
Centralized, Parallel, and Distributed Multi-Source
Shortest Paths via Hopsets and Rectangular
Matrix Multiplication
Michael Elkin #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Ofer Neiman #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
Consider an undirected weighted graph G = (V, E, w). We study the problem of computing (1 + ϵ)-
approximate shortest paths for S × V , for a subset S ⊆ V of |S| = nr sources, for some 0 < r ≤ 1.
We devise a significantly improved algorithm for this problem in the entire range of parameter r, in
both the classical centralized and the parallel (PRAM) models of computation, and in a wide range
of r in the distributed (Congested Clique) model. Specifically, our centralized algorithm for this
problem requires time Õ(|E| · no(1) + nω(r)), where nω(r) is the time required to multiply an nr × n

matrix by an n × n one. Our PRAM algorithm has polylogarithmic time (log n)O(1/ρ), and its work
complexity is Õ(|E| · nρ + nω(r)), for any arbitrarily small constant ρ > 0.

In particular, for r ≤ 0.313 . . ., our centralized algorithm computes S × V (1 + ϵ)-approximate
shortest paths in n2+o(1) time. Our PRAM polylogarithmic-time algorithm has work complexity
O(|E| · nρ + n2+o(1)), for any arbitrarily small constant ρ > 0. Previously existing solutions
either require centralized time/parallel work of O(|E| · |S|) or provide much weaker approximation
guarantees.

In the Congested Clique model, our algorithm solves the problem in polylogarithmic time for
|S| = nr sources, for r ≤ 0.655, while previous state-of-the-art algorithms did so only for r ≤ 1/2.
Moreover, it improves previous bounds for all r > 1/2. For unweighted graphs, the running time
is improved further to poly(log log n) for r ≤ 0.655. Previously this running time was known for
r ≤ 1/2.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Shortest paths, matrix multiplication, hopsets

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.27

Funding Michael Elkin: Funded by ISF grant 2344/19.
Ofer Neiman: Funded by ISF grant 1817/17.

Acknowledgements We are grateful to François Le Gall for explaining us certain aspects of the
algorithm of [27], and to Shaked Matar for helpful discussions.

1 Introduction

We consider the problem of computing (1 + ϵ)-approximate shortest paths (henceforth, (1 + ϵ)-
ASP) in undirected weighted graphs G = (V, E, w), |V | = n, for an arbitrarily small ϵ > 0.
We study this problem in the centralized, parallel (PRAM) and distributed (Congested
Clique) models of computation. Our focus is on computing (1 + ϵ)-ASP for S × V , for a set
S ⊆ V of sources, |S| = nr, for a constant parameter 0 < r ≤ 1.

This is one of the most central, fundamental and intensively studied problems in Graph
Algorithms. Most of the previous research concentrated on one of the two following scenarios:
the single-source ASP (henceforth, approximate SSSP), i.e., the case |S| = 1, and the all-pairs
ASP (henceforth, APASP), i.e., the case S = V .

© Michael Elkin and Ofer Neiman;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).
Editors: Petra Berenbrink and Benjamin Monmege; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elkinm@cs.bgu.ac.il
mailto:neimano@cs.bgu.ac.il
https://doi.org/10.4230/LIPIcs.STACS.2022.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

We next overview most relevant previous results and our contribution in the centralized
model of computation, and then turn to the PRAM and distributed models.

1.1 Centralized Model
The classical algorithm of Dijkstra solves exact SSSP problem in time O(|E| + n log n)
[22]. Thorup [36] refined this bound to O(|E| + n log log n) when weights are integers.
Employing these algorithms for the ASP problem for S × V results in running time of
O(|S|(|E| + n log log n)). In the opposite end of the spectrum, Galil and Margalit [24], Alon
et al. [2] and Zwick [40] showed that one can use fast matrix multiplication (henceforth,
FMM) to solve (1 + ϵ)-APASP in time Õ(nω), where ω is the matrix multiplication exponent.
(nω is the time required to multiply two n × n matrices. The currently best-known estimate
on ω is ω < 2.372 . . . [38, 25, 14, 1].)

By allowing larger approximation factors, one can achieve a running time of Õ(n2) for
APASP.1 Specifically, Cohen and Zwick [12] devised an algorithm for 3-APASP with this
running time, and Baswana and Kavitha [5] refined the approximation ratio to (2, w). The
notation (2, w) means that for a vertex pair (u, v), their algorithm provides an estimate with
a multiplicative error of 2, and an additive error bounded by the maximal weight of an edge
on some shortest u − v path in the graph.

Cohen [11], Elkin [17], and Gitlitz and the current authors [18] also showed that one can
obtain a (1 + ϵ, β · w)-approximation for the ASP problem for S × V in time O(|E| · nρ +
|S| · n1+1/κ), where β = β(ϵ, κ, ρ) is a quite large constant (as long as ϵ > 0, ρ > 0, 1/κ > 0
are constant), and w is as in the result of Baswana and Kavitha [5].

However, if one insists on a purely multiplicative error of at most 1 + ϵ, for an arbitrarily
small constant ϵ > 0, then for dense graphs (|E| = Θ(n2)), the best-known running time for
ASP for S × V is Õ(min{|S| · n2, nω}) (the first term can be achieved by running Dijsktra
from every source, the second term by using (1 + ϵ)-APASP). In the current paper we devise
an algorithm that solves the problem in Õ(nω(r) + |E| · no(1)) time,2 where ω(r) is the matrix
multiplication exponent of rectangular matrix multiplication. That is, nω(r) is the time
required to multiply an nr × n matrix by an n × n matrix. Coppersmith [13] showed that
for r ≤ 0.291, ω(r) ≤ 2 + o(1), and Le Gall and Urrutia [27] improved this bound further to
r ≤ 0.313. Denote α ≥ 0.313 as the maximal value such that ω(α) ≤ 2 + o(1). Therefore,
our algorithm solves (1 + ϵ)-ASP problem for S × V in n2+o(1) time, as long as |S| = O(nα).
Moreover, the bound on our running time grows gracefully from n2+o(1) to nω, as the number
of sources |S| increases from nα to n. When S = V , our bound matches the bound of Zwick
[40]. See Table 1.

Furthermore, Dor et al. [15] showed that any (2 − ϵ)-ASP algorithm for S × V that runs
in T (n) time, for any positive constant ϵ > 0 and any function T (n), translates into an
algorithm with running time T (O(n)) that multiplies two Boolean matrices with dimensions
|S|×n and n×n. Thus, the running time of our algorithm cannot be improved by more than
a factor of no(1) without improving the best-known algorithm for multiplying (rectangular)
Boolean matrices.

In terms of edge weights, the situation with our algorithm is similar to that with the
algorithm of Zwick [40]. Both algorithms apply directly to graphs with polynomially-bounded
edge weights. Nevertheless, we argue that both of them can be used in conjunction with
the Klein-Sairam’s reduction of weights [32] to provide the same bounds for graphs with
arbitrary weights.

1 By Õ(f(n)) we mean O(f(n) · logO(1) f(n)).
2 In fact, our result holds for arbitrary 0 < ϵ < 1, see Theorem 5.

M. Elkin and O. Neiman 27:3

Table 1 Results on (1 + ϵ)-ASP for S × V in the centralized model for weighted graphs (previous
running time is for dense graphs).

of sources Our running time Previous running time
n0.1 n2+o(1) n2.1

n0.2 n2+o(1) n2.2

n0.3 n2+o(1) n2.3

n0.4 n2.011 n2.373

n0.5 n2.045 n2.373

n0.6 n2.094 n2.373

n0.7 n2.154 n2.373

n0.8 n2.222 n2.373

n0.9 n2.296 n2.373

n1 n2.373 n2.373

1.2 Parallel Model

The situation in the parallel setting (PRAM) is similar to that in the centralized setting. The
first parallel (1+ϵ)-SSSP algorithm with polylogarithmic time (specifically, (log n)Õ((log 1/ρ)/ρ)

and O(|E| · nρ) work, for any arbitrarily small constant parameter ρ > 0, was devised by
Cohen [11]. Her bounds were improved in the last five years by [20, 21, 33, 3, 19], culminating
in polylogarithmic time and Õ(|E|) work [33, 3]. All these aforementioned algorithms are
randomized, except for the deterministic algorithm of Elkin and Matar [19] that requires
polylogarithmic time (log n)O(1/ρ) and work Õ(|E| · nρ).

On the opposite end of the spectrum, algorithms of Galil and Margalit [24], Alon et
al. [2], and Zwick [40] (based on FMM) can be used in the PRAM setting. They give rise to
deterministic polylogarithmic time Õ(nω) work [40] for the (1 + ϵ)-APASP problem.

By using sparse spanners, the algorithm of Cohen [11] in conjunction with that of Baswana
and Sen [4] provides polylogarithmic time and O(|E|·n1/κ +|S|·n1+1/κ) work for (2+ϵ)κ-ASP
for S × V , where κ = 1, 2, . . . is a parameter. Recently, Gitlitz and the current authors [18]
also showed that one can have (1 + ϵ, β · w)-ASP for S × V in polylogarithmic time and
O(|E| ·nρ + |S| ·n1+1/κ) work, where β = β(ϵ, κ, ρ) is a large constant (as long as ϵ, ρ, 1/κ > 0
are constant), and w is as above.

Nevertheless, if one insists on a purely multiplicative error of at most 1 + ϵ, currently
best-known solutions for the ASP problem for S × V that run in polylogarithmic time require
work at least Ω(min{|S| · |E|, nω}). Our parallel algorithm for the problem with |S| = nr

sources, 0 < r ≤ 1, has polylogarithmic time (log n)O(1/ρ) and work Õ(nω(r) + |E| · nρ), for
any arbitrarily small constant ρ > 0. Similarly to the centralized setting, this results in
work n2+o(1) + Õ(|E| · nρ), for any arbitrarily small constant ρ > 0, as long as |S| = O(nα),
α = 0.313, and it improves Zwick’s bound [40] of nω (which applies for (1 + ϵ)-APASP) for
all values of r < 1. The aforementioned reduction of [15] implies that the work complexity
of our algorithm cannot be improved by more than a factor of no(1) without improving the
best-known centralized algorithm for multiplying (rectangular) Boolean matrices.

