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Abstract
Given polynomials f0, f1, . . . , fk the Ideal Membership Problem, IMP for short, asks if f0 belongs to
the ideal generated by f1, . . . , fk. In the search version of this problem the task is to find a proof of
this fact. The IMP is a well-known fundamental problem with numerous applications, for instance,
it underlies many proof systems based on polynomials such as Nullstellensatz, Polynomial Calculus,
and Sum-of-Squares. Although the IMP is in general intractable, in many important cases it can be
efficiently solved.

Mastrolilli [SODA’19] initiated a systematic study of IMPs for ideals arising from Constraint
Satisfaction Problems (CSPs), parameterized by constraint languages, denoted IMP(Γ). The ultimate
goal of this line of research is to classify all such IMPs accordingly to their complexity. Mastrolilli
achieved this goal for IMPs arising from CSP(Γ) where Γ is a Boolean constraint language, while
Bulatov and Rafiey [arXiv’21] advanced these results to several cases of CSPs over finite domains.
In this paper we consider IMPs arising from CSPs over “affine” constraint languages, in which
constraints are subgroups (or their cosets) of direct products of Abelian groups. This kind of CSPs
include systems of linear equations and are considered one of the most important types of tractable
CSPs. Some special cases of the problem have been considered before by Bharathi and Mastrolilli
[MFCS’21] for linear equation modulo 2, and by Bulatov and Rafiey [arXiv’21] to systems of linear
equations over GF(p), p prime. Here we prove that if Γ is an affine constraint language then IMP(Γ)
is solvable in polynomial time assuming the input polynomial has bounded degree.
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1 Introduction

The Ideal Membership Problem. Representing combinatorial problems by polynomials
and then using algebraic techniques to approach them is one of the standard methods in
algorithms and complexity. The Ideal Membership Problem (IMP for short) is an important
algebraic framework that has been instrumental in such an approach. The IMP underlies
many proof systems based on polynomials such as Nullstellensatz, Polynomial Calculus, and
Sum-of-Squares, and therefore plays an important role in such areas as proof complexity and
approximation.

Let F be a field and F[x1, . . . , xn] the ring of polynomials over F. Given polynomials f0,
f1, . . . , fk ∈ F[x1, . . . , xn] the IMP asks if f0 belongs to the ideal ⟨f1, . . . , fk⟩ generated by
f1, . . . , fk. This fact is usually demonstrated by presenting a proof, that is, a collection of
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Figure 1 Graph 2-colorability.

polynomials h1, . . . , hk such that the following polynomial identity holds f0 = h1f1+· · ·+hkfk.
Many applications require the ability to produce such a proof. We refer to the problem of
finding a proof of membership as the search IMP. Note that by the Hilbert Basis Theorem
any ideal of F[x1, . . . , xn] can be represented by a finite set of generators meaning that the
above formulation of the problem covers all possible ideals of F[x1, . . . , xn].

The general IMP is a difficult problem and it is not even obvious whether or not it is
decidable. The decidability was established in [23, 32, 33]. Then Mayr and Meyer [29] were
the first to study the complexity of the IMP. They proved an exponential space lower bound
for the membership problem for ideals generated by polynomials with integer and rational
coefficients. Mayer [28] went on establishing an exponential space upper bound for the IMP
for ideals over Q, thus proving that such IMPs are EXPSPACE-complete. The source of
hardness here is that a proof that f0 ∈ ⟨f1, . . . , fk⟩ may require polynomials of exponential
degree. In the cases when the degree of a proof has a linear bound in the degree of f0, the
IMP can be solved more efficiently. (There is also the issue of exponentially long coefficients
that we will mention later.)

Combinatorial Ideals. To illustrate the connection of the IMP to combinatorial problems we
consider the following simple example. We claim that the graph in Fig. 1 is 2-colorable if and
only if polynomials x(1− x), y(1− y), z(1− z), x + y− 1, x + z − 1, y + z − 1 have a common
zero. Indeed, denoting the two possible colors 0 and 1, the first three polynomials guarantee
that the only zeroes this collection of polynomials can have are such that x, y, z ∈ {0, 1}.
Then the last three polynomials make sure that in every common zero the values of x, y, z

are pairwise different, and so correspond to a proper coloring of the graph. Of course, the
graph in the picture is not 2-colorable, and by the Weak Nullstellensatz this is so if and only
if the constant polynomial 1 belongs to the ideal generated by the polynomials above. A
proof of that can be easily found

1 = (−4) [x(x− 1)] + (2x− 1) ([x + y − 1]− [y + z − 1] + [x + z − 1]) .

The example above exploits the connection between polynomial ideals and sets of zeroes
of polynomials, also known as affine varieties. While this connection does not necessarily
holds in the general case, as Hilbert’s Nullstellensatz requires certain additional properties of
ideals, it works for so called combinatorial ideals that arise from the majority of combinatorial
problems similar to the example above. The varieties corresponding to combinatorial ideals
are finite, and the ideals themselves are zero-dimensional and radical. These properties make
the IMP significantly easier, in particular, it can be solved in single exponential time [20].
Also, Hilbert’s Strong Nullstellensatz holds in this case, which means that if the IMP is
restricted to radical ideals, it is equivalent to (negation of) the question: given f0, f1, . . . , fk

does there exist a zero of f1, . . . , fk that is not a zero of f0.
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The special case of the IMP with f0 = 1 has been studied for combinatorial problems
in the context of lower bounds on Polynomial Calculus and Nullstellensatz proofs, see e.g.
[4, 17, 22]. A broader approach of using polynomials to represent finite-domain constraints
has been explored in [18, 26]. Clegg et al., [18], discuss a propositional proof system based on
a bounded degree version of Buchberger’s algorithm [9] for finding proofs of unsatisfiability.
Jefferson et al., [26] use a modified form of Buchberger’s algorithm that can be used to achieve
the same benefits as the local-consistency algorithms which are widely used in constraint
processing.

