25th International Conference on
Principles of Distributed Systems

OPODIS 2021, December 13-15, 2021, Strasbourg, France

Edited by
Quentin Bramas
Vincent Gramoli
Alessia Milani

\\v LIPICS

LIPlcs — Vol. 217 — OPODIS 2021

www.dagstuhl.de/lipics

Editors

Quentin Bramas
University of Strasbourg, France
bramasQ@unistra.fr

Vincent Gramoli
University of Sydney, Australia and EPFL, Switzerland
vincent.gramoli@sydney.edu.au

Alessia Milani
LIS UMR 7020 CNRS,Aix-Marseille University, France
alessia.milani@univ-amu.fr

ACM Classification 2012

Theory of computation — Distributed computing models; Theory of computation — Distributed al-
gorithms; Theory of computation — Concurrent algorithms; Theory of computation — Data structures
design and analysis; Networks — Mobile networks; Networks — Wireless access networks; Networks
— Ad hoc networks; Computing methodologies — Distributed algorithms; Security and privacy —
Distributed systems security; Information systems — Distributed storage; Computer systems organization
— Dependable and fault-tolerant systems and networks; Software and its engineering — Distributed
systems organizing principles

ISBN 978-3-95977-219-8

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-219-8.

Publication date
February, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.OPODIS.2021.0
ISBN 978-3-95977-219-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-0612-5616
mailto:bramas@unistra.fr
https://orcid.org/0000-0001-5632-8572
mailto:vincent.gramoli@sydney.edu.au
mailto:alessia.milani@univ-amu.fr
https://www.dagstuhl.de/dagpub/978-3-95977-219-8
https://www.dagstuhl.de/dagpub/978-3-95977-219-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.OPODIS.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-219-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, 1T)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

OPODIS 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Quentin Bramas, Vincent Gramoli, and Alessia Milani 0:ix—0:x

Program Committee

... 0:xi
Steering Committee
... 0:xiii
External Reviewers
... 0:xv
Invited Talks
Distributed Algorithms: A Challenging Playground for Model Checking
Nathalie Bertrand 1:1-1:1
Accountable Distributed Computing
Petr Kuznetsouo..oo i 2:1-2:1
A Fresh Look at the Design and Implementation of Communication Paradigms
Robbert van Renesseoo.uoo e 3:1-3:1
Regular Papers
Arbitrarily Accurate Aggregation Scheme for Byzantine SGD
Alexandre Maurer oo 4:1-4:17
Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast:
A Complete Categorization
Ittai Abraham, Ling Ren, and Zhuolun Xiangccooiiiiiiiiiiiniiinin.. 5:1-5:20
On Finality in Blockchains
Emmanuelle Anceaume, Antonella Del Pozzo, Thibault Rieutord, and Sara
TUCCT-PIergiovanngottt 6:1-6:19
Twins: BFT Systems Made Robust
Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li,
Avery Ching, and Dahlia Malkhi e, 7:1-7:29
Near-Optimal Dispersion on Arbitrary Anonymous Graphs
Ajay D. Kshemkalyani and Gokarna Sharmao, 8:1-8:19
Asynchronous Gathering in a Torus
Sayaka Kamei, Anissa Lamani, Fukuhito QOoshita, Sébastien Tizeuil, and
Koicht Wada e e 9:1-9:17
Pattern Formation by Robots with Inaccurate Movements
Kaustav Bose, Archak Das, and Buddhadeb Sau 10:1-10:20

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

Near-Shortest Path Routing in Hybrid Communication Networks
Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn,
Christian Scheideler, Philipp Schneider, and Martijn Struijs

Efficient Assignment of Identities in Anonymous Populations

Leszek Ggsieniec, Jesper Jansson, Christos Levcopoulos, and Andrzej Lingas

Population Protocols for Graph Class Identification Problems
Hiroto Yasumi, Fukuhito Ooshita, and Michiko Inoue

Fast Graphical Population Protocols
Dan Alistarh, Rati Gelashvili, and Joel Rybicki

Beyond Distributed Subgraph Detection: Induced Subgraphs, Multicolored
Problems and Graph Parameters
Amir Nikabadi and Janne H. Korhonen,

An Improved Random Shift Algorithm for Spanners and Low Diameter
Decompositions
Sebastian Forster, Martin Gréosbacher, and Tiyn de Vosccccovin...

Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings
Salwa Faour, Marc Fuchs, and Fabian Kuhn0 . i iiiiiiiiiieiann..

Improved Distributed Fractional Coloring Algorithms
Alkida Balliu, Fabian Kuhn, and Dennis Olivettic.cccoiiiieiiiineann.

Distributed Recoloring of Interval and Chordal Graphs
Nicolas Bousquet, Laurent Feuilloley, Marc Heinrich, and Mikaél Rabie

Non-Blocking Dynamic Unbounded Graphs with Worst-Case Amortized Bounds
Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Komma Manogna

Explicit Space-Time Tradeoffs for Proof Labeling Schemes in Graphs with Small
Separators
Orr Fischer, Rotem Oshman, and Dana Shamirccccoiiiiieeiin...

Local Certification of Graph Decompositions and Applications to Minor-Free
Classes

Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron

RandSolomon: Optimally Resilient Random Number Generator with Deterministic
Termination

Luciano Freitas de Souza, Andrei Tonkikh, Sara Tucci-Piergiovanni,

Renaud Sirdey, Oana Stan, Nicolas Quero, and Petr Kuznetsov

Optimal Space Lower Bound for Deterministic Self-Stabilizing Leader Election
Algorithms

Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder

Accountability and Reconfiguration: Self-Healing Lattice Agreement
Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and
Sara Tucci-PIlergiovanmi oo

Design and Analysis of a Logless Dynamic Reconfiguration Protocol
William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis

11:1-11:23

12:1-12:21

13:1-13:19

14:1-14:18

15:1-15:18

16:1-16:17

17:1-17:20

18:1-18:23

19:1-19:17

20:1-20:25

21:1-21:22

22:1-22:17

23:1-23:16

24:1-24:12

25:1-25:23

26:1-26:16

Contents 0:vii

Optimal Good-Case Latency for Rotating Leader Synchronous BFT
Ittai Abraham, Kartik Nayak, and Nibesh Shrestha, 27:1-27:19

Strongly Linearizable Linked List and Queue
Steven Munsu Hwang and Philipp Woelfel 28:1-28:20

Recoverable and Detectable Fetch&Add
Liad Nahum, Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler 29:1-29:17

Using Nesting to Push the Limits of Transactional Data Structure Libraries
Gal Assa, Hagar Meir, Guy Golan-Gueta, Idit Keidar, and Alexander Spiegelman — 30:1-30:17

Asynchronous Rumor Spreading in Dynamic Graphs
Bernard Mans and Al POUrmiri, 31:1-31:20

OPODIS 2021

Preface

The papers in this volume were presented at the 25th International Conference on Principles
of Distributed Systems (OPODIS 2021), held on December 13-15, 2021 in Strasbourg, France.

OPODIS is an open forum for the exchange of state-of-the-art knowledge about dis-
tributed computing. With strong roots in the theory of distributed systems, OPODIS has
expanded its scope to cover the entire range between the theoretical aspects and practical
implementations of distributed systems, as well as experimental and quantitative assessments.
All aspects of distributed systems are within the scope of OPODIS: theory, specification,
design, performance, and system building. Specifically, this year, the topics of interest at
OPODIS included:

Biological distributed algorithms

Blockchain technology and theory

Communication networks (protocols, architectures, services, applications)
Cloud computing and data centers

Dependable distributed algorithms and systems

Design and analysis of concurrent and distributed data structures

Design and analysis of distributed algorithms

Randomization in distributed computing

Social systems, peer-to-peer and overlay networks

Distributed event processing

Distributed operating systems, middleware, and distributed database systems
Distributed storage and file systems, large-scale systems, and big data analytics
Edge computing

Embedded and energy-efficient distributed systems

Game-theory and economical aspects of distributed computing

Security and privacy, cryptographic protocols

Synchronization, concurrent algorithms, shared and transactional memory
Impossibility results for distributed computing

High-performance, cluster, cloud and grid computing

Internet of things and cyber-physical systems

Mesh and ad-hoc networks (wireless, mobile, sensor), location and context-aware systems
Mobile agents, robots, and rendezvous

Programming languages, formal methods, specification and verification applied to distrib-
uted systems

Self-stabilization, self-organization, autonomy

Distributed deployments of machine learning

We received 70 submissions, each of which underwent a double-blind peer review process.
Three submissions were rejected for being out of the scope of the conference or having
the wrong format. Overall, the quality of the submissions was very high. From the 70
submissions, 28 papers were selected to be included in these proceedings.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget.

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

The review process was done using HotCRP. The Best Paper Award was awarded to Ittai
Abraham, Kartik Nayak and Nibesh Shrestha for their paper titled “Optimal Good-case
Latency for Rotating Leader Synchronous BFT”. The Best Student Paper Award was given
to Gabriel Le Bouder for his paper titled “Optimal Space Lower Bound for Deterministic Self-
Stabilizing Leader Election Algorithms”, co-authored with Laurent Feuilloley and Lélia Blin.

This year OPODIS had three distinguished invited keynote speakers: Nathalie Bertrand
(INRIA, Rennes), Petr Kuznetsov (INFRES, Telecom Paris, Institut Polytechnique de Paris)
and Robbert van Renesse (Cornell University, Ithaca, NY, USA).

Thank you to all the authors that submitted their work to OPODIS. We are also grateful
to the Program Committee members for their hard work reviewing papers and their active
participation in the online discussions and the Program Committee meeting. We also thank
the external reviewers for their help with the reviewing process.

Organizing this event would not have been possible without the help of the Networks
Team of the ICUBE Laboratory.

Finally, we thank the Steering Committee members for their valuable advice, as well as
the sponsors and the University of Strasbourg for their support.

November 2021
Quentin Bramas (University of Strasbourg, ICUBE, France)

Vincent Gramoli (University of Sydney and EPFL, Switzerland)
Alessia Milani (LIS, Aix-Marseille Université, France)

Program Committee

General Chair

Quentin Bramas, ICUBE, University of Strasbourg, France

Program Chairs

Vincent Gramoli, University of Sydney and EPFL, Switzerland
Alessia Milani, LIS, Aix-Marseille Université, France

Program Committee

Emmanuelle Anceaume, CNRS / IRISA

Hagit Attiya, Technion

Alkida Balliu, University of Freiburg

Alysson Bessani, LASIGE, FCUL, Universidade de Lisboa
Borzoo Bonakdarpour, Michigan State University
Janna Burman, Université Paris-Saclay, CNRS
Armando Castaneda, UNAM

Giuseppe Antonio Di Luna, Sapienza, Universita di Roma
Alexey Gotsman, IMDEA Software Institute

Eschar Hillel, Yahoo

Colette Johnen, University of Bordeaux- LaBRI
Sayaka Kamei, Hiroshima University

Alex Kogan, Oracle Labs

Dariusz Kowalski, University of Liverpool

Kostas Magoutis, University of Crete and FORTH-ICS
Avery Miller, University of Manitoba

Marina Papatriantafilou, Chalmers University

Ami Paz, University of Vienna

Yvonne-Anne Pignolet, DFINITY Foundation

Etienne Riviere, Université catholique de Louvain

Luis Rodrigues, Universidade de Lisboa

Jared Saia, University of New Mexico

Stefan Schmid, University of Vienna

Gokarna Sharma, Kent State University

Michael Spear, Lehigh University

Jukka Suomela, Aalto University

Nitin Vaidya, Georgetown University

Gauthier Voron, EPFL

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Steering Committee

Xavier Defago, Tokyo Institute of Technology, Japan
Panagiota Fatourou, University of Crete, Greece

Pascal Felber, University of Neuchatel, Switzerland (Chair)
Paola Flocchini, University of Ottawa, Canada

Roy Friedman, Technion, Israel

Seth Gilbert, National University of Singapore

Vincent Gramoli, University of Sydney and EPFL, Switzerland
Alessia Milani, LIS, Aix-Marseille Université, France

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Evangelos Bampas, Université Paris-Saclay, LISN

Andrea Clementi, Universita’ degli Studi di Roma “TorVergata”
Matthew Connor, University of Liverpool

Stéphane Devismes, Université de Grenoble Alpes

Laxman Dhulipala, MIT

Laurent Feuilloley, University of Lyon 1

Dianne Foreback, Kent State University

Rati Gelashvili, Novi

Yossi Gilad, Hebrew University of Jerusalem

Chetan Gupta, Aalto University

Juho Hirvonen, Aalto University

David Ilcinkas, CNRS, Bordeaux, France

Adnane Khattabi Riffi, Université de Bordeaux, CNRS, LaBRI
Seri Khoury, UC Berkeley

Yonghwan Kim, Nagyoya Institute of Technology

Christian Konrad, University of Bristol

Janne H. Korhonen, IST Austria

Anissa Lamani, University of Strasbourg, ICube

Yannic Maus, TU Graz

Uri Meir, Tel-Aviv University

Darya Melnyk, Aalto University

Junya Nakamura, Toyohashi University of Technology
Yasamin Nazari, University of Salzburg

Shreyas Pai, Aalto University

Gopal Pandurangan, University of Houston

Mor Perry, The Academic College of Tel Aviv-Yaffo

Mikael Rabie, University de Paris, IRIF

Ritam Ganguly, Michigan State University

Matan Rusanovsky, Ben Gurion University

Elad Michael Schiller, Chalmers University of Technology

Noa Schiller, Technion

Anastasios Sidiropoulos, University of Illinois at Chicago

Jan Studeny, Aalto University

Yuichi Sudo, Hosei University

Sara Tucci-Piergiovanni, CEA LIST, Université de Paris-Saclay
Alex Weaver, Georgetown University

Jennifer L. Welch, Texas A&M University

Yukiko Yamauchi, Faculty of Information Science and Electrical Engineering, Kyushu Uni-
versity, Japan

Max Young, Mississippi State

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Distributed Algorithms: A Challenging Playground
for Model Checking

Nathalie Bertrand =
Univ Rennes, Inria, CNRS, IRISA, France

—— Abstract

Distributed computing is increasingly spreading, in advanced technological applications as well
as in our daily life. Failures in distributed algorithms can have important human and financial
consequences, so that is is crucial to develop rigorous techniques to verify their correctness. Model
checking is a model-based approach to formal verification, dating back the 80’s. It has been
successfully applied first to hardware, and later to software verification.

Distributed computing raises new challenges for the model checking community, and calls for
the development of new verification techniques and tools. In particular, the parameterized verifica-
tion paradigm is nowadays blooming to help proving automatically the correctness of distributed
algorithms. In this invited talk, we present recent parameterized verification developments to
automatically prove properties of some classical distributed algorithms.

2012 ACM Subject Classification Theory of computation — Verification by model checking; Theory
of computation — Distributed algorithms

Keywords and phrases Verification, Distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.1

Category Invited Talk

© Nathalie Bertrand;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 1; pp. 1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nathalie.bertrand@inria.fr
https://orcid.org/0000-0002-9957-5394
https://doi.org/10.4230/LIPIcs.OPODIS.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Accountable Distributed Computing

Petr Kuznetsov &
LTCI, Télécom Paris, Institut Polytechnique de Paris, France

—— Abstract

There are two major ways to deal with failures in distributed computing: fault-tolerance and
accountability. Fault-tolerance intends to anticipate failures by investing into replication and
synchronization, so that the system’s correctness is not affected by faulty components. In contrast,
accountability enables detecting failures a posteriori and raising undeniable evidences against faulty
components.

In this talk, we discuss how accountability can be achieved, both in generic and application-
specific ways. We begin with an overview of fault detection mechanisms used in benign, crash-prone
system, with a focus on the weakest failure detector question. We then consider the fault detection
problem in systems with general, Byzantine failures and explore which classes of misbehavior can be
detected and which — cannot. We then study the mechanism of application-specific accountability
that, intuitively, only accounts for instances of misbehavior that affect particular correctness criteria.
Finally, we discuss how fault detection can be combined with reconfiguration, opening an avenue of
“self-healing” systems that seamlessly replace faulty system components with correct ones.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Fault-tolerance, fault detection, accountability, application-specific

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.2

Category Invited Talk

© Petr Kuznetsov;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 2; pp.2:1-2:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:petr.kuznetsov@telecom-paris.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

A Fresh Look at the Design and Implementation of
Communication Paradigms

Robbert van Renesse &
Cornell University, Ithaca, NY, USA

—— Abstract

Datacenter applications consist of many communicating components and evolve organically as
requirements develop over time. In this talk I will present two projects that try to support such
organic growth. The first project, Escher, recognizes that components of a distributed systems may
themselves be distributed systems. Escher introduces a communication abstraction that hides the
internals of a distributed component, and in particular how to communicate with it, from other
components. Using Escher, a replicated server can invoke another replicated server without either
server having to even know that the servers are replicated. The second project, Scalog, presents a
datacenter scale totally ordered logging service. Logs are increasingly a central component in many
datacenter applications, but log configurations can lead to significant hiccups in the performance
of those applications. Scalog has seamless reconfiguration operations that allow it to scale up and
down without any downtime.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Distributed systems

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.3

Category Invited Talk

© Robbert van Renesse;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rvr@cs.cornell.edu
https://orcid.org/0000-0003-3598-0283
https://doi.org/10.4230/LIPIcs.OPODIS.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Arbitrarily Accurate Aggregation Scheme for
Byzantine SGD

Alexandre Maurer
School of Computer Science, UM6P, Ben Guerir, Morocco

—— Abstract

A very common optimization technique in Machine Learning is Stochastic Gradient Descent (SGD).
SGD can easily be distributed: several workers try to estimate the gradient of a loss function, and
a central parameter server gathers these estimates. When all workers behave correctly, the more
workers we have, the more accurate the gradient estimate is. We call this the Arbitrary Aggregation
Accuracy (AAA) property.

However, in practice, some workers may be Byzantine (i.e., have an arbitrary behavior). In-
terestingly, when a fixed fraction of workers is assumed to be Byzantine (e.g. 20%), no existing
aggregation scheme has the AAA property. In this paper, we propose the first aggregation scheme
that has this property despite a fixed fraction of Byzantine workers (less than 50%). We theoretically
prove this property, and then illustrate it with simulations.

2012 ACM Subject Classification Computing methodologies — Machine learning; Computing
methodologies — Distributed algorithms

Keywords and phrases distributed machine learning, Byzantine failures, stochastic gradient descent

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.4

Supplementary Material Software (Source Code): https://tinyurl.com/sim-aaa-paper

1 Introduction

Many machine learning models are trained using stochastic gradient descent (SGD) [17], an
optimization technique that can easily be parallelized on multiple computers. As machine
learning models become larger and larger, parallelizing their training becomes more and
more important, if we want to train them in a reasonable amount of time.

If all computers are assumed to work correctly, parallelizing the training is relatively
simple. The classical architecture is the following. A central parameter server is trying to
minimize a loss function. To do so, it uses the gradient descent algorithm, which requires to
compute (an approximation of) the gradient of the loss function, at several points of the loss
function. As this is the most time-consuming task, the parameter server distributes this task
among multiple workers. Each worker computes a vector which is an approximation of the
desired gradient. The parameter server then collects and aggregates these vectors, to obtain
a (reasonably good) approximation of the gradient. This process is repeated multiple times,
until we reach a minimum of the loss function. We explain this in more details in Section 2.3.

However, when the number of workers becomes very large, one should assume that
some workers will not behave correctly. Some workers may even be malicious agents trying
to prevent a successful training of the model. This is especially true when workers are
not identical computers stored in a data center, but personal computers or smartphones
participating in the training in a collaborative way.

Therefore, a recent line of work is robust distributed SGD: the goal is to propose distributed
architectures that manage to train the model despite the presence of malicious workers. In
order to achieve very strong safety guarantees, we assume that these malicious workers are
Byzantine [15], that is: they are omniscient, and can have any arbitrary behavior.

© Alexandre Maurer;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 4; pp. 4:1-4:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.OPODIS.2021.4
https://tinyurl.com/sim-aaa-paper
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

Let us give a quick overview of this literature.! In [18], a first solution was proposed for
problems of dimension one. In [3], a score is associated to each proposed vector, defined as
the sum of distances with some of its closest neighbors. The vector with the smallest score
is then selected. In [9], several outputs of [3] are selected (without replacement), and then
averaged. In [21], a scalar aggregation rule (SAR) is applied to each coordinate. This SAR
can be, for instance, the median, or a trimmed mean (a mean after removing the 2% largest
and % smallest values). In [19] (resp. [20]), the proposed values closest from the median
(resp. trimmed mean) are selected, then averaged. In [12], a variant of the trimmed mean
is applied to a selection of vectors obtained from [9]. In [7], several batches of vectors are
averaged; then, their geometric median is computed. In [6], the vectors are aggregated using
coding theory and a redundancy scheme. In [1] and [10], historical information is used to
identify dishonest workers. The only solution tolerating asynchrony so far is [10].

Note that most of these works assume a centralized and reliable parameter server. However,
as shown in [11], these schemes? can be transformed into fully decentralized schemes, where
no entity is a single point of failure. In order to focus on the aggregation strategy, we also
assume a centralized parameter server in this paper.

In the following, we focus on aggregation schemes where an approximation of the gradient
is computed independently at each step, like in classical SGD. Aside from enabling a clearer
mathematical analysis of the gradient, it also makes the system resilient to transient failures,
that is: in addition of Byzantine workers, the system can recover from any temporary failures
of correct workers.

The Arbitrary Aggregation Accuracy (AAA) property

Now, let us come back to the case where all workers are correct, and consider a given step of
the gradient descent algorithm. In this setting, the parameter server simply computes the
mean of the received vectors. If each workers processes a given share of the dataset, and these
shares are independent and identically distributed (which is usually assumed), then the more
workers we have, the more accurate our approximation of the true gradient will be. Actually,
for any arbitrary level of precision, there exists a number of workers that can achieve this
level of precision. We call this the Arbitrary Aggregation Accuracy (AAA) property.

Formally, if G is the true gradient of the loss function (at a given step), n is the number
of workers, and A,, is the vector aggregated by the parameter server (the approximation of
the true gradient), then this property can be expressed as follows:?

lim E[A, — G| = 0.

n—-+o0o

We now assume that there is a fixed fraction of Byzantine workers (for instance, 20% of
workers, independently of the total number of workers). We may ask the following question:
is it possible to have the AAA property in this setting?

This problem shares some similarities with the more general problem of executing arbitrary tasks in a
setting with a “master” and several (unreliable) “workers”. In [14], a bound is shown on the complexity
of performing n tasks correctly with high probability. However, doing so does not give meaningful
guarantees when the goal is to perform SGD.

This applies to any scheme of the same (centralized) nature as those presented above.

In this paper, || - || refers to the L2 norm, and the expectation is both on the i.i.d. samples of the dataset
and on the randomness involved in the algorithm.

A. Maurer

Interestingly, no existing Byzantine-resilient version of SGD has this property (more
details on this in Section 2.5): a fixed fraction of Byzantine workers results in a fixed error
w.r.t. the true gradient, no matter how large the number of workers is.

Our contribution

In this paper, we propose COMPASS, the first aggregation scheme that has the AAA property
despite a fixed fraction f of Byzantine workers (f < %) We describe this scheme, then prove
that it has the AAA property. We then illustrate this property with simulations: we compare
the accuracy of COMPMED (a modified version of CoMPASs?) to an existing aggregation
scheme.

The rest of the paper is organized as follows. In Section 2, we describe the general
setting. In Section 3, we describe the COMPASS aggregation scheme. In Section 4, we prove
that CoMPASS has the AAA property. In Section 5, we illustrate the AAA property with
simulations. We conclude in Section 6.

Remarks and clarifications

Before going further, let us clarify several points about the contribution of this paper.

This work is mostly a theoretical work.

This work, as well as many previous works, proposes a scheme to approximate the gradient
of the loss function. The precision of this approximation (of the gradient) should not
be confused with the precision of the learned model. For a given gradient descent step,
having an accurate gradient is always a desirable property, since the goal of a gradient
descent step is to decrease the value of the loss function. Therefore, an accurate gradient
approximation will not be the cause of problems like overfitting.

Similarly, guarantees on the quality of the gradient approximation (as provided in this
work and several previous works) should not be confused with guarantees on the accuracy
of the trained model. Such guarantees can be found, for instance, in [1] and [5], under
specific hypotheses (e.g., convex loss function, bounded gradient. . .).

The gradient approximations proposed by correct workers may have a variance high
enough to allow Byzantine workers to collude to move the mean without being detected
(as described in [2]). However, they can only do so in aggrergation schemes where the AAA
property is not satisfied: this property ensures that the estimated gradient is arbitrarily
close to the true gradient, independently of the behavior of Byzantine workers.

In the SGD algorithm, there is always a probability of error w.r.t. the true gradient. It is
also the case for distributed SGD (without failures), and for Byzantine-resilient solutions
(including ours). Nevertheless, we ensure that this error shrinks to zero when the number
of nodes increases.

2 Preliminaries

2.1 Setting

We want to train a machine learning model of d parameters, using the gradient descent
algorithm.

4 The reason for this change is motivated in Section 5.1.

4:3

OPODIS 2021

4:4

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

The model can be represented by a function M (P, X), where P = (p1,...,pq) are the
parameters of the model (for instance, the weights and biases of a neural network), and X is
the current input of the model (usually a vector of real values). M(P, X) returns a single
real value y.

To train the model, we have a dataset consisting in two lists (X1,..., X,,) and (y1, ..., Ym),
where X; is an input of the model (feature), and y; is the corresponding desired output
(label). In the following, we denote y; by y(X;). We define a loss function L(P), measuring
the “distance” between the current model and the desired outputs. For instance, a classic
form of the loss function is:

S (M(P,X,) — y(X,)°.

=1

1
m

We make no hypotheses on the shape of this function, except that it has, in each point, a
gradient with finite coordinate values.®

Training the model consists in finding a set of parameters minimizing the loss function.
The standard way to do this is to use the gradient descent algorithm, which consists of
repeating the two following steps:

1. Compute the gradient VL(P) of the loss function.
2. Update the vector of parameters P as follows: P <— P—aV L(P) (where « is an arbitrarily
small constant).

2.2 Stochastic gradient descent (SGD)

In practice, computing the exact gradient may be very long when the dataset contains a lot
of elements (which is usually the case). An alternative is to use stochastic gradient descent
(SGD), that is: at each step, we randomly select a set S of elements from the dataset, and
use it to compute an approximation VL*(P,S) of VL(P). For instance, if L(P) has the
aforementioned classical form, then:

L(P.8) = g 3 (M(P.X) = y(X))".

Xes

Over several steps, the errors due to randomness tend to cancel each other, and we
generally achieve the same result with a much shorter computation time.

2.3 Distributed SGD

A convenient property of SGD is that it can easily be parallelized. The classical architecture
is the following. We have a parameter server, that stores and updates the parameters of the
model, and n workers (w1, ..., wy,).

Let a > 0 be an arbitrarily small constant. At each step:

1. The parameter server sends the current vector of parameters P to each worker.

2. Fach worker w; selects a random subset S of the dataset, computes V; = VL*(P,S), and
sends it to the parameter server.

3. The parameter server computes the mean A, of the received vectors V; (A4, = * LY Vi),
and uses it to update the model (P < P — a4,,).

5 This function may have multiple local minima. However, for most machine learning models (e.g. neural
networks), most local minima are sufficient to reach a satisfying accuracy [8].

A. Maurer

Here, we assume that each worker possesses a copy of the whole dataset, and can randomly
select elements from the dataset at each step. This is a reasonable hypothesis, given the
current memory capacities of computers (or even smartphones), and the cheap cost of memory
units (relatively to the cost of computing power). We make this hypothesis in the rest of
the paper. Another justification might be that workers have remote access to the dataset
through the internet (and may copy specific parts of it).

2.4 Failure model

In the aforementioned distributed setting, all workers are assumed to behave correctly.
However, in practice, this may not always be the case.

Let f < 0.5 be a fixed parameter of the problem. Let k be the largest integer such that
k < fn. Among the n workers, k are assumed to be Byzantine, that is: their behavior is
completely arbitrary. Here, as the workers send vectors to the parameter server, this means
that up to & workers can send arbitrary vectors to the parameter server. The parameter
server does not know which workers are Byzantine.

Note that, since the behavior of Byzantine workers is arbitrary, it does not matter whether
or not they keep track of past events: we must always assume the worst-case scenario.

2.5 The Arbitrary Aggregation Accuracy (AAA) property

An aggregation scheme is a distributed system that, for a given step of the gradient descent

algorithm, produces an approximation A of the true gradient G = VL(P) of the loss function.

The scheme presented in 2.3 is an example of aggregation scheme. If such a system allows an
arbitrary number n of workers, we call the resulting aggregated vector A,,.

We say that an aggregation scheme has the Arbitrary Aggregation Accuracy (AAA)
property if the expected value of the distance between A, and G approaches 0 when n
increases:

lim E|4, —G| =0.
n—-+oo

A classical metric for Byzantine-resilient versions of SGD is the angular error, that is: the
angle 6,, between F[A,] and G. An asymptotic comparison of the angular errors of existing
aggregation schemes is provided in [4]. When the fraction of Byzantine workers is constant
(independently of n), these angular errors are at best ©(1) (i.e. constant). This contradicts
the AAA property: when this property is satisfied, lim, .00, = 0.

To give some intuition on why these previous solutions do not satisfy the AAA property,
let us consider, for instance, the coordinate-wise median: for each coordinate, we take the
median of the values proposed by workers (see Section 5.1 for a more formal description).
In this setting, the worst thing Byzantine workers can do is to propose extreme values (all
positive or all negative): even if they are a minority, this will push the median towards these
extreme values. Here, for a given distribution of values, a fixed fraction of Byzantine workers
will have a fixed impact of the median value. This phenomena is illustrated experimentally
in Section 5.

3 Our aggregation scheme

In this section, we present the COMPASS aggregation scheme. In 3.1, we give some preliminary
definitions. In 3.2, we describe CoOMPASS. In 3.3, we explain its general idea, and comment
it step by step.

4:5

OPODIS 2021

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

3.1 Definitions

We consider n workers (w1, ...,w,). Let N be the largest integer such that N2 < n. Let M
be a fixed parameter, corresponding to the number of elements of the dataset that a worker
uses to compute an approximation of the gradient at each step.

We now define several notions and functions used in our aggregation scheme:

A random split consists in randomly selecting a set S of N? workers among (wy, ..., w,),
then randomly splitting the elements of S into N sets (W7i,..., Wx), each one containing
N elements.

A random pick is a set of M randomly selected integers between 1 and m (as a reminder,
m is the size of the dataset).
For a set S of vectors of dimension d, we define the function Maj(S) as follows:
If there exists a vector V' of S such that a strict majority of vectors of S are equal to
V, then, Maj(S)="V.
Otherwise, Maj(S) returns a null vector (0,0,...,0) of dimension d.
For two values p and z (with = > 0), we define Cuto(p, x) as follows:
If p > x, Cuto(p,z) = x
If p< —z, Cutp(p,z) = —x
Otherwise, Cuto(p,z) =p

For a vector V' = (v1,va,...,v4) and a value z, we define Cut(V, z) as follows:

Cut(V,z) = (Cuto(vy, z), Cuto(va, x), ..., Cuty(vg, x)).

3.2 Description of the aggregation scheme

We now describe the COMPASS aggregation scheme (similarly to the distributed SGD scheme
described in 2.3).
Let o > 0 be an arbitrarily small constant. At each step:

1. The parameter server generates a random split (W1,...,Wyx) and N random picks
(Z1,...,ZnN).
2. Vi € {1,..., N}, the parameter server sends Z; and the current vector of parameters P

to each worker of the set W;.

3. Vie {1,...,N}, let ©; be the set containing the elements X; of the dataset such that
j € Z;. Each worker of the set W; computes VL*(P,€;), and sends it to the parameter
server.

4. Vi e {1,...,N}, let S; be the set of vectors sent by the workers of W; (the parameter
server only accepts one vector per worker®). The parameter server aggregates the received
vectors as follows:

N
1 .
A, =Cut (N E_l Maj(S;), \/N)
...and uses it to update the model (P <+ P — aA,).

6 If a worker does not send any vector before the end of the round, we consider that it sent a null vector
(0,0,...,0). Therefore, |S;| = |[Ws.

A. Maurer

3.3 Detailed explanation
General idea

A common strategy to defeat Byzantine processes is replication: many processes perform
the same computing task, and a majority vote selects the correct output. Here, however,
if all correct workers compute the same vector, adding more workers will not improve the
quality of the gradient approximation. To do so, we have to aggregate many (independent)
approximations. This is done, for instance, in the simple scheme described in Section 2.3
(with a mean). However, this scheme is not robust to even one Byzantine worker (as shown
in [3]).

Here, we propose a balanced mix of replication and aggregation: if we have N? workers
(N =~ /n), then, we can choose N sets of N workers each. Each set computes the same
vector, and a majority vote determines the output of this set. We then aggregate these
outputs. As N grows with n, increasing the number of workers increases both the reliability
of replication and the quality of aggregation.

Step-by-step description

Now, let us comment on our aggregation scheme step by step.

In Step 1, the parameter server generates the N aforementioned sets (W1,..., Wyx). To
prevent any strategic placement of Byzantine workers, these sets are chosen randomly at each
step. The parameter server also generates N random picks (Z1,...,Zy). Each Z; is a set of
identifiers of elements of the dataset. These elements will be processed by the corresponding
group of workers W;.

In Step 2, the parameter server sends P (the current vector of parameters) and Z; (the
aforementioned set of identifiers) to each worker of the set W;, for each i € {1,..., N}.

In Step 3, each worker of the set W; (for each ¢ € {1,..., N}) computes the approximation
VL*(P,Q;) of the gradient VL(P), where 2, is the set of elements of the dataset corresponding
to Z;. Then, it sends it back to the parameter server.

In Step 4, the parameter server aggregates the received vectors. First, it uses a majority
vote (Maj(S;)) to determine the output of the set W; (for each ¢ € {1,...,N}). Then, it
computes the mean of these outputs. Finally, it applies the Cut function to ensure that the
coordinates of the aggregated vector remain smaller than v/N. Doing so is important, because
there is always a probability p > 0 that a set W; contains a majority of Byzantine workers. If
so, the output of this set (after the majority vote) will be determined by Byzantine workers,
that could (for instance) propose a vector with coordinate values inversely proportional to
1, to ensure that the expected mean of outputs remains far away from the true gradient.
Applying the Cut function enables to prove the result of Lemma 3 (see Section 4), and then
the AAA property.

4 Analysis

In this section, we prove that ComMPASs has the AAA property (see Theorem 4).

In the following proofs, we introduce several variables in order to constrain some values to
be integers. For instance: “Let k be the largest integer such that k < n2”. Some readers may
consider that it would be simpler to just write “y/n” here; however, some other readers may
object that doing so would make the proofs less rigorous, and make their validity unclear.
For this reason, we choose to use the first notation.

4:7

OPODIS 2021

4:8

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

» Lemma 1. Let p < % be a probability. Consider N sets of N workers, where each worker
has an independent probability p to be Byzantine. Let En be the following event: “All N sets
contain a strict minority of Byzantine workers”. Then, there exists Ny such that, VN > Ny,
P(Ey)>1-%.

Proof. As lim IHTE = 0, let Ny be the smallest integer such that, VN > Ny:

xr——+00

In Ny < 1-2p 2
N() 4 '

Consider a set of workers. Let k& be the number of Byzantine workers in this set. According

to Hoeffding’s inequality:
2
Therefore:
k In N 2
AT >1_ =
P<N p’<\/N)_1 N2

...and, for N > Ny:

k 1-2p 2
P(|—= - >1-— —.
(5o <57)>

Now, we can remark that:
k 1—-2p k 1—2p k 1+ 2p
o < v — v .
P(N p‘< 1)P(N Ps—y) P<N< 1
Asp<%,wehave1+2p<2,and:
k 14+ 2p k2 N
P — <P|l—=<-|=P — .
(v <=7)=r(5<9)-7(+<3)
Thus, VN > Ng:

P<k<];]>21—2

N2
and

N
2 2N 2

PEN)>(1-—=) >1-2=1-=.

(N)< N2> =" N? N b

» Lemma 2. Let N > 1 be an integer, and let f < % be a positive value. Consider N2
workers, among which k are Byzantine, with k < fN?. Assume that these N? workers are
randomly assigned to N sets. Let Ely be the following event: “All N sets contain a strict
minority of Byzantine workers”. Then, there exists N1 such that, VN > Ny, P(Ely) > 1— %

Proof. The proof of this lemma can be found in the appendix. <

A. Maurer 4:9

» Lemma 3. Let G be a vector of dimension d, and let p < % be a probability. Let
(V1,Va, Vs, ...) be a sequence of vectors of dimension d, such that limy_, 4o % Zi\il V,=G."
Let (B1, B, Bs,...) be an arbitrary sequence of vectors of dimension d. Let Ry be a
random vector defined as follows: with probability p, Ry = Cut (BN,\/N) ; otherwise,

Ry = Cut (% Zfil Vi, \/N) Then, limy_, 4o E||Ry — G| = 0.

Proof. Before going further, let us clarify one possible misunderstanding. Some readers may
confuse N with the number of parameters of the model (which is not the case). According to
the lemma’s statement, IV is related to the numbers of vectors used to approximate the true
gradient. The number of parameters of the model is not used in the proofs of this paper.

fofi)

YN

(B, VN) | = Vavn.

E||RN—G|\:pcht(BN,\F) GH+ (1-p

XN

Asp<%:

pllcu (Br. VW) | < Svavi =22

Therefore:

Xy < pHCut (BN, \/N) H +plla| < ?’f + —||GH

As a result, limy_, 100 Xx = 0. Now, let us determine limy_, o, Yn.
Let 6 > 0. Let j € {1,...,d}, and let v(4,5) (resp. g(j)) be the j** coordinate of V; (resp.
G). As limpy 400 % Zil V; = G, in particular:
| X
lim % v(i.5) = g(j).

N—+oo ‘
=1

Thus, there exists n; such that, VN > n;:

1
N;vzg

<5+ 1g()l-

1 N
N Z ’U(ia])
=1

Let Ng be the smallest integer such that No > max(ny,...,nq) and /No > d+max;eqi,.. a3 [9(7)]-
Then, VN > Ny and Vj € {1,...,d}:

1 N
NZU(%])

<VN

7 This sequence represents the vectors proposed by Byzantine workers. The reason why we write them as
a sequence is that we further write “limy_ oo fn”, where fn is a function of By.

OPODIS 2021

4:10

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

and

1 N N
Cluty <sz(i,j),\/ﬁ> == w(i,j).

i=1 =1

==

Thus, forall N > Ng:

1 & 1 &
cut<N;v;,m>—N;v;.

As a result:
1Y 1Y
NLHEOOCM <N;V¢,\/ﬁ> :NLIIEOON;V; =G
and

lim =0.

N—+oo

N
1
Cut <N;V\/N> -G

Asp < %, limy_100(1 —p) =1, and limy 1o Yy = 0. Therefore:

lim E||Ry —G| = lim X lim Yy =0.
Wi Fl By =Gl = iy v L Yo <

» Theorem 4. COMPASS has the AAA property.

Proof. As a reminder, N is the largest integer such that N? < n.

Let (Wy,...,Wpx) be the random split generated in Step 1 of CoMPASS. According
to Lemma 2, with a probability at least 1 — %, each set W; contains a strict minority of
Byzantine workers. In other words, the probability p that these sets do not all contain a
strict minority of Byzantine workers is such that p < %

Besides, when all sets W, contain a strict minority of Byzantine workers, Maj(.S;)
corresponds to the vector sent by the correct workers of W; (as a reminder, S; is the set
of vectors sent by the workers of W;). As these vectors Maj(S;) are all based on random

samples of the dataset, E[Maj(S;)] = G. In other words:

S PR
N1—1>r-r‘rloo N ; Maj(S:) = G.
Therefore, the output A,, of COMPASS can be represented by the random vector Ry of
Lemma 3 (where the arbitrary vectors (Bj, B2, Bs, ...) correspond to the cases where not
all sets W; contain a strict minority of Byzantine workers).
When n — +00, N — +o00. Therefore, according to Lemma 3, lim,,_, 4« E|| 4, — G|| =0,
and COMPASS has the AAA property. <

5 Simulations

In this section, we illustrate the AAA property with simulations. We compare COMPMED (a
modified version of COMPASS) with an existing aggregation scheme. In 5.1, we describe these
two aggregation schemes. In 5.2, we describe the simulation setting. In 5.3, we show how to
make simulations both simpler and more general. The simulation results are presented in 5.4.

A. Maurer

5.1 Aggregation schemes

Let us describe the aggregation schemes CWMED and COMPMED.

CWMED (Coordinate-Wise Median) is an aggregation scheme introduced in [21]. It
consists in taking the median value for each coordinate, in order to exclude extreme
values proposed by Byzantine workers. Its angular error is constant. As a reminder (see
2.5), among existing aggregation schemes, the angular error is at best constant.
CoMPMED is a modified version of CoMPASS. The principle is the same, except that
the final aggregation formula is now similar to CWMED. The reason for this change is
that CoMPASS is designed to prove a very general result (for any distribution of values),
but may be slow to converge in practice. For these simulations, we assume that the
coordinates values proposed by correct workers follow a normal distribution (see 5.2). In
this setting, COMPMED converges much more quickly.®

Description of CWMed

We first define the function Med.
Let L be a list of n values. Let (x1,...,x,) be a list containing the same values as L,
but sorted in increasing order. We define the function med(L) as follows:

. Tn+Tn g
If n is even, med(L) = 52—

If n is odd, med(L) = Toga.

Let (Vi,...,V,) be n vectors. Let v(i,5) be the j* coordinate of V;. Let C; =

(v(1,5),v(2,7), ..., v(n,).
We define Med(Vi, Vs, ..., V,) as follows:

Med(Vy,Va, ..., V) = (med(Cy), med(Cs), ..., med(Cy)).

We now describe the CWMED aggregation scheme.
Let a > 0 be an arbitrarily small constant. At each step:

1. The parameter server generates n random picks (Z1,...,Zx).
2. Vi € {1,...,n}, the parameter server sends Z; and the current vector of parameters P to
worker w;.

3. Vi e {1,...,n}, let Q; be the set containing the elements X; of the dataset such that
J € Z;. Each worker w; computes VL*(P,€;), and sends it to the parameter server.

4. Yi € {1,...,n}, let V; be the vector sent by worker w;.” The parameter server aggregates
the received vectors as follows:

This is due to the fact that COMPASS computes a mean of several vectors, some of which being potentially
Byzantine. Therefore, the size N of the groups of workers must be large enough to ensure that all these
vectors are correct with a very high probability (the Cut function takes care of the extremely unlikely
bad cases).

Here, we assume that the coordinate values proposed by correct workers follow a normal distribution,
which means that their expected median value is equal to their expected mean value. Therefore, we can
use CWMED, which also excludes extreme values. However, in the general case, the expected median
value of a distribution is not always equal to its expected mean value. This is why we used COMPASS to
prove the main theoretical result.

Note that this problem (of the expected median value now always being equal to the expected mean value)
is a theoretical limitation of both CWMED and CoMPMED. Therefore, the comparison we make here is
fair with regards to this particular aspect.

9 If a worker does not send any vector before the end of the round, we consider that it sent a null vector
(0,0,...,0).

4:11

OPODIS 2021

4:12

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

An = Med(Vl,Vg,...,Vn)

...and uses it to update the model (P + P — aA,,).

Description of CompMed

The CoMPMED aggregation scheme is defined similarly to the COMPASS aggregation scheme,
except that the aggregated vector is now defined as follows:

Ay, = Med(Maj(S1), Maj(S2),...,Maj(Sy)).

5.2 Simulation setting

Let 0 > 0 be a positive constants. Let G = (g1,...,94) = VL(P) be the gradient of the loss
function.

Let Q* be a set of M random elements of the dataset. We assume that L*(P,Q*) =
(91,95,-..,95) (i-e., the approximation of the gradient that each correct worker computes)
follows a normal distribution centered on the true gradient, that is: Vj € {1,...,d}, g,
follows the normal distribution N (g, 0?). This assumption is backed by recent results in
machine learning [13]: many normally distributed datasets result in normally distributed
gradients.

Aggregation error

To measure the quality of an aggregation scheme A,, (for a given number of workers n), we
define the aggregation error A, as follows:

_ E[l4, — G|’
An = y :

This quantity measures the average distance between A,, and G, with regards to the
randomness of our model. Dividing by the dimension d (which is a constant of the problem)
enables to significantly simplify the simulations, as shown in Section 5.3.

Attack model

Let f < % be the fraction of Byzantine workers. We assume that all Byzantine workers send
the vector Vg = (w,w,...,w) to the parameter server, where w is an arbitrarily large positive
constant.

For CWMED, this attack has a maximal impact: it “pushes” the median values of
coordinates as far a possible from the value they would have had otherwise. The same is true
for CoMPMED: if some groups of workers contain a majority of Byzantine workers, their
output will be Vg.

5.3 Making the simulations simpler and more general

Let us show that, for CWMED and CoOMPMED, the aggregation error A, can actually be
computed without choosing specific values for d and (g, ...,94). Besides simplifying the
simulations, this makes the simulation results more general (i.e., not dependent on d and
(g1,---,94)). Therefore, the only parameters of the simulations (defined above) are: o, f
and w.

A. Maurer 4:13

In the following, we explain how to compute two metrics 5, and 7, that do not depend
ond or (gi1,...,94). Then, in Theorem 5 and 6, we show that A\, = 3, (for CWMED) and
An = Yn (for COMPMED).

Definition of 3,

Let k be the largest integer such that k < fn. Let L = (y1,...,yn) be a list of n values, such
that:

Vi€ {1,...,n — k}, y; is a random value following the normal distribution N(0, o2);

Vie{n—k+1,...,n}, y; = w.

We define 3, as follows: 3, = E[med(L)?].

Definition of ~,

For a given step of COMPMED, among the N sets of workers (Wi,...,Wx), let K be the
number of sets that do not contain a strict majority of correct workers.

Let L' = (y1,...,yn) be a list of N values, such that:

Vi€ {l,...,N — K}, y; is a random value following the normal distribution A/(0, o?);

Vie {N-K+1,...,N}, y; = w.

We define v, as follows: 7, = E[med(L’)?].1°
» Theorem 5. For CWMED, A\, = f3,.
» Theorem 6. For COMPMED, \,, = v,.

The proofs of Theorem 5 and Theorem 6 can be found in the appendix.

5.4 Simulation results

The parameters of the simulations are ¢ = 1 and w = 10°. The code used for simulations
can be found in [16].

We simulated the evolution of the aggregation error A, as a function of the number of
workers, for both CWMED and COMPMED. The results are presented in Figure 1.

For f = 0, the aggregation error converges to 0 for both aggregation schemes. We now
consider the case f = 0.2 (i.e., 20% of Byzantine workers). For CWMED, the aggregation
error converges to a value close to 0.12 (the irregularities of the plot are due to the fact
than one new Byzantine worker is added for every 5 new workers). For COMPMED, the
aggregation error quickly becomes indistinguishable from the case f =0 (i.e., it converges
to 0).

This illustrates the AAA property of our aggregation scheme: the aggregation error
converges to 0 when the number of workers increases, despite a constant fraction of Byzantine
workers (which is not the case for existing aggregation schemes, e.g. CWMED).

10Note that here, the randomness comes from the values y;, but also from K.

OPODIS 2021

4:14 Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

Aggregation error (CWMed) Aggregation error (CompMed)
—a— f=0 —a— f=0
04 f=02 0.4 f=02
0.3 0.3
0.2 0.2
..’—‘\
0.1 0.1 g,

10 20 30 40 50 10 20 30 40 50
n (number of workers) N (number of sets of workers)

Figure 1 Evolution of the aggregation error for CWMED (left side) and COMPMED (right side),
as a function of n (number of workers) and N (number of sets of workers) respectively, for f =0
and f = 0.2. As a reminder, N is the largest integer such that N < n?, where n is the number of
workers.

6 Conclusion

In this paper, we presented the first aggregation scheme with the AAA property, and proved
its correctness. We illustrated this property with simulations, and compared it to an existing
scheme.

The goal of this work was to show that it was possible to have an aggregation error
converging to 0 (when n increases) in the presence of Byzantine workers. For future works,
an interesting question would be: how fast can it converge to zero? The challenge would
be to design an aggregation scheme ensuring a faster convergence, both in theory and in
simulations.

—— References

1 Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In
Advances in Neural Information Processing Systems, pages 4613—-4623, 2018.

2 Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing
defenses for distributed learning. In Hanna M. Wallach, Hugo Larochelle, Alina Bey-
gelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, NeurIPS
2019, pages 8632-8642, 2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
ec1c59141046cd1866bbbcdfbb6ae31d4-Abstract.html.

3 Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information
Processing Systems 30, pages 119-129. Curran Associates, Inc., 2017.

4 Amine Boussetta, El-Mahdi El-Mhamdi, Rachid Guerraoui, Alexandre Maurer, and Sébastien
Rouault. AKSEL: Fast Byzantine SGD. In 24th International Conference on Principles of
Distributed Systems (OPODIS 2020), 2021.

5 Saikiran Bulusu, Prashant Khanduri, Pranay Sharma, and Pramod K. Varshney. On distributed
stochastic gradient descent for nonconvex functions in the presence of byzantines. In 2020
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020,
Barcelona, Spain, May 4-8, 2020, pages 3137-3141. IEEE, 2020. doi:10.1109/ICASSP40776.
2020.9052956.

6 Lingjiao Chen, H. Wang, Zachary B. Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In ICML, 2018.

7 Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(2):44, 2017.

https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://doi.org/10.1109/ICASSP40776.2020.9052956
https://doi.org/10.1109/ICASSP40776.2020.9052956

A.

10

11

12

13

14

15

16

17

18

19
20

21

Maurer

Anna Choromanska, Mikael Henaff, Michaél Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May
9-12, 2015, 2015. URL: http://proceedings.mlr.press/v38/choromanskal5.html.
Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sébastien
Rouault. Aggregathor: Byzantine machine learning via robust gradient aggregation. In SysML,
2019.

Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra, Mahsa Taziki,
et al. Asynchronous byzantine machine learning (the case of sgd). In ICML, pages 1153-1162,
2018.

El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Lé Nguyén Hoang. Geniunely
distributed byzantine machine learning. In PODC, 2020.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in Byzantium. In Proceedings of the 35th International Conference on
Machine Learning, pages 3521-3530. PMLR, 2018.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence
and generalization in neural networks. In NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 8580-8589, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
5a4belfa34e62bb8abec6b91d2462f5a-Abstract.html.

Kishori M. Konwar, Sanguthevar Rajasekaran, and Alexander A. Shvartsman. Robust network
supercomputing with malicious processes. In Shlomi Dolev, editor, Distributed Computing,
20th International Symposium, DISC 2006, Stockholm, Sweden, September 18-20, 2006,
Proceedings, volume 4167 of Lecture Notes in Computer Science, pages 474—488. Springer,
2006. doi:10.1007/11864219_33.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, 1982.

Alexandre Maurer. Source code for simulations related to this paper. URL: https://tinyurl.

com/sim-aaa-paper.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represent-
ations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Lili Su and Nitin H. Vaidya. Fault-tolerant multi-agent optimization: Optimal iterative
distributed algorithms. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016,
pages 425-434. ACM, 2016. doi:10.1145/2933057.2933105.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd, 2018.
Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Phocas: dimensional byzantine-resilient
stochastic gradient descent, 2018.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust
distributed learning: Towards optimal statistical rates. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5650-5659. PMLR, 2018.

A Appendix

2f+1

Proof of Lemma 2. Let p = == Let us describe 4 ways to select some Byzantine workers
among N2 workers, that we call “games”.

4

Game A: k workers are selected randomly, and then turned Byzantine.

Game B: Each worker is turned Byzantine with probability p.

Game C: Game B is executed. Then, if the number of Byzantine workers is k or less:
all workers are turned Byzantine.

4:15

OPODIS 2021

http://proceedings.mlr.press/v38/choromanska15.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://doi.org/10.1007/11864219_33
https://tinyurl.com/sim-aaa-paper
https://tinyurl.com/sim-aaa-paper
https://doi.org/10.1145/2933057.2933105

4:16

Arbitrarily Accurate Aggregation Scheme for Byzantine SGD

Game D: Game C is executed. Then, we randomly pick one Byzantine worker, make it
correct again, and repeat the process until we have exactly k& Byzantine workers.

Let @ x be the event: “After Game X, all IV sets contain a strict minority of Byzantine
workers.” As Game D consists in executing Game C, then only removing Byzantine workers,
we have: P(®p) > P(P¢).

Then, we can notice that Game D is equivalent to Game A (since each worker is equally
likely to end up Byzantine). Therefore, P(®4) = P(®p) > P(P¢). Now, let us give a lower
bound of P(®¢).

Let ¥p be the following event: “After Game B, there are strictly more than k& Byzantine
workers”. Then, we can notice that, for ®- to be true, it is necessary that both &5 and Vg
are true. Indeed, if g is false, ®¢ cannot be true, because all workers would then be turned
Byzantine in Game C (just after executing Game B). And, if ¥g is true but ®p is false, P¢
cannot be true, because we would not have a strict minority of Byzantine workers in all N
sets. Therefore, P(®¢) > P(Pp A Up).

Now, notice that P(¥p) = P(®Pp A ¥p) + P(-Pp A ¥Up). Since P(-Pp A Up) <
P(ﬁq)B) =1- P((I)B), we have: P(\I/B) < P((I)B AN \I’B) +1- P((I)B), and P((DB A \I/B) >
P((I)B) + P(\I’B) —1.

Before going further, let us give a lower bound of P(¥). Let N be the smallest integer
such that, VN > Ng:

2

% <(p-1?

Let k' be the number of Byzantine workers after Game B. According to Hoeffding’s inequality,
applied to the N2 workers:

K In N2 2
P<N2p < N2>21N4
Thus, VN > N{:

K 2
P<N2_p <p—f)Zl—N4

Now, we can remark that:

K K
P<N2 <pf) §P(N2+p<pf>—P(k'>fN2)

Thus, VN > N{:

P(Wp) = P(K' > k) > P(K' > fN?)>1- %

Thus, according to Lemma 1, VN > max(Ng, Nj):

2 2
> —_ — —_ — —_ = -
P(CI)B/\\I/B)i (1 N) + (]. N4> 1 1 N N

Therefore, we have:

2 2
P(EEV)ZP(@A):P(@D)ZP(‘I’C)ZP(‘I’B/\‘I’B)Zl—N—W
Let Ny be such that Ny > max(Ny, V) and, VN > Ny, % < % Then, we have:
PEY) >1— «

N

A. Maurer

Proof of Theorem 5. Let j € {1,...,d}, and let L* be a list defined similarly to L, except
that we replace N(0,02) by N (g;,0?). Note that this is equivalent to adding g; to each
value of L.

Let us call a; the jt" coordinate of the aggregated vector A,,. Then:

E[(a; — g;)%] = E[(med(L*) — g;)?] = E[med(L)?] = Bx

Therefore, Vj € {1,...,d}, E[(a; — g;)?] = By, and:

B4 = GI7) _ i Bl —9i)) _ dB,

:671 <

Proof of Theorem 6. Let (Wy,...,Wy) be the N sets of workers chosen at each step of
CoMPMED. Let S; be the set of vectors sent by the workers of W,. Let Maj(S;) =
(hl, hoy..., hd)

If W; contains a strict majority of correct workers, then, Vj € {1,...,d}, h; follows the
normal distribution N(gj,0?). Otherwise, Vj € {1,...,d}, h; = w.

Let K be the number of sets of workers W; that do not contain a strict majority of correct
workers. Then, the rest of the proof is identical to the proof of Theorem 5, if we replace L
by L’ (that is, replacing n by N and k by K). Thus, the result. <

4:17

OPODIS 2021

Good-Case and Bad-Case Latency of
Unauthenticated Byzantine Broadcast:
A Complete Categorization

Ittai Abraham =

VMware Research, Herzliya, Israel

Ling Ren &
University of Illinois at Urbana-Champaign, 1L, USA

Zhuolun Xiang &
University of llinois at Urbana-Champaign, IL, USA

—— Abstract

This paper studies the good-case latency of unauthenticated Byzantine fault-tolerant broadcast, which
measures the time it takes for all non-faulty parties to commit given a non-faulty broadcaster. For
both asynchrony and synchrony, we show that n > 4f is the tight resilience threshold that separates
good-case 2 rounds and 3 rounds. For asynchronous Byzantine reliable broadcast (BRB), we also
investigate the bad-case latency for all non-faulty parties to commit when the broadcaster is faulty
but some non-faulty party commits. We provide matching upper and lower bounds on the resilience
threshold of bad-case latency for BRB protocols with optimal good-case latency of 2 rounds. In
particular, we show 2 impossibility results and propose 4 asynchronous BRB protocols.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Security and
privacy — Distributed systems security

Keywords and phrases Byzantine broadcast, asynchrony, synchrony, latency, good-case, optimal

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.5

Acknowledgements The authors would like to thank Kartik Nayak for helpful discussions related to
the paper.

1 Introduction

Byzantine fault-tolerant broadcast is a fundamental primitive in distributed systems, where a
designated broadcaster sends its value to all parties, such that all non-faulty parties commit
on the same value despite arbitrary deviation from Byzantine parties. Moreover, if the
broadcaster is non-faulty, then all honest parties are required to commit the same value as the
broadcaster’s input. Byzantine broadcast (BB) requires all non-faulty parties to eventually
commit, while Byzantine reliable broadcast (BRB) relaxes the condition to only require
termination when the broadcaster is honest or if some non-faulty party terminates. When
the network is asynchronous, meaning the message delays are unbounded, it is well-known
that BB is unsolvable with even a single fault. On the other hand, BRB is solvable under
asynchrony as long as there are n > 3f + 1 parties.

Recent work of Abraham et al. [4] investigates the notion of good-case latency of Byzantine
fault-tolerant broadcast, which is the time for all honest parties to commit given that the
broadcaster is honest. Theoretically, the good-case latency is a natural and interesting
metric that has not been formally studied by the literature until recently; Practically, for
applications like leader-based Byzantine fault-tolerant state machine replication (BFT SMR),
the good-case latency study answers the fundamental question of how fast can leader-based

© Ittai Abraham, Ling Ren, and Zhuolun Xiang;

oY licensed under Creative Commons License CC-BY 4.0
25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 5; pp. 5:1-5:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:iabraham@vmware.com
mailto:renling@illinois.edu
mailto:xiangzl@illinois.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

Table 1 Upper and lower bounds for good-case latency of unauthenticated Byzantine fault-tolerant

broadcast.
Problem | Timing Model Resilience Lower Bound Upper Bound
>4 2 ds [4 2 ds (Thm 9
BRB Asynchrony n>A4f rounds [4] rounds (Thm 9)
3f+1<n<4f—1 | 3 rounds (Thm 10) 3 rounds [5]
>4 26 [4,9 26 (Thm 18
BB Synchrony n=z4f 14, 9] (Thm 18)
3f+1<n<4f—1 36 (Thm 17) 36 (Thm 19) [5]

Table 2 Comparison of our results and previous results of asynchronous unauthenticated Byzantine
reliable broadcast.

