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Abstract
Makespan minimization on parallel identical machines is a classical and intensively studied problem in
scheduling, and a classic example for online algorithm analysis with Graham’s famous list scheduling
algorithm dating back to the 1960s. In this problem, jobs arrive over a list and upon an arrival,
the algorithm needs to assign the job to a machine. The goal is to minimize the makespan, that is,
the maximum machine load. In this paper, we consider the variant with an additional cardinality
constraint: The algorithm may assign at most k jobs to each machine where k is part of the input.
While the offline (strongly NP-hard) variant of cardinality constrained scheduling is well understood
and an EPTAS exists here, no non-trivial results are known for the online variant. We fill this gap
by making a comprehensive study of various different online models. First, we show that there is
a constant competitive algorithm for the problem and further, present a lower bound of 2 on the
competitive ratio of any online algorithm. Motivated by the lower bound, we consider a semi-online
variant where upon arrival of a job of size p, we are allowed to migrate jobs of total size at most a
constant times p. This constant is called the migration factor of the algorithm. Algorithms with
small migration factors are a common approach to bridge the performance of online algorithms and
offline algorithms. One can obtain algorithms with a constant migration factor by rounding the size
of each incoming job and then applying an ordinal algorithm to the resulting rounded instance. With
this in mind, we also consider the framework of ordinal algorithms and characterize the competitive
ratio that can be achieved using the aforementioned approaches. More specifically, we show that in
both cases, one can get a competitive ratio that is strictly lower than 2, which is the bound from
the standard online setting. On the other hand, we prove that no PTAS is possible.
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1 Introduction

Scheduling jobs on identical parallel machines is a well-studied problem. Such problems
were in particular investigated extensively in online settings, where the algorithm has to
make decisions before the whole instance is revealed. Graham’s List Scheduling from the
1960’s [21] is a textbook algorithm by now and an early example of an online algorithm
(although the notion of competitive analysis was not formalized at that time). In this work,
we study a generalization that considers an additional cardinality constraint on the number
of jobs allowed on a machine.

The Cardinality Constrained Scheduling problem. We are given a set J of n jobs, a set M
of m identical parallel machines and a positive integer k. Each job j has a job size pj , which is
also known as the processing time of the job. A feasible solution is a non-preemptive schedule
(each job has to be assigned as a whole) satisfying the condition that for each machine i, the
number of jobs assigned to i is at most k. Our goal is to minimize the makespan, that is, the
maximum completion time of any job. In the context of makespan minimization, one does
not need to explicitly consider the time axis and instead, a non-preemptive schedule can be
defined as a partition of the job set to m machines, that is, a function σ : J → M. The load
of machine i in schedule σ is the total size of jobs assigned to i, that is,

∑
j∈σ−1(i) pj . The

objective is to minimize the maximum load of a machine. It is easy to see that given σ, one
can construct a schedule with makespan equal to the maximum load. Summarizing, the goal
for the cardinality constrained scheduling problem is to find a schedule σ : J → M such
that maxi∈M |σ−1(i)| ≤ k while minimizing the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pj .

The cardinality constraint arises naturally in settings where one needs to balance not
only the loads of the machines, but also the number of jobs. Suppose, for example, one wants
to distribute passengers to airplanes for the same trip, but different times. The passengers’
luggage weight may vary and jet fuel usage is very sensitive to excess weight. Thus, the goal
is to minimize the maximum loaded airplane (assuming for simplicity that this dominates
the fuel cost). Extensions of the original problem to multiple dimensions are well-known and
studied in both offline and online settings, see for example the vector scheduling problem
in [4]. However, in contrast to this problem, the second “dimension” in our problem is a hard
constraint, which makes it much more difficult to handle.

In the offline setting, the job set is given beforehand and the goal is to find a feasible
solution of minimum cost. We refer to [8, 10, 9, 23, 26, 27] for previous studies of the offline
setting of the problem. Since the problem is NP-hard in the strong sense, the best possible
approximation result is an efficient polynomial time approximation scheme (EPTAS), that
is, an algorithm that returns a feasible solution (if one exists) of cost at most (1 + ε) times
the optimal cost and the time complexity is upper bounded by the product of a computable
function in ε and a polynomial in the (binary) encoding length of the input. Such an
algorithm was given in [8]. Surprisingly, there exists no previous work on the online setting
of this problem.

Computational models studied in this work. In the online setting, the input is given as
a sequence of jobs. After a job is released, the algorithm learns the properties of the job
(that is, the job size) and decides on the assignment of this job. This assignment decision is
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irrevocable and the algorithm is forced to maintain the feasibility of the solution after the
assignment of each job (as long as the input has a feasible solution). Once the job assignment
is decided, the adversary constructing the input sequence learns the algorithm’s assignment
decision and chooses the size of the next job or stops the input sequence. The competitive
ratio of the online algorithm is a valid upper bound on the ratio between the cost of the
solution returned by the algorithm and the optimal cost of an offline algorithm that sees the
entire input sequence in advance (and may run in exponential time).

