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Abstract
We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words
over some alphabet of colors. A well-studied class of objectives is the one of ω-regular objectives, due
to its relation to many natural problems in theoretical computer science. We focus on the strategy
complexity question: given an objective, how much memory does each player require to play as
well as possible? A classical result is that finite-memory strategies suffice for both players when
the objective is ω-regular. We show a reciprocal of that statement: when both players can play
optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors)
in all infinite game graphs, then the objective must be ω-regular. This provides a game-theoretic
characterization of ω-regular objectives, and this characterization can help in obtaining memory
bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that
chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs,
it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our
results with the family of discounted-sum objectives, for which ω-regularity depends on the value of
some parameters.
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1 Introduction

Games on graphs and synthesis. We study zero-sum turn-based games on infinite graphs.
In such games, two players, P1 and P2, interact for an infinite duration on a graph, called an
arena, whose state space is partitioned into states controlled by P1 and states controlled by
P2. The game starts in some state of the arena, and the player controlling the current state
may choose the next state following an edge of the arena. Moves of the players in the game
are prescribed by their strategy, which can use information about the past of the play. Edges
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16:2 Characterizing Omega-Regularity Through Finite-Memory Determinacy

of the arena are labeled with a (possibly infinite) alphabet of colors, and the interaction of
the players in the arena generates an infinite word over this alphabet of colors. These infinite
words can be used to specify the players’ objectives: a winning condition is a set of infinite
words, and P1 wins a game on a graph if the infinite word generated by its interaction with
P2 on the arena belongs to this winning condition – otherwise, P2 wins.

This game-theoretic model has applications to the reactive synthesis problem [4]: a system
(modeled as P1) wants to guarantee some specification (the winning condition) against an
uncontrollable environment (modeled as P2). Finding a winning strategy in the game for P1
corresponds to building a controller for the system that achieves the specification against all
possible behaviors of the environment.

Strategy complexity. We are interested in the strategy complexity question: given a winning
condition, how complex must winning strategies be, and how simple can they be? We are
interested in establishing the sufficient and necessary amount of memory to play optimally.
We consider in this work that an optimal strategy in an arena must be winning from any state
from which winning is possible (a property sometimes called uniformity in the literature).
The amount of memory relates to how much information about the past is needed to play in
an optimal way. With regard to reactive synthesis, this has an impact in practice on the
resources required for an optimal controller.

Three classes of strategies are often distinguished, depending on the number of states of
memory they use: memoryless, finite-memory, and infinite-memory strategies. A notable
subclass of finite-memory strategies is the class of strategies that can be implemented with
finite-memory structures that only observe the sequences of colors (and not the sequences
of states nor edges). Such memory structures are called chromatic [30]. By contrast, finite-
memory structures that have access to the states and edges of arenas are called general.
Chromatic memory structures are syntactically less powerful and may require more states
than general ones [11], but they have the benefit that they can be defined independently of
arenas.

We seek to characterize the winning conditions for which chromatic-finite-memory strate-
gies suffice to play optimally against arbitrarily complex strategies, for both players, in all
finite and infinite arenas. We call this property chromatic-finite-memory determinacy. This
property generalizes memoryless determinacy, which describes winning conditions for which
memoryless strategies suffice to play optimally for both players in all arenas. Our work
follows a line of research [6, 8] giving various characterizations of chromatic-finite-memory
determinacy for games on finite arenas (see Remark 2 for more details).

ω-regular languages. A class of winning conditions commonly arising as natural specifi-
cations for reactive systems (it encompasses, e.g., linear temporal logic specifications [38])
consists of the ω-regular languages. They are, among other characterizations, the languages
of infinite words that can be described by a finite parity automaton [36]. It is known that
all ω-regular languages are chromatic-finite-memory determined, which is due to the facts
that an ω-regular language is expressible with a parity automaton, and that parity con-
ditions admit memoryless optimal strategies [27, 42]. Multiple works study the strategy
complexity of ω-regular languages, giving, e.g., precise general memory requirements for all
Muller conditions [18] or a characterization of the chromatic memory requirements of Muller
conditions [11, Theorem 28].
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A result in the other direction is given by Colcombet and Niwiński [17]: they showed that
if a prefix-independent winning condition is memoryless-determined in infinite arenas, then
this winning condition must be a parity condition. As parity conditions are memoryless-
determined, this provides an elegant characterization of parity conditions from a strategic
perspective, under prefix-independence assumption.

Congruence. A well-known tool to study a language L of finite (resp. infinite) words is
its right congruence relation ∼L: for two finite words w1 and w2, we write w1 ∼L w2 if
for all finite (resp. infinite) words w, w1w ∈ L if and only if w2w ∈ L. There is a natural
deterministic (potentially infinite) automaton recognizing the equivalence classes of the right
congruence, called the minimal-state automaton of ∼L [41, 35].

The relation between a regular language of finite words and its right congruence is given
by the Myhill-Nerode theorem [37], which provides a natural bijection between the states of
the minimal deterministic automaton recognizing a regular language and the equivalence
classes of its right congruence relation. Consequences of this theorem are that a language is
regular if and only if its right congruence has finitely many equivalence classes, and a regular
language can be recognized by the minimal-state automaton of its right congruence.