Applications in other proof systems. The bit complexity of various (semi)algebraic proof
systems is another link that connects approximation algorithms and the IMP. As is easily
seen, if the degree of polynomials h1, . . . , hk in a proof f0 = h1f1 +· · ·+hkfk is bounded, their
coefficients can be found by representing this identity through a system of linear equations.
A similar approach is used in other (semi)algebraic proof systems such as Sum-of-Squares
(SOS), in which bounded degree proofs can be expressed through an SDP program. Thus, if
in addition to low degree the system of linear equations or the SDP program has a solution
that can be represented with a polynomial number of bits (thus having low bit complexity),
a proof can be efficiently found.

However, O’Donnell [30] proved that low degree of proofs does not necessarily imply its
low bit complexity. He presented a collection of polynomials that admit bounded degree SOS
proofs of nonnegativity, all such proofs involve polynomials with coefficients of exponential
length. This means that the standard methods of solving SDPs such as the Ellipsoid Method
would take exponential time to complete. Raghavendra and Weitz [31] suggested some
sufficient conditions on combinatorial ideals that guarantee a low bit complexity SOS proof
exists whenever a low degree one does. Two of these conditions hold for the majority of
combinatorial problems, and the third one is so called k-effectiveness of the IMP part of the
proof. In [15], we showed that for problems where the IMP part is of the form IMP(Γ) (to
be introduced shortly) only one of the first two conditions remains somewhat nontrivial and
k-effectiveness can be replaced with the requirement that a variation of IMP(Γ) is solvable
in polynomial time.

The IMP and the CSP. In this paper we consider IMPs that arise from a specific class
of combinatorial problems, the Constraint Satisfaction Problem or the CSP for short. In
a CSP we are given a set of variables, and a collection of constraints on the values that
variables are allowed to be assigned simultaneously. The question in a CSP is whether there
is an assignment to variables that satisfies all the constraints. The CSP provides a general
framework for a wide variety of combinatorial problems, and it is therefore very natural to
study the IMPs that arise from constraint satisfaction problems.

One of the major directions in the CSP research is the study of CSPs in which the allowed
types of constraints are restricted. Such restrictions are usually represented by a constraint
language that is a set of relations or predicates on a fixed set. The CSP parametrized by a
constraint language Γ is denoted CSP(Γ).

Mastrolilli in [27] initiated a systematic study of IMPs that arise from problems of the
form CSP(Γ), denoted IMP(Γ). More precisely, for a constraint language Γ over domain
D = {0, . . . , d − 1} ⊆ F, in an instance of IMP(Γ) we are given an instance P of CSP(Γ)
with set of variables X = {x1, . . . , xn}, and a polynomial f0 ∈ F[x1, . . . , xn]. The question is
whether or not f0 belongs to the ideal I(P) of F[x1, . . . , xn], where the corresponding variety
of I(P) equals the set of solutions of P . Observe, that using Hilbert’s Strong Nullstellensatz
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the problem can also be reformulated as, whether there exists a solution to P that is not a
zero of f0. Sometimes we need to restrict the degree of the input polynomial, the IMP in
which the degree of f0 is bounded by d is denoted by IMPd(Γ).

The complexity of the IMP. The main research question considered in [27] is to classify
the problems IMP(Γ) according to their complexity. We [15] showed that in all known cases
IMPd(Γ) can be solved in polynomial time (for any fixed d) if and only if a Gröbner Basis
can be efficiently constructed.

Mastrolilli [27] along with Mastrolilli and Bharathi [6] succeeded in characterizing the
complexity of IMPd(Γ) for constraint languages Γ over a 2-element domain. Their results
are best presented using the language of polymorphisms. Recall that a polymorphism of
a constraint language Γ over a set D is a multi-ary operation on D that can be viewed
as a multi-dimensional symmetry of relations from Γ. By Pol(Γ) we denote the set of all
polymorphisms of Γ. As for the CSP, polymorphisms of Γ is what determines the complexity
of IMP(Γ), see [15].

According to [27, 6], let Γ be a constraint language over D = {0, 1} such that the constant
relations R0, R1 ∈ Γ, where Ri = {(i)}. Then IMPd(Γ) is polynomial time solvable if Γ is
invariant under a semilattice or affine operation (of Z2), the problem IMP(Γ) is polynomial
time solvable if Γ is invariant under a majority polymorphism. Otherwise IMP0(Γ) is
coNP-complete. This result has been improved in [15] (see also [5, 7]) by showing that
IMPd(Γ) remains polynomial time when Γ has an arbitrary semilattice polymorphism,
not only on a 2-element set, an arbitrary dual-discriminator polymorphism, or an affine
polymorphism of Zp, p prime.

Solving the IMP. The IMP is mostly solved using one of the two methods. The first one
is the method of finding an IMP or SOS proofs of bounded degree using systems of linear
equations or SDP programs. The other approach uses Gröbner bases and the standard
polynomial division to verify whether a given polynomial has zero remainder when divided
by generators of an ideal: if this is the case, the polynomial belongs to the ideal. However,
constructing a Gröbner basis is not always feasible, as even though the original generating
set is small, the corresponding Gröbner basis may be huge. Note however that to solve the
IMPd it suffices to construct a degree d Gröbner Basis, a.k.a d-truncated Gröbner Basis.

A more sophisticated approach was suggested in [15]. It involves reductions between
problems of the form IMP(Γ) before arriving to one for which a Gröbner basis can be
constructed in a relatively simple way. Moreover, [15] also introduces a slightly different form
of the IMP, called the χIMP, in which the input polynomial has indeterminates as some of
its coefficients, and the problem is to find values for those indeterminates (if they exist) such
that the resulting polynomial belongs to the given ideal. We showed that χIMP is solvable
in polynomial time for every known case of polynomial time solvable IMP, and that χIMP
helps to solve the search version of the IMP.