The model of ordinal algorithms is different. Here, the algorithm needs to decide an
assignment of n jobs to m machines without seeing the sizes of the jobs. The only information
that the algorithm can access is how these job sizes relate to each other, that is, the jobs are
given as a list sorted non-increasingly by their sizes. If the algorithm has decided upon the
assignment σ, it means that the i-th largest job in the input sequence is assigned to machine
σ(i), and this applies for all i. We say that an ordinal algorithm has rate α if for every input
that satisfies the ordinal assumptions, the cost of the solution constructed by the assignment
of the algorithm is at most α times the optimal cost for the same input.

Further, we study the model of algorithms with constant migration factor (also known as
robust algorithms) similar to the online setting. But, unlike in online algorithms, once a job j

is released, it is also allowed to modify the schedule of a subset of jobs of total size at most
β · pj where β is the migration factor. We require that β is a constant. Usually, one cannot
maintain an optimal solution using a robust algorithm. Thus, we use robust approximation
algorithms. We will use the terms competitive ratio and approximation ratio interchangeably,
since some of our models are intermediate between online algorithms and offline algorithms.
We say that a polynomial time algorithm that treats the input as a sequence is a robust
α-approximation algorithm if it has a constant migration factor and in every sequence of
jobs, the resulting solution has cost of at most α times the optimal cost. Similarly, a robust
PTAS is a family of algorithms containing a robust (1 + ε)-competitive algorithm for all
ε > 0. It is called robust EPTAS (or robust FPTAS respectively) if its running time is upper
bounded by some computable function of (or a polynomial in) 1

ε times a polynomial in the
binary encoding length of the input.

Results and outline of the paper. We present new results for all three of the models
mentioned above. An overview can be found in Table 1. In the pure online case, we first
prove a lower bound of 2 on the competitive ratio of any (deterministic) algorithm. A natural
idea for an online algorithm is to create a balanced schedule, i.e., a schedule in which the
property is maintained that any two machines receive approximately the same number of
jobs. This should limit the adversary’s options to exploit the cardinality constraint. However,
we show that such an approach fails by establishing a lower bound of m for the competitive
ratio of algorithms maintaining the property that the number of jobs placed on any two
machines differs by at most o(log(k)). Another simple approach is to use variants of Greedy
algorithms such as the list scheduling algorithm, which always assigns the next job to the
machine with the lowest load. One would need to stop considering a machine once it has
received k jobs. However, this approach is also deemed to fail, since it may create a large
inbalance in the number of jobs assigned to the machines. If for example one machine has
only one job and all others are full (which could happen using list scheduling), then the
competitive ratio can be k − 1 (when the next k − 1 jobs are huge compared to the previous
ones).

We utilize these insights in the design of an intricate online algorithm with constant
competitive ratio, namely 120. This algorithm avoids both lower bounds by allowing a certain
inbalance in the number of jobs, which is then gradually reduced as more and more jobs arrive.
These results are presented in Section 2. Furthermore, we give a tight 1+

√
5

2 -competitive
online algorithm for the special case m = k = 2 in the full version of the paper, see [13].

STACS 2022
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Table 1 An overview of the main results of this paper. The results stated in the parentheses have
been completely removed from this extended abstract and can be found in the full version, see [13].

Computational Model Result

Online algorithms 120-competitive algorithm, lower bound of 2
Lower bound of m for balanced algorithms
(Tight 1+

√
5

2 -competitive algorithm for m = k = 2)

Ordinal algorithms Algoritm with rate 81
41

Robust algorithms Robust ((1 + ϵ) · 81
41 )-approximation with 1+ϵ

ϵ
migration factor

(Lower bound of ≈ 1.05 for constant migration, m ≥ 3, unbounded k)
(Robust FPTAS for m = 2, k > 1/ϵ2, and robust EPTAS for constant k)

Next, we consider the mentioned relaxed online settings starting with ordinal algorithms
in Section 3. There is a known lower bound of 3

2 regarding ordinal algorithm for the makespan
minimization problem [30] which applies to the CCS problem as well. We present an ordinal
algorithm with rate 81

41 for CCS which is based on spreading out the m largest jobs over all
machines and then filling the machines gradually with a repeating overlapping pattern. This
gives an improvement over the rate 2, which can be achieved using a very simple round robin
strategy.

In Section 4, we turn our attention to robust algorithms. First, we show that an ordinal
algorithm with rate at most α can be turned into a robust ((1 + ϵ)α)-approximation with
migration factor 1+ϵ

ϵ . Together with our ordinal algorithm, this shows a separation between
the strict online setting (having a lower bound of 2) and the setting with migration. On
the other hand, we present a lower bound of roughly 1.05 for the ratio of robust algorithms
for CCS. Hence, we cannot hope for a PTAS with a constant migration factor. However,
the lower bound only works for cases with m ≥ 3 and k part of the input, and we are able
to present a robust EPTAS or FPTAS for the case with constant k or m = 2, k > 1/ϵ2,
respectively.