For the theory of languages of infinite words, the situation is not so simple: ω-regular
languages have a right congruence with finitely many equivalence classes, but having finitely
many equivalence classes does not guarantee ω-regularity (for example, a language is prefix-
independent if and only if its right congruence has exactly one equivalence class, but this does
not imply ω-regularity). Moreover, ω-regular languages cannot necessarily be recognized
by adding a natural acceptance condition (parity, Rabin, Muller. . . ) to the minimal-state
automaton of their right congruence [1]. There has been multiple works about the links
between a language of infinite words and the minimal-state automaton of its right congruence;
one relevant question is to understand when a language can be recognized by this minimal-
state automaton [41, 35, 1].

Contributions. We characterize the ω-regularity of a language of infinite words W through
the strategy complexity of the zero-sum turn-based games on infinite graphs with winning
condition W : the ω-regular languages are exactly the chromatic-finite-memory determined
languages (seen as winning conditions) (Theorem 9). As discussed earlier, it is well-known
that ω-regular languages admit chromatic-finite-memory optimal strategies [36, 42, 11] – our
results yield the other implication. This therefore provides a characterization of ω-regular
languages through a game-theoretic and strategic lens.

Our technical arguments consist in providing a precise connection between the repre-
sentation of W as a parity automaton and a chromatic memory structure sufficient to
play optimally. If strategies based on a chromatic finite-memory structure are sufficient
to play optimally for both players, then W is recognized by a parity automaton built on
top of the direct product of the minimal-state automaton of the right congruence and this
chromatic memory structure (Theorem 8). This result generalizes the work from Colcombet
and Niwiński [17] in two ways: by relaxing the prefix-independence assumption about the
winning condition, and by generalizing the class of strategies considered from memoryless to
chromatic-finite-memory strategies. We recover their result as a special case.

Moreover, we actually show that chromatic-finite-memory determinacy in one-player
games of both players is sufficient to show ω-regularity of a language. As ω-regular languages
are chromatic-finite-memory determined in two-player games, we can reduce the problem
of chromatic-finite-memory determinacy of a winning condition in two-player games to the
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16:4 Characterizing Omega-Regularity Through Finite-Memory Determinacy

easier chromatic-finite-memory determinacy in one-player games (Theorem 10). Such a
one-to-two-player lift holds in multiple classes of zero-sum games, such as deterministic
games on finite arenas [23, 6, 31] and stochastic games on finite arenas [24, 8]. The proofs
for finite arenas all rely on an edge-induction technique (also used in other works about
strategy complexity in finite arenas [28, 21, 13]) that appears unfit to deal with infinite
arenas. Although not mentioned by Colcombet and Niwiński, it was already noticed [30] that
for prefix-independent winning conditions in games on infinite graphs, a one-to-two-player
lift for memoryless determinacy follows from [17].

Related works. We have already mentioned [18, 42, 17, 29, 11] for fundamental results on
the memory requirements of ω-regular conditions, [23, 24, 6, 8] for characterizations of “low”
memory requirements in finite (deterministic and stochastic) arenas, and [41, 35, 1] for links
between an ω-regular language and the minimal-state automaton of its right congruence.

One stance of our work is that our assumptions about strategy complexity affect both
players. Another intriguing question is to understand when the memory requirements of only
one player are finite. In finite arenas, results in this direction are sufficient conditions for the
existence of memoryless optimal strategies for one player [28, 3], and a procedure to compute
the chromatic memory requirements of prefix-independent ω-regular conditions [29, 30].

Other articles study the strategy complexity of (non-necessarily ω-regular) winning
conditions in infinite arenas; see, e.g., [20, 25, 16]. In such non-ω-regular examples, as can be
expected given our main result, at least one player needs infinite memory to play optimally,
or the arena model is different from ours (e.g., only allowing finite branching – we discuss
such differences in more depth after Theorem 8). A particularly interesting example w.r.t. our
results is considered by Chatterjee and Fijalkow [15]. They study the strategy complexity of
finitary Büchi and parity conditions, and show that P1 has chromatic-finite-memory optimal
strategies for finitary Büchi and finitary parity. However, for these (non-ω-regular) winning
conditions, P2 needs infinite memory. This example illustrates that our main result would
not hold if we just focused on the strategy complexity of one player.

We mention works on finite-memory determinacy in different contexts: finite arenas [34],
non-zero-sum games [33], countable one-player stochastic games [26], concurrent games [32, 7].

Structure. We fix definitions in Section 2. Our main results are discussed in Section 3.
We apply our results to discounted-sum and mean-payoff winning conditions in Section 4.
Due to a lack of space, we only sketch some technical details; the complete proofs as well as
additional examples and remarks are found in the full version of the article [9].

2 Preliminaries

Let C be an arbitrary non-empty set of colors. Given a set A, we write A∗ for the set of
finite sequences of elements of A and Aω for the set of infinite sequences of elements of A.

