on the performance of ε-STM, we allow it to use the same number of worker threads
as TDSL plus an additional maintenance thread, e.g., we compare TDSL with eight threads
to ε-STM with a total of nine. We note that ε-STM requires one maintenance thread per
skip list; again, to favor ε-STM, we use a single skiplist in the benchmarks.

Synchrobench supports elastic transactions in addition to regular (opaque) ones, and also
optionally supports multi-version concurrency control (MVCC) [16, 17], which reduces abort
rates on read-only transactions. We experiment with these two modes as well.

We also ran our experiments on TL2 with the transactional friendly skiplist, but it was
markedly slower than the alternatives, and in many experiments failed to commit transactions
within the internally defined maximum number of attempts. We therefore omit these results.
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Results. Figure 2 shows the average throughput obtained.
In the low contention scenario (Figure 2a), nesting both queue and skiplist operations

yields the best performance in the vast majority of data points. It improves throughput
by 1.6x on average compared to flat transactions on 48 threads. It is worth noting that
nesting provides the highest throughput without relaxing opacity like elastic transactions,
and without keeping track of multiple versions of memory objects like MVCC. This is due to
less work being wasted upon abort. Nesting queue operations seems to be the main reason
for the performance gain compared to flat transactions, as nesting only queue operations
yields comparable performance. In fact, nesting only the operations on the contended object
may be preferable, as it provides the best of both worlds: low abort rates, as discussed later
in this section, and less overhead around skiplist sub-transactions. The overhead difference
is seen clearly when examining the performance of the two nesting variants of TDSL with a
single thread, when nesting induces overhead and offers no benefits.

We further investigate the effect of nesting via the abort rate, shown in Figure 2c (for
the low contention scenario). We see the dramatic impact of nesting on the abort rate. This
sheds light on the throughput results. Nesting both skiplist and queue operations indeed
minimizes the abort rate. However, the gap in abort rate does not directly translate to
throughput, as it is offset by the increased overhead.

In the high contention scenario (Figure 2b), both DSs are highly contended, and nesting
is harmful. The high contention prevents the throughput from scaling with the number of
threads, and we observe degradation in performance starting from as little as 2 concurrent
threads for TDSL, and between 4-12 concurrent threads for the other variants. From the
abort rate point of view (Figure 2d), the majority of transactions abort with as little as
4 threads regardless of nesting, and 80-90% abort with 8 threads. Despite exhibiting the
lowest abort rate, nesting all operations performs worse than other TDSL variants. In this
scenario, too, nested TDSL performs better than the ε-STM variants despite being unfruitful
compared to flat transactions.

Aborts on queue operations occur due to failures of nTryLock, which has a good chance
of succeeding if retried. On the other hand, aborts on nested skiplist operations are due to
reading a higher version than the parent’s VC. In such scenarios, the parent is likely to abort
as well since multiple threads modify a narrow range of skiplist elements, hence an aborted
child is not very likely to commit even if given another chance. Overall, we find that nesting
the highly contended queue operations is more useful than nesting map operations – even
when contended. Thus, contention alone is not a sufficient predictor for the utility of nesting.
Rather, the key is the likelihood of the failed operation to succeed if retried.

3.4 Additional Data Structures
Transactions may span multiple objects of different types. Every data structure implements
the methods defined by its type (e.g., dequeue for queue), as well as methods for validation,
migrating a child transaction’s state to its parent, and committing changes to shared memory.
We extend our Java TDSL with three widely used data structures – a producer-consumer
pool (supports produce and consume), a log (read, append), and a stack (push, pop). We
briefly describe their modus operandi next. We refer the reader to the full version for the
specifics of the nesting support transactional implementation and its correctness.

Both the log and the stack resemble with the queue, as both have single points of
contention: the log’s tail and the stacks head. Accessing elements preceding the log’s tail may
always succeed and does not generate contention, but appending to it’s tail requires acquiring
the log’s lock upon first append, in a similar manner to the queue’s dequeue, as competing
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(a) Throughput, low contention.
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(b) Throughput, high contention.
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(c) Abort rate, low contention.
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(d) Abort rate, high contention.

Figure 2 The impact of nesting in TDSL, compared to transactional friendly data structures on
ε-STM.

transactions will surely abort if the appending transaction commits. For the stack, reading
(i.e., popping) is similar in nature to the dequeue operation, and is performed pessimistically.
However, a stack may employ its semantics to create some degree of optimism: Since push
and pop operations cancel out with each other, a transaction is not required to operate
pessimistically and acquire a lock until it had popped more elements than it had pushed. If
at any time during the transaction there was at least as many pushed items as popped ones,
the stack’s lock will only be acquired at the end of the transaction to append the local stack
to its top. In both data structures, child transactions maintain local logs and stacks with
elements to be added to the parent’s local structures, and eventually to the shared structures
upon commit.

The producer-consumer pool is unlike any other data structure implemented in TDSL
so far: its sequential specification does not require contained elements be ordered. It has
multiple potential points of contention, and has no read-only operations. Transactions
(both parent and nested) mark slots in the shared pool as that are accessed withing the
transaction, so other threads do not access them. The transactional implementation includes
a cancellation mechanism that releases nodes that were produced and then consumed in
the same transaction, as well a migration mechanism to apply operations from a nested
transaction to the parent’s state.

4 NIDS Case Study

We conduct a case study of parallelizing a full-fledged network intrusion detection system
using memory transactions. In this section we provide essential background for multi-threaded
IDS systems, describe our NIDS software and point out candidates for nesting.
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Intrusion detection is a basic security feature in modern networks, implemented by popular
systems such as Snort [38], Suricata [14], and Zeek [36]. As network speeds increase and
bandwidth grows, NIDS performance becomes paramount, and multi-threading becomes
instrumental [19].

Multi-threaded NIDS. We develop a multi-threaded NIDS benchmark. The processing
steps executed by the benchmark follow the description in [19]. As illustrated in Figure 3, our
design employs two types of threads. First, producers simulate the packet capture process of
reading packet fragments off a network interface. In our benchmark, we do not use an actual
network, and so the producers generate the packets and push packet fragments into a shared
producer-consumer pool called the fragments pool. The rationale for using dedicated threads
for packet capture is that – in a real system – the amount of work these threads have scales
with network resources rather than compute and DRAM resources. In our implementation,
the producers simply drive the benchmark and do not do any actual work.

Figure 3 Our NIDS benchmark: tasks and data structures.

Packet processing is done exclusively by the consumer threads, each of which consumes
and processes a single packet fragment from the shared pool. Algorithm 4 describes the
consumer’s code. To ensure consistency, each consumer executes as a single atomic transaction.
It begins by performing header extraction, namely, extracting information from the link layer
header. The next step is called stateful IDS ; it consists of packet reassembly and detecting
violations of protocol rules. Reassembly uses a shared packet map associating each packet
with its own shared processed fragment map. The first thread to process a fragment pertaining
to a particular packet creates the packet’s fragment map whereas other threads append
fragments to it. Similarly, only the thread that processes a packet’s last fragment continues
to process the packet, while the remaining threads move on to process other fragments from
the pool. By using atomic transactions, we guarantee that indeed there are unique “first”
and “last” threads and so consistency is preserved.

Algorithm 4 Consumer code.

1: f ← fragmentPool.consume()
2: process headers of f
3: fragmentMap ← packetMap.get(f )

▷ Start nested TX
4: if fragmentMap = ⊥
5: fragmentMap ← new map
6: packetMap.put(f , fragmentMap)

▷ End nested TX

7: fragmentMap.put(f .id, f )
8: if f is the last fragment in packet
9: reassemble and inspect packet

▷ Long computation
10: log the result ▷ Nested TX
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The thread that puts together the packet proceeds to the signature matching phase,
whence the reassembled packet’s content is tested against a set of logical predicates; if all
are satisfied, the signature matches. This is the most computationally expensive stage [19].
Finally, the thread generates a packet trace and writes it to a shared log.

As an aside, we note that our benchmark performs five of the six processing steps detailed
in [19]; the only step we skip is content normalization, which unifies the representations
of packets that use different application-layer protocols. This phase is redundant in our
solution since we use a unified packet representation to begin with. In contrast, the intruder
benchmark in STAMP [32] implements a more limited functionality, consisting of packet
reassembly and naïve signature matching: threads obtain fragments from their local states
(rather than a shared pool), signature matching is lightweight, and no packet traces are
logged. This results in significantly shorter transactions than in our solution.

Nesting. We identify two candidates for nesting. The first is the logging operation
given that logs are prone to be highly contended. Because in this application the logs are
write-only, transactions abort only when they contend to write at the tail and not because of
consistency issues. Therefore, retrying the nested transaction amounts to retrying to acquire
a lock on the tail, which is much more efficient than restarting the transaction.

Second, when a packet consists of multiple fragments, its entry in the packet map is
contended. In particular, for every fragment, a transaction checks whether an entry for its
packet exists in the map, and creates it if it is absent. Nesting lines 3 - 6 of Algorithm 4 may
thus prevent aborts.