Finally, we also show in the full version of the paper, see [13], that the results of this
paper cannot be extended to a generalization of CCS called Class Constrained Scheduling
by showing a super-constant lower bound on the competitive ratio of robust algorithms for
that problem.

All the results, proofs and details that were excluded in this extended abstract can be
found in the full version of the paper, see [13].

Related work. The standard problem of makespan minimization on identical machines
is obtained from the CCS problem by deleting the constraint saying that the number of
jobs assigned to each machine is at most k. At first glance, it seems that letting k grow to
infinity in CCS would lead to similar results to the ones known for makespan minimization
on identical machines (without cardinality constraints). However, we show that this is not
the case and the corresponding possible competitive ratios in our problem are significantly
higher than the one achievable for the problem without cardinality constraints. This is the
case for the study of online algorithms as well as for robust algorithms.

The possible competitive ratio of the online algorithm for makespan minimization on
identical machines is approximately 1.92 [1, 19] whereas the best lower bound for that
problem is 1.88 by Rudin [31]. For small constant number of machines, it is known that there
are better algorithms, for example, two machines List Scheduling (LS) [21] has a competitive
ratio of 3

2 . We establish a lower bound of 2 − 1
k on the competitive ratio for CCS that shows
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that the possible competitive ratios for CCS are strictly higher than the ones achievable
for the problem without cardinality constraints both in the regime of a small fixed number
of machines and in the general case (in both of these scenarios, we establish a lower bound
of 2 when k grows unboundedly). Makespan minimization was also studied in terms of
ordinal algorithms [30] and it is known that there is an ordinal algorithm for this problem
on identical machines with constant rate. In particular, for large numbers of machines m,
there is an algorithm of rate at most 5

3 and no algorithm has rate smaller than 3
2 . The

model of robust algorithms was introduced in [32] for makespan minimization on identical
machines, where it is shown that there is a robust polynomial time approximation scheme
for this problem. Namely, for every ε > 0, there is a (1 + ε)-approximation algorithm whose
migration factor is upper bounded by some function of ε.

Cardinality Constrained Bin Packing (CCBP) [2, 3, 11, 28] is the variant of CCS where
the maximum job size is at most 1, the makespan is forced to be at most 1 in every feasible
solution, but the algorithm is allowed to buy machines. The goal is to minimize the number
of machines bought by the algorithm. The best possible competitive ratio for CCBP is 2
with respect to the absolute competitive ratio as well as with respect to the asymptotic
competitive ratio [2, 3, 5]. Regarding robust algorithms, it was shown in [15] that for every
fixed value of k such that k ≥ 3, there is no asymptotic approximation scheme for CCBP
with constant migration factor. Observe the difference with our results for CCS where for
fixed constant value of k, we establish the existence of an approximation scheme for CCS
with constant migration factor.

Ordinal algorithms were studied for other scheduling problems as well, see e.g. [12, 22, 29,
34, 35], and robust algorithms were designed and analyzed for various scheduling problems
and other packing problems (see e.g. [6, 7, 14, 15, 16, 17, 18, 20, 24, 25, 33]).

Notation. Throughout the paper, log refers to a logarithm with base 2. For a job subset J ,
we let p(J) =

∑
j∈J pj . For a positive integer x, we let [x] = {1, 2, . . . , x}. Without loss of

generality, we assume M = [m]. When we consider a specific algorithm (online, ordinal, or
an algorithm with constant migration), we let alg denote the cost of the solution constructed
by the algorithm, and we let opt denote the optimal offline cost for the same instance.

2 Pure online algorithms

In this section, we study the competitive ratios of online algorithm for CCS, starting with
the lower bounds and then continuing with a constant competitive algorithm.

2.1 Lower bound
We show that when considering the online problem, there is no (deterministic) algorithm
that has a competitive ratio smaller than 2.

▶ Theorem 1. No online algorithm for CCS has a competitive ratio strictly smaller than 2,
and for a fixed value of k, no algorithm has a competitive ratio strictly smaller than 2 − 1

k .

Proof. We assume that m ≥ k. The input consists of two phases. In the first phase,
m × (k − 1) jobs of size 1 arrive. Then the adversary examines the output of the algorithm.
If the algorithm has assigned exactly k − 1 jobs to each machine, then the input continues
with one big job of size k that is the last job of the input. Otherwise the input continues
with m jobs of size N where N is some very big number. In the first case, we have a ratio of
2 − 1/k. In the second case, the competitive ratio is at least 2N/(N + k). ◀

STACS 2022
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We sometimes use the intuition of every machine having k slots, each of which may
contain exactly one job or may be empty. Note that the ratio in the second case gets worse
if a larger number of slots remain free on some machine since the total number of free
slots remaining after the arrival of the first phase is m. This gives us the intuition that an
algorithm should try to balance the number of jobs each machine receives. However, this
possible strategy cannot guarantee a constant competitive algorithm as the next proposition
shows. The proof can be found in the full version of the paper, see [13].