Result Resilience Good-case | Bad-case | Comm. cost | Reference

Bracha n>3f+1 3 rounds 4 rounds O(n?) [5]

Imbs and Raynal n>5f+1 2 rounds 3 rounds Oo(n?) [12]
Impossibility of (2, 2) f>2 2 rounds 2 rounds - Thm 11
F1-BRB n>A4f, f=1 2 rounds 2 rounds O(n?) Thm 12
Impossibility of (2,3) | n <5f—2,f >3 2 rounds 3 rounds - Thm 13
F2-BRB n>A4Af, f=2 2 rounds 3 rounds O(n?) Thm 15
(2,4)-BRB n>4f 2 rounds 4 rounds O(n?) Thm 9
(2,3)-BRB n>5f—1 2 rounds 3 rounds o(n?) Thm 16

BFT SMR commit decisions during the steady state when the leader is non-faulty. Moreover,
for asynchronous Byzantine reliable broadcast, good-case latency is particularly important
since BRB may not terminate under a Byzantine leader.

The work of Abraham et al. [4] reveals a surprisingly rich structure in the good-case
latency tight bounds for authenticated Byzantine broadcast, where digital signatures are used
and the adversary is assumed to be computationally bounded. In this work, we study the
good-case latency and bad-case latency of unauthenticated Byzantine fault-tolerant broadcast.
Our results are summarized in Table 1 and 2.

Complete categorization for good-case latency under asynchrony and synchrony. Under
asynchrony when the message delays are unbounded, we show that n > 4f is the tight
resilience threshold that separates good-case latency of 2 rounds and 3 rounds. For n > 4f, [4]
shows a 2-round lower bound, and we present a protocol with good-case latency of 2 rounds.
For 3f +1 <n < 4f — 1, Bracha’s reliable broadcast [5] has good-case latency of 3 rounds,
and we prove a matching 3-round lower bound.

» Theorem 1 (Informal; tight bounds on good-case latency in asynchrony). For unauthenticated
Byzantine reliable broadcast with f Byzantine parties under asynchrony, in the good-case:

1. 2 rounds are necessary and sufficient if n > 4f (Section 3.1), and
2. 3 rounds are necessary and sufficient if 3f +1 < n < 4f (Section 3.2).

The above asynchronous good-case latency bounds also imply similar results for good-case
latency of BB and BRB under synchrony as well. Let § denote the actual message delay
bound during the execution (see Section 5 for details). For n > 3f + 1, [4] shows a 26 lower
bound (also implied by the early-stopping results [9]), and we present a synchronous BB
protocol with good-case latency of 20 under n > 4f, inspired by our 2-round asynchronous

I. Abraham, L. Ren, and Z. Xiang

BRB protocol. For 3f +1 <n < 4f — 1, we show a synchronous BB protocol that has
good-case latency of 3§ inspired by Bracha’s reliable broadcast [5], and the aforementioned
3§ lower bound also applies to synchrony.

» Theorem 2 (Informal; tight bounds on good-case latency in synchrony). For unauthenticated
Byzantine broadcast and Byzantine reliable broadcast with f Byzantine parties under synchrony
(message delay bounded by &), in the good-case:

1. 2§ are necessary and sufficient if n > 4f (Section 5), and

2. 39 are necessary and sufficient if 3f +1 <mn < 4f (Section 5).

Complete categorization for bad-case latency of asynchronous Byzantine reliable broadcast.

In addition to the good-case commit path, asynchronous BRB protocols usually have a
second commit path to ensure all honest parties eventually commit, when the Byzantine
broadcaster and Byzantine parties deliberately make only a few honest parties commit in
the good-case commit path. We use bad-case latency to denote the latency of such second
commit path, and say a BRB protocol is (R, Rp)-round if it has good-case latency of R,
rounds and bad-case latency of R;, rounds. For instance, Bracha’s reliable broadcast [5] is
(3,4)-round.

We provide a complete categorization of the threshold resilience for BRB with good-case
latency of 2. We show two lower bound results on the resilience threshold: for (2,2) and
for (2,3). We also show 4 protocols with matching resilience bounds: these protocols have
the optimal good-case latency of 2 rounds, but with different trade-offs in resilience and
bad-case latency, matching the lower bound results. As summarized in Table 2, prior upper
bound results include Bracha’s (3,4)-round BRB for n > 3f + 1, and the (2, 3)-round BRB
for n > 5f + 1 by Imbs and Raynal [12].

First, we show it is impossible to achieve (2,2)-round BRB, except for the special case of
f = 1 where we propose a protocol F1-BRB that has (2, 2)-round and optimal resilience
n>4f.
Next, we show another impossibility result stating that no BRB protocol can achieve
(2,3)-round under n < 5f — 2 for f > 3. That is, for f > 3, no BRB protocol can have
optimality in all three metrics: good-case latency, bad-case latency and resilience. For the
special case of f = 2, we propose a protocol F2-BRB that has (2, 3)-round and optimal
resilience n > 4f. For the general case of f > 3, we have two protocols — a protocol
named (2,4)-BRB under n > 4f that has (2,4)-round, and a protocol named (2,3)-BRB
which improves the resilience of Imbs and Raynal [12] from n > 5f+1ton > 5f — 1 while
keeping the protocol (2,3)-round. Both (2,4)-BRB and (2, 3)-BRB have tight resilience
and latencies due to the impossibility result.

2 Preliminaries

Model of execution. We define a protocol for a set of n parties, among which at most f
are Byzantine faulty and can behave arbitrarily and has unbounded computational power.
If a party remains non-faulty for the entire protocol execution, we call the party honest.
During an execution E of a protocol, parties perform sequences of events, including send,
receive/deliver, local computation.

In this paper, we investigate results for deterministic unauthenticated protocols. If the
protocol is deterministic, for any two executions, if an honest party has the same initial
state and receives the same set of messages at the same corresponding time points (by its
local clock), the honest party cannot distinguish two executions. We will use the standard
indistinguishability argument to prove lower bounds.

5:3

OPODIS 2021

5:4

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

We consider both synchronous and asynchronous network models. Under synchrony, any
message between two honest parties will be delivered within ¢ time during the execution. More
details about the synchrony model assumption is deferred to Section 5. Under asynchrony,
the adversary can control the message delay of any message to be an arbitrary non-negative
value. We assume all-to-all, reliable and authenticated communication channels, such that
the adversary cannot fake, modify or drop the messages sent by honest parties.

Byzantine broadcast variants. We investigate two standard variants of Byzantine broadcast
problem for synchrony and asynchrony.

» Definition 3 (Byzantine Broadcast (BB)). A Byzantine broadcast protocol must satisfy the
following properties.
Agreement. If two honest parties commit values v and v’ respectively, then v =1v'.
Validity. If the designated broadcaster is honest, then all honest parties commit the
broadcaster’s value and terminate.
Termination. All honest parties commit and terminate.

» Definition 4 (Byzantine Reliable Broadcast (BRB)). A Byzantine reliable broadcast protocol
must satisfy the following properties.
Agreement. Same as above.
Validity. Same as above.
Termination. If an honest party commits a value and terminates, then all honest parties
commit a value and terminate.

We will also use Byzantine agreement as a primitive to simplify the construction of our
BB protocols under synchrony in Section 5. The Byzantine agreement gives each party an
input, and its validity requires that if all honest parties have the same input value, then all
honest parties commit that value.

Good-case latency of broadcast. Depending on the network model, the measurement of
latency is different. Under synchrony, we can measure the latency using the physical clock
time.

» Definition 5 (Good-case Latency under Synchrony [4]). A Byzantine broadcast (or Byzantine
reliable broadcast) protocol has good-case latency of T under synchrony, if all honest parties
commit within time T since the broadcaster starts the protocol (over all executions and
adversarial strategies), given the designated broadcaster is honest.

Under asynchrony, the network delay is unbounded. To measure the latency of asyn-
chronous protocols, we use the natural notion of asynchronous rounds from the literature [6],
where a protocol runs in R asynchronous rounds if its running time is at most R times the
maximum message delay between honest parties during the execution.

» Definition 6 (Good-case Latency under Asynchrony [4]). A Byzantine reliable broadcast
protocol has good-case latency of R rounds under asynchrony, if all honest parties commit
within asynchronous round R (over all executions and adversarial strategies), given the
designated broadcaster is honest.

When the broadcaster is dishonest, Byzantine broadcast will have worst-case latency of
f -+ 1 rounds [11], and for Byzantine reliable broadcast by definition it does not guarantee
termination (the broadcaster can just remain silent). Therefore, the notion of good-case

I. Abraham, L. Ren, and Z. Xiang

latency is the natural metric to measure the latency performance of reliable broadcast.
Another important latency metric for reliable broadcast is to measure how fast can all honest
parties commit, once an honest party commit. We formally define it as the bad-case latency
as below.

» Definition 7 (Bad-case Latency under Asynchrony). A Byzantine reliable broadcast protocol
has bad-case latency of R’ = R + Re, Tounds under asynchrony, if all honest parties commit
within Re, asynchronous round after an honest party commits (over all executions and
adversarial strategies), and the good-case latency of the protocol is R.

We will use the notation (R4, Rp)-round BRB to denote an authenticated Byzantine
reliable broadcast protocol that has good-case latency or R, rounds and bad-case latency of
Ry, rounds. For instance, the classic Bracha reliable broadcast [5] has a good-case latency of
3 rounds and a bad-case latency of 4 rounds (R., = 1), under n > 3f + 1 parties; it is thus a
(3,4)-round BRB.

3 Good-case Latency of Asynchronous Byzantine Reliable Broadcast

Under asynchrony, Byzantine reliable broadcast is solvable if and only if n > 3f + 1. We show
the tight lower and upper bound on the good-case latency of asynchronous unauthenticated
BRB is 2 rounds when n > 4f, and 3 rounds when 3f +1 <n <4f —1.

3.1 2-round Unauthenticated BRB under n > 4f

We show the tightness of the bound by presenting a 2-round unauthenticated BRB protocol,
which has good-case latency of 2 rounds and bad-case latency of 4 rounds with n > 4f
parties, as presented in Figure 1.

In the protocol, in the first round the broadcaster sends its proposal to all parties. Then
in the second round, all parties send an ack for the first proposal received. Parties commit
in 2 rounds when receiving n — f — 1 ack for the same value from distinct parties other than
the broadcaster, which will happen when the broadcaster is honest. To ensure termination,
the protocol has another 4-round commit path, to guarantee that all honest parties will
commit even if the Byzantine parties deliberately make only a few honest parties commit in
round 2. The 4-round commit path consists of a Bracha-style reliable broadcast, where the
parties send vote-1 and vote-2 messages upon receiving enough messages as specified in
Step 4. Finally, when receiving enough vote-2 messages, party can also commit in round 4.

» Lemma 8. If an honest party commits v at Step 3, then no honest party will send vote-1
or vote-2 for any other value v’ # v.

Proof. Since the honest party commit v at Step 3, it receives n — f — 1 ack messages
for v from distinct non-broadcaster parties. If the broadcaster is honest, then no honest
party will send vote-1 or vote-2 message for v’ since there are at most f Byzantine
parties. If the broadcaster is Byzantine, and suppose there are ¢ Byzantine parties, then
there are at most ¢ — 1 Byzantine parties among all non-broadcaster parties, and there
must be at least (n — f — 1) — (¢t — 1) = n — f — ¢ honest parties sending ack for v.
Suppose an honest party receives n — 2f ack messages for v’ from distinct non-broadcaster
parties, then there must be at least (n — 2f) — (t — 1) = n — 2f — ¢t + 1 honest parties
sending ack for v’. Since there are only n — t honest parties, there must be at least
n—f-t)+(n—-2f—t+1)—(n—t)=n—-3f—t+1>n—4f+1 > 1 honest party
that sends ack for both v and v’, contradiction. Hence no honest party can receive n — 2f

5:5

OPODIS 2021

5:6

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

1. Propose. The designated broadcaster L with input v sends (propose,v) to all
parties.

2. Ack. When receiving the first proposal (propose,v) from the broadcaster, a party
sends an (ack,v) message to all parties.

3. 2-round Commit. When receiving (ack, v) from n— f —1 distinct non-broadcaster
parties, a party commits v, sends (vote-1,v) and (vote-2,v) to all parties, and
terminates.

4. Vote.

When receiving (ack, v) from n — 2f distinct non-broadcaster parties, a party
sends a (vote-1,v) message to all parties, if it has not already sent vote-1 for
any value.

When receiving (vote-1,v) from n — f — 1 distinct non-broadcaster parties, a
party sends a (vote-2,v) message to all parties, if it has not already sent vote-2
for any value.

When receiving (vote-2,v) from f + 1 distinct non-broadcaster parties, a party
sends a (vote-2,v) message to all parties, if it has not already sent vote-2 for
any value.

5. 4-round Commit. When receiving (vote-2,v) from n — f — 1 distinct non-
broadcaster parties, a party commits v and terminates.

Figure 1 (2,4)-round BRB protocol under n > 4f.

ack messages for v/. Moreover, since the thresholds in Step 4 are larger than the number
of Byzantine parties, i.e., n — f—1>3f—1> fand f+1 > f, no honest party will send
vote-1 or vote-2 for v/ # v. <

» Theorem 9. The protocol in Figure 1 solves Byzantine reliable broadcast under asynchrony
with optimal resilience n > 4f and optimal good-case latency of 2 rounds, and has bad-case
latency of 4 rounds.

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal
of value v to all parties. Then all n — f — 1 non-broadcaster honest parties will multicast the
ack message for v. The Byzantine parties cannot make any honest party to send vote-1,
vote-2, for any other value v’ # v since f is below any threshold specified in the protocol.
All honest parties will eventually commit v after receiving n — f — 1 ack messages at Step 3
and terminate. The good-case latency is 2 rounds, including broadcaster sending the proposal
and all parties sending ack message.

Agreement. If the broadcaster is honest, by validity all honest parties will commit the same
value. Now consider when the broadcaster is Byzantine, there are at most f — 1 Byzantine
parties among non-broadcasters.

If any two honest parties commit different values at Step 3, then there must be at least
n—f—1—(f—1)=n—2f > 2f honest parties sending ack for each of these different values.
It is impossible by quorum intersection since there are only 3f honest parties. Similarly, no
two honest parties can commit different values at Step 5.

I. Abraham, L. Ren, and Z. Xiang

Now we show that if an honest party hl commits v at Step 3 and another honest party
h2 commits v' at Step 5, then it must be v = v’. Suppose hl commits v at Step 3, then
by Lemma 8, no honest party will send vote-1 or vote-2 for v’ # v, and thus not enough
vote-2 for any v’ # v to be committed at Step 5. Suppose h2 commit v’ at Step 5, then
h2 receives at least n — f — 1 — (f — 1) =n — 2f > 2f vote-2 messages for v’ from honest
parties. By the contrapositive of Lemma 8, no honest party commits v # v’ at Step 3.

Termination and Bad-case Latency. If the broadcaster is honest, by validity all honest
parties will commit the same value. Now consider when the broadcaster is Byzantine, there
are at most f — 1 Byzantine parties among non-broadcasters.

Suppose that an honest party commits v at Step 3, by Lemma 8, no honest party will
send vote-1 or vote-2 for any v’ # v. Since there are at least n — f —1—(f — 1) =n —2f
non-broadcaster honest parties sending ack for v, all honest parties will receive at least
n — 2f ack for v from non-broadcasters, and thus send vote-1 for v. Since there are n — f
honest non-broadcasters, all honest parties will send vote-2 for v, and then commit after
receiving n — f — 1 vote-2 messages.

Suppose that an honest party commits v at Step 5, then at least n — f —1— (f — 1) =
n —2f > f 4 1 honest non-broadcasters send vote-2 for v. We only need to show that no
honest party send vote-2 for v’ # v, then all honest parties will send vote-2 for v and thus
commit v. Suppose there is an honest party that send vote-2 for v’ # v, then there exists
two sets of vote-1 messages from n— f — 1 distinct non-broadcasters for v and v’ respectively.
Suppose there are t > 0 Byzantine parties, then at least n — f —1—(t—1) >n—t— f
honest parties send vote-1 for v and v’ respectively, which is impossible as there are
n—t<2(n—t— f) honest parties. Therefore no honest party sends vote-2 for v’ # v, and
all honest parties commits v.

It is clear from the protocol that after at most 2 rounds (vote-1 and vote-2) since
any honest party commits, all honest parties also commit. Hence the bad-case latency is 4
rounds. |

3.2 3-round Lower Bound for Unauthenticated BRB under n < 4f — 1

» Theorem 10. Any unauthenticated Byzantine reliable broadcast protocol under 3f +1 <
n < 4f —1 must have a good-case latency of at least 3 rounds even under synchrony.

Proof of Theorem 10. The proof is illustrated in Figure 2. We assume all parties start their
protocol at the same time, which strengthens the lower bound result. Under synchrony, any
message between all honest parties will be delivered within § time, and hence each round of
the protocol is of § time. Without loss of generality, we prove the lower bound for n = 4f —1.
Suppose there exists a BRB protocol II that has a good-case latency of 2 round, which means
the honest parties can always commit after receiving two rounds of messages but before
receiving any message from the third round, if the designated broadcaster is honest. Let
party s be the broadcaster, and divide the remaining n — 1 = 4f — 2 parties into 4 groups
A,B,C,D where |A| = |D| = f and |B| = |C| = f — 1. For brevity, we often use A (B, C, D)
to refer all the parties in A (B, C, D). Consider the following three executions of II.
Execution 1. The broadcaster s is honest and has input 0. Parties in D are Byzantine,
they behave honestly according to the protocol except that they pretend to receive from
a broadcaster whose input is 1. Since the broadcaster is honest, by validity and good-case
latency, parties in A, B, C will commit 0 after receiving two rounds of messages but
before receiving any message from the third round.

5:7

OPODIS 2021

5:8 Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

A, B, Ccommit 0 in 2 rounds B, C, D commit 1 in 2 rounds
® (O (o © @
f f-1 f-1 f f f-1 f-1 f
o g

Input O Input 1
Execution 1 Execution 2
B cannot distinguish in 2 rounds C cannot distinguish in 2 rounds
B commit 0 in 2 rounds C commit 0in 2 rounds

Execution 3 Execution 4

A, D cannot distinguish Execution 3, 4

Figure 2 Unauthenticated BRB Good-case Latency Lower Bound: 3 rounds under n = 4f — 1.
Dotted circles denote Byzantine parties.

Execution 2. This execution is a symmetric case of Execution 1. The broadcaster s is
honest and has input 1. Parties in A are Byzantine, they behave honestly according to
the protocol except that they pretend to receive from a broadcaster whose input is 0.
Since the broadcaster is honest, by validity and good-case latency, parties in B, C, D will
commit 1 after receiving two rounds of messages but before receiving any message from
the third round.

Execution 3. The broadcaster s and the parties in C are Byzantine. s behaves to A, B
identically as in Execution 1 and to D identically as in Execution 2. Parties in C' behave
to B honestly according to the protocol except that they pretend to receive the same
messages from the broadcaster as in Execution 1, and only send messages to B in the first
two rounds. Parties in C behave to A, D honestly except that they pretend to receive the
same messages from the broadcaster as in Execution 2, and pretend to receive messages
from B as in Execution 2 only in the first two rounds.

Execution 4. This execution is a symmetric case of Execution 3. The broadcaster s
and the parties in B are Byzantine. s behaves to A identically as in Execution 1 and
to C, D identically as in Execution 2. Parties in B behave to C honestly according to
the protocol except that they pretend to receive the same messages from the broadcaster
as in Execution 2, and only send messages to C in the first two rounds. Parties in B
behave to A, D honestly except that they pretend to receive the same messages from the
broadcaster as in Execution 1, and pretend to receive messages from C' as in Execution 1
only in the first two rounds.

We show the following indistinguishability and contradiction.

I. Abraham, L. Ren, and Z. Xiang

B cannot distinguish Execution 1 and 3 in the first two rounds, and thus will commit
0 in the end of round 2 in Execution 3. The broadcaster s behaves to B identically
in both executions. The messages sent to B in the first round by any non-broadcaster
party are identical in Execution 1 and 3, since the first round message only depends on
the initial state and all Byzantine parties behave honestly in the first round. For the
second round, in Execution 3, since parties in D pretends to B that it receives messages
from the broadcaster with input 1, and parties in C' pretends to B that it receives the
same messages from the broadcaster as in Execution 1, the parties in B observe the
same messages in the first two rounds of both executions. Hence, B cannot distinguish
Execution 1 and 3 in the first two rounds. Since B commit 0 in the end of round 2 in
Execution 1 due to validity and good-case latency, B also commit O in the end of round 2
in Execution 3.

Similarly, C' cannot distinguish Execution 2 and 4 in the first two rounds, and thus will
commit 1 in the end of round 2 in Execution 4.

A, D cannot distinguish Execution 3 and 4. Similarly, the messages sent to A, D in the
first round are identical in both executions. The broadcaster s behaves to A, B identically
in Execution 3 and 4 as in Execution 1, and to C, D identically in Execution 3 and 4 as
in Execution 2. In Execution 3, parties in B only receive messages from C' in the first
two rounds, and Byzantine parties in C' pretend to receive messages from a broadcaster
whose input is 1. In Execution 4, Byzantine parties in B pretends only receiving two
rounds of messages from C'. Since the first two rounds of messages only depend on the
initial state and the message received from the broadcaster in the first round, parties in
B receives the same messages from C. Therefore, A, D receive the same messages from
B in both Execution 3 and 4. Similarly, A, D receive the same messages from C' in both
Execution 3 and 4, and thus cannot distinguish these two executions.

Contradiction. Since parties in B commit 0 in Execution 3, parties in C' commit 1 in
Execution 4, and parties in A, D cannot distinguish Execution 3 and 4, either agreement or
termination of BRB will be violated. Therefore no such protocol II exists. |

4 Bad-case Latency of Asynchronous Byzantine Reliable Broadcast

In this section, we present 2 impossibility results and 4 asynchronous BRB protocols with
tight trade-offs between resilience, good-case latency and bad-case latency.

Recall that the classic Bracha reliable broadcast [5] has optimal resilience of n > 3f + 1,
non-optimal good-case latency of 3 rounds and bad-case latency of 4 rounds (1 extra round).
The 2-round BRB protocol by Imbs and Raynal [12] has non-optimal resilience of n > 5f +1,
optimal good-case latency of 2 rounds and bad-case latency of 3 rounds (1 extra round).
Meanwhile, our 2-round BRB protocol from Section 3 has optimal resilience n > 4f, optimal
good-case latency of 2 rounds and bad-case latency of 4 round (2 extra rounds). All protocols
above have optimal communication complexity of O(n?), matching the lower bound [8].

On the other hand, we can show that for any f > 1, no asynchronous BRB protocol can
achieve both good-case latency of 2 rounds and bad-case latency of 2 rounds (Theorem 11 in
Section 4.1). For the special case of f = 1, we show it is possible to have a (2,2)-round BRB
(Theorem 12).

Therefore, it is interesting to ask:

Under what conditions can BRB achieve optimality in all three metrics — optimal
resilience of n > 4f, optimal good-case latency of 2 rounds and optimal bad-case latency of 3
rounds (1 extra round)?

5:9

OPODIS 2021

5:10

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

N\

1. Propose. The designated broadcaster L with input v sends (propose,v) to all
parties.

2. Ack. When receiving the first proposal (propose,v) from the broadcaster, a party
sends an ack message for v to all parties in the form of (ack,v).

3. 2-round Commit. When receiving (ack, v) from n — 2 distinct non-broadcaster
parties, a party commits v and terminates.

Figure 3 (2,2)-round BRB Protocol under n > 4f, f = 1.

We show it is impossible for the general case of f > 3, by proving that no BRB protocol
under n < 5f — 2, f > 3 can achieve (2,3)-round (Theorem 13). For f > 3, our BRB
(Figure 1) in earlier Section 3.1 has optimal good-case latency of 2 rounds and optimal
resilience n > 4f, but with bad-case latency of 4 rounds. On the other hand, we give
a (2,3)-round BRB protocol (Figure 5) with tight resilience n > 5f — 1, improving the
n > 5f + 1 resilience of Imbs and Raynal [12]. For the special case of f = 2, we show it is
possible to construct a (2, 3)-round BRB (Figure 4) with optimal resilience n > 4f.

4.1 Impossibility of (2, 2)-round BRB

For the general case of f > 2, we show any asynchronous BRB protocol cannot achieve
(2,2)-round. The proof of Theorem 11 is deferred to Appendix A due to space limit.

» Theorem 11. Any asynchronous unauthenticated Byzantine reliable broadcast protocol
under f > 2 and has a good-case latency of 2 rounds must have a bad-case latency of at least
3 rounds.

4.2 (2,2)-round BRB Protocol under n > 4f, f =1

For the special case of f = 1, we can show a simple BRB protocol (Figure 3) that has optimal
good-case latency and bad-case latency of 2 rounds, while having optimal resilience n > 4.

» Theorem 12. The protocol in Figure 3 solves Byzantine reliable broadcast under asynchrony
with optimal resilience n > 4, f = 1, optimal good-case latency and bad-case latency of 2
rounds.

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal of
value v to all parties, and all n — 2 > 2 non-broadcaster honest parties will multicast the ack
message for v. Since there is just one Byzantine party, its ack is below the n — 2 threshold.
Then all honest parties will commit v after receiving n — 2 ack messages at Step 3 and
terminate. The good-case latency is 2 rounds, including broadcaster sending the proposal
and all parties sending ack message.

Agreement, Termination and Bad-case Latency. If the broadcaster is honest, by validity
all honest parties will commit the same value. If the broadcaster is Byzantine, then all n — 1
non-broadcaster parties are honest. If an honest party commits v at Step 3, then it receives
n — 2 ack messages of v from distinct non-broadcaster parties, and thus all honest parties
will also receive these ack messages and commit v. Since all honest parties commit in the
same asynchronous round, the bad-case latency is also 2 rounds. <

I. Abraham, L. Ren, and Z. Xiang

1. Propose. The designated broadcaster L with input v sends (propose,v) to all
parties.
2. Ack. When receiving the first proposal (propose,v) from the broadcaster, a party
sends a ack message for v to all parties in the form of (ack, v).
3. 2-round Commit. When receiving (ack, v) from n— f —1 distinct non-broadcaster
parties, a party commits v and terminates.
4. Vote and Lock.
When receiving (ack, v) from a non-broadcaster party j, a party sends (vote, j,v)
to all parties if not yet sent (vote, j, v).
When receiving (vote, j,v) from n — f — 2 distinct non-broadcaster parties other
than j, a party locks on v for party j.
5. 3-round Commit. When locking on the same v for n—2f distinct non-broadcaster
parties, a party commits v and terminates.

Figure 4 (2,3)-round BRB under n > 4f, f = 2.

4.3 Impossibility of (2, 3)-round BRB

» Theorem 13. Any asynchronous unauthenticated Byzantine reliable broadcast protocol
under n < 5f —2, f > 3 and has a good-case latency of 2 rounds must have a bad-case latency
of at least 4 rounds.

The proof of Theorem 13 is deferred to Appendix B due to the space limit.

4.4 (2,3)-round BRB Protocol under n > 4f, f = 2

For the special case of f = 2, we propose a (2, 3)-round BRB protocol (Figure 4) that has
optimal resilience n > 4f. The main idea is that all parties send ack for broadcaster’s
proposal, and also send vote for other parties’ ack. When receiving enough vote messages
of v for the same party, a party locks on v. The protocol guarantees that all honest parties
lock on the same value for each party when f = 2. Then, the 3-round commit step let a
party commits if the party locks on the same value for a majority of the parties. Since all
parties send a vote for all other parties, the message and communication complexity are
both O(n?).

» Lemma 14. [f the broadcaster is Byzantine and an honest party locks on v for party j,
then all honest parties also lock on v for party j.

Proof. Since an honest party locks on v for party j, it receives n — f — 2 vote messages from
non-broadcaster parties other than j. If j is honest, then it sends the same ack to all parties,
and thus all honest parties receive n — f — 2 vote for party j from non-broadcaster honest
parties other than j. If j is Byzantine, then the parties other than j and the broadcaster are
all honest. Since an honest party receives n — f — 2 vote messages from these honest parties,
all honest parties will also receive the messages. Therefore, all honest parties also lock on v
for party j. |

» Theorem 15. The protocol in Figure 4 solves Byzantine reliable broadcast under asynchrony
with optimal resilience n > 4f, f = 2 and optimal good-case latency of 2 rounds, and has
bad-case latency of 3 rounds.

5:11

OPODIS 2021

5:12

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal
of value v to all parties, and all n — f — 1 honest non-broadcaster parties will multicast the
ack message for v. Since there are only f Byzantine party, their ack messages is below the
n — f — 1 threshold. Then all honest parties will commit v after receiving n — f — 1 ack
messages at Step 3 and terminate. The good-case latency is 2 rounds, including broadcaster
sending the proposal and all parties sending ack message.

Agreement. If the broadcaster is honest, by validity all honest parties will commit the
same value. Now consider when the broadcaster is Byzantine, and suppose there are ¢ > 0
Byzantine parties there are at most ¢t — 1 Byzantine parties among non-broadcasters.

If any two honest parties commit different values at Step 3, then there must be at least
n—f—1—(t—1)=n— f—t honest parties sending ack for each of these different values.
It is impossible by quorum intersection since there are only n — t honest parties.

Suppose any two honest parties commit different values at Step 5. Then, there must
exists at least 2(n — 2f) — (n — 1) > 1 party for which the two committed honest parties
lock different values. However, this contradicts Lemma 14, which states honest parties lock
on the same value for any party when the broadcaster is Byzantine. Hence, no two honest
parties can commit different values at Step 5.

Now we show that if an honest party hl commits v at Step 3 and another honest party
h2 commits v at Step 5, then it must be v = v’. Suppose hl commits v at Step 3, then at
least n — f —1— (f — 1) = n — 2f honest non-broadcaster parties send ack for v. All honest
parties will lock on v for these n — 2f non-broadcaster parties, which is a majority of the
n — 1 non-broadcaster parties. Therefore any honest party that commits v' at Step 5 must
have v = v.

Termination and Bad-case Latency. If the broadcaster is honest, by validity all honest
parties will commit the same value. If the broadcaster is Byzantine, once an honest party
commits v at Step 3, there are n — 2f non-broadcaster honest parties that send ack for v,
and all honest parties will eventually lock on v for these parties after receiving the vote
messages. Therefore all honest parties will commit v at Step 5 after 1 extra round. <

4.5 (2,3)-round BRB undern > 5f — 1

In this section, we improve the resilience of 2-round BRB protocol in the previous work [12]
from 5f+1 to 5f — 1, while keeping the bad-case latency 3 rounds. The protocol is presented
in Figure 5, and the main difference compared to Imbs and Raynal [12] is that in Step 2,
parties send ack for v if receiving n — 2f ack from non-broadcaster parties, instead of from
any parties as in [12]. The intuition is that when the broadcaster is Byzantine, the above set
of non-broadcaster parties only contains f — 1 Byzantine parties, and thus we can reduce the
total number of parties but still ensure quorum intersection.

» Theorem 16. The protocol in Figure 5 solves Byzantine reliable broadcast under asynchrony
with resilience n > 5f — 1 and optimal good-case latency of 2 rounds, and has bad-case latency
of 3 rounds.

I. Abraham, L. Ren, and Z. Xiang

1. Propose. The designated broadcaster L with input v sends (propose,v) to all
parties.
2. Ack.
When receiving the first proposal (propose,v) from the broadcaster, a party
sends a ack message for v to all parties in the form of (ack,v).
When receiving (ack,v) from n — 2f distinct non-broadcaster parties, a party
sends (ack, v) to all parties if not yet sent (ack,v).
3. Commit. When receiving (ack,v) from n — f — 1 distinct non-broadcaster parties,
a party commits v and terminates.

Figure 5 (2, 3)-round BRB under n > 5f — 1.

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it sends the same proposal
of value v to all parties, and all n — f — 1 honest non-broadcaster parties will multicast the
ack message for v. Since there are only f Byzantine party, their ack messages is below the
n — f — 1 threshold. Then all honest parties will commit v after receiving n — f — 1 ack
messages at Step 3 and terminate. The good-case latency is 2 rounds, including broadcaster
sending the proposal and all parties sending ack message.

Agreement. If the broadcaster is honest, by validity all honest parties will commit the
same value. If the broadcaster is Byzantine, and suppose there are ¢ > 0 Byzantine
parties, then there are ¢ — 1 Byzantine parties among all non-broadcaster parties. Suppose
that two honest parties commit different values v # v’, then by Step 3 there are at least
n—f—1—(t—1) = n— f—t honest parties A that send ack for v and at least n— f—1—(t—1) =
n — f —t honest parties B that send ack for v’. Since there are n — t honest parties in
total, |ANB|>2(n—f—t)—(n—t) =n—2f —t >3f —t—1 > 0, there must exist
some honest party that sends ack due to the second condition of Step 2. If the above only
happens to v, then there are at least n — 2f — (t — 1) =n — 2f — t + 1 honest parties that
send ack for v due to receiving the propose from the broadcaster. This contradicts the
fact that at least n — f — ¢ honest parties send ack for v' due to receiving propose, since
(n—2f—t+1)+ (n— f—1t) >n—t. It the above happens to both v,v’, then there are
at least n —2f — (t — 1) = n — 2f — t + 1 honest parties that send ack for v (and for v,
respectively) due to receiving the propose from the broadcaster. This is also impossible
since 2(n —2f —t+1) > n+ f — 2t + 1 > n — t. Therefore, all honest parties commit the
same value.

Termination and Bad-case Latency. If the broadcaster is honest, by validity all honest
parties will commit the same value. If the broadcaster is Byzantine, once an honest party
commits v, there are n — 2f non-broadcaster honest parties that send ack for v. Therefore
all honest parties will send ack for v and hence commit v after 1 extra round. <

5 Extension to Unauthenticated Byzantine Broadcast under Synchrony

In this section, we extend the previous results to show the good-case latency results for
unauthenticated Byzantine broadcast under synchrony. It is well-known that unauthenticated
Byzantine broadcast or Byzantine reliable broadcast is solvable if and only if n > 3f + 1.

5:13

OPODIS 2021

5:14

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

We adopt the synchrony model assumptions from [4], including distinguishing the latency
bounds § and A, and the clock assumption, briefly as follows. More details about the model
assumptions can be found in [4].

Network delays. We separate the actual bound §, and the conservative bound A on the
network delay:
For one execution, d is the upper bound for message delays between any pair of honest
parties, but the value of § is unknown to the protocol designer or any party. Different
executions may have different § values.
For all executions, A is the upper bound for message delays between any pair of honest
parties, and the value of A is known to the protocol designer and all parties.

Clock synchronization. Each party is equipped with a local clock that starts counting at
the beginning of the protocol execution. We assume the clock skew is at most o, i.e., they
start the protocol at most o apart from each other. We assume parties have no clock drift
for convenience. There exist clock synchronization protocols [7, 1] that guarantee a bounded
clock skew of o < §. Since the value of § is unknown to the protocol designer or any party,
our protocol will use A as the parameter for clock skew in the protocol. Note that the actual
clock skew is still o < §, guaranteed by the clock synchronization protocols [7, 1]. In addition,
due to clock skew, the BA primitive used in our BB protocol (Figure 6) needs to tolerate
up to o clock skew. For instance, any synchronous lock-step BA can do so by using a clock
synchronization algorithm [7, 1] to ensure at most A clock skew, and setting each round
duration to be 2A to enforce the abstraction of lock-step rounds.

» Theorem 17. Any unauthenticated Byzantine reliable broadcast protocol under 3f +1 <
n < 4f — 1 must have a good-case latency of at least 3§ under synchrony.

The proof of Theorem 17 is analogous to that of Theorem 10, and is omitted here for
brevity. Next, we show a synchronous BB protocol in Figure 6 that has good-case latency of
26 under n > 4f.

Protocol description. The protocol is presented in Figure 6, and is inspired by our (2,4)-
round asynchronous BRB protocol (Figure 1) from Section 3.1. The main idea is to add a
Byzantine agreement at the end of the protocol to ensure termination, since BRB does not
require termination when the broadcaster is Byzantine. The input of the BA is called lock,
which is set to be some default value L initially, and will be set when commit in Step 3 or
receiving enough vote in Step 4. One guarantee implied by the (2,4)-round BRB protocol
is that, when any honest party commit v in Step 3, all honest parties will lock on v, and
therefore the BA will only output v.

» Theorem 18. The protocol in Figure 6 solves Byzantine broadcast under synchrony with
optimal resilience n > 4f and optimal good-case latency of 26.

Proof.

Validity and Good-case Latency. If the broadcaster is honest, it proposes the same value v
to all parties, and all honest parties will send ack for v. Then at Step 3, all honest parties
receive n — f — 1 ack messages of v after 20 time (which is before local time 2A + ¢), and
commits v.

I. Abraham, L. Ren, and Z. Xiang

Initially, every party ¢ starts the protocol at most ¢ time apart with a local clock and
sets lock = 1, o0 = A.

1. Propose. The designated broadcaster L with input v sends (propose,v) to all
parties.
2. Ack. When receiving the first proposal (propose,v) from the broadcaster, a party
sends an ack message for v to all parties in the form of (ack,v).
3. Commit. When receiving (ack,v) from n — f — 1 distinct non-broadcaster parties
at time ¢, a party sets lock = v. If t < 2A + o, the party commits v.
4. Vote.
When receiving (ack,v) from n — 2f distinct non-broadcaster parties, a party
sends a vote message for v to all parties in the form of (vote,v) if not yet sent
vote for any value.
When receiving (vote,v) from n— f — 1 distinct non-broadcaster parties, a party
sets lock = v.
5. Byzantine agreement. At local time 3A + 20, a party invokes an instance of
Byzantine agreement with lock as the input. If not committed, the party commits
on the output of the Byzantine agreement. Terminate.

Figure 6 26 unauthenticated BB protocol under n > 4f.

Agreement. If all honest parties commit at Step 5, all honest parties commit on the same
value due to the agreement property of the BA. Otherwise, there must be some honest party
that commits at Step 3. First, no two honest parties can commit different values at Step 3
due to quorum intersection. Now suppose any honest party h that commits v at Step 3. If
the broadcaster is honest, by validity, all honest parties commits v. If the broadcaster is
Byzantine, then there are f — 1 Byzantine parties among non-broadcasters. Since h receives
n— f — 1 ack messages from non-broadcasters, at least n — f — 1 — (f —1) =n — 2f of them
are from honest parties. Then, all honest parties receive these n — 2f ack messages and set
lock = v at their local time < (2A +) + A + 0 = 3A + 20, before invoking the Byzantine
agreement primitive at Step 5, since the clock skew is o and message delay is bounded by
A. Also by quorum intersection, there cannot be n — 2f ack messages for v’ # v, since the
set of (n —2f) — (f —1) =n — 3f + 1 honest parties who voted for v" and the set of n — 2f
honest parties who voted for v intersect at > (n —3f +1) + (n — 2f) — (n — f) > 1 honest

parties. Therefore, at Step 5, all honest parties have the same input lock = v to the BA.
Then by the validity condition of the BA primitive, the output of the agreement is also v.

Any honest party that does not commit at Step 3 will commit v at Step 5.

Termination. According to the protocol, honest parties terminate at Step 5, and they
commit a value before termination. |

6 Related Work

Byzantine fault-tolerant broadcast, first proposed by Lamport et al. [13], have received
a significant amount of attention for several decades. Under synchrony, the deterministic
Dolev-Strong protocol [10] solves Byzantine broadcast in worst-case f + 1 rounds, matching
a lower bound [11]. Under asynchrony, Byzantine broadcast is unsolvable even with a single

5:15

OPODIS 2021

5:16

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

failure. Byzantine reliable broadcast relaxes the termination property of Byzantine broadcast,
and the classic Byzantine reliable broadcast by Bracha [5] has a good-case latency of 3
rounds and bad-case latency of 4 rounds with optimal resilience n > 3f + 1. Later works
improves the good-case latency of reliable broadcast to 2 rounds by trading off resilience [12]
or using authentication (signatures) [4]. A recent line of work studies the good-case latency
of authenticated BFT protocols, including [2, 3, 4].

7 Conclusion

In this paper, we investigate the good-case latency of unauthenticated Byzantine fault-
tolerant broadcast, which is time for all honest parties to commit given that the broadcaster
is honest. We show the tight results are 2 rounds under n > 4f and 3 rounds under
3f +1<n<4f —1 for asynchronous Byzantine reliable broadcast, which can be extended
for synchronous Byzantine broadcast as well. In addition, we also study the bad-case latency
for asynchronous BRB which measures how fast can all honest parties commit when the
broadcaster is dishonest and some honest party commits. We show 2 impossibility results
and 4 matching asynchronous BRB protocols, including (2,4)-BRB under n > 4f, F2-BRB
of (2,3)-round under n > 4f, f = 2, F1-BRB of (2,2)-round under n > 4f, f = 1, and
(2,3)-BRB under n > 5f — 1.

—— References

1 TIttai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected O(1) rounds, expected O(n?) communication, and optimal
resilience. In International Conference on Financial Cryptography and Data Security (FC),
pages 320-334. Springer, 2019.

2 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. IEEE Symposium on Security
and Privacy (SP), 2020.

3 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Brief announcement: Byzantine
agreement, broadcast and state machine replication with optimal good-case latency. In 34th
International Symposium on Distributed Computing (DISC), 2020.

4 TIttai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine
broadcast: A complete categorization. In Proceedings of the third annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 331-341, 2021.

5 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130-143, 1987.

6 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing (STOC),
pages 42-51, 1993.

7 Danny Dolev, Joseph Y Halpern, Barbara Simons, and Ray Strong. Dynamic fault-tolerant
clock synchronization. Journal of the ACM (JACM), 42(1):143-185, 1995.

8 Danny Dolev and Riidiger Reischuk. Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM), 32(1):191-204, 1985.

9 Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine
agreement. Journal of the ACM (JACM), 37(4):720-741, 1990.

10 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656-666, 1983.

11 Michael J Fischer and Nancy A Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):183-186, 1982.

I. Abraham, L. Ren, and Z. Xiang

12 Damien Imbs and Michel Raynal. Trading off t-resilience for efficiency in asynchronous
byzantine reliable broadcast. Parallel Processing Letters, 26(04):1650017, 2016.

13 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, 1982.

A Proof of Theorem 11

Proof. Suppose on the contrary there exists an asynchronous BRB protocol II that tolerates
f =2 and has (2,2)-round. We assume n > 4f = 8, otherwise no protocol can solve BRB
with good-case latency of 2 rounds by Theorem 10. Denote the broadcaster as party 0 always,
and remaining parties as party 1,...,n — 1. We construct the following executions.

Execution 1. The broadcaster is honest, and has input 0. Party n — 1 is Byzantine and
remain silent. Then all honest parties commit 0 in 2 rounds by assumption.

Execution 2. The broadcaster is Byzantine, and behaves honestly to parties 1,...,n — 3
with input 0, and remains silent to other parties. Party n — 2 is Byzantine, and behaves
identically to party n — 3 as in Execution 1, but remains silent to rest of the parties. Any
messages from party n — 1 are delayed and not delivered in 2 rounds. It is easy to see
that party n — 3 cannot distinguish Execution 2 and 1 in 2 rounds, therefore it commits
0 in 2 rounds in Execution 2 as well. By assumption, parties 1,...,n — 4 also commit 0 in
2 rounds in Execution 2.

Execution x for z = 3,...,n — 3. The broadcaster is Byzantine, and behaves honestly to
parties 1,...,n —x — 1 with input 0, and remains silent to other parties. Party n — z is
Byzantine, and behaves identically to party n — xz — 1 as in Execution x — 1, but remains
silent to rest of the parties. Any messages from party n — z + 1 are delayed and not
delivered in 2 rounds. It is easy to see that party n — x — 1 cannot distinguish Execution
z and x — 1 in 2 rounds, therefore it commits 0 in 2 rounds in Execution x as well. By
assumption, parties 1,...,n —x — 2 also commit 0 in 2 rounds in Execution 2.

Execution n — 2. The broadcaster is Byzantine, and behaves honestly to party 1 with
input 0, and remains silent to other parties. Party 2 is Byzantine, and behaves identically
to party 1 as in Execution n — 3, but remains silent to rest of the parties. Any messages
from party 3 are delayed and not delivered in 2 rounds. It is easy to see that party 1
cannot distinguish Execution n — 2 and n — 3 in 2 rounds, therefore it commits 0 in 2
rounds in Execution n — 2 as well.

Similarly, we can construct n — 2 symmetric executions, where the broadcaster has input 1,
and in the last execution the broadcaster only behaves honestly to party n — 1 with input 1,
and party n — 1 commits 1 in 2 rounds.

Contradiction. Now we consider another execution, where the broadcaster is Byzantine,
it behaves to party 1 honestly with input 0, and to party n — 1 honestly with input 1, and
remain silent to other parties. Party 2 is Byzantine, it behaves to party 1 identically as in
Execution n — 3, and to party n — 1 identically as the party n — 2 to party n — 1 in the last
execution of the constructed symmetric executions (due to symmetric of the non-broadcaster
parties, the index does not matter). Any messages between parties 1,n — 1 are delayed and
not delivered in 2 rounds. Then, party 1 commits 0 in 2 rounds while party n — 1 commit 1
in 2 rounds, breaking agreement of the BRB. Therefore, such protocol II does not exist. <«

5:17

OPODIS 2021

5:18

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

Proof of Theorem 13

Proof. Suppose on the contrary that there exists an asynchronous BRB protocol II under
n=>5f— 2, f > 3 that has (2,3)-round. Denote the broadcaster as party 0 always, denote 2
non-broadcaster parties as p, g, and divide the remaining 5 f —5 parties into 5 groups G4, ..., G5
each of size f — 1 (recall f —1 > 2). Denote G, = {p} UG UGs and Gr = G4 UG5 U {q}.
We use S[i] to denote the i-th party in set S, where S can be any set defined above (such as
Gj for j=1,...,5 and G,GRr). We construct the following executions. In all constructed
executions, all messages are delivered by the recipient after A time by default, and we will
explicitly specify the messages that are delayed by the adversary due to asynchrony.

EY. The broadcaster is honest and has input 0. Parties in G5 U {¢} are Byzantine, and
they behave honestly except that they pretend to receive from a broadcaster whose input
is 1. Since the broadcaster is honest, by validity and good-case latency, all honest parties
commit 0 after receiving two rounds of messages.

E{. This execution is a symmetric case of EY. The broadcaster is honest and has input 1.
Parties in Gy U {p} are Byzantine, and they behave honestly except that they pretend to
receive from a broadcaster whose input is 0. Since the broadcaster is honest, by validity
and good-case latency, all honest parties commit 1 after receiving two rounds of messages.
EY. The broadcaster is Byzantine, it behaves to G U G5 identically as in EY, and to
G5 U {q} identically as in E}. Parties in G4 are Byzantine, they behave to the party
G3[f — 1] honestly (recall that f — 1 > 2 so Gs[f — 1] # G3[1]) but pretending to receive
from the broadcaster in EY, and to other parties honestly but pretending to receive from
the broadcaster in Ef.

> Claim. The honest party Gs[f — 1] cannot distinguish EY and EY in 2 rounds, and
thus will commit 0 in round 2. Then, by assumption, all honest parties also commit 0 in
round 3 in EY. The broadcaster behaves to G3[f — 1] identically in both executions. The
messages sent to G3[f — 1] in the first round by any non-broadcaster party are identical
in EY and EY, since the first round message only depends on the initial state and all
Byzantine parties behave honestly in the first round. For the second round, since in EY
the Byzantine parties in G5 U{q} pretend to receive from a broadcaster with input 1, they
send the same round-2 messages as in EY. For the Byzantine parties in G4, they behave
identically to G3[f — 1] by construction. All honest parties in G, also behave identically
to Gs3[f — 1] in round 2 since they receive the same round-1 messages. Therefore party
G3[f — 1] cannot distinguish EY and EY in 2 rounds, and thus will commit 0 in round 2.

EY. The broadcaster is Byzantine, it behaves to G, identically as in EY, and to Gr
identically as in E}. Parties in G3 are Byzantine, they behave to other parties identically
as in EY.

> Claim. The honest parties in G, UGg cannot distinguish EJ and ES in 3 rounds, and
thus will commit 0 in round 3. For the round-1 message, honest parties receive the same
messages in both executions since Byzantine parties including the broadcaster send the
same messages. For the round-2 message, the Byzantine parties of G4 in ES behave to
G UGp as if they receive from a broadcaster with input 1, which would be identically
to EY. The Byzantine parties of G3 in E{ behave to other parties identically as in EJ by
construction. Similarly, G; U G receive the same round-3 messages in both executions,
and thus cannot distinguish EY and EY in 3 rounds, and will commit 0 in round 3 in EY
as well.

I. Abraham, L. Ren, and Z. Xiang

Egj+2 for j = 1,2,...,|Ggr| = 2f — 1. The broadcaster is Byzantine, it behaves to
G U{G3[1]} identically as in EY, and to G identically as in E}. Parties in G5\ {G3[1]}
are Byzantine (recall that |G3| = f — 1 > 2), and they behave to all honest parties
identically as in Egj +1- Party GRr[j] is Byzantine, and it behaves to all honest parties
except p identically as in Egj 11, and to party p honestly except that it pretends receiving
no message from G3 sent after round 1. Any round-2 or round-3 message from G3[1] to
parties in Ggli],i =1,...,j — 1 are delayed and received only after round 3.

Egj+3 for j = 1,2,...,|Ggr| = 2f — 1. The broadcaster is Byzantine, it behaves to G,
identically as in EY, and to G identically as in E{. Parties in G3 are Byzantine, they
behave to other parties identically as in Egj 42, but they send no message to Gg[j] after
round 1.

> Claim. Any honest party in G, \ {p} cannot distinguish Egj+2 and Egj_H in 3 rounds,
and it will commit 0 in round 3 in Egj 12- Then, by assumption, party p will also commit
0 in round 3 in Egj 4o Similar to the previous claim, honest parties receive the same
round-1 messages. For round 2, the Byzantine parties in Egj 12 behave identically to all
honest parties, including party p since the difference from Gg[j] to p is reflected only
after round 2. Hence, honest parties in G, \ {p} will also receive the same messages in
round 3, thus cannot distinguish Egj 1o and Egj 41 in 3 rounds.

> Claim. Party p cannot distinguish Egj 43 and Egj 12 in 3 rounds, and thus will commit
0 in round 3 in Egj 13- Then, by assumption, all honest parties in Gy U Gr also commit
0 in round 3. Similar to previous claim, honest parties receive the same round-1 and
round-2 messages. For round 3, since Byzantine parties in G send no message to Gr|j]
after round 1 in Egj+3, the honest party Gg[j] in E8j+3 will behave the same to p as the

Byzantine party G g[j] which pretends to p that it receives no message from G35 in Egj L2

Hence, p cannot distinguish Egj 13 and EQOJ- 12 in 3 rounds.

By the above constructions, we finally have an execution Egj 43j=2f-1 = ng 41 Where
the Byzantine broadcaster behaves to G with input 0, and to G with input 1, and the

Byzantine parties in G5 send no message to G, but party p has to commit 0 in 3 rounds.

Similarly, we can construct a series of symmetric executions of the above executions including
Ei,ie., E{,Ej}, ..., Ej;,,, and have the execution Ej;,, where the Byzantine broadcaster
also behaves to G, with input 0, and to Gr with input 1, and the Byzantine parties in G3
send no message to G, but party ¢ has to commit 1 in 3 rounds.

Contradiction. Now we construct another middle execution F,,, where the Byzantine
broadcaster behaves to Gy, with input 0, and to Gr with input 1, and Byzantine parties in
G'3 behave to G, identically as in Ej;,, and to Gp identically as in Ej,,,. It is easy to
see that party p cannot distinguish F,, and Efff 41 in 3 rounds, and thus will commit 0 in
round 3, while party ¢ cannot distinguish F,,, and Eif 41 in 3 rounds, and thus will commit
1 in round 3. This violates the agreement property of BRB, and hence such BRB protocol II
does not exist. |

C 36 Unauthenticated Byzantine Broadcast under Synchrony

For completeness, we show an unauthenticated BB protocol in Figure 7 with good-case
latency of 36 under synchrony and n > 3f + 1, inspired by Bracha’s reliable broadcast [5].

» Theorem 19. The protocol in Figure 7 solves Byzantine broadcast under synchrony with
resilience n > 3f + 1 and good-case latency of 36.

5:19

OPODIS 2021

5:20

Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast

The correctness proof is similar to that of Theorem 18, and we omit it here for brevity.

1.

Initially, every party i starts the protocol at most ¢ time apart with a local clock and
sets lock = 1, o0 = A.

Propose. The designated broadcaster L with input v sends (propose,v) to all
parties.

. Echo. When receiving the first proposal (propose,v) from the broadcaster, a party

sends an echo message for v to all parties in the form of (echo,v).

. Vote.

When receiving (echo,v) from n — f distinct parties, a party sends a vote
message for v to all parties in the form of (vote,v) and sets lock = v if not yet
sent vote for any value.
When receiving (vote,v) from f + 1 distinct parties, a party sends a vote
message for v to all parties in the form of (vote,v) and sets Lock = v if not yet
sent vote for any value.

. Commit. When receiving (vote,v) from n — f distinct parties at time ¢, a party

sets lock = v. If t < 3A + o, the party commits v.

. Byzantine agreement. At local time 4A + 20, a party invokes an instance of

Byzantine agreement with lock as the input. If not committed, the party commits
on the output of the Byzantine agreement. Terminate.

Figure 7 3§ unauthenticated BB protocol under synchrony and n > 3f + 1.

On Finality in Blockchains

Emmanuelle Anceaume &
CNRS, Univ Rennes, Inria, IRISA, Rennes, France

Antonella Del Pozzo &

CEA-List, Université Paris-Saclay, Palaiseau, France

Thibault Rieutord &

CEA-List, Université Paris-Saclay, Palaiseau, France
Sara Tucci-Piergiovanni &

CEA-List, Université Paris-Saclay, Palaiseau, France

—— Abstract

This paper focuses on blockchain finality, which refers to the time when it becomes impossible to

remove a block that has previously been appended to the blockchain. Blockchain finality can be
deterministic or probabilistic, immediate or eventual. To favor availability against consistency in the
face of partitions, most blockchains only offer probabilistic eventual finality: blocks may be revoked
after being appended to the blockchain, yet with decreasing probability as they sink deeper into the
chain. Other blockchains favor consistency by leveraging the immediate finality of Consensus — a
block appended is never revoked — at the cost of additional synchronization.

The quest for “good” deterministic finality properties for blockchains is still in its infancy,
though. Our motivation is to provide a thorough study of several possible deterministic finality
properties and explore their solvability. This is achieved by introducing the notion of bounded
revocation, which informally says that the number of blocks that can be revoked from the current
blockchain is bounded. Based on the requirements we impose on this revocation number, we provide
reductions between different forms of eventual finality, Consensus and Eventual Consensus. From
these reductions, we show some related impossibility results in presence of Byzantine processes, and
provide non-trivial results. In particular, we provide an algorithm that solves a weak form of eventual
finality in an asynchronous system in presence of an unbounded number of Byzantine processes.
We also provide an algorithm that solves eventual finality with a bounded revocation number in
an eventually synchronous environment in presence of less than half of Byzantine processes. The
simplicity of the arguments should better guide blockchain designs and link them to clear formal
properties of finality.

2012 ACM Subject Classification Theory of computation
Keywords and phrases Blockchain, consistency properties, Byzantine tolerant implementations
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.6

Funding This work was partially supported by the French ANR project ByBloS (ANR-20-CE25-
0002) devoted to the modular design of building blocks for large-scale fault-tolerant multi-users

applications.

1 Introduction

This paper focuses on blockchain finality, which refers to the time when it becomes impossible
to remove a block previously appended to the blockchain. Blockchain finality can be
deterministic or probabilistic, immediate or eventual.

Informally, immediate finality guarantees, as its name suggests, that when a block is
appended to a local copy, it is immediately finalized and thus will never be revoked in the
future. Designing blockchains with immediate finality favors consistency against availability
in presence of transient partitions of the system. It leverages the properties of Consensus (i.e
a decision value is unique and agreed by everyone), at the cost of synchronization constraints.
? Emmanuelle Ancea:ume, Antonella. Del Pozzo, Thibault Rieutord, and Sara Tucci-Piergiovanni;

5v icensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 6; pp. 6:1-6:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:emmanuelle.anceaume@irisa.fr
https://orcid.org/0000-0003-4158-149X
mailto:antonella.delpozzo@cea.fr
https://orcid.org/0000-0003-0913-2141
mailto:thibault.rieutord@cea.fr
mailto:sara.tucci@cea.fr
https://orcid.org/0000-0001-9738-9021
https://doi.org/10.4230/LIPIcs.OPODIS.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

On Finality in Blockchains

Assuming partially synchronous environments, most of the permissioned blockchains satisfy
the deterministic form of immediate consistency, as for example Red Belly blockchain [8] and
Hyperledger Fabric blockchain [2]. The probabilistic form of immediate finality is typically
achieved by permissionless pure proof-of-stake blockchains such as Algorand [7].

Unlike immediate finality, eventual finality only ensures that eventually all local copies of
the blockchain share a common increasing prefix, and thus finality of their blocks increases
as more blocks are appended to the blockchain. The majority of permissionless cryptoassets
blockchains, with Bitcoin [20] and Ethereum [25] as celebrated examples, guarantee eventual
finality with some probability: blocks may be revoked after being appended to the blockchain,
yet with decreasing probability as they sink deeper into the chain. In an effort to replace
the energy-wasting proof-of-work (PoW) method of Bitcoin and Ethereum, recent proof-of-
stake blockchains such as e.g. [16, 12, 15] emerged. These blockchains offer as well a form
of eventual finality. More broadly, all these permissionless solutions favor availability (or
progress) relying on a Nakamoto-style consensus: a broadcast primitive to diffuse blocks
and a local reconciliation mechanism to select a unique chain. It is indeed admitted that
a blockchain may lose consistency by incurring a fork, which is the presence of multiple
chains at different processes. The reconciliation mechanism, available to recover from a fork,
consists in a local deterministic rule selecting a chain among the different possible alternatives.
In Bitcoin for instance any participant reconciles the state following the “longest” chain
rule (the term “longest” chain rule is commonly employed, but this is actually the one that
required the most work to be built). Once a winner chain is chosen, the other alternatives
are revoked, as such all the blocks belonging to them. In designs using Nakamoto-style
consensus, however, network effects make the moment at which all honest processes observe
the same set of candidate chains unknown. Reconciliation and finalisation guarantees are
then uncertain, or simply extremely inefficient, for example by considering a block as finalised
after one or more days. To solve this problem a number of projects are investigating how
to add “finality gadgets” (e.g., [5, 24]) to Nakamoto-style blockchains, which means seeking
additional mechanisms or protocols to reach “better” finality properties in network adversarial
settings. The hope is to find ways to get deterministic finality by periodically running finality
gadgets on top of Nakamoto-style consensus. For the time being, the only way that has been
concretely pursued is to resort to Byzantine Consensus — e.g. Tenderbake [4] adds Byzantine
Consensus to the existing proof-of-stake method assuring deterministic finality to each block
followed by other two blocks. How to add mechanisms that do not resort to Consensus,
however, is an intriguing and open question, related to the finality properties one would like
to guarantee.