▶ Theorem 1 ([15]).
(1) If Γ has a semilattice, dual-discriminator, or the affine polymorphism of Zp, p prime,

then χIMPd(Γ) is solvable in polynomial time for every d.
(2) If χIMPd(Γ) is polynomial time solvable then for every instance P of CSP(Γ) a d-

truncated Gröbner basis of I(P) can be found in polynomial time.
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Our contribution
Affine operations. In this paper we consider IMPs over languages invariant under affine
operations of arbitrary finite Abelian groups. This type of constraint languages played an
important role in the study of the CSP for three reasons. First, it captures a very natural
class of problems. Problems CSP(Γ) where Γ is invariant under an affine operation of a
finite field F can be expressed by systems of linear equations over F and therefore admit a
classic solution algorithm such as Gaussian elimination or coset generation. In the case of a
general Abelian group A the connection with systems of linear equations is more complicated,
although it is still true that every instance of CSP(Γ) in this case can be thought of as a
system of linear equations with coefficients from some ring – the ring of endomorphisms of A.

Second, it has been observed that there are two main algorithmic approaches to solving
the CSP. The first one is based on the local consistency of the problem. CSPs that can
be solved solely by establishing some kind of local consistency are said to have bounded
width [14, 2]. The property to have bounded width is related to a rather surprising number
of other seemingly unrelated properties, see e.g. [1, 34]. CSP algorithms of the second type
are based on the few subalgebras property and achieve results similar to those of Gaussian
elimination: they construct a concise representation of the set of all solutions of a CSP [11, 24].
Problems CSP(Γ) where Γ has an affine polymorphism were pivotal in the development of few
subpowers algorithms, and, in a sense, constitute the main nontrivial case of them. Among
the existing results on the IMP, IMP(Γ) for Γ invariant under a semilattice or majority
polymorphism belong to the local consistency part of the algorithmic spectrum, while those
for Γ invariant with respect to an affine operation are on the “few subalgebras” part of it. It
is therefore important to observe differences in approaches to the IMP in these two cases.

Third, the few subalgebras algorithms [11, 24] when applied to systems of linear equations
serve as an alternative to Gaussian elimination that also work in a more general situation
and are less sensitive to the algebraic structure behind the problem. There is, therefore, a
hope that studying IMPs with an affine polymorphism may teach us about proof systems
that use the IMP and do not quite work in the affine case.

The main result of this paper is

▶ Theorem 2. Let A be an Abelian group and Γ a constraint language such that the affine
operation x− y + z of A is a polymorphism of Γ. Then IMPd(Γ) can be solved in polynomial
time for any d. Moreover, given an instance (f0,P) of IMPd(Γ) a (d-truncated) Gröbner
basis of I(P) can be constructed in polynomial time.

The tractability of affine IMPs. In [6, 7, 15, 27] IMPs invariant under an affine poly-
morphism are represented as systems of linear equations that are first transformed to a
reduced row-echelon form using Gaussian elimination, and then further converted into a
Gröbner basis of the corresponding ideal. If Γ is a constraint language invariant under the
affine operation of a general Abelian group A, none of these three steps work: an instance
generally cannot be represented as a system of linear equations, Gaussian elimination does
not work on systems of linear equations over an arbitrary Abelian group, and a reduced
row-echelon form cannot be converted into a Gröbner basis. We therefore need to use a
completely different approach, see Section 4. Given an instance (f0,P) of IMP(Γ) we use the
Fundamental Theorem of Abelian groups and a generalized version of pp-interpretations for
the IMP [15] to reduce (f0,P) to an instance (f ′

0,P ′) of multi-sorted IMP(∆) (see below), in
which every variable takes values from a set of the form Zpℓ , p prime. Then we replace the
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domains Zpℓ of (f ′
0,P ′) by sets of roots of unity that allows for a more concise representation

of polynomials. Finally, we show that a (truncated) Gröbner Basis for the resulting problem
can be efficiently constructed.

Multi-sorted IMPs. In order to prove Theorem 2 we introduce two techniques new to
the IMP research, although the first one has been extensively used for the CSP. The first
technique is multi-sorted problems mentioned above, where every variable has its own domain
of values. This framework is standard for the CSP, and also works very well for the IMP, as
long as the domain of each variable can be embedded into the field of real or complex numbers.
However, many concepts used in proofs and solution algorithms such as pp-definitions, pp-
interpretations, polymorphisms have to be significantly adjusted, and several existing results
have to be reproved in this more general setting. However, in spite of this extra work, the
multi-sorted IMP may become the standard framework in this line of research.

A general approach to χIMP. In [15] we introduced χIMP, a variation of the IMP, in
which given a CSP instance P and a polynomial f0 some of whose coefficients are unknown,
the goal is to find values of the unknown coefficients such that the resulting polynomial f ′

0
belongs to I(P); or report such values do not exist. This framework has been instrumental
in finding a Gröbner basis and therefore solving the search version of the IMPs mentioned
earlier, as well as in establishing connections between the IMP and other proof systems such
as SOS. We again use χIMP to prove the second part of Theorem 2. In order to do that we
improve the approach in two ways. First, we adapt it for multi-sorted problems. Second,
while in [15] reductions for χIMP are proved in an ad hoc manner, here we develop a unifying
construction based on substitution reductions that covers all the useful cases so far.

2 Preliminaries

Ideals and varieties. We follow the same notation and terminology as [15, 19, 27]. Let F
denote an arbitrary field and F[x1, . . . , xn] be the ring of polynomials over the field F and
indeterminates x1, . . . , xn. Sometimes it will be convenient not to assume any specific ordering
or names of the indeterminates. In such cases we use F[X], where X is a set of indeterminates,
and treat points in FX as mappings φ : X → F. The value of a polynomial f ∈ F[X] is
then written as f(φ). The ideal of F[x1, . . . , xn] generated by a finite set of polynomials
{f1, . . . , fm} in F[x1, . . . , xn] is defined as ⟨f1, . . . , fm⟩

def=
{ m∑

i=1
tifi | ti ∈ F[x1, . . . , xn]

}
. For

a set of points S ⊆ Fn its vanishing ideal is the set of polynomials defined as

I(S) def= {f ∈ F[x1, . . . , xn] | f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ S}.