▶ Proposition 2. Let t ≥ 1 be an integer number that may depend on k such that t = o(log k).
Let alg be an algorithm that maintains the invariant that the number of jobs placed on any
two machines may differ by at most t. Then the competitive ratio of alg is at least m.

Observe that obtaining an online algorithm with a competitive ratio of min{m, k} is
trivial, as any feasible solution has a cost that is at most min{m, k} times the optimal cost.
Thus, this is the competitive ratio of scheduling the jobs in a round-robin manner. Hence,
the lower bound of Proposition 2 for this class of algorithms means that in order to establish
small competitive algorithms, we need to exhibit an algorithm that does not belong to this
class. In fact, in our algorithm, we have situations where there is a pair of machines with
cardinalities that differ by Θ(log k).

2.2 A competitive algorithm for CCS
Next, we present an algorithm for CCS with a constant competitive ratio. For simplicity
we assume that every job’s size is a power of two, that is, pj = 2i for some (not necessarily
positive) integer i. More precisely, every incoming job is rounded down accordingly. Then
the resulting makespan (and the competitive ratio) will only increase by a factor of 2 when
considering the correct sizes.

The general idea of the algorithm. We start by briefly discussing the main idea of the
algorithm. For simplicity of presentation, assume that we know the value p∞

max, which is the
maximum size of any job by the end of the instance.

We group jobs by size. Group Gi contains the jobs j with pj = p∞
max/2i for i =

0, . . . , ⌊log k⌋. Further, group G∞ contains all smaller jobs, that is, jobs of sizes below
p∞

max/2⌊log k⌋+1 ≤ p∞
max/k (recall that the jobs are rounded to powers of 2). Consider the

following approach: Each group is scheduled independently using a round-robin strategy.
For each group, the first job of this size is assigned to machine 1, the next one to machine 2,
etc. Once every machine has one job of Gi, we continue with machine 1 again for this group.
This is done for all values of i including ∞, see Figure 1 for an illustration. This method
approximately balances both the loads of the machines and their cardinalities: There are
still differences between machine loads due to two reasons. First, each group may have one
additional job (of the group) assigned to some machines compared to the other machines
(this happens when the number of jobs of the group is not divisible by m). Second, the
group G∞ may have jobs of very different sizes. All these sizes are small with respect to
the maximum job size, and they are smaller by a factor of at least k (so the total size of k

such jobs, which is the maximum per machine, is still at most p∞
max). Thus, the load of every

machine is at most the average load plus an additional additive error term that is at most

⌊log k⌋∑
i=0

p∞
max
2i

+ k · p∞
max

2log k
≤ 3p∞

max.
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Figure 1 Example schedule of the round-robin based algorithm.

We use opt to denote the optimal makespan for the entire input. As p∞
max forms a lower

bound on opt, and the average load is also a valid lower bound on opt, the makespan is
never larger than four times the optimal makespan. An issue arises once the cardinality
on some machines arrives at k. In that case it is no longer feasible to schedule all groups
independently. On the other hand, every pair of cardinalities (for two machines) differs by at
most ⌊log k⌋ + 2. Thus, if this difficulty occurs, then on each machine, there is only space for
O(log k) more jobs (this is the number of remaining slots). If we assign the remaining jobs
arbitrarily, the difference in loads can increase only by O(log k) · p∞

max. This implies we get a
O(log k)-competitive algorithm assuming we know the value p∞

max.
Indeed, the algorithm above is even 8-competitive (including the factor of 2 due to

rounding) as long as no machine’s cardinality is full, that is, as long as no machine has k

jobs assigned to by the algorithm. On the other hand, we showed in Proposition 2 that no
competitive algorithm can maintain a constant difference in the cardinalities of the job sets
of any two machines, or even a difference of o(log k). Nevertheless, we manage to obtain a
constant competitive algorithm by modifying the approach stated above further. Towards
this we gradually decrease the number of groups Gi as the machines get filled more and
more, so that by the time some machine is full (i.e., has been assigned k jobs) there are only
a constant number of groups and, in particular, the cardinalities of the job sets assigned to
any two machines differ only by a constant. We will also remove the assumption of knowing
p∞

max in advance.

The algorithm. We first need to introduce some formal definitions. We think of every
machine as having k slots, each of which may contain one job or it can be empty. We form
k rows of these slots, where every row contains one slot of each machine. A row is full if
each slot of the row has a job, and it is not full otherwise, i.e., at least one slot of the row is
empty. A row is free if it has no job at all, i.e., all its slots are empty. In the following, let
pmax denote the maximum job size of a job seen so far, and let p∞

max denote the maximum
job size by the end of the instance. We keep track of pmax in an online fashion in the sense
that whenever a new job is released, we check if we need to update (increase) these values.