Arenas. We consider two players P1 and P2. An arena is a tuple A = (S, S1, S2, E) such
that S = S1 ⊎ S2 (disjoint union) is a non-empty set of states (of any cardinality) and
E ⊆ S × C × S is a set of edges. States in S1 are controlled by P1 and states in S2 are
controlled by P2. We allow arenas with infinite branching. Given e ∈ E, we denote by
in, col, and out the projections to its first, second, and third component, respectively (i.e.,
e = (in(e), col(e), out(e))). We assume arenas to be non-blocking: for all s ∈ S, there exists
e ∈ E such that in(e) = s.
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Let A = (S, S1, S2, E) be an arena with s ∈ S. We denote by Plays(A, s) the set of plays
of A from s, that is, infinite sequences of edges ρ = e1e2 . . . ∈ Eω such that in(e1) = s and for
all i ≥ 1, out(ei) = in(ei+1). For ρ = e1e2 . . . ∈ Plays(A, s), we write colω(ρ) for the infinite
sequence col(e1)col(e2) . . . ∈ Cω. We denote by Hists(A, s) the set of histories of A from s,
which are all finite prefixes of plays of A from s. We write Plays(A) and Hists(A) for the
sets of all plays of A and all histories of A (from any state), respectively. If h = e1 . . . ek

is a history of A, we define in(h) = in(e1) and out(h) = out(ek). For convenience, for every
s ∈ S, we also consider the empty history λs from s, and we set in(λs) = out(λs) = s. For
i ∈ {1, 2}, we denote by Histsi(A) the set of histories h such that out(h) ∈ Si. An arena
A = (S, S1, S2, E) is a one-player arena of P1 (resp. of P2) if S2 = ∅ (resp. S1 = ∅).

Skeletons. A skeleton is a tuple M = (M, minit, αupd) such that M is a finite set of states,
minit ∈ M is an initial state, and αupd : M × C → M is an update function. We denote by
α∗

upd the natural extension of αupd to finite sequences of colors. We always assume that all
states of skeletons are reachable from their initial state. We define the trivial skeleton Mtriv
as the only skeleton with a single state. Although we require skeletons to have finitely many
states, we allow them to have infinitely many transitions (which happens when C is infinite).

We say that a non-empty sequence π = (m1, c1) . . . (mk, ck) ∈ (M × C)+ is a path of M
(from m1 to αupd(mk, ck)) if for all i ∈ {1, . . . , k − 1}, αupd(mi, ci) = mi+1. For convenience,
we also consider every element (m, ⊥) for m ∈ M and ⊥ /∈ C to be an empty path of M (from
m to m). A non-empty path of M from m to m′ is a cycle of M (on m) if m = m′. Cycles of
M are usually denoted by letter γ. For π = (m1, c1) . . . (mk, ck) a path of M, we define col∗(π)
to be the sequence c1 . . . ck ∈ C∗. For an infinite sequence (m1, c1)(m2, c2) . . . ∈ (M × C)ω,
we also write colω((m1, c1)(m2, c2) . . .) for the infinite sequence c1c2 . . . ∈ Cω.

For m, m′ ∈ M , we write Πm,m′ for the set of paths of M from m to m′, Γm for the set
of cycles of M on m, and ΓM for the set of all cycles of M (on any skeleton state). When
considering sets of paths or cycles of M, we add a c in front of the set to denote the projections
of the corresponding paths or cycles to colors (e.g., cΓM = {col∗(γ) ∈ C+ | γ ∈ ΓM}).

For w = c1c2 . . . ∈ Cω, we define skel(w) as the infinite sequence (m1, c1)(m2, c2) . . . ∈
(M × C)ω that w induces in the skeleton (m1 = minit and for all i ≥ 1, αupd(mi, ci) = mi+1).

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be two skeletons. Their (direct)
product M1 ⊗ M2 is the skeleton (M, minit, αupd) where M = M1 × M2, minit = (m1

init, m2
init),

and, for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)).

Strategies. Let A = (S, S1, S2, E) be an arena and i ∈ {1, 2}. A strategy of Pi on A is a
function σi : Histsi(A) → E such that for all h ∈ Histsi(A), out(h) = in(σi(h)). We denote
by Σi(A) the set of strategies of Pi on A. Given a strategy σi of Pi, we say that a play ρ is
consistent with σi if for all finite prefixes h = e1 . . . ei of ρ such that out(h) ∈ Si, σi(h) = ei+1.
For s ∈ S, we denote by Plays(A, s, σi) the set of plays from s that are consistent with σi.

For M = (M, minit, αupd) a skeleton, a strategy σi ∈ Σi(A) is based on (memory) M if
there exists a function αnxt : S × M → E such that for all s ∈ Si, σi(λs) = αnxt(s, minit), and
for all non-empty paths h ∈ Histsi(A), σi(h) = αnxt(out(h), α∗

upd(minit, col∗(h))). A strategy
is memoryless if it is based on Mtriv.

▶ Remark 1. Our memory model is chromatic [30], i.e., it observes the sequences of colors
and not the sequences of edges of arenas, since the argument of the update function of a
skeleton is in M × C. It was recently shown that the amount of memory states required
to play optimally for a winning condition using chromatic skeletons may be strictly larger
than using general memory structures (i.e., using memory structures observing edges) [11,

STACS 2022



16:6 Characterizing Omega-Regularity Through Finite-Memory Determinacy

Proposition 32]. The example provided is a Muller condition (hence an ω-regular condition),
in which both kinds of memory requirements are still finite. A result in this direction is also
provided by Le Roux [32] for games on finite arenas: it shows that in many games, a strategy
using general finite memory can be swapped for a (larger) chromatic finite memory.