For an ideal I ⊆ F[x1, . . . , xn] its affine variety is the set of common zeros of all the
polynomials in I. This is denoted by V (I) and is formally defined as

V (I) = {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0 ∀f ∈ I}.

The (multi-sorted) CSP. In the majority of theoretical studies of the CSP all variables
are assumed to have the same domain, this type of CSPs are known as one-sorted CSPs.
However, for various purposes, mainly for more involved algorithms such as in [10, 35] one
might consider CSPs where different variables of a CSP have different domains, this type of
CSPs are known as multi-sorted CSPs [12]. Definitions below are from [12].



A. A. Bulatov and A. Rafiey 18:7

▶ Definition 3. For any finite collection of finite domains D = {Dt | t ∈ T}, and any
list of indices (t1, t2, . . . , tm) ∈ T m, a subset R of Dt1 × Dt2 × · · · × Dtm

, together with
the list (t1, t2, . . . , tm), is called a multi-sorted relation over D with arity m and signature
(t1, t2, . . . , tm). For any such relation R, the signature of R is denoted σ(R).

As an example consider D = {D1, D2} with D1 = {0, 1}, D2 = {0, 1, 2}. Then Z6, which
is the direct sum of Z2 and Z3, Z2 ⊕ Z3, can be viewed as a multi-sorted relation over D of
arity 2 with signature (1, 2).

Given any set of multi-sorted relations, we can define a corresponding class of multi-sorted
CSPs. Let Γ be a set of multi-sorted relations over a collection of sets D = {Dt | t ∈ T}.
The multi-sorted constraint satisfaction problem over Γ, denoted MCSP(Γ), is defined to
be the decision problem with instance P = (X,D, δ, C), where X is a finite set of variables,
δ : X → T , and C is a set of constraints where each constraint C ∈ C is a pair ⟨s, R⟩, so that

s = (x1, . . . , xmC
) is a tuple of variables of length mC , called the constraint scope;

R is from Γ with arity mC and signature (δ(x1), . . . , δ(xmc
)), called the constraint relation.

The goal is to decide whether or not there exists a solution, i.e. a mapping φ : X → ∪D∈DD,
with φ(x) ∈ Dδ(x), satisfying all of the constraints. We will use Sol(P) to denote the (possibly
empty) set of solutions of the instance P.

The ideal-CSP correspondence. For an instance P = (X,D, δ, C) of MCSP(Γ) we wish
to map Sol(P) to an ideal I(P) ⊆ F[X] (F is supposed to contain ∪D∈DD, and therefore
usually is considered to be a numerical field) such that Sol(P) = V (I(P)). The (radical)
ideal I(P) of F[x1, . . . , xn] whose corresponding variety equals the set of solutions of P is
constructed as follows. First, for every xi the ideal I(P) contains a domain polynomial
fD(xi) =

∏
a∈Dδ(xi)

(xi − a) whose zeroes are precisely the elements of Dδ(xi) (this ensures
that I(P) is radical). Then for every constraint R(xi1 , . . . , xik

), where R is a predicate on
D, the ideal I(P) contains a polynomial fR(xi1 , . . . , xik

) that interpolates R, that is, for
(xi1 , . . . , xik

) it holds fR(xi1 , . . . , xik
) = 0 if and only if R(xi1 , . . . , xik

) is true. This model
generalizes a number of constructions used in the literature to apply Nullstellensatz or SOS
proof systems to combinatorial problems, see, e.g., [4, 17, 22, 31]. If D = {D} in the above
definitions then we obtain the definitions for the one-sorted CSP and IMP. Moreover, as
observed for the one-sorted case [27, 15], due to the presence of domain polynomials we have
V (I(P)) = ∅ ⇔ 1 ∈ I(P)⇔ I(P) = F[X].

In the general Ideal Membership Problem we are given an ideal I ⊆ F[x1, . . . , xn], usually
by some finite generating set, and a polynomial f0. The question then is to decide whether
or not f0 ∈ I. If I is given through a CSP instance, we can be more specific.

▶ Definition 4. The Ideal Membership Problem associated with a constraint language Γ
over a set D is the problem IMP(Γ) in which the input is a pair (f0,P) where P = (X,D, δ, C)
is a MCSP(Γ) instance and f0 is a polynomial from F[X]. The goal is to decide whether f0
lies in the ideal I(P). We use IMPd(Γ) to denote IMP(Γ) when the input polynomial f0 has
degree at most d.

We say that IMP(Γ) is tractable if it can be solved in polynomial time, and IMP(Γ) is
d-tractable if IMPd(Γ) can be solved in polynomial time for every d.

IMP and Gröbner Bases. The Gröbner Basis G of an ideal is a set of generators with
some particular properties that allow for efficient solving of the IMP. If we restrict ourselves
to the polynomials of degree at most d then we obtain a d-truncated Gröbner Basis. The
d-truncated Gröbner Basis Gd of G is defined as Gd = G∩F[x1, . . . , xn]d where F[x1, . . . , xn]d
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18:8 The Ideal Membership Problem and Abelian Groups

denotes the subset of polynomials of degree at most d. To solve IMPd it suffices to compute
a d-truncated Gröbner Basis. This is because, for the input polynomial f0 of degree d, the
only polynomials from G that can possibly divide f0 are those from Gd. Moreover, the
remainders of such divisions have degree at most d.

3 Multi-sorted CSPs and IMP

We study multi-sorted CSPs in the context of the IMP and provide a reduction for multi-
sorted languages that are pp-interpretable. This in particular is useful in this paper as it
provides a reduction between languages that are invariant under an affine polymorphism
over an arbitrary Abelian group and languages over several cyclic p-groups.