We form a partition of the jobs (released so far) into the groups G0, . . . , Gℓ, G∞, where
ℓ = ⌊2 log(k)⌋ and Gi, i = 0, . . . , ℓ, contains all jobs j of size pj = pmax/2i. Group G∞
contains all other (smaller) jobs.

The algorithm is defined recursively and in the recursive calls, it may remove full rows
from the existing schedule. The removal of the rows is only with respect to the rules of
assigning future jobs to the machines (in the sense that the jobs that were assigned to slots
of these rows are still assigned to the corresponding machines and are not actually removed).
When rows are removed, and the number of rows is decreased, the value of k will be decreased
and the value of ℓ will be updated accordingly. For a fixed value of ℓ, we can maintain the

STACS 2022
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partition into groups in an online fashion. The value of ℓ may become smaller, in which case
some groups are merged into the group of small jobs. Since the jobs of each group except for
G∞ share a common size, groups that are not merged remain unchanged.

To cope with the dynamic grouping where large jobs may later become small over time,
we change the previous algorithm in the following way. Instead of keeping one row that is
currently being filled for each group, we keep two. One of these two rows may also contain
jobs from G∞. To make this more precise, we now formally state the structural invariants of
the algorithm’s schedule.

The invariants of the algorithm. Consider the following structure in a schedule. For each
i = 0, . . . , ℓ there are exactly two rows ri, r′

i containing elements of the group Gi. Row ri

contains only elements of Gi, whereas row r′
i contains elements of Gi and of G∞. Moreover,

of each pair of rows corresponding to a common group, at least one is not full. Finally, there
are ⌈k/2⌉ − 2(ℓ + 1) rows containing only elements from G∞ and none of them is full. The
remaining ⌊k/2⌋ rows are free.

The structure can be built trivially in the beginning when all rows are empty and
2(ℓ + 1) = 2⌊2 log(k)⌋ + 2 ≤ ⌈k/2⌉, which holds for all k ≥ 49. In the case where k is initially
smaller, the algorithm will output an arbitrary feasible schedule, which is 48-competitive.

The definition of this structure may give the (false) impression that the algorithm tries
to keep the rows not full. This is not the case. In its recursive calls, the algorithm removes
certain rows from the instance when they become full and the invariants above can also be
read as: When two rows ri, r′

i (or one row belonging to G∞) become full, they need to be
removed from the instance and new rows (e.g., from the empty ones) need to be allocated to
take their place. When the algorithm removes a pair of rows (two rows corresponding to a
common group become full), it also decreases k by 2.

We will argue inductively that given such a structure, we can assign the remaining jobs
using the recursive algorithm in a way that maintains the invariants, and so that each
machine ends up with a total load (including the jobs already in the schedule) of at most

2
m

· p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 1

)
p∞

max. (1)

Notice that the second term is the sum of all job sizes (that is, all powers of 2) between pmax

and p∞
max (multiplied with 8). Since the average load p(J)/m and 1/2 ·

∑log(p∞
max)

i=log(pmax) 2i ≤ p∞
max

form lower bounds on opt, this constitutes a 60-competitive algorithm (120-competitive
when taking into account the initial rounding). For k ∈ {48, 49} it is trivial to see that there
is an algorithm which (given the structure above) assigns all remaining jobs online while
maintaining the bound (1) on the loads. This is because (1) is greater than 49p∞

max and
therefore any feasible schedule satisfies the bound. This proves the base case of our inductive
argument.

The algorithm for scheduling the next job while maintaining the invariants and satisfying
the load bound (1). Let h denote the number of free slots in our current schedule, that is,
k ·m minus the number of jobs in the schedule. Our induction is over k and h: If k ∈ {48, 49},
we observed that we can guarantee the makespan bound (1); the base case h = 0 does not
have to be considered, since this contradicts the presumed structure on the current schedule
(the induction will always end in k ∈ {48, 49}). Assume now that k ≥ 50 and that we
have an algorithm that for all k′ ∈ {k, k − 1, k − 2} and h′ < h can continue the schedule
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with the specified structure while guaranteeing the bound (1). For all k ≥ 50 it holds that
2(ℓ + 1) = 2 + 2⌊2 log(k)⌋ < ⌈k/2⌉. This implies that the number of rows dedicated to G∞,
⌈k/2⌉ − 2(ℓ + 1), is strictly positive and the number of free rows, ⌊k/2⌋, is at least 25, which
will be important for our induction step. Suppose some job jnew arrives.