The quest for “good” deterministic finality properties for blockchains is still in its infancy,
though. Our motivation is to provide a protocol-independent abstraction of several possible
finality properties to study their solvability. To this aim we formalise, for the first time, the
notion of finality in a protocol-agnostic way. At the heart of the proposed formalisation lies
the notion of revocation number. Informally, given a system run and a blockchain bc read by
a user at some time ¢, we call the revocation number the natural number n such that by
pruning the last n blocks from bc, we obtain a prefix of any blockchain bc’ read after ¢.

By leaving the revocation number unbounded in all the runs of the system, we formalise
our weakest form of finality, the eventual finality consistency criterion F: In each run, the
revocation number can be infinite when the run goes to infinity, still each block will be
eventually finalised.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

By introducing restrictions on the revocation number, we then introduce stronger criteria.
The strongest criterion, called F¢, is obtained by restricting the revocation number to be a
constant ¢ in all the runs of the system. Informally, F¢ guarantees that finality of each block
is deferred by at most ¢ blocks in all system runs, i.e., any block followed by at least ¢ blocks
in the blockchain cannot be revoked.

Between F and F° we then define three other forms of deferred finality: F™, where the
revocation number is bounded but not known, ¢ where the revocation number is constant
but holds only eventually, and finally F*™, where the bound on the revocation number is
not known and holds only eventually. F™ guarantees that finality of each block is deferred
by a constant ¢ in each system run, but this constant can vary from one run to another. For
Fo¢ and F*™ we have that F*¢ guarantees that eventually finality of each block is deferred
by ¢ in all system runs, while for F%", eventually finality of each block is deferred by ¢ in
each system run with ¢ varying from one run to another. Nicely, we obtain each consistency
criterion by adding a proper bounded revocation property to F and we prove that F™, F*°,
F&™ are all equivalent.

The rigorous formalisation of these consistency criteria enables us to easily show that
solutions that guarantee F¢ are equivalent to Consensus, while solutions that guarantee F"
(or equivalently F*™ and F®¢) are not weaker than Eventual Consensus, an abstraction
that captures eventual agreement among all participants. From these reductions, we show
some related impossibility results in presence of Byzantine processes. Beside reductions and
related impossibilities, we propose the following non-trivial results:

F cannot be achieved in an asynchronous system if the reconciliation rule follows the
“longest” chain rule (Theorem 22). This implies that the reconciliation rule, used in current
blockchains to provide probabilistic finality in synchronous settings, cannot guarantee
that participants will eventually converge to a stable prefix of the chain in asynchronous
settings.

A solution that guarantees F in an asynchronous system with a possibly infinite set of
processes which can append infinitely many blocks. This novel solution is simple and
tolerant to an unbounded number of Byzantine processes (Theorem 23).

A solution that solves F™ in an eventually synchronous environment in presence of less
than half of Byzantine processes (Theorem 24). The central point of our solution is to let
correct processes blame each fork on a particular Byzantine process, which can then be
excluded from the computation. Weakening the classic requirement of < 1/3 to < 1/2
Byzantine processes makes such a solution well adapted to large scale adversarial systems.
As for the previous one, we are not aware of any such solution in the literature.

We hope that these results will better guide blockchain designs and link them to clear
formal properties of finality. Hence, in the remainder of this article, Section 2 situates our
work with respect to similar ones. Section 3 formally presents the sequential specification of
a blockchain and the formalisation of the different finality properties we may expect from a
blockchain when concurrently accessed. Section 4 presents reductions between different forms
of finality, Consensus and Eventual Consensus. Section 5 first shows why F is not solvable
in an asynchronous environment when the “longest” chain rule is used, and then presents
two original and simple algorithms that respectively solve F and F™. Finally, Section 6
concludes the paper.

6:3

OPODIS 2021

6:4

On Finality in Blockchains

2 Related Work

Formalization of blockchains in the lens of distributed computing has been recognized as
an extremely important topic [14]. Garay et al. [10] have been the first to analyze the
Bitcoin backbone protocol and to define invariants this protocol has to satisfy to verify with
high probability an eventual consistent prefix. The authors have analyzed the protocol in a
synchronous system, while others, as for example Pass et al. [21], have extended this line
of work considering a more adversarial network. In those works the specification of the
consistency properties are protocol dependent and thus provide an abstraction level that
does not allow us to model the blockchain as a shared object being agnostic of the way it is
implemented. The objective we pursue throughout this work is to formalize the semantic
of the interface between the blockchain and the users. To do so we consider the blockchain
as a shared object, and thus the consistency properties are specified independently of the
synchrony assumptions of underlying distributed system and the type of failures that may
occur. By doing this, we offer a higher level of abstraction than well-known properties do.

This approach has been recently followed in particular by Anta et al. [3], Anceaume et
al. [1] and Guerraoui et al. [13] 1. In Anta et al. [3], the authors propose a formalization of
distributed ledgers, modeled as an ordered list of records along with implementations for
sequential consistency and linearizability using a total order broadcast abstraction. Anceaume
et al. [1] have captured the convergence process of two distinct classes of blockchain systems:
the class providing strong prefix as [3] (for each pair of chains returned at two different
processes, one is the prefix of the other) and the class providing eventual prefix, in which
multiple chains can co-exist but the common prefix eventually converges. The authors of [1]
show that to solve strong prefix the Consensus abstraction is needed, however they do not
address solvability of eventual prefix and do not formalise finality. Interestingly, our notion
of finality and bounded revocation is able to encompass the strong and the eventual prefix
consistency properties of [1].

3 Definitions

3.1 Preliminary Definitions

We describe a blockchain object as an abstract data type which allows us to completely
characterize a blockchain by the operations it exports [18]. The basic idea underlying the
use of abstract data types is to specify shared objects using two complementary facets: a
sequential specification that describes the semantics of the object, and a consistency criterion
over concurrent histories, i.e. the set of admissible executions in a concurrent environment [22].
Prior to presenting the blockchain abstract data type we first recall the formalization used
to describe an abstract data type (ADT).

3.1.1 Abstract data types

An abstract data type (ADT) is a tuple of the form T = (A, B, Z, z9,7,6). Here A and B
are countable sets respectively called input alphabet and output alphabet. Z is a countable
set of abstract object states and zg € Z is the initial abstract state. The map 7: Z x A — Z
is the transition function, specifying the effect of an input on the object state and the

! While not related to the blockchain data structure, authors of [13] have formalized the notion of
cryptocurrency showing that Consensus is not needed.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

map 6 : Z X A — B is the output function, specifying the output returned for a given input
and an object local state. An input represents an operation with its parameters, where (%)
the operation can have a side-effect that changes the abstract state according to transition
function 7 and (#i) the operation can return values taken in the output B, which depends on
the state in which it is called and the output function .

3.1.2 Concurrent histories of an ADT

Concurrent histories are defined considering asymmetric event structures, i.e., partial order
relations among events executed by different processes.

» Definition 1 (Concurrent history H). The execution of a program that uses an abstract
data type T =(A, B, Z,&y,7,0) defines a concurrent history H = (3, E, A, —, <, /), where
Y = AU (A x B) is a countable set of operations;
E is a countable set of events that contains all the ADT operations invocations and all
ADT operation response events;
A : E — X is a function which associates events to the operations in X;
s is the process order, irreflexive order over the events of E. Two events (e, e') € E?
are ordered by — if they are produced by the same process, e # ¢ and e happens before €',
that is denoted as e — €.
<: is the operation order, irreflexive order over the events of FE. For each couple
(e,e') € E? if € is the invocation of an operation occurred at time t' and e is the response
of another operation occurred at time t with t < t' then e < ¢€';
: is the program order, irreflezive order over E, for each couple (e,e’) € E? with e # ¢’
iferse ore<eé thene /e

3.2 The blocktree ADT

We represent a blockchain as a tree of blocks. The same representation has been adopted
in [1]. Indeed, while consensus-based blockchains prevent forks or branching in the tree of
blocks, blockchain systems based on proof-of-work allow the occurrence of forks to happen
hence presenting blocks under a tree structure. The blockchain object is thus defined as a
blocktree abstract data type (Blocktree ADT).

3.2.1 Sequential Specification of the Blocktree ADT (BT-ADT)

A blocktree data structure is a directed rooted tree bt = (Vi, Ep:) where Vi represents a
set of blocks and Fy; a set of edges such that each block has a single path towards the root
of the tree by called the genesis block. A branching in the tree is called a fork. Let BT be
the set of blocktrees, B be the countable and non empty set of uniquely identified blocks
and let BC be the countable non empty set of blockchains, where a blockchain is a path
from a leaf of bt to by. A blockchain is denoted by bc. The structure is equipped with two
operations append() and read(). Operation append(b) adds block b & bt to V4 and adds the
edge (b, V') to Ey where b/ € Vi, is returned by the append selection function f,() applied to
bt. Operation read() returns the chain be selected by the read selection function f,.() applied
to bt (note that in [1], the read() and append() operations are defined with a unique selection
function). The read selection f,.() takes as argument the blocktree and returns a chain of
blocks, that is a sequence of blocks starting from the genesis block to a leaf block of the
blocktree. The chain bc returned by a read() operation r is called the blockchain, and is
denoted by r/be. The append selection function f,() takes as argument the blocktree and

6:5

OPODIS 2021

6:6

On Finality in Blockchains

returns a chain of blocks. Function last_ block() takes as argument a chain of blocks and
returns the last appended block of the chain. Only blocks satisfying some validity predicate
P can be appended to the tree. Predicate P is an application-dependent predicate used to
verify the validity of the chain obtained by appending the new block b to the chain returned
by f.() (denoted by f,(bt)"b). In Bitcoin for instance this predicate embeds the logic to
verify that the obtained chain does not contain double spending or overspending transactions.
Formally,

» Definition 2 (Sequential specification of the Blocktree ADT). The Blocktree Abstract Data
Type is the 6-tuple BT — ADT={A = {append(b), read()/bc € BC},B = BCU{T,L1},Z =
BT,& = bo, 7,0}, where the transition function 7 : Z x A — Z is defined by

T(bt, read()) = bt

(Vir U {b}, By U {b, last__block(f,(bt))}) if P(fa(bt)7™b)
bt otherwise,

7(bt, append(d)) = {

and where the output function § : Z x A — B is defined by
o(bt, read()) = f(bt)

T if P(fo(bt)"b
d(bt, append(b)) = { 1 othegvi(se.) |

Note that we do not need to add the validity check during the read operation in the
sequential specification of the Blocktree ADT because in absence of concurrency the validity
check during the append operation is enough.

3.2.2 Concurrent Specification and Consistency Criteria of the
BlockTree ADT

The concurrent specification of the blocktree abstract data type is the set of its concurrent
histories. A blocktree consistency criterion is a function that returns the set of concurrent
histories admissible for the blocktree abstract data type. In this paper, we define different
consistency criteria for the blocktree. We first define eventual finality, which is the weakest
consistency criterion that we may expect from blockchains, along with the notion of block
revocation. We then combine eventual finality with different forms of revocation to provide
stronger consistency criteria. The presented family of consistency criteria is a comprehensive
characterization of what we may expect from blockchains.

» Notation 3.
E(a*,r*) is an infinite set containing an infinite number of append() and read() invocation
and response events;
E(a,r*) is an infinite set containing (i) a finite number of append() invocation and
response events and (ii) an infinite number of read() invocation and response events;
Oinv and 0,4, indicate respectively the invocation and response event of an operation o;
and in particular for the read() operation, r,s,/bc denotes the returned blockchain be
associated with the response event ry.s, and for the append() operation ain,(b) denotes the
invocation of the append operation having b as input parameter;
length : BC — N denotes a monotonic increasing deterministic function that takes as input
a blockchain be and returns a natural number as length of be. Increasing monotonicity
means that length(bc™{b}) > length(bc);

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

We represent chain be as an infinite list bob* L+ of blocks, where the first block bcl0] = by,
the genesis block, followed by block values b, and an infinite number of L values. Notation
beli] refers to the i-th block of blockchain be. Note that the special “L” symbol counts for
zero for the length function.

be C bc’ if and only if be prefizes bc'. The operator T ignores all the records set to L.

» Definition 4 (BT Eventual Finality Consistency criterion (F)). A concurrent history
H= (X, E,A—,=,) of a system that uses a BT-ADT wverifies the BT eventual finality
consistency criterion if the following four properties hold:
Chain validity:
Vrrsp € E, P(rysp/bc).
Each returned chain is valid.
Chain integrity:
Vrrsp € E,¥b € 155 /bc 0 b # by, Fainy () € E, ainy(b) Trsp-
If a block different from the genesis block is returned, then an append operation has been
invoked with this block as parameter. This property is to avoid the situation in which
reads return blocks never appended.
Eventual prefix:
VE € E(a,r*) U E(a*,1%),Vr.s/bc, Vi € N2 beli] # L, 3ri o, i rrsp /105, Vil 2 10y
P (/B[] = (12 /)] # L.
In all the histories in which the number of read invocations is infinite, then for any read
operation such that the returned chain has a block at position i, there exists a read 1’ /bc
from which all the subsequent reads r” /bc” will return the same block at position i, i.e.
bc'[i] = be[i] # L.
Ever growing tree:
VE € E(a*,r*),Vk € N,3r € E : length(rsp/bc) > k.
In all the histories in which the number of append and read invocations is infinite, for
each length k, there exists a read that returns a chain with length greater than k. This
property avoids the trivial scenario in which the length of the chain remains unchanged
despite the occurrence of an infinite number of append operations (i.e., tree built as a star
with infinite branches of bounded length). Specifically the “Ever growing tree” property
imposes that in presence of an infinite number of read and append operations, for any
natural number k, there will always exist a read operation that will return a chain of at
least length k. Note that the well known “Chain Growth Property” [10, 21] states that
each (honest) chain grows proportionally with the number of rounds of the protocol, which
in contrast to our specification, makes it protocol dependent.

Bounded revocation

As previously said, the bounded revocation properties are at the heart of our formalisation
of blockchain finality. Informally, given a history, we call the revocation number the natural
number n such that for any two reads r/bc and r’/bc’, where r precedes 7/, by pruning the
last n blocks from bc we obtain a chain that is a prefix of bc’.

Note that the eventual finality consistency criterion presented so far does not impose any
bound on the revocation number, which can be then infinite when the history goes to infinity.

To obtain stronger consistency criteria, we then introduce restrictions to the revocation
number. To this aim, we define the c-bounded revocation property, which states that the
revocation number n is bounded by a constant ¢ in all histories. We also define the bounded
revocation property, which states that the revocation number n is bounded by a constant

6:7

OPODIS 2021

6:8

On Finality in Blockchains

¢ in each history, but may be unbounded when we consider the union of all the histories,
i.e., the bound can vary from a history to another. Eventual forms of c-bounded revocation
and bounded revocation state that the revocation number will be equal to a constant ¢ only
eventually. More formally:

» Definition 5 (c-Bounded Revocation). Jc € N,VE, Vr,g,/be, 1y, /bc" € E i 1pgp /1., Vi €
N : i < (length(be) — ¢), be[i] = bc'[i] # L.

» Definition 6 (Bounded Revocation). VE,3c € N,Vr.g,/be, 1y, /bc" € E 2 1pgy /1, Vi €
N : i < (length(bc) — ¢), bcli] = bc'[i] # L.

» Definition 7 (Eventual c-Bounded Revocation). 3c € N,VE,3r € £ : Vr, /be,), /b’ €
E vy S Trsps Trsp /" Trsps Vi € N oi < (length(be’) —), bc'[i] = be”'[i] # L

rsp?

» Definition 8 (Eventual Bounded Revocation). VE,3c € N,3r € E : Vr!_ /bc,rl. /b € E :

rSp TSP

Trsp /" Trsps Trsp /" Trsps Vi € N 2 < (length(bc’) — ¢), bc'[i] = be"[i] # L

TSP
Note that Bounded Revocation properties are not protocol dependent in contrast to the
well-known “Common-Prefix Property” [10, 21], which states that for any two rounds r and
r’ of the protocol with r < r’, the (honest) chain read at round r from which the last ¢
blocks have been pruned is a prefix of (resp. is equal to with high probability) the one read
at round r’.

Based on these different forms of bounded revocation, we define four criteria stronger
than eventual finality. Nicely, we obtain each consistency criterion by adding the proper
bounded revocation property to F.

By adding c-bounded revocation to JF, we obtain the c-deferred finality form, denoted by
F¢. Informally, F¢ guarantees that finality of each block is deferred by at most ¢ blocks in
all histories, i.e., any block followed by at least ¢ blocks in the blockchain cannot be revoked.

By adding the bounded revocation property to F, we obtain the bounded deferred finality
form, denoted by F". Informally F™ guarantees that finality of each block is deferred by a
constant ¢ in each history, but this constant can vary from history to history. In other words
constant ¢ is unknown.

Finally, by adding respectively, eventual c-bounded finality and eventual bounded finality
to F, we obtain other two forms of deferred finality, namely F*¢ F*™ both equivalent to
F". Informally, F¢ guarantees that eventually finality of each block is deferred by ¢ in all
histories. For F*™ eventually finality of each block is deferred by ¢ in each history, with ¢
varying from history to history.

In the following we formally introduce F¢, F™, F®¢, F*™ and show equivalences between
Foe, FO™ and F".

» Definition 9 (BT c-Deferred Finality Consistency criterion (F¢)). A concurrent history
H=(3,E,\,—,=,) of the system that uses a BT-ADT verifies the BT c-deferred finality
consistency criterion if chain validity, chain integrity, eventual prefix, ever growing tree, and
the c-bounded revocation properties hold.

» Definition 10 (BT Bounded Deferred Finality Consistency criterion (F™)). A concurrent
history H = (X, E, A, +—, <,) of the system that uses a BT-ADT verifies the BT bounded
deferred finality consistency criterion if chain validity, chain integrity, eventual prefiz, ever
growing tree, and the bounded revocation properties hold.

» Definition 11 (BT Eventual c-Deferred Finality Consistency criterion (F°<)). A concurrent
history H = (X, E, A, —, <, /) of the system that uses a BT-ADT verifies the BT eventual
c-deferred finality consistency criterion if chain validity, chain integrity, ever growing tree,
eventual prefiz and the eventual c-bounded revocation properties hold.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

» Definition 12 (BT Eventual Bounded Deferred Finality Consistency criterion (F™)). A
concurrent history H = (X, E, A, —, <, /) of the system that uses a BT-ADT wverifies the
BT eventual bounded deferred finality consistency criterion if chain validity, chain integrity,
ever growing tree, eventual prefiz and the eventual bounded revocation properties hold.

Note that in the blockchain literature, F¢, with ¢ = 0, is also referred to as immediate
finality. Immediate finality is equivalent to BT strong consistency defined in [1], which
implies that for any two read operations, one of the returned blockchains is the prefix of the
other one.

» Notation 13. For readability reasons, in the following we will simply say finality instead
of finality consistency criterion.

» Theorem 14. F" and F*" are equivalent.

Proof. Trivially, 7™ implies F*™. Let us now consider the other direction. From F®™, we
have that given any execution F, there exists ¢ € N and a read operation r such that for all
reads ', 7" after r, with v 7 " the blockchain returned by 7’ pruned of the last ¢ blocks
is a prefix of the blockchain returned by r”. Let ¢’ be the maximal length of blockchains
returned by read operations occurring before r, and let ¢” = max(c, ¢'). By construction, F"
is satisfied for E with revocation number n = ¢”. Hence F*" implies F". <

We now show that F*" and F*¢ are equivalent. This equivalence is shown by first
proving that F°" and F*°=0 are equivalent and then that F*°=% and F*° are equivalent.

» Theorem 15. F%°=0 qnd F>™" are equivalent.

Proof. Let P; be a protocol guaranteeing F*™. We build protocol P as follows: to make
an append() operation, processes simply use the append() operation of P;. For the read()
operation, processes use the read() operation provided by P; to obtain the blockchain and
prune the second half of it before returning the first half of the blockchain. Let us show that
protocol P, guarantees F°°=C. For this, we need to show that the properties of F°¢=0 are
satisfied:

Chain validity: The chain validity property is still satisfied by pruning half of the chain.

Chain integrity: The chain integrity property is still satisfied by pruning half of the

chain.

Eventual prefix: The eventual prefix property is still satisfied by pruning half of the
chain.

Ever growing tree: The ever growing tree property is still satisfied by pruning half of
the chain.

(¢ = 0)-eventual bounded revocation: This property follows from the removal of the
second half of the chain. Indeed, if we remove the second half of the chain, then eventually
for any two read() operations, then the first read() returns a prefix of the second read()
operation.

For the other direction, we can build a solution to F*" using a solution to F*¢=0. <«
» Theorem 16. F*°=0 and F¢ are equivalent.

Proof. Trivially, 7°¢=0 implies F°. For the other direction, we apply a construction close
to the one used in the proof of Theorem 15. Specifically, given a protocol P; that guarantees
F*¢, we build a protocol Py by using P; as follows. To make an append() operation,
processes simply use the append() operation of P;. For the read() operation, processes use

6:9

OPODIS 2021

6:10

On Finality in Blockchains

the read() operation provided by P; to obtain the blockchain and prune its last ¢ blocks
before returning it. Note that if there are less than ¢ blocks, processes then return the genesis
block. The properties of F¢=0 trivially follow from the properties of F*¢ and the proposed
transformation. |

» Corollary 17. F7, Fo", F>¢, and F>°=9 are equivalent.

Proof. Straightforward from Theorems 14, 15 and 16. <

4 (Eventual) Consensus Reductions

In this section, we show that guaranteeing F° is equivalent to solving Consensus, while
guaranteeing bounded deferred finality (or any of the equivalent forms) is not weaker than
solving Eventual Consensus.

4.1 c-Bounded Deferred Finality and Consensus

» Theorem 18. Guaranteeing F¢ is equivalent to solving Consensus.

Proof. Let us first remark that F¢=° is equivalent to BT Strong Consistency [1], which has
been shown to be equivalent to Consensus [1].

To prove the theorem it is then sufficient to give a protocol Py that guarantees F=° given
a solution P; that satisfies F¢, the other direction being trivial. We build P2 by applying
the same transformation of P; described in the proof of Theorem 16. The properties of F¢=9
trivially follow from the properties of F¢ and the proposed transformation. |

» Corollary 19. There does not exist any solution that solves F¢ in an eventual synchronous
system with more than 1/3 of Byzantine processes.

Proof. The proof follows from the equivalence between F¢ and Consensus (cf. Theorem 18),
which is unsolvable in a synchronous (and thus also in an eventually synchronous) system
with more than one third of Byzantine processes [17]. <

4.2 Bounded Deferred Finality and Eventual Consensus

In this section we show that guaranteeing bounded deferred finality is not weaker than
Eventual Consensus. To this aim we first recall the Eventual Consensus problem with a
small modification of the validity property to make it suitable to the blockchain context and
then we show that F°°=9 (which is equivalent to F*" by Corollary 17) is not weaker than
Eventual Consensus.

The Eventual Consensus (EC) abstraction [9] captures eventual agreement among all
participants. It exports, to every process p;, operations proposeEC;, proposeEC,,... that
take multi-valued arguments (correct processes propose valid values) and return multi-valued
responses. Assuming that, for all j € N, every process invokes proposeEC; as soon as it
returns a response to proposeEC;_1, the abstraction guarantees that, in every admissible run,
there exists k € N and a predicate Pgc, such that the following properties are satisfied:

EC-Termination. Every correct process eventually returns a response to proposeEC; for

all j e N.

EC-Integrity. No process responds twice to proposeEC; for all j € N.

EC-Validity. Every value returned to proposeEC; is valid with respect to predicate Pgc.

EC-Agreement. No two correct processes return different values to proposeEC; for all

j>k.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

» Theorem 20. Guaranteeing F*¢=" (or any of the equivalent forms) is not weaker than
solving Eventual Consensus.

Proof. We show that there exists a protocol P; that solves Eventual Consensus assuming the
existence of a protocol P, that solves F*°=0. We do the transformation as follows. Every
correct process p invokes proposeEC; for all j € N. We impose that the validity predicate P
of the blocktree ADT (see Section 3) be equal to predicate Pgpc. When a correct process
p invokes the proposeEC;(v) operation of P, for any j € N, then p executes the following
sequence of three steps: (4) p invokes the append(v) operation of Ps, then (i) p invokes
a sequence of read() operations up to the moment the read() returns a chain be such that
be[j] # L, and finally (%ii) p decides chain be (i.e., it returns chain bc) and triggers the next
operation proposeECj;1(v"). We now show that protocol P; solves Eventual Consensus.
EC-Termination This property is guaranteed by the ever growing tree property.
EC-Integrity This property follows directly from the transformation.
EC-Validity This property follows by construction and by the chain validity property
since predicate P equals to predicate Pgc.
EC-Agreement This property follows by the eventual prefix property and the 0-eventual
revocation property, which guarantees that there exists a read() operation r such that all
the subsequent ones return blockchains that are each prefix of the following one. In other
words, eventually there is agreement on the value contained in be[j]. This implies that
there exists k& for which all proposeEC; with j > k return the same value to all correct
processes.
Finally, by Corollary 17, the proof of the Theorem completes. <

» Theorem 21. There does not exist any solution that solves F™ (and any of the equivalent
forms) in an asynchronous system with at least one Byzantine process.

Proof. The proof follows from Corollary 17 and the fact that F°=° is not weaker than
Eventual Consensus (cf. Theorem 20). Since Eventual Consensus is equivalent to the leader
election problem [9], which cannot be solved in an asynchronous system with at least one
Byzantine process [23], this completes the proof of the Theorem. <

5 Finality Solutions

In this section we first show the impossibility of solving our weakest form of finality F when
the append operation, in case of forks, selects the “longest” chain. We then provide the first
solution to F with an unbounded number of Byzantine processes in an asynchronous system
using an alternative selection rule.

5.1 Impossibility to Satisfy F with the Longest Chain Rule

In the following we prove that, in an asynchronous environment, we cannot provide F if, in
case of forks, the append selection function f,() follows the longest chain rule, i.e., returns
the longest chain of the blockchain tree. Note that this result holds even in absence of
failures. Obviously we assume that blocks are not created using the Consensus abstraction:

With Consensus, immediate finality is easily ensured, and thus no fork will ever occur.

Thus, when the Consensus abstraction cannot be implemented (due to the adversity of the
environment), many blockchain systems adopt a selection function f, based on the longest
chain. For instance, in proof-of-work systems such as Bitcoin, selected chains are the ones
that have required the most amount of work, which is equivalent to the longest chains when

6:11

OPODIS 2021

6:12

On Finality in Blockchains

the difficulty is constant. In Ethereum, while the selection rule is based on heaviest sub-tree
of the blockchain tree, or in proof-of-stake systems like EOS [12] or Tezos [11], the same
argument applies.

To show this impossibility result, we consider a scenario in which the occurrence of any
fork produces at most two alternative chains (this is often referred to as a branching factor
of 2). We consider a finite number of processes and an append selection function f, that
in case of forks deterministically selects the longest chain through the length function (see
Section 3.2.2), and in case of a tie selects the chain following any deterministic rule (for
instance the chain whose last block hast the smallest digest). We show that it is impossible
to guarantee F for such append selection function f,.

Intuitively, the impossibility follows from the fact that with the longest chain selection
rule, races can occur between different branches in the tree. We show that as forks may
occur, we can create two infinite branches sharing only the root. One or the other branch
constitutes alternatively the longest chain and append operations select chains from each
branch alternatively. This is enough to show that the only common prefix that is returned is
the root hence, violating eventual finality.

» Theorem 22. [t is impossible to guarantee F if the append operation is based on the
longest chain rule in an asynchronous environment.

Proof. The interested reader is invited to read the proof in the Appendix of this paper. <«

5.2 Asynchronous Solution Satisfying F with an Unbounded Number of
Byzantine Processes

We consider an asynchronous system with a possibly infinite set of processes which can
append infinitely many blocks, and processes can be affected by Byzantine failures. Each
process has a unique identifier ¢ € N and is equipped with signatures that can be used to
identify the message sender identifier. Each block is identified with the identifier of the
process that created it. Block identifier is inserted in the header of the block. Moreover, since
it has been proven that reliable communications are necessary to ensure eventual finality [1],
we assume that each process is equipped with an Eventually Reliable Broadcast primitive
that satisfies the following two properties: If a correct process p broadcasts a message m
then p eventually delivers m and if a correct process p delivers m then all correct processes
eventually deliver m. Such a primitive can be implemented by organizing the infinite set
of processes in a topology in which for each pair of correct processes, there exists a path
composed by only correct processes [19]. Thus, we do not require any assumptions on the
proportion between Byzantine and correct processes in the system but on the way those
processes are arranged on the network topology.

The main idea of Algorithm 1 consists in using local selection functions f, and f, for
append and read operations respectively and characterizing blocks by their parents and
producer signatures.

To perform an append operation of a block b, correct processes extend the chain returned
by function f, applied on their current view of bt with b, i.e., f,(bt)"b, and rb-broadcast
fa(bt)™b. When a process rb-delivers a blockchain be, it calls bt.addIfValid(bc) that merges bc
with bt if the former is valid. By merging bc with bt we mean that for each block b; of bc
starting from the genesis block by, if b; is not present in bt then b; is added to bt, i.e., b; is
added to the block of bt whose hash is equal to the one contained in b;’s header. A read()
operation triggered by a correct process p returns the chain selected by f, on the current
blocktree bt of p. Given a blocktree bt, the append selection function f, selects a chain in bt

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

Algorithm 1 Guaranteeing F with an unbounded number of Byzantine processes.

upon rb-delivery(bc)

| bt.addIfValid(bc)

end

upon append(d)

| rb-broadcast (fq(bt)"b)
end

upon read()

‘ return f,.(bt)

end

© o N O ok~ W N =

by going from the root (i.e., genesis block) to a leaf, choosing at each fork b; the edge to the
child with the lowest identifier. If more than one child have the same identifier (i.e., they
have been created by the same process), then all of them are ignored. If all the children have
the same identifier, then f, returns the chain from the genesis block to b;. Blocks are ranked

by the creator identifier, in the domain of the natural number and thus lower bounded by 0.

Then even though, an infinite number of blocks is added continuously to a fork, there is not,
for a given block, an infinite number of blocks with a smaller identifier. Thus eventually the
selection function f, will always select the same prefix. Finally, since blocks are diffused by
an eventually reliable broadcast primitive, eventually all correct processes will have the same
view of the blocktree. When a process invokes the read() operation, it returns the blockchain
selected by the read selection function f,. applied to its current view of the blocktree. By
imposing that f,. = f,, then eventually all the processes, when reading, will select the same
prefix.

» Theorem 23. Algorithm 1 is a solution satisfying F in an asynchronous system with a
possibly infinite set of processes which can append infinitely many blocks, and suffer from an
unbounded number of Byzantine failures.

Proof. We show by construction that Algorithm 1 solves F in an asynchronous system with
a possibly infinite set of processes which can append infinitely many blocks, and can suffer
an unbounded number of Byzantine failures. Intuitively, despite the unbounded number of
blocks in each fork, by the eventually reliable broadcast, eventually for each fork all correct
processes have the same block with the smallest identifier. Hence, by the read selection
function f,. that at each fork selects the block with the smallest identifier in order to select
the chain to return, eventually, at all correct processes, function f, returns the blockchain
having a common increasing prefix. Let p1,ps,..., be a possibly infinite set of processes,
such that each one maintains its local view bt; of blocktree bt by running Algorithm 1. Then
for any correct process p; the following properties hold.

Chain validity: it is satisfied by function bt.addIfValid(bc) that merges blockchain be to

bt; only if the former is valid.

Chain integrity: The read() operation returns the chain of blocks selected by function

fr applied to bt;. By Line 2 of Algorithm 1, only valid blocks are locally added to bt;

once they have been reliably delivered. By Algorithm 1, the only place at which blocks

are reliably broadcast is in the append() operation.

Eventual prefix: This property follows from the definition of f, and the eventually

reliable broadcast primitive. Thanks to the latter, for any b in the bt of a correct process

p, eventually all correct processes deliver b. Let t;, be the time after which no process can

6:13

OPODIS 2021

6:14

On Finality in Blockchains

append further blocks b.pi1q to b such that b.p;q is part of the chain returned by f,. This
time t, always exists, as for each block b having potentially infinitely many children we
have, by definition of function f,, that f,(bt) selects a chain in bt by going from the root
to a leaf, choosing at each fork b the edge to the child with the lowest identifier. Since
identifiers are lower bounded by 0, eventually function f, will always select the same
child b of b. The same argument applies for b’ and its children. Hence, if any two correct
processes invoke the read operation infinitely many times, then as f, = f,, eventually
they return chains that satisfy the eventual prefix property.

Ever growing tree: This property relies on the fact that each fork has a finite number
of blocks since there are finitely many processes and each (Byzantine or correct) process
can contribute with at most one block per parent as multiple children created by the same
process are ignored by f,. Thus, eventually, new blocks contribute to the tree growth. <«

5.3 Eventually Synchronous Solution Satisfying Bounded Deferred
Finality with less than half of Byzantine Processes

In this section we prove that the bounded deferred finality is solvable in an eventually
synchronous message-passing system with less than n/2 Byzantine processes, where n is the
number of processes.

We propose an algorithm, called AF for Accountable Forking. This algorithm is inspired
by the Streamlet [6] algorithm. Streamlet [6] assumes the presence of less than a third of
Byzantine processes and an eventually synchronous system with a known message delay A
after GST. Algorithm AF relies on weaker assumptions: we assume the presence of only
a majority of correct processes and we do not explicitly use bound A. We suppose that
processes have access to the eventually reliable broadcast presented in Section 5.2. Prior to
presenting our algorithm, we first recall the description of the original Streamlet [6].

The Streamlet Algorithm. The Streamlet algorithm works in an eventually synchronous
system with a known message delay A and a finite set of n processes. In particular, before
the Global Stabilisation Time (GST), message delays can be arbitrary; however, after GST,
messages sent by correct processes are guaranteed to be received by correct processes within
A time units. Each epoch, composed of 2A time units, has a designated leader chosen at
random by a publicly known hash function. Each block b is labelled with the epoch (b.epoch)
at which it has been created. This allows processes to determine whether block b has been
created by a legitimate leader. Algorithm 2 presents Steamlet protocol [6].

The Accountable Forking (\AF) Algorithm. We propose AF, an algorithm that extends
Streamlet. AF guarantees that for any given fork, correct processes can blame the process
that originates it, i.e, a Byzantine process creating a fork is accountable for it. This is
achieved as follows: First, we only require that a block gains votes from a majority of distinct
processes to become notarized, which means that forks can occur. The second modification
we propose goes deeper: if a fork occurs, any correct processes can detect the Byzantine
process that originated it, and excludes it from the voters. Specifically, when two conflicting
chains are finalized (i.e., two finalized chains that are not the prefix of one another) then
processes look for inconsistent blocks. By definition, two notarized blocks b, b’ are inconsistent
with one another if one of the following two conditions holds:

Condition 1. b and b’ share the same epoch, i.e, b.epoch = b'.epoch;

Condition 2. either ((b.epoch < V' .epoch) and (b.height > V'.height)) or ((V'.epoch <

b.epoch) and (b'.height > b.height)). Function height counts the number of blocks from

the genesis block.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

Algorithm 2 Streamlet algorithm [6].

Propose-Vote. In every epoch:
The epoch’s designated leader proposes a new block and reliably broadcasts it, extending
the longest notarized chain (defined below) it has seen, or breaking ties arbitrarily if
they have the same height.
Each process votes (rb-broadcasts a vote) for the first proposal it sees from the epoch’s
leader, as long as the proposed block extends (one of) the longest notarized chain(s)
that the voter has seen. A vote is a signature on the proposed block.
When a block gains votes from at least 2n/3 distinct processes, it becomes notarized.
A chain is notarized if its constituent blocks are all notarized.
Finalize. Notarized does not mean final. If in any notarized chain, there are three
adjacent blocks with consecutive epoch numbers, the prefix of the chain up to the second
of the three blocks is considered final. When a block becomes final, all of its prefixes
must be final too.

If a process votes for blocks inconsistent with one another then it is detected as Byzantine.
Once a correct process p detects a Byzantine process ¢, p ignores all messages coming from
q. Since all messages received by a correct process ¢ are eventually received by any correct
process, then all of them do the same with respect to q.

» Theorem 24. There exists a solution that satisfies F*¢=° (and all the equivalent forms)
in an eventually synchronous system with less than half Byzantine processes.

Proof. We show in the Appendix that algorithm AF is such a solution. |

6 Conclusion

In this work we have defined different consistency criteria for blockchains. We have first
defined eventual finality, which is the weakest consistency criterion that we may expect from
blockchains, along with the notion of block revocation. By combining eventual finality with
different forms of revocation we obtained stronger consistency criteria, thus providing a
comprehensive characterization of what we may expect from blockchains. We have formally
shown that in an asynchronous system it is not possible to provide a known bound on
the number of blocks that can be revoked. On the other hand, we have proposed for the
first time a solution in an eventually synchronous system with less than half of Byzantine
processes guaranteeing that eventually such bound is reached. We have also shown that in
an asynchronous system, finality with no bound on the number of revocable blocks cannot
be solved using the reconciliation rule of Bitcoin. Still we provide an asynchronous solution
with an unlimited number of Byzantine processes. We hope that this work will better guide
blockchain designs.

—— References

1 Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-Butucaru,
and Sara Tucci Piergiovanni. Blockchain abstract data type. In Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2019.

2 Elli Androulaki and et al. Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the European Conference on Computer Systems (EuroSys),
2018.

6:15

OPODIS 2021

6:16

On Finality in Blockchains

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

Antonio Anta Ferndndez, Kishori Konwar, Chryssis Georgiou, and Nicolas Nicolaou. Formaliz-
ing and implementing distributed ledger objects. ACM SIGACT News, 49(2):58-76, 2018.
Lacramioara Astefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci-Piergiovanni, and Eugen Zalinescu. Tenderbake — A solution to dynamic repeated
consensus for blockchains. In Proceedings of the Fourth International Symposium of Foundations
and Applications of Blockchain, 2021.

Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, 2017. arXiv:
1710.09437.

Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. https:
//eprint.iacr.org/2020/088.pdf, 2020.

Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. (leader/randomization/
signature)-free byzantine consensus for consortium blockchains. CoRR, abs/1702.03068, 2017.
arXiv:1702.03068.

Swan Dubois, Rachid Guerraoui, Petr Kuznetsov, Franck Petit, and Pierre Sens. The weakest
failure detector for eventual consistency. In Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC), 2015.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Proc. EUROCRYPT International Conference, 2015. Updated version
2020: https://eprint.iacr.org/2014/765.pdf.

L.M. Goodman. Tezos — A self-amending crypto-ledger, 2014.

Tan Grigg. EOS: An introduction. https://whitepaperdatabase.com/eos-whitepaper/.
Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi¢, and Dragos-Adrian Sered-
inschi. The consensus number of a cryptocurrency. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing (PODC), 2019.

Maurice Herlihy. Blockchains and the future of distributed computing. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), 2017.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Proceedings of the Advances in
Cryptology, 2017.

Artem Koltsov, Vitaly Cheremensky, and Stanislav Kapulkin. Casper White Paper.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 1982.

B. Liskov and S. Zilles. Programming with abstract data types. ACM SIGLAN Notices, 9(4),
1974.

Alexandre Maurer and Sébastien Tixeuil. On byzantine broadcast in loosely connected networks.
In Proceedings of the 26th International Symposium on Distributed Computing (DISC), 2012.
Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. www.bitcoin.org, 2008.
Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Proceedings of the EUROCRYPT International Conference, 2017.

Matthieu Perrin. Distributed Systems, Concurrency and Consistency. ISTE Press, Elsevier,
2017.

Michel Raynal. Eventual leader service in unreliable asynchronous systems: Why? how? In
Proceedings of the IEEE International Symposium on Network Computing and Applications
(NCA), 2007.

Alistair Stewart. Poster: Grandpa finality gadget. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, pages 2649-2651, 2019.
Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. http://
gavwood. com/Paper.pdf.

http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://eprint.iacr.org/2020/088.pdf
https://eprint.iacr.org/2020/088.pdf
http://arxiv.org/abs/1702.03068
https://whitepaperdatabase.com/eos-whitepaper/
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

A Appendix

» Theorem 22. [t is impossible to guarantee F if the append operation is based on the
longest chain rule in an asynchronous environment.

Proof. To capture the synchronisation power of the system, we abstract the deterministic
creation of new blocks and their addition to the blockchain within an oracle. This oracle
is the only generator of valid blocks, and regulates the number of appended children from
a same parent. The same approach has been proposed in [1]. The branching factor of an
oracle is the maximal number of children that can be appended to a block. The oracle owns
a synchronization power equal to Consensus if its branching factor is equal to 1. The oracle
grants access to the blocktree as a shared object, through the following three operations:
update view() returns the current state of the blocktree; getValidBlock(b;, b;) returns a valid
block b;-, constructed from b;, that can be appended to block b;, where b; is already included
in the blocktree; and setValidBlock(b;, b;) appends the valid block b’ to b;, and returns T
when the block is successfully appended and | otherwise. The following theorem shows that,
even with this strong oracle (that allows to have a bounded branching factor in contrast to
proof-of-work (PoW) approaches), we cannot reach eventual finality if we rely on the longest
chain rule to resolve forks.

In the proof we consider the stronger oracle allowing the occurrence of one fork, i.e., an
oracle with branching factor equal to 2. That is, this oracle allows for two valid blocks to
be appended to the same parent. If the oracle receives new requests to append additional
blocks to this parent, it shall return L to all such requests.

Let p; and p2 be two processes trying to append infinitely many blocks. Without loss of
generality, we carry out this proof with a length function that counts the number of blocks
from the genesis block.

We illustrate our proof with Figure 1. At time tg, for both p; and py, the update_ view()
of bt equals by, thus when both apply the append selection function f, on it to select the leaf
where to append the new block, they both get by. Then they both call getValidBlock(bg, b; 1) =
b;, where i = 1 for p; and ¢ = 2 for pa. At time t; > to, p1 and py are poised to call
setValidBlock(bo, b} ;). We then let p; call setValidBlock(bo, b} ;), which must return T and
hence b/Ll is appended to by. Process p; then proceeds to append a new block by o, i.e., after
having updated its bt’s view, through the update view() function, p; applies the append
selection function f, on it to select the leaf where to append its new block, in this case the
only leaf is b7 ;. It calls getValidBlock(bj ;,b1,2) function which returns {b} »} and it is poised
to call setValidBlock(b} 1,0 5)-

We let p; continue to append new blocks until some time t5 at which it is poised to
call setValidBlock (b} 5, b} 5, 1), with h = 1, such that the length of the chain bo,..., b ;4
would be greater than or would have the same length but a larger lexicographical order than
the chain b, b’2’1 if b/2,1 were already appended to block by. Afterwards, at time t3 > to,
we let pp resume and complete its call to setValidBlock (b, b3 ;) which must also succeed
and return T as our oracle has a branching factor of 2. By construction, ps sees the two
branches in its following update_ view() of bt (i.e., chain by, bll,h with i = 1, and chain by, b} ;)
of the same length thus the selection function f, selects the branch by, b, ; for where to
append the next block as block b} ; is smaller than b} , in the lexicographical order. We
let po append blocks to this branch until some time ¢4 at which it becomes poised to call
setValidBlock(by ., 05 ., 1) with ¢ = 2 such that the length of the chain by, ..., b5 . is smaller
than the chain by, ..., bll, ny1s Or in case of equal length has a higher lexicographical order,
and such that the length of the chain by, ..., b’270+1 is greater than the chain by, ..., bll,h+1’
or in case of equal length has a smaller lexicographical order.

6:17

OPODIS 2021

6:18

On Finality in Blockchains

time

Figure 1 A blocktree generated by two processes. On the x-axis the longest chain value of each
chain at different time instants (from the root to the current leaf) and the relationships between
those values.

As before, it is time to stop the execution of ps and resume the execution of p; and
to let it complete its call to setValidBlock(b} ;, b} ;,,,). We can continue to create two
infinite branches sharing only the root by alternatively letting p; and p, extend their own
branch while stopping one and resuming the execution of the other each time its length
would overcome the length of the other branch extended with the pending block (and the
appropriate lexicographical orderings in case of equal length). This way we construct a tree
composed of two infinite branches sharing only the root by as common prefix. It is easy to
see that we can integrate read operations that may return the current chain from any branch
as both branches are temporarily the longest one. Thus, the common prefix never increases,
and so, the eventual finality consistency criterion is not satisfied.

It is important to note that with any length function that increases monotonically with
prefixes (e.g, the length function could count the total number of transactions that belong to
the blocks on the same branch) then this scenario still holds. In that case h and ¢ in the
proof could be larger than 1 and 2 respectively. <

» Theorem 24. There exists a solution that satisfies F*°=° (and all the equivalent forms)
in an eventually synchronous system with less than half Byzantine processes.

Proof. Let us first demonstrate that voting for two inconsistent blocks b and b’ is a Byzantine
failure. We have two cases to consider. If both b and o’ are inconsistent because Condition 1
holds, then the intersecting voters are Byzantine as correct processes vote only once per epoch.
Hence if process g votes for b and b’ then ¢ is Byzantine. If both b and b" are inconsistent
because Condition 2 is met, then the intersecting voters are Byzantine, as correct processes
vote only for blocks extending one of the longest notarized chains. That is, if correct process
p votes for b it means that b is extending a notarized block b,,q that is of height b.height —1,
therefore p cannot vote afterwards for a block &’ whose height is strictly smaller than b.height
because p must extend one of the longest notarized chain. It follows that if process ¢ votes
for both b and ¥’ then ¢ is Byzantine.

Let us now show that a fork occurs because of two inconsistent blocks. If there is a
fork then this gives rise to two sequences of three adjacent blocks with consecutive epochs,
b1,ba,bs and b}, bh, b5 (by construction given the finalization rule). If no blocks share the
same epoch number then we can assume w.l.o.g. that bs.epoch < b}.epoch. Let block ¥’
belonging to the prefix of b such that b'.epoch > by.epoch and ¥ .height is the smallest in the
prefix of b5. Such block always exists as b} satisfies those two conditions. We have two cases:
Either V'.height < bs.height or b’ .height > bs.height. In the former case, b’ is inconsistent
with b3 since by assumption b'.epoch > bs.epoch. In the latter case, the predecessor of b’
is inconsistent with b3. Indeed, the predecessor of b has a strictly smaller height than b,
and by assumption has a larger epoch number than b3. Figure 2 illustrates the presence

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

Case 1: by.height > b’ height

/’) by height=6, b, height=5 (b'=b,’)

,,,

Case 2: by.height <= b"height
/ \ hy.height=6, b;"height=6 (b’=b,’)

\J epoch
ST TN
O Notarized block Last finalized block | \ Conflicting block
in a branch NN

Figure 2 Illustration of block inconsistencies due to the occurrence of a fork when the finalized
blocks are not labelled with the same epoch. Epochs are on the x axis, and all consecutive blocks
have consecutive epochs, e.g., b. and by have four epochs of difference, 4 and 7 respectively, while b1
and by are labelled with consecutive epochs.

of inconsistent blocks in presence of a fork at some block b.. From b. two chains are built,
the first one consisting of the sequence of three blocks by, by and b3, and the second chain
consisting of four consecutive blocks by, b}, b5, b5 (to illustrate the first case) and of five
consecutive blocks by, be, b}, by, b5 (to illustrate the second case). In both cases block b} plays
the role of block b'. In the first case (figure in the top), bs.height = 6 and b’.height = 5 while

bs.epoch = 6 and b'.height = 5. Thus Condition 2 applies. In the second case (figure in

the bottom), since b'.height > b3.height then there must exist some block b, in the b’ prefix.

Thus be.height < V'.height. Given that by assumption b..epoch > bs.epoch, then Condition 2
holds for b, and b3. Hence there is always a couple of inconsistent blocks in a fork.

Let us now conclude our proof that protocol AF solves F*:¢=C, If a fork occurs, then
each correct process eventually detects at least one Byzantine process and ignores its votes.
Thus, the number of forks is finite since we have a finite number of Byzantine processes. As a
consequence, there is always a single chain that is eventually finalized. As there is a majority
of correct processes, algorithm AF remains live as the original Streamlet one. Algorithm
AF also inherits the properties of the original Streamlet algorithm regarding the eventual
finalization of blocks when the system becomes synchronous.

Finally, by applying Corollary 17, we complete the proof of the theorem. <

6:19

OPODIS 2021

Twins: BFT Systems Made Robust

Shehar Bano & Alberto Sonnino &

Facebook Novi, London, UK Facebook Novi, London, UK
Andrey Chursin & Dmitri Perelman &
Facebook Novi, Menlo Park, CA, USA Facebook Novi, Menlo Park, CA, USA
Zekun Li = Avery Ching &

Facebook Novi, Menlo Park, CA, USA Facebook Novi, Menlo Park, CA, USA

Dahlia Malkhi &
Facebook Novi, Menlo Park, CA, USA

—— Abstract

This paper presents Twins, an automated unit test generator of Byzantine attacks. Twins implements
three types of Byzantine behaviors: (i) leader equivocation, (ii) double voting, and (iii) losing internal
state such as forgetting “locks” guarding voted values. To emulate interesting attacks by a Byzantine
node, it instantiates twin copies of the node instead of one, giving both twins the same identities
and network credentials. To the rest of the system, the twins appear indistinguishable from a
single node behaving in a “questionable” manner. Twins can systematically generate Byzantine
attack scenarios at scale, execute them in a controlled manner, and examine their behavior. Twins
scenarios iterate over protocol rounds and vary the communication patterns among nodes. Twins
runs in a production setting within DiemBFT where it can execute 44M Twins-generated scenarios
daily. Whereas the system at hand did not manifest errors, subtle safety bugs that were deliberately
injected for the purpose of validating the implementation of Twins itself were exposed within minutes.
Twins can prevent developers from regressing correctness when updating the codebase, introducing
new features, or performing routine maintenance tasks. Twins only requires a thin wrapper over
DiemBFT, we thus envision other systems using it. Building on this idea, one new attack and several
known attacks against other BFT protocols were materialized as Twins scenarios. In all cases, the
target protocols break within fewer than a dozen protocol rounds, hence it is realistic for the Twins
approach to expose the problems.

2012 ACM Subject Classification Security and privacy — Distributed systems security
Keywords and phrases Distributed Systems, Byzantine Fault Tolerance, Real-World Deployment
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.7

Supplementary Material All artifacts presented in this paper are made publicly available. Specifically,
this includes: (7) the Rust implementation of LibTwins, the Twins framework we implemented for
DiemBFT (Section 5); (%) the artifacts (the AWS orchestration scripts, and microbenchmarking
scripts and data) used to evaluate LibTwins (Section 6); and (#) the Python simulator and Twins
instantiation of safety flaw in Fast-HotStuff (Section 3).
Software (Source Code): https://github.com/asonnino/twins-simulator

archived at swh:1:dir:fc8£63787defb25ffe9756fa666f9c7c49118519
Software (Source Code): https://github.com/diem/diem

archived at swh:1:dir:b59b22a1997118b87a99061664d6af4ce776£874

Funding This work is funded by Novi, a subsidiary of Facebook.

Acknowledgements The authors would like to thank Ben Maurer, David Dill, Daniel Xiang, Kartik
Nayak, Ling Ren, and Scott Stoller for feedback on late manuscript, and George Danezis for comments
on early manuscript. We also thank the Novi Research and Engineering teams for valuable feedback.

© Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and
B Dahlia Malkhi;

licensed under Creative Commons License CC-BY 4.0
25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 7; pp. 7:1-7:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:bano@fb.com
mailto:asonnino@fb.com
mailto:achursin@fb.com
mailto:dmitrip@fb.com
mailto:zekun@fb.com
mailto:aching@fb.com
mailto:dmalkhi@fb.com
https://doi.org/10.4230/LIPIcs.OPODIS.2021.7
https://github.com/asonnino/twins-simulator
https://archive.softwareheritage.org/swh:1:dir:fc8f63787defb25ffe9756fa666f9c7c49118519;origin=https://github.com/asonnino/twins-simulator;visit=swh:1:snp:b9a44bc12d5ae6fe60f29fe51bbd18c2473ac856;anchor=swh:1:rev:3a3215addf3f79cb7b1dd2b0677f4d0896943d0b
https://github.com/diem/diem
https://archive.softwareheritage.org/swh:1:dir:b59b22a1997118b87a99061664d6af4ce776f874;origin=https://github.com/diem/diem;visit=swh:1:snp:506351fb33ef3025872e527a2f342c9fc7084cdc;anchor=swh:1:rev:dc5def03aeeaee4f7e7919dd43e4d205b42cd80e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Twins: BFT Systems Made Robust

1 Introduction

Byzantine Fault Tolerant (BFT) protocols introduced in the seminal work of Lamport et
al. [19] are designed to withstand attacks or arbitrary malfunction of internal nodes. However,
creating Byzantine attacks in order to validate a BFT system is challenging: (¢) Byzantine
behavior is unconstrained and (4¢) developers may be tainted by what they think that the
system is designed to tolerate. Last, as a pragmatical consideration, developing code that
implements Byzantine attacks might be risky.

This paper introduces Twins, a principled approach for effectuating Byzantine attacks
on BFT systems and examining their behavior. Instead of coding incorrect behavior, Twins
creates faulty behavior testing from the correct behavior itself, simply by duplicating correct
and unmodified node behavior. This works as follows.

Twins creates a “faulty” nodes by deploying two (or generally, k) instances, both having
the same credentials/signing-keys but running autonomously. Thus, for example, both nodes
can send messages in the same protocol round, but these messages will carry conflicting
proposals or votes; to the rest of the system, this twins behavior will appear indistinguishable
from an equivocating behavior by a single node. In another example, one twin may send a
vote in one round, and its twin will “forget” it has voted in the next round; again, to the rest
of the system, this will appear indistinguishable from a single node violating safety rules.

Twins is based on the insight that most interesting Byzantine attacks are internal and
leverage knowledge of the expected behavior of participants, hence they go unnoticed. In
particular, Twins foregoes trivial attacks such as sending semantically invalid messages,
or sending a message without justification. Thus, leveraging existing code, Twins can
automatically cover material Byzantine behaviors. Indeed, Section 3 demonstrates one new,
and several known, attacks on BFT protocols materialized as Twins attacks. Crucially, in all
cases, protocols break within fewer than a dozen protocol steps, hence Twins successfully
exposes them. Note that Twins scenarios systematically iterate over protocol rounds and
vary the communication patterns among nodes. While inherently exponential, in the above
attacks, it took Twins only minutes to discover protocol flaws that in some cases, took the
community decades to surface.

Twins has been incorporated into a production setting, DiemBFT [13], in which Twins can
execute 44M Twins-generated scenarios daily. Whereas the system at hand did not manifest
errors, subtle safety bugs that were deliberately injected for the purpose of validating the
implementation of Twins itself were exposed within minutes. Twins can prevent developers
from regressing correctness when updating the codebase, introducing new features, or
performing routine maintenance tasks.

Twins & attacks on BFT replication. Twins arises in the context of BFT replication
protocols. In this domain, several worrisome safety and liveness vulnerabilities were exposed
recently [1, 23] in both known protocols [22, 17] and in new ones [2]. One reason that
BFT replication lends itself well to analysis via Twins is as follows. A common paradigm
underlying practical BFT replication protocols is a view-by-view design. Each view is driven
by a designated leader proposing to the nodes and going through voting rounds by the nodes.
If a leader is successful, a consensus decision is reached in the view. If not, nodes give up after
a timeout and move to the next view. Transitioning to the new view/leader is tricky: A new
leader must discover if the previous leader was successful, but it may be able to communicate
only with a subset of the nodes. The transition logic turns out to be the source of problems
in all the above cases, hence exposing the flaw requires only one or two leader rotations.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

Twins implementation. Twins effectuates a Byzantine attack by a Byzantine node via
instantiating twin copies of the node instead of one, giving both twins the same identities
and network credentials. To the rest of the system, the twins appear indistinguishable from
a single node behaving in a “questionable” manner. Twins minutely interacts with existing
code to control message delivery and schedule various coarse-steps such as protocol rounds.
It is practical to deploy in real systems as it uses existing node code, easily keeping up with
an evolving software project.

We built an attack generator based on the Twins approach in the DiemBFT open-source
project, the BFT replication core of the Diem payment system [13]. Implementing Twins in
DiemBFT consists of two principal parts.

The first is a scenario executor that deploys a network configuration where some nodes
have twins. The scenario executor hides twins behind a thin multiplexing wrapper; to the
rest of the system, each pair of twins appear as a single entity. The scenario executor controls
the scheduling of message deliveries according to a prescribed scenario. This is accomplished
through a transport emulator in the DiemBFT repository called Network Playground.

The second part is a scenario generator. The scenario generator enumerates scenarios by
varying the number of nodes and the message delivery schedule, then feeding the scenarios
to the scenario executor. We describe in the paper several strategies for drastically reducing
the number of scenarios through aggressive trimming of symmetrical scenarios. Among
these strategies, one minimally “opens” the DiemBFT implementation and lets the scenario
executor determine when a node acts as a leader in the consensus protocol. This removes
duplicate scenarios that differ only in their leaders. Another strategy may allow only faulty
nodes to become leader. Section 6 reports on our experience with Twins in DiemBFT.

Coverage. What attacks does the Twins approach capture? Developing a rigorous theory
that answers this question is an intriguing question left for future work. Here, we provide
anecdotal evidence of coverage in three forms:

(i) Section 2 brings intuition and experience of several decades of work in the field. There
are only a handful of ways in which a Byzantine attacker can materially deviate from the
safety rules imposed by its protocol. For example, it can equivocate and send different
proposals to different groups of recipients, or it can pretend it did not send/receive a
message and propose or vote in a manner that conflicts with such a message.

(ii) Evaluating within the DiemBFT production system Section 6 provides compelling
validation of the Twins approach. Whereas the system at hand did not manifest errors,
self-injected subtle safety bugs — for the purpose of validating the implementation
of Twins itself — were exposed within minutes. In particular, we created a simple
safety-violating setting by deploying f + 1 (instead of f) nodes with Twins, which led
to an expected consistency violation within seconds. We further injected three subtle
logical bugs, which only slightly deviated from the original specification. In all three
cases, with only f twins (faults), Twins successfully exposed safety violations.

(iii) Section 3.1 shows how Twins can instantiate a safety violation in a new protocol
described in a recent manuscript [15]. This highlights the importance of systematically
analyzing the properties of BFT protocols using Twins to expose subtle flaws. Section 3
reinstates several known attacks on BFT protocols using the Twins approach. These
attacks cover a broad spectrum of vulnerabilities, e.g., safety, liveness, timing, and
responsiveness.