5 NIDS Evaluation

We now experiment with nesting in the NIDS benchmark. We detail our evaluation method-
ology in Section 5.1 and present quantitative results in Section 5.2.

5.1 Experiment Setup

Our baseline is TDSL without nesting, which is the starting point of this research. We also
compare to the open source Java STM implementation of TL2 by Korland et al. [28], as
well as ε-STM [13] and PSTM [16, 17]. The results we obtained for ε-STM and PSTM were
very similar to those of TL2 and are omitted from the figures to avoid clutter. Note that
the open-source implementations of ε-STM and PSTM optimize only data structures that
contain integers; they use bare-STM implementations for data structures holding general
objects, as the data structures in our benchmark do. This explains why their performance is
sub-optimal in this benchmark.

We experiment with nesting each of the candidates identified in Section 4 (put-if-absent
to the packetMap and updating the log), and also with nesting both. Our baseline executes
flat transactions, i.e., with no nesting. In TDSL, the packet pool is a producer-consumer
pool, the map of processed packets is a skiplist of skiplists, and the output block is a set of
logs. For TL2, the packet pool is implemented with a fixed-size queue, the packet map is
an RB-tree of RB-trees, and the output log is a set of vectors. We use the implementations
provided in [27] without modification.

The experiment environment is the same as for the microbenchmark described in Sec-
tion 3.3. We repeated the experiment on an in-house 32-core Xeon machine and observed
similar trends; these results are omitted. We run each experiment 5 times and plot all data
points, connecting the median values with a curve.
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(a) Throughput, one fragment per packet.
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(b) Abort rate, one fragment per packet.
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(c) Throughput, 8 fragments per packet.
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(d) Abort rate, 8 fragments per packet.
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Figure 4 NIDS experiments results.

We conduct two experiments. In the first, each packet consists of a single fragment, there
is one producer thread, and we scale the number of consumers. In the second experiment,
there are 8 fragments per packet and as we scale the number of threads, we designate half the
threads as producers. We experimented also with different ratios of producers to consumers,
but this did not seem to have a significant effect on performance or abort rates, so we
stick to one configuration in each experiment. The number of fragments per packet governs
contention: If there are fewer fragments then more threads try to write to logs simultaneously.
More fragments, on the other hand, induce more put-if-absent attempts to create maps.

5.2 Results

Performance. Figures 4a and 4b show the throughput and abort rate in a run with 1
fragment per packet and a single producer. Whereas the performance of all solutions is
similar when we run a single consumer, performance differences become apparent as the
number of threads increases. For flat transactions (red diamonds), TDSL’s throughput is
consistently double that of TL2 (purple octagons), as can be observed in Figure 5, which
zooms in on these two curves in the same experiment. We note that the TDSL work [41]
reported better performance improvements over TL2, but they ran shorter transactions that
did not write to a contended log at the end, where TDSL’s abort rate remained low. In
contrast, our benchmark’s long transactions result in high abort rates in the absence of
nesting. Nesting the log writes (green squares) improves throughput by an additional factor
of up to 6, which is in line with the improvement of TDSL over TL2 reported in [41], and also
reduces the abort rate by a factor of 2. The packet map is not contended in this experiment,
and so transactions with nested insertion to the map behave similarly to flat ones (in terms
of both throughput and abort rate).
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Table 1 Scalability: peak performance (tx/sec) / number of threads where it is achieved.

Algorithm 1
Fragment

8
Fragments

TL2 1.6K / 8 24K / 4
TDSL flat 3.5K / 28 122K / 24

TDSL nesting log 23.5K / 40 127K / 24
TDSL nesting
put-if-absent 3.5K / 28 113K / 20

TDSL nesting both 23.5K / 36 122K / 24
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Figure 5 Throughput of TL2 and flat transactions in TDSL, a single producer and one fragment
per packet.

Figure 4c shows the results in experiments with 8 fragments per packet. For clarity, we
omit TL2 from this graph because it performs 6 times worse than the lowest alternative.
Here, too, the best approach is to nest only log updates, but the impact of such nesting is
less significant in this scenario, improving throughput only by about 20%. This is because
with one fragment per packet, every transaction tries to write to the log, whereas with 8,
only the last fragment’s transaction does, reducing contention on the log. Nevertheless, the
effect of nesting log updates is more significant as it reduces the number of aborts by a factor
of 3, and thus saves work.

Unlike in the 1-thread scenario, with 8 threads, there is contention on the put-if-absent
to the fragment map, and so nesting this operation reduces aborts. At first, it might be
surprising that flat transactions perform better than ones that nest the put-if-absent despite
their higher abort rate. However, the abort reduction has a fairly low impact since this
operation is performed early in the transaction. Thus, the overhead induced by nesting
exceeds the benefit of not repeating the earlier part of the computation. The effect of this
overhead is demonstrated in the difference in performance between nesting both candidates
(black circles) and nesting only the log writes (green squares).

Scaling. Not only does nesting have a positive effect on performance, it improves scalability
as well. For instance, Figure 4a shows that throughput increases linearly all the way up to 40
threads when nesting the logging operation, whereas flat nesting, as can be seen in Figure 5,
peaks at 28 threads but saturates already at 16. Table 1 summarizes the scaling factor in
both experiments.
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6 Related Work

Transactional data structures. Since the introduction of TDSL [41] and STO [26], transac-
tional libraries got a fair bit of attention [29, 9, 46, 31]. Other works have focused on wait-free
[29] and lock-free [9, 46] implementations (as opposed to TDSL and STO’s lock-based ap-
proach). Such algorithms are interesting from a theoretical point of view, but provide very
little performance benefits, and in some cases can even yield worse results than lock-based
solutions [10, 7]. Lebanoff et al. [31] introduce a trade-off between low abort rate and high
computational overhead. By restricting their attention to static transactions, they are able
to perform scheduling analyses in order to reduce the overall system abort rate. We, in
contrast, support dynamic transactions.

Transactional boosting and its follow-ups [20, 23] offer generic approaches for making
concurrent data structures transactional. However, they do not exploit the structure of the
transformed data structure, and instead rely on semantic abstractions like compensating
actions and abstract locks.

Some full-fledged STMs incorporate optimization for specific data structures. For instance,
ε-STM [13] and PSTM [16, 17] support elastic transactions on search data structures. Note,
however, that unlike closed nesting, elastic transactions relax transactional semantics. PSTM
allows programmers to select the concurrency control mechanism (MVCC or single-version)
and the required semantics (elastic or regular) for each transaction. While this offers a
potential for performance gains, our results in Section 3.3 have shown that nesting outperforms
all of the approaches.

PSTM improves on SwissTM [8], which has featured other optimizations in order to
support longer transactions, like a contention manager and mixed concurrency control, and
showed 2-3x better performance compared to TL2 [6] and TinySTM [12] and good scalability
up to 8 threads. These optimizations are orthogonal to nesting.

Chopping and nesting. Recent works introduced the concept of chopping [43, 11, 45], which
splits up transactions in order to reduce abort rates. Chopping and the similar concept of
elastic transactions [13] were recently adopted in transactional memory [34, 44, 31]. The
high-level idea of chopping is to divide a transaction into a sequence of smaller ones and
commit them one at a time. While atomicity is eventually satisfied (provided that all
transactions eventually commit), this approach forgoes isolation, which nesting preserves.

While some previous work on supporting nesting in generic STMs was done in the
past [4, 42, 35, 3], we are not aware of any previous work implementing closed nesting in a
non-distributed sequential STM. This might be due to the fact that the benefit of closed
nesting is in allowing longer transactions whereas STMs are not particularly suitable for long
transactions in any case, and the extra overhead associated with nesting might be excessive
when read- and write-sets are large as in general purpose STMs. Our solution is also the
first to introduce nesting into transactional data structure libraries, and thus the first to
exploit the specific structure and semantics of data structures for efficient nesting. Because
our data-structures use diverse concurrency control approaches, we had to develop nesting
support for each of them. An STM using any of these approaches (e.g., fine-grain commit-time
locking with read-/write-sets) can mimic our relevant technique (e.g., closed-nesting can be
supported in TL2 using a similar scheme to the one we use in maps).
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7 Conclusion

The TDSL approach enables high-performance software transactions by restricting transac-
tional access to a well-defined set of data structure operations. Yet in order to be usable in
practice, a TDSL needs to be able to sustain long transactions, and to offer a variety of data
structures. In this work, we took a step towards boosting the performance and usability of
TDSLs, allowing them to support complex applications. A key enabler for long transactions
is nesting, which limits the scope of aborts without changing the transactional semantics.

