
Online Scheduling on Identical Machines with a
Metric State Space
Hiromichi Goko #

Toyota Motor Corporation, Aichi, Japan

Akitoshi Kawamura #

Kyoto University, Japan

Yasushi Kawase #

University of Tokyo, Japan

Kazuhisa Makino #

Kyoto University, Japan

Hanna Sumita #

Tokyo Institute of Technology, Japan

Abstract
This paper introduces an online scheduling problem on m identical machines with a metric state
space, which generalizes the classical online scheduling problem on identical machines, the online
traveling salesman problem, and the online dial-a-ride problem. Each job is associated with a
source state, a destination state, a processing time, and a release time. Each machine can process
a job on and after its release time. Before processing a job, a machine needs to change its state
to the source state (in a time corresponding to the distance), and after the process of the job, the
machine’s state becomes the destination state. While related research deals with a model in which
only release times are unknown to the algorithm, this paper focuses on a general model in which
destination states and processing times are also unknown. The main result of this paper is to propose
a O(log m/ log log m)-competitive online algorithm for the problem, which is best possible. A key
approach is to divide the difficulty of the problem. To cope with unknown release times, we provide
frameworks to produce a min{2ρ+1/2, ρ+2}-competitive algorithm using a ρ-competitive algorithm
for a basic case where all jobs are released at time 0. Then, focusing on unknown destination states
and processing times, we construct an O(log m/ log log m)-competitive algorithm for the basic case.
We also provide improved algorithms for some special cases.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online scheduling, Competitive analysis, Online dial-a-ride

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.32

Funding This work was partially supported by the joint project of Kyoto University and Toyota
Motor Corporation, titled “Advanced Mathematical Science for Mobility Society”, JST PRESTO
Grant Number JPMJPR2122, and JSPS KAKENHI Grant Numbers JP17K12646, JP19K22841,
JP20H05967, JP20K19739, JP21K17708, and JP21H03397.

1 Introduction

For a metric space M = (X, d) and a positive integer m, we consider the following (M , m)-
scheduling problem. We have m identical machines, which work in parallel. Each machine i

has a state si(t) in X at time t ∈ R+, and moves along a path P in M to change a state x

to a state y, where each machine is assumed to move in M with at most unit speed. All
machines are initially (i.e., at time 0) located at the origin o in X and need to return to
o at the end. Machines process jobs given in an online fashion. Each job j has two states
called the source state aj ∈ X and destination state bj ∈ X. It also has the processing time

© Hiromichi Goko, Akitoshi Kawamura, Yasushi Kawase, Kazuhisa Makino, and
Hanna Sumita;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).
Editors: Petra Berenbrink and Benjamin Monmege; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hiromichi_goko@mail.toyota.co.jp
mailto:kawamura@kurims.kyoto-u.ac.jp
mailto:kawase@mist.i.u-tokyo.ac.jp
mailto:makino@kurims.kyoto-u.ac.jp
mailto:sumita@c.titech.ac.jp
https://doi.org/10.4230/LIPIcs.STACS.2022.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Online Scheduling on Identical Machines with a Metric State Space

pj ∈ R+ and the release time rj ∈ R+. Job j appears on rj , can be processed on and after
rj , and requires pj time to process it. To processes job j, machine i first needs to change its
state to the source state aj and reaches the destination state bj afterward. We assume that
pj ≥ d(aj , bj), which means that pj − d(aj , bj) (≥ 0) time is additionally required to process
the job j. The jobs are non-preemptive, i.e., once a machine starts to process a job, it must
finish the processing of the job without doing anything else. In addition, any job has to be
processed by exactly one machine. The (M , m)-scheduling problem is to find a schedule
to minimize the makespan, that is, the time when all machines return to the origin o after
completing all jobs.

We study the real-time online version of this scheduling problem, called the online
(M , m)-scheduling problem. No information on jobs is available before their release time.
Namely, we first see the job j at time rj , and we do not know if it comes or not before time rj .
There exist two information models, called the complete and incomplete models, for the online
(M , m)-scheduling problem, where we mainly study the incomplete model. In the complete
model, all the information of the job j are revealed at the release time rj . On the other hand,
in the incomplete model, the processing time pj and destination state bj are still unknown at
time rj and revealed when the job j is completed by some machine. Several fundamental
cases of the online (M , m)-scheduling problem in the complete information model have
been studied in the literature of scheduling and combinatorial optimization [1–10, 17, 18],
as described in the next subsection. On the other hand, little is known for the incomplete
information model [19, 21]. However, there are a number of practical situations for which
the incomplete model is suitable. For example, in the scheduling problems such as repairing
companies, we do not know in advance the exact processing time for jobs as well as their
situations (or states) when finishing them. Classical taxi-hailing services only collect the
pick-up locations when customers phone the companies, and elevator systems are usually
equipped with only landing call buttons, although the systems can get information on the
directions (i.e., up and down) of the requests. Our goal is to design online algorithms for
the online (M , m)-scheduling problem under several natural settings of M and m. We also
consider designing online algorithms for the basic online (M , m)-scheduling problem, where
all jobs are released at time 0, since it turns out that any algorithm for the basic problem
can be extended to the one for the general problem. We analyze the performance of online
algorithms by the competitive ratio, that is, the ratio between the optimal makespan and the
one of the schedule obtained by the online algorithm.