First consider the case that pjnew ≤ pmax (referring to the value of pmax before the arrival
of jnew) and jnew /∈ G∞. Let Gi be the group with jnew ∈ Gi. We assign jnew to an arbitrary
empty slot in ri or r′

i. If one of the rows remains not full, we have maintained the structure
and use the induction hypothesis to prove that we can construct the remaining schedule
with the desired guarantee. If on the other hand this makes both rows ri and r′

i full, we first
remove the two full rows and then we are going to use the induction hypothesis as described
below: We set k′ := k − 2. This reduces the index of the last group to ℓ′ = ⌊2 log(k′)⌋.
However, notice that ℓ ≥ ℓ′ ≥ ℓ − 1 (so it is possible that one group is merged into the group
of small jobs).
Case 1: ℓ′ = ℓ. We remove one row dedicated to G∞ and pair it with an empty row to form

new rows r′
i and ri respectively (we recall that the numbers of such rows are positive

before the removal). The number of rows dedicated to G∞ is now ⌊k/2⌋ − 2(ℓ + 1) − 1 =
⌊k′/2⌋−2(ℓ′ +1). Hence, the structure is repaired and we can use the induction hypothesis.

Case 2: ℓ′ = ℓ − 1 and i = ℓ. Then group Gi disappears, the number of rows dedicated
to G∞ is still ⌊k/2⌋ − 2(ℓ + 1) = ⌊k′/2⌋ − 2(ℓ′ + 1) − 1. To repair the structure, we add
one empty row to the group G∞.

Case 3: ℓ′ = ℓ − 1 and i < ℓ. Then group Gℓ is merged into G∞, and it creates two new
rows for G∞ that were corresponding previously to Gℓ. We create new rows ri and r′

i

corresponding to Gi by taking one of these rows previously corresponding to Gℓ (the
complete one if there is such a row) as r′

i and an empty one as ri. This means the number
of rows dedicated to G∞ is ⌊k/2⌋ − 2(ℓ + 1) + 1 = ⌊k′/2⌋ − 2(ℓ′ + 1) and no row dedicated
to G∞ is full (because full rows of G∞ will always be removed, and the only one that was
perhaps temporarily added to the set of its rows was moved to the set of another group).

Let JC denote the jobs in the two full rows that we have just removed. By induction
hypothesis, we obtain a schedule for J \ JC where the load of each machine is at most

2
m

· p(J \ JC) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k′ − 1

)
p∞

max.

Notice that the total size of the two jobs of JC on each machine is at least pmax/2i and at
most 2 · pmax/2i ≤ 2/m · p(JC). Thus, the total load on each machine is at most

2
m

p(JC) + 2
m

p(J \ JC) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k′ − 1

)
p∞

max

≤ 2
m

p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 1

)
p∞

max.

Now consider the case that jnew ∈ G∞. We add jnew to an arbitrary row dedicated to G∞.
If the row remains not full, we can directly use the induction hypothesis as the structure is
maintained. Otherwise, we remove the row and set k′ = k − 1 (accordingly, ℓ′ = ⌊2 log(k′)⌋).
The number of rows dedicated to G∞ has reduced to

⌊k/2⌋ − 2(ℓ + 1) − 1 ≤ ⌊k′/2⌋ − 2(ℓ + 1) ≤ ⌊k′/2⌋ − 2(ℓ′ + 1).
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That means, we potentially have too few rows in G∞, but not too many. On the other hand,

⌊k/2⌋ − 2(ℓ + 1) − 1 ≥ ⌊k′/2⌋ − 2(ℓ′ + 2) − 1 = ⌊k′/2⌋ − 2(ℓ′ + 1) − 3.

So G∞ is missing at most three rows. We fill up these missing row with empty ones (recall
there are at least 25 empty rows) and we have maintained the required structure. Let again
JC denote the jobs in the full row. Using the induction hypothesis and that each job in JC

is of size less than pmax/k2 (by using the previous values of ℓ, this is the upper bound on the
sizes of jobs of G∞), we get a schedule with maximum load at most

2
m

p(J \ JC) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k′ − 1

)
p∞

max + 1
k2 pmax

≤ 2
m

p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 2 + 1

k2

)
p∞

max

≤ 2
m

p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 1

)
p∞

max.

Finally consider the case that pjnew > pmax. This means the new maximal job size is
p′

max = pjnew . From the job set J0 of the jobs in our current schedule (not including jobs of
removed rows) and excluding jnew, we construct a new job instance J0′ where we increase
the size of the jobs in Gi, i = 0, . . . , ℓ, from pmax/2i to p′

max/2i and we consider the same
schedule for J0′, which satisfies our required structure. Let J ′ be the union of jobs J0′, jnew,
and all remaining jobs that have not arrived yet. If we can assign all remaining jobs in this
bigger instance J ′ with some bound on the loads of the machines, then we can in particular
obtain the same bound on the maximum load for our original instance J . Notice that since
in the current schedule there are only two rows containing jobs of each group Gi, i < ∞,
there can be at most 2m jobs in total of each such group. Thus,

p(J ′) ≤ p(J) + 2m

ℓ∑
i=0

p′
max
2i

≤ p(J) + 8m · p′
max
2 .