We have implemented a Java TDSL with built-in support for nesting in a number of
data structures. We conducted a case study of a complex network intrusion detection system
running long transactions. We found that nesting improves performance by up to 8x, and
the nested TDSL approach outperforms the general-purpose STM by up to 16x. We plan to
make our code (both the library and the benchmark) available in open-source.
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Abstract
We study asynchronous rumor spreading algorithm in dynamic and static graphs. In the asynchronous
rumor spreading, for a given underlying graph, each node is equipped with an exponential time
clock of rate 1. When a node’s clock ticks, the node calls a random neighbor in order to exchange
a rumor, if at least one of them knows it. Assuming a single node knows a rumor, we apply a
differential equation-based technique to obtain an upper bound for the spread time of the algorithm
in general dynamic graphs, which is the first time when all nodes get informed with high probability.
In particular, we derive an upper bound for the spread time of the algorithm in a discrete version
of a geometric mobile network, introduced by Clementi et al. [7]. In this model, a set of n agents
independently performs random walks on a

√
n ×

√
n plane and every two agents are able to

communicate if they are within Euclidean distance at most R, where f(n)
√

log n ⩽ R ⩽
√

n and
f(n) is a slowly growing function in n. Here, we show that the algorithm spreads a rumor through
the network in O(log n +

√
n/R) time, with high probability. Although we only show an upper

bound the spread time of the algorithm in a 2 dimensional space, the framework can be also applied
for geometric mobile networks defined over higher dimensional space and other random dynamic
evolving networks such as stationary edge-Markovian model. Besides these synchronous and discrete
dynamic models, we also consider the spreading time in dynamical Erdős-Rényi graphs.
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1 Introduction

Randomized rumor spreading algorithms are important primitives for information dissemina-
tion through a network. The standard randomized rumor spreading proceeds in succeeding
rounds. In each round, every node in the network calls a random neighbor and they possibly
exchange the rumor, if at least one of them knows it. Demers et al. [10] first introduced
the algorithm to consistently distribute an update in a network of databases. Feige et
al. [12] observed that the algorithm is scalable in terms of network size, and robust against
the node/link failure and thus it has been applied in a wide range of distributed settings
(e.g., see [3, 16]). The spread time is a well-studied parameter associated with the rumor
spreading algorithms which is the first time when all nodes have been informed with high
probability. The spread time of the algorithm has been studied on various network topo-
logies [2, 11]. Moreover, it has been shown that the spread time of the algorithm in any
static n-node network is at most O(log n/Φ), where Φ denotes the graph conductance [5].
In many distributed networks such as peer-to-peer, social and ad hoc networks, agents may
not act in a synchronized manner. Therefore, Boyd et al. [3] proposed the asynchronous
randomized rumor spreading algorithm, where each node has its own clock and contacts a
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random neighbor in order to exchange the rumor according to arrival times of its Poisson
process with rate 1. The algorithm and its variations have been further studied in static
networks [1, 13, 20, 23].

Information spreading in dynamic graphs has been a fundamental question and the subject
of a large body of works (e.g., see [8] and references therein). For instance, the spread time
of various algorithms has been studied in popular dynamic evolving graphs whose evolution
is governed by a stochastic process such as geometric mobile [18, 21], edge-Markovian [6],
and node-Markovian dynamic graphs [8]. Deterministic and adversarial settings have also
been considered in [14, 22]. A dynamic evolving graph, denoted by G = {G(t)}∞

t=0, is usually
referred to as a sequence of graphs with same set of nodes, but the edge set may change over
discrete time t = 0, 1 . . .. It has gained popularity as it models a wide range of real-world
networks including the wireless communication, mobile, and peer-to-peer networks.

1.1 Related Works
Kowalski and Caro [17] considered the asynchronous rumour spreading on general graphs and
introduced a graphical quantity based on degree distribution of nodes that are incident to
edges in any cut set. By applying the quantity they derive upper bounds for the spread time.
Also, Panagiotou and Spiedel [20] rigorously analyzed the spread time of the asynchronous
algorithm in Erdős-Rényi graphs G(n, p) with p = ω(log n/n). In order to show their results,
they presented a large deviation inequality for the sum of a particular set of exponential
random variables, which cannot be generalized for every graph.

Giakkoupis et al. [13] applied coupling techniques and established an interesting relation
between synchronous and asynchronous rumor spreading algorithms. Let G be a given n-node
static network and assume that Ts(G) and Ta(G) are the spread time of synchronous and
the standard asynchronous rumor spreading algorithms on G, respectively. They showed
that Ta(G) = O(Ts(G) + log n). Moreover, they derived an upper bound for Ts(G)

Ta(G) , which is
n1/2(log n)O(1). Giakkoupis et al. [14] considered the spread time of the synchronous rumor
spreading in dynamic evolving graphs. They showed that the rumor propagates through the
graph whenever

∑
t{Φ(G(t)) · D} = Ω(log n), where D = maxu δu/∆u, ∆u and δu are the

upper and lower bounds for degree of node u over time, respectively, and the maximum is
taken over all nodes.

Pourmiri and Mans [22] established a similar upper bound for the spread time of asynchron-
ous rumor spreading in dynamic graphs that is the first time when

∑
t{Φ(G(t)) · ρ(G(t))} =

Ω(log n), where ρ(G(t)) is called the graph diligence. The graph diligence presents a more
refined version of parameter D and ρ(G(t)) ⩾ δ(t)/∆(t), where ∆(t) and δ(t) denote the
maximum and minimum degree of G(t), respectively. Moreover, they present a family of
dynamic graphs for which the upper bounds is tight up to a o((log n)2) factor.

The aforementioned results have shown that besides the graph conductance, variation of
degree sequence in a dynamic graph directly affect the spread time.

1.2 Our Main Results
We focus on asynchronous rumor spreading in dynamic and static graphs and present a
general technique to obtain an upper bound for the spread time. The upper bounds are based
on a differential equation taking into account the expansion properties of various subset of
nodes, the maximum and the minimum degree of nodes. The methods have two advantages;
(i) In contrast to existing method, this technique can be extended to settings where graphical
parameters continuously or discretely change over time. (ii) It provides an alternative way
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to compute the spread time by defining a Poisson random variable that is stochastically
dominated by the size of informed nodes. The latter allows us to apply a concentration result
for Poisson random variables and obtain a lower bound for the size of informed nodes at
any time.

For every n-vertex graph G = (V, E) and 1 ⩽ x < n, conductance function, denoted by
Φ(x), measures the expansion property of any subset of nodes of size at most x in G, which
is defined as follows

Φ(x) = min
S⊂V (G)
1⩽|S|⩽x

|E(S, S)|
min{vol(S), vol(S)}

,

where vol(S) =
∑

u∈S du and E(S, S) denotes the set of edges crossing S and its complement
S (i.e., V \ S). It is easy to see that the standard graph conductance can be rewritten as
Φ(G) = Φ(n/2). Lovász and Kannan [19] introduced the concept of conductance function
and showed that a lazy random walk on a connected graph with n nodes converges to its
stationary distribution within at most

∫ 1/2
1/n

dt/(tΦ(nt)2) time. Somewhat analogous to this
result we estimate the number of informed nodes up to time t by a Poisson-distributed random
variable with rate Λ(t), where dΛ(t)/dt satisfies a differential equation (see Lemma 2.9).

Using the differential equation presented at Lemma 2.9, we drive upper bounds for the
spread time of the asynchronous rumor spreading in a general dynamic evolving graph,
geometric mobile, and dynamical Erdős-Rényi graphs. A dynamic evolving graph is a
sequence of n-node graphs, G(1), G(2), . . ., where they all have the same set of nodes but set
of edges changes over time t = 1, . . ..

▶ Theorem 1.1. Suppose that G = {G(t)}∞
t=1 denote a dynamic evolving graph whose nodes’

degrees range over interval [δ, ∆]. Also, assume that graph exposed at any time t, G(t), has
conductance at least Φ. Then, with high probability,

T (G) = O (∆ log n/(δΦ)) ,

where T (G) denote the first time when all nodes get informed.

▶ Remark. It turns out that the upper bound tight up to a o((log n)2). In fact, there exists a
dynamic evolving graph with ∆/δ = Θ(

√
n) and Φ = Θ(log log n/ log n) for which the rumor

spreads in Ω(
√

n/ log n) time. For more details see [22, Theorem 1.2].

Geometric Mobile Network

The geometric mobile stationary network, introduced by Clementi et al. [7], is a discrete
version of random walk mobility model, where nodes represent radio stations in a wireless
communication system [4]. For some small number ϵ > 0, initially, n agents are randomly
distributed on nodes of a

√
n/ϵ ×

√
n/ϵ 2-dimensional grid, embedded on a

√
n ×

√
n square

plane. For a given parameter r > 0, in each time step t = 1, . . ., each agent independently
and uniformly at randomly moves to a node whose Euclidean distance from its current
location is at most r. Given this random process, in each time step t, we define network G(t)

whose vertex set is the set of all agents and there is an edge between any two agents in G(t)

if their Euclidean distance is at most R, where f(n)
√

log n ⩽ R ⩽
√

n in the plane, and f(n)
is a slowly growing function in n. The model is denoted by M(n, R) = {G(t)}∞

t=0 and it is
assumed that the agents are initially distributed according to the stationary distribution of
the random walk on the grid.
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▶ Theorem 1.2. Suppose that M(n, R) = {G(t)}∞
t=0 is a geometric mobile network with

f(n)
√

log n ⩽ R ⩽
√

n/2, where f(n) is a slowly growing function. Also, assume that,
initially, a node of G(0) is aware of a rumor. Then, with high probability, the asynchronous
rumor spreading algorithm propagates the rumor in O(

√
n/R + log n) time.