In some protocol steps, a node may wait for messages to determine its next action. Under
Twins, the node is forced to act according to the messages it received, as if the node provided
a justification for each step in form of the history of messages it received. Deviating from

7:3

OPODIS 2021

7:4

Twins: BFT Systems Made Robust

this behavior was not required to reinstate any of the attacks discussed in Section 3, though
in principle, various deviating behaviors would not be covered by Twins. Another coverage
challenge emerges in synchronous protocols because a node behavior may be based on real
time. In such protocols, Twins essentially forces a node to behave in a timely manner.
We tackle this case in one of the attacks investigated in Section 3 and demonstrate that
nonetheless, a slight adaptation of the original attack reinstates the attack in Twins. However,
we do not know yet which timing attacks may not be covered. We discuss some concrete
future directions in Section 8 for extending Twins in the settings we explore as well as others.

2 Motivating the Twins Approach

We open this section with a quick primer on the Byzantine Fault Tolerant (BFT) replication
problem, and describe the notation that will be used to describe attacks through the rest
of this paper. We then provide high-level intuition on why Twins is a viable approach by
showing the different kinds of Byzantine behaviors that can be captured by Twins. (Concrete
attacks using Twins are described later in Section 3 and Section 6.1.)

BFT Replication. The goal of BFT replication is for a group of nodes to provide a fault-
tolerant service through redundancy. Clients submit requests to the service. These requests
are collectively sequenced by the nodes; this enables all nodes to execute the same chain of
requests and hence agree on their (deterministic) output.

Except when specifically noted, we consider protocols that maintain safety against
arbitrary delays in message transmissions. That is, we assume an asynchronous network
setting. The main challenge is to drive agreement on a chain of requests (and their output)
among all non-faulty nodes despite node failures. It is common to rely on leaders to populate
the network with a unique proposal. During periods in which the leader is non-faulty and
communication among the leader and non-faulty nodes is timely, this regime can drive
consensus quickly. This approach is called partial synchrony, indicating that it maintains
safety at all times and progress only during periods of synchrony.

In the Byzantine fault model, a node may crash or arbitrarily deviate from the protocol.
In this setting, a BFT replication system implements a fault tolerant service via n nodes,
of which a threshold f < n/3 may be Byzantine. As Byzantine behavior is defined rather
vaguely, there is no principled way to evaluate BFT systems. Twins is a new approach to
systematically generate Byzantine attacks. The main idea of Twins is the following: running
two (generally, up to k) autonomous instances of a node that both use correct code and
share the same identity, allows us to emulate most interesting Byzantine attacks. Two nodes
share the same identity when they share the same credentials and signing keys.

Notation. Nodes are represented by capital alphabets (e.g., A) and the twin of a node is
represented by the same alphabet with the prime symbol (e.g., A’). When referring to a set
of nodes, we enclose them in parentheses e.g., (A, B, B’). We underline a node that is serving
as the leader, e.g., A. The adversary can delay and filter messages between nodes. We denote
partitions of nodes by enclosing them in braces, e.g., P = {A, B,C, D} and P, = {E, F,G},
and reserve the capital letter P to denote them. Additionally, to show messages allowed in
a given direction, we use the symbols — and <. For example, A — (B,(C) means A can
send messages to B and C; similarly, A <> P> means A can send messages to and receive
messages from any node of the partition P». The scenarios described below use a network
configuration of 7 nodes, (A, B,C, D, E, F,G). Byzantine nodes have twins denoted with |

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

as in F’, G'. To experiment with any of the deviating behaviors described below, one can
increase the number of Byzantine faults to f + 1 (say E, F,G have twins E', F',G') and
expect to see conflicting commits.

Equivocation. A quintessential Byzantine behavior is for a node to equivocate. That is, in
the same step, a Byzantine node might send different messages to different recipients.

Twins covers equivocation by splitting honest nodes between two partitions, each one
communicating with only one twin of each pair. For example, we can split the system into
P ={A,B,C,D,F},P,={C,D,E,F’',G}. The leader(s) F and F’ execute correct leader
code but nevertheless may generate conflicting proposals due to different inputs or randomness
seeds. If there is a protocol flaw then these conflicting proposals could respectively commit
in P; and P, hence safety breaks.

Amnesia. An important role that nodes have in agreement protocols is vote for a single
proposal per view. However, a Byzantine node might vote for a proposal and then “forget”
that it has voted and vote again. Twins covers amnesia by letting one of the twins vote on
one proposal. Since the other twin is oblivious to the vote happening, it may nevertheless —
albeit executing correct code — vote on a different proposal.

More concretely, as in the scenario above, we can split the nodes into two partitions,
P, ={A,B,E,F,G},P, = {C,D,E,F',G'}. If there is a protocol flaw then this double-
voting behavior may result in conflicting commits in P, and P», hence safety breaks.

Losing internal states. Another notable deviation for Byzantine nodes is to lose their
internal state, particularly a lock that guards a value they voted for. Twins covers this
deviation by letting one of the twins get locked on a value in one view, but in some subsequent
view, bring the other twin who is ignorant that a lock exists.

More concretely, we can split the nodes into two partitions Py = {A, B, E, F,G}, P, =
{C,D,E,F',G'}. In one view, the adversary relays messages only among P;. In the next
view, it switches to P,, causing F’,G’ — albeit executing correct code — to ignore their
“previous” actions. This can repeat any number of times. If there is a protocol flaw then
conflicting proposals may commit in different views, hence safety breaks.

3 Attacks Materialized in Twins

In this section, we demonstrate one new, and several known, attacks on BFT replication
protocols, expressed as Twins scenarios. We provide insight into the attacks and defer
the details of all but the linear leader-replacement attack to an appendix, due to space
constraints.

3.1 New Attack

Fast-HotStuff [15] is a new protocol, described in a recent manuscript. It is similar to
HotStuff [32], except with a 2-phase commit rule. The safety violation we reveal using Twins
is possible because Fast-HotStuff does not require consecutive rounds in order to commit.
Specifically, Quorum Certificates (QCs) [32] formed by some of the (partitioned) nodes
do not reach the other nodes, resulting in two parallel branches that eventually commit
two conflicting blocks. We instantiate this safety violation with Twins (using only network
partitions in a network with 4 nodes and within 11 rounds). This highlights the efficacy of
systematically analyzing the properties of BET protocols via Twins to expose subtle flaws.
More details are provided in Appendix F.

7:5

OPODIS 2021

7:6

Twins: BFT Systems Made Robust

We implemented the Fast-HotStuff BFT consensus algorithm in a Python simulator which
we release as open source'. The simulator then executes Twins scenarios over the algorithm.

3.2 Reinstated Attacks

We present several known attacks on BFT protocols, expressed as Twins scenarios. In all
cases, exposing vulnerabilities requires only a small number of nodes, partitions, rounds
and leader rotations. It is worth noting that later, our evaluation (Section 6) of LibTwins,
Twins implemented for DiemBFT, shows that running an automated scenario generator
(Section 4.2) with these configurations would cover the described attacks within minutes. We
did not undertake to re-implement all these protocols and apply a Twins scenario generator
to them; our implementation covers only DiemBFT [13].

Safety attack on Zyzzyva. Zyzzyva broke new ground in BFT replication with the in-
troduction of an optimistic single phase “fast track” commit. Eleven years elapsed from
its publication until a safety flaw in Zyzzyva was discovered [1], during which numerous
research project and systems were built on it. Twins generates a scenario that exposes the
flaw with 4 nodes and two leader rotations: the first leader equivocates via a twin, and the
next two leaders drop messages to/from some nodes. The details of this attack using Twins
is described in Appendix C.

Liveness attack on FaB. FaB [22], a precursor to Zyzzyva, is a view-based protocol with
an optimistic fast track. Not surprisingly, a similar problem arises in FaB due to a flawed
leader replacement protocol [1], albeit manifesting as a liveness bug. Twins exposes this bug
in a short scenario with n = 4 and three leader rotations, leading to a complete absence of
leader proposals. The detailed attack using Twins is described in Appendix D.

Timing attack on Sync HotStuff. Force-Locking Attack [23] is a timing attack on a
preliminary version of a synchronous BFT protocol named Sync HotStuff [2] (which was
subsequently updated to resist the attack). As before, Twins captures this attack with only
a small system size, n = 5, and two leader rotations. However, in order to create timing
attacks, Twins needs to be aware of timing information for protocol steps and messages
deliveries. Extending Twins with timing data is left for future work. In the specific attack at
hand, course-grain timing at fixed intervals — fewer than ten — suffice to reinstate the attack.
The detailed attack using Twins is described in Appendix E.

Non-Responsiveness attack on linear leader-replacement. Practical Byzantine Fault Tol-
erance (PBFT) [9] is a seminal work that was designed to work efficiently in the asynchronous
setting. Carrying the classical PBFT solution to the blockchain world, Tendermint [7] and
Capser [8] introduced a simplified linear strategy for leader-replacement. However, it has been
observed [6, 31] that this strategy forgoes an important property of asynchronous protocols —
Responsiveness — the ability of a leader to advance as soon as it receives messages from 2f + 1
nodes.? Indeed, bringing linear leader-replacement approach into PBFT, we demonstrate a
liveness attack using a Twins scenario. Lack of progress is detected by observing that two
consecutive views with honest leaders whose communication with a quorum is timely do not
produce a decision. We present the details of this attack using Twins in the next section.

! https://github.com/asonnino/twins-simulator/tree/master/fhs

2 Tendermint is a precursor to HotStuff [32] and DiemBFT [13] which operates in two-phase views, but
has no Responsiveness. HotStuff/DiemBFT solve this by adding a third phase.

https://github.com/asonnino/twins-simulator/tree/master/fhs

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

3.3 Non-Responsiveness Attack

We now describe in more detail the non-Responsiveness attack above on linear leader-
replacement. The seminal PBFT solution operates two-phase views. A simplified, linear
leader-replacement works as follows. A leader proposes to extend the highest quorum
certificate (QC) it knows. A QC is formed on a proposed value if it gathers 2f + 1 votes from
nodes. Nodes vote on the leader proposal if it extends the highest QC they know. A commit
decision on the leader proposal forms if 2f + 1 nodes form a QC, and then 2f + 1 nodes
vote for the QC. Progress is hinged on leaders obtaining the highest QC from the system,
otherwise liveness is broken.

Using the notation from Section 2, the liveness attack here uses 4 replicas (D, E, F, G),
where D has a twin D’. In the first view, D and D’ generate equivocating proposals. Only
D, E receive a QC for D’s proposal. The next leader is F who proposes to re-propose the
proposal by D', which E and D do not vote for because they already have a QC for that
height. Only F and D’ receive a QC for F’s proposal. This scenario repeats indefinitely,
resulting in loss of liveness. More specifically, this attack works as follows:

View 1: Initialize D and D’ with different inputs v; and vs.
Create the partitions P, = {D, E,G}, P, = {D’, F'}.
Let D and D’ run as leaders for one round. D proposes v; to P; and gathers votes
from P; creating QC/(v1). D’ proposes vy to P» and gathers votes but not a QC.
Create the following partitions: P, = {D, E}, P, = {D’, F}, P; = {G}. D broadcasts
QC(v1), which only reaches P i.e., (D, E).

View 2: Drop all proposals from D and D’ until View 2 starts.
Remove all partitions, i.e., P ={D, D' E, F,G}.
Let F run as leader for one round. F re-proposes vy (i.e., D"’s proposal in the previous
round) to P. (D, E) do not vote as they already have QC/(v;) for that height. F
gathers votes from the other nodes and forms QC'(vs).
Create partitions P, = {D,E}, P, ={D’,F}, P = {G}.
F broadcasts QC(v2), which only reaches Ps.

View 3: Drop all proposals from F until View 3 starts.
Create the partitions P, = {D, E,G}, P, = {D', F'}.
Let E run as leader for one round. FE proposes vs which extends the highest QC it
knows, QC(v1). As before, E manages to form QC/(vs), but as a result of a partition,
the QC will only reach (D, E). Next, there is a view-change, F' is the new leader, and

there are no partitions. F' proposes v4 which extends QC(v2), the highest QC it knows.
However, (D, E) do not vote because v4 does not extend their highest QC i.e., QC(v3).

This scenario can repeat indefinitely, resulting in the loss of liveness.

4 Systematic Scenario Generation

Whereas the previous section demonstrated manually crafted Twins attack scenarios, this
section presents a framework for systematically generating such scenarios.

Systematically and efficiently generating Twins scenarios that provide good coverage
requires tailoring to the specific BFT protocol settings. We develop the Twins framework
which generates and executes scenarios that describe the node and network configurations.
Specifically, the Twins framework is comprised of two components as shown in Figure 1: (¢)
the scenario executor, and (%) the scenario generator. The scenario executor runs a single
scenario and generates output logs, while the scenario generator produces various scenarios
that are fed to the scenario executor to check for violations. The following design goals
underlie the Twins framework:

77

OPODIS 2021

7:8

Twins: BFT Systems Made Robust

Scenario Generator

> Scenario—> 1 Persistent

Storage

Output

Ye
oS Logs
More
Scenarios? No—>

Figure 1 Twins high-level design.

Generic & Modular. Twins is modular with respect to the particular BFT protocol im-
plementation being analyzed, imposes as little complexity as possible on the development,
and easily keeps up with code changes.

Parametrizable. The network setup (i.e., the number of nodes, leaders per round, and
network configuration per round) and adversarial assumptions (i.e., how many Byzantine
faults are tolerated) is configurable.

Feasible. Twins allows pruning duplicate scenarios in order to provide coverage of
material attacks.

Customizable Coverage. The coverage of scenarios, i.e., the subset of all possible
scenarios to choose for execution, is configurable by randomly sampling scenarios to run
among all possible enumeration.

Reproducible. Twins writes logs to persistent storage, containing sufficient information
to detect and reproduce any safety violations.

Next, we describe the two main components (Figure 1) of Twins— the scenario executor
and the scenario generator— in detail.

4.1 Scenario Executor

In every Twins scenario, a threshold of the nodes are “misconfigured” to have a twin instance
with identical transport endpoint credential and secret keys. The Twins scenario executor
gets as input a scenario consisting of a node-set, a subset of which are marked compromised
(representing Byzantine nodes); and a round-by-round message delivery schedule. The
scenario executor sets up a network of nodes with a given number of compromised nodes
and per round partitions and leaders. The compromised nodes correspond to the nodes for
which the scenario executor creates twins (i.e., identical instances with the same credentials
and signing keys), thereby emulating misbehavior.

As mentioned above, we address BFT replication protocols that proceed in rounds
initiated by a designated leader, each round representing a state transition in the protocol’s
state machine replicated on each node. For each round, the scenario executor creates a given
network partition and assigns given leaders to the round. The scenario executor runs the
BFT protocol among nodes for a pre-specified number of rounds, at the end of which, the
scenario executor checks for violations. Specifically, protocol guarantees can be violated in
two principal ways, safety and liveness. A safety violation is detected if two nodes commit
to conflicting decisions. A liveness violation can be detected if the protocol fails to commit
within a certain number of steps or a certain duration bound.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

4.2 Scenario Generator

We build a scenario generator of round-by-round scenarios: for each round, the scenario
generator enumerates possible leaders and message delivery schedules among nodes. The sce-
nario generator produces various scenarios to be fed into the scenario executor. Each scenario
represents a unique instance of executor configuration parameters, i.e., the compromised
nodes and per round network partitions and leaders. Scenarios are generated systematically
as follows (see notations in Section 2):

Step 1. The scenario generator first produces the set of all possible partitions of nodes
(called partition scenarios). For example, for a network of 4 nodes (A, B, C, D), possible
partition scenarios (P) include {P, = {4, D},{B,C}}, and P, = {{A},{B,C,D}}. This
problem relates to the Stirling Number of the Second Kind [27] which enumerates the
ways in which a set of N nodes can be divided up into P non-empty partitions, where P
ranges from N (i.e., each node is self-isolated) to 1 (i.e., fully connected network without
partitions).

Step 2. Next the scenario generator assigns each partition scenario to all possible leaders
i.e., the set of N nodes assuming any of those can be a potential leader. For example,
for the example partition scenario above {P, = {A, D}, {B, C}} for a network of nodes
(A, B,C, D), possible leader-partition combinations include {4, P}, {B, P1}, {C, P1},
{D, P,}. Each leader-partition combination fully describes the Twins configuration
required for each round.

Step 3. The scenario generator lists scenarios by enumerating all possible ways in which
the leader-partition pairs generated in the previous step can be arranged over R rounds
(i.e., permutation, with or without replacement).

The scenario generator iterates over the generated scenarios linearly, and invokes the
scenario executor for each scenario. For safety analysis, usually a small number of rounds
(< 10) suffices to expose logical bugs in the protocol. Scenario generators therefore need to
enumerate a reasonable number of combinations.

Pruning scenarios. Important to the success of the approach is for the scenario generator
to avoid duplicate scenarios (e.g., in symmetry or node label® rotation) and generate only
materially different scenarios. The implementation we describe in the Evaluation section
of this paper (Section 6) employs aggressively such pruning. Certain heuristics further
substantially reduce the number of scenario configurations. For example, in most safety
violations the set of honest parties is split into two, hence it suffices to play with two or
three partitions per round. These optimizations make it feasible to cover a broad range of
meaningful scenarios. For analyzing liveness, many scenarios will obviously fail to make
progress because there does not exist a super-majority quorum that has reliable and timely
communication among its members. Hence, for liveness analysis the scenario generator must
guarantee that eventually such a quorum exists.

Message delays and timeouts. We note that the scenario generator does not address
message delays and timeouts, only the dropping of messages and their relative delivery order.
Because the BFT protocol may employ timers, the dropping of messages implicitly implies

3 Nodes can have designated roles in the protocol, referred to as node labels. Twins incorporates the
label “leader”, which is the case for standard BFT protocols. Extensions of these protocols might have
further hierarchy e.g., primary and secondary leaders. This is currently not supported, but the scenario
generator can be easily extended to support different node labels.

7:9

OPODIS 2021

7:10

Twins: BFT Systems Made Robust

Outbound messages from nodes Inbound messages to nodes

NetworkPlayground:::wait_for_messages
(Network Playground intercepts messages here)

Figure 2 Design of DiemBFT’s Network Playground.

that relevant endpoint incur a violation of presumed bounds on transmission delays. Future
work may incorporate explicit message delays into the scenario generator to check specific
timing violations and also to analyze BFT protocols in the synchronous model (Section 8).

5 Implementation

We implemented the Twins framework for DiemBFT, which we call LibTwins. Appendix A
provides an overview of DiemBFT. As described in Section 4, an implementation consists
of two principal ingredients, a scenario generator and an scenario executor (Figure 1). We
first describe the scenario executor implementation which leverages a network emulator
in DiemBFT referred to as the network playground. We then proceed to describe the
scenario generator implementation. For completeness, the Rust code and interfaces for the
main functions of LibTwins, execute_scenario and scenario_generator, are provided in
Appendix B. We are open sourcing the Rust implementation of LibTwins?.

5.1 Scenario Executor

The LibTwins scenario executor leverages the network emulator of DiemBFT, network
playground®. Network playground provides an apparatus for running single-host DiemBFT
deployments, emulating a network and intercepting all messages exchanged between nodes.
Scenarios can be written to manipulate the intercepted messages (e.g., by dropping certain
messages) and observe node response. Figure 2 shows the design of the network playground.
Nodes are represented by processes run on different threads (that run the full consensus
protocol), and network links between them are expressed as Rust channels that provide
asynchronous unidirectional communication between threads. In DiemBFT, nodes are
identified by their Account Address (a public key that uniquely identifies a node). Channels
are associated with their respective account addresses (nodes). When a node starts a new
round, it checks whether it is leader for this round; if yes, then it generates on the fly a block
to propose using a mock block generator. Each call to the mock block generator produces a
different block. This has important implication for LibTwins, as we require a node and its
twin to propose different blocks at the same round to emulate equivocation.

The scenario executor component (Section 4) of LibTwins is built on top of network
playground. This required the following modifications and extensions to the original library:

4 https://github.com/diem/diem
5 https://github.com/diem/diem/blob/master/consensus/src/network_tests.rs

https://github.com/diem/diem
https://github.com/diem/diem/blob/master/consensus/src/network_tests.rs

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

Adding twins. We wrote a new method to add nodes to the network that supports
twins. The method takes “compromised nodes” as a parameter to refer to the nodes
for which to create twins. For each target node, a duplicate instance is created with
the same credentials and signing keys. Consequently, in the eyes of the other nodes the
compromised node and its twin are indistinguishable.

Inferring rounds. LibTwins requires to apply a number of filtering policies at the round
level. Network playground does not have a notion of rounds — it only supports static
configurations that remain unchanged throughout protocol execution. There is no global
notion of rounds in a distributed system with partial synchrony; instead, nodes have their
own view of which round they are in, which they include in their messages. We enable
network playground to extract round from intercepted messages and accordingly apply
filtering criteria.

Round-based message filtering. Network playground allows writing rules to drop
intercepted messages that meet certain criteria, i.e., messages to or from specified nodes
and messages of specified types e.g., votes or proposals. LibTwins extends network
playground to drop intercepted messages per round, which allows emulating different
network partitions per round. The message dropping rules treat compromised nodes and
their twins differently — the rules apply to account addresses (which uniquely identify
nodes), not public keys (which are the same for a target node and its twins).
Deterministic multi-leader election. DiemBFT currently uses a non-deterministic
leader election algorithm. LibTwins requires leader election at a finer granularity, i.e.,
assigning a specified leader to each round, potentially assigning multiple leaders to a
round (because if a compromised node is elected as a round leader, its twins becomes
leader too). We wrote a new leader election algorithm for DiemBFT that supports these
requirements.

To emulate running the protocol for a given number of rounds, we approximate rounds
by the number of messages emitted by nodes. Note that in a system with partial synchrony,
we can only make guesses about rounds as there is no global notion of rounds. Using
message-count per-round (without partitions) as an “over-guesstimate”, we let the nodes vote
for 3 extra rounds. Over-running a scenario has no consequence on the results of LibTwins
(other than longer scenario execution time) because any safety violations would have already
been detected in earlier rounds.

5.2 Scenario Generator

The scenario generator produces scenarios in three main steps. First, it generates all the
possible ways in which a set of N nodes can be split into P partitions (partition scenarios).
Second, it generates all possible ways in which L leaders can be combined with the partitions
generated in the previous step. Finally, it generates all the possible ways in which the partition-
leader combinations can be permuted over R rounds of consensus protocol execution. The
scenario generator can operate in online or offline modes. In the online mode, scenarios
are generated on the fly and fed to the scenario executor. The scenario generator can be
configured to write the scenarios to a file. In the offline mode, the scenario generator reads
previously generated scenarios from a file and feeds them to the scenario executor.

Pruning scenarios. A naive enumeration of all combinations of P partitions, L leaders, and
R rounds may explode quickly (see Table 1). In order to constrain the number of generated
scenarios in a particular run, we provide hooks to control the number of P partitions,

7:11

OPODIS 2021

7:12

Twins: BFT Systems Made Robust

the number of L leader-partition pairs, and the number of leader-partition configuration
assignments to rounds. For all three cases, we specify whether the selection is deterministic
— first X — or randomized — an X sample. In the third case — configuration assignment to
rounds — the total combination space to select from is large. Therefore, the scenario generator
allows randomizing the per-round configuration selection, rather than sampling over the
entire space of assignments.

6 Evaluation

We validate the capability of LibTwins to model and detect attacks, present microbenchmarks
for the main components of LibTwins, and describe our experiments at scale using Amazon
Web Services (AWS) [4]. We are open sourcing the implementation of LibTwins, AWS
orchestration scripts, and microbenchmarking scripts and data to enable reproducible results®.

All our evaluations correspond to 4-7 nodes, 4-7 rounds and 2-3 partitions. Intuitively,
these configurations seem sufficient to expose any safety violations. Indeed, the known
attacks on BFT protocols described in Section 3 were exposed with only a small number
of nodes, partitions and leader rotations. A recent work [25] on the coverage of random
scenarios to detect crash faults shows that coverage depends on the number of partitions and
node labels (in our case, the leaders), but not on the number of nodes. For Jepsen [16], all
the bugs that provide meaningful coverage have a small number of rounds, and 2-3 partitions
and roles [25]. Using higher values for these parameters leads to a very large number of
scenarios, which cannot be feasibly executed without some sort of filtering (Section 5.2). It
is an interesting open question whether increasing the value of these parameters has a higher
chance of exposing safety violations.

6.1 Validation

We deliberately introduce bugs to DiemBFT, and validate that LibTwins is able to model
and detect attacks that exploit the injected vulnerabilities. This approach is similar to
mutation testing, a well-known technique to evaluate the quality of existing tests in terms of
whether they can detect programs with deliberately injected modifications (called “mutants”).
While approaches such as automated mutation testing can help us to exhaustively introduce
mutants, this is computationally expensive and not practical for large, complex systems.
We select bugs to inject into DiemBFT based on their ability to compromise the program’s
functional correctness. We note that this choice is based on our intuition and experience, and
does not provide any coverage guarantees. The validation approach we use is to: (¢) inject
the bug into DiemBFT; and (ii) generate scenarios using the LibTwins scenario generator,
checking for any safety violations. We instantiate the scenario generator with different
configurations and vary them until a safety violation is exposed.

We begin with the base case: can LibTwins generate a scenario that violates safety when
the BFT threshold is exceeded (i.e., > f Byzantine nodes)? We discovered a safety violation
with 4 nodes and 2 twins (A, B,C, D, A’, B"), 7 rounds, and static scenario configuration (i.e.,
each partition-leader combination is run for all R rounds). LibTwins executed 62 scenarios
of which 8 led to safety violation within 86s.

5 https://github.com/libra/libra

https://github.com/libra/libra

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

400 3

500
300 ’ 400
g —
w
2 200 o 300
£
£ 200
100 be
100
0 0
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 10
number of testcases led . " number of testcases 1le7
(a) 4 Nodes, 2 Partitions, 4 Rounds. (b) 4 Nodes, 2 Partitions, 7 Rounds.

Figure 3 Time taken by the scenario generator to produce LibTwins scenarios. Each data point is the
average of 10 runs; error bars represent one standard deviation.

Changing quorum size to 2f. BFT protocols consider a state transition safe if it receives
votes from an honest majority of nodes (i.e., quorum). We change DiemBFT’s quorum size
from 2f+1 to 2f. LibTwins detects a safety violation with 4 nodes and 1 twin (4, B,C, D, A'),
7 rounds, and static scenario configuration (i.e., where each partition-leader combination is
run for all the R rounds). Within 20s, LibTwins executes 14 scenarios of which 6 lead to
safety violation. These scenarios have the same pattern: Nodes are split into two partitions
of size 2 and 3, with A in one partition and A’ in the other. As nodes in the two partitions
can form quorum, oblivious to each other they continue to generate quorum certificates on
blocks proposed by A and A’, respectively. Ultimately, nodes in the two partitions commit
two different blocks.

Accepting conflicting votes. Upon receiving a proposal, nodes vote for it only if the
block__round is greater than the last_voted_round (Safety Rule 1, Appendix A). We intro-
duce a subtle bug to DiemBFT by changing this rule, so that a node votes for a block if the
block__round is greater than or equal to the last_wvoted_round. LibTwins detects the safety
violation within a few seconds, with 4 nodes and 1 twin {A, B,C, D, A’}, and 7 rounds. This
safety bug was detected in one-shot, with 0 partitions. Nodes vote on proposals from both A
and A’ and quickly end up committing two different proposals for the same round.

Forgetting to update preferred round. Ubpon receiving a proposal, nodes vote for the
block if the block__round is greater than last_voted_round, and the block’s parent_round
is greater than or equal to preferred_round (Safety rules 1 and 2, Appendix A). We disable
the first check, and bypass the second check by never updating preferred_round so it
permanently remains at 0 (Update rule 2, Section A). The main ingredient of an attack that
exploits the bug described above is to propose a block in an old round, and get the nodes
to over-write committed blocks (safety violation). The challenge for LibTwins is that as a
twin node runs correct code, it cannot be made to propose blocks in arbitrary rounds. One
option is to partition the twin node in an old round, and bring it back up in a later round,
so it starts proposing blocks from where it left. This is, however, not possible in a “full
disclosure” protocol like DiemBFT where each quorum certificate (or timeout certificate)
contains the full history of previous messages that led to the certificate. That is, as soon
as A’ recovers from the partition, it receives a quorum certificate (or timeout certificate)
from other nodes and advances its round. To emulate A’ going back in time and proposing a
block for an older round, we let it run as leader for a few rounds, crash it, and then recover

7:13

OPODIS 2021

7:14

Twins: BFT Systems Made Robust

Table 1 The number of LibTwins scenarios generated for various configurations. Steps 1, 2 and 3
correspond to the scenario generation pipeline described in Section 4. Step 1: The number of ways
in which N nodes can be distributed among P partitions. Step 2: The number of ways in which the
partitions generated in Step 1 can be combined with leaders. Step 3: The number of ways in which the
partition-leader pairs generated in Step 2 can be permuted (with and without replacement) over R rounds.
In Static configurations, each partition-leader pair is statically configured for all the R rounds.

Nodes Twins Partitions Rounds Step 1 Step 2 No Repl. Step ?%{epl. Static
15 15 ~3x10* ~5x10* 15
25 25 ~3x10° ~4x10° 25
15 15 ~3x107 ~2x108 15
25 25 ~2x10° ~6x10° 25

255 510 ~7x10° ~7x10' 510
3,025 6,050 ~1x10" ~1x10"% 6,050
255 510 ~9x10*¥® ~9x10'8 510
3,025 6,050 ~3x10* ~3x10* 6,050

N e [e
NNNN | ==
WHN WN | WD WN
NN A | NN

it again as leader. When A’ comes back up again it starts from round 0, proposing a block
that builds on the genesis block (the first committed block). Because of our modifications to
the preferred_round and last_wvoted_round checks, the nodes re-write history.

6.2 Microbenchmarks

We present microbenchmarks for the two main components of LibTwins: scenario generator
(Section 5.2) and scenario executor (Section 5.1). The microbenchmarks are run on an Apple
laptop (MacBook Pro) with a 2.9 GHz Intel Core i9 (6 physical and 12 logical cores), and 32
GB 2400 MHz DDR4 RAM.

Scenario generator microbenchmarks. The scenario generator incurs a one-time compu-
tational cost — once the scenarios are generated, the scenario generator feeds them one
by one to the scenario executor. Table 1 shows the number of scenarios generated with
different configurations. We observe that the number of nodes and the number of rounds
significantly increase the output of Step 1, which increases proportionally in the number of
twins (as we only configure nodes with twins to become leaders). We find that non-static
configurations in Step 3 cause the number of scenarios to explode. Therefore, of the various
filters implemented for the scenario generator (Section 5.2), we find the filter at Step 2 to
be most useful. We use this filter to make our at-scale Twins analysis (Section 6.3) feasible.
Note that this inevitably comes at the cost of completeness of coverage — a trade-off that
we cannot completely eliminate. Figure 3 shows how long the scenario generator takes to
produce scenarios for the same number of nodes (4) and partitions (2), and 4 (Figure 3a) and
7 (Figure 3b) rounds. We observe that while it expectedly takes longer to generate scenarios
for 7 rounds vs. 4 rounds due to a larger number of permutations, for each case the time
taken increases linearly in the number of scenarios. We observe a similar linear trend in
our microbenchmarks for other configurations with varying number of nodes and partitions
(figures not included due to space constraints).

Scenario executor microbenchmarks. Table 2 shows the time the scenario executor takes
to execute a scenario. We repeat each measurement over 100 randomly selected scenarios
from a configuration with 2 partitions, and varying number of nodes (4 and 7) and rounds
(4-12). We observe that for 4 nodes, the execution time ranges from 234-465ms for 4-12
rounds, with a maximum standard deviation of 314ms. For 7 nodes, the execution time
ranges from 547-748ms for 4-12 rounds, with a maximum standard deviation of ~ 1.2s.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

Table 2 The time scenario executor takes to execute a scenario for 4 and 7 nodes, over varying number
of rounds and fixed partitions (=2). Each measurement is repeated for 100 randomly selected scenarios.

Rounds 4 Nodes 7 Nodes
Mean (ms) Std. (ms) Mean (ms) Std. (ms)
239 314 547 1,286
5 250 87 555 1,059
6 284 88 555 802
7 296 87 559 752
8 334 209 647 810
9 363 175 643 557
10 398 222 653 539
11 433 168 718 570
12 465 179 748 223

The variation observed above in execution times is expected because of how DiemBFT
handles timeouts (Appendix A). For each scenario, LibTwins runs DiemBFT until it has
observed a given number of messages (proposals and votes), which roughly corresponds to
the number of rounds. In some scenarios, LibTwins can quickly pull out the given number of
messages and finish the scenario in a timely manner. In other scenarios, we might end up
with partitions where the nodes are not able to make progress and advance rounds, due to
frequent round failures and increased timeout values. Some scenarios may take longer to run,
waiting for the network to emit enough messages to conclude the scenario. The execution of
scenarios has negligible (< 0.1%) memory and CPU footprints.

6.3 Running Scenarios at Scale

We evaluate LibTwins at scale, by running it against the correct code of DiemBFT. We
executed 44M scenarios which were randomly selected from the 200M scenarios corresponding
to the third row of Table 1 (that is, with 4 nodes, 2 partitions, 7 rounds, permuted with
replacement). We first generated all the 200M scenarios and randomly selected 44M samples.
We ran the scenario generator in offline mode so the scenarios are written to file rather than
being passed to the scenario executor. We then split the generated scenarios into 20 shards.
The scenarios can be easily sharded, as the scenarios are independent of each other — this
implies that subject to the availability of computing power to generate and execute scenarios,
LibTwins can be scaled up arbitrarily via sharding. We execute the sharded scenarios over
20 parallel instances of LibTwins on AWS. We use t3.2xlarge instances with 8 vCPUs, 2.5
GHz, Intel Skylake P-8175; 32 GB of RAM, and 300 GB of SSD storage. All machines run a
fresh installation of Ubuntu 18.04. We did not observe any safety violations.

7 Related Work

There are two typical approaches to validate distributed systems. The first approach is to
offer strong guarantees by building a fully verified system from the ground up [18, 26], or to
show the absence or presence of bugs [29, 11, 10, 21] by exhaustively enumerating the space
of system behaviors [5, 30] under systematically injected faults [3, 20].

Fully verified systems do not scale to systems deployed in the real world. Model checking
and exhaustive enumeration of distributed system faults (especially, Byzantine arbitrary
behavior) leads to state explosion (despite partial order reduction techniques [14]), resulting in
low performance. This motivates the second approach of random validation, which underlies
the discipline of Chaos Engineering, exemplified by systems like Chaos Monkey [24]. The

7:15

OPODIS 2021

7:16

Twins: BFT Systems Made Robust

main idea is to analyze the resiliency of a distributed system by randomly injecting faults (e.g.,
terminating processes). Turret [20] refines this idea by focusing on performance attacks. It
runs an attack-finding algorithm using different strategies, ranging from simple brute-force to
more sophisticated “greedy search” algorithms. Jepsen [16] is a blackbox analysis framework
that runs processes with a random, auto-generated workload and randomly injected network
partitions. A related approach is to subject the system being evaluated to trials by fire such
as Cosmos Game of Stakes [12], i.e., financially incentivizing the community to attack the
“mock” network, and analyzing successful attacks to harden the network. Random validation
is effective and scalable — but it is not comprehensive or reproducible, and cannot be used to
evaluate distributed systems in an ongoing fashion.

Prior work (with the exception of Jepsen) focused on crash faults. Twins is a new,
principled approach to validate BFT systems by emulating Byzantine behavior via twins—
copies of “compromised” nodes that can send duplicate or conflicting messages. Twins
advances state-of-the-art by providing a framework to systematically generate scenarios
with configurable coverage, and only modeling correct executions (thus avoiding the state
explosion problem associated with formal methods). We show with extensive evaluations
that Twins is suitable for evaluating real-world systems, and can be scaled up arbitrarily for
larger scenario coverage. Twins automatically generate scenarios that modify the interaction
of components with the environment, without opening the code.

8 Future Work & Conclusion

Twins is a novel approach to systematically analyze BFT systems. It provides coverage
for many, but not all, Byzantine attacks. The paper demonstrated anecdotal evidence of
coverage with respect to several known Byzantine attacks, and an implementation of Twins
for DiemBFT that exposes misconfiguration and purposely injected logical bugs within
minutes. Many directions are left open for future extensions.

Theory of Twins coverage. As mentioned in the Introduction, it is left open to rigorously
characterize the attacks that Twins can cover. In particular, we conjecture that Twins covers
all Byzantine behaviors in a class of protocols that have “full disclosure”: each message
includes a reference to its entire causal past and any source of non-determinism (such as
local coin flips), and nodes act deterministically according to their causal past. It would
seem that this class of protocols is fully covered by Twins since the only possible attack
by Byzantine nodes is to select different subsets of messages to report to different targets.
Similarly, we conjecture that Twins can cover timing violations in a class of “lock-step”
synchronous protocols. Increasing coverage of Twins in the settings we explore as well as
others, and providing a formal treatment of coverage remain interesting open challenges.

Checking additional properties. A different dimension for extension is the type of guarantees
which Twins scenarios. While this paper focused squarely on safety of the core consensus
protocol, the Twins approach can be extended to validate ancillary components of BFT
systems. For example, DiemBFT switches to a new set of nodes by committing a special
block that includes the new set of nodes and signals the reconfiguration event. It would be
useful to investigate if Twins can cause a safety violation by creating an inconsistent node
change (i.e., parts of the network believe in different nodes). Similarly, DiemBFT’s smart
contract execution engine is re-instantiated via a similar mechanism, and can be subjected
to a similar Twins-based attack.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

Extending Twins implementation. With respect to the concrete DiemBFT Twins imple-
mentation presented in Section 5, several extensions are left for future work, including: (¢)
tackling more than a pair of twins; (#) detecting liveness violations; and (#i) implementing
process-level twins over TCP /IP.

—— References

1

10

11

12

13

14

15

16

17

18

19

20

Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. Revisiting Fast Practical
Byzantine Fault Tolerance: Thelma, Velma, and Zelma. arXiv preprint arXiv:1801.10022,
2018.

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync HotStuff:
Simple and Practical Synchronous State Machine Replication. In IEEE Symposium on Security
and Privacy, 2020.

Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. Lineage-Driven Fault Injection. In
SIGMOD International Conference on Management of Data, 2015.

Inc. Amazon Web Services. AWS Whitepapers. https://aws.amazon.com/whitepapers, 2017.
Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. https:
//cdn.relayto.com/media/files/LPgoW018TCeMIggJVakt_tendermint.pdf, 2016.

Ethan Buchman, Jae Kwon, and Zarko Milosevic. The Latest Gossip on BFT Consensus.
arXiv preprint arXiv:1807.04938, 2018.

Vitalik Buterin and Virgil Griffith. Casper the Friendly Finality Gadget. arXiv preprint
arXiv:1710.09437, 2017.

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In USENIX
Symposium on Operating Systems Design and Implementation, 1999.

Ang Chen, W Brad Moore, Hanjun Xiao, Andreas Haeberlen, Linh Thi Xuan Phan, Micah
Sherr, and Wenchao Zhou. Detecting Covert Timing Channels with Time-Deterministic Replay.
In USENIX Symposium on Operating Systems Design and Implementation, pages 541-554,
2014.

Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. The Good,
the Bad, and the Differences: Better Network Diagnostics with Differential Provenance. In
ACM SIGCOMM Conference, 2016.

Cosmos. Cosmos Game of Stakes, 2018. URL: https://github.com/cosmos/game-of-stakes.
Diem. DiemBFTBFT. https://github.com/diem/diem.

Patrice Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and Pierre Wolper. Partial-Order
Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion
Problem. Springer-Verlag, 1996.

Mohammad M Jalalzai, Jianyu Niu, and Chen Feng. Fast-hotstuff: A fast and resilient hotstuff
protocol. arXiv preprint arXiv:2010.11454, 2020.

Jepsen. Distributed Systems Safety Research. https://jepsen.io.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine Fault Tolerance. In ACM SIGOPS Symposium on Operating Systems
Principles, 2007.

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems, May 1994.

Leslie Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Transac-
tions on Programming Languages and Systems, 4:382—401, 1982.

Hyojeong Lee, Jeff Seibert, Endadul Hoque, Charles Killian, and Cristina Nita-Rotaru. Turret:
A platform for automated attack finding in unmodified distributed system implementations. In
2014 IEEE 34th International Conference on Distributed Computing Systems, pages 660—669.
IEEE, 2014.

7:17

OPODIS 2021

https://aws.amazon.com/whitepapers
https://cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf
https://cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf
https://github.com/cosmos/game-of-stakes
https://github.com/diem/diem
https://jepsen.io

7:18

Twins: BFT Systems Made Robust

21 Chia-Chi Lin, Virajith Jalaparti, Matthew Caesar, and Jacobus Van der Merwe. DEFINED:
Deterministic Execution for Interactive Control-Plane Debugging. In USENIX Technical
Conference, 2013.

22 J-P Martin and Lorenzo Alvisi. Fast Byzantine Consensus. IEEE Transactions on Dependable
and Secure Computing, 3(3):202-215, 2006.

23 Atsuki Momose and Jason Paul Cruz. Force-Locking Attack on Sync Hotstuff. IACR Cryptology
ePrint Archive, 2020.

24 Netflix. Chaos Monkey. URL: https://netflix.github.io/chaosmonkey/.

25 Filip Niksic. Combinatorial Constructions for Effective Testing. Doctoral thesis, Technische
Universitat Kaiserslautern, 2019.

26 Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar.
Plankton: Scalable Network Configuration Verification Through Model Checking. In USENIX
Symposium on Networked Systems Design and Implementation, 2020.

27 Basil Cameron Rennie and Annette Jane Dobson. On Stirling Numbers of the Second Kind.
Journal of Combinatorial Theory, 7(2):116-121, 1969.

28 The Diem Team. State Machine Replication in the Libra Blockchain. https://developers.
libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-
libra-blockchain/2019-11-08.pdf, 2019.

29 Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. Diagnosing
Missing Events in Distributed Systems with Negative Provenance. ACM SIGCOMM Computer
Communication Review, 44(4):383-394, 2014.

30 Maysam Yabandeh, Nikola Knezevié¢, Dejan Kosti¢, and Viktor Kuncak. Predicting and
Preventing Inconsistencies in Deployed Distributed Systems. ACM Transactions on Computer
Systems (TOCS), 28(1):1-49, 2010.

31 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT Consensus in the Lens of Blockchain. arXiv preprint arXiv:1803.05069, 2018.

32 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT Consensus with Linearity and Responsiveness. In ACM Symposium on Principles of
Distributed Computing, 2019.

A Overview of DiemBFT

We now shift our attention to utilizing Twins for validating BFT replication in DiemBFT [13].
We discuss our implementation and evaluation of Twins for DiemBFT in Sections 5 and 6. In
this section, we provide an overview of DiemBFT (for details, see the technical report [28]).

DiemBFT operates in a round-by-round manner, electing leaders in each round among
the nodes to balance node participation. Rounds are slightly different from conventional
“views” because it takes multiple rounds to reach a decision, but leaders are rotated in each
round. The leader protocol is quite simple. A leader proposes an extension to the longest
chain of requests that it knows already. Usually leaders collect batches of requests to propose,
referred to as blocks, hence the DiemBFT protocol forms a chain of blocks (or a blockchain).
Nodes vote for a proposed block, unless it conflicts with a longer chain that they believe may
have reached consensus already. Nodes send their votes to the next leader to help the leader
learn the longest safe chain. If there are three consecutive blocks in the chain, By, Bgi1,
Bj.4 2, which are proposed in consecutive rounds, 7, Tx+1, Tk+2, and each block has votes
from 2f + 1 nodes (gathered in a data structure called the quorum certificate, or QC), then
the protocol has reached consensus on block Bj.

If 2f 4+ 1 send votes to the next leader in a timely manner, a QC is formed by the leader
and it sends the next proposal. Nodes maintain a timer to track progress. When the timer
expires and a node still has not received a proposal, it broadcasts a timeout vote on a Nil

https://netflix.github.io/chaosmonkey/
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain/2019-11-08.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain/2019-11-08.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain/2019-11-08.pdf

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

block. When a node gathers enough timeout votes to form a timeout certificate, it advances
its round. Every time a round fails, timeout periods are increased, allowing lagging nodes to
catch up and enabling the protocol to eventually reach a decision.

As briefly alluded to in the Introduction, the trickiest part of BFT replication is to manage
leader transition. DiemBFT maintains four parameters to ensure safety, and at the same time
facilitate progress: (i) current_round, the node’s current round; (i) last_voted_round,
the last round for which the node voted; (%) parent_round, the round of the block certified
by the QC attached with the block being processed; (iv) grandparent_round, the parent of
the block certified by the QC; and (iv) preferred_round, the highest known grandparent
round. Note that as a QC serves as a pointer to the previous certified block, parent_round
and grandparent__round do not need to be explicitly tracked; these can be derived from the
QC carried by a block.

Upon Receiving a Proposal. Upon receiving proposal for a block, a node processes the
certificates it carries, and votes for the proposed block if it satisfies a simple voting rule: If a
node voted for By.a, it prefers the sub-tree of proposals rooted at block By (regardless of
round numbers). A node will not vote for a block B that does not belong to its preferred
sub-tree rooted at By, unless B’s parent has votes from 2f + 1 nodes at a higher round than
r,. Concretely:

Safety Rule 1. The block_round is greater than last_wvoted_ round.
Safety Rule 2. The block’s parent__round is greater than or equal to preferred_round.

If the node decides to vote for the proposed block, it updates its state as follows:

Update Rule 1. Update last_voted_ round to round of the proposed block.

Update Rule 2. Update the node’s preferred_round to the proposed block’s
grandparent__round if the latter is higher.

Update Rule 3. Update the node’s current_round to the parent_round +1, if the
latter is higher.

Upon Receiving a Vote. For every round, the nodes send their votes to the leader of the
next round. When the leader receives a vote, it performs the following safety checks:

Safety Rule 3. If a vote from the same node was previously received for the same block
and round, the leader rejects the vote and generates a “duplicate vote” warning.
Safety Rule 4. If a vote from the same node was previously received for a different
block but same round, the leader rejects the vote and generates an “equivocating vote”
warning.

If a vote passes both these checks, the leader considers it as valid and checks if it has
enough votes to form a QC. When a QC has been formed, the leader generates a new round
event, broadcasts a new block proposal and updates its state.

Update rule 4. When a leader gathers enough votes to form a QC, it broadcasts a new
proposal and increments current_round.

Spoiler alert: In our evaluation in Section 6.1, we are going to deliberately modify the
above rules. We will see that this enables safety violations that the Twins framework will
expose.

7:19

OPODIS 2021

7:20

Twins: BFT Systems Made Robust

By

round 7y
v
g Byt 3,
g round 741 g
2 g
Bicy2
round ry42
@ 2f+1 votes ——Vote

Figure 4 Consensus and preferred sub-trees in DiemBFT.

B LibTwins Implementation of Scenario Executor and Scenario
Generator

This section provides the Rust code for the two main functions of Twins, execute_scenario
and scenario_generator. The code listings in Figure 5 and Figure 6 present simplified
Twins interfaces, i.e., we omit Rust-specific features such as explicit typing, details of error
messages returned, de-referencing, and managing variable ownership.

The scenario executor, implemented by execute__scenario (Figure 5), executes scenarios
generated by the scenario generator. This function takes as input the number of nodes and
twins, and the leaders and partitions for each round. It creates a network with the given
inputs, and starts running the protocol until the nodes have emitted a given number of
messages, which approximate the number of rounds for which the protocol has been run.

The execute__scenario function exposes a simple interface, abstracting complex under-
lying network and SMR configurations. To demonstrate the simplicity and flexibility of
execute__scenario, we show how to implement a simple scenario (Figure 6) where no quo-
rum can be formed, and therefore no block gets committed. We set up a network with 4
honest nodes (n0,n1,n2,n3), and 1 twin (twin0). We split the network into two partitions
{n0, twin0,n1} and {nl,n3}. For each round n0 and twin0 (in partition 1) are leaders. We
then run the protocol for enough rounds (at least 3 in DiemBFT) to get a commit on a
block. In partition 1, both n0 and twin0 propose different blocks for the same rounds. nl
will only vote for one of the two proposals because the second proposal is for a round that is
not greater than its last_voted_round (Safety rule 1, Section A). The second partition does
not have enough nodes to form quorum. Consequently, no blocks are committed.

C Detailed Safety Attack on Zyzzyva

We present a summary of Zyzzyva, and use Twins to reinstate a known safety attack [1] on
Zyzzyva [17]. We use the notation described in Section 2.

C.1 Summary of Zyzzyva

Zyzzyva is an SMR protocol in the same settings as DiemBFT (partial synchrony and
n = 3f+1). It operates in a view-by-view manner. Each view has a designated leader. Nodes
vote on the leader proposal if they consider it valid (we describe the validity criteria below,
which has a flaw that enables the safety attack). A commit decision on the leader proposal

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

fn execute_scenario (
num_nodes, // number of nodes
target_nodes, // the nodes for which to create twins
round_partitions, // Vector of partitions for each round
round_leaders // Vector of leaders for each round

) o
let runtime = consensus_runtime();
let playground = NetworkPlayground::new(runtime.handle());
// Start nodes and twins
let nodes = SMRNode::start_num_nodes_with_twins(
num_nodes ,
&target_nodes,
&playground,
round_proposers
)
// Create partitions
create_partitions (&playground, round_partitions);
// Start running the protocol and sending messages
block_on(async move {
let proposals = playground
.wait_for_messages (2, NetworkPlayground::proposals_only::<Payload>)
.await;
// Pull enough votes to get a commit on the first block
let votes: Vec<VoteMsg> = playground
.wait_for_messages (num_nodes * num_of_rounds, NetworkPlayground::votes_only
::<Payload>))
.collect();
DM
// Check that the branches are consistent at all heights
let all_branches = vec![];
for i in 0..nodes.len() {
nodes[i].commit_cb_receiver.close();
let node_commits = vec![];
while let node_commit_id = nodes[i].commit_cb_receiver.try_next () {
node_commits.push(node_commit_id);
}
all_branches.push(node_commits) ;
}
assert!(is_safe(all_branches));
// Stop all nodes
for each_node in nodes {
each_node.stop();
}
}

Figure 5 The execute_scenario function which executes scenarios.

forms in either of two tracks, fast and two-phase. In the fast track, all n nodes vote for the
leader proposal to commit it. In the two-phase track, 2f + 1 nodes form a commit-certificate
(CC), then 2f + 1 nodes vote for the CC' to commit the proposal.

At the beginning of the view, nodes send the new leader a signed NEW-VIEW status
message. The leader’s first proposal carries the status of 2f + 1 nodes at the beginning of the
view to prove the proposal validity. The (flawed) definition in Zyzzyva for a valid proposal
upon view change is as follows. For each sequence slot:

Validity Rule 1. The leader picks among the states of 2f + 1 nodes, the CC from the

highest view, if one exists.

Validity Rule 2. Otherwise, the leader picks a proposal that has f + 1 votes from the

highest view, if one exists.

Validity Rule 3. Finally, if none of the above exist, the leader creates a Nil proposal.

7:21

OPODIS 2021

7:22 Twins: BFT Systems Made Robust

fn twins_no_quorum_scenario () {

let runtime = consensus_runtime();
let playground = NetworkPlayground::new(runtime.handle());
let num_nodes = 4;

// 4 honest nodes

let n0 = 0, n1 = 1, n2 = 2, n3 = 3;
// twin of noO

let twinO = node_to_twin.get(n0);
// twin of ni1

let twinl = node_to_twin.get(nl);

// Index #s of nodes for which we will create twins
let target_nodes = vec![0];

// Specify round leaders

let round_leaders = HashMap::new();

for i in 1..10 {
// Insert (nO, twinO, n3) as leaders for round i
round_leaders.insert (i, vec![n0O, twinO, n3]);

}

// Specify round partitions
let round_partitions = HashMap::new();
for r in 0..10 {
// Insert partitions for round r
round_partitions.insert (
r,
vec![
vec![n0, twinO, ni],
vec![n2, n3],
s
)
}

execute_scenario (
num_nodes ,
&target_nodes,
&round_partitions,
&round_leaders

E

Figure 6 Twins “No Quorum” scenario.

The flaw is to prioritize Validity Rule 1 over Validity Rule 2, which causes the leader to
prefer CC even if generated in a lower view than f + 1 votes.

C.2 Safety Attack on Zyzzyva

The Zyzzyva flawed scenario safety demonstrated in [1] goes through a succession of three
views. In the first view, a faulty leader generates conflicting proposals vy, v and splits honest
nodes between f + 1 that vote for v; and f that vote for vy. The faulty leader gathers a
CC on v; but does not send it to other nodes. In the second view, a good leader adopts
vo and drives agreement in the fast track. In the third view, f faulty nodes join the f + 1
honest nodes that voted for v; in the first view. They send the leader a CC' for vy, hence
the protocol proceeds with vy, in conflict with the vo commit. The attack on Zyzzyva needs
only n = 4 nodes, of which f =1 is faulty, and it is fairly easy to re-instate using the Twins
framework. There are four nodes, (D, E, F,G). To model the case that D is Byzantine, it
has a twin D’ initialized with different input. We drive the execution creating partitions and
electing leaders at each step, according to the attack described above. We describe below
the detailed attack using Twins.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

Step 1. Initialize D and D’ with different inputs v; and vs.
Step 2. During View 1:

Create the following partitions: P, = {D,E,F}, P, = {D’,G}.

Let D run as leader for one round. D proposes v, to P; and gathers votes from P;
creating a CC.

Create the following partitions: P, = {E, F}, P, = {D’,G}, P; = {D}.

As a result, D does not get to share C'C on v; with E and F'.

Similarly, for one round let D’ propose vy to P> and gather votes from Ps.
Step 3. Delay all messages until a new view starts. View 2:

Create the following partitions: P, = {D', E,G}, P, = {D, F}.

Run G as leader, and let it collect (NEW-VIEW) messages from D’ and E. Using
Validity Rule 2 (Appendix C.1), G decides to propose for vs.

Remove all partitions, i.e., P ={D,D' E, F,G}.

G proposes v, and collects votes from everyone. This leads to a commit of vs.

Step 4. Delay all further messages until new view starts. View 3:

Create the following partitions: P, = {D, E, F}, P, = {D’,G}.

Run E as leader, and collect (NEW-VIEW) messages from D and F. Note that D
sends the CC on vy (from view 1) to E. Using Validity Rule 1 (Appendix C.1), E
decides to propose v1.

E proposes v; to Py, and gathers votes from D, E and F (who empty their local logs,
undoing vy). This leads both E and F' to commit vy, a safety violation.

D Detailed Liveness Attack on FaB

We present a summary of FaB, and use Twins to reinstate a known liveness attack on FaB [1].
We use the notation described in Section 2.

D.1 Summary of FaB

FaB is a single-shot consensus protocol for the partial synchrony setting with n = 3f + 1.7

A precursor to Zyzzyva, FaB is a view-based protocol with an optimistic fast track. A
leader drives a decision in the fast track if all nodes vote for it, and in the two-phase track
if 2f + 1 nodes vote for a (2f + 1) commit-certificate (CC). When a new leader is elected,
it picks a valid proposal that does not conflict with neither f + 1 votes nor a C'C in the
previous view.

7 FaB is actually designed for a parameterized model with n = 3f 4 2t 4+ 1, with safety guaranteed against
f Byzantine failures and fast track guaranteed against t. For brevity and uniformity, we ignore ¢ here
and set t = 0.

7:23

OPODIS 2021

7:24

Twins: BFT Systems Made Robust

D.2 Liveness Attack on FaB

The (flawed) selection criterion above leads an execution in the following scenario to become
stuck. A faulty leader equivocates and proposes vi,vs to 2f 4+ 1 and f honest nodes,
respectively. In transitioning to the next view, there is a commit-certificate for vy and f + 1
votes for vy (including an equivocation by one faulty), hence neither is safe, and the new
leader is stuck. The attack on FaB needs only n = 4 nodes, of which f = 1 is faulty, and
it can be easily re-instated using Twins. There are four nodes, (A, B,C, D) with D as a
Byzantine node, for which we create a twin D’ initialized with different input. We describe
below the attack using Twins.

Step 1. Initialize D and D’ with different inputs v; and vs.
Step 2. During View 1:

Create the following partitions: P, = {A, B,D}, P2 ={C,D’}

Run D as leader for one round. D proposes vy to P; which decides to vote on v;.
Insert the following rule in Py: (B, D) — A. That is, the only messages allowed are
those from B and D, to A.

D, A and B send their votes which only reach A. Thus, only A produces a CC for v;.
Meanwhile, the leader D’ proposes vy to Ps.

Step 3. Delay all further messages until new view starts. Create the partitions: {4, C, D'},
{B, D}. Let the new leader A collect NEW-VIEW status messages from P;. These status
messages block A from proposing both v; and vy due to the FaB proposal validity rule.
The rule states that a proposal is valid if it does not conflict with neither f + 1 votes nor
a CC in the previous view, which is not the case for vy (has a CC) and vy (has f+1
votes) as described below:

From A, the NEW-VIEW message contains the value v, and a CC for it.
From C, the NEW-VIEW message contains the value vy, and no CC.
From D', the NEW-VIEW message contains the value v, and no CC.

E Detailed Liveness Attack on Sync HotStuff

We present a summary of Sync HotStuff, and use Twins to reinstate the force-locking
attack [23] on a preliminary version of Sync HotStuff (which was fixed in an updated version).
We use the notation described in Section 2.

E.1 Summary of Sync HotStuff

The preliminary version of Sync HotStuff [2] is an SMR solution in the synchronous model
with n = 2f + 1 parties.?

In synchronous protocols like Sync HotStuff, nodes execute the protocol in terms of A,
which is the known bound assumed on maximal network transmission delay. Sync HotStuff
operates in a view-by-view regime — in each view there is a designated leader which proposes

8 The description here covers the first of three variants in that paper; two other variants are designed for
slightly different synchrony assumptions, but the attacks on them are similarly covered by the Twins
approach.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

values to nodes. If a node accepts the proposed value, it broadcasts its vote. A node creates
a commit certificate (CC) for a proposed value if it receives f 4 1 votes on it. Nodes track
the highest C'C', and only vote on a proposed value if it: () extends the highest CC' known
to the node, and (ii) does not equivocate another value proposed for the same height.

A node creates and broadcasts a blame against a leader: (¢) if the leader does not propose
a value for 3A, or (i7) the leader proposes an equivocating value. If a node observes f + 1
blames against the leader in the current view, it broadcasts the f + 1 blames, then waits A
(to allow the blames to reach all honest nodes), and moves to the new view. In the new view,
it immediately sends the new leader the highest C'C it knows of.