Our algorithm uses FMM and hopsets. The ingredient that builds hopsets is randomized,
but by using a new deterministic construction of hopsets from [19], one can make it determ-
inistic, with essentially the same bounds. As a result our ultimate (1 + ϵ)-ASP algorithms
(both centralized and parallel ones) become deterministic.

STACS 2022

27:4 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

1.3 Distributed Model
In the Congested Clique model, every two vertices of a given n-vertex graph G = (V, E), may
communicate in each round by a message of O(log n) bits. The running time of an algorithm
is measured by the number of rounds. Computing shortest paths in this model has been
extensively studied in the last decade. An exact APSP algorithm was devised in [10] with
running time O(n1−2/ω) = O(n0.158...) for unweighted undirected graphs (or with 1 + ϵ error
in weighted directed graphs), and in Õ(n1/3) time for weighted directed graphs. The latter
result was improved in [26] to n0.209 when the weights are constant.

The first algorithm with polylogarithmic time for weighted undirected graphs was devised
by [6], who showed a (1 + ϵ)-approximate single-source shortest paths algorithm. In [9],
among other results, a (1 + ϵ)-ASP algorithm with polylogarithmic time was shown for a set
of Õ(n1/2) sources. For unweighted graphs, the running time was recently improved by [16]
to poly(log log n), with a similar restriction of O(n1/2) sources.

In the current paper we obtain an algorithm for the (1 + ϵ)-ASP in the Congested Clique
model for weighted undirected graphs with polylogarithmic time, for a set of |S| = O(n 1+α

2) =
O(n0.655...) sources. For larger sets of sources, our running time gracefully increases until
it reaches Õ(n0.158) time when S = V (see Table 2). Denoting |S| = nr, our algorithm
outperforms the state-of-the-art bound of [9] for all 0.5 < r < 1. In the case of unweighted
graphs, we provide a similar improvement over the result of [16]: our (1 + ϵ)-ASP algorithm
has poly(log log n) time, allowing up to n0.655 sources.

Table 2 Results on (1 + ϵ)-ASP for S × V in the Congested Clique model (for any constant ϵ > 0,
and hiding constants and lower order terms).

of sources Our running time Running time of [9] Running Time of [10]
n0.5 Õ(1) Õ(1) n0.158

n0.6 Õ(1) n0.06 n0.158

n0.7 n0.006 n0.13 n0.158

n0.8 n0.04 n0.2 n0.158

n0.9 n0.1 n0.26 n0.158

n1 n0.158 n1/3 n0.158

1.4 Additional Results
We also devise an algorithm for the (1 + ϵ)-approximate k-nearest neighbors (henceforth,
k-NN) problem in PRAM. Here k, 1 ≤ k ≤ n, is a parameter. For a vertex v, let z1, z2, . . . be
all other vertices ordered by their distance from v in non-decreasing order, with ties broken
arbitrarily. A vertex u is in the (1 + ϵ)-approximate k-NN of v if it is no farther from v than
(1 + ϵ)dG(v, zk). The objective is to compute (1 + ϵ)-approximate shortest paths for some set
P of pairs of vertices, that for every vertex u ∈ V contains at least k pairs (u, v) with v being
in the (1 + ϵ)-approximate k-NN of v. Our algorithm for this problem applies even in directed
weighted graphs. It requires polylogarithmic time and Õ(min{nω, k0.702n1.882 + n2+o(1)})
work. For k = O(n0.168), this work is n2+o(1), and for k = o(n0.698), this bound is better
than nω, i.e., it improves the bound for (1 + ϵ)-APASP problem.

From technical viewpoint, in this result we adapt a centralized algorithm of Yuster and
Zwick [39] for sparse matrix multiplication to the PRAM setting. We then employ this
algorithm in conjunction with the observation due to Censor-Hillel et al. [9] that the k-NN

M. Elkin and O. Neiman 27:5

problem boils down to computing k matrix products of sparse matrices. We generalize this
observation and argue that this is the case not only for the exact k-NN problem, but also for
its approximate variant.

1.5 Technical Overview
As was mentioned above, our algorithms employ hopsets. A graph H = (V, E′, w′) is a
(1 + ϵ, β)-hopset for a graph G = (V, E, w), if for every vertex pair u, v ∈ V , we have

dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ (1 + ϵ)dG(u, v) . (1)

Here d
(β)
G∪H(u, v) stands for β-bounded distance between u and v in G ∪ H, i.e., the length of

the shortest u − v path between them with at most β edges (henceforth, β-bounded path).
Our algorithm is related to the algorithm of [9], designed for (1 + ϵ)-ASP for S × V

in the distributed Congested Clique (henceforth, CC) model. Their algorithm starts with
computing a (1 + ϵ, β)-hopset H for the input graph G. It then adds H to G, and creates
an adjacency matrix A of G ∪ H. It then creates a matrix B of dimensions |S| × n, whose
entries Bu,v, for (u, v) ∈ S × V , are defined as w(u, v) if (u, v) ∈ E, and ∞ otherwise. Then
the algorithm computes distance products B ⋆ A, (B ⋆ A) ⋆ A, . . . , (B ⋆ Aβ−1) ⋆ A = B ⋆ Aβ .
By equation (1), B ⋆ Aβ is a (1 + ϵ)-approximation of all distances in S × V .

Censor-Hillel et al. [9] developed an algorithm for efficiently multiplying sparse matrices
in the distributed CC model. They view the matrices B, B ⋆A, . . . , B ⋆Aβ−1, as sparse square
n×n matrices, and as a result compute B ⋆Aβ efficiently via their (tailored to the CC model)
algorithm. In particular, their algorithm does not use Strassen-like fast matrix multiplication
(FMM) techniques, but rather focuses on carefully partitioning all the products that need to
be computed in a naive matrix product of dimensions |S| × n by n × n among n available
processors.

Our first observation is that this product can be computed much faster using best available
fast rectangular matrix multiplication (FRMM) algorithms. This observation leads to our
(1 + ϵ)-ASP algorithms for weighted graphs that significantly improve the state-of-the-art in
all the three computational models that we consider (the centralized, PRAM, and distributed
CC). We also need to convert matrix distance products into ordinary algebraic matrix
products. This is, however, not difficult, and was accomplished, e.g., in [40]. We employ the
same methodology (of [40]). Our algorithm then employs a fast rectangular MM in this model
due to Le Gall [26]. This leads to our improved (1 + ϵ)-ASP algorithms in the distributed
CC model (cf. Table 2).

Remarkably, while so far hopsets were used extensively in parallel/distributed/dynam-
ic/streaming settings [11, 7, 34, 28, 29, 20, 21, 9], there were no known applications of
hopsets in the classical centralized setting. Our results demonstrate that this powerful tool
is extremely useful in the classical setting as well.

1.6 Organization
After reviewing some preliminary results in Section 2, we describe our algorithm for (1 + ϵ)-
ASP for S × V in the standard centralized model in Section 3. In Section 5 we provide our
algorithm for (1+ϵ)-ASP for S×V in the Congested Clique model that substantially improves
the number of allowed sources while maintaining polylogarithmic time (and poly(log log n)
time, for unweighted graphs). In Section 6 we devise a PRAM algorithm for (1 + ϵ)-ASP for
S × V . In Section 7 we analyze the weight reduction of [31] in the context of our algorithm
and the algorithm of [40]. Finally, in Appendix A we describe our PRAM algorithm for
approximate distances to k-NN.

STACS 2022

27:6 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

2 Preliminaries

Matrix Multiplication and Distance Product. Fix an integer n. For 0 ≤ r ≤ 1, let w(r)
denote the exponent of n in the number of algebraic operations required to compute the
product of an nr × n matrix by an n × n matrix.

Let 1 ≤ s, q ≤ n. Let A be an s × n matrix. We denote the entry in row i and column
j of the matrix A by Aij . The transpose of A is AT . We use * to denote a wildcard, e.g.,
the notation A∗j refers to the vector which is the j-th column of A. For an n × q matrix B,
define the distance product C = A ⋆ B by

Cij = min
1≤k≤n

{Aik + Bkj} ,

for 1 ≤ i ≤ s and 1 ≤ j ≤ q. For a parameter δ > 1, we say that C ′ is a δ-approximation to
C if for all i, j, Cij ≤ C ′

ij ≤ δ · Cij .
The following theorem is an extension of a result from [40]. The latter applies to square

matrices. We extend it to rectangular matrices, and argue that it is also applicable in a
parallel setting.

▶ Theorem 1 ([40]). Let M, R be positive integers. Let A be an nr × n matrix and B an
n × n matrix, whose entries are all in {1, ..., M} ∪ {∞}. Then there is an algorithm that
computes a (1 + 1

R)-approximation to A ⋆ B in deterministic time Õ(R · nw(r) · log M).

Proof. It was observed in [2] that the distance product C = A ⋆ B can be computed by
defining Âij = (n + 1)M−Aij and, similarly, B̂ij = (n + 1)M−Bij . Then C can be derived
from Ĉ = Â · B̂ by Cij = 2M − ⌊logn+1 Ĉij⌋. Since the values of entries in the matrices Â

and B̂ are of size O(M log n), and each algebraic operation (when computing the standard
product Â · B̂) requires Õ(M log n) time, it follows that the running time is Õ(M · nw(r)).

Next, we show that the running time can be reduced to Õ(R · log M · nw(r)), at the
expense of allowing (1 + 1/R)-approximation of the entries of A ⋆ B.