3.1 Primitive-positive definability and interpretability
Primitive-positive (pp-) definitions have proved to be instrumental in the study of the CSP
[25, 13] and of the IMP as well [15]. Here we introduce the definition of pp-definitions and
the more powerful construction, pp-interpretations, in the multi-sorted case, and prove that,
similar to the one-sorted case [15], they give rise to reductions between IMPs.

▶ Definition 5 (pp-definability). Let Γ be a multi-sorted constraint language on a collection
of sets D = {Dt | t ∈ T}. A primitive-positive (pp-) formula in the language Γ is a first
order formula L over variables X that uses predicates from Γ, equality relations, existential
quantifier, and conjunctions, and satisfies the condition:

if R1(x1, . . . , xk), R2(y1, . . . , yℓ) are atomic formulas in L with signatures σ1, σ2 and such
that xi, yj is the same variable, then σ1(i) = σ2(j).

The condition above determines the signature σ : X → T of L.
Let ∆ be another multi-sorted language over D. We say that Γ pp-defines ∆ (or ∆ is

pp-definable from Γ) if for each (k-ary) relation (predicate) R ∈ ∆ there exists a pp-formula
L over variables {x1, . . . , xm, xm+1, . . . , xm+k} such that

R(xm+1, . . . , xm+k) = ∃x1 . . . ∃xmL,

and if σ, σ′ are the signatures of L and R, respectively, then σ′ = σ|{m+1,...,m+k} .

Multi-sorted primitive-positive (pp-) interpretations are also similar to the one-sorted
case [15], but require a bit more care.

▶ Definition 6 (pp-interpretability). Let Γ, ∆ be multi-sorted constraint languages over finite
collections of sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively, and ∆ is finite.
We say that Γ pp-interprets ∆ if for every s ∈ S there exist is,1, . . . , is,ℓs

∈ T , a set
Fs ⊆ Dis,1 × · · · × Dis,ℓs

, and an onto mapping πs : Fs → Es such that Γ pp-defines the
following relations
1. the relations Fs, s ∈ S,
2. the πs-preimage of the equality relations on Es, s ∈ S, and
3. the π-preimage of every relation in ∆,
where by the π-preimage of a k-ary relation Q ⊆ Es1 × · · · × Esk

over E we mean the m-ary
relation π−1(Q) over D, with m =

∑k
i=1 ℓsi

, defined by

π−1(Q)(x1,1, . . . , x1,ℓs1
, x2,1, . . . , x2,ℓs2

, . . . , xk,1, . . . , xk,ℓsk
) is true

if and only if
Q(πs1(x1,1, . . . , x1,ℓs1

), . . . , πsk
(xk,1, . . . , xk,ℓsk

)) is true.
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▶ Example 7. Suppose D = {Z2,Z3} and E = {Z6}. Now, any relation on E is pp-
interpretable in a language in D via F = Z2 × Z3 and π : F → Z6 as π(0, 0) = 0, π(1, 2) =
1, π(0, 1) = 2, π(1, 0) = 3, π(0, 2) = 4, π(1, 1) = 5.

As in the one-sorted case, pp-definitions and pp-interpretations give rise to reductions
between IMPs. The proof of the following theorem is similar to that of Theorems 3.11 and
3.15 in [15].

▶ Theorem 8. Let Γ, ∆ be multi-sorted constraint languages over collections of sets D =
{Dt | t ∈ T}, E = {Es | s ∈ S}, respectively.
(1) If Γ pp-defines ∆, then IMP(∆) [IMPd(∆)] is polynomial time reducible to IMP(Γ)

[respectively, to IMPd(Γ)]
(2) If Γ pp-interprets ∆, then IMPd(∆) is polynomial time reducible to IMPO(d)(Γ).

3.2 Polymorphisms and multi-sorted polymorphisms
One of the standard methods to reason about constraint satisfaction problems is to use
polymorphisms. Here we only give the necessary basic definitions. For more details the
reader is referred to [3, 13]. Let R be an (n-ary) relation on a set D and f a (k-ary) operation
on the same set, that is, f : Dk → D. Operation f is said to be a polymorphism of R, or R

is invariant under f , if for any a1, . . . , ak ∈ R the tuple f(a1, . . . , ak) belongs to R, where f

is applied component-wise, that is,

f(a1, . . . , ak) = (f(a1,1, . . . , a1,k), . . . , f(an,1, . . . , an,k)),

and ai = (a1,i, . . . , an,i). The set of all polymorphisms of R is denoted Pol(R). For a
constraint language Γ by Pol(Γ) we denote the set of all operations that are polymorphisms
of every relation from Γ.

Polymorphisms provide a link between constraint languages and relations pp-definable in
those languages. That is for a constraint language Γ and relation R on set A, the relation R

is pp-definable in Γ if and only if Pol(Γ) ⊆ Pol(R) [8, 21].

▶ Corollary 9 ([25, 15]). Let Γ, ∆ be constraint languages on a set D, ∆ finite, and Pol(Γ) ⊆
Pol(∆). Then CSP(∆) is polynomial time reducible to CSP(Γ), and IMP(∆) is polynomial
time reducible to IMP(Γ).

We will need a version of polymorphisms adapted to multi-sorted relations. Let D = {Dt |
t ∈ T} be a collection of sets. A multi-sorted operation on D is a functional symbol f with
associated arity k along with an interpretation fDt of f on every set Dt ∈ D, which is a k-ary
operation on Dt. A multi-sorted operation f is said to be a (multi-sorted) polymorphism of a
multi-sorted relation R ⊆ Dt1 × · · · ×Dtn

, t1, . . . , tn ∈ T , if for any a1, . . . , ak ∈ R the tuple

f(a1, . . . , ak) = (fDt1 (a1,1, . . . , a1,k), . . . , fDtn (an,1, . . . , an,k)) ∈ R.