After a view change, the new leader waits for A to receive node status messages (carrying
the highest CC known to them). The leader then proposes a value that extends the highest
CC from among the received status messages. Nodes proceed in the new view as previously
described.

E.2 Implementing Synchrony Attacks in Twins

Due to the synchronous settings and the nature of the attack which heavily leverages
synchrony assumptions, in this case a Twins scheduler must control message delivery timing.
More precisely, rather than only specifying whether a message is delivered to a party or
dropped, attacks on synchronous protocols require the Twins scheduler to deliver messages
to specific parties at specified times. While this is captured by the Twins approach, our
current implementation (Section 5) does not support this feature (this will be implemented
in future Twins extensions).

Generally, we expect that the granularity of the scheduler timing can be fairly coarse.
In particular, there is a known parameter A, the bound presumed by the algorithm on
message transmission delays and hard-coded into it. Indeed, the force-locking attack needs
to deliver messages at 0.5A increments, e.g., at times 0,0.5A, A, 1.5A,2.0A, ... Therefore, a
Twins network emulator could operate in discrete lock-step at 0.5A increments. With this
capability in place, the force-locking attack can be re-instated in the Twins approach as
described below.

E.3 Safety Attack on Sync HotStuff

We now rebuild the force-locking attack on the preliminary version of Sync HotStuff using
Twins. The crux of the attack is for a faulty leader to generate a last-minute proposal that
reaches only half of the honest nodes. The other half trigger a view change, and now the
system becomes split. The first half continues to commit the first leader proposal with “help”
from Byzantine nodes. The second half starts a new view and fork the chain. This attack
can be reinstated with Twins using 5 nodes (4, B,C, D, E), of which (A, B) are faulty and
have twins (A’, B').

Notation. We extend the notation described in Section 2 to capture message transmission
in the synchronous setting as follows: S; ¥y S’ denotes the transmission of a value v from a
set of nodes S that generate the value at time ¢, to a set of nodes S’ that receive the value at
time ¢'. If a value is broadcast, we use the x» symbol instead of a set: For example, S; Vs *
means that S broadcasts a value v at time ¢. Additionally, to highlight the “send” or “receive”
action on a value, we use bold text on the left or right side of the arrow, respectively. For
example, St 2y S’ means that S sends v to S’ (message arrival time is not known).

7:25

OPODIS 2021

7:26 Twins: BFT Systems Made Robust

To reinstate this attack with Twins, we deploy 5 nodes (A, B, C, D, E), of which (4, B) are
faulty and have twins (A’, B’). Here, n =5, f = 2, and quorum size is 3 (since synchronous
BFT protocols tolerate f Byzantine nodes for n = 2f + 1). We describe below the detailed
attack using Twins.

At time 1.5A:
A is the leader, and broadcasts a proposal with delay = A for the value v; which
extends vg.

(A)1.5A propose(vy) %
At time 2.5A:
C receives V1, and broadcasts its vote.
(A)y5a ZroPosetb) (C)g5a
(C)2.5A vote(vy) %
At time 3A:
D blames A since it did not receive a proposal from A within 3A. Twins (A’, B’) also
did not receive a proposal from A, hence they also blame with A. (D, A’; B’) broadcast
their blames with delay = 0, receive f + 1 blames from each other, and start waiting
for A.
(D, A’,B,)3A blame(A) %
(D, A", B')3p Mm@, (D, A’, B')sa
At time 3.5A:

D receives C’s vote on v, but it cannot create a CC' on vy since it has less than f + 1
votes.

(C)25a 22X, (D)s.sa
(A, B) broadcast their votes on vy, which arrive at C with delay 0. As a result, C
gathers f 4 1 votes on vy and creates CC/(v1).
(A,B)3_5A vote(vy) %
(A, B)ssa 22900, (C)asa
At time 4A:

C receives f + 1 blame messages from (D, A, B"), broadcasts all blame messages, and
starts waiting for A.

(DvA/aB,)SA blame(A) (C)4A
(C)4A blame(A) %
D has waited for A since it quit the old view w with leader A, so it starts the next

view w + 1 and sends its highest commit certificate CC(Vp) along with f + 1 blames
on A to the next leader B, with delay = 0.

(D)4A CC(vg),blame(A) (B)4A
The new leader B receives CC(vg) from D and f + 1 blames on A, and broadcasts a
proposal for value v1’ extending V;. Note that B does not know about CC(vy).
(D)4A CC(vo),blame(A) (B)4A
(B)4A propose(vy”) %

D receives the proposal v1’ from B, and broadcasts its vote with delay A, then it sets
its commit timer to 2A and starts counting down.

(B)4A propose(vi”) (D)4A
(D)4A vote(vy”) «

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

At time 4.5A:
D receives votes on vy from (A, B); as it has now gathered f + 1 votes on v; it creates
CC(v1). However, this certificate is too late, as we will see in the following steps.

(A, B)3sa 22, (D) g5a

At time 5A:
C has waited for A since it quit the old view with leader A, so it starts the next view
w + 1 and sends its highest certificate CC(vy) to the new leader B.

(C)sa C01, (B)
C receives D’s vote on v1’ but does not vote since vy’ (which extends CC/(vg)) does
not extend its highest certificate CC'(V1).

(D)4A vote(vi”) (C)5A

At time 6A:

D commits vy’ since it finished waiting for 2A and observed no equivocation or blame
in the view w + 1. However, D’s highest certificate is CC(v1) (see time 4.5A).
Now if the current leader B goes offline, this will result in a view change to view w + 2
and the new leader will extend the blockchain from the highest certificate from the
previous view, CC(v1). But D has committed v’ conflicting with vy, hence safety is
violated.

F Attack on Fast-HotStuff
We present a safety attack against Fast-HotStuff [15] and express it using Twins.

F.1 Summary of Fast-HotStuff

Fast-HotStuff is essentially HotStuff [32] with a 2-phase commit rule. In the happy-path, if
the leader of round n is successful, the leader of round n + 1 performs the same protocol as

HotStuff, namely, it collects a QC from previous round and embeds it in the n + 1 proposal.

In the unhappy-path, if the leader of round n is unsuccessful, the protocol for leader n+x + 1
(z > 0) provides a proof in the n+ x + 1 proposal that it is using the highest QC from 2f + 1
validators. This proof incurs quadratic communication complexity. Moreover, Fast-HotStuff
claims it does not require consecutive rounds in order to commit.

The benefits of Fast-HotStuff are twofold. It provides a fast 2-phase track for HotStuff
whenever the leader is successful in obtaining a QC for the previous round (happy-path).
Fast-HotStuff is also faster both in phases (2 phases instead of 3) and in getting to a scenario
that guarantees progress, namely, it requires 3 consecutive honest leaders (instead of 4).
Requiring a leader proof for the unhappy-path prevents a proposal that conflicts with an
uncommitted and unlocked tail of a chain that already has a QC. Thus, dishonest leaders
cannot intentionally slow down progress by overriding the latest tail.

Fast-HotStuff is however flawed as explained in Appendix F.2.

F.2 Safety Attack on Fast-HotStuff

Figure 7 illustrates the safety attack against Fast-HotStuff that we implement using Twins.

There are four nodes (A, B, C, D) all of which are honest — the safety attack can be executed
leveraging only network partitions. Blocks are represented by rectangles (which are annotated

7:27

OPODIS 2021

7:28

Twins: BFT Systems Made Robust

Figure 7 Example of safety attack on Fast-HotStuff.

with the nodes that receive the block). Block proposers are indicated as “authors”. Diamonds
refers to QCs (which are embedded into blocks). The arrows indicate the block that a QC
refers to.
We execute the safety attack in 11 rounds starting at round 3 (rounds 2 carries QC for
the genesis block).
Round 3: Initially there are no partitions, i.e., P = {A, B,C, D}.
A proposes a block. Nodes send their votes on this proposal to the leader of the next
round, node A.
Round 4:
A gathers votes from the previous round, forms a QC, and includes the QC in a new
block proposal. Nodes send their votes on the new proposal to the leader of the next
round, node B.
Round 5: Set node B as leader, i.e., P = {4, B,C, D}.
B gathers votes from the previous round, forms a QC, and includes the QC in a new
block proposal.
Create the following partitions: P, = {A4,C, D} and P, = {B}.
The partitions prevent B from broadcasting the new block (and the newly formed QC
it embeds). B is thus the only node knowing the QC certifying the block of round 4.
Nodes of P; time out, and send a NEW-VIEW message to the leader of the next round
(node A) containing their highest known QC.
Round 6: Set node A as leader, i.e., P, = {A,C, D} and P, = {B}.
A selects the highest QC from the NEW-VIEW messages (i.e., the QC certifying the
block of round 3), and embeds it in a new block proposal. All nodes of P; vote on this
proposal and send their votes to the leader of the next round (node C).
Round 7: Set node C as leader, i.e., P, = {A,C, D} and P, = {B}.
C gathers votes from the previous round, forms a QC, and includes the QC in a new
block proposal.
Create partitions: Py = {A, B, D} and P, = {C'}.
These partitions prevent C' from broadcasting the new block (and the newly formed
QC it embeds). C is thus the only node knowing the QC certifying the block of round
6.
Nodes of P; time out and send a NEW-VIEW message to the leader of the next round
(node B) containing their highest known QC.
Round 8: Set node B as leader, i.e., P, = {A, B, D} and P, = {C}.
B selects the highest QC from the NEW-VIEW messages (i.e., the QC certifying the
block of round 4, presented by B), and embeds it in a new block proposal. All nodes
vote on this proposal and send their votes to the leader of the next round (node B).

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi

Round 9:
B gathers all votes from the previous round, forms a QC, and includes the QC in a
new block proposal.
Create partitions P, = {A4,C, D} and P, = {B}.
The partitions prevent B from broadcasting its newly block(and the newly formed QC
it embeds). B is thus the only node knowing the QC certifying the block of round 8
and committing the block at round 4.
Nodes of P; time out and send a NEW-VIEW message to the leader of the next round
(node C) containing their highest known QC.
Round 10: Set node C as leader, i.e., P, = {A,C, D} and P, = {B}.
C selects the highest QC from the NEW-VIEW messages from the previous round
(the QC certifying the block of round 6, presented by C), and embeds it in its new
block proposal. The highest QC in the NEW-VIEW messages.
All nodes of P; vote on this proposal and send their votes to the leader of the next
round (node C).
Round 11: Set node C as leader, i.e., P, = {A,C, D} and P, = {B}.
C' assembles votes from the previous round into a QC certifying the block of round 10,
thus committing the block of round 6.
The safety violation appears at round 11 when node C' commits the block of round 6 while
node B previously committed the block of round 4: both blocks have the same height and
fork from the block of round 3.

F.3 Implementation of the Attack

We implemented a Python simulator of Fast-HotStuff using the discrete event simulator
simpy. We demonstrate the safety violation by running a manually-crafted scenario in the
simulator. We are open sourcing our Fast-HotStuff simulator as well as our Twins scenario
used for the attack®.

9 https://github.com/asonnino/twins-simulator

7:29

OPODIS 2021

https://github.com/asonnino/twins-simulator

Near-Optimal Dispersion on Arbitrary Anonymous

Graphs

Ajay D. Kshemkalyani &
University of Illinois at Chicago, 1L, USA
Gokarna Sharma &

Kent State University, OH, USA

—— Abstract

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and degree

A, we consider the problem of dispersing k < n robots (or tokens) positioned initially arbitrarily on
one or more nodes of the graph to exactly k different nodes of the graph, one on each node. The
objective is to simultaneously minimize time to achieve dispersion and memory requirement at each
robot. If all k robots are positioned initially on a single node, depth first search (DFS) traversal
solves this problem in O(min{m, kA}) time with ©(log(k+ A)) bits at each robot. However, if robots
are positioned initially on multiple nodes, the best previously known algorithm solves this problem
in O(min{m, kA} -log¥) time storing ©(log(k + A)) bits at each robot, where ¢ < k/2 is the number
of multiplicity nodes in the initial configuration. In this paper, we present a novel multi-source DFS
traversal algorithm solving this problem in O(min{m, kA}) time with ©(log(k + A)) bits at each
robot, improving the time bound of the best previously known algorithm by O(log ¢) and matching
asymptotically the single-source DF'S traversal bounds. This is the first algorithm for dispersion that
is optimal in both time and memory in arbitrary anonymous graphs of constant degree, A = O(1).
Furthermore, the result holds in both synchronous and asynchronous settings.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Computing
methodologies — Distributed algorithms; Computer systems organization — Robotics

Keywords and phrases Distributed algorithms, Multi-agent systems, Mobile robots, Local commu-
nication, Dispersion, Exploration, Time and memory complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.8

1 Introduction

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges,
and (maximum) degree A, we consider the problem of dispersing k < n robots (or tokens)
positioned initially arbitrarily on one or more nodes of the graph to exactly k different nodes
of the graph, one on each node (which we call the DISPERSION problem). This problem has
many practical applications, for example, in relocating self-driven electric cars (robots) to
recharge stations (nodes), assuming that the cars have smart devices to communicate with
each other to find a free/empty charging station [1, 18]. This problem is also important
because it has the flavor of many other well-studied robot coordination problems, such as
exploration, scattering, load balancing, covering, and self-deployment [1, 18, 22].

One of the key aspects of mobile-robot research is to understand how to use the resource-
limited robots to accomplish some large task in a distributed manner [12, 13]. In this paper,
we study trade-off between time and memory complexities to solve DISPERSION on arbitrary
anonymous graphs. Time complexity is measured as the time duration to achieve dispersion
and memory complexity is measured as the number of bits stored in persistent memory
at each robot. The literature typically traded memory (or time) to obtain better time (or
memory) bounds (for example, compare memory and time bounds of the two algorithms
from [18] given in Table 1).

? Ajay D. Kshemkalyani and Gokarr'la Sharma,;

5v icensed under Creative Commons License CC-BY 4.0
25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 8; pp. 8:1-8:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ajay@uic.edu
https://orcid.org/0000-0003-2451-7306
mailto:sharma@cs.kent.edu
https://orcid.org/0000-0002-4930-4609
https://doi.org/10.4230/LIPIcs.OPODIS.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Table 1 Algorithms solving DISPERSION for k < n robots on undirected, anonymous, port-labeled
graphs of n memory-less nodes, m edges, and (maximum) degree A. '[19] assumes m, k, and A
are known to the algorithm a priori. ¢ < k/2 is the number of multiplicity nodes in the initial
configuration; DISPERSION is already solved if there is no multiplicity node.

Algorithm ~ Memory/robot Time Single-source/ Setting
(in bits) (in rounds/epochs) Multi-source

Lower bound Q(log(k + A)) Q(k) any Asynchronous
DFS O(log(k + A)) O(min{m, kA}) Single-source Asynchronous

[18] O(klog A) O(min{m, kA}) Multi-source Asynchronous

[18] O(log(k + A)) O(min{m, kA} - ¢) Multi-source Asynchronous

[19]f O(logn) O(min{m, kA} -log£)t Multi-source Synchronous

[31] O(log(k+A)) O(min{m, kA} -log¥) Multi-source Synchronous

Th. 1 O(log(k + A)) O(min{m, kA}) Multi-source Synchronous
Th. 2 O(log(k + A)) O(min{m, kA}) Multi-source Asynchronous

Recent studies [19, 31] focused on minimizing time and memory complexities simultan-
eously. More precisely, they tried to answer the following question: Can the time bound
of O(min{m, kA}) be obtained keeping memory optimal ©(log(k + A)) bits at each robot?
This question can be easily answered in the single-source case of all £k < m robots ini-
tially co-located on a node. The challenge is how to answer it in the multi-source case
of the robots initially on two or more nodes of the graph. For the multi-source case, the
algorithms in [19, 31] were successful in keeping memory bound optimal as in [18] and reduce
time bound to O(min{m, kA} - log¥), an improvement of ¢/log{ factor compared to the
O(min{m, kA} - £) time bound of [18], where ¢ < k/2 is the number of multiplicity nodes in
the initial configuration.

In this paper, we present a new algorithm for DISPERSION that settles the question
completely, i.e., it obtains the time bound of O(min{m,kA}) keeping memory optimal
O(log(k + A)) bits at each robot, first such result for the multi-source case. The time bound
is an improvement of O(log £) factor compared to the best previously known algorithms [19, 31].
Furthermore, the time and memory bounds match the respective bounds for the single-source
case. Thus, the proposed algorithm is the first for DISPERSION that is simultaneously optimal
for arbitrary anonymous graphs of constant degree A = O(1).

Overview of the Model and Results. We consider k < n robots operating on an undirected,
anonymous (no node IDs), port-labeled graph G of n memory-less nodes, m edges, and degree
A. The ports (leading to incident edges) at each node have unique labels from [0,d — 1],
where § is the degree of that node. (A is the maximum over ¢’s of all n nodes.) The robots
have unique IDs in the range [1,k]. In contrast to graph nodes which are memory-less,
the robots have memory to store information (otherwise the problem becomes unsolvable).
Finally, at any time, the robots co-located at the same node of G' can communicate and
exchange information, if needed, but they cannot communicate and exchange when located
on different nodes. We call an initial configuration single-source if all k robots are initially
positioned on a single node of G, otherwise we call it multi-source. Even in the multi-source
initial configurations, the robots can only be on 1 < k' < k nodes, since for the case of k' = k,
the initial configuration is already a configuration that solves DISPERSION. In this paper, we
establish the following theorem in the synchronous setting where all robots are activated in a
round, they perform their operations simultaneously in synchronized rounds, and hence the
time (of the algorithm) is measured in rounds (or steps).

A.D. Kshemkalyani and G. Sharma

» Theorem 1. Given any initial configuration of k < n mobile robots on the nodes of an
undirected, anonymous, port-labeled graph G of n memory-less nodes, m edges, and degree
A, dispersion can be solved deterministically in O(min{m, kA}) rounds in the synchronous
setting storing O(log(k + A)) bits at each robot.

Theorem 1 improves the time bound O(min{m, kA} - log¢) of the best previously known
algorithms [19, 31] by a factor of O(log ¢) keeping the memory optimal, where £ is the number
of nodes in the initial configuration with at least two robots co-located on them. Interestingly,
both time and memory bounds of Theorem 1 match asymptotically the O(min{m, kA}) time
and O(log(k + A)) memory bounds for the single-source case, which is inherent for any DFS
traversal based algorithm for DISPERSION. Finally, for constant-degree arbitrary anonymous
graphs, i.e., A = O(1), our algorithm is asymptotically optimal w.r.t. both time and memory,
first such result for DISPERSION (Table 1).

Furthermore, we extend Theorem 1 to the asynchronous setting where robots become
active and perform their operations in arbitrary duration, keeping the same time and memory
bounds. Here we measure time in epochs (instead of rounds) — an epoch represents the time
interval in which each robot becomes active at least once.

» Theorem 2. Given the setting as in Theorem 1, dispersion can be solved deterministically
in O(min{m, kA}) epochs in the asynchronous setting storing O(log(k + A)) bits per robot.

Challenges. The single-source DISPERSION can be solved in min{4m — 2n + 2, 4kA} rounds
in any anonymous graph G having n memory-less nodes using the well-known DF'S traversal [6]
storing O(log(k + A)) bits at each robot. The k-source DISPERSION finishes in a single
round, since k robots are already on k different nodes solving DISPERSION. Therefore, the
challenging case is k’-source DISPERSION with 1 < k' < k.

The early papers obtained better bounds on either time or memory, trading one for another.
The first algorithm of [18] obtained O(min{m, kA}) time bound with memory O(klog A)
bits at each robot. The second algorithm of [18] kept memory optimal O(log(k + A)) bits
at each robot and established time O(min{m, kA} - £), where £ < k' < k is the number of
multiplicity nodes in the initial configuration. Their algorithm starts ¢ different single-source
DFS traversals in parallel from ¢ sources with multiple robots on them. Each DFS traversal
is given a unique ID, which is the smallest robot ID present on that source. Each DFS
traversal leaves a robot on each new node it visits. If no DFS traversals meet, then k robots
are on k different nodes and DISPERSION is solved in time and memory bounds akin to the
single-source DFS bounds. In case of two (or more) DFS traversals meet, the higher ID DFS
traversal subsumes the lower ID DFS traversal. The problem here is that if the lower ID
DFS traversal meets the higher ID DFS traversal, in the subsumption process, the higher ID
DFS traversal may again visit all the nodes that the lower ID DFS traversal already visited.
Therefore, in the worst-case, the time becomes the multiplication of O(min{m, kA}) rounds

for the single-source DFS traversal times ¢ parallel traversals, i.e., O(min{m, kA} - £) rounds.

Recent studies [19, 31] reduced the O(¥¢) factor in the time bound to O(log¢). Providing
m, k, and A parameters to the algorithm beforehand, Kshemkalyani et al. [19] run ¢-source
DF'S traversals in passes of interval O(min{m, kA}) rounds. After each pass, they guaranteed
that the £-source DFS traversal reduces to ¢/2-source DFS traversal. Therefore, in total
[log £] passes, the ¢-source DFS traversal reduces to a single-source DFS traversal, which then
finishes in additional O(min{m, kA}) rounds, giving in the worst-case, O(min{m, kA} -log¢)
rounds time bound. The memory requirement is O(logn) bits at each robot, due to the
memory to store m < n? which dominates the memory to store ¥ < n and A < n. Recently,

8:3

OPODIS 2021

8:4

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Shintaku et al. [31] established the same time bound as in [19] avoiding the requirement for
the algorithm to know m, k, A beforehand. Moreover, they improved the memory bound
O(logn) bits in [19] to optimal ©(log(k + A)) bits at each robot.

Observing the techniques of [19, 31], the algorithms developed there subsume different
DFS traversals pairwise which helps in improving the sequential subsumption of the different
DF'S traversals in the algorithm of [18]. The implication of the pairwise subsumption is only
a O(log ¢) factor more cost is needed to subsume all ¢ parallel DFS traversals to obtain a
single DFS traversal. This O(log¥) factor is significantly better compared to the O(¢) factor
obtained due to the sequential subsumption.

Despite these benefits, the pairwise subsumption is not matching the single-source DF'S
traversal time bound and, more importantly, it is not clear whether the O(log ¢) factor arising
in the pairwise subsumption technique in [19, 31] can be removed from the time bound.
Therefore, a new set of ideas are needed, which we develop in this paper and they constitute
our main contribution.

Techniques. We use parallel multi-source DFS traversals as in [19, 31] but devise a novel
subsumption technique, leading to O(min{m, kA}) time with O(log(k + A)) bits at each
robot, removing the O(log¢) factor from the time bound of the best previously known
algorithms [19, 31] and matching the time and memory bounds for single-source DFS
traversal. Each DFS traversal constructs a DF'S tree. Our technique executes subsumption
on the two DFS traversals that meet based on the size of the DFS traversal measured as the
number of settled robots with the same DFS tree ID. In fact, the larger size DFS traversal
subsumes the smaller size DFS traversal. The subsumed DFS traversal is collapsed to a
single node, collecting all the robots on that traversal at that node, and those robots are
given to the subsuming DFS traversal allowing it to extend its DFS traversal. The benefit is
two-fold: (i) the size of the subsumed traversal is smaller than the size of the subsuming
traversal and hence the collapse and merge of the subsumed traversal to the subsuming one
can be done in time proportional to the size of the subsumed traversal, and (ii) it avoids
the need of revisiting the nodes of the subsumed traversal more than once, a crucial aspect
in removing the O(log¢) factor from the time bound. Furthermore, one traversal always
remains subsuming throughout the execution of the algorithm.

This is in contrast to the technique used in the best previously known algorithms [19, 31]
that uses IDs of the DFS traversals (larger ID DFS traversal subsumes smaller ID DFS
traversal). The drawback of the subsumption based on DFS ID is that the algorithm cannot
limit the repeating traversal of the already built DFS tree, adding a ©(log¥) factor in the
subsumption process, and hence leading to a O(min{m, kA} -log¢) time bound.

We particularly tackle two major challenges: (i) how to execute the size-based subsumption,
and (ii) what to do when more than two DFS traversals meet at different nodes forming a
transitive chain or more generally, what we define as a meeting graph (Definition 4). The
first challenge is due to the fact that the exact size of the DFS traversal is only known by
its head node which is either the current node that has all not-yet-settled robots (if any,)
belonging to that DFS traversal or else the node on which last robot belonging to that DFS
traversal has settled. Therefore, it requires for the meeting traversal to traverse the met
DEFS tree to reach its head node to find its size. Our technique of collapsing the subsumed
traversal successfully fulfills this requirement in time proportional to the size of the smaller
size DFS traversal.

A.D. Kshemkalyani and G. Sharma

The second challenge is due to the fact that if not synchronized carefully, different DFS
traversals in the transitive chain or meeting graph might run into a deadlock situation. We
devise a technique that partitions the DFS traversals in the meeting graph such that in each
partition, one DFS traversal subsumes the others without introducing any deadlock and in
time proportional to the size of the DFS traversals that were subsumed and collapsed.

Through these techniques, we finally show that one DF'S traversal (among those that meet
in the meeting graph) always grows bigger and the total cost remains proportional to the
total size of the DFS traversals that are subsumed by the DFS traversal, giving our claimed
time bound. Interestingly, the process is executed keeping the memory at an (asymptotically)
optimal number of bits per robot.

Related Work. Augustine and Moses Jr. [1] proved a memory lower bound of Q(logn) bits
at each robot and a time lower bound of Q(D) (Q(n) in arbitrary graphs) for any deterministic
algorithm for DISPERSION on graphs. They then provided deterministic algorithms using
O(logn) bits at each robot to solve DISPERSION on lines, rings, and trees in O(n) time. For
arbitrary graphs, they gave one algorithm using O(logn) bits at each robot with O(mn) time
and another using O(nlogn) bits at each robot with O(m) time.

Kshemkalyani and Ali [18] provided an Q(k) time lower bound for arbitrary graphs for
k < n. They then provided three deterministic algorithms for DISPERSION in arbitrary
graphs: (i) The first algorithm using O(klog A) bits at each robot with O(min{m, kA})
time, (ii) The second algorithm using O(D log A) bits at each robot with O(AP) time (D
is diameter of graph), and (iii) The third algorithm using O(log(k + A)) bits at each robot
with O(min{m, kA} - £) time. Kshemkalyani et al. [19] provided an algorithm for arbitrary
graph with O(min{m, kA} -log¢) time using O(logn) bits memory at each robot, with the
algorithm knowing m, k, A beforehand. The same time bound and improved memory bound
of O(log(k+ A)) bits were obtained in [31], without the need of the algorithm knowing m, k, A
beforehand. For grid graphs, Kshemkalyani et al. [21] provided an algorithm that runs in
O(min{k, y/n}) time using O(log k) bits memory at each robot. Randomized algorithms were
presented in [24, 8] mainly to reduce the memory requirement at each robot.

Recently, Kshemkalyani et al. [20] provided an algorithm for arbitrary graphs with
time O(min{m, kA}) when all robots can communicate and exchange information in every
round (that is even the non-co-located can communicate and exchange information, which is
called the global communication model). The global model comes handy while dealing with
subsuming the multiple DFS traversals that meet in the transient chain or meeting graph.
The information each robot can have allows the head node of the highest ID DFS traversal
(satisfying a certain property) in the transient chain/meeting graph to ask the head nodes
of the rest of the DFS traversals to stop growing their DFS tree. This makes sure that one
DFS traversal always grows and others stop as soon as they find that they were met by the
DFS traversal that is of higher ID then theirs. The result presented in this paper is different
since only the co-located robots can communicate and it is called the local communication
model. In the local model, it is not possible to extend the idea that is developed for the
global model. For grid graphs, Kshemkalyani et al. [21] provided a O(v/k) time algorithm
with O(log k) bits at each robot in the global model.

DISPERSION in anonymous dynamic (undirected) graphs was considered in [22] where
the authors provided some impossibility, lower, and upper bound results. Dispersion under
crash faults was considered in [27] and under Byzantine faults was considered in [25, 26]
establishing a spectrum of interesting results.

8:5

OPODIS 2021

8:6

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

The related problem of exploration has been quite heavily studied in the literature for
specific as well as arbitrary graphs, e.g., [2, 4, 9, 15, 14, 17, 23]. It was shown that a robot can
explore an anonymous graph using ©(D log A)-bits memory; the runtime of the algorithm
is O(AP*1) [15]. In the model where graph nodes also have memory, Cohen et al. [4]
gave two algorithms: The first algorithm uses O(1)-bits at the robot and 2 bits at each
node, and the second algorithm uses O(log A) bits at the robot and 1 bit at each node.
The runtime of both algorithms is O(m) with preprocessing time of O(mD). The trade-off
between exploration time and number of robots is studied in [23]. The collective exploration
by a team of robots is studied in [14] for trees. The dual of the DISPERSION problem is
gathering, which has been extensively studied, e.g., [10, 16]. Another problem related to
DISPERSION is the scattering of k robots on graphs. This problem has been mainly studied
for rings [11, 30] and grids [3]. Recently, Poudel and Sharma [28, 29] provided improved time
algorithms for uniform scattering on grids. Furthermore, DISPERSION is related to the load
balancing problem, where a given load at the nodes has to be (re-)distributed among several
processors (nodes). This problem has been studied quite heavily in graphs, e.g., see [7]. We
refer readers to [12, 13] for other recent developments in these topics.

Roadmap. We discuss model details in Section 2. We discuss the single-source DFS traversal
in Section 3. We then present our (synchronous) multi-source DFS traversal algorithm in
Section 4. We prove the correctness, time, and memory complexity of our algorithm in
Section 5 (i.e., Theorem 1). We then discuss the extensions to the asynchronous setting,
proving Theorem 2. Finally, we conclude in Section 6 with a short discussion.

2 Model

Graph. Let G = (V, E) be a connected, unweighted, and undirected graph of n nodes, m
edges, and maximum degree A. G is anonymous — nodes do not have identifiers but, at any
node, its incident edges are uniquely identified by a port number in the range [0, — 1], where
d is the degree of that node. (A is the maximum among the degree § of the nodes in G.) We
assume that there is no correlation between two port numbers of an edge. Any number of
robots are allowed to move along an edge at any time (i.e., unlimited edge bandwidth). The
graph nodes are memory-less (do not have memory).

Robots. Let R = {r1,r2,...,7r%} be the set of k& < n robots residing on the nodes of G. No
robot can reside on the edges of GG, but one or more robots can occupy the same node of
G, which we call co-located robots. In the initial configuration, we assume that all £ robots
in R can be in one or more nodes of G but in the final configuration there must be exactly
one robot on k different nodes of G. Suppose robots are on k' < k nodes of G in the initial
configuration. We denote by ¢ < k’ the number of nodes in the initial configuration which
have at least two robots co-located on them.

Each robot has a unique [log k]-bit ID taken from the range [1, k]. When a robot moves
from node u to node v in G, it is aware of the port of u it used to leave u and the port of v
it used to enter v. We do not restrict time duration of local computation of the robots. The
only guarantee is that all this happens in a finite cycle of “Communicate-Compute-Move”
(defined below) and we measure time with respect to the number of cycles until DISPERSION
is achieved. Furthermore, it is assumed that each robot is equipped with memory. The
robots do not experience fault.

A.D. Kshemkalyani and G. Sharma

Communication Model. This paper considers the local communication model where only
co-located robots at a graph node can communicate and exchange information. This model
is in contrast to the global communication model where even non-co-located robots (i.e., at
different graph nodes) can communicate and exchange information.

Time Cycle. An active robot r; performs the “Communicate-Compute-Move” (CCM) cycle
as follows. Communicate: Let r; be on node v;. For each robot r; € R that is co-located at
v;, T; can observe the memory of r;, including its own memory; Compute: r; may perform an
arbitrary computation using the information observed during the “communicate” portion of
that cycle. This includes determination of a (possibly) port to use to exit v;, the information
to carry while exiting, and the information to store in the robot(s) r; that stays at v;; Move:
r; writes new information (if any) in the memory of a robot r; at v;, and exits v; using the
computed port to reach to a neighbor node of v;.

Robot Activation. In the synchronous setting, every robot is active in every CCM cycle. In
the asynchronous setting, there is no common notion of time and no assumption is made on
the number and frequency of CCM cycles in which a robot can be active. The only guarantee
is that each robot is active infinitely often.

Time and Memory Complexity. For the synchronous setting, time is measured in rounds.

Since a robot in the asynchronous settings could stay inactive for an indeterminate but finite
time, we bound a robot’s inactivity introducing the idea of an epoch. An epoch is the smallest
interval of time within which each robot is guaranteed to be active at least once [5]. Let ¢;
be the time at which a robot r; € R starts its CCM cycle. Let t; be the time at which the
last robot finishes its CCM cycle. The time interval ¢; —¢; is an epoch. Another important
parameter is memory — the number of bits stored in persistent memory at each robot.

3 DFS traversal of a Graph (Algorithm DFS(k))

We describe here a single-source DFS traversal algorithm, DFS(k), that disperses all k robots

in the set R(v) situated at a node v initially to exactly k nodes of G, solving DISPERSION.

DFS (k) will be heavily used in Section 4 as a basic building block.

Each robot r; stores in its memory five variables. (i) parent (initially assigned L), for a
settled robot denotes the port through which it first entered the node it is settled at; (ii)
child (initially assigned —1), for an unsettled robot r; stores the port that it has last taken
(while entering/exiting the node). For a settled robot, it indicates the port through which
the other robots last left the node except when they entered the node in forward mode for
the second or subsequent time; (iii) treelabel (initally assigned min{R(v)}) stores the ID of
the smallest ID robot the tree is associated with; (iv) state € {forward, backtrack, settled}
(initially assigned forward). DFS(k) executes in two phases, forward and backtrack [6];
(v) rank (initialized to 0), for a settled robot indicates the serial number of the order in
which it settled in its DFS tree. The algorithm pseudo-code is shown in Algorithm 1. The
robots in R(v) move together in a DFS; leaving behind the highest ID robot at each newly
discovered node. They all adopt the ID of the lowest ID robot in R(v) which is the last to
settle, as their treelabel. The algorithm executes in forward and backtrack modes.

» Theorem 3 ([19]). Algorithm DFS(k) solves DISPERSION for k < n robots initially
positioned on a single node of an arbitrary anonymous graph G of n memory-less nodes, m
edges, and degree A in min{4dm — 2n+ 2, 4kA} rounds using O(log(k + A)) bits at each robot.

8:7

OPODIS 2021

8:8 Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Algorithm 1 Algorithm DFS(k) for DFS traversal of a graph by k robots from a rooted
initial configuration. Code for robot i. r is robot settled at the current node.

1 Initialize: child + —1, parent + L, state < forward, treelabel +— min{R(v)}, rank < 0
2 for round =1 to min{4m — 2n + 2,4kA} do

3 child < port through which node is entered
4 if state = forward then
5 if node is free then
6 rank < rank + 1
7 if i is the highest ID robot on the node then
8 state < settled, i settles at the node (does not move henceforth),
parent < child, treelabel + lowest ID robot at the node
9 else
10 child < (child + 1) mod 0, r.child < child
11 if child = parent of robot settled at node then
12 L state < backtrack
13 else
14 L state < backtrack
15 else if state=backtrack then
16 child < (child + 1) mod 6, r.child < child
17 if child # parent of robot settled at node then
18 L state < forward
19 move out through child

4 The Algorithm

The root of a DFS ¢ (which equals the identifier (treelabel)) is the node where the first robot
settles. This is the settled robot having rank = 1. The head of a DFS i is the node where
the unsettled robots (if any) of that DFS are currently located at, or else it is the node where
the last robot of that DFS settled. Node root(i) is reachable by following parent pointers;
node head(i) is reachable by following child pointers.

In the initial configuration, if robots are at k' < k nodes (k' = k solves DISPERSION in
the first round without any robot moving), k' DFS traversals are initiated in parallel. A
DFS i meets DFS j if the robots of DFS ¢ arrive at a node where a robot from DFS j is
settled. Node z is called a junction node of head(i). If robots from multiple DFSs/nodes
arrive at a node where there is no settled robot, a robot from the DFS with the highest ID
settles in that round and the other DFSs are said to meet this DFS. If DFS ¢ has met DFS j,
we define head(i) to be blocked, else we define head(i) to be free.

The size d; of a DFS i is the number of settled robots in that DFS. When DFS 7 meets
DFS j, the first task is to determine whether d; > d; or d; > d;, where we define a total
order (>) by using the DFS IDs as tiebreakers if the number of settled robots is the same.
d; is known to robots of DFS ¢ at head(i) by reading rank of DFS tree i. The unsettled
robots at head(i) traverse DFS j to head(j) in an exploration to determine d;. If they reach
head(j) without encountering a node with rank greater than d;, then d; > d;. The junction
head(7) is defined to be locked by i if DFS i’s robots are the first to reach head(j) in such an
exploration (and at this time, j’s exploratory robots have yet to return to head(j)). However,
if the exploratory robots of DFS ¢ encounter a node with rank greater than d; before reaching
head(j), they return to head(i) as d; > d;. A key advantage of this mechanism is that
d; > d; can be determined in time proportional to min{d,,d;}.

A.D. Kshemkalyani and G. Sharma

Algorithm 2 Algorithm Exploration to explore parent(i) component on reaching junction
head(i) by DFS of component i.

1 explorers move to root(parent(i)) leaving retrace pointers for return path. Then they follow
child pointers from root(parent(i)) to head(parent(i)). There are 4 possibilities.
2 if dparent(sy > di, i.e., rank > d; is encountered, implying explorers do not reach
head(parent(i)) (possibly the next junction) then
3 return to head(i) junction
4 if head(i) is not locked then
L Collapse_Into_Parent(i)

6 else if head(i) is locked by j then
7 L Collapse__Into_Child(i,j)

8 else if dyorent(s) < di, implying head(parent(i)) is reached (possibly next junction) then
lock head(parent(3))

10 traverse parent(i) informing each node (a) that parent(i) is locked and will be
collapsing, and also (b) value of dparent(iy, and return to head(parent(i))
11 wait until parent(i)’s explorers return from parent(parent(i))

12 follow action (Collapse Into_Child(parent(i),)) which will be determined on their
return (if head(parent(i)) is not junction, execute Collapse__Into_ Child(parent(i),1))

13 else if exploring robots find parent(i) is collapsing or learn that parent(i) is locked and will
be collapsing then
14 L Parent_Is_Collapsing

15 else if explorers E’s path meets another explorers F'’s path then

16 wait until F' return

17 if parent(i) is collapsing then

18 L Parent__Is_ Collapsing

19 else if parent(i) is not collapsing then
20 L continue E’s exploration

Knowing the sizes, the general idea is that if d; is greater, DFS j is subsumed by DFS i
and DFS j collapses by having all its robots collected to the head(i) to continue DFS . This
collapse however cannot begin immediately because j’s robots may be exploring the DFS
[it has met and they must return to head(j) before j starts its collapse. (The algorithm
ensures there are no such cyclic waits to prevent deadlocks.) However, if d; is greater, DFS
i gets subsumed, i.e., DFS j subsumes DFS i. The free robots of i exploring j return to
head(i), DFS i collapses by having all its robots collected to head(i), and then they all move
to head(j) to continue DFS j. Now, these above policies regarding which DFS collapses and
gets subsumed by which other have to be adapted to the following fact — due to concurrent
actions in different parts of G, a DFS j may be met by different other DFSs, and DFS j
may in turn meet another DF'S concurrently. Further, transitive chains of such meetings can
occur concurrently. This leads us to formalize the notion of a meeting graph.

» Definition 4 (Meeting graph). The directed meeting graph G' = (V' E’) is defined as
follows. V' is the set of concurrently existing DFS IDs. There is a (directed) edge in E' from
i to j if DFS i meets DFS j.

For an edge (4, j) in the meeting graph, DFS j is defined to be parent(i) and DFS i is
defined to be child(j). The size of a node in the meeting graph is defined to be the size
of the DFS for that node. Nodes in V' have an arbitrary in-degree (< k') but out-degree
at most 1. There may also be a cycle in each connected component of G’. Henceforth, we

8:9

OPODIS 2021

8:10 Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Algorithm 3 Algorithms Collapse Into_ Child, Collapse Into_ Parent, and Par-

ent_Is Collapsing.

1

Collapse__Into_ Child(1,5)

2 explorers of i go from head(i) locked by j to root(7)

w

RIS

o

10
11
12
13

14
15
16
17
18
19

20
21

22
23

24

25
26
27

28

29

30

31

explorers of ¢ do i’s DFS tree traversal collecting all robots to collapse path (root(i) to
head(j)) marked by retrace pointers, waiting until collapsing children = 0 at each node
from root(i) collect all robots accumulated on collapse path to j’s junction head(j)
collapsed robots change ID treelabel to j
if head(j) is locked by | then
| Collapse__Into_Child(j,1)

else if head(j) is not locked then
L continue j’s DFS

Collapse__Into__Parent (i)
robot at head(i) increments collapsing_ children
explorers of ¢ go from head(i) to root(i) leaving collapse pointers
explorers of ¢ do i’s DFS tree traversal collecting all robots to collapse path (root(i) to
head(i)) marked by collapse pointers, waiting until collapsing__children = 0 at each node
from root (i) collect all robots accumulated on collapse path to ¢’s junction head(i)
robot at head(i) decrements collapsing__children
collapsed robots change 1D treelabel to parent(i)
explorers and collapsed robots go to head(parent(i)) by following child pointers
if parent(i) along the way is found to be collapsing then
L collapse with it; break()

if head(parent(i)) is free then
L continue parent(i)’s DFS

else if head(parent(i)) is blocked and possibly also locked then
wait until parent(i) collapses (and collapse with it) or becomes unblocked (and continue
parent(i)’s action)

Parent__Is Collapsing

retrace path to head(7) junction
if di < dparent(s) and head(i) junction is not locked then
L Collapse_Into_Parent(i)

else if d; > dparent(s) and head(i) junction is not locked and remains unlocked until
parent(i)’s collapse reaches head(i) then
L unsettled robots get absorbed in parent(i) during its collapse

else if head(i) junction of i (is locked by j) or (gets locked by j before parent(i)’s collapse
reaches head(i) and d; > dparent(s)) then
L Collapse__Into__Child(i, j)

focus on a single connected component of G’ by default; other connected components are
dealt with similarly. The algorithm implicitly partitions a connected component of G’ into
(connected) sub-components such that each sub-component is defined to have a master node

M

In this process, the at most one cycle in any connected component of G’ is also broken. In
each sub-component, the master node M has the highest value of d and the other smaller
(or equal sized) nodes, i.e., DFSs, get subsumed. The pseudo-code is given in Algorithm 2
and in Algorithm 3. In Algorithm 2, j is explored by robots from 4 to determine if d; > d;
(therefore, we sometimes call Algorithm 2 Exploration), and the appropriate procedures for
collapsing and collecting are given in Algorithm 3 (therefore, we sometimes call Algorithm 3

into which all other nodes of that sub-component are subsumed, directly or transitively.

various procedures invoked).

A.D. Kshemkalyani and G. Sharma

Algorithm 4 Algorithm Determine_Master(i) to identify master component in which
component ¢ will collapse.

1 master(i)

2 if dparent(iy > di then

3 t1 « time when explorers of i return to head(i) from parent ()

4 t2 (initialized to co) < the time, if any, when first child j locks head(7)
5 if t1 < t2 then w < parent(i)

6 else if t1 > t2 then w «+ j

7

| return(master(w))
8 else
9 if 3 a first child j to lock head(i) then return(master(j))
10 | else return()

For any given node i € V', its master node is given as per Algorithm 4. Note that this
algorithm is not actually executed and the master node of a node need not be known — it is
given only to aid our understanding and in the complexity proof. If master(j) gets invoked
directly or transitively in the invocation of master(i) for any 7, then ¢ must be subsumed and
its robots collected completely before j gets subsumed and its robots are collected completely.

A path in G’ is an increasing (decreasing) path if the node sizes along the path are increas-
ing (decreasing). For a master node M, the nodes z in its sub-component of G’ that directly
and transitively participate in only Collapse_ Into_ Parent and no Collapse_ Into_Child
until collapsing into M form the set X (M). Whereas the (other) nodes y in the sub-component
that directly and transitively invoke at least one Collapse_ Into_Child until they collapse
into M belong to the set Y (M). The component C(M) = X(M)UY (M)U{M}.

A component C(M) is acyclic. For an edge (i,j), ¢ is the child and j is the parent.
Nodes in the set X have an increasing path to the master node. They collapse into and get
subsumed by the master node (possibly transitively) by executing Collapse_ Into_Parent.
Nodes in the set Y are reachable from the master node on a decreasing path — such nodes
are termed Y _ trunk nodes, or have a increasing path to a Y_ trunk node — such nodes
are termed Y _ branch nodes. Nodes in Y (i.e., in Y_trunk and Y_ branch) collapse into
and get subsumed by the master node, possibly transitively. First, the Y _branch nodes
collapse into and get subsumed by their ancestors on the increasing path ending in a
Y _trunk node by executing Collapse_ Into_ Parent; then the Y _trunk nodes collapse
and get subsumed into their child nodes along Y _ trunk and then into the master node by
executing Collapse__Into_Child.

After nodes in C(M) get subsumed in M, the master node grows again until involved in
more meetings and new meeting graphs are formed. Thus the meeting graph is dynamic. We
define a related notion of a meeting tree that represents which nodes (DFSs) have met and
been subsumed by which master node, in which meeting sequence number of meetings for
each such node.

» Definition 5 (Meeting tree). The k' initial DFSs i form the k' leaf nodes (i,0) at level 0.
When o nodes (a;, h;) fori € [1,a] meet in a component and get subsumed by the master
node with DFS identifier M of the meeting graph, a node (M, h), where h = 1+max;c,q) hi,
is created in the meeting tree as the parent of the child nodes (a;, h;), for i € [1,a].

For a node (M, h), h is the length of the longest path from some leaf node to that node. We
now formally define X (M, h), Y(M,h), and C(M, h).

8:11

OPODIS 2021

8:12

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

» Definition 6 (Component C(M, h)).

1. X (M, h) is the set of child nodes in the meeting tree that directly and transitively participate
only in Collapse__Into_ Parent until collapsing into (M, h).

2. Y(M, h) is the set of child nodes in the meeting tree that directly and transitively participate
in at least one Collapse_ Into_Child until collapsing into (M, h).

3. C(M,h) = X(M,h) UY(M,h) U {(M,prev(h))}, where for any z € C(M,h), z =
(a,prev(h)) and prev(h) is defined as the highest value less than h for which node

(a,prev(h)) has been created.

For any node (i, h), we also define next(h) as the value b’ such that (i, h) € C(M,h’) for
some M. If such a h' does not exist, we define it to be k’.
We omit & in (i, h) and C (M, h) in places where it is understood or not required.

5 Analysis of the Algorithm

In our algorithm, a common module is to traverse an already identified DFS component
with nodes having the same treelabel. This can be achieved by going to root(i) and doing
a (new) DFS traversal of only those nodes (using a duplicate set of variables state and
parent for DFS); if you reach a node which has no settled robot or a settled robot having
a different treelabel, one simply backtracks along that edge. Such a DFS traversal occurs
in (i) Algorithm Exploration when d; > dyarent(sy and i locks head(parent(i)) junction, (ii)
procedure Collapse_Into_Child, and (iii) procedure Collapse_ Into_Parent, and can be
executed in 4Ad; steps. In (ii) and (iii), a settled robot not on the collect path gets unsettled
and gets collected in the DFS traversal to the collect path when the DFS backtracks from
the node where the robot was settled.

The time complexity of Algorithms 2 and 3 is as follows.

1. Algorithm 2 takes time bounded by 8d;A + 3d;. The derivation is as follows.

a. min{d;, dparent(iy} to go from head(i) to root(parent(i)).

b. 4min{d;, dparent(i) }A to go then to head(parent(i)).

c. if dpgrent(i) > di, then 2d; to return to head(i) via root(parent(i)).

d. if dparent(s) < di and i locks head(parent(i)), then 4dpgrent(i) A + 2dparent(iy for DFS
traversal of parent(i) component from root(parent(i)) plus to root(parent(i)) from
head(parent(i)) and back.

If explorers E’s path meets explorers F’s path, the explorers E wait until F’s return.

This delay is analyzed later.

2. In Algorithm 3,

a. Collapse_Into_Child takes 4d; A + 2d;.

Time d; to go from head(i) to root(i); 4Ad; for a DFS traversal of ¢ component from
root(i); and d; to collect the accumulated robots from root(i) to head(j) along the
collapse path.

b. Collapse_Into__Parent takes 4d; A + 2d; + 4dparent (i) A-

Time d; to go from head(i) to root(i); 4Ad; for a DFS traversal of i component from
root(i); d; to collect the accumulated robots from root (i) to head(i); and 4dpgrent(i) A
to then go to head(parent(i)).

c. The cost of Parent Is_Collapsing is min{d;, dparent(iy} but is subsumed in the cost
of Algorithm 2.

This cost is to return to head(i) from the exploration point in parent(i) component
where it is invoked.

A.D. Kshemkalyani and G. Sharma

The contributions to this time complexity by the various nodes in C(M) are as follows.
(The cost is the sum of Algorithm Ezploration plus appropriate invoked procedure costs.)

1. Each z € X executes Collapse_Into_Parent after Exploration, as it is part of an
increasing path. So it contributes the sum of the two contributions, giving 12d,A + 5d,, +
4dparent(:c)A~
The 4dpgrent(x)A is for traversing to head(parent(x)) after x collapses to head(x), and
this can be done concurrently by multiple = that are children of the same parent. As each
x can be thought of as the parent of another element in X, so the cost of subsuming the
X set is 3 oy 16d. A+ 5d, + (if X # 0, 4dyA).

2. Each y € Y_ branch executes Collapse__Into_ Parent after Exploration, as it is part of
an increasing path. So it contributes the sum of the two contributions, giving 16d,A+5d,,.
Each y € Y_ trunk executes Collapse_ Into_Child after Exploration, as it is part
of a decreasing path. So it contributes the sum of the two contributions, giving
12d,A + 5d,, plus it potentially acts as a parent of a node on a Y _ branch that executed
Collapse_Into_Parent so it contributes an added 4d,A, giving a total of 16d,A + 5d,,.

3. Node M will contribute in Algorithm Exploration 4 min{das, dparent(ar) }A + min{dyy,-
dparent(M) }s PIUS 4dparent(vr) A + 2dparent(ar) as parent(M) is smaller. Thus, a total of
8parent(m)A+3dparent(ary. This can be counted towards a contribution by parent(M) =
y € Y, thus the contribution of each y € Y can be bounded by 24d,A + 8d, with M
contributing nil.

There is another source of time overhead contributed by nodes in Y__trunkU{M}. Nodes
y, i.e., head(y) € G, for y € Y_trunk, are locked by their child. Before this can happen,
other children of y may be exploring y by leaving retrace pointers. However, due to the
O(log(k + A)) bits bound on memory at each robot, a retrace pointer at a node in y can
be left by only O(1) children, not by O(k’) children. Therefore in Algorithm 2, if explorers
E path meets another explorers F' path, they wait at the meeting node until F' return. If
they learn that the y is collapsing, they retrace to their head nodes else if they learn y is not
collapsing, they continue their exploration towards head(y) but may be blocked again if their
path meets another explorers’ path. This waiting due to concurrently exploring children
introduces delays.

A child of y outside Y _ trunk may be either locked (1) or unlocked (u) and is also smaller
(S) or larger (L) than y. Thus, there are 4 classes of such children.

1. Swu-type children belong to Y_ branch and their introduced delays are already accounted
for above.

2. Each Lu-type and Li-type child does not contribute any delay. This is because even
though these children are larger than y, they are not the child in Y who succeeds in
locking y; the child in Y who locks y does so before such Lx-type children try to explore
y and try to lock y. Such L*-type children learn that y is collapsing.

3. Each Sl-type child node b contributes delay 4dyA + 3dp,. The sum of such delays at y is
denoted t,(ps). Later, we show how to bound the sum of such delays across multiple M,
h and y.

Similar reasoning can be used for M delaying its children in X due to explorations of
other children z ¢ X. Specifically, (1) type Su child z of M: A child z & X. (2) type Lx
child z of M: A such a child z. If it existed, it would have succeeded in locking M and M
would not be master. (3) Each type S child z contributes delay 4d,A + 3d,, whose sum for
all z is denoted by (a7 prev(n))- Later, we show how to bound the sum of such delays across
multiple M and h.

8:13

OPODIS 2021

8:14

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Note that for any = € X, (1) each type Su child belongs to X and the delay is already
accounted for in Collapse_Into_Parent executed by x. (2) each type Sl child and type Lx
child does not contribute any delay beyond that of Collapse Into_Parent executed by x and
already accounted for. (The type Lx child does not succeed in locking head(x) and learns
that x is collapsing into its parent.)

Thus far, the size d; of node i referred to the number of settled robots in it, and is
henceforth referred to as dj. More specifically, di , will refer to the number of settled robots
up until just before the next(h) meeting of i. The number of unsettled robots in 7 up until
just before the next(h) meeting of i is referred to as dj';. Let T'(M,h) denote the time to
settle DFS M up until meeting at depth A of the meeting tree, and from then on until the
next meeting (next(h)) for M. The collapse and collection time to head(M) has components
c¢(M,h) and g(M,h). ¢(M,h) has a upper bound factor of (24A+8) forz € X andy €Y
as derived above. The time for dispersion/settling after collection and until the next(h)
meeting is s(M, h). These are defined as follows.

0 ifh=0

C(Mv h) = (24A + 8)(2936)((1\/[,11) d; + ZyEY(M,h) d;/) if h>0 (1)
(+4A(M,prev(h)) if X(M’ h) 7& (Z))
AA(d3y 1 = A prew(ny) if next(h) < k'

(ML) = 4A(Zx€X(M,h) ds + Zyey(M’h) d; otherwise @)
+ 2 sexmn da + 2yeyvan) dy
+d]\/1 pre'u(h))
0 ith=0

g(M,h) = - (3)
Zer(M,h) ty + L prevny) iR >0

This process of collapsing and collecting for instance (M, h) began at the very latest
(since the start of the algorithm) at the time at which the latest of the z nodes, 2/, got
blocked. Thus,

f(M,h)
T(M,h) <c(M,h) +s(M,h)+g(M,h) +T(z',prev(h)),

x = argmay | (x,prev(h))eX(M,h)U{(]M,prev(h))}T(xaprev(h))v
C(*, 0) = 0>g<*a 0) =0, 8(*) 0) = i,O' (4)

We break T'(M, h) into two series, and bound them separately. The two series are:

S1= F(M,h) + f(z' (M, h), prev(h))
+f(2' (2" (M, h),prev(h)), prev(prev(h))) + - + f(*,0)
52 = M.k F Y@ (M h) prevn)) + o+ (9(x,0) = 0)
= ooty + > ty+-+(> t,=0)
yeY (M,h) yEY (2 (M, h),prev(h)) yeY (, 0)
(0 prev(n)) + t@ (M,h) previprev(n))) T+ (s prev)) = 0) (5)

» Lemma 7. The sum in the series S1 is O(kA).

A.D. Kshemkalyani and G. Sharma

Proof. We consider levels of the meeting tree from level 1 upwards to h (< k' —1). Let
1 DFS components collapse and merge into one of them, and let the size (i.e., number of
settled robots) of each component be d. We consider two extreme cases and show for each
that the lemma holds.

1. Case 1: At each level when components collapse and collect in a master component,
immediately afterwards (before the collected unsettled robots can settle) the master
component meets another component at the next level, and the collapse and collection
happen at the next level. Again, immediately afterwards, the (new) master component
meets another component at the yet next higher level, and so on till level h. This case
assumes s(i, %) = 0.

a. At level 1, n components of size d each merge into one of size d in O(ndA) time, leading
to a total of nd robots in the master component.

b. At level 2, components of size d each merge into one of size d in O(ndA) time, leading
to a total of n2d robots in the master component.

c. At level h, n components of size d each merge into one of size d in O(ndA) time,
leading to a total of n"d robots in the master component.

n"d is at most the maximum number of robots k. Solving k = n'd, h = log,, %. Therefore

the maximum total elapsed time until the h-th level meeting and collapse takes place is

Max. elapsed time is O(h(ndA)) = O(ndAlog,, S)

This maximum elapsed time is O(kA), considering both extreme cases (a) nd = O(1) and
(b) nd = O(k).

2. Case 2: At each level when components collapse and collect in a master component, the
collected robots (almost) fully disperse after which the master component meets another
component at the next level, and the collapse and collection happen at the next level.
Again, the robots collected by the (new) master component (almost) fully disperse after
which the master component meets another component at the yet next higher level, and
so on till level h. This case assumes V7, s(i, j) satisfies next(j) £ k'

a. At level 1, n components of size d each merge into one of size nd in O(ndA) time,
leading to a total of nd robots in the master component.

b. At level 2, n components of size nd each merge into one of size n?d in O(n?dA) time,
leading to a total of n%d robots in the master component.

c. At level h, n components of size " ~!d each merge into one of size n""d in O(n"dA)
time, leading to a total of n"d robots in the master component.

n"d is at most the maximum number of robots k. Solving k = n"d, h = log,, %. Therefore

the maximum total elapsed time until the h-th level meeting and collapse/dispersion

takes place is

h
-1
O(A(md+ nd+nPd+ ...+ n"d)) = O(Amf; —)

_ And log, %

= 0 (et~ 1)
And k
=052 -)

= O(kA)

There is also a special case in which a single component M, each time (Vh'), grows
and meets other fully dispersed component(s) that collapse (transitively) in to it and no
component meets M. Here, YA/, X(M,h') = @ as all subsumed components belong to
Y (M, 1) sets. Observe that »_,, c¢(M,h') =3, s(M,1') = O(kA).

The lemma follows. |

8:15

OPODIS 2021

8:16

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

» Lemma 8. The sum in the series S2 is O(kA).
Proof is deferred to Appendix due to space constraints.

» Theorem 9. Algorithm Exploration (Algorithm 2) in conjunction with Algorithm DFS(k)
correctly solves DISPERSION for k < m robots initially positioned arbitrarily on the nodes
of an arbitrary anonymous graph G of n memory-less nodes, m edges, and degree A in
O(min{m, kA}) rounds using O(log(k + A)) bits at each robot.

Proof. T'(M, h) is the sum of the series S1 and S2 which are both O(kA) by Lemmas 7 and 8.
So the time till termination of the Algorithms 1 (DF'S), 2 (Exploration), and Algorithm 3
(various procedues invoked) is O(kA). As k < n, this is O(nA). Now observe that in our
derivations (Lemmas 7 and 8), the A factor is an overestimate. The actual upper bound is
O(Y_:_, 6;) which is O(m), the number of edges in the graph. This upper bound is better
when m < kA and hence the time complexity is O(min{m, kA}).

The highest level node (i, k) in each tree in the final forest of the meeting graph represents
a master node that has never been subsumed and always alternated between growing and
subsuming other components, and growing again. The growth happens as per Algorithm 1
(DFS) which correctly solves DISPERSION by Theorem 3. Whereas the subsuming of other
components merely collects the robots of the other components to the head node head(7)
(Algorithm Exploration) which subsequently get dispersed by the growing phases (Algorithm
DF'S). Hence, DISPERSION is achieved.