If R ≥ M then our algorithm computes the exact distance product in Õ(M · nw(r)) =
Õ(R · log M · nw(r)) time, and we are done.

Thus, we henceforth assume that M > R. We will also assume for simplicity that both R

and M are integer powers of 2. If it is not the case, we can increase them by a factor at most
2, and guarantee this property. This increases the running time by at most a constant factor.

For each integer r, log2 R ≤ r ≤ log2 M , we define scaled matrices A′(r), B′(r), by setting
A′

ij(r) = ⌈ R
2r · Aij⌉, if Aij ≤ 2r, and setting it to ∞ otherwise. The entries B′

ij(r) are defined
analogously (with respect to B). Note that A′

ij(r), B′
ij(r) ∈ {0, 1, . . . , R} ∪ {∞}.

We then compute the product matrices C ′(r) = A′(r) ⋆ B′(r), for all log2 R ≤ r ≤ log2 M .
Finally, the matrix C ′ is computed as entry-wise minimum of all the matrices 2r

R · C ′(r).
Note that we invoke O(log M) distance products of matrices with entries in the range
{0, 1, . . . , R} ∪ {∞}, and thus the overall running time is Õ(log M · R · nw(r)).

Observe that the matrix C ′ is entry-wise greater or equal than the matrix C = A ⋆ B. In
fact, this is the case for each of the matrices 2r

R · C ′(r), as

Cij = min
1≤k≤n

{Aik + Bkj}

≤ 2r

R
· min

1≤k≤n
{⌈ R

2r
· Aik⌉ + ⌈ R

2r
· Bkj⌉} ≤ 2r

R
· C ′

ij(r) .

For the inequality in the opposite direction, consider some fixed pair of indices i, j, and
let k be the witness for Cij , i.e., Cij = Aik + Bkj . Assume without loss of generality that
Aik ≤ Bkj . (Otherwise the index s below needs to be defined with respect to Aik.) Let s

be the positive integer that satisfies 2s−1 ≤ Bkj < 2s. (If Bkj = M , we will however set
s = log2 M . If Bkj = 0, then it is easy to verify that Cij = C ′

ij = 0.)

M. Elkin and O. Neiman 27:7

If s ≤ log2 R then for r = log2 R we have

C ′
ij(r) = 2r

R
· C ′

ij(r) = 2r

R
· min

1≤t≤n
{A′

it(r) + B′
tj(r)}

= min
1≤t≤n

{⌈ R

2r
· Ait⌉ + ⌈ R

2r
· Btj⌉} = Aik + Bkj = Cij .

(Note that all terms in the minimum above are greater or equal than Aik + Bkj .)
Hence we assume that log2 R < s ≤ log2 M . Consider r = s. We have

2r

R
· C ′

ij(r) = 2r

R
· min

1≤t≤n
{⌈ R

2r
· Ait⌉ + ⌈ R

2r
· Btj⌉}

≤ 2r

R
· (⌈ R

2r
Aik⌉ + ⌈ R

2r
⌉Bkj)

≤ 2r

R

(
R

2r
Aik + R

2r
Bkj + 2

)
= (Aik + Bkj) + 2 · 2r

R
.

Recall that Bkj ≥ 2r−1, and thus 2r ≤ 2(Aik + Bkj). Hence

2r

R
· C ′

ij(r) ≤ (Aik + Bkj) + 4 · Aik + Bkj

R
= Cij · (1 + 4/R) .

Hence C ′
ij ≤ 2r

R · C ′
ij(r) ≤ Cij · (1 + 4/R). ◀

▶ Remark 2. The algorithm of Theorem 1 boils down to O(log M) standard matrix multi-
plications, and choosing the minimum value for each entry. Thus, we can also apply it in
the Congested Clique and PRAM models of computation. In the Congested Clique model,
naively, the overhead is O(R · log M). (See also Section 5 for a refined bound.) In the PRAM
model, naively, the time grows by a factor of O(R · log M). On the other hand, by the Chinese
Remainders’ theorem, one can also replace each matrix product with entries bounded by
nR by R matrix products with entries bounded by nO(1), and compute these products in
parallel. Hence, in fact, the PRAM running time grows by a factor of O(log M), while the
work complexity grows by a factor of O(R · log M).

Witnesses. Given an s × n matrix A and an n × q matrix B, an s × q matrix W is called a
witness for C = A ⋆ B if for all i, j, Cij = AiWij

+ BWijj . It was shown in [23, 40] how to
compute the matrix W in almost the same time required to compute C (up to logarithmic
factors). This holds also for a witness for C ′ which is a c-approximation for C (see [40,
Section 8]), for some c ≥ 1. The witness can assist us in recovering the actual paths, rather
than just reporting distance estimates. Since computing witnesses is done by an appropriate
distance product, these witnesses can also be efficiently computed in the PRAM model.

Hopsets. Recall the definition of hopsets in the beginning of Section 1.5. A randomized
construction of hopsets was gives in [11], see also [34, 29, 20]. The following version was
shown in [21].

▶ Theorem 3 ([21]). For any weighted undirected graph G = (V, E) on n vertices and
parameter κ > 1, there is a randomized algorithm running in time Õ(|E| · n1/κ), that
computes a (1 + ϵ, β)-hopset H with β =

(
κ
ϵ

)O(κ) of size O(n1+1/κ) (for every 0 < ϵ < 1
simultaneously) .

STACS 2022

27:8 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

We note that [19] provides a deterministic construction of hopsets with similar properties.
There are two differences, which have essentially no effect on our result. First, the hopbound
in [19] is β =

(
log n

ϵ

)O(κ)
. Second, the construction there accepts ϵ > 0 as a part of its input.

Nevertheless, their hopsets can be used to make our results in PRAM deterministic, with
essentially the same parameters. Our centralized algorithm can also be made deterministic
using a hopset construction from [29].

Eliminating Dependence on Aspect Ratio. The aspect ratio of a graph G is the ratio
between the largest to smallest edge weight. A well-known reduction by [32] asserts that
to compute (1 + ϵ)-approximate shortest paths in G = (V, E) with |V | = n, it suffices to
compute (1 + ϵ)-approximate shortest paths in a collection of at most Õ(|E|) graphs {Gt}.
The total number of (non-isolated) vertices in all these graphs is O(n log n), the total number
of edges is Õ(|E|), and the aspect ratio of each graph is O(n/ϵ). This reduction can be
performed in parallel (PRAM EREW) within O(log2 n) rounds and work O(|E|). Thus it
can also be done in the standard centralized model in Õ(|E|) time. See also Section 7 and
[20, Section 4] for more details. Since in our algorithms the dependence on the aspect ratio
will be logarithmic, in the sequel we assume that M = poly(n).

3 Multi-Source Shortest Paths

Let G = (V, E, w) be a weighted undirected graph and fix a set of s sources S ⊆ V . We
compute a (1 + ϵ)-approximation for all distances in S × V , by executing Algorithm 1.

Algorithm 1 ASP(G, S, ϵ).

1: Let H be an (1 + ϵ, β)-hopset for G;
2: Set R = β/ϵ;
3: Let A be the adjacency matrix of G ∪ H;
4: Let B(1) = AS∗;
5: for t from 1 to β − 1 do
6: Let B′ be a (1 + 1/R)-approximation to B(t) ⋆ A;
7: Let B(t+1) be entry-wise minimum between B(t) and B′;
8: end for
9: return B(β);

The first step is to compute an (1+ϵ, β)-hopset H, for a parameter κ ≥ 1 with β =
(

κ
ϵ

)O(κ),
as in Theorem 3. Let A be the adjacency matrix of G ∪ H and fix R = β/ϵ. For every
integer 1 ≤ t ≤ β, let B(t) be an s × n matrix such that for all i ∈ S and j ∈ V , B

(t)
ij

is a (1 + 1
R)t−1-approximation to d

(t)
G∪H(i, j). Note that B(1) = AS∗ is a submatrix of A

containing only the rows corresponding to the sources S.
The following claim asserts that taking an approximate distance product of B(t) with the

adjacency matrix yields B(t+1).

▷ Claim 4. Let c, c′ ≥ 1. Let A be the adjacency matrix of an n-vertex graph G = (V, E),
and let B be an s × n matrix (whose rows correspond to S ⊆ V) so that for all i, j, Bij

is a c-approximation to d
(t)
G (i, j), for some positive integer t. Let C = B ⋆ A and C ′ be a

c′-approximation to C. Then, for all i, j, C ′
ij is a c · c′-approximation to d

(t+1)
G (i, j).

M. Elkin and O. Neiman 27:9

Proof. Consider a pair of vertices i ∈ S and j ∈ V . By definition of the ⋆ operation,
Cij = min1≤k≤n{Bik + Akj}. Let π be the shortest path in G from i to j that contains at
most t+1 edges, and let k ∈ V be the last vertex before j on π. Since Bik is a c-approximation
to d

(t)
G (i, k) and Akj is the edge weight of {k, j}, we have that Bik + Akj is a c-approximation

to d
(t+1)
G (i, j). Hence Cij ≤ Bik + Akj is a c-approximation of d

(t+1)
G (i, j) too. The assertion

of the claim follows since Cij ≤ C ′
ij ≤ c′ · Cij . ◁

Given B(t), we compute B(t+1) as a (1 + 1
R)-approximation to B(t) ⋆ A. Using Theorem 1

this can be done within Õ(R · nw(r)) rounds. Thus, the total running time to compute B(β) is

Õ(β · R · nw(r)) = Õ(nw(r) · (κ/ϵ)O(κ))

By Claim 4, B(β) is a (1 + 1
R)β−1 ≤ eϵ = 1 + O(ϵ) approximation to d

(β)
G∪H(u, v) for all

u ∈ S and v ∈ V . Since H is a (1+ϵ, β)-hopset, the matrix B(β) is a (1+O(ϵ))-approximation
to dG(u, v), for all u ∈ S, and v ∈ V .