In the previous two cases, we have already proved that (for the given numbers h and k) we
can schedule the remaining jobs of J ′ with a bounded makespan, since we are in the case
that pjnew ≤ p′

max. More precisely, we obtain with the previous arguments a schedule for J ′

(and in particular for J) with a maximum load of at most

2
m

p(J ′)+8
log(p∞

max)∑
i=log(p′

max)

2i+
(

42 − 1
k − 1

)
p∞

max ≤ 2
m

p(J)+8
log(p∞

max)∑
i=log(pmax)

2i+
(

42 − 1
k − 1

)
p∞

max,

where the inequality holds since log(p′
max) ≥ log(pmax) + 1 due to the rounding. This

concludes the proof.

▶ Theorem 3. For cardinality constrained scheduling there is a 120-competitive online
algorithm.
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3 Ordinal algorithms

A straight-forward approach in the ordinal setting is to assign the jobs via round-robin, i.e.,
the i-th largest job is assigned to machine ((i − 1) mod m) + 1. Note that this already gives
an ordinal algorithm of rate 2 and applies to both, the makespan minimization problem on
identical machines as well as our problem. Thus, the goal of this section is to show that
by delicately defining a different algorithm, we can get an ordinal algorithm of rate strictly
smaller than 2.

Preliminaries and easy cases. We can always assume that the job sequence has n = m · k

jobs. If it has more jobs then we can safely output that there is no feasible solution, and
otherwise, we can add n − m · k jobs of size 0 at the end of the input sequence. These zero
sized jobs do not change the optimal cost, and for every feasible solution of the original
instance, there is a corresponding feasible solution of the same cost with the zero sizes jobs
(by adding for each machine the number of jobs so that it will have exactly k jobs).

Furthermore, we will assume that m ≥ 2 and k ≥ 3. For one machine (m = 1), placing the
k input jobs on the single given machine is a trivial ordinal algorithm with rate 1. Similarly,
if k = 1, assigning the i-th largest of the m input jobs to machine i is again ordinal and
optimal. Lastly, in the case k = 2, an optimal schedule can be achieved by assigning the
first (largest) job to the first machine, the second to the second and so on until each machine
received one job. Afterwards, we change the direction, that is, job m + 1 is assigned to
machine m, job m + 2 to machine m − 1, and so forth.

First ideas. Observe that assigning the first m jobs to different machines is necessary in any
algorithm of rate strictly smaller than 2 as the ordered input might consist of m jobs of size 1
and m(k − 1) jobs of size 0. On the other hand, the mentioned round-robin approach behaves
badly if we have one big and many small jobs, e.g., if we have m = k, one job of size k,
k(k − 1) jobs of size 1, and the remaining jobs of size 0. Then the first machine receives load
2k − 1 in the round-robin approach while there is a trivial solution with objective value k.

Keeping these examples in mind, a first idea for an ordinal algorithm might be to spread
out the first m jobs and afterward place fewer jobs on the machines that received the largest
jobs. More concretely we could, for instance, place the first m jobs as described and then
alternately take m and ⌈m/2⌉ jobs (from the input sequence, i.e., in non-increasing order) and
place them on all and the last ⌈m/2⌉ machines, respectively. This is, in fact, the central idea
for the known [30] ordinal algorithm with rate 5

3 for the case without cardinality constraints.
But in our case, we need another strategy after the last ⌈m/2⌉ machines each received k

jobs. The most obvious idea at this point, would be to apply round robin to the remaining
jobs and first ⌊m/2⌋ machines. However, it is relatively easy to see that we can adapt the
bad example for round-robin to the resulting algorithm by simply doubling the number of
machines and hence, a more sophisticated approach is needed.

Now, the first step of the algorithm presented here is again to place the i-th biggest
job to machine i for i ∈ [m]. Then we use the above approach of placing jobs alternately
on a smaller and a larger part of the last ⌈m/2⌉ machines and apply it repeatedly so that
the machines are gradually filled up starting from the last machines. In the following, this
approach is described in detail.

The algorithm for the general case. The assignment procedure works in phases, each of
which is composed of rounds. Let ξ = ⌊log m⌋+2 be the number of phases. A round is defined
as an interval of consecutive machines [mℓ, mr − 1], where the two indexes mℓ, mr ∈ [m + 1]
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are called border machines (the value m + 1 is to allow that an interval ends with the last
machine). In a round defined by the interval [mℓ, mr − 1], we assign the next mr − mℓ jobs
to the machines of this interval where the i-th largest job in this set of jobs that we assign in
the round is assigned to machine mℓ + i − 1.