▶ Example 10. Note that for the sake of defining a multi-sorted operation, the collection D
does not have to be finite. Let A be the class of all finite Abelian groups and f a ternary
functional symbol that is interpreted as the affine operation fA(x, y, z) = x − y + z on
every A ∈ A, where +,− are operations of A. Consider the multi-sorted binary relation
R ⊆ Z2×Z4 over D = {Z2,Z4} given by R = {(0, 1), (0, 3), (1, 0), (1, 2)}. It is straightforward
to verify that f is a polymorphism of R. For instance,

f

((
0
1

)
,

(
1
0

)
,

(
1
2

))
=

(
0− 1 + 1
1− 0 + 2

)
=

(
0
3

)
∈ R.

To make sure f is a polymorphism of R we of course have to check every combination of
pairs from R.
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The connection between multi-sorted polymorphisms and pp-definitions is more complic-
ated than that in the one-sorted case [12], and we do not need it here.

4 CSPs and IMPs over Abelian groups

In this section we outline a proof of our main result, Theorem 11.

▶ Theorem 11. Let A be an Abelian group. Then IMPd(∆) is polynomial time decidable for
any d and any finite constraint language ∆ which is invariant under the affine operation of
A. Moreover, a proof of membership for IMPd(∆) can also be found in polynomial time.

Let A be an Abelian group and ∆ a constraint language invariant with respect to the
operation x−y+z of A. We first show how a given instance P of CSP(∆) can be transformed
in such a way that a Gröbner Basis of the resulting instance can be constructed. Then we
use substitution reductions to extend this reduction to instances of IMPd(∆).

Step 1: Reduction to a multisorted language over cyclic groups. As was mentioned in
the introduction, the standard way to solve CSP(∆) and IMPd(∆) for languages over Zp is
to represent instances as a system of linear equations. However, it is not always possible
for general Abelian groups. For example, the relation R below over Z2 × Z2 cannot be
represented by a system of linear equations with coefficients from Z2. This is because there
are only 8 linear equations over Z2 with two variables, and the pairs from R only satisfy the
trivial one 0x + 0y = 0, however, R is nontrivial.

R =
(

(0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) (0, 1) (1, 0) (1, 1)

)
← x

← y
(1)

By the Fundamental Theorem of Abelian groups, A is a direct sum Zt1 ⊕ · · · ⊕ Zts where
each ti is a prime power and Zti

is a cyclic group of order ti. Using this fact we construct
a multisorted constraint language Γ over Zt1 , . . . ,Zts such that Γ pp-interprets ∆ and Γ
is invariant under the (multisorted) operation x − y + z of Zt1 , . . . ,Zts

. Moreover, the
construction can be amended in such a way that we may assume that ti, tj are relatively
prime for any i ̸= j. (However, in this case the direct sum of Zt1 , . . . ,Zts

is no longer A.)
The following example illustrates the construction.

▶ Example 12. Applying such a transformation to the relation R from equation
(1) above, every element of Z2 × Z2 is replaced with a pair of elements of Z2
in the straightforward way, and R itself is replaced with the 4-ary relation R′ =
{(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 1, 1)}.

By Theorem 8 we have

▶ Lemma 13. For any d the problem IMPd(∆) is polynomial time reducible to IMPO(d)(Γ).

Step 2: Decomposition of multisorted constraints. Fix an instance P of CSP(Γ). By the
following result we may assume that every constraint of Γ is over variables of the same sort.

▶ Proposition 14. Let P be an instance of CSP(Γ), where Γ is a multi-sorted constraint
language over D = {Zt1 , . . . ,Zts

} invariant with respect to the affine polymorphism of
Zt1 , . . . ,Zts

, where t1, . . . , ts are relatively prime. Then P is equivalent to P ′ such that for
every constraint ⟨s, R⟩ of P ′, the variables in s are of the same sort. Moreover, the set of
variables X of P ′ is the same as that of P and for any x ∈ X its sort is the same in both P
and P ′.
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Step 3: Constructing a system of linear equations. Step 2 allows us to consider only
constraints over Zpm , p prime. Generally, such relations cannot be represented by a system
of linear equations of the form we need, i.e., reduced to a row-echelon form. However, it is
possible if new variables are allowed.

▶ Lemma 15. Let R be an n-ary relation invariant under the affine operation of Zpm . Then
there are k and αij ∈ Zpm , i ∈ [n], j ∈ [k], such that

R = {(x1, . . . , xn) | xi = αi1y1 + · · ·+ αikyk, for i ∈ [n], y1, . . . , yk ∈ Zpm}.

Lemma 15 allows us to represent an instance of IMP(Γ) as a system of linear equations
as follows.

▶ Proposition 16. Every instance (f0,P) of IMPd(∆) can be transformed to an instance
(f ′

0,P ′) of IMPO(d)(Γ) satisfying the following conditions and such that f0 ∈ I(P) if and
only if f ′

0 ∈ I(P ′).
(1) For every i ∈ [s] there is a set Yi = {yi,1, . . . , yi,ri

} of variables of P ′ and Yi ∩ Yj = ∅
for i ̸= j.

(2) For every constraint ⟨s, R⟩ of P ′ the following conditions hold:
(a) there is i ∈ [s] such that Zp

mi
i

is the domain of every variable from s;
(b) R is represented by a system of linear equations of the form xj = α1yi,1+· · ·+αriyi,ri ,

xj ∈ s, over Zp
mi
i

.

Let Li denote the collection of all equations constructed in Proposition 16 for constraints
over Zp

mi
i

.

▶ Example 17. The relation R′ from Example 12 can be represented by the following system
of linear equations that uses two extra parameters y1, y2:

x1 = y1, x2 = y2, x3 = y2, x4 = y1.