Interestingly, the upper bound has the same magnitude as the spread time of flooding in the
network [7]. The flooding is a simple variant of the synchronous rumor spreading algorithm
where each informed node pushes the rumor to all of its neighbors. For sufficiently large
R = Θ(

√
n), M(n, R) is almost fully connected and the theorem gives an upper bound of

O(log n) for the algorithm, which is tight for the asynchronous rumor spreading in any fully
connected network [3]. The proof technique of the theorem can be also applied for geometric
mobile network defined over higher dimensional space.

Dynamical Erdős-Rényi Graph

Häggström, Peres and Steif [15] introduced dynamical percolation graph by adding a time
dynamics to the well-known percolation model. The model, initially, starts with a fixed
underlying graph G whose edges have been associated with a Poisson clock of rate µ. When
an edge’s clock ticks, then the edge is activated (opened) with probably p and deactivated
(closed) with probability 1 − p. Later, Sousi and Thomas [24] studied a setting where the
underlying graph is an n-node complete graph, µ = o((log n)−6/n) and p = c/n, where
c > 1 is a constant. The dynamic graph is called dynamical Erdős-Rényi graph ER(n, p, µ)
modeling a sparse dynamic graph whose edges get updated, slowly. They studied the
mixing properties of a random walk on the graph and show that the random walk mixes in
log n

µ (1 + o(1)) time.

▶ Theorem 1.3. Suppose that for some constant c > 1, p = c/n and µ = o((log n)−6/n).
Also, assume that initially a rumor is injected to a node of ER(n, µ, p). Then, with probability
1 − o(1), the rumor propagates through the ER(n, µ, p) within O((log n)2/µ) time.

A natural question would be to investigate the relation between the mixing and spread time
in dynamic percolation graphs.

Outline

In Section 2 we present useful definitions and some preliminaries. We prove Theorems 1.1, 1.2,
in Sections 3 and 4, respectively. Also, we give a proof sketch for Theorem 1.3 in Section 5.

2 Notations and Preliminaries

In this section we first define notations and some useful preliminaries. Throughout this
paper, n denotes the number of nodes in the dynamic or static graph and log stands for
the logarithm to the base of e. We say an event, say En, holds with high probability, if
Pr [En] ⩾ 1 − n−c, for some constant c > 1. For the sake of brevity we use w.h.p. to denote
with high probability. Now, let us formally present some definitions.

▶ Definition 2.1 (Conductance function). Let G = (V, E) be an n-vertex simple graph. Then,
for every 1 ⩽ x < n, conductance function is defined as

Φ(x) = min
S⊂V (G)
1⩽|S|⩽x

|E(S, S)|
min{vol(S), vol(S)}

, (1)

where E(S, S) is the set of edges crossing S and its complement and vol(S) =
∑

u∈S du.
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▶ Definition 2.2 (Asynchronous rumor spreading). Suppose G is a graph whose nodes are
associated with an exponential time clock of rate 1. Also, assume that initially a rumor is
injected to a node of G. Each node contacts a random neighbor according to the arrival times
of its Poisson process with rate 1. When they contact each other, they may learn the rumor,
if at least one of them knows it. Also, we define the spread time as the first time when all
nodes get informed with high probability and we use T (G) to denote the spread time.

▶ Definition 2.3 (Non-homogeneous Poisson process). Suppose that for every τ ⩾ 0 there is a
Poisson process with rate λ(τ) ⩾ 0. Then, P = {λ(τ) : τ ⩾ 0} is called a non-homogeneous
Poisson or counting process. Also, let N(τ) denote the number of occurrences made by process
during [0, τ ].

▶ Definition 2.4 (Stochastic Dominance). We say random variable X stochastically dominates
random variable Y , if for any arbitrary number a, we have that

Pr [X ⩽ a] ⩽ Pr [Y ⩽ a] .

We will now present a well-known theorem regarding non-homogeneous Poisson process.

▶ Theorem 2.5 ([9, Chapter 2]). Suppose that P = {λ(τ) : τ ⩾ 0} is a non-homogeneous
Poisson process. Also assume that λ(τ) : [0, ∞) → [0, ∞) is an integrable function. Then,
for every 0 ⩽ a ⩽ b, N(b) − N(a) has a Poisson distribution with rate

Λ =
∫ b

a

λ(τ)dτ.

For more information about non-homogeneous Poisson processes we refer the interested
reader to [9]. We now present a large deviation bound for Poisson random variables, whose
proof is based on the moment generating function of the Poisson random variables.

▶ Theorem 2.6. Suppose that X denote a Poisson random variable with rate Λ. Then we
have that

Pr [|X − Λ| ⩾ η] ⩽ 2 · e
−η2

2(Λ+η) .

Towards studying distribution of T (G), we divide the asynchronous algorithm in n states
where each state 1 ⩽ j ⩽ n stands for the situation where we have j informed nodes. For
every j = 1, . . . , n − 1, define tj(G) to be the waiting time for the algorithm to jump from
the j-th state to the (j + 1)-st one. Clearly, we have that

T (G) =
n−1∑
j=1

tj(G).

▶ Lemma 2.7. Suppose that G = (V, E) denote an n-node graph. Also, assume that, initially,
rumor is injected to a node of G. Then, for every 2 ⩽ j ⩽ n − 1, conditional on the first j

informed nodes, say Ij, tj(G) is an exponential random variable with rate

βj(G) =
∑

{u,v}∈E(Ij ,Uj)

{
1

d(u) + 1
d(v)

}
,

where E(Ij , Uj) is the set of edges crossing Ij and its complement Uj (set of non-informed
nodes). Moreover tj(G) is independent of tj−1, . . . t1.
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Proof. Notice that for every pair of vertices {u, v} ∈ E, u and v contact each other with
Poisson rate 1/d(u) + 1/d(v), where d(u) and d(v) are degrees of u and v, respectively. Let
Ij denotes the set of first j informed nodes. Then the (j + 1)-st node gets informed with
Poisson rate βj(G), which is

βj(G) =
∑

{u,v}∈E(Ij ,Uj)

{
1

d(u) + 1
d(v)

}
,

As soon as the j-th node gets informed and Ij gets determined, by memory-less property
of exponential distribution, tj(G) is an exponentially distributed random variable which is
independent of t1(G), . . . tj−1(G). ◀

▶ Lemma 2.8. Suppose that, for some n, A = (α1, . . . , αn), B = (β1, . . . , βn) ∈ Rn
+ be two

arbitrary vectors where for every 1 ⩽ j ⩽ n, αj ⩽ βj. Also, let P(A) and P(B) denote
non-homogeneous Poisson process for which, j = 1, . . . n, the j-th event happens with rate αj

and βj, respectively. Then, during a given time interval, the number of events generated by
P(B) stochastically dominates the number of events generated by P(A).

The proof is given in Appendix A.

2.1 Some Useful Lemmas
▶ Lemma 2.9. Suppose that G = {G(t)}∞

t=1 denotes an evolving dynamic graph whose nodes’
degree range over [δ, ∆]. Also, let Φ(x), 1 ⩽ x ⩽ n, be a lower bound for the conductance
function of any graph G(t) ∈ G. Now, assume that initially a rumor is injected to an arbitrary
node and the asynchronous algorithm starts propagating the rumor. Then, the number of
informed nodes up to time t stochastically dominates a Poisson distribution with rate Λ(t)
satisfying at

Λ′(t) = 2 · (δ/∆) · Φ(min{n − C(t), C(t)}) min{C(t), n − C(t)},

where C(t) counts the number of events happened by a Poisson distribution with rate Λ(t).
In particular, Φ(x) can be replaced with any function F (x) ⩽ Φ(x) where 1 ⩽ x ⩽ n/2.

Proof. Let βj denotes the Poisson rate at which the (j + 1)-st node gets informed. Also let
Ij and Uj denote the set of first j informed and n − j uninformed nodes, respectively. At
any time t, by Lemma 2.7, for every 1 ⩽ j ⩽ n − 1, we get that

βj =
∑

{u,v}∈Et(Ij ,Uj)

{
1

dt(u) + 1
dt(v)

}
⩾

2|Et(Ij , Uj)|
∆ ,

where dt(u) and dt(v) denote the degree of u and u at time t. Also, the last inequality
follows from 1/d(u) + 1/d(v) ⩾ 2/∆. Note that dt(u) and dt(v) are not zero as they are
incident to edge {u, v} crossing cut Et(Ij , Uj). By the lemma statement and the definition
of conductance function, we have that

|Et(Ij , Uj)| ⩾ Φ(min{j, n − j})(min{vol(Ij), vol(Uj)})
⩾ Φ(min{j, n − j}) · (min{j, n − j}) · δ,

where vol(Ij) and vol(Uj) denote the volume of sets Ij and Uj in G(t) and hence lower bounded
by Ij · δ and Uj · δ, respectively. Notice that one can replace Φ(x) by any F (x) ⩽ Φ(x) and
the lower bound still holds. Therefore, for every 1 ⩽ j ⩽ n − 1,

βj ⩾ 2(δ/∆)Φ(min{j, n − j}) · min{j, n − j}) (2)
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Define a non-homogeneous Poisson process P = {λ(t) : τ ∈ [0, ∞)}, where we have

λ(t) =


(2δ/∆)Φ(C(t))C(t) if C(t) ⩽ n/2,

(2δ/∆)Φ(n − C(t))[n − C(t)] n/2 < C(t) < n,
0 otherwise,

(3)

where C(t) counts the number of informed nodes during [0, t]. Lemma 2.8 and Inequality
(2) together show that the number of informed nodes stochastically dominates the number
of events happened by P. Moreover, by Theorem 2.5 during any interval [0, t], C(t) has a
Poisson distribution with rate Λ(t) =

∫ t

0 λ(z)dz. Applying the fundamental theorem of the
calculus yields that, for 1 ⩽ C(t) ⩽ n,

Λ′(t) = (2δ/∆)Φ(min{n − C(t), C(t)}) min{n − C(t), C(t)}. (4)

◀

The following useful lemma helps to approximate C(t) and apply Lemma 2.9.