Next, we define a subset of the machines that are border machines of some round of the
algorithm. We set µ(i) =

⌊
m

2ξ−i

⌋
+ 1 for each i ∈ [ξ]. The border machines of the rounds

are always from the set {µ(b) | b ∈ [ξ]}. Note that µ(1) = 1, µ(2) = 2 and µ(ξ) = m + 1 for
any value of m. Observe that the difference between two consecutive border machines, i.e.,
µ(i + 1) − µ(i), grows approximately as a geometric sequence. We briefly consider some
examples:

If m = {2, 3}, we have ξ = 3 and the three borders are 1, 2, and 3 or 4 respectively.
If m ∈ {4, 5, 6, 7}, we have ξ = 4, and the third border is 3 for m = 4, 5 and 4 for m = 6, 7.
If m = 2q for some integer q ≥ 1, we have q + 2 phases and {1} ∪ {1 + 2i | i ∈ {0, . . . , q}}
is the set of border machines.

We conclude that in order to define the assignment, we need to define the intervals of the
rounds of every phase. Like in the last chapter, we use the intuition that each machine has k

slots to be filled by jobs. Our algorithm works as follows, due to space restrictions, the proof
is excluded and can be found in the full version, see [13]:
1. In the first phase, there is only one round with borders µ(1) = 1 and µ(ξ) = m + 1.
2. In the second phase, we repeat the following until all the slots between µ(ξ − 1) and µ(ξ)

are filled: One round with borders µ(ξ − 2) and µ(ξ), followed by two rounds with borders
µ(ξ − 1) and µ(ξ) (or less rounds if each machine of this last interval has exactly k jobs).

3. In phase s ∈ {3, . . . , ξ −1}, there are alternating rounds with borders µ(ξ −s), µ(ξ −s+2)
and µ(ξ − s + 1), µ(ξ − s + 2) respectively. There are as many rounds as are needed to
fill all the slots of the interval between µ(ξ − s + 1) and µ(ξ − s + 2).

4. In the last phase, each round has borders µ(1) = 1 and µ(2) = 2, so in each such round
we assign one job to machine 1 (and no other jobs to other machines). The number of
rounds of this phase is so that the resulting number of jobs assigned to machine 1 in all
phases is exactly k.

▶ Theorem 4. There is an ordinal algorithm for cardinality constrained scheduling of rate at
most 81

41 .

4 Algorithms with constant migration factors

In this section, we consider algorithms with constant migration factor. Due to space
restrictions, most of our results in this context are not included in this extended abstract. In
the following, we focus on the connection between ordinal and robust algorithms.

▶ Theorem 5. Given a polynomial time algorithm alg for the ordinal settings of rate at
most α, there is a robust ((1 + ε)α)-approximation algorithm whose migration factor is 1+ε

ε .

Proof. Upon the release of a new job j, we immediately round up its size pj to the next
integer power of (1 + ε). Let p′

j be the rounded size of job j. Our algorithm ignores the
original sizes of jobs and simply schedules the jobs of this rounded input. Observe that every
feasible solution of the original instance is also a feasible solution of the rounded instance and
vice-versa. Furthermore, the cost of a solution in terms of the original instance is at most its
cost in terms of the rounded instance, and this last term is again at most (1 + ε) times the
cost of the solution with respect to the original instance. Regarding the migration factor,
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there may be a multiplicative increase by a factor of 1 + ε. Thus, in order to prove the claim,
it suffices to present an α-approximation algorithm for the rounded instance whose migration
factor is at most 1

ε . Thus, in the remainder of this proof we consider the rounded instance.
Our algorithm maintains a list of the jobs, ordered non-increasingly, that were already

released followed by a sequence of jobs of size 0. The (already) released jobs are sorted in
a non-decreasing order of their sizes. Based on this ordered list of jobs, we assign the jobs
using the ordinal algorithm. The approximation ratio of the resulting algorithm is at most α

(for the rounded input) based on the assumption on the rate of the ordinal algorithm. Thus,
in order to prove the claim it suffices to show that we can maintain this sorted list (and its
corresponding schedule) by migrating at most one job of each size that is smaller than the
size of the newly arrived job. To see that, recall that in the rounded instance, all job sizes
are integer powers of 1 + ε, and so the total size of migrated jobs when j is released would
be at most p′

j ·
∑∞

i=1
1

(1+ε)i = p′
j · 1

ε as we claimed.
In the rounded instance, we let a size class be the set of jobs of a common size, and this

appears as a consecutive sublist of jobs in the sorted list. Observe that we can modify the
sorted order of jobs by changing the order of jobs of a common size class (but when reflecting
this change to the schedule this may create further migration). We append the new job j as
the smallest job of its size class. Hence, it will be placed at the position of the largest job of
the next smallest non-empty size class. We can remove and reinsert this job treating it the
same way as we did the new job. Hence, for every non-empty size class whose common size
is smaller than p′

j we take its largest job j′ and move it to become the smallest of its size
class. As the last step of this procedure, one of the size 0 dummy jobs is removed from the
list. Observe that when reflected to the schedule, the jobs which were not the largest among
their size class were not migrated by this resorting of the jobs. Furthermore only one job
of each such size class is migrated. The running time of this procedure is linear (for every
arriving job), so the claim follows. ◀
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