The retrace and collapse variable at each robot used in Algorithm 2 and 3 are O(log A).
collapsing__children takes O(log k) bits and a single bit each is required to track whether
the component is locked and whether it is collapsing. The space requirement of Algorithm 1
was shown in Theorem 3 to be (log(k + A)) bits. The theorem follows. <

Proof of Theorem 1. Follows from Theorem 9. <

Proof of Theorem 2. In the asynchronous setting, in every CCM cycle, each robot at a
node u determines x, the number of co-located robots, if any, that should be moving with
it to node v. It then moves as per its own schedule. On arriving at v, it does not start
its next CCM cycle until « robots have arrived from u. This essentially constitutes one
epoch and ensures that the robots that move together in a round in a synchronous setting
move together in one epoch in the asynchronous setting. With this simple modification, the
algorithm given for the synchronous setting works for the asynchronous setting. The space
and time complexities, as given in Theorem 1, carry over to the asynchronous setting. <«

6 Concluding Remarks

In this paper, we have presented a deterministic algorithm that solves DISPERSION, starting
from any initial configuration of k& < n robots positioned on the nodes of an arbitrary anonym-
ous graph G having n memory-less nodes, m edges, and degree A, in time O(min{m, kA})
with O(log(k + A)) bits at each robot. This is the first algorithm that is simultaneously
optimal w.r.t. both time and memory in arbitrary anonymous graphs of constant degree,
i.e., A = O(1). This algorithm improves the time bound established in the best previously
known results [19, 31] by an O(log ¢) factor and matches asymptotically the time and memory
bound of the single-source DFS traversal. This algorithm uses a non-trivial approach of
subsuming parallel DFS traversals into single one based on their DFS tree sizes, limiting the
subsumption process overhead to the time proportional to the time needed in the single-source
DFS traversal. This approach might be of independent interest.

A.D. Kshemkalyani and G. Sharma

For future work, it will be interesting to improve the existing time lower bound of Q(k) to

Q(min{m, kA}) or improve the time bound to O(k) removing the O(A) factor. The second
interesting direction will be to consider faulty (crash and/or Byzantine) robots.

—— References

1

10

11

12

13

14

15

16

17

18

19

John Augustine and William K. Moses Jr. Dispersion of mobile robots: A study of memory-time
trade-offs. In ICDCN, pages 1:1-1:10, 2018.

Evangelos Bampas, Leszek Gasieniec, Nicolas Hanusse, David Ilcinkas, Ralf Klasing, and
Adrian Kosowski. Euler tour lock-in problem in the rotor-router model: 1 choose pointers and
you choose port numbers. In DISC, pages 423-435, 2009.

L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform scattering of autonom-
ous mobile robots in a grid. In IPDPS, pages 1-8, 2009.

Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and David Peleg. Label-
guided graph exploration by a finite automaton. ACM Trans. Algorithms, 4(4):42:1-42:18,
August 2008.

Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hiillmann, Barbara
Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Mértens, Friedhelm Meyer auf
der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann, and
Daniel Wonisch. A new approach for analyzing convergence algorithms for mobile robots. In
ICALP, pages 650-661, 2011.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput., 7(2):279-301, October 1989.

Archak Das, Kaustav Bose, and Buddhadeb Sau. Memory optimal dispersion by anonymous
mobile robots. In CALDAM, pages 426439, 2021.

Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pajak, and Przemyslaw Uznanski.
Fast collaborative graph exploration. Inf. Comput., 243(C):37-49, August 2015.

Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic
rendezvous in graphs. Algorithmica, 46(1):69-96, 2006. doi:10.1007/s00453-006-0074~-2.
Yotam Elor and Alfred M. Bruckstein. Uniform multi-agent deployment on a ring. Theor.
Comput. Sci., 412(8-10):783-795, 2011.

Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2012. doi:10.2200/S00440ED1V01Y201208DCT010.

Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Mobile
Entities, volume 1 of Theoretical Computer Science and General Issues. Springer International
Publishing, 2019.

Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree
exploration. Networks, 48(3):166-177, 2006.

Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration
by a finite automaton. Theor. Comput. Sci., 345(2-3):331-344, November 2005.

Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theor.
Comput. Sci., 399(1-2):141-156, 2008. doi:10.1016/j.tcs.2008.02.010.

Ajay D. Kshemkalyani and Faizan Ali. Fast graph exploration by a mobile robot. In First
IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE,
pages 115-118, 2018. doi:10.1109/AIKE.2018.00025.

Ajay D. Kshemkalyani and Faizan Ali. Efficient dispersion of mobile robots on graphs. In
ICDCN, pages 218-227, 2019.

Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Fast dispersion of
mobile robots on arbitrary graphs. In ALGOSENSORS, pages 23-40, 2019.

8:17

OPODIS 2021

https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.2200/S00440ED1V01Y201208DCT010
https://doi.org/10.1016/j.tcs.2008.02.010
https://doi.org/10.1109/AIKE.2018.00025

8:18

Near-Optimal Dispersion on Arbitrary Anonymous Graphs

20 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots in the global communication model. In ICDCN, pages 12:1-12:10, 2020.

21 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots on grids. In WALCOM, pages 183-197, 2020.

22 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Efficient dispersion of
mobile robots on dynamic graphs. In ICDCS, pages 732—742, 2020.

23 Artur Menc, Dominik Pajak, and Przemyslaw Uznanski. Time and space optimality of
rotor-router graph exploration. Inf. Process. Lett., 127:17-20, 2017.

24 Anisur Rahaman Molla and William K. Moses Jr. Dispersion of mobile robots: The power of
randomness. In TAMC, pages 481-500, 2019.

25 Anisur Rahaman Molla, Kaushik Mondal, and William K. Moses Jr. Efficient dispersion on an
anonymous ring in the presence of weak byzantine robots. In ALGOSENSORS, pages 154-169,
2020.

26 Anisur Rahaman Molla, Kaushik Mondal, and William K. Moses Jr. Byzantine dispersion on
graphs. In IPDPS, pages 1-10, 2021.

27 Debasish Pattanayak, Gokarna Sharma, and Partha Sarathi Mandal. Dispersion of mobile
robots tolerating faults. In ICDCN, pages 133-138, 2021.

28 Pavan Poudel and Gokarna Sharma. Time-optimal uniform scattering in a grid. In ICDCN,
pages 228-237, 2019.

29 Pavan Poudel and Gokarna Sharma. Fast uniform scattering on a grid for asynchronous
oblivious robots. In SSS, pages 211-228, 2020.

30 Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Uniform deployment of mobile agents in asynchronous rings. In PODC, pages
415424, 2016.

31 Takahiro Shintaku, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Efficient
dispersion of mobile agents without global knowledge. In 5SS, pages 280-294, 2020.

A Appendix

Proof of Lemma 8. The series S2 is the sum of all the waits introduced by children a of
a Y_trunk node y and of M, that are of type SI. Such a Sl child contributes delay up
to 4dd, A + d, (< 4dy A+ 3d, or < 4darA + 3dr, respectively) and then collapses and gets
subsumed by the node b that has locked it. Thus S type children can occur at most &' — 1
times in the lifetime of the execution. Note also that d;, > d, as b to a is a decreasing path.

If all the Si children were never involved in any meeting until now, then > d, < k and
the lemma follows. However we need to also analyze the case where a SI node gets subsumed
by another node b, and then the node b becomes a SI node later. In this case, the robots
subsumed from a may be double-counted in the size of b when b later becomes a type Sl
node. This can happen at most k' — 1 times.

Let 7 DFS components, including the SI component, collapse and merge into one of them,
and let the size (i.e., number of settled robots) of each component be d. We consider two
extreme cases and show for each that the lemma holds.

1. Case 1: When components collapse and are collected, immediately afterwards (before
the collected unsettled robots can settle) the master component becomes a Si-type node,
and the collapse and collection happen again. Again, immediately afterwards, the new
master component becomes a type Sl node, and so on.

a. The first time, n components of size d each merge into one of size d in O(ndA) time,

leading to a total of nd robots in the master component.

b. The second time, 1 components of size d each merge into one of size d in O(ndA) time,

leading to a total of n?d robots in the new master component.

A.D. Kshemkalyani and G. Sharma 8:19

c. The j-th time, n components of size d each merge into one of size d in O(ndA) time,
leading to a total of n7d robots in the master component.

1’d is at most the maximum number of robots k. Solving k = n?d, j = log,, s. Therefore

the total delay introduced in series S2 which is linearly proportional to A times the sum

of sizes of the type Sl components, is O(nAdj).

Sum of delays is O(nAdj) = O(nAdlog, S)

This maximum elapsed time is O(kA), considering both extreme cases (a) nd = O(1) and
(b) nd = O(k).

2. Case 2: When components collapse and are collected, the collected robots (almost) fully
disperse after which the master component becomes a type Sl node, and the collapse
and collection happen again. Again, the collected robots in the new master component
(almost) fully disperse after which the (new) master component becomes a type SI node
and collapses and gets collected, and so on.

a. The first time, 1 components of size d each merge and settle into one of size nd in
O(ndA) time, leading to a total of nd robots in the master component.

b. The second time, 77 components of size nd each merge and settle into one of size n?d in
O(n?dA) time, leading to a total of n?d robots in the master component.

c. The j-th time, 7 components of size 777 ~'d each merge and settle into one of size 77d
in O(n?dA) time, leading to a total of n/d robots in the master component.

n/d is at most the maximum number of robots k. Solving k = nd, j = log,, g. Therefore

the total delay introduced in series S2 which is linearly proportional to A times the sum

of sizes of the type Sl components, is

77h_1)
n—1

And oy s

— %8nad — 1
2 st 1)
And k

= 77—1
O(n—l(d)

= O(kA)

O(A(nd +n*d+n*d+ ... +n'd)) = O(And

=0

The lemma follows. |

OPODIS 2021

Asynchronous Gathering in a Torus
Sayaka Kamei

Hiroshima University, Japan

Anissa Lamani
Strasbourg University, CNRS, ICUBE, France

Fukuhito Ooshita

Nara Institute of Science and Technology, Japan

Sébastien Tixeuil
Sorbonne University, CNRS, LIP6, France

Koichi Wada
Hosei University, Tokyo, Japan

—— Abstract

We consider the gathering problem for asynchronous and oblivious robots that cannot communicate

explicitly with each other but are endowed with visibility sensors that allow them to see the positions
of the other robots.

Most investigations on the gathering problem on the discrete universe are done on ring shaped
networks due to the number of symmetric configurations. We extend in this paper the study of the
gathering problem on torus shaped networks assuming robots endowed with local weak multiplicity
detection. That is, robots cannot make the difference between nodes occupied by only one robot
from those occupied by more than one robot unless it is their current node. Consequently, solutions
based on creating a single multiplicity node as a landmark for the gathering cannot be used. We
present in this paper a deterministic algorithm that solves the gathering problem starting from any
rigid configuration on an asymmetric unoriented torus shaped network.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Autonomous distributed systems, Robots gathering, Torus
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.9

Related Version Full Version: https://arxiv.org/abs/2101.05421 [17]

Funding This work was partially funded by the ANR project ESTATE, ref. ANR-16-CE25-0009-03,
the ANR project SAPPORO, ref. 2019-CE25-0005-1, JSPS KAKENHI No. 19K11828, 20H04140,
20K11685, and 21K11748, and by JST SICORP (Grant#JPMJSC1806).

1 Introduction

We consider autonomous robots [21] that are endowed with visibility sensors and motion
actuators, yet are unable to communicate explicitly. They evolve in a discrete environment,
i.e., their space is partitioned into a finite number of locations, conveniently represented by a
graph, where the nodes represent the possible locations that a robot can be, and the edges
denote the possibility for a robot to move from one location to another.

Those robots must collaborate to solve a collective task despite being limited to computing
capabilities, inputs from the environment, etc. In particular, the robots we consider are
anonymous, uniform, yet they can sense their environment and make decisions according to
their own ego-centered view. In addition, they are oblivious, i.e., they do not remember their
past actions. Robots operate in cycles that include three phases: Look, Compute, and Move
(LCM for short). The Look phase takes a snapshot of the other robots’ positions using a
robot’s visibility sensors. During the Compute phase, a robot computes a target destination

© Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No.9; pp.9:1-9:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.OPODIS.2021.9
https://arxiv.org/abs/2101.05421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Asynchronous Gathering in a Torus

based on its previous observation. The Move phase consists in moving toward the computed
destination using motion actuators. Three execution models have been considered in the
literature using LCM cycles, capturing the various degrees of synchrony between robots.
According to current taxonomy [11], they are denoted as FSYNC, SSYNC, and ASYNC, from
the stronger to the weaker. FSYNC stands for fully synchronous. In this model, all robots
execute the LCM cycle synchronously and atomically. In the SSYNC (semi-synchronous)
model, robots are asynchronously activated to perform cycles, yet at each activation, a robot
executes one cycle atomically. With the weaker model, ASYNC (asynchronous), robots
execute LCM in a completely independent manner. Of course, the ASYNC model is the
most realistic.

In the context of robots evolving on graphs, the two benchmarking tasks are explora-
tion [13] and gathering [4]. In this paper, we address the gathering problem, which requires
that robots eventually all meet at a single node, not known beforehand, and terminate upon
completion.

We focus on the case where the network is an anonymous unoriented torus (or simply
torus, for short). The terms anonymous and unoriented mean that no robot has access to any
kind of external information (e.g., node identifiers, oracle, local edge labeling, etc.) allowing to
identify nodes or to determine any (global or local) direction, such as North-South/East-West.
Torus networks were investigated for the purpose of exploration by Devismes et al.[9].

1.1 Related Work

Mobile robot gathering on graphs was first considered for ring-shaped graphs. Klasing
et al. [18], proposed gathering algorithms for rings with global-weak multiplicity detection.
Global-weak multiplicity detection enables a robot to detect whether the number of robots
on each node is one or more than one. However, the exact number of robots on a given node
remains unknown if more than one robot is on the node. Then, Izumi et al. [14] provided a
gathering algorithm for rings with local-weak multiplicity detection under the assumption
that the initial configurations are non-symmetric and non-periodic, and that the number of
robots is less than half the number of nodes. Local-weak multiplicity detection enables a
robot to detect whether the number of robots on its current node is one or more than one.
This condition was slightly relaxed by Kamei et al. [15]. D’Angelo et al. [6] proposed unified
ring gathering algorithms for most of the solvable initial configurations, using local-weak
multiplicity detection. Overall, for rings, relatively few open cases remain [1], as algorithm
synthesis was demonstrated feasible [19].

The case of gathering in tree-shaped networks was investigated by D’Angelo et al. [7] and
by Di Stefano et al.[20]. Hypercubes were the focus of Bose at el. [2]. Complete and complete
bipartite graphs were outlined by Cicerone et al. [5], and regular bipartite by Guilbault et
al. [12]. Finite grids were studied by D’Angelo et al. [7], Das et al. [8], and Castenow et
al. [3], while infinite grids were considered by Di Stefano et al. [20], and by Durjoy et al. [10].
Results on grids and infinite grids do not naturally extend to tori. On the one hand, the
proof arguments for impossibility results on the grid can be extended for the torus, since
their indistinguishability criterium remains valid. So, if a torus admits an edge symmetry
(the robot positions are mirrored over an axial symmetry traversing an edge), is periodic (a
non-trivial translation leaves the robot positions unchanged), or admits a rotation whose
center is not a robot, the gathering is impossible on a torus. On the other hand, both the
finite and the infinite grid allow algorithmic tricks to be implemented. For example, the finite
grid has three classes of nodes: corners (of degree 2), borders (of degree 3), and inner nodes
(of degree 4), and those three classes permit the robots to obtain some sense of direction. By

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

contrast, the infinite grid makes a difference between two locations: the inner space (the set
of nodes within the convex hull formed by the robot positions) and the outer space (the rest
of the infinite grid), which also give some sense of direction. Now, every node in a torus has
degree 4, and no notion of inner/outer space can be defined. To our knowledge, torus-shaped
networks were never considered before for the gathering problem. The previous work by
Devismes et al [9] only considers the exploration task.

1.2 Our Contribution

We consider the problem of gathering on torus-shaped networks. In more detail, for initial
configurations that are rigid (i.e. where each robot has a unique view of the configuration),
we propose a distributed algorithm that gathers all robots to a single node, not known
beforehand. We only make use of local-weak multiplicity detection: robots may only know
whether at least one other robot is currently hosted at their hosting node but cannot know
the exact number and are also unable to retrieve multiplicity information from other nodes.

Furthermore, robots have no common notion of North and no common notion of handedness.

Finally, robots operate in the most general and realistic ASYNC execution model.

2 Model

We consider a distributed system that consists of a collection of I > 3 robots evolving on a
non-oriented and anonymous (¢, L)-torus (or simply torus for short) of n nodes. Values ¢
and L are two integers such that L < ¢ and (definition borrowed from Devismes et al. [9]):
1. n=/¢x L.
2. Let E be a finite set of edges. There exists an ordering vy, ..., v, of the nodes of the
torus such that Vi € {0,...,n —1}:
if i + £ < n, then {v;, vi40)} € E, else {4, V(i40) mod n} € E.
if i +1 mod £ # 0, then {v;,v;11} € E, else {v;,v;_¢p41} € E.

Given the previous ordering vy, ..., v,_1, for every j € {0,..., L — 1}, the sequence v, g,
Vldgjxts -5 Ve—14jxe is called an £-ring. Similarly, for every k € {0,...,¢ — 1}, the sequence
Vky Vk40y Vk+2x05 - - > Vk(L—1)xe 18 called an L-ring.

On the torus operate K > 3 identical robots, i.e., they all execute the same algorithm
using no local parameters, and one cannot distinguish them using their appearance. In
addition, they are oblivious, i.e., they cannot remember the operations performed before.
No direct communication is allowed between robots; however, we assume that each robot
is endowed with visibility sensors that allow him to see the position of the other robots on

the torus. Robots operate in cycles that comprise three phases: Look, Compute and Mowve.

During the first phase (Look), each robot takes a snapshot to see the positions of the other
robots on the torus. In the second phase (Compute), they decide to either stay idle or move.
In the case they decide to move, a neighboring destination is computed. Finally, in the last
phase (Move), they move to the computed destination (if any).

At each instant, a subset of robots is activated for the execution by an external entity
called scheduler. We assume that the scheduler is fair, i.e., all robots are activated infinitely
many times. The model considered in this paper is the asynchronous model (ASYNC), where
the time between Look, Compute, and Move phases is finite but unbounded. We however
assume that the move phase is instantaneous, so that when a robot performs a look operation,
it sees all robots on nodes and none on edges. Still, even with instant moves, each robot may
move according to an outdated view, i.e., the robot takes a snapshot to see the positions of
the other robots, but when it decides to move, some other robots may have moved already.

9:3

OPODIS 2021

9:4

Asynchronous Gathering in a Torus

(A) Symmetric (B) Periodic (C) Cyarger

—Axes of symmetry —Zsecondary ® Vearget

Figure 1 Instance of some defined configurations.

Let 4,41, ...,€r—1 be the sequence of ¢-rings and let v; o,v;.1,...,v;¢—1 be the sequence
of nodes on ¢; (all operations on the indices are modulo ¢ for the nodes and modulo L for the
l-rings). By #r; j(t) we denote the number of robots on v; ; at time ¢. Node v; ; is empty if
#r; ;(t) = 0. Otherwise, v; ; is occupied. In the case where #r; ;(t) = 1, we say that there is
a single robot on v; ;. By contrast, if #r; ;(t) > 2, we say that there is a multiplicity on v; ;.

In this paper, we assume that robots have a local weak multiplicity detection i.e., for
any robot 7, located at node w, r can only detect a multiplicity on its current node « (local).
Moreover, r cannot be aware of the exact number of robots part of the multiplicity (weak).

During the process, some robots move and occupy some nodes of the torus, and their
positions form the configuration of the system at that time. Initially, we assume that each
node hosts at most one robot, i.e., the initial configuration contains no multiplicities.

For each robot r, only a degraded vision of occupied locations is available. So, the local
vision d; ;(t) of r about node v; ; at time ¢ is 1 if #r; ;(¢) > 0 and 0 otherwise.

For any ¢,5 > 0, let Jifj(t) denote the sequence < d; ;(t),d; j+1(t),...,dij+e—1(t) >,
and let &, ;(t) denote the sequence < di’j(t),di’j,l(t),...,di7j_(g_j)(t) >. Similarly, let
Af;(t) be the sequence < 67 ;(t), 67,1 ;(t), .-, 07, 1, _yy ;(t) > and A7 7(t) to be the sequence
<05 ;(), 05y ;(t), . 05y ;(t) > with s € {+,—}.

The view of a given robot r located on node v; ; at time ¢ is defined as the pair view,(t) =
(Vij(t), m;) where V; j(t) consists of the four sequences A, AFZ A A ordered in
the lexicographical order and m; = 1 if v; ; hosts a multiplicity and m; = 0 otherwise.

By view,(t)(1), we refer to V; ;(t) in view,(t). Given two robots r and 7/, we say that
r has a larger view than 7’ at time ¢, denoted view,(t)(1) > view, (t)(1), if view,(t) is
lexicographically larger than view,(t). Similarly, r is said to have the largest view at time ¢,
if for any robots 1’ # r, not located on the same node as r, view,(t)(1) > view,(t)(1) holds.

A configuration is said to be rigid at time ¢, if for any two robots r and r’, located on
two different nodes of the torus, view, (t)(1) # view, (¢)(1) holds.

A configuration is said to be periodic at time ¢ if there exist two integers ¢ and j such
that i # j, i # 0 mod ¢, j # 0 mod L, and for every robot r(, ., located on £, at node
Vg wy Viewr, . (8)(1) = view, ., .. (t)(1) (An example is given in Figure 1).

As defined by D’Angelo et al. [7], a configuration is said to be symmetric at time ¢, if the
configuration is invariant after a reflection with respect to either a vertical or a horizontal
axis. This axis is called the axis of symmetry (An example is given in Figure 1).

In this paper, we consider asymmetric (¢, L)-torus, i.e., £ # L. We assume w.l.0.g. that
L < ¢. In this case, we can differentiate two sides of the torus. We denote by nb, (C) the
number of occupied nodes on /-ring ¢;, in configuration C'. An /-ring ¢; is said to be maximal
inCifVvje{0,...,L =1} \ {i}, nbe, (C) < nby, (C).

Given a configuration C and two /-rings ¢; and ¢;. We say that ¢; is adjacent to ¢; if
li —jl =1 mod L holds. Similarly, we say that ¢; is neighbor of ¢; in configuration C' if
nbe;(C) > 0 and nby, (C) =0 forany k € {i+1,i4+2,...,j—1}or ke {i—1,i—2,...,5+1}.
We also define dis(z;, ;) to be a function which returns the shortest distance, in terms of
hops, between z; and z; where x; and z; are two nodes of the torus. We sometimes write
x; = r; where 7; is a robot. In this case, x; refers to the node that hosts r;. Finally, we use

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

the notion of d.block to refer to a sequence of consecutive nodes in which there are occupied
nodes each d hops (distance) with no other robot in between. The size of a d.block is the
number of its occupied nodes.

Due to the lack of space, some details and proofs are omitted but can be found in [17].

3 Impossibility Results

This section presents impossibility results that motivate our settings.

Given a graph G = (V, E) and a function m : V' — N associating the number of robots on
a vertex v of V' to v, (G, m) is a configuration whenever ., m(v) is bounded and greater
than zero. Let ¢ be a permutation of G’s vertices that preserves its adjacency relation, so if
(u,v) € E, then (¢(u),dp(v)) € E’, with ¢(G) = (V’, E’). Note that ¢ always exists as the
identity permutation fits this definition. Similarly, given a configuration (G,m), let ¥ be
a permutation of G’s vertices that preserves its adjacency relation and such that for every
node v of V, m(v) = m(¢(v)). Again, ¢ always exists as the identity permutation fits this
definition. Given such a permutation %, the cycle Cy of order p that is generated by v is
{0t = p,p? = pop,..., P71} such that P = ¢°, where ¢° is the identity. Note that
Cy has order 1 if and only if ¢ is the identity. Given a cycle Cy, the orbit of a vertex v
of Vis Cy(v) = {y(v)|y € Cy}. Now, given a configuration (G = (V, E), m), ¢ is partitive
if Cy has order p > 1, and for every v € V, |Cy(v)| = p. That is, ¢ is not reduced to the
identity, and all nodes have the same orbit size. We now recall the Theorem of Di Stefano
and Navarra for general topologies:

» Theorem 1 ([20] Restated). If a configuration (G, m) admits a partitive permutation i,
then (G, m) cannot be gathered.

We specialize the general theorem to our setting:

» Corollary 1. If a torus configuration is invariant by a non-empty series of non-null
translations, a reflection through an edge-axis, or a non-empty series of non-null rotations
whose center does not hold a robot; it is not gatherable.

Next, we show that two robots cannot gather on a torus, even in FSYNC.

» Theorem 2. Starting from a configuration with two robots a and b on different vertices in
a torus with at least two vertices, gathering cannot occur, even in FSYNC.

Finally, we show by induction that without multiplicity detection, the gathering is impossible.

» Theorem 3. Starting from any configuration with K > 2 robots with no multiplicity
detection, gathering in a torus is impossible, even in SSYNC.

4 Algorithm

When robots have only local weak multiplicity detection, multiplicities should be carefully
created as the gathering becomes impossible from a configuration in which there are only two
occupied nodes that both host a multiplicity. In ASYNC model, we need to be extra careful
when it comes to robots with outdated views as they might create unwanted multiplicities
(recall that when a robot moves the configuration might have changed as one or several
robots might have moved once or many times).

9:5

OPODIS 2021

9:6

Asynchronous Gathering in a Torus

Our strategy is to create a sense of direction on a torus to identify the gathering node
and keep this node invariant, preventing the creation of unwanted multiplicities (if the
configuration contains only two occupied nodes, one of these two nodes hosts for sure a
single robot). For this purpose, robots proceed in two phases: first, they create the desired
direction allowing them to identify a single node and then gather on the identified node.
More precisely, let Ciqrge¢ be the set of configurations such that C € Cyarge if the following
properties are satisfied: C' contains three f-rings fsccondarys fmaz and €iarger such that:

(1) €10z is the unique maximal ¢f-ring in C, (2) Lsecondary a0d Ligrger are adjacent to £y,q4-
(3) nby C) =0, (4) Li4rger satisfies exactly one of the following conditions:

nbe,,,..(C) = 1. We refer to the occupied node on £4rger DY Viarger-

nbgmge,,(C') = 2 and f¢qrget hosts a 2.block. We refer to the unique empty node in the

2.block by vigrget-

N4, (C) = 3 and Ligrger hosts a 1.block of size 3. By viqrger, We refer to the occupied

node in the middle of the 1.block.

From a configuration C' € Ciyrget, a direction can be identified: from viqrget t0 raz. The
idea is to make all robots neither on fiax NOT 0N £igrger MOVE tO jOIN Vigrger and then make

weondary (

the remaining robots gather on the node that is on /.« which is adjacent to v¢grget. To

summarize, the proposed algorithm consists of two phases:

1. Preparation Phase. This phase starts from an arbitrary rigid configuration Cy in which
each node hosts at most one robot. Its aim is to reach a configuration C' € Cigrget-

2. Gathering Phase. Starting from a configuration C € Ciurget, the gathering node is
identified, and all robots eventually move to join it i.e., the gathering is achieved.

Let us refer by C,, (respectively C,,) to the set of configurations that appear during the

Preparation (respectively the Gathering) phase. Let C be the current configuration, robots

execute Protocol 1. Observe that Cp, NCp, = 0 and Ciarger C Cp, .

Protocol 1 Main protocol.

if C € Cp, then

Execute Gathering phase
else

Execute Preparation phase

To ease the description of our strategy, we define predicates on a given configuration C":
Unique(C): There exists a unique i € {0,..., L —1} such that V j € {0,..., L —1}\ {3},
nbg]. (C) < nbzi (C)

Empty(C): (C € Ciarget) N (Vi €{0,...,L— 1}, such that 4; # ligrger and €; # Ly,

nbgi (C) = 0).

Partial(C): (C € Ciarger) N (37 €{0,...,L — 1}, such that £; # ligrger and €; # Cpqa,
Given a configuration C, Unique(C) indicates that C contains a unique maximal ¢-ring.
Empty(C) indicates that C' € Ciqrger and all the f-rings, except for £y, and ligrget, are
empty. By contrast, Partial(C) indicates that C' € Cqrger and there exists at least one ¢-ring
besides {145 and £i4rge¢ that is occupied (hosts at least one occupied node).

In our algorithm, in several cases, robots in a single ¢-ring, say ¢;, need to move and align
themselves with respect to the positions of other robots which are on another ¢-ring, say
Ly.. To ease the description of the algorithm, we define a procedure referred to by Align(¢;,
£;.) which makes the robots to perform such alignment i.e., align robots on ¢; with respect
to robots positions on £. When the procedure is called in a configuration C, the following
properties hold on both ¢; and #:

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

Preparation Phase Gathering Phase N

fc v 2\
Cp1 Unique(C)is false pt

Unique(C)is true

[CU"dgf[ned] [Csemi—zsmpzy] [Cseml.—l?nented]

Coriented (Coriented—1
CG'!‘KET\LEH*Z

AN T
Gathering

Figure 2 Transitions among all configurations.

Alzgnt’) Align(£;,€y)
o oy 2

Y Ry 00
umark umark Umark Umark
Allgn £i, 1)) Align(&;, £x)
. 0
umark umark umark umark

Figure 3 Some examples of Align(¢;, (x).

1. nby, (C) = j with j € {2,...,5}, d.e., there are at least two and at most five robots on ¢;.
2. nby,(C) > nby, (C) holds, and either (1) nby, (C) =1 or (2) nby, (C) = 2 and ¢, contains
a 2.block or (3) nby, (C') = 3 and £}, contains a 1.block of size 3.
Let wmark be the node on ¢ that is: occupied if nby, (C) = 1, empty in the 2.block if
nby, (C) = 2, occupied in the middle of the 1.block if nby, (C) = 3. Node Upmqri is used as a
land mark to align robots on ¢; (a detailed description can be found in [17]). To give a better
idea on the purpose of procedure Align, some examples are given in Figure 3. The procedure
makes sure that if a multiplicity is created on ¢; then it is adjacent to u,qri. This allows
the robots to keep track on multiplicities’ positions and also make sure that the occupied
nodes at a border of a 1.block on ¢; host only a single robot.
Figure 2 presents an overview of our strategy showing all the transitions among the
different defined configurations in sections 4.1-4.2.

4.1 Preparation Phase

Let C € Cp1. The purpose of this phase is to reach a configuration C” € Cigrger from C' so
that a direction is defined and the gathering node is identified. For this aim, robots first need
to decrease the number of maximal ¢-rings to reach a configuration C” in which Unique(C")
is true. Then, from configuration C”, robots need to create both fi4rger and secondary t0
reach a configuration C” € Ciarget. To prevent the creation of unwanted multiplicities due to
robots with outdated views, most of the configurations in this phase are kept rigid.

First, let us address the case in which Unique(C) is false (C' contains at least two maximal
£-rings). Robots need to decrease the number of maximal ¢-rings to reach a configuration C’
in which Unique(C”) holds. Two cases are possible depending on whether there is an empty
node on a maximal ¢-ring: if a maximal ¢-ring hosts at least one empty node then, the idea
is to fill one of these empty nodes on a single maximal /-rings. By contrast, if all the nodes
of the maximal ¢-rings are occupied, the idea is to create a single multiplicity on one of the
maximal ¢-rings to decrease their number gradually. Robots to move are chosen carefully

9:7

OPODIS 2021

9:8

L If nbg

Asynchronous Gathering in a Torus

20000 00000 000060
90000 00000 00060
To¥e'e! Yo'lEoeY Yo'oEoleYe! Yol
000 -Ce0ed OeOeld

Configuration C Configuration C’ Configuration C

Figure 4 On the left, r is suppose to move but by moving, it creates a symmetric configuration

C’ shown in the middle. The robot on target-£ on the same L-ring as r moves to u.

in both cases, so that the configuration remains rigid. This is important to prevent having
robots with outdated views. In the following, we refer to a maximal ¢-ring by £;,.x. Robots
behavior in a configuration C' in which Unique(C) holds is as follows:

1. If nb,,, (C) = £ (all the nodes of £yax are occupied). Let Ryax(C) be the set of robots

on a maximal ¢-ring. As C is rigid, all robots in Ryax(C) have a unique view. Let £,,, be
the maximal ¢-ring in C' that hosts the robot with the maximal view in Ryax(C). One
robot r is elected on £,, to move. Its destination is one of its adjacent occupied nodes
on £,,. Robot r is selected as follows: Let R;,(C) C Rmax(C) be the set of robots on £,
which by moving to one of their adjacent occupied node on ¢,,, the configuration reached
remains rigid. Robot r is the robot in R,,(C) which has the biggest view (|R,,(C)| > 0).
on (C) < £ (There is at least one empty node on £,y), the idea is to fill exactly one
of the empty nodes on exactly one of the maximal ¢-ring. Let R(C) be the set of robots
closest to an empty node on a maximal ¢-ring in C. Under some conditions, using the
rigidity of C, one robot of R(C), say r, is elected to move (the one with the largest view).
Its destination is its adjacent empty node toward the closest empty node on a maximal
(-ring, say w, taking the shortest path. Among robots in the set R(C'), the one to move is
the one that does not create a symmetric configuration. If no such robot exists in R(C),
some extra steps are taken beforehand to ensure that the configuration remains rigid. We
discuss the various cases:
If C contains exactly two occupied ¢-rings then, C' contains only two maximal /-rings.
Robot 7 (the one to move) is the robot with the maximal view in C. Its destination is
its adjacent empty node on an empty ¢-ring (Note that this ¢-ring exists since L > 4).
If C contains more than two occupied ¢-rings then: let r be the robot in R(C) with
the largest view. By u and target-£ we refer to the closest empty node on a maximal
£-ring to r and the f-ring including u. If by moving, r does not create a symmetric
configuration, then r simply moves to its adjacent node toward u taking the shortest
path. By contrast, if 7 creates a symmetric configuration by moving, then let C’ be
the configuration reached once r moves. Using configuration C’ that each robot can
compute without 7 moving, another robot ' in C' is selected to move. We show later
on that a symmetric configuration can only be reached when r either joins an empty
node on the same L-ring as u for the first time or when it joins u. For the other cases,
the configuration remains rigid. Hence, we only address the following two cases:
a. Robot r joins an empty node on the same L-ring as u for the first time in C’. In
this case, in C, the robot that is on target-¢ being on the same L-ring as r moves
to u (refer to Figure 4).
b. Robot 7 joins u in C”’. If in C’ there are only two occupied ¢-rings. The robot with
the largest view which does not create a symmetric configuration is elected to move.
Its destination is its adjacent empty node on an empty ¢-ring. By contrast, if there
are more than two occupied ¢-rings in C” then robots proceed as follows:

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

If the axis of symmetry lies on the unique £,,, in C’ then, we are sure that there
are two f-rings which are maximal in C' and that are symmetric with respect to
the unique maximal ¢-ring in C’. Let r be the robot located on a maximal /-ring
which is not on the axis of symmetry in C’, that has the smallest view. Robot r
is the one to move; its destination is its adjacent empty node on its ¢-ring.

If the axis of symmetry is perpendicular to the unique maximal ¢-ring in C then
let T be the set of occupied f-rings in C without target-¢. If there is an f-ring
in T" which does not contain two 1.blocks separated by a single empty node on
each side, then using the rigidity of C', a single robot on such an ¢-ring which is
the closest to the biggest 1.block is elected to move. Its destination is the closest
1.block. If there no such ¢-ring in T (all ¢-rings contains two 1.blocks separated
by a unique empty node), then using the rigidity of C, one robot being on an

{-ring of T' who has an empty node as a neighbor on its ¢-ring is elected to move.

Its destination is its adjacent empty node on its current ¢-ring.

Note that we have only discussed the cases in which the reached configuration is either
rigid or symmetric. This is because when r moves, it create neither a periodic nor an
edge-edge symmetric configuration. This is mainly due to the fact that in C’, there is
a unique maximal ¢-ring and C' is assumed to be rigid.

We address now the case in which Unique(C) holds i.e., C' contains a unique maximal
(-ring, lyax. To reach a configuration C’ € Ciarget, robots need to move to build both
lsecondary and Ligrger i.€., one of the two adjacent ¢-rings to {4, needs to become empty
while the other one needs to host either a single occupied node, a 2.block of size 2 or a
1.block of size 3. Let ¢; and ¢) be the two adjacent ¢-rings to fiax. Assume w.l.o.g. that
nbe, (C) < nby, (C). To ease the description of this phase, we distinguish five main cases
describing the possible states of £; and ¢;: (i) the case in which both ¢; and ¢; are empty
(C' € Cumpty)- The idea, in this case, is to elect a single robot to join either ¢; or £j. (ii) the

case in which ¢; is empty and ¢ hosts more than one occupied node (C' € Csemi—Empty)-

The idea is to make the robots on ¢; gather in a single node. Note that in both cases (i) and
(ii), a configuration C’" € Cygrger is created. (iii) the case in which ¢; hosts a single occupied
node while £ hosts at least two robots (C' € Corienteqd). The unique occupied node on ¢; is
used as a landmark to make robots on ¢, move and create either a 2.block of size 2 or a
1.block of size 3 (C' € Coriented—2)- Once such a block is created (C' € Coriented—1), it is easy
to free £; as the robots move to their adjacent node on £,,,, (since the configuration reached
C’" € Ciarget, the multiplicity created on £pax can be identified as it is adjacent to vigrget)-
(iv) the case in which both ¢; and ¢; host a unique occupied node (C' € Csemi—Oriented). Lhe
idea is to add a single robot to either ¢; or ¢;. Finally, (v) the case in which both ¢; and ¢y
host more than one robot (Cundefined). The idea is to make robots elect either ¢; or ¢ and
then make the robots on the elected ring gather on a single node. Both cases (iv) and (v)
aim at reaching a configuration in Corienteq. More formally:
1. Set Cempty: C € Cumpy if nby, (C) = nb,, (C) = 0.
2. Set Csemi—Empty: C € CSemi—Empty if w.l.0.g. nbgl(C) = 0 and nby, (C)>1.
3. Set Coriented: C € Corienteq if w.l.o.g. nbgi(C) = 1 and nby, (C) > 1. Set Coriented
includes:

a. Coriented—1- In this case either (i) nb,, (C) = 3 and ¢, contains a 1.block of size 3
whose middle robot is on the same L-ring as the unique occupied node on ¢;. (ii)
nby, (C) = 2 and ¢, contains a 2.block. Moreover, the unique empty node in the 2.block
is on the same L-ring as the unique robot on /;.

9:9

OPODIS 2021

9:10

Asynchronous Gathering in a Torus

L SOOC OO Ly HO-@< 5O L)
Pz . Cridc . Ui i
£~ : ;- : £ :

(@) C € Compey (b) € € Csemi-pmpty () C € Corientea-1

2y : O : Ly
Cmiix ’ Cmax ' ma
4 : ;i : (75
(d) € € Corientea—2 (€) € € Csemi-orientea () € € Cuyndefinea

Figure 5 Instance of configurations C' when Unique(C) is true.

b. Coriented—2. Contains all the configuration in Cyrienteq that are not in Coriented—1-

That iS; COriented72 = COriented - COrientedfb
4. Set CScmi—Oriented: Ce CSemi—Om'ented if U).l.O.g. nb&; (C) =1 and legk (C) =1
5. Set CUndefined: Ce CUndefined if nbzi(C) > 1 and nby, (C) > 1.
Figure 5 presents instances of configurations in which there is a unique maximal /-ring.

The behavior of the robots in each set of configurations is as follows:

. C € Cgmpty- Let ¢, and ¢, be the two neighboring ¢-rings of ¢,,,, (one neighboring

¢-ring from each direction). In the case in which ¢, = £,, = {4, (C contains a single
occupied ¢-ring) then, using the rigidity of C, one robot from C' is selected to move to
its adjacent empty node outside its ¢-ring (the scheduler chooses the direction to take).
Otherwise, let R,, be the set of robots which are the closest to either ¢; or ¢. If |R,,| =1
then, the unique robot in R,,, referred to by r, is the one allowed to move. Assume
w.l.0.g. that r is the closest to £;. The destination of r is its adjacent empty node outside
its current ¢-ring on the shortest empty path toward ¢;. If r is the closest to both ¢; and
?), then the scheduler chooses the direction to take (it moves either toward ¢; or ¢;). In
the case where |R,,| > 1 (R,, contains more than one robot) then, by using the rigidity
of C, one robot r is selected. Its behavior is the same as r in the case where |R,,| = 1.

2. C € Csemi—Empty- Assume w.l.o.g. nby, (C) > 1 and nby, (C) = 0. We consider two cases:

a. nby, (C) > 3 or nby, (C) = 2. Recall that C' & Cigrget. Let 1 be the direction defined
from £,,4, to f; taking the shortest path and let ¢, be the /-ring that is neighbor of
;. Observe that £,, = ¢ is possible (if only two ¢-rings are occupied in C). Using the
rigidity of configuration C, one robot from /,, is elected to move. Its destination is its
adjacent node outside £,, and towards ¢; with respect to the direction 1.

b. nbg, (C) = 3. Again, recall that C' & Ciarget. The aim is to make the three robots form
a single 1.block. To this end, if the configuration contains a single d.block of size 3
with d > 1 then the robot in the middle of the d.block moves to its adjacent node
on ¢, (the scheduler chooses the direction to take). By contrast, if the configuration
contains a single d.block of size 2 (d > 1) then the robot not part of the d.block moves
towards its adjacent empty node towards the d.block taking the shortest empty path.

3. C € Coriented- Let r; be the single robot on £;.

a. C € Coriented—1- If Nbyqar(C) > 4 then the unique robot on ¢; moves to its adjacent
node on {,,4,. Otherwise, let u be the node on ¢,,,, adjacent to a robot on /;.
If nbyas(C) = 3 and the robots form a 1.block of size 3 whose middle robot is
adjacent to u then the unique robot on ¢; moves to its adjacent node on £,,,,.
Otherwise, robots on £,,,, execute Align (¢, ¢;).
If nbynaz(C) = 4 and w is empty, then the unique robot on ¢; moves to u. Otherwise
(u is occupied), then let r be the robot on w.

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

If r has an adjacent empty node on £,,,, then r moves to one of its adjacent
nodes (the scheduler chooses the node to move to in case of symmetry).

If r does not have an adjacent empty node on £,,4,, then let ' be the robot on
£ mae Which is adjacent to 7 and which does not have a neighboring robot on £,
at distance [£/2]. Robot r’ moves to its adjacent empty node on ;4.

b. C € Coriented—2. If nby, (C) = 2 or nby, (C) = 3 then Align(¢, ¢;) is executed.
Otherwise, if nby, (C) > 3 then, nby, (C) — 2 robots gather on the node uy located
on /; and which is on the same L-ring as the unique occupied node on ¢;. For this
purpose, the robot on ¢ which is the closest to u; with the largest view is the one
allowed to move. Its destination is its adjacent node on ¢; toward wuy.

4. C € Csemi—0riented- Let £,, and £,, be the two neighboring ¢-rings of ¢; and ¢j, respect-
ively. First, if w.l.o.g. €; = €5, ({x = {p,) then, C contains only 3 occupied ¢-rings ¢;,
lmag and £;. Using the rigidity of C, one robot from either ¢,, or £,, (not both) is
selected to move. Its destination is its adjacent empty node outside its current ¢-ring in
the opposite direction of £y,44. Next, if €; # £y, (i # Cn,) then, using the rigidity of C,
a unique robot is selected to move from either ¢,,, or ¢,, (not both). Its destination is its
adjacent empty node outside its current ¢-ring toward ¢; (respectively ¢) if the robot
was elected from ¢,,; (respectively ¢,). If ¢, = £, , the scheduler chooses the direction
to take.

5. C € Cundefinea- Depending on the number of robots on ¢; and £, we consider two cases::
a. nby, (C) < nby, (C). The idea is to make robots on ¢; gather on ¢;. We define a

configuration, denoted I'(C), built from C ignoring some ¢-rings that will be used
to identify a single node on ¢; on which all robots on ¢; will gather. If there are at
least four occupied f-rings in C then I'(C) is the configuration built from C' ignoring
both ¢; and ¢;. By contrast, if there are only three occupied ¢-rings then I'(C) is the
configuration built from C' ignoring only ¢;. The following cases are possible:

i. Configuration I'(C) is rigid. Using the rigidity of I'(C), one node on ¥;, say u, is
elected as the gathering node. Robots on ¢; move in turn to the elected node.

ii. Configuration I'(C') has exactly one axis of symmetry. The axis of symmetry of
I'(C) either intersects with ¢; on a single node (edge-node symmetric), or on two
nodes (node-node symmetric) or only on edges (edge-edge symmetric):

- I'(C) is node-edge symmetric: The node on ¢; that is on the axis of symmetry of
I'(C) is the gathering node. Robots on ¢; move in turn to join it.
- I'(C) is node-node symmetric: Let u; and ug be the two nodes on ¢; on which the
axis of symmetry passes through. If both nodes are occupied, then using the rigidity
of C, exactly one of the two nodes is elected. Assume w.l.0.g. that u; is elected.
Robots on u; move to their adjacent node. If both u; and us are empty then let R
be the set of robots on #; that are at the smallest distance from either u; or uq. If
|R| =1 (Let r € R and assume w.l.o.g. that r is the closest to uy) then, r moves
on ¢; toward wu; taking the shortest path. By contrast, if |R| > 1 then using the
rigidity of C, exactly one robot of R is elected to move. The elected robot moves
on {; toward the closest node among u; and us taking the shortest path.
- I'(C) is edge-edge symmetric: assume w.l.o.g. that T'(C)’s axis of symmetry of
passes through ¢; on the two edges e; = (u1,uz2) and e; = (u3,uyq) with u; and ug
being on the same side. Let U = {u;, j € [1 —4]}. We consider the following cases:
For all w € U, u is occupied. Using the rigidity of C, a single node u € U is

elected. Robots on u move to their adjacent node v’ € U (refer to Figure 6, (A)).
Three nodes of U are occupied. Assume w.l.0.g. that u; € U is the one empty.

If there are robots on #; which are located on the same side as u; and us with
respect to I'(C)’s axis of symmetry then, the robots among these which are the

9:11

OPODIS 2021

9:12

Asynchronous Gathering in a Torus

(A) Uz | iy (B) Uz | il (€) Uz | il
@
(B) Uz | Ug (F) Uz | Uy (G) Uz | Us

Figure 6 Case in which T'(C) is edge-edge symmetric.

closest to uz move to their adjacent node on /¢; toward ug taking the shortest
path (refer to Figure 6, (B)). By contrast, if there are no robots on ¢; which are
on the same side of u; and w3 then, robots on us move to their adjacent node in
the opposite direction of uy (refer to Figure 6, (C)).

Two nodes of U are occupied. First, assume w.l.0.g. that u; and us are occupied
(the case in which the two nodes are neighbors). If all robots on ¢; are on the
same side of the axis of symmetry (assume w.l.0.g. that they are at the same
side as ug). Robots on uy are the ones to move. Their destination is ug (refer to
Figure 6, (D)). By contrast, if there are robots on both sides of I'(C)’s axis of
symmetry then, let U’ be the set of occupied nodes on ¢; which are the farthest
from the occupied node of U which is on the side (of the axis of symmetry). If
there are two such nodes (one at each side), as C is rigid, the scheduler elects
exactly one of these two nodes. Let us refer to the elected node by u. Robots on
u are the ones to move. Their destination is their adjacent node on ¢; towards
the occupied node of U being on their side (refer to Figure 6, (E)). By contrast, if
there is only one node in U’ then, robots on the other side of the axis of symmetry
are the ones to move to start from the robots that are the closest to the occupied
node of U being on their side. Their destination is their adjacent ¢; toward the
occupied node of U on their side (refer to Figure 6, (F)). Finally, if there are no
robots on both sides of the axis of symmetry, then using the rigidity of C, one
occupied node of U is elected. Robots on the elected node are the ones to move.
Their destination is their adjacent occupied node in U.

Next, assume w.l.o.g. that u; and us are occupied (the case in which the
two nodes of U are not neighbors but are at the same side of I'(C')’s axis of
symmetry). Robots on a node of U with the largest view are the ones to move.
Their destination is their adjacent node in the opposite direction of a node of
U (refer to Figure 6, (H)). Finally, assume w.l.0.g. that u; and u4 are occupied
(the case in which the two nodes of U are not neighbors and are in opposite sides
of T'(C) axis of symmetry). Robots on a node of U with the largest view are
the ones to move. Their destination is their adjacent node on ¢;, in the opposite
direction of their adjacent node in U (refer to Figure 6, (G)).

There is only one node of U that is occupied. Assume w.l.0.g. that u; is occupied.
If all robots on ¢; are on the same side as u; with respect to I'(C)’s axis of
symmetry then, the closest robot to u; on ¢; are the ones to move. Its destination
is its adjacent node towards u; taking the shortest path. By contrast, if all robots
on /; are in the opposite side of the axis of symmetry of u; then robots on u; are
the ones to move. Their destination is us. Finally, if robots on ¢; are on both

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada 9:13

sides of the axis of symmetry then the closest robot to u; being on the same side
of T'(C)’s axis of symmetry as u; are the ones to move. Their destination is their
adjacent node on ¢; towards u; taking the shortest path.

All nodes of U are empty. Let d be the smallest distance between a node of
u € U and a robot on the same side of T'(C)’s axis of symmetry as u. Let R be
the set of robots at distance d from a node u € U. If |R| = 1 then the robot in
R moves towards the closest node v € U. By contrast, if |R| > 1 then, using
the rigidity of C, a unique robot in R is selected to move. Its destination is its
adjacent node on ¢; toward the closest node u € U.

iii. Configuration I'(C) has more than one axis of symmetry. Using the rigidity of C,
a single robot from I'(C) is elected to move. Its destination is its adjacent empty
node on its current ¢-ring. This reduces the number of axis of symmetries to either
1 or 0.

b. nby,(C) = nby, (C). The strategy is similar to the one used in the case in which
nbe, (C) # nby, (C). That is, by using the state of configuration I'(C), robots on either
£; or £, gather in a single node. The difference in this case is that the robots need to
elect either ¢; or ¢;. The detailed description of this case can be found in [17].

» Lemma 1. From any initial rigid configuration Cy € Cp,, a configuration C' € Ciqrget
which does not contain any robot with an outdated view, is eventually reached. Moreover,
the unique maximal £-ring in C' hosts at most one multiplicity node. This node (if any) is
adjacent to Vigrget-

4.2 Gathering Phase

This phase starts from a configuration C' € Cygrger in which a direction is defined in C' (from
liarget 10 lmag). The idea is to make all robots that are neither on fi4rger nOT €40, move
to join viarget. Then, make some robots on £y,4; move to join vierger While the other align
themselves with respect to v¢arge: to finally gather all on the node of £, adjacent to viarget-
To ease the description of our algorithm, we define the following set of configurations:
1. Set C5, which includes the following four sub-sets:
a. SubSet Csp_1: C € (5, if there are exactly two occupied ¢-rings in C denoted ¢;
and /; respectively on which the following conditions hold: (1) ¢; and ¢; are adjacent.
(2) nbg, (C) < nby, (C) (3) either :
nbe,(C) = 4 and ¢; contains two 1.blocks of size 2 being at distance 2 from each
other. Let u be the unique node between the two 1.blocks on /;.
nbe,(C) = 3 or 5 and ¢; contains a 1.block of size nby, (C'). Let u be the middle node
of the 1.block of size nby, (C).
(4) Either nb,, (C) = 3 and ¢; contains a 1.block of size 3 whose middle node is adjacent
to u or nbg, (C) = 2 and /; contains either a 2.block of size 2 whose middle node is
adjacent to u or a 1.block of size 2 having one extremity adjacent to u (refer to Figure 7
for some examples).
b. SubSet Cyp,—2: C € Cyp_2 if C € Ciarger and nby,,,,(C) = 1. In addition either one

of the following conditions are verified: (1) nb,, . (C) =4 and on £,,,, there are two

1.blocks of size 2 being at distance 2 from each other. Let u be the unique node
between the two 1.blocks then u is adjacent to vigrger. (2) nbe,,,, = 5 and on £y,
there is a 1.block of size 5 whose middle robot is adjacent to vigrger. (3) nby,,, (C) =4
and on £,,,, there is a 1.block of size 3 having a unique occupied node at distance 2.
Let u be the unique empty node between the 1.block of size 3 and the 1.block of size 1.

Then u is adjacent to vigpge; (refer to Figure 7).

OPODIS 2021

9:14

Asynchronous Gathering in a Torus

Csp—3 Csp—a
Csp -1 Csp— Csp— 1 Cmaz (.
fi gi étm'yef Lrarget
?; ?; c c
sp—-4 sp—4
Csp -2 Csp ~2 Csp—"
émn., imaac
[tm-m Ltarget

Figure 7 Set Csp.

c. SubSet Cyp_3: C € Cyp—3 if C € Crarger, Empty(C) is true, nby,,, ., (C) =1 and one of
the two following conditions holds: (1) nby,,, (C) = 3 and £,,4, contains an 1.block of
size 3 whose middle robot is adjacent to vigrger. (2) nby,,,, (C) = 2 and the two robots
form a 2.block on £,,4,. Let u be the unique empty node between the two robots on
lrnaz, then u is adjacent to vigrger (refer to Figure 7).

mazx

d. SubSet Cyp_4: C € Csp_y if there is a unique ¢-ring that is occupied and on this ¢-ring

there are either two or three occupied nodes that form a 1.block (refer to Figure 7).

. Set Cpp: C € Cpy if C € Ciarger and Partial(C) is true. That is, 34 € {0,...,L — 1} such

that £; # lyas and £; # Lyarger and nby, (C) > 0. Note that we are sure that C' & Cp,.
Set Cis: C € Cs if C € Ciarger and C & Cqp and Empty(C). In other words, there are
only two f-rings that are occupied: £yqz and £igrget-

We now present the behavior of robots during the gathering phase. If the current

configuration C' € Cigrget, then we define 1 as the direction from £i4rget t0 £inqz taking the
shortest path. Observe that 1 can be computed by all robots and 1 is unique (recall that

limaz is unique, and ¥ C' € Ciarget, nby,,,.,(C) # nby

ord

weeondary (C))- Using T, we define a total
er on the /-rings of the torus such that ¢; < ¢; if ¢; is not further from f;4,4¢; than £; with

respect to 1. Note that C,, = Cp UCi5s UCyp. Let C' be the current configuration, robots
behavior for each defined set is as follows:

1.

2.

C € Cpr. Let us refer by ¢; to the f-ring that is adjacent to li4rge¢ such that €; # £pqy.

Depending on the number of robots on #;, two cases are possible:

a. nby,(C) > 0. Let R,, be the set of robots on ¢; that are the closest to vigrget, if
i. there is an occupied node u; on ¢; that is adjacent to viarget, then robots on u; are

the ones to move. Their destination is v¢arget-

ii. there is no robot on ¢; that is adjacent to viqrger and nby, (C') < £ — 1, then robots
in R, are the ones to move. Their destination is their adjacent empty node on ¢;
on the empty path toward vigrget-

iii. there is no robot on ¢; adjacent to vigrger and nby, (C') = £ — 1, then let R, be the
set of robots that share a hole with u;, where u; is the node on ¢; that is adjacent to
Viarget- RObots in R,/ are allowed to move only if they are not part of a multiplicity
location. Their destination is the node towards u; on the empty path.

b. nby,(C) = 0. Let ¢, be the closest neighboring ¢-ring to {;qrger With respect to 1. Let
R,, be the set of robots on £, that are closest to vi4rge;. Robots on R, are the ones
to move, their destination is the node outside ¢;, and toward {;4rgc+ With respect to 1.

C € Cj5. Robots aims at reaching a configuration C’ € Cyp. If nby,,,. (C) < 5, robots on

lrnag execute Align(4,,,qz, Ciarger). Otherwise, robots behave as follows: Let uq, ug, us, us

and us be a sequence of five consecutive nodes on £,,,; such that usz is adjacent to v¢grget-

If ug is occupied and has exactly one adjacent occupied node on 4, (assume w.l.o.g.

that this node is ug) then the robot on s is the one to move. Its destination is uz. By

contrast, if ug has either no adjacent occupied nodes on £,,,;, or two adjacent occupied

S.

3.

Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

nodes on £y,4, then robots on uz move to vigrges. Finally, if uz is empty then let R be

the set of robots that are closest to ug on £,4,. If |[R| = 2 then both robots move to their

adjacent node on {4, toward us. By contrast, if |[R| = 1, then first assume that the

distance between the robot in R and wus is d. If there is a robot r,, on ¢,,,; that shares a

hole with uz and at distance d+ 1 from w3, then r,, moves towards ug taking the shortest

path. If no such robot exists, the robot in R moves toward u3 taking the shortest path.

C € Cyp. We distinguish:

a. C € Cep_1. If C € Cigrget, then the robots on €y4r4e; that are at the extremities of the
1.block or the 2.block move to their adjacent occupied node on #,,,,. By contrast, if
C & Ciarget, then the robot not on ¢,,4, that has two adjacent occupied nodes moves
to its adjacent node on £,

b. C € Cgp—2. If there is a 1.block of size 3 on £,,,; then the robots that are in the
middle of the 1.block of size 3 move to their adjacent occupied node that has one robot
at distance 2. If /,,,, contains a 1.block of size 5 then the robots on /,,,, that are
adjacent of the extremities of the 1.block move on ¢,,,, in the opposite direction of
the extremities of the 1.block. Finally, if £,,., contains two 1.blocks of size 2 then the
robots that share a hole of size 1 move toward each other.

c. C € Csp—3. Robots on vigrger move to their adjacent node on £y,q, (n0te that vigrget
can be occupied by either a single robot or a multiplicity).

d. C € Csp—4. If C contains a 1.block of size 3 then the robots at the extremities of the

1.block move to their adjacent occupied node. By contrast, if C' contains a 1.block of
size 2 then the robot that is not part of a multiplicity moves to its adjacent occupied
node (it will be shown that one of the occupied nodes hosts only one robot).

We now state our main positive result.

» Theorem 4. Assuming an (¢, L)-torus in which L < £ and L > 4 and starting from an
arbitrary rigid configuration, Protocol 1 solves the gathering problem for any IC > 3.

5

Concluding Remarks

We presented the first algorithm for gathering asynchronous oblivious mobile robots in a fully
asynchronous model in a torus-shaped space graph. Our work raises several open questions:

1.

—— References

1

What is the exact set of initial configurations that are gatherable? Our work considers
initial rigid configurations only, and we know that periodic, edge-symmetric, and invariant
through rotation (with no center robot) configurations make the problem impossible to
solve. As in the case of the ring, special classes of non-rigid configuration may exist that
are still gatherable.

. The case of a square torus is intriguing: the robots would loose the ability to distinguish

between the big side and the small side of the torus, so additional constraints are likely
to hold if gathering remains feasible.