For games on infinite arenas, which we consider in this article, we do not know whether
there exists a winning condition with finite general memory requirements, but infinite
chromatic memory requirements. Our results focus on chromatic memory requirements. ⌟

Winning conditions. A (winning) condition is a set W ⊆ Cω. When a condition W is clear
in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and losing if not.
For a condition W and a word w ∈ C∗, we write w−1W = {w′ ∈ Cω | ww′ ∈ W} for the set
of winning continuations of w. We write W for the complement Cω \ W of a condition W .

A game is a tuple G = (A, W ) where A is an arena and W is a winning condition.

Optimality and determinacy. Let G = (A = (S, S1, S2, E), W ) be a game, and s ∈ S.
We say that σ1 ∈ Σ1(A) is winning from s if colω(Plays(A, s, σ1)) ⊆ W , and we say that
σ2 ∈ Σ2(A) is winning from s if colω(Plays(A, s, σ2)) ⊆ W .

A strategy of Pi is optimal in (A, W ) if it is winning from all the states from which Pi

has a winning strategy. We often write optimal in A if condition W is clear from the context.
We stress that this notion of optimality requires a single strategy to be winning from all the
winning states (a property sometimes called uniformity).

A winning condition W is determined if for all games G = (A = (S, S1, S2, E), W ), for all
s ∈ S, either P1 or P2 has a winning strategy from s. Let M be a skeleton. We say that
a winning condition W is M-determined if (i) W is determined and (ii) in all arenas A,
both players have an optimal strategy based on M. A winning condition W is one-player
M-determined if in all one-player arenas A of P1, P1 has an optimal strategy based on M
and in all one-player arenas A of P2, P2 has an optimal strategy based on M. A winning
condition W is (one-player) memoryless-determined if it is (one-player) Mtriv-determined. A
winning condition W is (one-player) chromatic-finite-memory determined if there exists a
skeleton M such that it is (one-player) M-determined.
▶ Remark 2. It might seem surprising that for chromatic-finite-memory determinacy, we
require the existence of a single skeleton that suffices to play optimally in all arenas, rather
than the seemingly weaker existence, for each arena, of a finite skeleton (which may depend
on the arena) that suffices to play optimally. In infinite arenas, it turns out that these notions
are equivalent (proof in [9]).

▶ Lemma 3. Let W ⊆ Cω be a winning condition. The following are equivalent:
1. for all arenas A, there exists a skeleton MA such that both players have an optimal

strategy based on MA in A;
2. W is chromatic-finite-memory determined.

When restricted to finite arenas, we do not have an equivalence between these two
notions (hence the distinction between finite-memory determinacy and arena-independent
finite-memory determinacy [6, 8]). Our proof of Lemma 3 exploits that an infinite “union” of
arenas is still an arena, which is not true when restricted to finite arenas. ⌟

ω-regular languages. We define a parity automaton as a pair (M, p) where M is a skeleton
and p : M × C → {0, . . . , n}; function p assigns priorities to every transition of M. This
definition implies that we consider deterministic and complete parity automata (i.e., in every
state, reading a color leads to exactly one state). Following [12], if M is a skeleton, we say
that a parity automaton (M′, p) is defined on top of M if M′ = M.
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A parity automaton (M, p) defines a language L(M,p) of all the infinite words w ∈ Cω such
that, for skel(w) = (m1, c1)(m2, c2) . . ., lim supi≥1 p(mi, ci) is even. We say that W ⊆ Cω

is recognized by (M, p) if W = L(M,p). A language of infinite words is ω-regular if it is
recognized by a parity automaton. We emphasize that we consider transition-based parity
conditions: we assign priorities to transitions (and not states) of M. For more information
on links between state-based and transition-based acceptance conditions, we refer to [11].

Right congruence. For ∼ an equivalence relation, we call the index of ∼ the number of
equivalence classes of ∼. We denote by [a]∼ the equivalence class of an element a for ∼.

Let W be a winning condition. We define the right congruence ∼W ⊆ C∗ × C∗ of W as
w1 ∼W w2 if w−1

1 W = w−1
2 W (meaning that w1 and w2 have the same winning continuations).

Relation ∼W is an equivalence relation. When W is clear from the context, we write ∼
for ∼W . We denote by ε the empty word. When ∼ has finite index, we can associate a
natural skeleton M∼ = (M∼, m∼

init, α∼
upd) to ∼ such that M∼ is the set of equivalence classes

of ∼, m∼
init = [ε]∼, and α∼

upd([w]∼, c) = [wc]∼. This transition function is well-defined since it
follows from the definition of ∼ that if w1 ∼ w2, then for all c ∈ C, w1c ∼ w2c. Hence, the
choice of representatives for the equivalence classes does not have an impact in this definition.
We call skeleton M∼ the minimal-state automaton of ∼ [41, 35].

3 Concepts and characterization

We define two concepts at the core of our characterization, one of them dealing with
prefixes and the other one dealing with cycles. Let W ⊆ Cω be a winning condition and
M = (M, minit, αupd) be a skeleton.

Prefix-independence. Let ∼ be the right congruence of W .

▶ Definition 4. Condition W is M-prefix-independent if for all m ∈ M , for all w1, w2 ∈
cΠminit,m, w1 ∼ w2.

In other words, W is M-prefix-independent if finite words reaching the same state of M
from its initial state have the same winning continuations. The classical notion of prefix-
independence is equivalent to Mtriv-prefix-independence (as all finite words have the exact
same set of winning continuations, which is W ). If ∼ has finite index, W is in particular
M∼-prefix-independent: indeed, two finite words reach the same state of M∼ (if and) only
if they are equivalent for ∼. Any skeleton M such that W is M-prefix-independent must
have at least one state for each equivalence class of ∼, but multiple states may partition the
same equivalence class.