▶ Lemma 2.10. Suppose that (log n)1.3 ⩽ Λ(t) ⩽ n −
√

n(log n)1.3. Then for any constant
0 < ε < 1, we have that

Λ′(t) ⩾ (1 − ε)(2δ/∆) · Φ(min{Λ(t), n − Λ(t)}(1 + ε)) · min{Λ(t), n − Λ(t)}.

In particular, Φ(x) can be replaced by any function F (x) ⩽ Φ(x), 1 ⩽ x < n.

Proof. Recall that for every t > 0, C(t) counts the number of events made by a Poisson
distribution with rate Λ(t) during time interval [0, t]. Let us set η =

√
Λ(t) · (log n)1.1 and

apply a concentration result (e.g., Theorem 2.6) for C(t) and obtain an estimation for C(t)
as follows.

Pr [|C(t) − Λ(t)| ⩾ η] ⩽ 2 · e
−η2

2(Λ(t)+η) = 2e
−Λ(t)(log n)1.1

4Λ(t) ⩽ 2e−(log n)1.1/4 = n−ω(1). (5)

By (5) we have that with probability 1 − n−w(1),

Λ(t) − η ⩽ C(t) ⩽ Λ(t) + η

and hence,

n − Λ(t) − η ⩽ n − C(t) ⩽ n − Λ(t) + η.

Combing the both inequalities implies that with high probability

min{n − Λ(t), Λ(t)} − η ⩽ min{n − C(t), C(t)} ⩽ min{n − Λ(t), Λ(t)} + η.

Note that if (log n)1.3 ⩽ Λ(t) ⩽ n/2, then we have that

η =
√

Λ(t)(log n)1.1 ⩽
Λ(t)

(log n).1 .

Moreover, if n/2 ⩽ Λ(t) ⩽ n −
√

n(log n)1.3, then n − Λ(t) ⩾
√

n(log n)1.3 and

η =
√

Λ(t)(log n)1.1 ⩽

√
n(log n)1.3

(log n).1 ⩽
n − Λ(t)
(log n).1
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Using the above two inequalities implies that η ⩽ min{Λ(t), n − Λ(t)}/(log n).1. Thus,

min{n − Λ(t), Λ(t)}
(

1 − 1
(log n).1

)
⩽ min{n − C(t), C(t)}

⩽ min{n − Λ(t), Λ(t)}
(

1 + 1
(log n).1

)
(6)

Let us apply (6) in the differential equation presented at Lemma 2.9 implies that

Λ′(t) ⩾ 2 ·(δ/∆) ·Φ
(

min{n − C(t), C(t)}
(

1 + 1
(log n).1

))
min{C(t), n−C(t)}

(
1 − 1

(log n).1

)
.

We replace 1/(log n).1 by any constant 0 < ε < 1 and the statement follows. ◀

3 Spread Time and Graph Conductance

This section is devoted to the proof of Theorem 1.1 presenting an upper bound for the spread
time in terms of graph conductance.

Proof of Theorem 1.1. By Lemma 2.9 we have that the number of informed nodes stochastic-
ally dominates a Poisson distribution with rate Λ(t) satisfying

Λ′(t) = (2δ/∆) · Φ · min{C(t), n − C(t)}, (7)

where C(t) denotes the number of events happened by a non-homogenous process {λ(t) : t ⩾
0} and λ(t) = (2δ/∆)·Φ·min{C(t), n−C(t)}. Therefore, the number of informed nodes during
any interval [0, τ ] stocahstically dominates a Poisson-distributed random variable with rate∫ τ

0 λ(t)dt. Moreover, using a large deviation result for Poisson-distributed random variables
(e.g., Theorem 2.6), the number of events is concentrated around

∫ τ

0 λ(t)dt. Therefore,
by computing

∫ τ

0 λ(t)dt one can obtain a lower bound for the number of informed nodes
during time interval [0, τ ], with high probability, and an upper bound for the spread time,
consequently. To do so according to C(t), we study the process in three consecutive phases.

Initial phase. This phase starts with C(t) = 1 and ends when C(t) exceeds log n. Let
Tinit be the time when the phase ends. By Theorem 2.5, C(t) is a Poisson random
variable with rate Λ(t) =

∫ t

0 λ(z)dz.

Λ(t) =
∫ t

0
λ(z)dz ⩾

∫ t

0
(2δ/∆)Φdz = (2δ/∆) · Φ · t (8)

Then, by setting t = 4∆ log n/(δΦ), we conclude that λ(t) ⩾ 8 log n. Using a large
deviation bound (see e.g., Theorem 2.6) we get that

Pr
[
C(t) ⩽ Λ(t) −

√
Λ(t)8 log n

]
⩽ exp{−8 log n/4} = n−2.

Therefore, with high probability, Tinit ⩽
4∆ log n

δΦ .
Middle Phase. This phase starts with C(t) = log n and ends when C(t) exceeds n/2. Let
Tmid be the first time when the phase ends. Also, define t0, t1, t2 to be the first times that
we have Λ(t0) = (log n)1.3, Λ(t1) = n/2 and Λ(t2) = 2n/3, respectively. In this phase for
every t ∈ [Tinit, Tmid], we have that

Λ(t) =
∫ t

0
λ(z)dz ⩾

∫ t

Tinit

(2δ/∆) · Φ · (log n)dz = (2δ/∆) · Φ · (log n) · (t − Tinit).
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This implies that there exists

t0 ⩽ Tinit + ∆(log n).3

2δΦ ⩽ O
(

∆ log n

δΦ

)
(9)

for which we have Λ(t0) = (log n)1.3. Applying Lemma 2.10 and using the fact that
Φ ⩽ Φ(x), 1 ⩽ x < n, we have that for every (log n)1.3 ⩽ Λ(t) ⩽ n −

√
(log n)1.3n,

Λ′(t)
min{Λ(τ), n − Λ(τ)} ⩾ (2(1 − ε)δ/∆)Φ,

where 0 < ε < 1 is an arbitrary constant. Taking the integral from both sides, on interval
[t0, t], and setting appropriate integral constants we get that

Λ(t) ⩾
{

exp{ 2(1−ε)δΦ
∆ (t − t0) + (1.3) log log n} (log)1.3 ⩽ Λ(t) ⩽ n/2

n − exp{ −2δ(1−ε)Φ
∆ (t − t1) + log(n/2)} n/2 ⩽ Λ(t) ⩽ n −

√
n(log n)1.3

where t1 is the first time when Λ(t1) = n/2. From the first row in the above piecewise
function we conclude that there exist

t1 ⩽
∆ log(n/2)
2(1 − ε)δΦ + t0 = O

(
∆ log n

δΦ

)
,

where the last equality follows from (9). Considering the second row and the previous
equality we deduce that there exists

t2 = O
(

∆ log n

2(1 − ε)δΦ

)
+ t1 = O

(
∆ log n

δΦ

)
with Λ(t2) ⩾ 2n/3. Since C(t) has Poisson rate Λ(t), by using a large deviation inequality
we get that

Pr [C(t2) ⩽ n/2] ⩽ Pr
[
C(t2) ⩽ Λ(t2) − log n

√
Λ(t2)

]
⩽ n−ω(1).

Therefore, w.h.p., Tmid ⩽ t2 = O
(

∆ log n
δΦ

)
.

Final Phase. This phase starts with C(t) = n/2 and ends when C(t) = n. Let Tfinal

denote the time when the phase ends. Notice that by definition of P, the process is
symmetric in C(t), as λ(t) is proportional to 1 ⩽ min{C(t), n − C(t)} ⩽ n/2. Considering
the time interval for which the process starts at C(t) = ⌈n/2⌉ and ends at C(t) = n. The
length of this interval has the same distribution as the time that P requires to start from
C(t) = 1 and reach to the C(t) = ⌊n/2⌋. Therefore, from the previous phases we have
that, with high probability,

Tfinal − Tmid = O
(

∆ log n

δΦ

)
.