Following recent work by Kamei et al. [16] on the ring, it would be interesting to consider
myopic (i.e. robot whose visibility radius is limited) yet luminous (i.e. robots that
maintain a constant size state that can be communicated to other robots in the visibility
range) robots in a torus.

Francois Bonnet, Maria Potop-Butucaru, and Sébastien Tixeuil. Asynchronous gathering in
rings with 4 robots. In Ad-hoc, Mobile, and Wireless Networks - 15th International Conference,
ADHOC-NOW 2016, Lille, France, July 4-6, 2016, Proceedings, volume 9724 of Lecture Notes
in Computer Science, pages 311-324. Springer, 2016. doi:10.1007/978-3-319-40509-4_22.

9:15

OPODIS 2021

https://doi.org/10.1007/978-3-319-40509-4_22

9:16

Asynchronous Gathering in a Torus

10

11

12

13

14

15

Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Optimal
gathering by asynchronous oblivious robots in hypercubes. In Algorithms for Sensor Systems -
14th International Symposium on Algorithms and Experiments for Wireless Sensor Networks,
ALGOSENSORS 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers,
volume 11410 of Lecture Notes in Computer Science, pages 102—-117. Springer, 2018. doi:
10.1007/978-3-030-14094-6_7.

Jannik Castenow, Matthias Fischer, Jonas Harbig, Daniel Jung, and Friedhelm Meyer auf der
Heide. Gathering anonymous, oblivious robots on a grid. Theoretical Computer Science,
815:289-309, 2020. doi:10.1016/j.tcs.2020.02.018.

Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous robots on graphs:
Gathering. In Distributed Computing by Mobile Entities, Current Research in Moving and
Computing, volume 11340 of Lecture Notes in Computer Science, pages 184-217. Springer,
2019. doi:10.1007/978-3-030-11072-7_8.

Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Gathering robots in graphs:
The central role of synchronicity. Theoretical Computer Science, 849:99-120, 2021. doi:
10.1016/j.tcs.2020.10.011.

Gianlorenzo D’Angelo, Alfredo Navarra, and Nicolas Nisse. A unified approach for gathering
and exclusive searching on rings under weak assumptions. Distributed Computing, 30(1):17-48,
2017. doi:10.1007/s00446-016-0274~-y.

Gianlorenzo D’Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo Navarra. Gathering of
robots on anonymous grids and trees without multiplicity detection. Theoretical Computer
Science, 610:158-168, 2016. doi:10.1016/j.tcs.2014.06.045.

Shantanu Das, Nikos Giachoudis, Flaminia L. Luccio, and Euripides Markou. Gathering of
robots in a grid with mobile faults. In SOFSEM 2019: Theory and Practice of Computer Science
- 45th International Conference on Current Trends in Theory and Practice of Computer Science,
Nowvy Smokovec, Slovakia, January 27-30, 2019, Proceedings, volume 11376 of Lecture Notes
in Computer Science, pages 164-178. Springer, 2019. doi:10.1007/978-3-030-10801-4_14.
Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil. Optimal torus
exploration by oblivious robots. Computing, 101(9):1241-1264, 2019. doi:10.1007/
s00607-018-0595-8.

Durjoy Dutta, Tandrima Dey, and Sruti Gan Chaudhuri. Gathering multiple robots in a ring
and an infinite grid. In Distributed Computing and Internet Technology - 13th International
Conference, ICDCIT 2017, Bhubaneswar, India, January 13-16, 2017, Proceedings, volume
10109 of Lecture Notes in Computer Science, pages 15—26. Springer, 2017. doi:10.1007/
978-3-319-50472-8_2.

Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

Samuel Guilbault and Andrzej Pelc. Gathering asynchronous oblivious agents with local
vision in regular bipartite graphs. Theoretical Computer Science, 509:86-96, 2013. doi:
10.1016/j.tcs.2012.07.004.

David Ilcinkas. Oblivious robots on graphs: Exploration. In Distributed Computing by Mobile
Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in
Computer Science, pages 218-233. Springer, 2019. doi:10.1007/978-3-030-11072-7_9.
Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita. Time-optimal gath-
ering algorithm of mobile robots with local weak multiplicity detection in rings. IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences,
96-A(6):1072-1080, 2013. doi:10.1587/transfun.E96.4.1072.

Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil. Gathering an even
number of robots in an odd ring without global multiplicity detection. In Mathematical Found-
ations of Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava,
Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Science,
pages 542-553. Springer, 2012. doi:10.1007/978-3-642-32589-2_48.

https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1016/j.tcs.2020.02.018
https://doi.org/10.1007/978-3-030-11072-7_8
https://doi.org/10.1016/j.tcs.2020.10.011
https://doi.org/10.1016/j.tcs.2020.10.011
https://doi.org/10.1007/s00446-016-0274-y
https://doi.org/10.1016/j.tcs.2014.06.045
https://doi.org/10.1007/978-3-030-10801-4_14
https://doi.org/10.1007/s00607-018-0595-8
https://doi.org/10.1007/s00607-018-0595-8
https://doi.org/10.1007/978-3-319-50472-8_2
https://doi.org/10.1007/978-3-319-50472-8_2
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1016/j.tcs.2012.07.004
https://doi.org/10.1016/j.tcs.2012.07.004
https://doi.org/10.1007/978-3-030-11072-7_9
https://doi.org/10.1587/transfun.E96.A.1072
https://doi.org/10.1007/978-3-642-32589-2_48

S. Kamei, A. Lamani, F. Ooshita, S. Tixeuil, and K. Wada

16

17

18

19

20

21

Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
Gathering on rings for myopic asynchronous robots with lights. In 23rd International Conference
on Principles of Distributed Systems, OPODIS 2019, December 17-19, 2019, Neuchditel,
Switzerland, volume 153 of LIPIcs, pages 27:1-27:17. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019. doi:10.4230/LIPIcs.0P0ODIS.2019.27.

Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
Asynchronous gathering in a torus. CoRR, abs/2101.05421, 2021. arXiv:2101.05421.

Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of symmetries:
Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer Science,
411(34-36):3235-3246, 2010. doi:10.1016/j.tcs.2010.05.020.

Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and Sébastien Tixeuil. On the
synthesis of mobile robots algorithms: The case of ring gathering. In Stabilization, Safety,
and Security of Distributed Systems - 16th International Symposium, SSS 2014, Paderborn,
Germany, September 28 - October 1, 2014. Proceedings, volume 8756 of Lecture Notes in
Computer Science, pages 237-251. Springer, 2014. doi:10.1007/978-3-319-11764-5_17.
Gabriele Di Stefano and Alfredo Navarra. Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distributed Computing, 30(2):75-86, 2017.
doi:10.1007/s00446-016-0278-7.

Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM Journal on Computing, 28(4):1347-1363, 1999. doi:10.1137/
S009753979628292X.

9:17

OPODIS 2021

https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
http://arxiv.org/abs/2101.05421
https://doi.org/10.1016/j.tcs.2010.05.020
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/s00446-016-0278-7
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X

Pattern Formation by Robots with Inaccurate
Movements

Kaustav Bose! &
Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India

Archak Das &
Department of Mathematics, Jadavpur University, Kolkata, India

Buddhadeb Sau &=

Department of Mathematics, Jadavpur University, Kolkata, India

—— Abstract

ARBITRARY PATTERN FORMATION is a fundamental problem in autonomous mobile robot systems.
The problem asks to design a distributed algorithm that moves a team of autonomous, anonymous

and identical mobile robots to form any arbitrary pattern F' given as input. In this paper, we study
the problem for robots whose movements can be inaccurate. Our movement model assumes errors
in both direction and extent of the intended movement. Forming the given pattern exactly is not
possible in this setting. So we require that the robots must form a configuration which is close to the
given pattern F. We call this the APPROXIMATE ARBITRARY PATTERN FORMATION problem. With
no agreement in coordinate system, the problem is unsolvable, even by fully synchronous robots, if
the initial configuration 1) has rotational symmetry and there is no robot at the center of rotation
or 2) has reflectional symmetry and there is no robot on the reflection axis. From all other initial
configurations, we solve the problem by 1) oblivious, silent and semi-synchronous robots and 2)
oblivious, asynchronous robots that can communicate using externally visible lights.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Theory of
computation — Computational geometry; Computing methodologies — Distributed algorithms;
Computing methodologies — Robotic planning

Keywords and phrases Distributed Algorithm, Mobile Robots, Movement Error, Approximate
Arbitrary Pattern Formation, Look-Compute-Move, Minimum Enclosing Circle

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.10
Related Version Full Version: https://arxiv.org/abs/2010.09667
Funding Archak Das: supported by University Grants Commission, India.

Acknowledgements We would like to thank the anonymous reviewers for their comments and

suggestions which helped us to improve the presentation of the paper.

1 Introduction

A robot swarm is a distributed system of autonomous mobile robots that collaboratively
execute some complex tasks. Distributed coordination of robot swarms has attracted
considerable research interest. Early investigations of these problems were experimental in
nature with the main emphasis being on designing good heuristics. However, the last two
decades have seen a series of theoretical studies on the computability and complexity issues
related to distributed computing by robot swarms. These studies are aimed at providing
provably correct algorithmic solutions to fundamental coordination problems. The robots
are assumed to be anonymous (they have no unique identifiers that they can use in a

1 This work was done when the author was at Jadavpur University, Kolkata, India.

© Kaustav Bose, Archak Das, and Buddhadeb Sau;
oY licensed under Creative Commons License CC-BY 4.0
25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 10; pp. 10:1-10:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kaustavbose27@gmail.com
https://orcid.org/0000-0003-3579-1941
mailto:archakdas.math.rs@jadavpuruniversity.in
https://orcid.org/0000-0002-1630-3052
mailto:buddhadeb.sau@jadavpuruniversity.in
https://orcid.org/0000-0001-7008-6135
https://doi.org/10.4230/LIPIcs.OPODIS.2021.10
https://arxiv.org/abs/2010.09667
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Pattern Formation by Robots with Inaccurate Movements

computation), homogeneous (they execute the same distributed algorithm) and identical
(they are indistinguishable by their appearance). The robots do not have access to any global
coordinate system. They have either no memory or very little memory available to remember
past observations and calculations. Also, they either have no means of direct communication
or have some very weak communication mechanism (e.g., an externally visible light that
can assume a small number of predefined colors). The model assumes robots with such
weak features because the theoretical studies usually intend to find the minimum capabilities
necessary for the robots to solve a given problem. The objective of this approach is to obtain a
clear picture of the relationship between different features and capabilities of the robots (such
as memory, communication, sensing, synchronization, agreement among local coordinate
systems etc.) and their exact role in solvability of fundamental problems. Adopting such
restrictive model also makes sense from a practical perspective since the individual units
of robot swarms are low-cost generic robots with limited capabilities. Although certain
assumptions, such as obliviousness (having no memory of past observations and calculations),
may seem to be overly restrictive even for such weak robots, there are specific motivations for
these assumptions. For example, the assumption of oblivious robots ensures self-stabilization.
This is because any algorithm that works correctly for oblivious robots is inherently self-
stabilizing as it tolerates errors that alter the local states of the robots. While the robots
are assumed to be very weak with respect to memory, communication etc., certain aspects
of the model are overly strong. In particular, the assumed mobility features of the robots
are very strong. Two standard models regarding the movement of the robots are RicID and
Non-RIGID. In RIGID, if a robot z wants to go to any point y, then it can move to exactly
that point in one step. This means that the robots are assumed to be able to execute error-free
movements in any direction and by any amount. Certain studies also permit the robots to
move along curved trajectories. The algorithms in this model rely on the accurate execution of
the movements and are not robust to movement errors that real life robots are susceptible to.
Furthermore, the error-free movements of the robots have surprising theoretical consequences
as shown in the remarkable results obtained in [11]. A “positional encoding” technique was
developed in [11] that allows a robot, that has very limited or no memory to store data,
to implicitly store unbounded amount of information by encoding the data in the binary
representation of its distance from another robot or some other object, e.g., the walls of
the room inside which it is deployed. Exact movements allow the robots to preserve and
update the data. This gives the robots remarkable computational power that allows them to
solve complex problems which appear to be unsolvable by robots with limited or no memory,
e.g., constructing a map of a complex art gallery by an oblivious robot. Obviously these
techniques are impossible to implement in practice. Also, for problems that we expect to
be unsolvable by real life robots with certain restrictions in memory, communication etc.,
it may become difficult or impossible to theoretically establish a hardness or impossibility
result due to the strong model. The NON-RIGID model assumes that a robot may stop before
reaching its intended destination. However, 3 a constant § > 0 such that if the destination
is at most d apart, the robot will reach it; otherwise, it will move towards the destination
by at least 0. Notice that in the NON-RIGID model, 1) the movement is still error-free if
the destination is close enough, i.e., within ¢, and 2) there is no error whatsoever in the
direction of the movement even if the destination is far away. In [1], it was shown that these
two properties allow robots to implement positional encoding even in the NON-RIGID model.
This motivates us to consider a new movement model allowing inaccurate movements.

We consider a movement model that assumes errors in both direction and extent of the
intended movement. Also, the errors can occur no matter what the extent of the attempted
movement is. In this model, we study the ARBITRARY PATTERN FORMATION problem.

K. Bose, A. Das, and B. Sau

ARBITRARY PATTERN FORMATION is a fundamental robot coordination problem that has
been extensively studied in the literature [12, 14, 9, 8, 6, 13, 5, 10, 15, 2, 4]. The objective
of the problem is to design a distributed algorithm that allows the robots to form any
pattern F' given as input. This problem is well-studied in the literature in the RiGID and
NoN-RIGID model. However, the techniques used in these algorithms are not readily portable
in our setting. For example, in most of these algorithms, the minimum enclosing circle
of the configuration plays an important role. The center of the minimum enclosing circle
is set as the origin of the coordinate system with respect to which the pattern is to be
formed. So the minimum enclosing circle is kept invariant throughout the algorithm. The
robots inside the minimum enclosing circle move to form the part of the pattern inside
the circle, without disturbing it. For the pattern points on the minimum enclosing circle,
robots from the inside may have to move on to the circle. Also, the robots on the minimum
enclosing circle, in order to reposition themselves in accordance with the pattern to be
formed, will move along the circumference so that the minimum enclosing circle does not
change. Notice that while moving along the circle, an error prone robot might skid off the
circle. Also, when a robot from the inside attempts to move exactly on to the circle, it may
move out of the circle due to the error in movement. In both cases, the minimum enclosing
circle will change and the progress made by the algorithm will be lost. In fact, we face
difficulty at a more fundamental level: exactly forming an arbitrary pattern is impossible by
robots with inaccurate movements. Therefore, we consider a relaxed version of the problem
called APPROXIMATE ARBITRARY PATTERN FORMATION where the robots are required
to form an approximation of the input pattern F. We show that with no agreement in
coordinate system, the problem is unsolvable, even by fully synchronous robots, if the initial
configuration 1) has rotational symmetry and there is no robot at the center of rotation, or 2)
has reflectional symmetry and there is no robot on the reflection axis. From all other initial
configurations, we solve the problem in OBLOT + SSYNC (the robots are oblivious, silent
and semi-synchronous) and FCOM + ASYNC (the robots are oblivious, asynchronous and
can communicate using externally visible lights).

Movement error was previously considered in [7], but in the context of the CONVERGENCE
problem which requires the robots to converge towards a single point. The error model
in [7] also considers errors in both direction and extent of the intended movement. However,

there is some difference between the error model of [7] and the one introduced in this paper.

In particular, the maximum possible error in direction is independent of the extent of the
intended movement in [7]. In our model, the maximum possible error in both direction
and extent, depend upon the extent of the intended movement. We believe that this is a
reasonable assumption as the error is expected to be less if the destination of the intended
movement is not far away.

2 Robot Model

A set of n mobile computational entities, called robots, are initially positioned at distinct
points in the plane. The robots are anonymous, identical, autonomous and homogeneous.
The robots are modeled as dimensionless points in the plane. They do not have access to
any global coordinate system. Each robot has its own local coordinate system centered at its
current position. There is no consistency among the local coordinate systems of the robots
except for a common unit of distance. We call this the standard unit of distance. Based on
the memory and communication capabilities, we consider two standard models: OBLOT
and FCOM. In OBLOT, the robots are silent (they have no means of communication) and

10:3

OPODIS 2021

10:4

Pattern Formation by Robots with Inaccurate Movements

oblivious (they have no memory of past observations and computations). In FCOM, each
robot is equipped with a light which can assume a constant number of colors and is only
visible to other robots. The lights serve as a weak communication mechanism. The robots,
when active, operate according to the so-called LOOK-COMPUTE-MOVE cycles. In each cycle,
a previously idle or inactive robot wakes up and executes the following steps. In the LOOK
phase, the robot takes the snapshot of the positions (and their lights in case of FCOM) of
the robots. Based on the perceived configuration, the robot performs computations according
to a deterministic algorithm to decide a destination point (and a color in case of FCOM).
Based on the outcome of the algorithm, the robot (sets its light to the computed color in case
of FCOM, and) either remains stationary or attempts to move to the computed destination.
Based on the activation and timing of the robots, there are three types of schedulers. In
FSYNC or fully synchronous, time can be logically divided into global rounds. In each
round, all the robots are activated and they perform their actions at the same time. SSYNC
or semi-synchronous coincides with FSYNC, with the only difference that not all robots are
necessarily activated in each round. The most general model is ASYNC or asynchronous
where there are no synchronicity assumptions.

We now describe our movement model. There are known constants 0 < A < 1,0 < A < 1,
such that if a robot at = attempts to move to y, then it will reach a point z where d(z,y) <
w(x,y)d(z,y) where p(x,y) = min{A, Ad(x,y)}. Here d(x,y) denotes (the numerical value
of) the distance between the points and y measured in the standard unit of distance. The
movement of the robot will be along the straight line joining x and z. We denote by Z(z,y)
the set of all points where a robot may reach if it attempts to move from x to y. So Z(z,y)
is the open disk {z € R? | d(z,y) < p(z,y)d(x,y)} (see Fig. 1a). We denote by errorq(z,y)
and error,(z,y) the supremums of the possible distance errors (i.e., the deviation from the
intended amount of distance to be traveled) and angle errors (i.e., the angular deviation from
the intended trajectory) respectively when a robot intends to travel from « to y. Notice that
errorqg(z,y) is equal to the radius of Z(z,y) and error,(z,y) is equal to the angle between
line(z,y) and a tangent on Z(z,y) passing through z. Hence, errorq(x,y) = u(z,y)d(z,y)
and errorg(z,y) = sin_l(%) = sin~(u(z,y)). Also notice that 1) errory(z,y)
increases with d(zx,y), and 2) error,(z,y) increases with d(z,y) only up to a certain value,
i.e., sin"!(A) and then remains constant (see Fig. 1b). So, errory(x,y) < sin=(A), for any

z,y.

__—4
50

(b)

Figure 1 a) If a robot attempts to move from x to y, then it will reach at some point z in the shaded
region Z(z,y). b) If a robot attempts to move from x to y;, then it will reach at some point in Z(z, y;)
which is the shaded region around y;. Observe that errorqy(z,y1) < errorq(z,y2) < errorq(z,ys),
but errorq(z,y1) < errorq(x,y2) = errorq(z,ys).

K. Bose, A. Das, and B. Sau

3 Definitions and Notations

We denote the configuration of robots by R = {ry,ra,...,r,} where each r; denotes a
robot as well as the point in the plane where it is situated. The input pattern given
to the robots will be denoted by F = {fi, f2,... fn} where each f; is an element from
R2. Given two points r and y in the Euclidean plane, let d(x,y) denote the distance
between the points z and y measured in the standard unit of distance. We denote by
line(z,y) the straight line passing through = and y. By seg(z,y) (Seg(z,y)) we denote
the line segment joining = and y excluding (resp. including) the end points. If ¢; and
¢y are two parallel lines, then S(¢1,¥¢3) denotes the open region between these two lines.
For any point ¢ in the Euclidean plane and a length I, C(c,l) = {z € R? | d(c,2) = 1},
Bl(e,l) = {z € R? | d(c,2) < 1} and B(c,l) = {z € R? | d(c,2) <1} = B(c,1) UC(e,l). If Cis
a circle then encl(C) and encl(C') respectively denote the open and closed region enclosed by
C. Also, ext(C) = R? \ encl(C) and ext(C) = R? \ encl(C). Hence, encl(C) = encl(C)UC
and ext(C) = ext(C) U C. Let z,y be two points in the plane and d(z,y) > I. Suppose
that the tangents from z to C(y,!) touches C(y,l) at a and b. The Cone(z, B(y,1)) is
the open region enclosed by B(y,l),seg(z,a) and seg(z,b), as shown in Fig. 2. Also,
ZCone(z, B(y,l)) = Zaxb. We denote by F(z,y) the family of circles passing through z and
y. The center of all the circles lie on the perpendicular bisector of seg(z, y). If C1,Cs € F(z,y)
and cy,cy be their centers respectively, then (C1,C2) 7(5,y) and [C1, Co 5z, will denote
respectively the family of circles {C' € F(z,y) | ¢ € seg(c1,c2), where ¢ is the center of C'}
and {C € F(z,y) | c € s€g(c1, c2), where c is the center of C'}.

T

Figure 2 Cone(xz, B(y,1)) is defined as the shaded open region enclosed by B(y,1),seg(z,a) and
seg(x,b).

For a set P of points in the plane, C(P) and ¢(P) will respectively denote the minimum
enclosing circle of P (i.e., the smallest circle C such that P C encl(C)) and its center. The
smallest enclosing circle C(P) is unique and can be computed in linear time. For P, with
2 <|P| <3, CC(P) denotes the circumcircle of P defined as the following. If P = {p1,p2},
CC(P) is the circle having s€g(p1, p2) as the diameter and if P = {p1,p2,p3} and the three
points are not collinear, CC(P) is the unique circle passing through p, p2 and ps.

» Property 1. If P’ C P such that 1) P’ consists of two points or P’ consists of three
points that form an acute angled triangle, and 2) P C encl(CC(P')), then C(P) = CC(P").
Conversely, for any P, AP' C P so that 1) P’ consists of two points or P’ consists of three
points that form an acute angled triangle and 2) C(P) = CC(P").

From Property 1 it follows that C'(P) passes either through two points of P that are on
the same diameter (antipodal points), or through at least three points so that some three of
them form an acute angled or right angled triangle. A point p € P is said to be critical if
C(P) # C(P\ {p})- Note that p € P is critical only if p € C(P).

» Property 2. If |[PNC(P)| > 4 then there exists at least one point from P N C(P) which is
not critical.

10:5

OPODIS 2021

10:6

Pattern Formation by Robots with Inaccurate Movements

Consider all concentric circles that are centered at ¢(P) and passes through at least one
point of P. Let C}(P) (C}(P)) denote the ith (i > 1) of these circles so that Cj“(P) C
encl(Ci(P)) (resp. C’%(P) C encl(Cf‘l(P))). We shall denote ¢(P) by C’?(P). So we have
C’J} (P) = C(P) and if there is a point at ¢(P), then CT1 (P)=c¢(P) = C’?(P). We say that a
configuration of robots R is symmetry safe if one of the following three conditions hold (see
Fig. 3).

1. i) there is some non-critical robot on C(R), hence |[R N C(R)| > 3, ii) there is no
robot at ¢(R), iii) [RNC}(R)| = 1 and [RNCF(R)| = 1, iv) if RN C}(R) = {r1} and
RN C(R) = {ra}, then 71,72, ¢(R) are not collinear.

2. i) all robots on C(R) are critical and RN C(R) = {ry,re,73}, ii) Aryrars is scalene, i.e.,
all three sides have different lengths.

3. i) all robots on C(R) are critical and RN C(R) = {r1,72}, ii) [RN C}(R)| = 1, iii) if
RN CHR) = {r}, r ¢ line(r1,m2) UL, where £ is the line passing through ¢(R) and
perpendicular to line(ry,r2).

(a) (b) ()

Figure 3 Illustrations of symmetry safe configurations.

We shall say that a configuration R of robots has an unbreakable symmetry if one of the
following is true: i) R has rotational symmetry with no robot at ¢(R), ii) R has reflectional
symmetry with respect to a line £ with no robot on /.

4 Approximate Arbitrary Pattern Formation

The ARBITRARY PATTERN FORMATION problem in its standard form is the following. Each
robot of a team of n robots is given a pattern F' as input which is a list of n distinct
elements from R2. The given input F is exactly same for each robot. The problem asks
for a distributed algorithm that guides the robots to a configuration that is similar to F’
with respect to translation, reflection, rotation and uniform scaling. We refer to this version
of the problem as the EXACT ARBITRARY PATTERN FORMATION problem, highlighting
the fact that the configuration of the robots is required to be exactly similar to the input
pattern. However, it is not difficult to see that EXACT ARBITRARY PATTERN FORMATION is
unsolvable in our model where the robot movements are inaccurate.

» Theorem 1. EXACT ARBITRARY PATTERN FORMATION is unsolvable by robots with
inaccurate movements.

Therefore, we introduce a relaxed version of the problem called the APPROXIMATE
ARBITRARY PATTERN FORMATION. Intuitively, we want the robots to form a pattern that
is close to the given pattern, but may not be exactly similar to it. Formally, the robots
are given as input a pattern F' and a number 0 < € < 1. The number ¢ is small enough so

K. Bose, A. Das, and B. Sau

that the distance between no two pattern points is less than 2¢D where D is the diameter
of C(F). Given the input (F,€), the problem requires the robots to a form a configuration
R = {ry,...,r,} such that there exists an embedding (subject to translation, reflection,
rotation and uniform scaling) of the pattern F' on the plane, say P = {p1,...,pn}, such that
d(pi,r;) < €D for all i = 1,...,n, where D is the diameter of C(P). In this case, we say
that the configuration R is e-close to the pattern F. Recall that the number € is such that
the disks B(f;,eD) are disjoint. Since P is similar to F, disks B(p;,eD) are also disjoint.
The problem requires that exactly one robot is placed inside each disk. Furthermore, the
movements should be collisionless.

It is well known that ARBITRARY PATTERN FORMATION is unsolvable if the initial
configuration has an unbreakable symmetry. It can be shown that this also holds for
APPROXIMATE ARBITRARY PATTERN FORMATION (See Appendix A for proof).

» Theorem 2. APPROXIMATE ARBITRARY PATTERN FORMATION is deterministically un-
solvable, even with RIGID movements, if the initial configuration has unbreakable symmetries.

5 The Algorithm for Semi-Synchronous Robots

In this section, we present an algorithm that solves APPROXIMATE ARBITRARY PATTERN
FORMATION in OBLOT + SSYNC from any initial configuration that does not have any
unbreakable symmetries. The algorithm works in three phases which we shall describe in the
next three subsections. For each phase, we shall first present the idea behind the approach
and then give a brief description of the algorithm. More detailed description along with
formal proofs can be found in the full version [3] of the paper.

5.1 Phasel
Motive and Overview

The goal of Phase 1 is to create a configuration which is asymmetric and in which all
robots on its minimum enclosing circle are critical. Phase 1 consists of three subphases,
namely Subphase 1.1, Subphase 1.2 and Subphase 1.3. If the configuration is symmetric,
our first step would be to get rid of the symmetry. Since the initial configuration cannot
have any unbreakable symmetries, it will be possible to choose some unique robot from the
configuration. We can remove the symmetry by appropriately moving this robot. This is
done in Subphase 1.1. Once we have an asymmetric configuration, the next objective is
to bring inside some non-critical robots from the minimum enclosing circle so that all the
remaining robots on the minimum enclosing circle are critical. However, we have to make
sure that these moves do not create new symmetries in the configuration. For this, we first
make the configuration symmetry safe, i.e., have unique robots r; and ry respectively closest
and second closest from the center of the minimum enclosing circle such that r; and r are
not on the same diameter. This is done in Subphase 1.2. After this, in Subphase 1.3, we
start bringing inside the robots from the circumference. The movements of the robots should
be such that r; and r, remain the unique closest and second closest robot from the center.
This ensures that these movements do not create any symmetries. The two properties that
we achieved in Phase 1, namely, having an asymmetric configuration and not having any
non-critical robot on the minimum enclosing circle, will play crucial role in our approach
and hence, will be preserved during the rest of the algorithm. This will be the case even if
the target pattern F' is symmetric or has non-critical robots on its minimum enclosing circle.
This is not a problem as we are not required to exactly form the pattern F'. Any pattern F'
can be approximated by a pattern that is asymmetric and has no non-critical points on its
minimum enclosing circle.

10:7

OPODIS 2021

10:8

Pattern Formation by Robots with Inaccurate Movements

Brief Description of the Algorithm

We shall now briefly describe the algorithm. The algorithm is in Phase 1 if —u A (-a V —c)
holds, where a = “R is an asymmetric configuration”, u = “R has an unbreakable symmetry”,
c = “all robots on C(R) are critical”. The objective is to create a configuration with a A c.
The algorithm is in Subphase 1.1 if —u A —a holds, in Subphase 1.2 if a A =s A =¢c holds
(s = “R is symmetry safe”) and in Subphase 1.3 if s A —¢ holds.

First we describe Subphase 1.1. We have —uA—a. Our objective is to create an asymmetric
configuration, i.e., have a. As mentioned earlier, we will remove the symmetry by moving
exactly one robot of the configuration, while all other robots will remain stationary. The
fact that we have —u, will allow us to select one such robot from the configuration. To
describe the algorithm, we have to consider the following four cases. Case 1 consists of the
configurations in Subphase 1.1 where there is a robot at ¢(R). Now consider the cases where
there is no robot at ¢(R). Notice that in this case, R cannot have a rotational symmetry
because —u holds. So R has a reflectional symmetry with respect to a unique line /¢ as
reflectional symmetry with respect to two different lines imply rotational symmetry. Since
—u holds, there are robots on £. If there is a non-critical robot on ¢ then we call it Case 2.
For the remaining cases where there is no non-critical robot on ¢, we call it Case 3 if there
are more than 2 robots on C'(R) and Case 4 if there are exactly 2 robots on C(R).

In Case 1, we have a robot at « = ¢(R). In this case, r will move away from the center
and all other robots will remain static. The destination y chosen by the robot r should
satisfy the following conditions: (1) Z(z,y) C encl(C3(R)) \ {¢(R)}, (2) Z(x,y) N L =0 for
any reflection axis £ of R\ {r}. It is easy to see that such an y exists. Furthermore, r can
easily compute such an y.

In Case 2, there is no robot at ¢(R), R has reflectional symmetry with respect to a
unique line ¢ and there is at least one non-critical robot on £. If there are more than one
non-critical robots on ¢, we can single out one of them using the concept of view of a robot
(see Appendix A for details). In particular, all robots on ¢ will have distinct views (because
otherwise R will have rotational symmetry) and hence we have a unique non-critical robot
r with minimum view. Only r will move in this case. Suppose that r is at point x. The
destination y chosen by r should satisfy the following conditions: (1) if =z € C’%(R)7 then
Cone(z, Z(x,y)) C encl(C}(R)) \m(C%_l(R)), (2) Z(z,y) N ¢ = O for any reflection axis
¢ of R\ {r}. Such points clearly exist and r can easily compute one.

In Case 3, we have no robot at ¢(R), R has reflectional symmetry with respect to a
unique line ¢, there is no non-critical robot on ¢ and C'(R) has at least 3 robots on it. In
this case, it can be shown that there is exactly one robot on ¢ and it is on C(R). Call
this robot 7. Let = denote its position. Let 71,72 be the two robots (specular with respect
to £) on C(R) such that Zrc(R)r1 = Zre(R)ra = max{Zrc(R)r" | " € RN C(R)}. It
can be shown that § < Zrc(R)ry = Zre(R)r; < w. Only r will move in this case and
the rest will remain static. Here the robot will move outside of the current minimum
enclosing circle. The chosen destination y should satisfy the following conditions: (1)
Z(z,y)NL =0, (2) Cone(x, Z(x,y)) C ext(C(R)) Nencl(C') N H where C' is the largest
circle from {C € F(ri,m2) | R C encl(C)} and H is the open half-plane delimited by
line(ry,72) that contains z, (3) Z(z,y) N C; = 0, where C; = C(ry,d(r1,72)),7 = 1,2, (4)
Z(x,y) C S(L1, La), where L; is the line parallel to ¢ and passing through r;, i = 1,2. Again,
it is staightforward to see that such an y should exist and r can easily compute one.

In Case 4, we have no robot at ¢(R), R has reflectional symmetry with respect to a
unique line ¢, there is no non-critical robot on ¢ and C(R) has exactly 2 robots on it. In
this case, it can be shown that there is no robot on ¢ N encl(C(R)) and there are two

K. Bose, A. Das, and B. Sau

antipodal robots on ¢, say r and r’. Also, the views of r and 7’ must be different. So
let 7 be the robot with minimum view. Only r will move in this case. Let £’ be the line
perpendicular to ¢ and passing through r. For each " € R\ {r,r'}, consider the line passing
through " and perpendicular to seg(r”,r’). Consider the points of intersection of these
lines with ¢. Let Py, P, (specular with respect to £) be the two of these points that are

closest to £. Let L1, Ly be the lines parallel to ¢ and passing through P;, P, respectively.

Assuming that r is at point x, the destination y chosen by r should satisfy the following
conditions: (1) Cone(x, Z(z,y)) C ext(C(R)), (2) Z(z,y)NL =0, (3) Z(x,y) C S(L1, L2),
(4) Z(z,y) N Cle,d(c,7")) =0, where ¢ = ¢(R\ {r,r'}).

It can be shown that the movements described for Subphase 1.1 will lead to an asymmetric
configuration. The algorithm will be in Subphase 1.2 if aA—sA-c holds. Then our goal would
be to make the configuration symmetry safe. This can be easily done. When s A —c holds,
we are in Subphase 1.3 . Then our objective would be to have a A c. As the configuration is
asymmetric (as s = a), there is a robot with minimum view among all the non-critical
robots lying on C'(R). This robot will move inside. Continuing in this manner, non-critical
robots on C'(R) will sequentially move inside until we obtain a A c.

5.2 Phase 2
Motive and Overview

Phase 1 was a preprocessing step where a configuration was prepared in which there is no
symmetry and all robots on the minimum enclosing circle are critical. Actual formation of
the pattern will be done in two steps, in Phase 2 and Phase 3. In Phase 2, the robots on the
minimum enclosing circle will reposition themselves according to the target pattern and then
in Phase 3, the robots inside the minimum enclosing circle will move to complete the pattern.
The standard approach to solve the ARBITRARY PATTERN FORMATION problem, however, is
exactly the opposite. Usually, the part of the pattern inside the minimum enclosing circle
is first formed and then the pattern points on the minimum enclosing circle are occupied
by robots. In this approach, the minimum enclosing circle is kept invariant throughout the
algorithm. Keeping the minimum enclosing circle fixed is important because it helps to fix
the coordinate system with respect to which the pattern is formed. During the second step,
a robot on the minimum enclosing circle may have to move to another point on the circle.
In order to keep the minimum enclosing circle unchanged, it has to move exactly along the
circumference. However, it is not possible to execute such movement in our model. An error
in movement in this step will change the minimum enclosing circle and the progress made
by the algorithm will be lost. Placing the robots at the correct positions on the minimum
enclosing circle is a difficult issue in our model. In fact, it can be proved that it is impossible
to deterministically obtain a configuration with > 4 robots on the minimum enclosing circle
if the initial configuration has < 4 robots on the minimum enclosing circle. For this reason,
we shall work with 2 or 3 (critical) robots on the minimum enclosing circle as obtained
from Phase 1 (or may be from the beginning). So in Phase 2, we start with an asymmetric
configuration where all robots on the minimum enclosing circle are critical. The objective of
this phase is to move these critical robots so that their relative positions on the minimum
enclosing circle is consistent with the target pattern. For this, we shall choose a set of two or
three pattern points from the minimum enclosing circle of the target pattern. We shall call
this set the bounding structure of the target pattern. Essentially, the objective of Phase 2 is
to approximate this structure by the critical robots.

10:9

OPODIS 2021

10:10

Pattern Formation by Robots with Inaccurate Movements

The Bounding Structure

If Algorithm 1 is applied on the target pattern F', then we obtain a set Bp C C(F) N F of
pattern points such that B is a minimal set of points of C'(F')NF such that CC(Br) = C(F).
By minimal set we mean that no proper subset of By has this property. By Property 1, Bp
either consists of two antipodal points or three points that form an acute angled triangle.
We call Br the bounding structure of F' (see Fig. 4a). Recall that each robot computes the
same bounding structure since the input F = {f1, fo,... fn} is same for all robots. We say
that the bounding structure of F' is formed by the robots if one of the following holds.

1. Bp has exactly two points, C'(R) has exactly two robots on it and R is symmetry safe.

2. Br has exactly three points and C(R) has exactly three robots on it (see Fig. 4). Let
Br = {fi,s fir, fis} and C(R) N R = {r1,r2,73}. R is symmetry safe (i.e. Arirars is
scalene) and furthermore, if seg(rq, r2) is the largest side of the triangle formed by 71, 72, 73
and seg(fi,, fi,) is a largest side of the triangle formed by f;,, fi,, fi, then 3 an embedding
fi = P; of F on the plane identifying seg(f;,, fi,) with seg(r1,72) so that i) r3 €
B(P,,,eD), (D = diameter of C(Py,...,P,)) and ii) B(P;,eD)Nencl(CC(ry,ra,r3)) # 0
forallie {1,...,n}

Algorithm 1 Algorithm producing the bounding structure of a pattern.

Input :A pattern F = {f1,...,fn}
Let C(F)NF ={fj,,..., fjr}, where j1 < ... < ji
BFF{fJu’"vfjk}
forlel,...,kdo
if f;, is non-critical in F then
L Fe F\{fi.}
Br < Br \{f}

Return Bp

o A WK e

K

Brief Description of the Algorithm

The algorithm is in Phase 2 if a A ¢ A —=b holds (b = “the bounding structure is formed”).
The objective is to have b. We describe the algorithm for the following cases: C'(R) has three
robots and the bounding structure also has three points (Case 1), C(R) has three robots
and the bounding structure has two points (Case 2), C(R) has two robots and the bounding
structure has three points (Case 3) and C'(R) has two robots and the bounding structure
also has two points (Case 4).

First consider Case 1. Here the goal is to transform the triangle of the robots on C(R)
so that the bounding structure of F is formed. Let C(R) N R = {ry,79,7r3}. If Aryrors is
not scalene, then we shall make it so by using similar techniques from Subphase 1.1, Case 3.
So now assume that Arjrars is scalene. Let S€g(r1,r2) be the largest side of Aryrars. In
that case, rg will be called the transformer robot. This robot will move to form the bounding
structure of F. Let L be the perpendicular bisector of seg(r1,r2). Since no two sides of
the triangle are of equal length, r5 ¢ L. Let H be the open half-plane delimited by L that
contains 3. Without loss of generality, assume that vy € H. Let L; be the line parallel to L
and passing through r;. Let H’ be the open half-plane delimited by L; that contains L. Since
Aryrars is acute angled, 3 € H'. Let H” be the open half-plane delimited by line(ry, r9) that
contains r3. Let Cy = C(r1,d(r1,72)) and Cy = C(re,d(r2,71)). Since Seg(ry,ra) is (strictly)
the largest side of Aryrars, r3 € encl(Cy) Nencl(Cy). If C3 = CC(ry,r2), then 5 € ext(Cs)
as Arirors is acute angled. Now take the largest side of the bounding structure Bp. In
case of a tie, use the ordering of the points in the input F' to choose one of them. Embed

K. Bose, A. Das, and B. Sau

(d)

Figure 4 a) The input pattern F. The bounding structure br consists of the blue pattern points.

b)-¢) The bounding structure is formed by the robots. d) To obtain a final configuration, each
shaded region must have a robot inside it.

the bounding structure Br on the plane identifying this side with seg(r1,r2) so that the
third point of the bounding structure is mapped to a point P € H N#H". Since the bounding
structure is acute angled, P € H'. Also, P € ext(C3) for the same reason. Furthermore, since

a largest side of the bounding structure is identified with seg(r1,r2), P € encl(C1) Nencl(Cs).

So we have r3 € HNH NH" Nencl(Cy) Nencl(Cy) Next(Cs) = Upiye (the blue open region
in Fig. 5a) and P € HNH' NH" Nencl(C1)Nencl(Ca) Next(C3) = U'piye. Notice that U’ prue
consists of the open region Uy, and some parts of its boundary. Our objective is to move
the robot r3 to a point near P. The entire trajectory of the movement should lie inside the
region Up,.. However, before this movement, we have to make sure that the configuration
satisfies some desirable properties described in the following. Let Cy be the circle passing
through 71,79 and the point in H” where C; and Cs intersect each other. We shall say that
the transformer robot is eligible to move if RN encl(C(R)) C encl(Cs) Nencl(Cy) = Ured

(the red region in Fig. 5b). The transformer robot will not move until it becomes eligible.

10:11

OPODIS 2021

10:12 Pattern Formation by Robots with Inaccurate Movements

7N

7
7

.
i iy

i
G L

s
L
i

(a) (b)

\ /
(c) (d)

Figure 5 a)-b)Illustrations for Phase 2, Case 1. c) Illustrations for Phase 2, Case 2. d) Illustrations
for Phase 2, Case 3.

So the robots in encl(C(R)) that are not in U,..q, should sequentially move inside this
region first. Notice that during these movements, the configuration remains asymmetric
(as Aryrars remains scalene) and also 73 remains the transformer robot. So when we have
RNencl(C(R)) C Uyed, T3 will become eligible to move. Now it has to move inside the
region B(P, eD) NUpjye. However, it is important that its trajectory lies inside Upjye. This is
because it can be shown that as long as r3 stays inside the “safe region” Up;ye, it remains as
the transformer robot. This can be done by a movement scheme described in Appendix B
that allows a robot to move close to a destination point through a safe region.

In Case 2, C'(R) has exactly three robots and the bounding structure has exactly two
points. Let C(R)N R = {r1,r2,r3}. As before, Aryrors will be made scalene. Let Seg(rq, r2)
be the largest side. Then r3 is the transformer robot. The plan is to move r3 inward so that
it is no longer on the minimum enclosing circle. Let C1, Cs, C3, H,H’', H" denote the same
as in Case 1. As before, we have r3 € HNH' NH" Nencl(Cy) Nencl(Cz) Next(Cs) = Upiye
(blue region in Fig. 5¢). We shall say that the transformer robot is eligible to move if 1)
RNencl(C(R)) C encl(Cs)Nencl(C(R)) (red region in Fig. 5¢) and 2) R\ {r3} is a symmetry
safe configuration. The robots in encl(C(R)) that are not already in encl(C3) will move
inside it. Then we have C'(R\ {r3}) = C5 and it passes through only r; and ra. So R\ {rs}
will be symmetry safe if there is a unique robot closest to O, the midpoint of seg(r1,r2), and
it is not on seg(ry,r2) or its perpendicular bisector. This can be achieved easily. When r3
becomes eligible to move, it will move inside encl(Cs). During its movement, when it has not

K. Bose, A. Das, and B. Sau

entered encl(Cs), its trajectory should remain inside Upjye. Also, when it enters encl(Cs), it
should remain in ext(C) where C' = C{(R\ {r3}). So its entire trajectory should be inside
the region HNH' NH" Nencl(Cr) Nencl(Cs) Next(C) and it should not collide with any
robot upon entering encl(C3). This can be done by the scheme from Appendix B.

In Case 3, C'(R) has exactly two robots and the bounding structure consists of exactly
three points. Let C(R)NR = {ry,r2}. Here the strategy is to move outward one of the robots
from encl(C(R)), say r, so that the minimum enclosing circle becomes the circumcircle of r,
and 9. We shall call r the transformer robot. The robot farthest from ¢(R) will be chosen as

the transformer robot. In case of a tie, it is broken using the asymmetry of the configuration.

Let H be the open half plane delimited by line(ry, r2) that contains r. Let Ly and Ly be the
lines perpendicular to line(ry,re) and passing through respectively r; and r5. Let L be the

perpendicular bisector of seg(r1,r2). Without loss of generality, assume that r € S(Lq, L)U L.

Let C; = C(r1,d(r1,72)), Co = C(re,d(re,m1)) and C3 = CC(ry1,7m2). Let Cy be the
largest circle from the family {C € F(ry,r2) | center of C lies in H and R C encl(C)}. The
algorithm asks r to move into the region encl(Cy)Nencl(Cy)Next(Cs)Nencl(Cy) NHNS(Ly, L)

(the blue region in Fig. 5d). Again, this can be done by the scheme described in Appendix B.

In Case 4, C'(R) has two exactly robots and the bounding structure also has exactly two
points. The only time —b may hold is when the configuration is not symmetry safe. So we
have to make the configuration symmetry safe by previously discussed techniques.

5.3 Phase 3
Motive and Overview

The algorithm is in Phase 3 if b holds. The objective of this phase is to form the pattern
approximately. Notice that when b holds, the configuration is symmetry safe and hence
asymmetric. This will allow the robots to agree on a coordinate system in which the target
will be formed (approximately). During this process, b has to be preserved because otherwise
the agreement in coordinate system will be lost.

The termination condition of the algorithm is that both b holds (i.e., it is a Phase 3
configuration) and the configuration is e-close to F'. Therefore, even if the initial configuration
is e-close to F' (i.e., the pattern F' is already formed approximately), the algorithm will still
go through the earlier phases to have b and then approximately form the pattern while
preserving b. The reason why we take this approach is because in general, even if the
configuration is e-close to F', the robots may not be able to efficiently identify this. This is a
basic difficultly of the problem. However, when b holds there is a way to fix a particular
embedding of F' in the plane and then the only thing to check is whether there are robots
close to each point of the embedding. For Phase 3, there are two cases to consider: Bp has
exactly two points (Case 1) and By has exactly three points (Case 2).

Brief Description of the Algorithm

We shall only discuss Case 1 because its techniques can be used to solve Case 2 as well.
Case 2 and all the omitted details of Case 1 can be found in the full version [3] of the

paper. So for Case 1, let us first describe how we shall fix a common coordinate system.

Let {ry,m2} = C(R) N R. Let ¢ = line(ry,r2) and ¢’ be the line passing through ¢(R) and

perpendicular to £. Let r; be the unique robot closest to ¢(R). Also it is in encl(C(R))\ (£UL).

Such a robot exists because b holds. We set a global coordinate system whose center is
at ¢(R), X axis along ¢, Y axis along ¢'. The positive directions of X and Y axis are
such that r; lies in the positive quadrant. Now we choose an embedding of the pattern F
that will be approximated. Perform a coordinate transformation (rotation) on the target

10:13

OPODIS 2021

10:14

Pattern Formation by Robots with Inaccurate Movements

pattern F so that the bounding structure is along the X axis. Let F’ denote the input
after this transformation. Consider the pattern points on C%(F’) except the points of the
bounding structure (notice that C%(F ") may have points from the bounding structure when
CH(F') = C(F")). Reflect the pattern with respect to X axis or Y axis or both, if required,
so that at least one of them is in the closed positive quadrant (X > 0,Y > 0). Let F” denote
the pattern thus obtained. Therefore, if {f;, f;} be the bounding structure, then we have
1) fi, fj on the X axis and 2) at least one point from CH(F") N (F" \ {fi, f;}) in the closed
positive quadrant. Each robot applies coordinate transformations on F' and obtains the same
pattern F”. Let f; denote the first pattern point from CF (F”) N (F”\ {f;, f;}) that is in the
closed positive quadrant. The pattern F” is mapped in the plane in the global coordinate
system and scaled so that the bounding structure is mapped onto seg(ry,r2). These points
are called the target points. T denotes the set of target points. Notice that the robot 7,
being the unique robot on C{(R) and also being in an open quadrant (defined by £ U (),
plays crucial role in fixing the common coordinate system. This will be preserved throughout
the algorithm. In particular, r; will remain in such a position even in the final configuration.
The target point that r; will approximate in the final configuration will be the target point
corresponding to f;. Let us call it ¢;. Now ¢; is on C’%(T) and in the closed positive quadrant.
As r; is in the open quadrant, it does not need to move out of it to approximate ¢;. Now as
r; needs to remain the closest robot from the center, we will define a circle Cj, that depends
only on the position of ¢;, and require that in the final configuration we have r; inside this
circle and all robots are outside the circle. If D is the diameter of C(T), i.e., D = d(ry,72),
then define the circle C; as (see Fig. 6) i) if t; € C}(T) = ¢(T), then C; = C(c(T),eD), ii) if
t; € C}(T) = C(T), then C; = C(c(T), (1 - €)2), iii) otherwise, C; = C% (T).

We shall say that a target point t # ¢; is realized by a robot r, if r is the unique closest
robot to t and r € B(t,eD)Next(Cy) Nencl(C(R)). We shall say that t; is realized by a robot
r if all target points ¢ # ¢; are realized, r is the robot closest to t; and r € B(t,eD) Nencl(Cy).
Hence, if ¢; is realized then it implies that all target points are realized, i.e., the given pattern
is formed. We call this the final configuration (see also Fig. 6). Now the objective is to realize
all the target points. This will be done in the following way. First the robot r; moves inside
encl(Cy), if not already there. The movement should be such that s remains true. Then the
robots from R\ {r;} will sequentially realize all the target points of T'\ {¢;} preserving s.
These movements are complicated and are described in the full version [3]. When the target
points of T'\ {¢;} are realized, the robot r; will then realize ;. Again, s should remain true
and r; should remain as the unique robot closest to ¢(R).

5.4 The Main Result

Recall that a configuration with —u A (—aV —c) is in Phase 1, a configuration with a A c A —b
is in Phase 2, and a configuration with b is in Phase 3. It is easy to see that any configuration
with —u belongs to one of the three phases. Phase 1 terminates with a A ¢ which is either a
Phase 2 or Phase 3 configuration. Phase 2 terminates with b which is a Phase 3 configuration.
A final configuration is formed in Phase 3. Hence the algorithm solves the problem in
OBLOT + SSYNC from any configuration which is —u.

6 The Algorithm for Asynchronous Robots

Let us denote the algorithm presented in Section 5 as A. It works in OBLOT + SSYNC.
Notice that a feature of this algorithm is that it is sequential in the following sense. At
any round during the execution of the algorithm, at most one robot decides to move.

K. Bose, A. Das, and B. Sau 10:15

- -

/// \\\
i @ \
4
/
’
/
/

/ \\
! \
]

-~
7N
(%)

_//

~~ -

(a) (b)

~~ -

(c) (d)

@

-

-

7

(e) ()

Figure 6 Illustrations for Phase 3, Case 1. In each row, the input pattern F' is shown on the
left and a final configuration approximating F' is shown on the right. In each case, points of the
bounding structure are shown in blue, ¢; is shown in black and the green circle represents Cj.

OPODIS 2021

10:16 Pattern Formation by Robots with Inaccurate Movements

This immediately gives an algorithm that works in FCOM + ASYNC using two colors
{busy, idle}. The algorithm A can be seen as a function that maps the snapshot taken by
a robot to a movement instruction. We now construct an algorithm A’ from A with two
colors {busy,idle} in the following way. Initially the colors of all robots are set to idle. If
any robot finds some robot with light set to busy, then it does nothing. Otherwise, it applies
A on its snapshot (ignoring colors). If A returns a non-null move, it sets its light to busy
and moves accordingly. If A returns a null move, it sets its light to idle (recall that it does
not know what its present color is) and does not make any move. It is easy to see that A’

solves the problem in FCOM + ASYNC.

7 Concluding Remarks

We have introduced a model for robots with inaccurate movements. In this model, we have pre-
sented algorithms for APPROXIMATE ARBITRARY PATTERN FORMATION in OBLOT + SSYNC
and FCOM + ASYNC. Solving the problem in OBLOT + ASYNC is an interesting open
problem. The main difficulty of the ASYNC setting is that a robot can see another robot
while the later is moving. How will a robot identify whether a robot in its snapshot is static
or moving? In FCOM, a robot used the color busy to inform others that it is moving. But
this is not possible in OBLOT . Usually such difficulties are handled in a different way in
OBLOT + ASYNC. Suppose that a robot r has to move to a point P. Other robots also
know this and conclude that r has completed its movement by simply observing that r has
moved to P. But notice that in our case, moving exactly to P is impossible with erroneous
movements. Even when r is close to P, it can not be decided whether it is still moving or
not. Consider a particular situation in our algorithm where r is moving outside the smallest
enclosing circle (as in Phase 1 and Phase 2), i.e., the smallest enclosing circle is changing as
r is moving. If we cannot ascertain if r is moving or not, then we cannot ascertain if the
smallest enclosing circle is stable or changing. Recall that the center of the smallest enclosing
circle is the origin of the coordinate system with respect to which the pattern will be formed.
So with a changing smallest enclosing circle, the coordinate system is also changing. So
it is crucial to distinguish between moving and static robots. A possible approach in this
setting could be that the robots may predict a bound on how much the coordinate system
can perturb and act accordingly.

We did not consider multiplicities (points with multiple robots) in the input pattern.
Since two robots cannot be brought to the same point in our model, a multiplicity can
be interpreted in this case as multiple robots very close to each other. Our algorithm can
be adapted to handle inputs with multiplicities. In this work, we modeled the robots as
dimensionless points. Another interesting direction for future research would be to consider
robots with physical extent.

—— References

1 Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Positional
encoding by robots with non-rigid movements. In Proc. of 26th International Colloquium
on Structural Information and Communication Complexity, SIROCCO 2019, L’Aquila, Italy,
volume 11639 of LNCS, pages 94-108. Springer, 2019. doi:10.1007/978-3-030-24922-9_7.

2 Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary
pattern formation on infinite grid by asynchronous oblivious robots. Theor. Comput. Sci.,
815:213-227, 2020. doi:10.1016/j.tcs.2020.02.016.

3 Kaustav Bose, Archak Das, and Buddhadeb Sau. Pattern formation by robots with inaccurate
movements. arXiv, abs/2010.09667, 2020. arXiv:2010.09667.

https://doi.org/10.1007/978-3-030-24922-9_7
https://doi.org/10.1016/j.tcs.2020.02.016
http://arxiv.org/abs/2010.09667

K. Bose, A. Das, and B. Sau

4 Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary
pattern formation by asynchronous opaque robots with lights. Theor. Comput. Sci., 849:138—
158, 2021. doi:10.1016/j.tcs.2020.10.015.

5 Quentin Bramas and Sébastien Tixeuil. Brief announcement: Probabilistic asynchronous
arbitrary pattern formation. In Proc. of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, pages 443-445, 2016. doi:10.1145/2933057.
2933074.

6 Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous arbitrary pattern
formation: the effects of a rigorous approach. Distributed Computing, pages 1-42, 2018. doi:
10.1007/s00446-018-0325-7.

7 Reuven Cohen and David Peleg. Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM J. Comput., 38(1):276-302, 2008. doi:10.1137/060665257.

8 Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election problem versus pattern
formation problem. In Proc. of 24th International Symposium on Distributed Computing, DISC
2010, Cambridge, MA, USA, pages 267-281, 2010. doi:10.1007/978-3-642-15763-9_26.

9 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern
formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci., 407(1-3):412—
447, 2008. doi:10.1016/j.tcs.2008.07.026.

10 Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita.
Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput., 44(3):740-785,
2015. doi:10.1137/140958682.

11 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi
Yamashita. Meeting in a polygon by anonymous oblivious robots. Distributed Comput.,
33(5):445-469, 2020. doi:10.1007/s00446-019-00362-2.

12 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Forma-
tion of geometric patterns. SIAM J. Comput., 28(4):1347-1363, 1999. doi:10.1137/
S009753979628292X.

13 Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry L. Trahan. On fast pattern
formation by autonomous robots. In Proc. of 20th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, SSS 2018, Tokyo, Japan, pages 203—-220, 2018.
do0i:10.1007/978-3-030-03232-6_14.

14 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theor. Comput. Sci., 411(26-28):2433-2453, 2010. doi:
10.1016/j.tcs.2010.01.037.

15 Yukiko Yamauchi and Masafumi Yamashita. Randomized pattern formation algorithm
for asynchronous oblivious mobile robots. In Proc. of 28th International Symposium
on Distributed Computing, DISC 2014, Austin, TX, USA, pages 137-151, 2014. doi:
10.1007/978-3-662-45174-8_10.

A Symmetries and Basic Impossibilities

We first present the concept of view (defined similarly as in [6]) of a point in a pattern or a
robot in a configuration. The view of a point/robot can be used to determine whether the
pattern/configuration is symmetric or asymmetric. Let R = {ry,...,7,} be a configuration of
robots or a pattern of points. A map ¢ : R — R is called an isometry or distance preserving
if d(¢(r;),p(rj)) = d(rs,rj) for any r;,r; € R. R is said to be asymmetric if R admits only
the identity isometry, and otherwise it is called symmetric. The possible symmetries that
a symmetric pattern/configuration can admit are reflections and rotations. For any r € R,
its clockwise view, denoted by VO(r), is a string of n + 1 elements from R? defined as the
following. For r # ¢(R), consider the polar coordinates of the points/robots in the coordinate

system with origin at ¢(R), ¢(R)r as the reference axis and the angles measured in clockwise

10:17

OPODIS 2021

https://doi.org/10.1016/j.tcs.2020.10.015
https://doi.org/10.1145/2933057.2933074
https://doi.org/10.1145/2933057.2933074
10.1007/s00446-018-0325-7
https://doi.org/10.1137/060665257
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1137/140958682
https://doi.org/10.1007/s00446-019-00362-2
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1007/978-3-030-03232-6_14
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1007/978-3-662-45174-8_10
https://doi.org/10.1007/978-3-662-45174-8_10

10:18

Pattern Formation by Robots with Inaccurate Movements

direction. The first element of the string V©(r) is the coordinates of r and next n elements
are the coordinates of the n points/robots ordered lexicographically. For r = ¢(R), all n + 1
elements are taken (0,0). The counterclockwise view V°(r) is defined analogously. Among
VO(r) and VO(r), the one that is lexicographically smaller is called the view of r and is
denoted as V(r). In a configuration, each robot can compute its view as well as the views
of all other robots. Hence, the following properties can be used by the robots to detect
whether the configuration is symmetric or not [6]: 1) R admits a reflectional symmetry if
and only if there exist two points r;,7; € R, 7;,7; # ¢(R), not necessarily distinct, such that
VO(r;) = VO(r;), 2) R admits a rotational symmetry if and only if there exist two points
7,75 € R, i # 7, 13,75 # ¢(R), such that VO(r;) = VO(r;).