Cycle-consistency. For w ∈ C∗, we define

Γwin,w
M = {γ ∈ Γm | m = α∗

upd(minit, w) and (col∗(γ))ω ∈ w−1W}

as the cycles on the skeleton state reached by w in M that induce winning words when
repeated infinitely many times after w. We define

Γlose,w
M = {γ ∈ Γm | m = α∗

upd(minit, w) and (col∗(γ))ω ∈ w−1W}

as their losing counterparts. We emphasize that cycles are allowed to go through the same
edge multiple times.
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minit m2

b

a, c

a

b, c

Figure 1 Skeleton M such that W = Büchi(a) ∩ Büchi(b) is M-cycle-consistent (Example 6).
In figures, we use rhombuses (resp. circles, squares) to depict skeleton states (resp. arena states
controlled by P1, arena states controlled by P2).

▶ Definition 5. Condition W is M-cycle-consistent if for all w ∈ C∗, (cΓwin,w
M )ω ⊆ w−1W

and (cΓlose,w
M )ω ⊆ w−1W .

What this says is that after any finite word, if we concatenate infinitely many winning (resp.
losing) cycles on the skeleton state reached by that word, then it only produces winning
(resp. losing) infinite words.

▶ Example 6. For c′ ∈ C, let Büchi(c′) be the set of infinite words on C that see color
c′ infinitely often. Let C = {a, b, c}. Condition W = Büchi(a) ∩ Büchi(b) is Mtriv-prefix-
independent, but not Mtriv-cycle-consistent: for any w ∈ C∗, a and b are both in cΓlose,w

Mtriv
(as

waω and wbω are losing), but word w(ab)ω is winning. However, W is M-cycle-consistent for
the skeleton M with two states minit and m2 represented in Figure 1. For finite words reaching
minit, the losing cycles only see a and c, and combining infinitely many of them gives an
infinite word without b, which is a losing continuation of any finite word. The winning cycles
are the ones that go to m2 and then go back to minit, as they must see both a and b; combining
infinitely many of them guarantees a winning continuation after any finite word. A similar
reasoning applies to state m2. Notice that W is also M-prefix-independent. With regard to
memory requirements, condition W is not Mtriv-determined but is M-determined. ⌟

Both M-prefix-independence and M-cycle-consistency hold symmetrically for a winning
condition and its complement, and are stable by product with an arbitrary skeleton (as
products generate even smaller sets of prefixes and cycles to consider).

▶ Lemma 7. Let W ⊆ Cω be a winning condition and M be a skeleton. Then, W is
M-prefix-independent (resp. M-cycle-consistent) if and only if W is M-prefix-independent
(resp. M-cycle-consistent). If W is M-prefix-independent (resp. M-cycle-consistent), then
for all skeletons M′, W is (M ⊗ M′)-prefix-independent (resp. (M ⊗ M′)-cycle-consistent).

Moreover, an ω-regular language recognized by a parity automaton (M, p) is M-prefix-
independent and M-cycle-consistent.

Main results. We state our main technical tool. We recall that one-player M-determinacy
of a winning condition W is both about one-player arenas of P1 (trying to achieve a word in
W ) and of P2 (trying to achieve a word in W ).

▶ Theorem 8. Let W ⊆ Cω be a winning condition and ∼ be its right congruence.
1. If there exists a skeleton M such that W is one-player M-determined, then ∼ has finite

index (in particular, W is M∼-prefix-independent) and W is M-cycle-consistent.
2. If there exists a skeleton M such that W is M-prefix-independent and M-cycle-consistent,

then W is ω-regular and can be recognized by a deterministic parity automaton defined on
top of M.

Technical sketch. We prove the first and second items of this theorem in [9, Sections 4
and 5]. We comment briefly on our proof technique for each item.
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γ

γ1

γ2

γ′

Figure 2 Comparing cycles γ and γ′ using intermediate cycle γ = γ1γ2. Squiggly arrows indicate
a sequence of transitions. Cycles γ and γγ1γ2 are winning, and cycles γ′ and γ′γ2γ1 are losing.

1. For the first item, we assume that W is one-player M-determined for a skeleton M =
(M, minit, αupd). We define a preorder ⪯ on C∗ such that w1 ⪯ w2 if w−1

1 W ⊆ w−1
2 W . Notice

that the right congruence ∼ of W is equal to ⪯ ∩ ⪰. By exhibiting well-chosen one-player
arenas, using the M-determinacy assumption, we can show that for each m ∈ M , in the set
cΠminit,m, relation ⪯ is total and there is no infinite increasing nor decreasing sequence (for ⪯).
This shows that ∼ has finite index on each cΠminit,m; as M is finite and C∗ =

⋃
m∈M cΠminit,m,

relation ∼ has finite index on C∗. The proof of M-cycle-consistency is more direct: if a
player had an interest in mixing multiple losing cycles of M to make them into a winning
play, we could find a (possibly infinite) one-player arena of that player in which strategies
based on M would not suffice to play optimally.