The number of informed nodes up to time t, I(t), stochastically dominates C(t). Thus

Pr [I(Tfinal) < n] ⩽ Pr [C(Tfinal) < n] = n−ω(1)

Therefore, with high probability T (G) = O
(

∆ log n
δΦ

)
. ◀
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4 Geometric Mobile Networks

In this section, we prove Theorem 1.2 presenting an upper bound for the spread time of
the asynchronous rumor spreading in a geometric mobile network introduced by Clementi
et al. [7]. Let us first present the following lemma regarding some useful properties of the
dynamic graph whose proof is differed to Appendix B.

▶ Lemma 4.1. Suppose that M(n, R) = {G(t)}∞
t=0, is a geometric mobile network with

f(n)
√

log n ⩽ R <
√

n, where f(n) is a slowly growing function in n. Then, with probability
1 − n−ω(1), for every 1 ⩽ t ⩽ n3, the followings hold:
1. For every node u, du(t) = Θ(R2), where du(t) is the degree of node u in G(t).
2. There exists a constant a > 0 such that conductance function G(t) satisfies

Φ(x) ⩾

a 1 ⩽ x ⩽ R2,

a R√
min{x,n−x}

R2 < x ⩽ n − 1.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, applying Lemma 2.9 results
that the number of informed nodes stochastically dominates a Poisson distribution with rate
Λ(t) satisfying

Λ′(t) = (2δ/∆) · Φ(min{C(t), n − C(t)}) · min{C(t), n − C(t)},

where C(t) denotes the number of events happened by a non-homogenous process {λ(t) : t ⩾
0} and λ(t) = (2δ/∆) · Φ(min{C(t), n − C(t)}) · min{C(t), n − C(t)}. Therefore the number
of informed nodes during any interval [0, τ ] stochastically dominates a Poisson-distributed
random variable with rate

∫ τ

0 λ(t)dt. On the other hand, a large deviation bound (e.g., see
Theorem 2.6) for the Poisson-distributed random variable shows that the number of events
is concentrated around

∫ τ

0 λ(t)dt, with heigh probability. Therefore, one can obtain a lower
bound for the number informed nodes during time interval [0, τ ] by approximating

∫ τ

0 λ(t) ·dt.
In what follows, by a case analysis according to C(t) we estimate

∫ τ

0 λ(t) · dt and apply the
large deviation bound to obtain an upper bound for the spread time, with high probability.

By Lemma 4.1, we observe that, w.h.p., at any time step t, 1 ⩽ t ⩽ n3, G(t) is almost
regular. Thus the minimum degree of G(t) over its maximum degree is a constant and we
have δ/∆ = b = Θ(1). The lemma also gives a lower bound for the conductance function
Φ(x). Conditioning on the mentioned properties about G(t)’s, 1 ⩽ t ⩽ n3 that hold with
probability 1 − n−ω(1), one can apply Lemma 2.9 and conclude that

Λ′(t) =
{

c1C(t) 1 ⩽ C(t) ⩽ min{R2, n/2}
c1
√

min{C(t), n − C(t)} min{R2, n/2} < C(t) ⩽ n − 1,
(10)

where R2 < n/2, c1 = 2 ·a ·b is a constant and a appeared in Lemma 4.1. Moreover, applying
Lemma 2.10 implies that for every constant 0 < ε0 < 1 we have that

Λ′(t) ⩾ 1 − ε0√
1 + ε0

{
c1Λ(t) (log n)1.1 ⩽ Λ(t) ⩽ max{R2, (log n)1.1},

c1R
√

min{Λ(t), n − Λ(t)} max{R2, (log n)1.1} < Λ(t) ⩽ n − 1,

In order to have a simpler form we set 1 − ε = 1−ε0√
1+ε0

. Therefore, if max{R2, (log n)1.1} <

Λ(t) ⩽ n − 1, then we have that

Λ′(t)√
min{Λ(t), n − Λ(t)}

⩾ (1 − ε)c1R. (11)
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Note that the number of informed nodes up to time t stochastically dominates C(t). Therefore,
in what follows we analyze C(t) in three consecutive phases.

Initial phase. This phase starts with C(t) = 1 and finishes when C(t) exceed R2. Let Tinit

be the first time when this phase ends. By (10) we get that Λ′(t) = c1C(t). Therefore,
if C(t) = j, then the (j + 1)-st event happens with Poisson rate at least c1 · j. Let sj

denote the waiting time for moving from C(t) = j to C(t) = j + 1. Also, let m = ⌊R2⌋
and define Sm =

∑m−1
j=1 sj . Since sj has an exponential distribution with rate c1j, we

conclude that

E [sj ] = E [E [sj |C(t) = j]] ⩽ E
[

1
c1j

]
= 1

c1j

By linearity of expectation we get that

E [Sm] =
m∑

j=1
E [sj ] ⩽

m∑
j=1

1
c0j

= Hm/c1 = (log m)/c0 + O(1)

where Hm is the m-th harmonic number and we have that Hm = log m + O(1). By a
large deviation inequality for this particular set of exponential random variables (e,g,
see Lemma A.1) we can show that, for every c ⩾ 0, Pr [Sm ⩾ log m + c log n] ⩽ n−c.
Therefore, with high probability,

Tinit ⩽ (log m)/c1 + c log n = O(log n). (12)

Middle phase. This phase starts with C(t) = R2 and ends when C(t) exceeds n/2. Let
Tmid be the first time when this phase ends. Define t0, t1, t2 to be the first times that we
have Λ(t0) = max{R2, (log n)1.3}, Λ(t1) = n/2 and λ(t2) = 2n/3. By (10) we have that
for every R2 ⩽ C(t) ⩽ n/2,

Λ(t0) =
∫ t0

0
c1R

√
C(t)dt ⩾ c1R2(t0 − Tinit),

where the lower bound follows from the fact that C(t) ⩾ R2. The presented lower bound
implies that there exists t0 such that Λ(t0) = max{R2, (log n)1.3}. Moreover, we have
that R2 ⩾ (log n) and hence

t0 ⩽ Tinit + (log n).3 = O(log n). (13)

Using the fact that for every t ⩾ t0, Λ(t) ⩾ max{R2, (log n)1.3}, we integrate from both
sides of (11) and we have that if t0 ⩽ t ⩽ t1 we have that max{R2, (log n)1.3} ⩽ Λ(t) ⩽ n/2.
Thus,∫ t1

t0

Λ′(t)dt√
Λ(t)

= 2
√

Λ(t1) − 2
√

Λ(t0) ⩾
∫ t1

t0

(1 − ε)c1Rdt = (1 − ε)c1R(t1 − t0).

If t1 ⩽ t ⩽ t2, then we have that n/2 ⩽ Λ(t) ⩽ 2n/3 and hence∫ t2

t1

Λ′(t)dt√
n − Λ(t)

= 2
√

n − Λ(t1)−2
√

n − Λ(t2) ⩾
∫ t2

t1

(1−ε)c1Rdt = (1−ε)c1R(t2 −t1)

Recall that we have defined Λ(t0) = max{R2, (log n)1.3}, Λ(t1) = n/2 and λ(t2) = 2n/3.
Considering the above lower bounds, one can observe that t1 − t0 = O(

√
n/R) and

t2 − t1 = O(
√

n/R). Therefore,

t2 = (t2 − t1) + (t1 − t0) + t0 = O(
√

n/R) + t0 = O(
√

n/R) + O(log n),
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where the equality follows from (13). Since C(t2) is distributed as a Poisson random
variable with rate Λ(t2) = 2n/3, by using Theorem 2.6 we have that

Pr [C(t2) < n/2] ⩽ Pr [|C(t2) − 2n/3| ⩾ n/6] = n−ω(1).

Then, w.h.p. Tmid ⩽ t2 = O(
√

n/R + log n).
Final phase. This phase starts with C(t) = n/2 and ends when C(t) = n. Let Tfinal be
the time when the phase ends. The analysis makes use of the fact that Poisson process
with rate Λ(t) is symmetric in C(t). Therefore, similar to the the final phase in the
proof of Theorem 1.1, we have that w.h.p Tfinal − Tmid = O(

√
n/R) + log n) and hence

Tfinal = O(
√

n/R + log n).
Using the fact that the number of informed node up to time t, say I(t), dominates C(t) we
have that

Pr [C(Tfinal) < n] ⩽ Pr [C(Tfinal) < n]

Therefore, w.h.p. the spread time in M(n, R) is bounded by Tfinal = O(
√

n/R + log n). ◀

5 Dynamical Erdős-Rényi Graphs

In this section we provide a proof sketch for Theorem 1.3 which presents an upper bound for
the spread time in a dynamical Erdős-Rényi graph ER(n, p, µ). Before that we need some
properties of the graph that have been shown in [24]. Recall ER(n, p, µ) is a continuous
Markov chain whose stationary distribution is a random graph distributed as Erdős-Rényi
grpah G(n, p).

▶ Definition 5.1 ([24, Definition 2.2]). For a specified constant c, we say that graph G = (V, E)
is good and we write G ∈ H(c), if G has a unique connected component C with |C| ⩾ c · log n,
and we call it the giant component and satisfies the following properties.