A problem that is closely related is the LEADER ELECTION problem where a unique
robot from the team is to be elected as the leader. It is a well-known result [6] that LEADER
ELECTION is deterministically solvable if and only if the initial configuration R does not
have i) rotational symmetry with no robot at ¢(R) or ii) reflectional symmetry with respect
to a line ¢ with no robot on ¢. We call the symmetries i) and ii) unbreakable symmetries.
If a configuration does not have such symmetries, then it can be shown that the robots
can use the views to elect a unique leader. It is well-known [6] that EXACT ARBITRARY
PATTERN FORMATION is deterministically unsolvable, even with RIGID movements, if the
initial configuration has unbreakable symmetries. The same result holds for APPROXIMATE
ARBITRARY PATTERN FORMATION as stated in Theorem 2

Proof of Theorem 2

Proof. For any configuration of robots R, define (r) for any r € Ras y(r) = X, cp\ rpd(r,1").
Let Ry be an initial configuration of n robots that has an unbreakable symmetry. For the sake
of contradiction, assume that there is a distributed algorithm A that solves APPROXIMATE
ARBITRARY PATTERN FORMATION for any input (F)€) from this configuration, i.e., it forms
a configuration that is e-close to F. Consider the following input pattern F' = {f1, fo, ..., fn},
where f1, fa, f3 form an isosceles triangle with d(f1, f2) = d(f1, f3) > d(fa, f3) and fa,..., fn
are arranged on the smaller side of the triangle. If d(f1, f2) = d(f1, f3) is sufficiently large
compared to d(f2, f3) and € is sufficiently small, then for any configuration R’ of robots that
is e-close to F', we have v(r1) > ~(r) for all r € R'\ {r1}, where r; is the robot approximating
f1. This property can be used to elect r; as the leader. Hence, APPROXIMATE ARBITRARY
PATTERN FORMATION can be used to solve LEADER ELECTION from the initial configuration
Ry. This is a contradiction to the fact that LEADER ELECTION is deterministically unsolvable
from a configuration with unbreakable symmetries [6]. <

B Moving Through Safe Zone

In this section, we present some movement strategies that will be used several times in the
main algorithm. Suppose that a robot needs to move to or close to some point in the plane.
If the point is far away from the robot and it attempts to reach it in one step, the error
would be very large and it will miss the target by a large distance. As a result, it may reach
a point which causes the configuration to loose some desired property. Also, due to the
large deviation from the intended trajectory, it may collide with other robots. So the robot
needs to move towards its target in multiple steps and move through a “safe” region where it
does not collide with any robot and the desired properties of the configuration are preserved.
We first discuss the following problem. Let zy and y be two points in the plane so that
d(xg,y) > l. Suppose that a robot r is initially at xy and the objective is that it has to move

K. Bose, A. Das, and B. Sau

2

Figure 7 Some variants of Algorithm 2. a) Starting from xo, the robot has to move inside the
shaded region. b) Starting from xo, the robot has to move inside B(y,) avoiding point obstacles.
There are no obstacles on the line segment joining xo and y. ¢) Starting from zo, the robot has
to move inside B(y,!) avoiding disk shaped obstacles. The line segment joining z¢ and y does not
intersect any obstacle. d) Starting from xo, the robot has to move inside B(y,!) avoiding point
obstacles. There are some obstacles on the line segment joining z¢ and y.

to a point inside B(y,!) via a trajectory which lies inside Cone(x, B(y,!1)). A pseudocode
description of an algorithm that solves the problem is presented in Algorithm 2. Proof of
correctness of the algorithm can be found in the full version [3] of the paper.

Algorithm 2 Algorithm for moving through a safe zone.

Input :A point y on the plane and a distance [
1 7 < myself
2 if d(r,y) > [then

if d(r,y) =1 or d(rl e sin(errorq(r,y)) then

w

4 | Move to y

5 else

6 p < point on seg(r,y) so that d(rl 7= sin(errorq(r, p))
7 Move to p

We now discuss some variants of the problem. They can be solved using the movement
strategy of Algorithm 2 subject to some modifications.

10:19

OPODIS 2021

10:20

Pattern Formation by Robots with Inaccurate Movements

. Suppose that the robot r is required to move inside some region other than a disk. Assume

that the region is enclosed by some line segments and circular arcs. We can easily solve
this problem using the same movement strategy, e.g., by fixing some disk B(y,) inside
the region and following Algorithm 2. See Fig. 7a.

. Now consider the situation where the robot r, starting from g, have to get inside a disk

B(y,1), but there are some point obstacles that it needs to avoid. Let O C R? be the set
of obstacles. However, there are no obstacles on Seg(zg,y). Again a similar approach will
work. Instead of B(y,!), the robot r just needs to consider B(y,!’) where I’ € (0,1] is the
largest possible length such that Cone(r, B(y,l')) N O = (). See Fig. 7b.

. Instead of point obstacles, now consider disk shaped obstacles. Assume that none of the

obstacles intersect seg(xg,y). The same approach as in the previous problem would work
here too. See Fig. Tc.

. Now again consider point obstacles, but this time there might be some obstacles lying on

seg(xo,y). Let O' = ONseg(xp,y). The robot will move to a point &' € Cone(xzq, B(y, 1))
so that there is no obstacle on seg(a’,y). For this, it will move so that it reaches a point
in Cone(xo, B(y,!')) \ seg(xo,y) where I’ € (0,1] is the largest possible length such that
Cone(zg, B(y,l')) N (O\ O') = 0. See Fig. 7d.

Near-Shortest Path Routing in Hybrid

Communication Networks

Sam Coy =

University of Warwick, Coventry, UK

Michael Feldmann &

Paderborn University, Germany

Fabian Kuhn &

University of Freiburg, Germany

Philipp Schneider =

University of Freiburg, Germany

Artur Czumaj =

University of Warwick, Coventry, UK

Kristian Hinnenthal &
Paderborn University, Germany

Christian Scheideler &

Paderborn University, Germany

Martijn Struijs &
TU Eindhoven, The Netherlands

—— Abstract

Hybrid networks, i.e., networks that leverage different means of communication, become ever more
widespread. To allow theoretical study of such networks, [Augustine et al., SODA’20] introduced
the HYBRID model, which is based on the concept of synchronous message passing and uses two

fundamentally different principles of communication: a local mode, which allows every node to
exchange one message per round with each neighbor in a local communication graph; and a global
mode where any pair of nodes can exchange messages, but only few such exchanges can take place
per round. A sizable portion of the previous research for the HYBRID model revolves around basic
communication primitives and computing distances or shortest paths in networks. In this paper,
we extend this study to a related fundamental problem of computing compact routing schemes for
near-shortest paths in the local communication graph. We demonstrate that, for the case where the
local communication graph is a unit-disc graph with n nodes that is realized in the plane and has no
radio holes, we can deterministically compute a routing scheme that has constant stretch and uses
labels and local routing tables of size O(logn) bits in only O(logn) rounds.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Hybrid networks, overlay networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.11

Related Version Full Version: https://arxiv.org/abs/2202.08008

Funding Sam Coy: Supported by the Centre for Discrete Mathematics and its Applications (DIMAP)
and by an EPSRC studentship.

Artur Czumag: Supported by the Centre for Discrete Mathematics and its Applications (DIMAP),
by EPSRC award EP/V01305X/1, and by an IBM Award.

Christian Scheideler: Supported by the German Research Foundation (DFG) within the Collaborative
Research Center 901 “On-The-Fly Computing” under the project number 160364472-SFB901.

1 Introduction

Humans naturally communicate in a hybrid fashion by making use of broadcast services,
emails, phones, or simply face-to-face communication. Thus, it seems natural to study hybrid
communication also in distributed systems. But fundamental research in this area is still in
its infancy, even though there are several examples where hybrid communication is already
exploited in practice. For instance, in modern data centers, wired communication networks
are combined with high-speed wireless communication to reduce wire length or increase
bandwidth without adding congestion to the wired network [12]. This paper focuses on
hybrid wireless networks: networks that combine ad-hoc, WLAN-based connections (the

© Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler,
5v Philipp Schneider, and Martijn Struijs;

licensed under Creative Commons License CC-BY 4.0
25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 11; pp.11:1-11:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:S.Coy@warwick.ac.uk
mailto:A.Czumaj@warwick.ac.uk
mailto:michael.feldmann@upb.de
mailto:krijan@mail.upb.de
mailto:kuhn@cs.uni-freiburg.de
mailto:scheideler@upb.de
mailto:philipp.schneider@cs.uni-freiburg.de
mailto:m.a.c.struijs@tue.nl
https://doi.org/10.4230/LIPIcs.OPODIS.2021.11
https://arxiv.org/abs/2202.08008
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Near-Shortest Path Routing in Hybrid Communication Networks

local network) with connections via a cellular or satellite infrastructure (the global network).
These can be realized, for instance, by smartphones, since they support both communication
modes and solutions for smartphone ad hoc networks have been around for almost a decade.
Connections in the local network can transfer large amounts of data cheaply, but have limited
range, while global connections can transmit data between any pair of devices, but typically
with bandwidth restrictions and additional costs. So ideally, global communication should be
reserved for exchanging control messages while the data should be sent via the local edges,
which necessitates the computation of a routing scheme for the local network.

The simplest solution to compute a routing scheme would be to use the global mode
to collect all local device connections and/or positions in a centralized server and do the
computation there. However, a centralized solution would represent a bottleneck and single
point of failure, or it would not be for free when making use of a cloud service. We avoid
these problems by only relying on the devices themselves. Interestingly, even without any
central service, we vastly improve the results over what is possible with just the local network.
More specifically, we demonstrate that with a hybrid wireless network one can significantly
speed up the computation of compact routing schemes under certain natural circumstances,
thereby opening up a new research direction for wireless networks.

1.1 Model and Problem Definition

We assume a set V' of n nodes with unique IDs. Each node is associated with a fixed, distinct
point in the 2-dimensional Euclidean plane, (i.e., V' C R?), and every node v € V knows
the global coordinates of its point. We assume the standard synchronous message passing
model: time proceeds in synchronous time slots called rounds. In each round, every node can
perform an arbitrary amount of local computation and then communicate with other nodes.

In the HYBRID model, communication occurs in one of two modes: the local mode and
the global mode. The connections for the local mode are given by a fixed graph. In our case,
this graph is represented by a unit-disk graph UDG(V): for any v,w € V, {v,w} € UDG(V)
if and only if v and w are at distance at most 1. For the local mode, we use the CONGEST
model for simplicity: in each round, for all edges {v,w} € UDG(V), node v can send a
message of O(logn) bits to node w. However, our algorithms still work if instead the more
restrictive (and more natural) Broadcast-CONGEST model is used (see the full version). We
assume that each message can carry a constant number of node locations (this is analogous
to the Real RAM model, a standard model of sequential computation).

For the global mode, we are using a variant of the node-capacitated clique (NCC) model
called NCCy [2] that captures key aspects of overlay networks. In this model, any node u
can send messages to any other node v € V provided u knows v’s ID. Initially, the set of
IDs known to each node is just limited to its neighbors in UDG(V'). Each node is limited to
sending O(logn) messages of O(logn) bits via the global mode in each round. W.l.o.g., we
assume that whenever a node v knows the ID of some node w, it also knows w’s location
(since this can be sent together with its ID).

Model Motivation. The assumption that the nodes know their global coordinates is
motivated by the fact that smartphones can nowadays accurately determine their location
using GPS or wireless access point or base station information. However, it would also
be sufficient if the nodes can determine the distance and relative angles to their neighbors
in the UDG (this can be obtained via kown localization methods [18]), though with some
precision loss.

S. Coy et al.

The use of the NCCy model in the global communication mode is motivated by the fact
that nodes can communicate with any other node in the world via the cellular infrastructure
given its ID (e.g., its phone number). Note that NCCq is weaker than NCC, which assumes
a clique from the start, but it is known that once the right topology has been set up in
NCCy (which can be done in O(logn) rounds [16]), any communication round in NCC can
be simulated by O(logn) communication rounds in NCCy [25].

Problem Definition. Our goal is to compute a compact routing scheme for UDG(V), in
hybrid networks where UDG(V) is connected and does not contain radio holes. UDG(V) is
said to contain a radio hole if, roughly speaking, there is an internal cycle in UDG(V') that
cannot be triangulated. A precise definition will be given in Section 2.

Let G be a class of graphs. A stateless® routing scheme R for G is a family of labeling
functions g : V(G) — {0,1}T for each G € G, which assigns a bit string to every node v in
G. The label £;(v) serves as the address of v for routing in G: it contains the identifier of v,
and may also contain information about the topology of G.

While the identifier is given as part of the input, the label is determined in the preprocessing.

Additionally, the preprocessing has to set up a routing function pg : V(G) x {0,1}* — V(G)
for the given graph G that, given the current node of a message and the label of the
destination, determines the neighbor of v in G to forward the message to?. A routing scheme
must satisfy various properties.

First of all, it must be correct, i.e., for every source-destination pair (s,t), pg determines
a path in G leading from s to ¢t. Second, it must be local, in a sense that every node v can
evaluate pg (v, £) locally. Third, the routing should be efficient, i.e., the ratio of the length
of the routing path and the shortest path — also known as the stretch factor — should be
as close to 1 as possible. In our case, the length of a routing path is simply determined by
the number of edges used by it. Note that whenever we have a constant stretch w.r.t. the
number of edges in UDG(V'), we also have a constant stretch w.r.t. the sum of the Euclidean
lengths of its edges, so we achieve a constant stretch for both types of metrics (see Section 2).
Finally, the routing scheme should be compact, i.e., the labels £5(v) of the nodes v and the
amount of space needed at each node v to evaluate pg(v, £) should be as small as possible.

Problem Motivation. There are various reasons for developing fast distributed algorithms
for compact routing schemes in hybrid wireless networks. First of all, computing routing
schemes for the local ad-hoc network is useful even in the presence of a cellular infrastructure
since ad-hoc connections are comparatively cheap to use and typically offer a much larger
bandwidth. Also, the ability to quickly compute compact routing schemes allows for frequent
adaption in case of topological changes in the wireless ad-hoc network with low overhead.

1.2 OQOur Contributions

In Appendix A we show that it is impossible to set up a compact routing scheme with
constant stretch in time o(y/n) when just relying on the UDG for communication even if the
geometric location of all nodes is known and the UDG is hole-free. This poses the question
of whether limited global communication can overcome this. We answer this question by

! In a stateless routing scheme a packet can not accumulate information along the routing path and is
thus oblivious to the routing path that the packet took so far (as opposed to stateful routing).

2 More general definitions of routing functions exist, but we do not require the additional power afforded
by stateful routing (for instance), to compute near-constant routing schemes in logarithmic time.

11:3

OPODIS 2021

11:4

Near-Shortest Path Routing in Hybrid Communication Networks

showing the following result, which demonstrates the impact that a modest amount of global
communication has when applied to problems which are challenging to solve locally.

» Theorem 1. For a HYBRID network with a hole-free UDG(V'), a compact, stateless routing
scheme can be deterministically computed for UDG(V') in O(logn) rounds. The scheme uses
node labels of O(logn) bits and a mapping p that (i) can be evaluated locally with O(logn)
bits of information in each node and (ii) such that for every source-destination pair s,t € V,
p determines a routing path of constant stretch from s to t in UDG(V).

Technical novelties of this work include a grid graph abstraction of any UDG which serves
to sparsify the UDG while preserving its geometric structure. Computations on the grid
graph can be simulated efficiently in UDG(V'). Furthermore, we can transform a routing
scheme on the grid graph to one in the UDG, increasing the stretch only by a constant.

We show how to construct this abstraction in a distributed setting based entirely on local
communication. This could potentially make it of interest when studying routing or distance
approximation problems on UDGs in the CONGEST or Broadcast-CONGEST models or for
simplification of existing algorithms. We also believe that the grid graph abstraction and its
properties will be useful for future work in the HYBRID setting, making it a springboard for
the case of UDGs with radio-holes.

1.3 Overview

The first step is the computation of a simple, yet surprisingly useful abstract graph structure
on UDG(V), which we call a grid graph T'. The vertices of T' are the centers of the cells of a
regular square grid which intersect with an edge of UDG(V'). Two vertices of T" share an edge
iff their cells are vertically or horizontally adjacent (see Section 2.2, Figure 1). Subsequently,
in Section 2.3, we tie the graphs UDG(V') and T together by defining a representative in V'
for each vertex of I' that fulfills two main properties. First, two representatives of adjacent
grid vertices are connected with a path of at most 3 hops in UDG(V) (see Figure 2). Second,
each node in V has such a representative within 1 hop in UDG(V).

We then turn to the algorithmic aspects of I'. In Section 2.4 we define the representation
R of T', where grid vertices correspond to their aforementioned representatives and grid edges
correspond to paths of 3 hops in UDG(V), and we show that R can be efficiently computed in
UDG(V). Furthermore, the representation R can be used to efficiently simulate the HYBRID
model on I', which is summarized in Theorem 8. In Section 3, we show that an optimal path
in I implies a path in R with a constant approximation ratio (Theorem 10).

The final step of the first part is to construct a constant stretch routing scheme R for
UDG(V) assuming that we have an optimal one for I' (Section 3.2), which is encapsulated
by Theorem 16. Since we can efficiently simulate the HYBRID model on T' (Theorem 8),
the second part can be considered in isolation from the first part. Note that so far we did
not exploit the fact that UDG(V) is hole-free. In fact, the construction, simulation, and
properties of ' hold without that assumption, which is only needed for the second part.

Requiring the UDG to be hole-free is a strong assumption. However, we believe that at
least bounding the number of holes is necessary in order to compute a compact, constant-
stretch labelling scheme in O(logn) rounds. Doing this in time and space polylogarithmic
in n that also scales well in the number of radio holes in the UDG seems to be highly non-
trivial, as these holes may intertwine in arbitrary ways, while there are exponentially many

S. Coy et al.

possibilities of navigating around them.® While in our setting there still can be exponentially
many simple paths between two points, we are able to exploit the lack of large holes between
them to deal with arbitrarily complex boundaries of UDGs in a hybrid network setting.

To compute the routing scheme Rr on T, the first step (Section 4) is to arrange the
grid nodes into maximal vertical lines, called portals (see Figure 3a). All portals with two
horizontally adjacent nodes will add one such edge, resulting in a portal-tree Tr, which is
cycle-free because UDG(V) is hole-free (see Figure 3b). In order to compute a labelling
scheme we first perform a distributed depth-first traversal on T (where the root is the node
with min ID). This allows us to compute intervals I,, for each node v of Tr that fulfill the
parenthesis theorem: it is I,, D I, (I, C I,,) for each ancestor (descendant) node w of v in
Tr, or else I, N I, =) when v, w are in different branches of Tt (see Figure 3d). Then all
nodes of a portal will agree on interval I,. of node 7 that is closest to the root as their portal
label. The challenge here is to carefully line up techniques for the more restrictive NCC
model to obtain such a labelling in O(logn) rounds.

Finally, in Section 5, we use Tt to route a packet from source s to target node ¢ in TT.
Since the shortest path in T may not necessarily follow the tree, we have to define a routing
strategy that jumps over branches when needed, for which we can use the “tree information”
encoded in the labels. We use the portal labels to prioritize jumping horizontally as soon
as the next portal on a path is reachable via any edge in I". Vertical routing within portals
is done as a second priority for which node labels I, are used. We prove that this strategy
yields an exact routing scheme Rr for I' formalized in Theorem 23. Consequently, Theorem
1 is a corollary from the fact that we can emulate T' on UDG(V') (Theorem 8) and that Rr
can be transformed into a constant stretch routing scheme R for UDG(V') (Theorem 16).

1.4 Related Work

An early effort to formalize hybrid communication networks by [1], combined the LOCAL
model with a global communication mode that essentially allows a single node to broadcast
a message to all others per round. Note that this conception of the global network is
fundamentally different to ours, which manifests in the fact that solving a aggregations
problem (e.g., computing the sum of inputs of each node) can take Q(n) rounds (by contrast,
it takes O(logn) rounds in the NCC model).

Recently, shortest path problems in general hybrid networks have been studied by
various authors [3, 9, 21, 11], which provide approximate and exact solutions for the all-pairs
shortest paths problem (APSP) and the single-source shortest paths problem (SSSP). These
solutions all require O(n®) rounds (for constant € > 0) to achieve a constant approximation
ratio, and this is tight in the case of APSP. O(logn)-time algorithms to solve SSSP for some
classes of sparse graphs (not including UDGs) are given in [11]. Shortest path problems have
also been studied for hybrid wireless networks [8]. They show that for a bounded-degree
UDG(V) with a convex outer boundary, where the bounding boxes of the radio holes do
not overlap, one can compute an abstraction of UDG(V) in O(log? n) time so that paths of
constant stretch between all source-destination pairs outside of the bounding boxes can be
found (a simple extension of their approach to outer boundaries of arbitrary shape seems
unlikely).

Numerous online routing strategies have been proposed for general UDGs, including
FACE-I, FACE-II, AFR, OAFR, GOAFR and GOAFR+ [5, 24, 22, 23]. In [24, 22] it is
proven that GOAFR and GOAFR+ are asymptotically optimal w.r.t. path length compared

3 The number of simple st-paths that cannot be continuously deformed into each other without crossing a
hole (i.e., non-homotopic paths) is 2" where h is the number of radio holes.

11:5

OPODIS 2021

11:6

Near-Shortest Path Routing in Hybrid Communication Networks

to any geometric routing strategy. However, the achieved stretch is linear in the length of a
shortest path. When a UDG contains the Delaunay graph of its nodes, one can exploit the
fact that the Delaunay graph is a 2-spanner of the Euclidean metric [29], and MixedChordArc
has been shown to be a constant-competitive routing strategy for Delaunay graphs [4]. This
is only applicable in UDGs where the line segment connecting two nodes of the UDG does
not intersect a boundary, which is the case if it has a convex outer boundary and is hole-free.

Centralized constructions? for compact routing schemes have been heavily investigated
for general graphs (see, e.g., [28]) as well as UDGs. Here, we just focus on UDGs. Bruck
et al. [6] present a medial axis based naming and routing protocol that does not require
geographical locations, makes routing decisions locally, and achieves good load balancing.
The routing paths seem near-optimal in simulations, but no rigorous results are given. Gao
and Goswami [13] propose a routing algorithm that achieves a constant approximation ratio
for load balanced routing in a UDG of arbitrary shape, but the question of near-optimal
routing paths is not addressed. Based on work by Gupta et al. [17] for planar graphs, Yan
et al. [30] show how to assign a label of O(log?n) bits to each node of the graph such that
given the labels of a source s and of a target ¢, one can locally compute a path from s to ¢
with constant stretch. Using the well-separated pair decomposition (WSPD) for UDGs [14],
Kaplan et al. [19] present a local routing scheme with stretch 14¢ with node labels, routing
tables and headers of size polynomial in logn,log D, and 1/e, where D is the diameter of
UDG(V). Later, [26] shows how to achieve a stretch of 14 without using dynamic headers.

Our routing scheme for the grid graph abstraction extends the routing scheme proposed
by Santoro and Khatib [27], who presented a labelling along with an optimal routing scheme
for trees by computing a minimum-distance spanning tree and labelling of that tree via a
depth-first search.® In our scheme, we provide optimal paths between any source-target pair
in the grid graph, because we allow using edges that are not part of the spanning tree for
routing in order to jump between the branches of the spanning tree.

Our study is also related to routing problems in sparse graphs in parallel models [20, 10].
For example, the algorithm of Kavvadias et al. [20] can be used to compute routing tables
in planar graphs in time 5(1) and work 6(71) Together with the simulation framework of
Feldmann et al. [11], the algorithm could in principle be used to solve our problem. However,
for the simulation to work, one would need to construct a suitable global network, sparsify
the graph, and, together with the simulation overhead, one would obtain a polylogarithmic
runtime much higher than O(logn). Further, the size of the routing tables may be ©(n?).

2 Grid Graph

Let G := UDG(V). The goal of this section is to construct a grid abstraction of G which
makes finding routing protocols in the subsequent section manageable. In particular (but
still suppressing some details), we want to simulate a bounded degree grid graph on G such
that shortest paths in the grid graph represents only a constant factor detour in G. The way
we obtain such a grid representation of GG in a distributed fashion is by simulating grid nodes

Note that in this paper, we allow ourselves just O(logn) rounds for pre-computation and each node can
learn only polylogn bits per round given that it has small (polylogn) degree, which can be true for
every node. The local network has size 2(n), meaning no single node can learn it completely. This
inhibits solving the problem locally at some node, i.e., by direct use of some centralized algorithm.
While the routing scheme in [27] guarantees a 2-approximation for general graphs regarding the worst-
case optimal cost when routing over all possible source-target-pairs, their scheme does not guarantee
constant stretch when routing a message between two specific nodes s,t in the grid graph.

S. Coy et al.

with real nodes of V' that are close by, where edges between grid nodes correspond to paths

of constant length in G. We start by introducing some notations we require in the following.

2.1 Preliminaries

Graphs and Polygons in R2. Since each node in V is associated with a point in R?, we can
associate each edge {u,v} € UDG(V) with the line segment with endpoints u and v, i.e., the
set {z-u+ (1—z)-v|xe€0,1]}. We use the names of vertices and edges to refer to their
associated subsets of R? when no ambiguity arises.

A polygonal chain is a finite sequence of points where consecutive points are connected by
segments. A polygonal chain is closed if the first point in the sequence is equal to the last. A
polygon is a closed, connected, and bounded region in R? where the boundary consists of a
finite number of (not necessarily disjoint) closed polygonal chains (this implies the edges in
these polygonal chains have no proper intersections).

A hole of a polygon P is an open region in R? that is a maximal bounded and connected
component of R? \ P. Note that the boundary of each hole of P is equal to one of the
polygonal chains bounding P. A polygon is simple if it has no holes.

Distance Metrics. We use the notation || - || for the Euclidean metric on R?. Consequently,
for p, ¢ € R?, |[p—q|| denotes the Euclidean distance from p to q. For sets of points A, B C R?
we define the distance between those sets as dist(A, B) := mingea pep [[a—b].

Let P C R? be a polygon in the Euclidean plane and let p, ¢ € P. We define the geometric
distance between p and ¢ in P, distp(p, q), to be the length of the shortest path between p, ¢
in P. Note that because P is a polygon, there is a polygonal chain IT = (vy, ..., v;) from p
to ¢ inside P such that distp(p,q) = Zf;ll lvip1 —vs .

Let G = (V, E) be an embedded graph. Let IT C E be a path, i.e., a sequence of incident
edges of G. Then we define diste(II) = 3 (, ,)er [lu—vl|. Let [II| be the number of edges
(or hops) of a path II in G. The hop-distance between two nodes u,v € V is defined as
hopg (u, v) :=miny y-paeh 1 I

2.2 Grid Graph Definition

We first give some definitions to formalize the notion of an UDG having radio-holes. A
triangle of UDG(V) is a region in R? that is bounded by the edges of a 3-cycle in UDG(V)
(including both the boundary and interior of the triangle). We define the contour polygon P
of UDG(V) as the union of all triangles and edges of UDG(V'). Since UDG(V') is connected,
P is indeed a polygon. We call the holes in P radio-holes of UDG(V). We say an UDG has

no radio-holes if the contour polygon of that UDG has no holes, i.e., the polygon P is simple.

Next we partition the plane into an axis-parallel square grid with side-length ¢ = % 15

and a fixed origin corresponding to origin of the coordinate system. Note that due to
knowledge of coordinates, all nodes are aware of their position relative to the grid.

Define a square grid-cell to be active if it has a non-empty intersection with P. Based
on this grid, we define the grid graph I = (Vr, Er), where V- has a node positioned at the
center of each active cell in our grid, and we have an edge in Er between every pair of nodes
of V1 that lie in adjacent cells in the grid (i.e., the square cells share an edge). The grid graph
I will be simulated in the routing protocol. We will also define the cell graph IV = (Vrv, Er)
in the analysis of our protocol, but do not simulate it. We call a vertex of the grid loose if it
is a corner of exactly 2 active cells that are not adjacent. I is composed of the boundaries
of the square grid, with Vi the set of all corners of each active grid-cell that are not loose,
with a pair of vertices in Vp/ having an edge in Er- if they are ends of an edge of a grid-cell.
To define the cell polygon P’ first take the union of all active grid-cells. Then, for every

11:7

OPODIS 2021

11:8

Near-Shortest Path Routing in Hybrid Communication Networks

Ny
SO N\
/

(a) \ (b)

Figure 1 (a): G := UDG(V) (black), polygon P (red), and cell polygon P’ (blue). (b): grid graph
r(), active grid-cells and cell graph T” (blue). The grid vertex v is loose. Note that G and T’
have a hole. Our routing algorithm on I' would not work for this UDG, but we can still construct I'.

loose vertex v in the grid, remove a triangle from P’ at every active grid-cell incident to v
that is small enough to be disjoint from P, such that P’ no longer contains v. Note that
since a loose vertex does not lie in P (otherwise, all 4 cells incident to it would have been
active), such a triangle exists. See Figure 1 for an example of these definitions. Next, we
define a representative r for each grid node g € Vr, which simulates g throughout the rest of
the protocol. We apply one of the following rules to assign a grid node to a node u € V.

» Definition 2. Let g € Vi, and let C be the grid cell of which g is the center. We define
Ci1(g) as the set of vertices of all triangles of UDG(V') that contain the point g. We define
Ca2(g) as the set of vertices incident to an edge that intersects C.

We define the set of candidate representatives C(g) as C1(g) U Ca(g).

The representative of g is defined as r = argmin,ce, () lv — gl if C1(g) is non-empty,
and r = argmin,cc, () [|[v — gl| otherwise. In either case, we break ties by smallest node ID.

2.3 Properties of the Grid Graph

The next step is to show that the grid abstraction introduced in Definition 2 represents the

UDG well. In this section we prove several properties to this effect: we show that nodes are

adjacent to the representative of the cell which they are in (Lemma 3); that representatives

for adjacent grid cells are close (Lemma 4); and that the cell polygon P’ is simple (Lemma 5).
For brevity, all proofs in this section are delegated to the full version .

» Lemma 3. Let u,r € V. Ifr is the representative of the cell C containing u, then
hopg(u,r) <1

Intuitively, this is true because u must be close to the centre of C, as must r: even if
these nodes are different they cannot be too far apart.

» Lemma 4. Let (g1,92) € Er be an edge in T'. Let u,v €V be representatives of g1, g
respectively. Then hopg(u,v) <3.

We show that the edges which define C(g;) and C(g2) are at most the diagonal of a
2 x 1 block of grid cells apart. We conclude that this distance is small enough that an edge
connects an endpoint of one edge with an endpoint from the other, and so the representatives
of adjacent cells have distance at most 3 from each other.

S. Coy et al. 11:9

T2

" g1 g2

A

Figure 2 Representatives r1,r2 of adjacent grid nodes g1, g2 are connected by a path of 3 hops.

Finally, we show that P’ is simple, i.e., it has no holes. We show this by observing that if
there is a hole in P’, there is a cycle of active cells with an inactive cell in its interior. We
show this cycle of cells contains a cycle of G, which implies G contains a radio-hole.

» Lemma 5. If G has no holes, then P’ is simple.

2.4 Grid Graph Representation, Computation and Simulation

Building on the previous subsections, we show that we can efficiently simulate the grid graph
T' with a sub-graph R = (Vg, Er) of the UDG G which we call a representation of T in G
which closely approximates the structure of I'. In a nutshell: the set of nodes Vy contains
the set of representatives of all grid nodes V. On top of that, for each grid edge in Er, we
add a path in the UDG G to R between two representatives of the corresponding grid nodes
(see example in Figure 2). Note that in the previous subsection we have shown the existence
of such paths that have at most 3 hops.

The first goal of this subsection is to thoroughly define R and to show that we can
compute R in G according to that definition in O(1) rounds. The second goal is to give
an interfacing theorem for later sections that purely work with I', showing that a round
of HYBRID in the grid graph T' can be simulated in O(1) rounds by the nodes in R (the
proof is also given in the full version). By simulation, we mean that one round of local
communication between adjacent grid nodes in I can be performed using O(1) rounds of
local communication in G to route messages between the representatives of adjacent grid
nodes. An analogous property holds for the global communication.

» Definition 6. Let I' = (Vr, Er) be the grid graph as defined in Section 2. A representation
R = (Vgr,ER) of T in G is a sub-graph of G defined as follows. For every grid node g € Vi
with representative r € V. we define: r € Vi. For each edge {g1,92} € Er let r1,r9 € V be
the corresponding representatives. Then R contains all nodes and edges of one ri-ro-path
IL,, », in G such that |II,, ,,| < 3. We call II,, ,, the representation of the edge {g1,g2}.
Note that such a path always exists due to Lemma 4.

» Lemma 7. A representation R = (Vg, Er) of I can be computed in O(1) rounds.

» Theorem 8. A round of the HYBRID model in T' can be simulated in O(1) rounds.

3 Constant Stretch Routing Scheme for the UDG

It remains to show how to leverage the grid graph constructed in the previous section for the
computation of routing schemes for the UDG assuming that an exact routing scheme for the
grid graph is known. We start with the analysis of the approximation factor.

OPODIS 2021

11:10

Near-Shortest Path Routing in Hybrid Communication Networks

3.1 From Shortest Paths in I" to Approximate Paths in G

The goal of this subsection is to show that shortest paths in the simulated grid graph T’
represent good paths in the UDG G. In particular, paths in G that are obtained via the
representation R of I are constant approximations of optimal paths in G, both in terms of
hop-length and Euclidean distance. We start by defining a representative path.

» Definition 9. Let s,t € V. Let gs,9: € Vi be the two grid nodes which are located in the
same grid cell as s,t respectively. Let rs,1: be the representatives of gs and g;. Note that
{s,rs},{rt,t} € Eg due to Lemma 3. Consider an optimal gs-g:-path IT*. For e € II* let 11,
be the representation of the grid edge e € Ev (see Definition 6). Let 1L, ., :==J I,. We
define the representative s-t-path as IIs; := {{s,rs}} UL, ,, U {{r:, t}}.

eclII*

We will show that our routing scheme routes packets from s to ¢ along the representative
path s-t-path II, ;. First, we show that these paths achieve constant stretch in G.

» Theorem 10. Let s,t € V. Let Il;, be the s-t-path given in Def. 9. If {s,t} ¢ Eq Then
dist(TIs ;) < I, .| < 36 - distg(s,t).

Note that if {s,t} € Eg then we can send the packet directly along this edge and the
distance and number of hops is guaranteed to be optimal. If {s,t} ¢ Eg then distg(s,t) > 1,
a fact which we use in the proof of Theorem 10. We prove this theorem in stages represented
by the subsequent lemmas. In the first stage we upper bound the number of hops of the
representative path Il ; with the distance of a corresponding gs, g.-path in I

» Lemma 11. Let s,t € V. Then |l ;| < 2 - distr(gs, 9:) + 2.

Proof. We exploit the fact that edges in I' have distance at least ¢ and that II, , = {{s, s} }U
I, -, U{{r:,t}} is constructed from an optimal path in I" (see Definition 9). We combine this

% distr(gs, g¢) + 2. <

Lem. 3 Lem. 4
with Lemmas 3, 4 to obtain the following |II, ¢| < L, ., | +2 eg 3 hopr(gs,gt) +2 <

Since the cell-polygon P’ completely covers P (the smallest polygon containing all edges
of T does not, in general), we relate paths in the grid graph I' to paths in the cell-graph I".
This allows us to relate paths in P to I'. Note that comparisons of hop-distance in I" and I
correspond to equal comparisons of distances, since both graphs have the same granularity c.

» Lemma 12. Let g1,92 € Vi be located in cells C1,Cs, respectively. There exist nodes
g1, 95 € Vi that are corners of Cp, Cy respectively, such that distr(g1,g2) < 2- distr (g1, g5).

Proof. Choose ¢, g5 such that hop(gi, g5) > 1. Let II' be a shortest g} gh-path in I". Since
all edges and vertices of I are part of the boundary of an active grid cell and I"” contains no
loose vertices, there is a sequence A of active grid-cells from C; to Cy, where consecutive
cells share a side and each cell has an edge or vertex of I’ on its boundary. There are two
kinds of cells in A: the first kind has an edge of II' on its boundary, the second kind does not
have an edge of II' on its boundary, but has a vertex of II' on its boundary. The number of
cells of the first kind is at most |II'|, because each edge in IT’ is adjacent to at most one cell
of A. The number of cells of the second kind is at most |[II'| + 1, because each vertex of IT' is
adjacent to at most one cell of this type (since I has at least one edge.). So, |A| < 2|II'| + 1.

We obtain a g1 ge-path IT of length |A|—1 in T' from the chain A by taking the vertex
centered at each cell in A. So, we have hopp(g1, g2) < |II| < |A]—1 < 2|TI'| = 2 hopr (g}, g5)-
Since all edges in T" and I have length ¢, we have distr(g1, g2) < 2 distr (g7, g5)- <

S. Coy et al.

We follow up on the previous stage, and bound the distance of an optimal path in
the graph TV with that of an optimal geometric path in the polygon P’. The resulting
approximation factor of v/2 stems from a segment-wise comparison of Euclidean distance of
a shortest polygonal chain in P’ to the Manhattan distance in the graph I".

» Lemma 13. Let g1, g0 € Viv. Then distr (g1, 92) < /2 - distp/ (g1, 92).

Proof. Let IT be the shortest geometric path from g; to go in P’. Since P’ is a polygon, II is

a polygonal chain connecting vertices g; =: vy, ..., v, := g2, where v; are reflex vertices (i.e.,
vertices with an internal angle of at least 7) of P’. Note that by construction of P’, all reflex
vertices of P’ are vertices of I, so we have vq,...,v, € V.

Consider one such segment s;. Fach point of s; lies in some gridcell belonging to P,
because the path II lies in P’. Therefore, there is a monotone chain of gridcells connecting v;
and v; 1. Consider the axis aligned bounding rectangle R; defined by the two opposite corners
V3, Vi1 € V. The width and length of R; sum up to ||v; — viy1|l1 (where |[(z,y)|i =z +y
for some (z,y) € R? denotes the L;-norm).

Traversing the boundary of the monotone chain of gridcells between v; and v;41 in
the shortest possible way represents a shortest path between v; and v;41 in IV. On one
hand, the length of this path equals the sum of side-lengths of R;, i.e., distpr:(v;,vi11) =
|lvi — vig1]l1. On the other hand the geometric distance equals the length of s; which is
dist pr (vs, vip1) = ||vi — vig1]]. We have

distrs (vi, vig1) = |Jvi — viza i < V2 |Jvi — vigall2 = V2 - distps (v, vig1),

using the equivalence property of L; and Ly-norms: |z||; < v/2||z|]2 for any x € R2. So,
for each segment S; of TI, there exists a path in T' with stretch at most /2 connecting the
endpoints. Concatenating these paths gives the required gi-go-path in I'. |

Next we observe that an optimal path between two nodes in the UDG G can not be any
shorter than a corresponding shortest geometric path in P’.

» Lemma 14. Let s,t € V. Then distp/(s,t) < distg(s,t).

Proof. Let II be a shortest st-path in G. By definition, each cell that is intersected by an
edge of II is active and therefore this edge lies in P’. So, II is an st-path in P’. <

We now use the inequalities proven in the lemmas above to prove Theorem 10.

Proof of Theorem 10. Let s,t € V and let gs,g: € I' be their cell representatives. Let
g., g1 € Vv be two corner-nodes of g, g: for which Lemma 12 holds. Then we get

M| < 2 - distr(gs, ge) +2 Lemma 11
< % - distr (g5, g7) + 2 Lemma 12
=< 6\c/§ - distpr (g5, 97) + 2 Lemma 13
< G\CE ‘ (diStP/ (9%, 8) + distp:(s,t) + distpr (t,gé)) +2 triangle ineq.
= 6\6/5 : (Hgg_SH + distp(s,1) + Hg{—tll) +2 sgs and tg, in same cell
< O2 . (|lgh—s| + diste(s. 1) + [lg;—tl]) +2 Lemma 14

= 6v2. (diste(s,t) + V2 ¢c) +2 = % - distg (s, t) + 14

c

In the equality in the fourth step we use that the segments sg’. and tg; are both contained
in a single grid cell, hence the distance in the cell-polygon equals the Euclidean distance.

11:11

OPODIS 2021

11:12

Near-Shortest Path Routing in Hybrid Communication Networks

Since a grid cell has side length ¢, we have ||g,—s|, [lgi—t|| < $v/2 - ¢ in the second last step.
As I ; is a path in a UDG each edge has distance at most 1, thus

diste(ILy) < [< 2 - diste(s,) + 14 < 22 - diste(s,) + 14.

Since we have a direct edge to targets with distance at most 1, the additive error can
be accounted for by increasing the multiplicative stretch by the additive error for targets at
distance more than 1. Consequentially, we obtain dist(Il, ;) < |II; ;| < 36 - distg(s,t). <«

3.2 Transforming Routing Schemes for the Grid Graph to the UDG

We provide an interface to transform a routing scheme Rr for the grid graph T' (for which an
exact routing scheme is provided in the subsequent section) into a routing scheme R for the
UDG G with constant stretch. The idea is to construct R from Rr using the representation
R of T' (see Definition 6). Theorem 16 provides approximation guarantees by leveraging
the insights on representative paths from the previous subsection (for a proof see the full
version).

» Definition 15 (UDG Routing Scheme). Let Rr be an exact routing scheme for T' consisting

of by : Vi — {0,1}" and pr : Vi x {0,1}* — V. Let R = (Vg, ER) be the representation of

T (see Def. 6). The routing scheme R for G is defined on the basis of grid cells. Let C be a

cell with grid node g € Vr and let r € Vi be the representative of g. For each v € C we set

e (v) :=Lr(g) o ID(v) (where “o” represents the concatenation of bit strings). The routing

function pg is defined as follows. Let v € Vg be the current node and let {y := £p o ID(t)

be the label of the target node t € V, where fr; is the label of the representative in t’s cell

w.r.t. Rp. We assume t # v, as otherwise the packet has already arrived.

1. If {v,t} € Eg, then we can directly deliver to t: pg(v,l:) :=t.

2. Else, if v € C'\ Vg is the source we directly route to the representative of C: pg(v,0) :=r.

3. Else, if v =r is the representative of this grid cell C, let g’ :== pr(g,¥fr,) be the next grid
node suggested by Rr. Let u be the first node on the path 11y, . C ER that represents
the edge {g,9'} € Er. Then pg(v,4t) := u.

4. FElse, if v € Vi but v is not the representative of C, then v must be a “transitional node
on Iy oy € ER that represents {g,9'} € Er. W.lo.g. let g' := pr(g,fr+) be the next grid
node suggested by Rr and u be the next node on Iy,) towards g'. Then pg(v, ;) := u.

»

» Theorem 16. Let Rr be a local, correct, exact routing scheme for T' with labels and local
routing information of O(logn) bits. Then the routing scheme R from Definition 15 is local,
correct, has constant stretch, labels and local routing information of size O(logn) bits and
can be computed in O(1) rounds.

4 Computing a Labelling for the Grid Graph

This section is dedicated to computing the labelling ¢r : Vi — {0,1}T for the grid graph
by first constructing a particular tree structure 7Tt and then computing a labelling on it
in O(logn) rounds leveraging various HYBRID (and in particular NCCy) model techniques.
For the tree-labelling we use a similar approach as presented in [27], but slightly adapt
the labelling which later allows jumping over branches of our specifically constructed tree,
facilitating an optimal routing scheme in grid graphs. Afterwards, Section 5 will deal with
computing the routing function pr : Vr x {0, 1}+ — Vr leading to the routing scheme Rr.
We assume the HYBRID model on the grid graph I' that represents the network which we
constructed and simulated in the previous sections (Theorem 8). The goal is to divide the

S. Coy et al.

grid nodes into sets of vertically connected grid nodes called portals. Connecting neighboring
portals with a single edge gives us a spanning tree of I', which we call portal tree. We then
root the portal tree at the node with minimum identifier and compute a label for each grid
node, leading to a well-defined labelling function ¢r. Note that we require that the cell
polygon P’ does not contain holes (Lemma 5), as otherwise there be a cycle after connecting
neighboring portals.

11:13

OPODIS 2021

11:14 Near-Shortest Path Routing in Hybrid Communication Networks

5 14 13 (5,5 [14,14] _ [13,13)

w
-—
—_
=]
—

B |

(a) Initial grid graph I". (b) Portal tree Tt (c) Rooted portal tree, (d) Label [,,r], portal
(blue). values £,. label red.

8.8

Figure 3 Example for creation and labelling of the portal tree.

We first define the set of portals as follows:

» Definition 17 (Portals). Let I' = (Vr, Er) be the grid graph as constructed in the last
section. The set of portals are the connected components of (Vr, Eyert), where Eyery C Ep
are the vertical edges of the grid graph.

For convenience, assume that the grid nodes vy, ..., v, within a portal P are sorted by
their y-coordinates in descending order, i.e., v1 is the northernmost node.

To construct the portal tree 1T of the grid graph I' we connect neighboring portals via a
single edge. Each grid node v checks whether it has an edge to the left and communicates
this to its northern and southern neighbors vy and vg. Assume that v has an edge {v, vy }
to the left. Then v checks if vg also has a horizontal edge to the left. If that is not the case,
v adds the edge {v,vw } to the portal tree. We refer to Figures 3a and 3b for an example.
This gives us the following lemma, the proof of which is delegated to Appendix C.1:

» Lemma 18. The portal tree Tt of a grid graph T' can be computed in O(1) rounds.

Given the portal tree Tr, we want to compute a unique label for each grid node that
reflects its structure as portal tree. First, we root T at the grid node r» whose representative
is the UDG node u with minimal identifier, using pointer jumping (Appendix C.2) on the
cycle of all grid nodes that corresponds to an Euler tour (Appendix C.3).

Now we compute the labelling for the (rooted) portal tree. For each grid node v in Tr,
we aim to assign an interval I, = [l,,7,] € N2 to v, such that I, D I, for any child node
w of v in Tr. To obtain the left interval border [, for each grid node v in the portal tree,
we perform a depth-first traversal (DFS) on Tt in O(logn) rounds, using Lemma 28 (see
Appendix C.4). The value [, is then the preorder number of v according to the DFS. Note
that [, < [, for any node u lying in the subtree of v. We then compute the number 7,
corresponding to the maximum left interval border among all nodes in v’s subtree. In a
nutshell, we first let all nodes compute some value d € O(logn),d > log D(Tt), where D(Tt)
is the depth of the portal tree. Then we generate additional edges in TT for d iterations, by
performing pointer-jumping on the paths from the leaf nodes of Tt to the root. We perform
the pointer-jumping technique in a condensed way to ensure that the node degrees do not
exceed O(logn). With the help of these additional edges, we let each node v € Tr compute
the value r, as an aggregate of the [,,-values of all nodes u that are contained in the subtree
Tr(v) of Tr with root v. We elaborate on this approach in Appendix C.5 (see Lemma 29).

After the algorithm has terminated, each node v knows the correct value r, and thus its
interval I, = [l,,7,]. Observe that grid nodes which are in different branches of the portal
tree have incomparable labels. We obtain the following lemma:

S. Coy et al.

» Lemma 19. Given a rooted portal tree Tr, each node v € Tr can compute an interval
I, = [ly,] in O(logn) rounds, such that I, D I, for any child node w of v in Tr.

Now that each grid node v knows its interval in Tt we need to perform one final step. In
addition to its own (unique) interval, a grid node v needs to know the interval that has been
assigned to the node v; which is closest to the root within its own portal. We call this label
the portal label of v. The node on a portal which is closest to the root can determine this
locally. Each portal label can then be broadcasted to all nodes within the respective portal in
O(log |P]) rounds (see Lemma 26), so we obtain the following lemma (cf. Figures 3¢ and 3d).

» Lemma 20. After O(logn) rounds, each grid node v in the portal P = (v1,...,v;) knows
the interval I,,, of the node i € P closest to the root of the portal tree.

Observe that, the way we defined the portal labels we obtain the property that for portal
labels of two neighboring portals, one portal’s label is always a subset of the other. Combining
Lemma 19 and Lemma 20 yields the main result of this section.

» Theorem 21. Computing the labelling fr : Vo — {0,1}F for the grid graph T as part of
the routing scheme Rp can be done within O(logn) rounds.

5 Compact Routing Scheme for the Grid Graph

Finally, we explain our routing strategy for transmitting a packet between two nodes s,t € Vp
in the grid graph, leading to the routing function pr : Vp x {0,1}+* — V. At the start of the
routing protocol, the node s generates a message m that contains the identifier of the target
node t, as well as t’s label and portal label. The goal of our routing strategy is to route m to
t along grid edges via an optimal path in the grid graph. To do so, each grid node receiving
the message m has to decide which of its grid neighbors to forward m to, using only the
information stored in m, and the information stored in its own local memory. Briefly, the
strategy works as follows. While we are not at the portal containing ¢, we always try going
left (west) or right (east) first by going to a portal whose label is closest to the portal label
of the target node t. If going east or west is not possible, we go up (north) or down (south)
instead by comparing g’s own label with the actual label of the target node ¢t. Once we are at

the portal that contains the target node, we only consider going up or down until we reach t.

Detailed Description. We describe the routing strategy in more detail now (see the full
version for pseudocode). Assume we are at a grid node g and want to route a message m to
a grid node t. We introduce the following notation for the information known to g. Note
that grid nodes obtain this information in one communication round with their neighbors.

» Definition 22. The information required to be stored by a grid node g € Vr are denoted by
the following variables.
(i) g.L € N%: g’s own interval given to it by labelling of the portal tree.
(ii) g.P € N2: The portal label of the portal containing g.
(iii)) gn,9s,98, 9w € Ve U{L}: g’s grid neighbors in north, south, east and west direction
(L denotes that there is no such neighbor). For each of these grid neighbors g also
knows the label of the grid node and the portal label of the grid node.

Additionally, we store the label ¢.L of ¢ and the portal label ¢.P of ¢ in the message m, so
g knows these as well upon receipt of m. Note that storing this information at g requires only
O(logn) bits. Assuming that g # ¢, g must decide which of its grid neighbors gw, gg, 9N, gs

11:15

OPODIS 2021

11:16

Near-Shortest Path Routing in Hybrid Communication Networks

to forward m to. Node g first checks if it is in the same portal as ¢t by comparing g.P and
t.P. Assume that this is not the case. Then g has to consider the following cases. We use
the notation a ~ b to denote that label a is incomparable to label b, i.e., a ZbA b Z a.
We start by explaining how a message m is routed in horizontal direction.
(i) g.P Ct.Por g.P Dt.P. In case g.P C t.P then g checks if either g.P C gw.P C t.P
or g.P C gg.P C t.P holds (only one of these conditions can be true). In the first case,
g forwards m to gy, in the second case g forwards m to gg. If none of the conditions
hold (for example, if gy =L or g =), then g routes m vertically (see the description
below). The case g.P D t.P works analogously.
(ii) g.P ~t.P. In this case g tries to forward m horizontally to a node, whose portal label is
a superset of g.P. By doing so, m eventually reaches a node g’ whose portal label is also
a superset of t.P (at the closest “common ancestor portal”), and case (i) is considered.
If neither gy nor gg satisfies this condition or does not exist, g routes vertically.

We now explain how m is routed in vertical direction. We do this if g has not been able to
route m horizontally (either because its horizontal neighbors are not appropriate, or because
they do not exist) or if it is already contained in the same portal as the target node ¢. Again,
g considers the following cases, this time for its own label g.L instead for g.P and for the
actual label ¢t.L instead of the portal label ¢.P.

(i) g.L Cct.L or g.L Dt.L. In the case g.L C t.L node g checks if either g.L C gy.L C t.L
or g.L C gs.L C t.L holds. In the first case, g forwards m to gy, in the second case g
forwards m to gs. The case g.L D t.L works analogously.

(i) g.L»t.L. If the labels g.L and ¢.L are incomparable, g tries to forward m vertically to
a node, whose label is a superset of g.L. This is the case for either gy or gg, depending
on the location of the root of the labeled tree.

Analysis of the Routing Strategy. We show that our routing strategy is local, efficient,
and correct, so it fulfills all requirements for a routing scheme. Our routing strategy is local,
as each node v can determine the next node to forward the message m to based solely on the
O(logn) bits of local information, and the labels ¢.L and ¢.P given to v upon receipt of m.

Regarding efficiency of our routing strategy, we prove in the full version that it is optimal.
The idea is to show that in case the message is routed in a specific direction, there exists at
least one optimal path that moves in the same direction. We conclude the following theorem.

» Theorem 23. A local, correct and exact routing scheme Rr for I' using node labels and
local space of O(logn) bits can be computed in O(logn) rounds in the HYBRID model.

6 Conclusion

We showed that for any HYBRID network with a hole-free UDG(V'), a compact routing scheme
can be computed for UDG(V) in just O(logn) rounds. There are various interesting directions
for follow-up research. For example, we suspect that our approach can be generalized to 3
dimensions (potentially more) where the corresponding “unit ball graph” implies a polyhedron
of genus 0. In particular, some approach akin to multidimensional range trees might work:
define I analogously in a three dimensional grid; dissect I' along 2d-hyperplanes to obtain
2d-portals in I — if one then comes up with a routing scheme to find the correct 2d-portal,
then this can be applied alongside the 2d-routing algorithm presented here to find the correct
node in that 2d-portal. There are unresolved issues, however. Another interesting direction
is to efficiently compute compact routing schemes for arbitrary connected UDGs, or ideally,

S. Coy et al.

to find efficient solutions for arbitrary planar graphs. This seems to be a daunting task; a
simpler setting might be to consider UDGs with a small number of holes where our grid
construction could be of help. Finally, it would be interesting to think about adaptations of
our routing scheme to also minimize congestion, which should be possible in the special case

of hole-free UDGs (see for example the case where the contour polygon is a square [7]).

—— References

1

10

11

12

13

Yehuda Afek, Gad M. Landau, Baruch Schieber, and Moti Yung. The power of multimedia:
Combining point-to-point and multiaccess networks. Information and Computation, 84(1):97—
118, January 1990. doi:10.1016/0890-5401(90)90035-G.

John Augustine, Keerti Choudhary, Avi Cohen, David Peleg, Sumathi Sivasubramaniam,
and Suman Sourav. Distributed graph realizations. In Proc. of the 34th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2020), pages 158167, 2020. doi:
10.1109/IPDPS47924.2020.00026.

John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp Schnei-
der. Shortest paths in a hybrid network model. In Proc. of the 81st ACM-SIAM Symposium on
Discrete Algorithms (SODA 2020), pages 1280-1299, 2020. doi:10.1137/1.9781611975994.
78.

Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and
Michiel H. M. Smid. Improved routing on the Delaunay triangulation. In Proc. of the
26th Annual European Symposium on Algorithms (ESA 2018), pages 22:1-22:13, 2018. doi:
10.4230/LIPIcs.ESA.2018.22.

Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless Networks, 7(6):609-616, 2001. doi:10.1023/A:
1012319418150.

Jehoshua Bruck, Jie Gao, and Anxiao Jiang. MAP: medial axis based geometric routing in
sensor networks. Wireless Networks, 13(6):835-853, 2007. doi:10.1007/s11276-006-9857-z.
Antonio Carzaniga, Koorosh Khazaei, and Fabian Kuhn. Oblivious low-congestion multicast
routing in wireless networks. In Proc. of the 18th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc 2012), pages 155-164, 2012. doi:10.1145/
2248371 .2248395.

Jannik Castenow, Christina Kolb, and Christian Scheideler. A bounding box overlay for
competitive routing in hybrid communication networks. In Proc. of the 21st International
Conference on Distributed Computing and Networking (ICDCN 2020), pages 14:1-14:10, 2020.
doi:10.1145/3369740.3369777.

Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. Distance computations
in the hybrid network model via oracle simulations. CoRR, abs/2010.13831, 2020. arXiv:
2010.13831.

Hristo N. Djidjev, Grammati E. Pantziou, and Christos D. Zaroliagis. Computing shortest
paths and distances in planar graphs. In Proc. of the 18th International Colloguium on
Automata, Languages and Programming (ICALP 1991), pages 327-338, 1991. doi:10.1007/
3-540-54233-7_145.

Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network
algorithms for shortest paths in sparse graphs. In Proc. of the 2/th International Conference
on Principles of Distributed Systems (OPODIS 2020), pages 31:1-31:16, 2020. doi:10.4230/
LIPIcs.0PODIS.2020.31.

Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data center networks:
Enablers, algorithms, complexity. SIGACT News, 50(2):62-79, 2019. doi:10.1145/3351452.
3351464.

Jie Gao and Mayank Goswami. Medial axis based routing has constant load balancing factor.
In Proc. of the 23rd Annual European Symposium on Algorithms (ESA 2015), pages 557569,
2015. doi:10.1007/978-3-662-48350-3_47.

11:17

OPODIS 2021

https://doi.org/10.1016/0890-5401(90)90035-G
https://doi.org/10.1109/IPDPS47924.2020.00026
https://doi.org/10.1109/IPDPS47924.2020.00026
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.4230/LIPIcs.ESA.2018.22
https://doi.org/10.4230/LIPIcs.ESA.2018.22
https://doi.org/10.1023/A:1012319418150
https://doi.org/10.1023/A:1012319418150
https://doi.org/10.1007/s11276-006-9857-z
https://doi.org/10.1145/2248371.2248395
https://doi.org/10.1145/2248371.2248395
https://doi.org/10.1145/3369740.3369777
http://arxiv.org/abs/2010.13831
http://arxiv.org/abs/2010.13831
https://doi.org/10.1007/3-540-54233-7_145
https://doi.org/10.1007/3-540-54233-7_145
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.1145/3351452.3351464
https://doi.org/10.1145/3351452.3351464
https://doi.org/10.1007/978-3-662-48350-3_47

11:18

Near-Shortest Path Routing in Hybrid Communication Networks

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric
and its applications. SIAM Journal on Computing, 35(1):151-169, 2005. doi:10.1137/
S0097539703436357.

Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler. Distributed
monitoring of network properties: The power of hybrid networks. In Proc. of the 44th
International Colloquium on Automata, Languages and Programming (ICALP 2017), pages
137:1-137:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.137.

Thorsten Gotte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. CoRR, abs/2009.03987, 2020. arXiv:2009.03987.
Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a pez dispenser (or,
routing issues in MPLS). SIAM Journal on Computing, 34(2):453-474, 2004. doi:10.1137/
S0097539702409927.

Fabian Hoflinger, Joan Bordoy, Rui Zhang, Amir Bannoura, Nikolas Simon, Leonhard M.
Reindl, and Christian Schindelhauer. Localization system based on ultra low-power radio
landmarks. In Proc. of the 7th International Conference on Sensor Networks (SENSORNETS
2018), pages 51-59, 2018. doi:10.5220/0006608800510059.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk graphs.
Algorithmica, 80(3):830-848, 2018. doi:10.1007/s00453-017-0308-2.

Dimitris J Kavvadias, Grammati E Pantziou, Paul G Spirakis, and Christos D Zaroliagis.
Hammock-on-ears decomposition: A technique for the efficient parallel solution of shortest
paths and other problems. Theoretical Computer Science, 168(1):121-154, 1996. doi:10.1016/
S0304-3975(96) 00065-5.

Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the hybrid
network model. In Proc. of the 39th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2020), pages 109-118, 2020. doi:10.1145/3382734.3405719.

Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc routing:
of theory and practice. In Proc. of the 22nd ACM Symposium on Principles of Distributed
Computing (PODC 2003), pages 63-72, 2003. doi:10.1145/872035.872044.

Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal geometric
mobile ad-hoc routing. In Proc. of the 6th International Workshop on Discrete Algorithms
and Methods f