2. For the second item, we assume that W is M-prefix-independent and M-cycle-consistent
for a skeleton M. Our technical lemmas focus on cycles of M, how they relate to each other,
and what happens when we combine them. Our main tool is to define a partial preorder on
cycles, which will help assign priorities to transitions of M – the aim being to define a parity
condition on top of M that recognizes W . As we consider M-prefix-independence along
with M-cycle-consistency, for m a state of M, each cycle in Γm has a well-defined accepting
status: it generates either a winning or a losing infinite word when repeated infinitely often
after any finite word in cΠminit,m.

Intuitively, for some state m of M, for γ a winning cycle on m and γ′ a losing cycle on
m, we can look at which cycle dominates the other, that is, whether the combined cycle γγ′

is winning, in which case γ dominates γ′, or losing, in which case γ′ dominates γ (γγ′ and
γ′γ necessarily have the same accepting status). This shows how to compare cycles with
different accepting statuses that start on the same skeleton state. This notion and some
properties about this notion generalize part of the proof technique of [17], in which colors
rather than cycles are compared.

We can extend this idea to some pairs of a winning cycle γ and a losing cycle γ′ that
have no state in common: our criterion to compare two such cycles is that there is a cycle
γ connecting them such that γ is not “powerful enough” to alter the values of each cycle
separately, that is, such that γγ is winning and γ′γ is losing. To know which cycle dominates
the other, we look at the accepting value of the cycle γγ1γ′γ2, for some adequate break of
γ into two paths γ1 and γ2. We illustrate the situation in Figure 2. If γγ1γ′γ2 is winning,
then γ dominates γ′, and if it is losing, then γ′ dominates γ.

This defines a partial preorder on cycles of M. We show that there is no infinite decreasing
nor increasing sequence for this preorder, and after defining a related equivalence relation,
that there are finitely many equivalence classes of cycles. We can assign finitely many
priorities to these cycles in a way consistent with the partial preorder, and then transfer
these priorities to transitions of M, as a function p : M × C → {0, . . . , n}. We conclude by
showing that W is recognized by parity automaton (M, p). ◀

We state two consequences of Theorem 8: a strategic characterization of ω-regular
languages, and a novel one-to-two-player-lift.
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▶ Theorem 9 (Characterization). Let W ⊆ Cω be a language of infinite words. Language W

is ω-regular if and only if it is chromatic-finite-memory determined (in infinite arenas).

Proof. One implication is well-known [36, 42]: if W is ω-regular, then it can be recognized
by a deterministic parity automaton whose skeleton we can use as a memory that suffices to
play optimally for both players, in arenas of any cardinality. The other direction is given
by Theorem 8: if W is chromatic-finite-memory determined, then there exists in particular
a skeleton M such that W is one-player M-determined, so ∼ has finite index and W is
M-cycle-consistent. In particular, by Lemma 7, W is (M∼ ⊗ M)-prefix-independent and
(M∼ ⊗ M)-cycle-consistent, so W is ω-regular and can be recognized by a deterministic
parity automaton defined on top of M∼ ⊗ M. ◀

▶ Theorem 10 (One-to-two-player lift). Let W ⊆ Cω be a winning condition. Language W is
one-player chromatic-finite-memory determined if and only if it is chromatic-finite-memory
determined.

Proof. The implication from two-player to one-player arenas is trivial. The other implication
is given by Theorem 8: if W is one-player M-determined, then ∼ has finite index and W is
M-cycle-consistent. Again by Lemma 7 and Theorem 8, as W can be recognized by a parity
automaton defined on top of M∼ ⊗ M, W is determined and strategies based on M∼ ⊗ M
suffice to play optimally in all two-player arenas. ◀

We discuss two specific situations in which we can easily derive interesting consequences us-
ing our results: the prefix-independent case, and the case where the minimal-state automaton
suffices to play optimally.

Prefix-independent case. If a condition W is prefix-independent (i.e., ∼ has index 1 and
M∼ = Mtriv), and skeleton M suffices to play optimally in one-player games, then W is
recognized by a parity automaton defined on top of Mtriv ⊗ M, which is isomorphic to M.
This implies that the exact same memory can be used by both players to play optimally in
two-player arenas, with no increase in memory. Note that we do not know in general whether
this product is necessary to go from one-player to two-player arenas, but the question is
automatically solved for prefix-independent conditions.

If, moreover, M = Mtriv (i.e., memoryless strategies suffice to play optimally in one-player
arenas), we recover exactly the result from Colcombet and Niwiński [17]: W can be recognized
by a parity automaton defined on top of Mtriv, so we can directly assign a priority to each
color with a function p : C → {0, . . . , n} such that an infinite word w = c1c2 . . . ∈ Cω is in
W if and only if lim supi≥1 p(ci) is even.

M∼-determined case. An interesting property of some ω-regular languages is that they
can be recognized by defining an acceptance condition on top of the minimal-state automaton
of their right congruence [35], which is a useful property for the learning of languages [1].
Here, Theorem 8 shows that W can be recognized by defining a transition-based parity
acceptance condition on top of the minimal-state automaton M∼ if and only if W is M∼-
determined. The transition-based parity acceptance condition was not considered in the
cited results [35, 1].