Size. We have |C| ⩾ c · n,.
Maximum degree. The maximum degree of C is at most c log n.
Number of edges. There are at most cn edges in C
Expansion properties. We have that ΦC ⩾ c(log n)−2, where ΦC is the conductance of the
giant component.

▶ Proposition 5.2 ([24, Proposition 2.3]). For any graph G sampled from the stationary
distribution of dynamical Erdős-Rényi process. Then, we have that Pr [G /∈ H(c)] = O(n−9).

Proof of Theorem 1.3. We analyze the algorithm in three consecutive phases. For every
τ > 0, let G(τ) be the dynamical Erdős-Rényi graph at time τ . Also, let Tmix denote the
mixing time of the dynamical Erdős-Rényi graph, which is Tmix = (2 + o(1)) log n

µ (e.g.,
see [24]).

Informing a node of the giant component. This phase starts with one single informed
node and ends when a node of giant component knows the rumor. Let T1 be the first
time when this phase ends. For each k = 1, . . . , define τk = k · Tmix. By Proposition 5.2,
G(τk) ∈ H(c) and hence it has a unique giant component of size at least c · n. Therefore,
at time τk, the informed node is not included in the giant component with probability
at least (1 − c)k. Hence, we deduce that with probability at least 1 − 1/n after at most
(log n/c)Tmix = (log n)2

cµ (2 + o(1) time this phase ends.
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Informing all nodes within the giant component. This phase starts with an single
informed node that belongs to the giant component and ends when all nodes in the
giant component get informed. Let T2 denotes the time this phase requires to finish. By
Proposition 5.2, the giant has at most cn edges. Thus, the first edge in the component gets
updated with Poisson rate cnµ = O((log n)−6). This implies that with probability 1−o(1),
during time [T1, T1 + (log n)5], the component remains connected and will be the same
during the time interval. Applying Theorem 1.1 implies that rumor spreads through the
giant component within O

(
∆ log n

δΦ

)
time. By Proposition 5.2, with probability 1−O(n−9),

the giant component is a good graph and hence we have that δ = 1, ∆ = O(log n) and
ΦC = Ω((log n)−2). Thus, with probability 1 − o(1), the rumor spreads through the giant
component within T2 − T1 = O((log n)4) time.
Informing rest of the nodes. This phase starts with at least cn informed nodes, which is
the size of giant component. Let U(τ) and I(τ) be the set of informed and non-informed
nodes up to time τ . Let T3 denote the time when this phase ends. For each k = 1, . . .,
define τk = T2 + k · Tmix and suppose that u ∈ U(τk). It is worth mentioning that
definition of τk allows us to have a new sample of G(n, p) and for each τk, G(τk) is
distributed as G(n, p). Fo every k = 1, . . . , define random variables Xu(k) to be the
number of informed nodes that are adjacent to u at time τk. Also |I(τk)| ⩾ c · n is
non-decreasing function in time. Therefore, Xu(k) dominates binomial random variable
X ∼ Bin(cn, p). Then, for every 0 < θ < 1, by Zygmund-Paley inequality we have that

Pr [Xu(k) > θcnp] ⩾ Pr [Xu(k) > θcnp]

⩾ (1 − θ)2 (cnp)2

cnp(1 − p) + (cnp)2

⩾ (1 − θ)2 cnp

1 + cnp
.

Setting θ = 1/2 and using the fact that p = Θ(1/n), we conclude that

Pr [Xu(k) > 0] ⩾ cnp

4(1 + cnp) = c1,

where c1 is a constant. Therefore, with probability at least c1, for every k = 1, . . .,
u ∈ U(τk) is connected to some informed node. Fixing arbitrary u ∈ U(τ1), the
probability that at time τk, u is not connected to some informed node is at least (1 − c1)k.
Thus, by setting k = 2 log n/c1, with probability at most n−2, u is not connected. By
union bound over all non-informed nodes, we conclude that, with probability 1−1/n, every
non-informed node is being connected to some informed one before time τk. Provided
u ∈ U(τ) has an informed neighbor, say v, they share the rumor with rate 1/d(u)+1/d(v).
Notice that for every k, G(τk) ∼ G(n, p) and hence its maximum degree is at most
O(log n). Therefore, u and v communicates with rate at least Ω(1/ log n). So with
high probability during a period of length at most (log n)3 , u gets informed from its
neighbor v, which follows from a concentration result for a Poisson random variable of
rate Ω(1/ log n) · (log n)3 ⩾ (log n)3/2.
Note that edge {u, v} may disappear with rate µ, however, during a time interval of
length (log n)3, the edge disappear with probability µ(log n)3 = o(1). Therefore, with
probability 1 − o(1) after at most T2 + (2 log n/c1)Tmix + O((log n)3) time every node
gets informed. From the first and second phases T2 = T1 + O((log n)4) = O(log nTmix)
and hence, with probability 1 − o(1), the rumor spreads in O((log n)2/µ) time. ◀
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A Missing Proofs of Section 2

Proof of Lemma 2.8. For very j = 1, . . . , n − 1, define sj and tj to be exponentially dis-
tributed random variables with rates αj and βj , respectively. Define X = (s1, . . . , sn) and
Y = (t1, . . . , tn). Toward proving the stochastic dominance, we couple X and Y , first by
revealing Y , and then, for every 1 ⩽ j ⩽ n − 1, set sj = βjtj/αj . Now, for every j = 1, . . . , n,
and any positive number x we have that

Pr [sj ⩾ x] = Pr
[

αj

βj
sj ⩾

αj

βj
x

]
= Pr

[
tj >

αj

βj
x

]
= exp{−βj(αj/βj)x} = exp{−αjx}.

Therefore, X = (s1, . . . sn) are exponentially distributed according to A. Also, βj/αj ⩾ 1
and hence, for every 1 ⩽ m ⩽ n − 1, tj ⩽ sj and we get that

m∑
j=1

tj ⩽
m∑

j=1
sj .

This implies that, Poisson process P(A) requires at least as much time as P(B) requires
to generate m events. For any given t, let NA(t) and NB(t) denote the number of events
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happened by P(A) and P(B) during [0, t], respectively. Then we have that NA(t) ⩽ NB(t).
Thus, for every positive integer k, we get that

Pr [NB(t) ⩽ k] ⩽ Pr [NA(t) ⩽ k] ,

which proves the lemma. ◀

We will combine the Lemmas 9 and 10 from [20] and get the following concentration bound
for a particular set of exponential random variables.

▶ Lemma A.1 (Lemma 9 and 10. [20]). Let f(m, j) be a deterministic sequence such that for
1 ⩽ j < m, E [sj |Ij ]−1 ⩾ f(m, j) and f(m, j) = Θ(min{j, m − j}). Moreover, let {t+

j }m−1
j=1

be a sequences of independent random variables, where t+
j is exponentially distributed with

parameter f(m, j). Also let T + =
∑m−1

j=1 t+
j , and Sm =

∑m−1
j=1 sj. Then, we have

for 0 < λ < min
j∈[m−1]

f(m, j), E
[
eλSm

]
⩽ exp{λ E

[
T +]+ O(1)}.

This implies that, for every z > 0,

Pr [Sm−1 ⩾ z] ⩽ exp{λ E
[
T +]+ O(1) − λz}

B Properties of Geometric Mobile Networks

This section is devoted to the proof of Lemma 4.1. Geometric mobile model is a dynamic
evolving network M(n, R) = {G(t)}∞

t=0 contains a set of n agents, denoted by [n]. Each
agent independently performs nearest neighbor random walks on H = (Ln,ϵ, E) and there is
an edge between two agents if their Euclidean distance is at most R. Recall that

Ln,ϵ = {(k · ϵ, l · ϵ) : k, l ∈ N, k, l ⩽
√

n/ϵ},

and

E = {{x, y} : x, y ∈ Ln,ε, d(x, y) ⩽ r}.

It is easy to see that for every x ∈ Ln,ϵ there are Θ(r2) locations at distance at most r from
x and hence H is almost regular (i.e., the ratio of the maximum and minimum degree is
at most a constant). Since H is connected and almost regular, a Markov chain defined by
the random walk is ergodic and converges to an almost uniform stationary distribution over
Ln,ε, say π. Notice that by an almost uniform we mean that for every location x, y ∈ Ln,ε,
π(x)/π(y) = Θ(1). Since n agents perform random walks on H, we will have an Markov
chain with state space

Ln,ε × Ln,ε × . . . Ln,ε︸ ︷︷ ︸
n times

.

Then, by a basic property of ergodic and finite Markov chains, at any time t ⩾ 1, each
agent is located at location x ∈ Ln,ε with probability π(x). Before proving Lemma 4.1, we
first present some useful lemmas. Note that we use node or agent but they have the same
meaning.

▶ Lemma B.1. Let A denote a arbitrary 2-dimensional grid with m′ nodes and S be an
arbitrary set of nodes in A, with size at most m′/2. Then, there exists a constant c > 0 such
that N(S) ⩾ c′

√
|S|, where N(S) is the number of nodes that have at least one neighbor in S.
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The proof can be found in [7, Theorem 4.1].