Step 4: Reduction to roots of unity. Using Proposition 16 we can construct a Gröbner Basis
of instance P of CSP(Γ) as follows. Note first of all that a system of linear equations over Zp

mi
i

can be solved in polynomial time. This immediately tells us if 1 ∈ I(P) or not, and we proceed
only if 1 ̸∈ I(P). Let x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks

and y1,1, . . . , y1,r1 , . . . , ys,1, . . . , ys,rs

be the variables of P and assume the lexicographic order ≻lex with

x1,1 ≻lex · · · ≻lex x1,k1 ≻lex · · · ≻lex xs,1 ≻lex · · · ≻lex xs,ks (2)
≻lex y1,1 ≻lex · · · ≻lex y1,r1 ≻lex y2,1 ≻lex · · · ≻lex y2,r2 ≻lex · · · ≻lex ys,rs .

Since the systems Li of linear equations do not share any variables we construct a Gröbner
Basis for each of them independently. Then we show that the union of all these Gröbner
Bases is indeed a Gröbner Basis for I(P). For each Li we denote the corresponding ideal by
I(Li).

Each linear system Li is already in its reduced row-echelon form with xi,j as the leading
monomial of the j-th equation, 1 ≤ j ≤ ki. Each linear equation can be written as
xi,j + fi,j = 0 (mod pmi

i ) where fi,j is a linear polynomial over Zp
mi
i

. Hence, a generating
set for I(Li) in an implicit form is as follows where the addition is modulo Zp

mi
i

,

Gi =
{

xi,1 + fi,1, . . . , xi,ki
+ fi,ki

,
∏

j∈Z
p

mi
i

(yi,1 − j), . . . ,
∏

j∈Z
p

mi
i

(yi,ri
− j)

}
(3)
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Unfortunately, a polynomial representation of xi,j + fi,j is exponentially large, and so we
need an extra step.

Let Up
mi
i

= {ωi, ω2
i , . . . , ω

(p
mi
i

)
i = ω0

i = 1} be the set of pmi
i -th roots of unity where ωi is

a primitive pmi
i -th root of unity. For a primitive pmi

i -th root of unity ωi we have ωa
i = ωb

i if
and only if a ≡ b (mod pmi

i ). From Li we construct a new CSP instance L′
i = (V, Up

mi
i

, C̃)
as follows. For each equation xi,t + fi,t = 0 (mod pmi

i ), where

fi,t = αi,t,1yi,1 + · · ·+ αi,t,ri
yi,ri

+ αi,t,

we add the constraint xi,t − f ′
i,t = 0 (here subtraction is in C) with

f ′
i,t = ω

αi,t

i ·
(
y

αi,t,1
i,1 · . . . · yαi,t,ri

i,ri

)
.

Moreover, the domain constraints are different. For each variable xi,j , j ∈ [ki], or yi,j , j ∈ [ri]
the domain polynomial is (xi,j)(p

mi
i

)− 1, (yi,j)(p
mi
i

)− 1. However, we do not need the domain
polynomials for variables xi,j .

▶ Lemma 18. The set of polynomials G′ = ∪1≤i≤sG′
i, where

G′
i =

{
xi,1 − f ′

i,1, . . . , xi,ki − f ′
i,ki

, (yi,1)(p
mi
i

) − 1, . . . , (yi,ri)(p
mi
i

) − 1
}

forms a Gröbner Basis for I(P ′) = I(Sol(P ′)) with respect to the lex order (2).

Step 5: Transforming the input polynomial. Given an instance (f0,P) of IMPd(∆)
Steps 1–4 transform P to an ideal over the set of roots of unity, for which a Gröbner Basis
can be efficiently constructed. To complete a solution algorithm for IMPd(∆) we need to
demonstrate how to convert the input polynomial f0.

To this end note that the reduction in Step 1 converted f0 into a polynomial f ′
0 over

x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks
, see Theorem 8 and Lemma 13. Then for each i ∈ [s]

we define a univariate polynomial ϕi ∈ C[X] that interpolates points (ω0
i , 0), (ωi, 1), . . . ,

(ω(p
mi
i

−1)
i , pmi

i − 1), that is, ϕi(a) = ωa
i for a ∈ Zp

mi
i

.

▶ Lemma 19. Define polynomial f ′′
0 ∈ C[X] to be

f ′′
0 (x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks

)
= f ′

0
(
ϕ−1

1 (x1,1), . . . , ϕ−1
1 (x1,k1), . . . , ϕ−1

s (xs,1), . . . , ϕ−1
s (xs,ks

)
)

.

Then f0 ∈ I(P) if and only if f ′′
0 ∈ I(P ′).

If f0 has degree at most d, the polynomial f ′′
0 has degree O(d), and thus can be constructed

in polynomial time. Therefore, Lemma 19 completes the proof of the first part of Theorem 11.
The search version of IMPd(∆) is discussed in the next section.

5 Search version and the substitution technique

In [15] we introduced a framework to bridge the gap between the decision and the search
versions of the IMP. Indeed, this framework gives a polynomial time algorithm to construct
a truncated Gröbner Basis provided that the search version of a variation of the IMP is
polynomial time solvable. This variation is called χIMP and is defined as follows.
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▶ Definition 20 (χIMP). Given an ideal I ⊆ F[x1, . . . , xn] and a vector of ℓ polynomials
M = (g1, . . . , gℓ), the χIMP asks if there exist coefficients c = (c1, . . . , cℓ) ∈ Fℓ such that
cM =

∑ℓ
i=1 cigi belongs to the ideal I. In the search version of the problem the goal is to

find coefficients c.

The χIMP associated with a (multi-sorted) constraint language Γ over a set D is the
problem χIMP(Γ) in which the input is a pair (M,P) where P is a CSP(Γ) instance
and M is a vector of ℓ polynomials. The goal is to decide whether there are coefficients
c = (c1, . . . , cℓ) ∈ Fℓ such that cM lies in the combinatorial ideal I(P). We use χIMPd(Γ)
to denote χIMP(Γ) when the vector M contains polynomials of degree at most d.

▶ Theorem 21 (Theorem 1 part (2) paraphrased). Let H be a class of ideals for which the
search version of χIMPd is polynomial time solvable. Then there exists a polynomial time
algorithm that constructs a d-truncated Gröbner Basis of an ideal I ∈ H, I ⊆ F[x1, . . . , xn],
in time O(nd).