▶ Corollary 11. Let W ⊆ Cω be an ω-regular language and M∼ be the minimal-state
automaton of its right congruence. The following are equivalent:
1. W is recognized by defining a transition-based parity acceptance condition on top of M∼;
2. W is M∼-determined;
3. W is M∼-cycle-consistent.
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Proof. Implication 1. =⇒ 2. follows from the memoryless determinacy of parity games [42].
Implication 2. =⇒ 3. follows from the first item of Theorem 8. Implication 3. =⇒ 1. follows
from the second item of Theorem 8: by definition, W is M∼-prefix-independent; if it is also
M∼-cycle-consistent, then W is recognized by a parity automaton defined on top of M∼. ◀

Classes of arenas. We discuss the sensitivity of Theorem 8 w.r.t. our model of arenas.
There are multiple conditions that are chromatic-finite-memory determined if we only

consider finite arenas (finitely many states and edges) and not infinite arenas. A few examples
are discounted-sum games [40], mean-payoff games [19], total-payoff games [22], one-counter
games [10] which are all memoryless-determined in finite arenas but which require infinite
memory to play optimally in some infinite arenas (we discuss some of these in Section 4). In
particular, Theorem 9 tells us that the derived winning conditions are not ω-regular.

Strangely, the fact that our arenas have colors on edges and not on states is crucial for the
result. Indeed, there exists a winning condition (a generalization of a parity condition with
infinitely many priorities [25]) that is memoryless-determined in state-labeled infinite arenas,
but not in edge-labeled infinite arenas (as we consider here). This particularity was already
discussed [17], and it was also shown that the same condition is memoryless-determined in
edge-labeled arenas with finite branching. Therefore, the fact that we allow infinite branching
in our arenas is also necessary for Theorem 9. Another example of a winning condition with
finite memory requirements in finitely branching arenas for one player but infinite memory
requirements in infinitely branching arenas is presented in [16, Section 4].

4 Applications

We provide applications of our results to discounted-sum and mean-payoff conditions.

4.1 Discounted sum
We apply our results to a discounted-sum condition in order to illustrate our notions. A
specificity of this example is that its ω-regularity depends on some parameters – we use our
results to characterize the parameters for which it is ω-regular or, equivalently (Theorem 9),
chromatic-finite-memory determined. The ω-regularity of discounted-sum conditions has also
been studied in [14, 2] with different techniques and goals.

Let C ⊆ Q be non-empty and bounded. For λ ∈ (0, 1) ∩ Q, we define the discounted-sum
function DSλ : Cω → R such that for w = c1c2 . . . ∈ Cω, DSλ(w) =

∑∞
i=1 λi−1 · ci. This

function is always well-defined for a bounded C, and takes values in [ inf C
1−λ , sup C

1−λ ].
We define the winning condition DS≥0

λ = {w ∈ Cω | DSλ(w) ≥ 0} as the set of infinite
words whose discounted sum is non-negative, and let ∼ be its right congruence. We
will analyze cycle-consistency and prefix-independence of DS≥0

λ to conclude under which
conditions (on C and λ) it is chromatic-finite-memory determined (or equivalently, ω-regular
by Theorem 9). First, we discuss a few properties of the discounted-sum function.

Basic properties. We extend function DSλ to finite words in a natural way: for w ∈ C∗,
we define DSλ(w) = DSλ(w0ω). For w ∈ C∗, we define |w| as the length of w (so w ∈ C |w|).
First, we notice that for w ∈ C∗ and w′ ∈ Cω, we have DSλ(ww′) = DSλ(w) + λ|w|DSλ(w′).
Therefore, ww′ ∈ DS≥0

λ if and only if DSλ(w)
λ|w| ≥ −DSλ(w′). This provides a characterization

of the winning continuations of a finite word w ∈ C∗ by comparing their discounted sum to
the value DSλ(w)

λ|w| .
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s1 s2 s3

1
1
2

...

−1
λ

−1
2λ

...
0

Figure 3 Arena with infinitely many edges in which P1 needs infinite memory to win for condition
DS≥0

λ from s1 for any λ ∈ (0, 1) ∩ Q, with C = [−k, k] ∩ Q for k sufficiently large.

This leads us to define the gap of a finite word w ∈ C∗, following ideas in [5], as

gap(w) =


⊤ if DSλ(w)

λ|w| ≥ − inf C
1−λ ,

⊥ if DSλ(w)
λ|w| < − sup C

1−λ ,
DSλ(w)

λ|w| otherwise.

Intuitively, the gap of a finite word w ∈ C∗ represents how far it is from going back to 0:
if w′ ∈ Cω is such that DSλ(w′) = −gap(w), then DSλ(ww′) = 0. We can see that for all
words w ∈ C∗, if gap(w) = ⊤, then all continuations are winning (i.e., w−1W = Cω) as it
is not possible to find an infinite word with a discounted sum less than inf C

1−λ . Similarly, if
gap(w) = ⊥, then all continuations are losing (i.e., w−1W = ∅).

Cycle-consistency. We have that DS≥0
λ is Mtriv-cycle-consistent (proof in [9, Section 6]).

▶ Proposition 12. For all bounded C ⊆ Q, λ ∈ (0, 1) ∩ Q, winning condition DS≥0
λ is

Mtriv-cycle-consistent.

Prefix-independence. If C = [−k, k] ∩ Q for some k ∈ N \ {0}, winning condition DS≥0
λ is

not M-prefix-independent for any M, as ∼ has infinite index. Indeed, we have for instance
that elements in { 1

i ∈ C∗ | i ≥ 1} are all in different equivalence classes of ∼. We can see
how to use this to exhibit an arena in which P1 can win but needs infinite memory to do so
in Figure 3.