▶ Lemma B.2. Let M be an m × m grid embedded on
√

n ×
√

n square plane, where
m =

√
5n/R. Then, with high probability, each cell of M contains Θ(R2) agents.

Proof. Each cell in M is an R/
√

5 × R/
√

5 square and contains R2/5ε2 nodes from Ln,ε.
Let us fix some 1 ⩽ t ⩽ n3 and arbitrary cell C. Then, the location of each agent at time
t has an almost uniform distribution π over Ln,ε. For every agent u ∈ [n], define indicator
random variable Iu,C as follows:

Iu,C =
{

1 if i is located in cell C,
0 otherwise.

Thus,

Pr [Iu,C = 1] =
∑

x∈C∩Ln,ε

π(x) = (R2/5ε2) × Θ(ε2/n) = Θ(R2/5n).

Also let Y =
∑

u∈[n] Iu,C to denote the number of agents at time t in cell C. By the linearity
of expectation we have that E [Y ] = Θ(R2). Applying a Chernoff bound, we conclude that

Pr [|Y − E [Y ] | ⩾ E [Y ] /2] ⩽ e− E[Y ]/12 = n−ω(1).

Therefore, with probability n−ω(1), cell C does not contain Θ(R2) agents at time t. An
application of union bound over all time steps and cells implies that with probability 1−n−ω(1),
for every 1 ⩽ t ⩽ n3, each cell of M contains Θ(R2) agents which completes the proof. ◀

▶ Lemma B.3 (Restatement of Lemma 4.1). Suppose that M(n, R) = {G(t)}∞
t=0, is a geometric

mobile network with f(n)
√

log n ⩽ R ⩽
√

n, where f(n) is a slowly growing function in n.
Then, with probability 1 − n−ω(1), for every 1 ⩽ t ⩽ n3, the followings hold:
1. For every node u (agent), du(t) = Θ(R2), where du(t) is the degree of node u in G(t).
2. There exists constant a > 0 such that conductance function G(t) satisfies

Φ(x) ⩾

a 1 ⩽ x ⩽ R2,

a R√
min{x,n−x}

R2 < x ⩽ n − 1.

Proof of (1). Let us fix an arbitrary time step 1 ⩽ t ⩽ n3 and an arbitrary agent, say u,
that is located at some x ∈ Ln,ε. Define

B(x) = {y : y ∈ Ln,ε, d(x, y) ⩽ R}.

It is not hard to see that for every x, |B(x)| = Θ((R/ε)2). For every y ∈ B(x) and u ∈ [n],
let us define the indicator random variable Iu,y as follows:

Iu,y =
{

1 if u is located at y,
0 otherwise.

Clearly, Y =
∑

v∈[n]\u

∑
y∈B(x) Iv,y is the degree of agent u in G(t). Since every agent v

has almost uniform distribution π over Ln,ε and agents are independent from each other, we
get that

Pr [Iv,y = 1] = π(y) = Θ(ε2/n).
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Figure 1 The right grid is the dual of colored left grid, where colored faces are translated to
colored vertices.

Thus, by linearity of expectation we have

E [Y ] =
∑

v∈[n]\u

∑
y∈B(x)

E [Iv,y] =
∑

v∈[n]\u

∑
y∈B(x)

π(y)

= (n − 1)
∑

y∈B(x)

π(y) = (n − 1)|B(x)|Θ(ε2/n) = Θ(R2) = ω(log n).

Iv,y’s are mutually independent so we apply a Chernoff bound and conclude that

Pr [|Y − E [Y ] | ⩾ E [Y ] /2] ⩽ e− E[Y ]/12 = n−ω(1).

Note that the above inequality holds only for an arbitrary and fixed time step t and node
u. By union bound over all n agents and n3 time steps, we conclude that with probability
n3 × n × n−ω(1) there is a time step s and agent w such that dw(s) /∈ [E [Y ] /2, 3 E [Y ] /2].
Therefore, with probability 1 − n−ω(1), for every agent u and time step t, du(t) = Θ(R2),
which completes proof of (1).

Proof of (2). Suppose that m =
√

5n/R and consider an m × m grid M embedded in a
plane square of

√
n ×

√
n, whose cells are

√
R/5 ×

√
R/5 squares. By Lemma B.2, with high

probability, for every t, each cell of M contains Θ(R2) agents. Fix an arbitrary set of agents
(nodes), say S, with size 1 ⩽ s ⩽ n/2. Also fix some time step t. Then, with respect to S

and time t, we color cells of M as follows. Cell C becomes white, if at most 3/4 agents in C

are contained in S and black otherwise. As a result, each cell of M gets colored by either
black or white at time step t. Let B and W denote the set of black and white cells in M .
Now, let us consider the dual of the grid M , which is again a (m − 1) × (m − 1) grid. Notice
that the vertex set of the dual graph is the interior faces of the primal and two vertices in
the dual are connected if their corresponding faces (cells) are side by side (e.g. see Figure 1).
By definition of M(n, R) = {G(t)}∞

t=0, every two agents located at any two side-by-side cells
are connected by an edge, because their Euclidean distance is at most

√
4R2/5 + R2/5 = R.

According to the size of B we consider two cases:

|B| < m2/2:
Let D be the set of vertices corresponding to cells of B in the dual graph (i.e. set of
black nodes in the right grid of Fig. 1). Thus, |D| < m2/2. By Lemma B.1, we have that
N(D) ⩾ c′

√
|D|, for some constant c′. This implies that there are at least c′

√
|B| white

cells that are connected to cells of B. By the coloring rule, we deduce that if a black cell
and a white cell are side by side, then at least 3/4 agents from the black cell contained in
S are connected to at least 1/4 agents of the white cell contained in S. Moreover, every
agent of S contained in a white cell is connected to at least 1/4 agents from the same
cell, which are contained in S. Remember that by Lemma B.2 each cell contains Θ(R2)
agents, w.h.p. Thus, we get that in G(t),

|E(S, S)| ⩾ c
√

|B|Θ(R2) +
∑

C∈W

x(C)Θ(R2),
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where x(C) is the number of agents in S that are contained in white cell C. Moreover,
G(t) is almost regular with degree Θ(R2) and each cell contains at most Θ(R2) agents.
So we have

vol(S) ⩽ |B|Θ(R4) +
∑

C∈W

x(C)Θ(R2).

Now, we may consider two cases |B| = 0 and |B| > 0. In first case, by two above
inequalities we get

|E(S, S)|
vol(S) = Θ(1). (14)

For the second case we get

|E(S, S)|
vol(S) ⩾

√
|B|Θ(R4) +

∑
C∈W x(C)Θ(R2)

|B|Θ(R4) +
∑

C∈W x(C)Θ(R2) ⩾ Θ
(√

|B|R4

|B|R4

)

= Θ
(

1√
|B|

)
⩾ Θ

(√
3R2

20|S|

)
= Θ

(
R√
|S|

)
, (15)

where the second inequality comes from the fact for every number z > x > 0 and arbitrary
z > 0, we have that x+y

z+y ⩾ x
z . Also, the third one follows from |B|Θ(R2)3/4 ⩽ |S|, as

3/4 agents in each black cell contained in S.
|B| ⩾ m2/2: In this case, we first observe that |W | = Θ(m2). Toward a contradiction,
we assume that

|W | = o(m2) = o(n/R2)

and hence white cells can have at most |W |Θ(R2) = o(n) agents, by lemma B.2, each cell
contains Θ(R2) agents. On the other hand, by definition, black cells can accommodate at
most n/4 agents from S, which contradicts assumption that |S| ⩾ n/2. So we have that
|W | = Θ(m2) = Θ(|B|). Since |W | + |B| = m2 we conclude that |W | < m2/2. Again
similar to the previous case, there are at least c

√
|W | black cells, which are adjacent to

white cells and we have

|E(S, S)| ⩾ c
√

|W |Θ(R2) +
∑

C∈W

x(C)Θ(R2).

Moreover,

vol(S) ⩽ |B|Θ(R4) +
∑

C∈W

x(C)Θ(R2) = |W |Θ(R4) +
∑

C∈W

x(C)Θ(R2),

where it follows from the fact that |W | = Θ(|B|). Similar to the previous case we will
have,

|E(S, Sc)|
vol(S) ⩾

√
|W |Θ(R4) +

∑
C∈W x(C)Θ(R2)

|W |Θ(R4) +
∑

C∈W x(C)Θ(R2)

⩾ Θ
(

1√
|W |

)
= Θ

(
1√
|B|

)
= Θ

(√
3R2

20|S|

)
= Θ

(
R√
|S|

)
. (16)
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From Inequalities (14), (15), and (16) we conclude that for every time step 1 ⩽ t ∈ n3 and a
set of agents of size at most n/2 in G(t), there exists constant a > 0 such that

|E(S, S)|
vol(S) ⩾ min

{
a

R√
|S|

, a

}
. (17)

For every subset of agents, say S, define

g(S) =
{

S if |S| ⩽ n/2,
S otherwise.

Clearly, we have that |g(S)| = min{|S|, n − |S|} ⩽ n/2 and |E(S, S)| = |E(g(S), g(S))|
completing the proof. ◀
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