Reporting paths. For each approximate distance in S × V we can also report a path in G

achieving this distance. To this end, we compute witnesses for each approximate distance
product, and as in [40, Section 5] there is an algorithm that can report, for any u, v ∈ V , a
path in G ∪ H of length at most (1 + ϵ) · d

(β)
G∪H(u, v). In order to translate this to a path in

G, we need to replace the hopset edges by corresponding paths in G. We use the fact that
the hopsets of [21] have a path reporting property. That is, each hopset edge of weight W ′

has a corresponding path π of length W ′ in G, and every vertex on π stores its neighbors on
the path. Thus, we can obtain a u − v path in G in time proportional to its number of edges.

We conclude with the following theorem.

▶ Theorem 5. Let G = (V, E) be a weighted undirected graph, fix S ⊆ V of size nr for some
0 ≤ r ≤ 1, and let 0 < ϵ < 1. Then for any κ ≥ 1, there is a deterministic algorithm that
computes a (1 + ϵ)-approximation to all distances in S × V that runs in time

Õ(max{nw(r) · (κ/ϵ)O(κ)
, |E| · n1/κ}) .

Furthermore, for each pair in S × V , a path achieving the approximate distance can be
reported in time proportional to the number of edges in it.

One may choose κ as a slowly growing function of n, e.g. κ = (log log n)/ log log log n,
so that κκ ≤ log n and n1/κ = no(1), and obtain running time Õ(nω(r) + |E| · no(1)) (for a
constant ϵ > 0). We stress that for all r ≤ 0.313, a result of [27] gives that w(r) = 2 + o(1).
So even for polynomially large set of sources S, with size up to n0.313, our algorithm computes
(1+ϵ)-approximate distances S ×V in time n2+o(1). In fact, for all r < 1, our bound improves
the current bound for (1 + ϵ)-APASP [40].

Observe that if r > 0.313, then we can choose κ as a large enough constant, so that
the running time to compute the hopset, which is Õ(|E| · n1/κ), is dominated by nw(r).
Alternatively, if |E| ≤ n2−δ we may choose κ = 1/δ, so the running time to compute the
hopset will be Õ(n2) = Õ(nw(r)) for all 0 ≤ r ≤ 1. In both cases we obtain β = (1/ϵ)O(1),
and thus our algorithm for computing (1 + ϵ)-approximate shortest paths for S × V has
running time Õ(nw(r)/ϵO(1)).

STACS 2022

27:10 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

4 Approximate Distance Preservers

A direct application of our s-ASP algorithm is the problem of approximate D-preservers.
Exact D-preservers were introduced in [8]. Given an unweighted n-vertex graph G = (V, E)
and a parameter D, a subgraph G′ = (V, H) of G (H ⊆ E) is called a D-preserver of G

if for every pair u, v ∈ V with dG(u, v) ≥ D, we have dG′(u, v) = dG(u, v). It was shown
in [8] that every unweighted graph (both undirected and directed) admits a D-preserver with
O(n2/D) edges, and that this bound is tight. We will next describe an efficient construction
of an approximate D-preserver that applies only for undirected graphs.

It is also well-known (see [37, 8]) that one can compute a D-preserver of size O(n2

D log n)
by sampling O(n

D log n) vertices S independently at random, computing a BFS tree rooted
at each of them, and inserting all these trees into the ultimate D-preserver. The running
time of this procedure is Õ(m·n

D), where m = |E|.
For a pair of parameters D and ϵ > 0, we say that a subgraph G′ = (V, H) is a (1 + ϵ)-

approximate D-preserver of G if for every pair of vertices u, v ∈ V with dG(u, v) ≥ D, we
have dG′(u, v) ≤ (1 + ϵ) · dG(u, v). Using our (1 + ϵ)-approximate s-ASP algorithm one can
compute a (1 + ϵ)-approximate D-preserver within time Õ(nw(r)), with r = log n−log D

log n . This
expression is strictly better than Õ(n3/D), for all values of D, i.e., at least for dense graphs
(m = Θ(n2)), the new algorithm is always faster than the existing one.

The algorithm itself uses our (1 + ϵ)-ASP algorithm to compute (1 + ϵ)-approximate
BFS trees rooted at all vertices of the sampled set S, and returns the union of them as a
(1 + ϵ)-approximate D-preserver. For the stretch analysis, consider a pair u, v ∈ V of vertices
with dG(u, v) ≥ D. Let π be a shortest path between them. Since it contains at least D + 1
vertices, with high probability at least one of the sampled vertices s ∈ S belongs to the path.
Thus the preserver G′ satisfies dG′(u, s) ≤ (1 + ϵ) · dG(u, s) and dG′(s, v) ≤ (1 + ϵ) · dG(s, v).
Thus

dG′(u, v) ≤ (1 + ϵ) · (dG(u, s) + dG(s, v)) = (1 + ϵ) · dG(u, v) .

5 Improved ASP for S × V in the Congested Clique Model

In this section we show how to improve the (1 + ϵ)-ASP for S × V results of [9] and [16] in
the Congested Clique model. Specifically, we show that given a weighted graph G = (V, E)
and a set of S ⊆ V sources of size |S| = nr, there is a poly(log n) time algorithm to compute
(1 + ϵ)-ASP for S × V as long as r < (1 + α)/2 ≈ 0.655. For unweighted graphs, we obtain
an improved running time of poly(log log n). More generally, for S of arbitrary size, |S| = nr,
the running time is given by Õ(nf(r)), where the function f(r) grows from 0 to 1 − 2

ω ≈ 0.158.
(See Table 2 for more details.)

A polylogarithmic running time (respectively, poly(log log n) time for unweighted graphs),
was obtained only for r ≤ 1/2 in [9] (resp., [16]). More generally, their running time for
arbitrary S is Õ(|S|2/3

n1/3).
To achieve these improvements, we use the method of [10] combined with fast rectangular

matrix multiplication in the Congested Clique model. The following theorem is from [26].

▶ Theorem 6 ([26]). Let G = (V, E) be an n-vertex graph, and fix 0 < r ≤ 1. Let A and
B be nr × n and n × n matrices. Then there is a deterministic algorithm in the Congested
Clique that computes A · B in O(n1−2/ω(r′)) rounds, where r′ is the solution to the equation:

r′ = 1 − (1 − r) · ω(r′) . (2)

(Recall that ω(r′) is the exponent for nr′ × n MM.)

M. Elkin and O. Neiman 27:11

Using this theorem in conjunction with the reduction of Theorem 1, we obtain an
approximate distance product in the Congested Clique model:

▶ Corollary 7. Let G = (V, E) be an n-vertex graph, and fix 0 < r ≤ 1. Let A and B be
nr × n and n × n matrices with entries in {1, 2, ..., M} ∪ {∞}, and fix any R ≥ 1. Then there
is a deterministic algorithm in the Congested Clique that computes a (1+1/R)-approximation
to A ⋆ B in O(R · n1−2/ω(r′) · log M) rounds, with r′ as in (2).

In fact, Le Gall [26] showed that k pairs of nr × n and n × n matrices can be multiplied
in O(k2/ω(r′) · n1−2/ω(r′)) time. As a result, we improve the estimate in Corollary 7 to
O((R · log M)2/ω(r′) · n1−2/ω(r′)). Indeed, as we argued in the proof of Theorem 1, such an
approximate distance product can be computed by calculating O(log M) distance products
of matrices with entries in {0, 1, . . . , R} ∪ {∞}. Each such distance product can, in turn, be
computed via O(R) distance products of matrices with small entries (via Chinese Remainders’
Theorem; see the discussion that follows Lemma 2.2 in [40]). Hence overall, our algorithm
needs to compute distance products of O(R · log M) pairs of matrices, and this requires [26]
O((R log M)2/w(r′) · n1−2/w(r′)) time.

5.1 ASP for S × V in Weighted Graphs
Here we apply the improved rectangular MM to ASP for S × V , using the method of [9].
For completeness we sketch it below. The following theorem was shown in [9], based on a
construction from [21]. It provides a fast construction of a hopset with logarithmic hopbound
for the Congested Clique model.

▶ Theorem 8 ([9]). Let 0 < ϵ < 1. For any n-vertex weighted undirected graph G = (V, E),
there is a deterministic construction of an (1 + ϵ, β)-hopset H with Õ(n3/2) edges and
β = O(log n/ϵ), that requires O(log2 n/ϵ) rounds in the Congested Clique model.

Now, we approximately compute β-bounded distances in the graph G ∪ H, by letting B be
the adjacency matrix of G ∪ H, and A(1) the |S| × n matrix of sources. (Specifically, for every
pair (u, v) ∈ S × V , the entry A

(1)
u,v contains ω((u, v)) if (u, v) ∈ E, and ∞ otherwise.) Define

A(t+1) = A(t) ⋆ B, and by the definition of hopset, A
(β)
ij is a (1 + ϵ)-approximation to dG(i, j)

for any i ∈ S and j ∈ V . Each product is (1 + 1/R)-approximately computed by Corollary 7
within Õ(R ·n1−2/ω(r′) · log M) rounds. We obtain a (1+ ϵ)(1+1/R)β-approximation. We set
R = O(log n

ϵ2). Recall also that β = O(log n/ϵ). As a result we derive the following theorem:

▶ Theorem 9. Given any n-vertex weighted undirected graph G = (V, E) with polynomial
weights, parameters 0 < r < 1, 0 < ϵ < 1, and a set S ⊆ V of nr sources, let r′ be the
solution to equation (2). Then there is a deterministic algorithm in the Congested Clique
that computes (1 + ϵ)-ASP for S × V within Õ(n1−2/ω(r′)/ϵO(1)) rounds.