The above theorem suggests that, in order to prove the second part of Theorem 11, it is
sufficient to show that χIMP is polynomial time solvable for instances of CSP arising from
constraint languages that are closed under the affine operation of an Abelian group.

It was shown in [15] that having a Gröbner Basis yields a polynomial time algorithm for
solving the search version of χIMP (by using the division algorithm and solving a system of
linear equations).

▶ Theorem 22 ([15]). Let I be an ideal, and let {g1, . . . , gs} be a Gröbner Basis for I with
respect to some monomial ordering. Then the (search version of) χIMP is polynomial time
solvable.

Given the above theorem, to solve the χIMP one might reduce the problem at hand to
a problem for which a Gröbner Basis can be constructed in a relatively simple way. This
approach has been proven to be extremely useful in various cases studied in [15]. In that
paper the reductions for χIMP are proved in an ad hoc manner. However, the core idea in
all of them is a substitution technique. Here we provide a unifying construction based on
substitution reductions that covers all the useful cases so far.

5.1 Reduction by substitution
We call a class of χIMPs CSP-based if its instances are of the form (M,P), where P
is a CSP instance over a fixed set D. Let X ,Y be restricted CSP-based classes of the
χIMP. The classes X ,Y can be defined by various kinds of restrictions, for example, as
χIMP(Γ), χIMP(∆), but not necessarily. Let the domain of X be D and the domain of Y
be E. Let also µ1, . . . , µk be a collection of surjective functions µi : Eℓi → D, i ∈ [k]. Each
mapping µi can be interpolated by a polynomial hi. We call the collection {h1, . . . , hk} a
substitution collection.

The problem X is said to be substitution reducible to Y if there exists a substitution
collection {h1, . . . , hk} and a polynomial time algorithm A such that for every instance
(M,P) of X an instance constructed as follows belongs to Y.
(1) Let X be the set of variables of (M,P). For every x ∈ X the algorithm A selects a

polynomial hix
and a set of variables Yx such that

(a) |Yx| = ℓix ;
(b) for any x, y ∈ X either Yx = Yy or Yx ∩ Yy = ∅;
(c) if x1, . . . , xr ∈ X are such that Yx1 = · · · = Yxr

= {y1, . . . , yℓj
} then for any solution

φ of P there are values a1, . . . , aℓj
∈ E such that φ(xi) = hixi

(a1, . . . , aℓj
).
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(2) If M = (g1, . . . , gℓ) then M ′ = (g′
1, . . . , g′

ℓ), where for gi(x1, . . . , xt)

g′
i = gi(hix1

(Yx1), . . . , hixy
(Yxt)).

(3) Let Y =
⋃

x∈X Yx. The instance P ′ is given by (Y, E, C′), where for every constraint
⟨s, R⟩, s = (x1, . . . , xt), P ′ contains the constraint ⟨s′, R′⟩ such that
– s′ = (x1,1, . . . , x1,ℓx1

, x2,1, . . . , xt,ℓxt
), where Yxj

= {xj,1, . . . , xj,ℓj
};

– R′ is an ℓ-ary relation, ℓ = ℓx1+, . . . , +ℓxt , such that (a1,1, . . . , a1,ℓx1
, a2,1, . . . , at,ℓxt

) ∈
R′ if and only if (hix1

(a1,1, . . . , a1,ℓx1
), . . . , hixt

(at,1, . . . , at,ℓxt
)) ∈ R.

▶ Lemma 23. Let X ,Y be restricted CSP-based classes of the χIMPd and χIMPrd, respect-
ively, r ≥ 1. If X is substitution reducible to Y with a substitution collection {h1, . . . , hk},
and r ≥ ℓi for each i ∈ [k], then there is a polynomial time reduction from X to Y.

Since the search χIMP can be solved whenever a Gröbner Basis can be efficiently found,
the above lemma provide a powerful tool for solving the χIMP. That is, if X is substitution
reducible to Y and furthermore Y is such that it admits a polynomial time algorithm to
construct a Gröbner Basis, then instances of X are solvable in polynomial time too.

▶ Theorem 24. Let X ,Y be restricted CSP-based classes of the χIMPd and χIMPrd,
r ≥ 1 respectively, such that X is substitution reducible to Y with a substitution collection
{h1, . . . , hk} and r ≥ ℓi for i ∈ [k]. Suppose there exists a polynomial time algorithm that
for any instance (M ′,P ′) of Y constructs a (truncated) Gröbner Basis, then
1. there is a polynomial time algorithm that solves every instance (M,P) of X ; and
2. there is a polynomial time algorithm that for any instance (M,P) of X constructs a

d-truncated Gröbner Basis for I(P).

We point out that the second part of Theorem 24 follows from Theorem 21, that is, since
every instance (M,P) of X is polynomial time solvable, by Theorem 21, we can construct a
d-truncated Gröbner Basis for I(P) in polynomial time.

If X ,Y are of the form χIMP(Γ), Theorem 24 implies the following corollary, which
covers virtually all the reductions suggested in [15].

▶ Corollary 25. Let ∆ and Γ be multi-sorted constraint languages over finite collection of
sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively. Suppose Γ pp-interprets ∆ and there
exists a polynomial time algorithm that for any instance (M ′,P ′) of χIMPO(d)(Γ) constructs
a (truncated) Gröbner Basis, then
1. there is a polynomial time algorithm that solves every instance (M,P) of χIMPd(∆); and
2. there is a polynomial time algorithm that for any instance (M,P) of χIMPd(∆) constructs

a d-truncated Gröbner Basis for I(P).

Given Corollary 25, we can prove the reductions in Steps 1–5 are reductions by substitution
(see the full version [16]), thus by Theorem 24 we can construct a d-truncated Gröbner Basis
which yields the search version of Theorem 11.
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