For finite C ⊆ Z, the picture is more complicated; for C = [−k, k] ∩ Z for some k ∈ N,
we characterize when DS≥0

λ is M-prefix-independent for some finite skeleton M. We give an
intuition of the two situations in which that happens: (i) if C is too small, then the first
non-zero color seen determines the outcome of the game, as it is not possible to compensate
this color to change the sign of the discounted sum; (ii) if λ = 1

n for some integer n ≥ 1,
then the gap function actually takes only finitely many values, which is not the case for a
different λ.

▶ Proposition 13. Let λ ∈ (0, 1)∩Q, k ∈ N, and C = [−k, k]∩Z. Then, the right congruence
∼ of DS≥0

λ has finite index if and only if k < 1
λ − 1 or λ is equal to 1

n for some integer n ≥ 1.

Proof (sketch). Full proof in [9, Section 6]. The key property is to show that gaps character-
ize equivalence classes of prefixes: for w1, w2 ∈ C∗, w1 ∼ w2 if and only if gap(w1) = gap(w2).
Once this is proven, it is left to determine the number of different gap values in each situation,
which corresponds to the index of ∼. We illustrate one situation in which the index is finite
by depicting the minimal-state automaton of ∼ for λ = 1

2 and k = 2 ≥ 1
λ − 1 in Figure 4. ◀

Connecting Propositions 12 and 13, here is the characterization we obtain using Theorem 8.

▶ Corollary 14. Let λ ∈ (0, 1) ∩ Q, k ∈ N, and C = [−k, k] ∩ Z. Condition DS≥0
λ is

chromatic-finite-memory determined (or equivalently, ω-regular) if and only if k < 1
λ − 1 or

λ is equal to 1
n for some integer n ≥ 1.
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0 2 ⊤−2−4⊥

0

1−1

2−2

−1

0, 1, 2

−2

1

−2, −1

2

0

2

C \ {2}
CC

Figure 4 Minimal-state automaton of ∼ for λ = 1
2 and C = {−2, −1, 0, 1, 2}. The value in a

state is the gap value characterizing the equivalence class of ∼. Here, sup C
1−λ

= 4 and inf C
1−λ

= −4. The
asymmetry around 0 comes from the ≥ 0 in the definition of the condition: when state −4 is reached,
there is exactly one winning continuation (2ω), but a state with gap value 4 would only have winning
continuations (hence, it is part of state ⊤). Notice that we can define a parity condition on top of
this automaton that recognizes DS≥0

λ : an infinite word is winning as long as it does not reach ⊥.

4.2 Mean payoff
Let C ⊆ Q be non-empty. We define the mean-payoff function MP : Cω → R ∪ {−∞, ∞}
such that for w = c1c2 . . . ∈ Cω, MP(w) = lim supn→∞

1
n

∑n
i=1 ci. We define the winning

condition MP≥0 = {w ∈ Cω | MP(w) ≥ 0} as the set of infinite words whose mean payoff is
non-negative. This condition is Mtriv-prefix-independent for any set of colors. However, it is
known that infinite-memory strategies may be required to play optimally in some infinite
arenas [39, Section 8.10]; the example provided uses infinitely many colors. Here, we show
that chromatic-finite-memory strategies do not suffice to play optimally, even for C = {−1, 1}.
Let us analyze cycle-consistency of MP≥0. If we consider, for n ∈ N,

wn = 1 . . . 1︸ ︷︷ ︸
n times

−1 . . . −1︸ ︷︷ ︸
n+1 times

,

we have that (wn)ω is losing for all n ∈ N, but the infinite word w0w1w2 . . . has a mean
payoff of 0 and is thus winning. This shows directly that MP≥0 is not Mtriv-cycle-consistent.
The argument can be adapted to show that MP≥0 is not M-cycle-consistent for any skeleton
M (see [9, Section 6]).

5 Conclusion

We proved an equivalence between chromatic-finite-memory determinacy of a winning condi-
tion in games on infinite graphs and ω-regularity of the corresponding language of infinite
words, generalizing a result by Colcombet and Niwiński [17]. A “strategic” consequence is
that chromatic-finite-memory determinacy in one-player games of both players implies the
seemingly stronger chromatic-finite-memory determinacy in zero-sum games. A “language-
theoretic” consequence is a link between the representation of ω-regular languages by parity
automata and the memory structures used to play optimally in zero-sum games, using as a
tool the minimal-state automata classifying the equivalence classes of the right congruence.

For future work, one possible improvement over our result is to deduce tighter chromatic
memory requirements in two-player games compared to one-player games. Our proof technique
gives as an upper bound on the two-player memory requirements a product between the
minimal-state automaton and a sufficient skeleton for one-player arenas, but smaller skeletons
often suffice. We do not know whether the product with the minimal-state automaton is
necessary in general in order to play optimally in two-player arenas (although it is necessary
in Theorem 8 to describe W using a parity automaton). This behavior contrasts with the
case of finite arenas, in which it is known that a skeleton sufficient for both players in finite
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one-player arenas also suffices in finite two-player arenas [6, 8]. More generally, it would
be interesting to characterize precisely the (chromatic) memory requirements of ω-regular
winning conditions, extending work on the subclass of Muller conditions [18, 11].
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