In particular, for a constant ϵ > 0, when r < (1 + α)/2 ≈ 0.655 the running time is Õ(1).
For r = 0.7, the solution is slightly smaller than r′ = 0.4, for which ω(r′) ≈ 2.01, and the
number of rounds is O(n0.006). When r = 0.8, the solution is roughly r′ = 0.59, for which
ω(r′) ≈ 2.085, and the number of rounds is O(n0.04). We show a few more values in the
following Table 2. (Note that at r = 1 we converge to the result of [10] for APASP.)

5.2 ASP for S × V in Unweighted Graphs
In this section we show an improved algorithm for unweighted graphs, based on [16]. The first
step of [16] was developing a fast algorithm for a sparse emulator: we say that H = (V, F) is an
(α, β)-emulator for a graph G = (V, E) if for all u, v ∈ V , dG(u, v) ≤ dH(u, v) ≤ α·dG(u, v)+β.

STACS 2022

27:12 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

▶ Theorem 10 ([16], Theorem 24). For any n-vertex unweighted graph G = (V, E) and
0 < ϵ < 1, there is a randomized algorithm in the Congested Clique model that computes
(1 + ϵ, β)-emulator H with O(n log log n) edges within O(log2 β/ϵ) rounds w.h.p., where
β = O(log log n/ϵ)log log n.

Since the emulator is so sparse, all vertices can learn all of its edges within O(log log n)
rounds. Thus every pair of distance larger than β/ϵ already has an 1 + O(ϵ) approximation,
just by computing all distances in H locally. It remains to handle distances at most β/ϵ.

The next tool is a bounded-distance hopset that “takes care” of small distances. We say
that H ′ = (V, E′) is a (1 + ϵ, β′, t)-hopset if for every pair u, v ∈ V with dG(u, v) ≤ t we have
the guarantee of inequality (1).

▶ Theorem 11 ([16], Theorem 12). There is a randomized construction of a (1+ϵ, β′, t)-hopset
H ′ with O(n3/2 log n) edges and β′ = O(log t/ϵ) that requires O(log2 t/ϵ) rounds w.h.p. in
the Congested Clique model.

We use a (1 + ϵ, β′, t)-hopset H ′ for G with t = β/ϵ = O(log log n/ϵ)log log n, so that β′ =
poly(log log n/ϵ). As before we let B be the adjacency matrix of G ∪ H ′, and A(1) be the
|S| × n matrix of sources. Define A(s+1) = A(s) ⋆ B. By the definition of bounded-distance
hopset, A

(β′)
ij is a (1 + ϵ)-approximation to dG(i, j) for any i ∈ S and j ∈ V with dG(i, j) ≤ t.

Each distance product is (1+1/R)-approximated using the algorithm from Corollary 7 within
Õ(R · n1−2/ω(r′) · log M) rounds. We note that since G is unweighted, the maximal entry in
B and in any A(s) is t · (1 + ϵ) (one can simply ignore entries of larger weight, i.e., replace
them by ∞, since they will not be useful for approximating distances at most t). So we have
log M = poly(log log n). In the current setting we assume r ≤ 1+α

2 ≈ 0.655, and so ω(r′) = 2.
The overall approximation factor is (1+ ϵ)(1+1/R)β′ . We set R = β′/ϵ = poly((log log n)/ϵ),
and get overall stretch 1 + O(ϵ).

We conclude with the following theorem.

▶ Theorem 12. Given any n-vertex unweighted undirected graph G = (V, E), any 0 < ϵ < 1,
and a set S ⊆ V of at most O(n0.655...) sources, there is a randomized algorithm in the
Congested Clique that w.h.p. computes (1 + ϵ)-ASP for S × V within poly(log log n/ϵ) rounds.

Dory and Parter [16] provide also a deterministic counterparts of Theorems 10 and 11.
Specifically, Theorem 5 of [16] provides a deterministic algorithm for building emulators
with properties listed in Theorem 10 in time O(log2 β

ϵ + (log log n)4). Theorem 12(2) in [16]
provides a deterministic algorithm for building (1 + ϵ, β′, t)-hopsets with properties listed in
Theorem 11, in time O(log2 t

ϵ + (log log n)3). For our choice of parameters (given above), both
these expressions are poly(log log n, 1/ϵ). As a result, we derive a deterministic counterpart
of Theorem 12, i.e., (1 + ϵ)-ASP for S × V in deterministic poly(log log n, 1/ϵ) time, for
|S| ≤ n0.655....

6 PRAM Approximate Multi-Source Shortest Paths

The algorithm of Section 3 can be translated to the PRAM model. In this model, multiple
processors are connected to a single memory block, and the operations are performed in
parallel by these processors in synchronous rounds. The running time is measured by the
number of rounds, and the work by the number of processors multiplied by the number of
rounds.

To adapt our algorithm to this model, we need to show that approximate distance
products can be computed efficiently in PRAM. The second ingredient is a parallel algorithm
for hopsets. For the latter, the following theorem was shown in [21]. A deterministic analogue
of it was recently shown in [19].

M. Elkin and O. Neiman 27:13

▶ Theorem 13 ([21]). For any weighted undirected graph G = (V, E) on n vertices and
parameters κ ≥ 1 and 0 < ϵ < 1, there is a randomized algorithm that runs in parallel time(

log n
ϵ

)O(κ)
and work Õ(|E| · n1/κ), that computes a (1 + ϵ, β)-hopset with O(n1+1/κ · log∗ n)

edges where β =
(

κ
ϵ

)O(κ).

Matrix multiplication in PRAM. Essentially all the known fast matrix multiplication
algorithms are based on Strassen’s approach of divide and conquer, and thus are amenable
to parallelization [30]. In particular, these algorithms which classically require time T (n),
can be executed in the PRAM (EREW) model within O(log2 n) rounds and Õ(T (n)) work.

As was mentioned after Theorem 1, we can apply the reduction from MM to distance
product in the PRAM model. Thus, we can compute a (1+ 1

R)-approximate distance products
of an nr × n matrix by an n × n matrix in O(R · poly(log n)) rounds and Õ(R · nw(r)) work.

The path-reporting mechanism can be adapted to PRAM, by running the algorithm
from [40] sequentially. Since we have only β iterations, the parallel time will be only O(β)
(which is a constant independent of n, as long as κ is constant). Once we got the path in
G ∪ H, we can expand all the hopset edges in parallel. We thus have the following result.

▶ Theorem 14. Let G = (V, E) be a weighted undirected graph, fix S ⊆ V of size nr for some
0 ≤ r ≤ 1, and let 0 < ϵ < 1. Then for any κ ≥ 1, there is a randomized parallel algorithm
that computes a (1 + ϵ)-approximation to all distances in S × V , that runs in

(
log n

ϵ

)O(κ)

parallel time, using work

Õ(min{nw(r) · (κ/ϵ)O(κ), |E| · n1/κ}) .

Furthermore, for each pair in S × V , a path achieving the approximate distance can be
reported within parallel time (κ/ϵ)O(κ), and work proportional to the number of edges in it.

Note that we can set κ to be an arbitrarily large constant, and obtain a polylogarithmic
time and work Õ(nω(r) + |E|n1/κ).

7 Weight Reduction

In this section we argue that our s-ASP algorithm can be used in conjunction with Klein-
Sairam weight reduction [31] (see also [11, 20, 19]) to replace the factor log M in the running
time of its centralized version and in the work complexity of its parallel version by a factor
of O(log2 n/ϵ) (independent of the aspect ratio of the graph).

The weight reduction produces λ = ⌈log M⌉ graphs G(i) = (V (i), E(i)), i = 1, 2, . . . , λ,
each with aspect ratio at most ⌈n/ϵ⌉. The vertex set V (i) of G(i) is the set of connected
components of the subgraph of G in which all edges of weight at most ϵ · 2i/n are contracted.
The edge set E(i) contains edges between nodes of V (i) with weight at most 2i. Actually, we
keep in the node set V (i) only “active” nodes, i.e., nodes that are not isolated in G(i).

The vertex sets {V (i)}λ
i=1 form a laminar family, which can be represented by a forest F .

There is an edge in F between a node C(i+1) ∈ V (i+1) and a node C(i) ∈ V (i) if and only if
C(i) is merged into C(i+1) on scale i + 1, i.e., C(i+1) is a union of one or more distinct sets
from V (i) , one of which is C(i). (It is possible that C(i+1) = C(i).)

Denote the exponent of the running time of our centralized s-ASP algorithm by 2 ≤ ζ ≤ ω,
i.e., the running time is Õ(nζ) · poly(1/ϵ) · log M . Then, once it is invoked on all the graphs
{Gi}λ

i=1 created by the weight reduction, the running time becomes log n/ϵ · poly(1/ϵ) ·∑λ
i=1 Õ(nζ

i). We next argue that

STACS 2022

27:14 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

λ∑
i=1

nζ
i = Õ(nζ) .

For the forest F as above, we denote by f(F) =
∑λ

i=1 nζ
i the sum over all levels of F , where

each level i contributes its number ni of nodes (that appear on level i) in the power ζ.
Observe that if a node C is active on level i (of F), then by a level i + ℓ, ℓ = ⌈log n/ϵ⌉, it

necessarily merges into some supernode Ĉ ∈ V (i+ℓ), C ⊂ Ĉ (C ̸= Ĉ). (This is because any
edge e ∈ R(i) incident on C will necessarily be contracted on or before level i + ℓ.)

We say that a path π in F between some ancestor node C(j) ∈ V (j) and some descendent
node C(i) ∈ V (i), i ≤ j, is a one-child path if each of the nodes C(i+1), C(i+2), . . . , C(j) has
one single child in F (and C(i) = C(i+1) = . . . = C(j)). Such a path is said to be maximal
if C(j) is a either a root or its parent has more than one child, and C(i) is either a leaf
or has more than one child. Note that a maximal one-child path π may also be empty, if
C(i+1) ∈ V (i+1) is a parent of C(i) ∈ V (i), C(i+1) ̸= C(i), and C(i) is either a leaf or has
more than one child, and C(i+1) has more than one child. In this case we write π = (C(i)).

Now consider a forest F̂ in which each maximal one-child path π = (C(i), C(i+1) =
C(i), . . . , C(j)) is replaced by a one-child path of length precisely ℓ. Let λ̂ ≤ λ · ℓ be the
number of levels in F̂ . Note that

f(F) =
λ∑

i=1
nζ

i ≤ f(F̂) =
λ̂∑

i=1
n̂ζ

i ,

where n̂i is the number of nodes on level i of the forest F̂ . (This is because, by induction on
i, we have ni ≤ n̂i, for every i.)

Let F ′ be the forest F̂ in which every maximal one-child path π = (C(i), . . . , C(j) = C(i))
is replaced by an empty one-child path (C(i)). Note that in F ′, every internal node has
degree at least 2. Let n′

i denote the number of nodes on level i of F ′.
Observe that as the number of leaves is n, the overall number of distinct nodes in F ′ is

at most 2n − 1. Each node C of F ′ contributes at most nζ−1 to the sum f(F ′). (This is
because if C belongs to a level on which the number of nodes is t, the total contribution of
this level is tζ . Hence each node C on this level can be charged for at most tζ−1 ≤ nζ−1.)
Hence f(F ′) ≤ (2n − 1) · nζ−1 = O(nζ). (Alternatively, this can be seen by noting that the
maximum of the sum f(F ′) =

∑
i n′ζ

i subject to
∑

i n′
i = 2n − 1 is O(nζ).)

Observe that every level of F ′ is duplicated ℓ times in F̂ . Hence

f(F̂) = ℓ · f(F ′) = O(log(n/ϵ) · nζ) .

Finally, as f(F) ≤ f(F̂), we conclude that f(F) = O(nζ · log(n/ϵ)).
Hence the overall running time of the centralized version of our s-ASP algorithm (and

the work complexity of its parallel version) is

log(n/ϵ) · poly(1/ϵ) · Õ(f(F)) = Õ(nζ) · log2(n/ϵ) · poly(1/ϵ) .

The time complexity of its parallel version is polylogarithmic in the aspect ratio (bounded
by n/ϵ) of each of the graphs Gi.

In the distributed CC model one needs to compute the connected components along with
their representatives in such a way that every vertex v ∈ V represents O(log n) components (of
all scales altogether). This is achieved by making sure that whenever a number of components

M. Elkin and O. Neiman 27:15

C1, C2, . . . , Ch with |C1| ≥ |C2| ≥ . . . ≥ |Ch| merge into a higher-level component Ĉ, a
representative of one of the clusters C2, . . . , Ch (but not C1) becomes the representative of
Ĉ. See [20, 19] for more details.

Another issue arises when one needs to return output. One can compute an MST T of G,
and to compute an exact distance labeling for this MST. (In the sequential setting this can
be done in near-linear time.) These distance labels will provide an (n − 1)-approximation of
distances in G. Given a pair u, v ∈ V with a distance estimate δu,v, this provides us with
O(log1+ϵ n) = O

(
log n

ϵ

)
scales on which one needs to look for a (1 + ϵ)-approximate distance

estimate d̂u,v for this pair. Indeed, note that in scales i for which ϵ/n · 2i > δu,v ≥ dG(u, v),
the whole path will be contracted. Also, in scales i for which n · 2i < δu,v/(n − 1) ≤ dG(u, v),
at least one edge in the u − v path will have weight larger than 2i. Hence u and v will be in
different connected components of G(i).

We then identify components Cu, Cv, u ∈ Cu, v ∈ Cv, on each of the relevant scales i,
and fetch the distance estimate between Cu and Cv in Gi. (One also needs to add to these
estimates an upper bound on Diam(Cu) + Diam(Cv), which is bounded by O(ϵ · 2i).) Finally,
we then return the smallest among the resulting estimates. To summarize, this requires
polylog(n) time per vertex pair, and Õ(|S| · n + |E|) time altogether.

The same approach can be used also in the PRAM and in the CC models (details are
omitted). The time complexity will still be polylogarithmic in n, and the work complexity
(in PRAM) is Õ(|E|nδ), for an arbitrarily small δ > 0.

This completes the analysis of the weight reduction.

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

2 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, 1997. doi:10.1006/jcss.1997.1388.

3 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest
paths via low hop emulators. In STOC, 2020.

4 S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-spanner of
O(n1+1/k) size in weighted graphs. In Proceedings of the 30th International Colloquium on
Automata, Languages and Programming, volume 2719 of LNCS, pages 384–396. Springer, 2003.

5 Surender Baswana and Telikepalli Kavitha. Faster algorithms for approximate distance oracles
and all-pairs small stretch paths. In FOCS, pages 591–602, 2006. doi:10.1109/FOCS.2006.29.

6 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, pages 7:1–7:16, 2017. doi:10.4230/LIPIcs.DISC.2017.7.

7 Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast
query and close to linear update time. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 693–702,
2009. doi:10.1109/FOCS.2009.16.

8 Béla Bollobás, Don Coppersmith, and Michael Elkin. Sparse distance preservers and additive
spanners. SIAM J. Discret. Math., 19(4):1029–1055, 2005. doi:10.1137/S0895480103431046.

9 Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 74–83. ACM, 2019. doi:10.1145/3293611.3331633.

STACS 2022

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1109/FOCS.2006.29
https://doi.org/10.4230/LIPIcs.DISC.2017.7
https://doi.org/10.1109/FOCS.2009.16
https://doi.org/10.1137/S0895480103431046
https://doi.org/10.1145/3293611.3331633

27:16 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

10 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 143–152, 2015.

11 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. J. ACM, 47(1):132–166, 2000. doi:10.1145/331605.331610.

12 Edith Cohen and Uri Zwick. All-pairs small-stretch paths. J. Algorithms, 38(2):335–353, 2001.
doi:10.1006/jagm.2000.1117.

13 Don Coppersmith. Rectangular matrix multiplication revisited. J. Complex., 13(1):42–49,
1997. doi:10.1006/jcom.1997.0438.

14 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

15 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29:1740–1759, 2000.

16 Michal Dory and Merav Parter. Exponentially faster shortest paths in the congested clique.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, PODC ’20,
pages 59–68, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3382734.3405711.

17 M. Elkin. Computing almost shortest paths. In Proc. 20th ACM Symp. on Principles of
Distributed Computing, pages 53–62, 2001.

18 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and PRAM distance
oracles in weighted graphs. CoRR, abs/1907.11422, 2019. arXiv:1907.11422.

19 Michael Elkin and Shaked Matar. Deterministic PRAM approximate shortest paths in
polylogarithmic time and slightly super-linear work. In Kunal Agrawal and Yossi Azar, editors,
SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual
Event, USA, 6-8 July, 2021, pages 198–207. ACM, 2021. doi:10.1145/3409964.3461809.

20 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to approx-
imate shortest paths. SIAM J. Comput., 48(4):1436–1480, 2019. doi:10.1137/18M1166791.

21 Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in RNC. In The 31st ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019., pages 333–341, 2019.
doi:10.1145/3323165.3323177.

22 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.

23 Zvi Galil and Oded Margalit. Witnesses for boolean matrix multiplication and for transitive
closure. J. Complex., 9(2):201–221, 1993. doi:10.1006/jcom.1993.1014.

24 Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length
edges. Inf. Comput., 134(2):103–139, 1997. doi:10.1006/inco.1997.2620.

25 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
296–303. ACM, 2014. doi:10.1145/2608628.2608664.

26 François Le Gall. Further algebraic algorithms in the congested clique model and applications
to graph-theoretic problems. In Cyril Gavoille and David Ilcinkas, editors, Distributed
Computing - 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings, volume 9888 of Lecture Notes in Computer Science, pages 57–70. Springer, 2016.
doi:10.1007/978-3-662-53426-7_5.

27 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers
of the Coppersmith-Winograd tensor. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1029–1046. SIAM, 2018. doi:10.1137/1.9781611975031.67.

https://doi.org/10.1145/331605.331610
https://doi.org/10.1006/jagm.2000.1117
https://doi.org/10.1006/jcom.1997.0438
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/3382734.3405711
https://doi.org/10.1145/3382734.3405711
http://arxiv.org/abs/1907.11422
https://doi.org/10.1145/3409964.3461809
https://doi.org/10.1137/18M1166791
https://doi.org/10.1145/3323165.3323177
https://doi.org/10.1145/28869.28874
https://doi.org/10.1006/jcom.1993.1014
https://doi.org/10.1006/inco.1997.2620
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1007/978-3-662-53426-7_5
https://doi.org/10.1137/1.9781611975031.67

M. Elkin and O. Neiman 27:17

28 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 146–155, 2014. doi:10.1109/FOCS.2014.24.

29 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Proceedings of
the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 489–498,
New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897638.

30 Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and applications.
J. Complex., 14(2):257–299, 1998. doi:10.1006/jcom.1998.0476.

31 Philip N. Klein and Sairam Subramanian. A linear-processor polylog-time algorithm for
shortest paths in planar graphs. In 34th Annual Symposium on Foundations of Computer
Science, Palo Alto, California, USA, 3-5 November 1993, pages 259–270, 1993. doi:10.1109/
SFCS.1993.366861.

32 Philip N. Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. J. Algorithms, 25(2):205–220, 1997. doi:10.1006/jagm.1997.0888.

33 Jason Li. Faster parallel algorithm for approximate shortest path. In STOC, 2020.
34 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In

Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 565–573, 2014. doi:10.1145/2591796.2591850.

35 Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging, and sorting in a parallel
computation model. J. Algorithms, 2(1):88–102, 1981. doi:10.1016/0196-6774(81)90010-9.

36 Mikkel Thorup. Integer priority queues with decrease key in constant time and the single
source shortest paths problem. J. Comput. Syst. Sci., 69(3):330–353, 2004. doi:10.1016/j.
jcss.2004.04.003.

37 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure al-
gorithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

38 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
887–898. ACM, 2012. doi:10.1145/2213977.2214056.

39 Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Trans. Algorithms,
1(1):2–13, 2005. doi:10.1145/1077464.1077466.

40 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

A Approximate Distances to k-Nearest Neighbors in PRAM

In this section, given a weighted directed graph G = (V, E), we focus on the task of
approximately computing the distances from each v ∈ V to its k nearest neighbors. The
main observation is that we work with rather sparse matrices, since for each vertex we do
not need to store distances to vertices that are not among its k nearest neighbors.

In [39] fast algorithms for sparse matrix multiplication were presented. Recall that
α ∈ [0, 1] is the maximal exponent so that the product of an n × nα by nα × n matrices can
be computed in n2+o(1) time. Currently by [27], α ≥ 0.313. Let γ = ω−2

1−α .

▶ Theorem 15 ([39]). The product of two n × n matrices each with at most m nonzeros can
be computed in time

min{O(nω), m
2γ

γ+1 · n
2−αγ
γ+1 +o(1) + n2+o(1)} .

STACS 2022

https://doi.org/10.1109/FOCS.2014.24
https://doi.org/10.1145/2897518.2897638
https://doi.org/10.1006/jcom.1998.0476
https://doi.org/10.1109/SFCS.1993.366861
https://doi.org/10.1109/SFCS.1993.366861
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1145/2591796.2591850
https://doi.org/10.1016/0196-6774(81)90010-9
https://doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/10.1137/0220006
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/1077464.1077466
https://doi.org/10.1145/567112.567114

27:18 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

We present the following adaptation to distance products in the PRAM model. In our
setting, a matrix will be sparse if it contains few non-infinity values.

▶ Lemma 16. For R ≥ 1, the (1 + 1
R)-approximate distance product of two n × n matrices

each with at most m non-infinities can be computed in parallel time O(R logO(1) n) and work

Õ(R · min{nω, m0.702 · n1.18 + n2+o(1)}) . (3)

Proof. The (1+ 1
R)-approximate distance product of Theorem 1 involves O(log M) = O(log n)

standard matrix multiplications. These multiplications can be done in parallel, and we need
to compute entry-wise minimum of these matrices. This can also be done very efficiently in
PRAM (See e.g., [35]). By the reduction described in the proof of Theorem 1, the resulting
matrices will have O(m) nonzeros (and entries of size O(nR)). Thus the parallel time required
to compute each such multiplication is O(R logO(1) n). Using the currently known bounds on
ω and α, we have γ ≈ 0.542. Plugging this in Theorem 15, the work required is as in (3). ◀

For an n × n matrix A, denote by trunk(A) the matrix A in which every column is
truncated to contain only the smallest k entries, and ∞ everywhere else. Clearly this
operation can be executed in poly(log n) parallel time and Õ(n2) work. For a vertex i ∈ V ,
let Nk(i) be the set of k nearest neighbors of i.

▷ Claim 17. Let G be a weighted directed graph. For some t ≥ 1, and c, c′ ≥ 1, let A be an
n × n matrix such that for every 1 ≤ i ≤ n and every j ∈ Nk(i), Aij is a c-approximation to
d

(t)
G (i, j), and ∞ for j /∈ Nk(i). Then, if B is a c′-approximation to AT ⋆ A, then for each i

and j ∈ Nk(i), we have that Bij is a (c · c′)-approximation to d
(2t)
G (i, j).

Proof. Let h be the middle vertex on the shortest path with at most 2t edges between i and
j (so that there are at most t edges on the sub-paths from i to h and from h to j). Since
j ∈ Nk(i), the triangle inequality implies that h ∈ Nk(i) and j ∈ Nk(h). Thus, Aih (resp.,
Ahj) is a c-approximation to d

(t)
G (i, h) (resp., d

(t)
G (h, j)). By definition of distance product,

(AT ⋆ A)ij ≤ c · d
(t)
G (i, h) + c · d

(t)
G (h, j) ≤ c · d

(2t)
G (i, j). So Bij is a c · c′-approximation to

d
(2t)
G (i, j). (Note also that (AT ⋆ A)ij ≥ d

(t)
G (i, h) + d

(t)
G (h, j) = dG(i, j).) ◁

Our algorithm to compute approximate shortest paths to k nearest neighbors proceeds
by computing ⌈log k⌉ times an approximate distance product, truncating each time to the
smallest k entries in each column. See Algorithm 2. (This algorithm is based on an analogous
algorithm from [9], devised there in the context of the Congested Clique model.) One
difference between our algorithm and that of [9] is that on line 4 we apply a parallel version
of Yuster-Zwick’s sparse matrix multiplication [39], as opposed to an algorithm due to [9] for
multiplying sparse matrices in the Congested Clique model. Another difference is that we
are computing approximate distance products, as opposed to [9] that compute exact distance
products. The latter (exact) computation applies to the Congested Clique model, and it is
not clear if it can be performed in the centralized or PRAM models.

Since each matrix has m = O(nk) non-infinities, and there are only O(log k) iterations,
the parallel time is R · logO(1) n and the total work, using the bound of (3) with m = O(nk), is

Õ(R · min{nω, k0.702 · n1.882 + n2+o(1)}) .

The correctness of the algorithm follows from Claim 17, as the shortest path from a
vertex v to a neighbor u ∈ Nk(v) can have at most k edges. The approximation we obtain is
(1 + 1

R)⌈log k⌉ = 1 + O(ϵ). We remark that the truncation might actually remove the distance
from v ∈ V to some u ∈ Nk(v), because the computed distances are approximate, and so

M. Elkin and O. Neiman 27:19

Algorithm 2 Approx k-NN(G, ϵ).

1: Let A be the adjacency matrix of G;
2: Let R = ⌈(log k)/ϵ⌉;
3: for i from 1 to ⌈log k⌉ do
4: Let A′ be a (1 + 1/R)-approximation to (trunk(A))T ⋆ trunk(A);
5: Let A be entry-wise minimum between A and A′;
6: end for
7: return trunk(A);

u can be replaced by a farther away vertex. Denote by N ′
k(v) the k vertices returned by

Algorithm 2 for v ∈ V . This vertex set has the property that for every vertex u ∈ Nk(v),
there is a distinct vertex u′ ∈ N ′

k(v), such that dG(v, u′) ≤ (1 + ϵ)dG(v, u).
Next we provide a formal argument that shows that our algorithm computes an approx-

imate k-NN. For a vertex u ∈ V , let z1(u), z2(u), . . . , zn−1(u) denote the sequence of vertices
in the monotonically non-decreasing order of distance from u. (Henceforth ties are broken
consistently by the Ids.) Let nu denote the number of vertices reachable from u in G. If
nu ≤ k then k-truncation has no effect on the computation for the vertex u, and thus the
computed set N ′

k(u) will contain all the nu vertices reachable from u, with distance estimates
approximated up to (1 + 1/R)⌈log k⌉. We from now on therefore focus on the case nu > k.

For an index i = 1, 2, . . ., we say that a vertex v is a (1 + ϵ)-replacement of zi(u) if it
satisfies dG(u, v) ≤ (1 + ϵ)dG(u, zi(u)). A (1 + ϵ)-approximate k-NN of u is a set S of size k

that satisfies the following property: Let i ∈ [k] be the minimum index so that zi(u) ̸∈ S, if
exists. Then for each j < i, the computed distance estimates of zj(u) are at most (1 + ϵ)-
approximations of the actual respective distance dG(u, zj(u)), and also S contains k distinct
(1 + ϵ)-replacements of zi(u).

Consider the following algorithm, whose pseudocode is given by Algorithm 2. Let
B0 = B′

0 = AG be the adjacency matrix of the graph G. Let A = trunk(AG), A0 = A be
the k-truncated matrix AG. (The entries (u, v) that survive also contain distance estimates
δ(u, v) = w(u, v). In other entries the estimates are set to ∞.)

Let B′
1 be a (1 + 1/R)-approximate AT

0 ⋆ A0. For every entry (x, y) we check if B′
1(x, y) >

A0(x, y). If it is the case, we set B1(x, y) = A0(x, y). Otherwise set B1(x, y) = B′
1(x, y). Set

A1 = trunk(B1), and iterate, i.e., repeat these operations h = ⌈log k⌉ times. The matrix Ah

is the output matrix.
For every i ∈ [0, h] and every vertex u, let Ŝu(i) denote the set of vertices v with

Bi(u, v) ̸= ∞, and Su(i) denote the set of vertices with Ai(u, v) ̸= ∞. Also, let Ballu(i)
denote the set of vertices v such that there exists a shortest u − v path with at most 2i hops.
Let pu(i) = |Ballu(i)|. Observe that since nu > k, for every i ∈ [0, h − 1] we have pu(i) ≥ 2i,
and pu(h) ≥ k. We also write Ball ′

u(i) = Ballu(i)∩{z1(u), . . . , zk(u)}, and qu(i) = |Ball ′
u(i)|.

Note that qu(h) = k.

▶ Lemma 18. For every vertex u ∈ V and index i ∈ [h], either
1. The set Su(i) contains all the qu(i) vertices of Ball ′

u(i) themselves (with estimates that
are (1 + 1/R)i-approximations of the actual respective distances from u)

2. Or: Let ki < k be the smallest index such that zki
(u) ̸∈ Su(i). Then Su(i) contains

all the vertices of {z1(u), . . . , zki−1(u)} ∩ Ballu(i) (with estimates that are (1 + 1/R)i-
approximations of the actual respective distances from u), and also, Su(i) contains k

distinct (1 + 1/R)i-replacements of zki(u).

STACS 2022

27:20 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

▶ Remark. We will use the lemma with i = h, and deduce that for every vertex u, the set
Su(i) is a (1 + 1/R)h-approximate k-NN for u. (By outdeg(u) we denote the out-degree of
the vertex u, i.e., the number of its outgoing neighbors.)

Proof. The proof is by induction on i.

Base. For every u ∈ V , the set Su(0) contains the min{k, outdeg(u)} closest neighbors
to u. In particular, it contains the closest vertex z1(u), and its estimate is δ(u, z1(u)) =
w(u, z1(u)) = dG(u, z1(u)). Note that Ball ′

u(0) = Ballu(0) = {z1(u)}, i.e., qu(0) = 1. Thus
assertion 1 holds.

Step. First suppose that assertion 2 holds for u with respect to i. Let ki ≤ k be the smallest
index such that zki

(u) ̸∈ Su(i). Then all vertices of {z1(u), . . . , zki−1(u)} ∩ Ball ′
u(i) belong

to Su(i), and their distance estimates are (1 + 1/R)i-approximate ones. Also, Su(i) contains
k distinct (1 + 1/R)i-replacements of zki

(u).
There are two cases. If ki+1 ≥ ki then, by definition, all the vertices

{z1(u), . . . , zki+1−1(u)} ∩ Ball ′
u(i + 1) belong to Su(i + 1), and their distance estimates

are (1 + 1/R)i+1-approximate ones. Also, the remaining elements of Su(i + 1) have estimates
that are smaller or equal than the estimates of the respective elements in Su(i), and thus
they are (1 + 1/R)i-replacements of zki

(u). Hence they are also (1 + 1/R)i+1-replacements
of zki+1(u), and we are done.

Consider now the complementary case ki+1 < ki. Then Su(i + 1) contains all vertices of
{z1(u), . . . , zki+1−1(u)} ∩ Ball ′

u(i + 1) with (1 + 1/R)i+1-approximate estimates. (It is easy to
verify that for every j ∈ [0, h] and v ∈ Su(j), the estimate of v is a (1 + 1/R)j-approximate
one.) It follows that vertices from {zki+1(u), zki+1+1(u), . . . , zki−1(u)} that belong to Su(i)
were pushed out from Su(i + 1). For this to happen, the set Su(i + 1) must contain k

distinct vertices with a better estimate than that of zki+1(u), i.e., with an estimate at most
(1 + 1/R)i · dG(u, zki+1(u)). These k distinct vertices are (1 + 1/R)i-replacements, and thus
(1 + 1/R)i+1-replacements too, of zki+1(u), proving that assertion 2 holds for u with respect
to i + 1 in this case too.

Hence from now we assume that assertion 1 holds for u with respect to i. Thus, Su(i)
contains all the qu(i) vertices of Ball ′

u(i), with estimates that may possibly be by a factor at
most (1 + 1/R)i off their actual distance from u. The induction hypothesis with respect to i

applies also to all these vertices z1(u), . . . , zqu(i)(u) of Ball ′
u(i). 3

For each j ∈ [qu(i)], let qj = qzj(u)(i).

Case 1. Suppose first that all these vertices also satisfy assertion 1 of the induction
hypothesis for i, i.e., for every index j ∈ [qu(i)], the set Szj(u)(i) contains the vertices
z1(zj(u)), . . . , zqj (zj(u)) themselves with (1 + 1/R)i-approximate estimates of their distance
from zj(u).

Observe that for any vertex z ∈ Ball ′
u(i + 1), either z ∈ Ball ′

u(i), or z ∈ Ball ′
zj

(i)
and zj lies on a shortest u − z path in G, for some index j ∈ [qu(i)]. In both these
cases, the (1 + 1/R)-approximate distance product computed on iteration i + 1 of the
algorithm guarantees that the set Ŝu(i + 1) contains z, with a distance estimate which
is at most (1 + 1/R)(1 + 1/R)i = (1 + 1/R)i+1 off the actual distance dG(u, z). Hence
Ball ′

u(i + 1) ⊆ Ŝu(i + 1).

3 Actually, the indices of these vertices need not necessarily be consecutive with respect to the distance
from u. But to keep the notation simple, we denote them as if they were consecutive.

M. Elkin and O. Neiman 27:21

Recall that Su(i+1) is the k-truncation of Ŝu(i+1), i.e., it contains k vertices of Ŝu(i+1)
with the smallest estimates. If it contains all these vertices z with the aforementioned
(1 + 1/R)i+1-approximate estimates, then assertion 1 holds for u with respect to i + 1. So
(within Case 1) we are left with the subcase that at least one of these vertices z ∈ Ball ′

u(i + 1)
was pushed out of this k-truncation (Su(i+1)). In the latter case, let z′ = zr(u) = zki+1(u)(u)
be such a vertex with the smallest index r. It follows that zr ∈ Su(i + 1) \ Ball ′

u(i + 1), but
all vertices of Ball ′

u(i + 1) with smaller index (closer to u) belong to Su(i + 1). By the above
argument, these vertices have (1 + 1/R)i+1-approximate distance estimates.

In addition, Su(i + 1) must contain k vertices x whose estimate δ(u, x) satisfies

δ(u, x) ≤ δ(u, zr) ≤ (1 + 1/R)i+1 · dG(u, zr) .

As dG(u, x) ≤ δ(u, x) (this inequality holds for all estimates computed by our algorithm),
it follows that each such vertex x is a (1 + 1/R)i+1-replacement of zr = zki+1(u)(u). This
completes the proof for Case 1.

Case 2. In this case Su(i) contains all the qu(i) vertices of Ball ′
u(i) themselves (with

(1 + 1/R)i-approximate estimates), and at least one of these vertices zj ∈ Ball ′
u(i) satisfies

assertion 2 of the induction hypothesis with respect to i.
Recall that each zr ∈ Ball ′

u(i+1) either belongs to Ball ′
u(i) (and then, by the assumption

of this case, to Su(i)), or to Ball ′
zj

(i), for some zj ∈ Ball ′
u(i), and a shortest u − zr path

traverses zj .
If all zr ∈ Ball ′

u(i + 1) satisfy zr ∈ Szj
(i) for some zj ∈ Ball ′

u(i) (and a shortest u − zr

path traverses zj), then Ball ′
u(i + 1) ⊆ Ŝu(i + 1). In this case the argument that we gave in

Case 1 applies, and assertion of the lemma holds for u with respect to i + 1 as well.
Otherwise, let r be the smallest index such that zr = zr(u) ∈ Ball ′

u(i + 1) ∩ Ball ′
zj

(i), for
some zj ∈ Ball ′

u(i), and the shortest u − zr path contains zj , and zr ̸∈ Szj (i). (Moreover,
zr ̸∈ Ball ′

u(i), and there exists no other shortest u − zr path that traverses some zt ∈
Ball ′

u(i) ⊆ Su(i), such that zr ∈ Szt(i). Indeed, in the latter case, zr still reaches Ŝu(i + 1),
and the argument of Case 1 is applicable to it.)

For all vertices in Ball ′
u(i + 1) ∩ {z1, . . . , zr−1}, by the above argument, Su(i + 1) contains

them with (1 + 1/R)i+1-approximate estimates. Also, by the induction hypothesis applied to
to zj , the set Szj

(i) contains k distinct (1 + 1/R)i-replacements x of zr that reach Ŝu(i + 1),
and they satisfy

δ(u, x) ≤ (1 + 1/R) · (δ(u, zj) + δ(zj , zr))
≤ (1 + 1/R)((1 + 1/R)i · dG(u, zj) + (1 + 1/R)i · dG(zj , zr))
= (1 + 1/R)i+1 · dG(u, zr) .

Hence all these vertices are (1 + 1/R)i+1-replacements for zr, and Su(i + 1) contains either
them, or k distinct vertices with yet smaller estimates. Thus assertion 2 holds for u with
respect to i + 1, proving the lemma. ◀

Our algorithm can also recover the paths with approximate distances for every i ∈ V and
j ∈ N ′

k(i). This is done by applying the algorithm from [40, Section 5], while executing the
recursive calls in parallel.4

4 Here is a brief sketch: Recall that we compute the witnesses for all the O(log k) distance products.
Given a pair i ∈ V and j ∈ N ′

k(i), if W is the witness matrix in the last iteration of the algorithm, then
there are two cases: Either Wij contains the middle vertex h (with at most k/2 hops to both i, j) on
the approximate i − j path. Then we can simply recurse in parallel on the pairs i, h and h, j, and then
concatenate the paths. Otherwise, when Wij = 0, we just return the edge (i, j).

STACS 2022

27:22 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

▶ Theorem 19. Let G = (V, E) be a weighted directed n-vertex graph, and let 1 ≤ k ≤ n and
0 < ϵ < 1 be some parameters. Then there is a deterministic parallel algorithm that computes
a (1 + ϵ)-approximation to all distances between any u ∈ V and its k nearest neighbors, that
runs in parallel time O((logO(1) n)/ϵ), using work

Õ(min{nω, k0.702 · n1.882 + n2+o(1)}/ϵ) .

Furthermore, for each i ∈ V and j ∈ N ′
k(i), a path achieving the approximate distance can be

reported in O(log k) parallel time and work proportional to the number of edges in it.

Note that for k ≤ n0.168 this work is n2+o(1), and while k ≤ n0.698 the work is smaller
than nω.

	1 Introduction
	1.1 Centralized Model
	1.2 Parallel Model
	1.3 Distributed Model
	1.4 Additional Results
	1.5 Technical Overview
	1.6 Organization

	2 Preliminaries
	3 Multi-Source Shortest Paths
	4 Approximate Distance Preservers
	5 Improved ASP for S x V in the Congested Clique Model
	5.1 ASP for S x V in Weighted Graphs
	5.2 ASP for S x V in Unweighted Graphs

	6 PRAM Approximate Multi-Source Shortest Paths
	7 Weight Reduction
	A Approximate Distances to k-Nearest Neighbors in PRAM