1.1 Previous work
One of the simplest cases of the online (M , m)-scheduling problem is the case when the metric
space consists of a single point, i.e., the states of the machines are fixed. We denote the trivial
metric as R0. For the online (R0, m)-scheduling problem, the following greedy algorithm is
(2 − 1/m)-competitive, and this is best possible [13–15, 21]: assign an unprocessed job to
any available machine anytime if possible. This result is regardless of information models.
Shmoys et al. [21] focus on the incomplete information model and introduced a technique
to convert a ρ-competitive algorithm for the basic online (R0, m)-scheduling problem into a
2ρ-competitive one for the general online (R0, m)-scheduling problem.

An important special case of the problem is when the processing of each job does not change
the state, i.e., aj = bj for all jobs j. Such a situation appears in a production system with
sequence-dependent setup or changeover, e.g., mold setup, die setup, or color setup [16,20].
To process a job in a plastic production system, we must attach the corresponding injection
mold to an injection machine. Thus, we need setup time before and after processing the job.

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:3

Gambosi and Nicosia [12] studied an online version (in the one-by-one model) of scheduling
with setup costs. Furthermore, a particular case where the processing time of every job
equals 0 is studied as the online traveling salesman problem (TSP) [2, 3, 7, 8, 17]. The
competitive ratio of the online TSP is 2 for any metric and any number of machines [2,17]. In
addition, the competitive ratio of the single-server (m = 1) online TSP with the line metric
is (9 +

√
17)/8 ≈ 1.64 [2,3,7]. We remark that the online TSP is included in the complete

information model.
When the processing time of each job is equal to its travel distance, i.e., pj = d(aj , bj) for

all jobs j, our problem is studied under the name of the online dial-a-ride problem. There
is a large body of studies on the online dial-a-ride problem [1, 4–6, 9, 10, 18, 19], but only
Lipmann et al. [19] addresses the incomplete information model. Lipmann et al. [19] showed
that upper and lower bounds of the single machine online dial-a-ride problem are 4 and
1 + 3

2
√

2 (≈ 3.121), respectively. For the upper bound, they designed an algorithm, called
BOUNCER, which decides a process order based on a solution to the online TSP over the
source states. In the algorithm, every time the machine completes a job, the machine changes
the state to the source state of the job. Thus, the makespan is the length of the TSP tour
plus twice the sum of processing times. Because a 2-competitive algorithm is known for the
online TSP, the BOUNCER algorithm is 4-competitive. Note that the BOUNCER algorithm
is easily extended to the online (M , m)-scheduling problem, but its competitive ratio is
2 + 2m. We also note that in their paper, the processing time and destination state of a job
are revealed at the moment when some machine starts processing the job. When m = 1 and
preemption is not allowed, this is the same as our model. However, our model is more general
when m > 1. For the online dial-a-ride problem under the complete information model,
Ascheuer et al. [1] analyzed two natural algorithms, which they call IGNORE and REPLAN,
for the single machine setting. They also provide an algorithm called SMARTSTART, which
is 2-competitive for any metric and any number of machines. This is best possible since a
lower bound of the competitive ratio is 2 even for the online TSP [2].

1.2 Our results
Our main result is to provide an O(log m/ log log m)-competitive algorithm (Theorem 8) and
prove that this is best possible up to a constant factor (Theorem 7) among algorithms for the
general (M , m)-scheduling problem. We summarize our results and existing ones in Table 1.

We describe the techniques to obtain our results. Our approach is to divide the difficulty
of our problem into two types of unknown information; one is a release time (online arrival),
and the other consists of a destination state and a processing time.

First, to cope with the unknown release times, we show a framework to design an algorithm
using one for the basic online (M , m)-scheduling problem. We describe this in Section 3.
Roughly speaking, our framework computes a schedule by repeatedly applying the basic case
algorithm. As rules for applying the algorithm, we adopt three natural strategies, called
IGNORE, REPLAN, and SMARTSTART, proposed for the online dial-a-ride problem in the
complete information model [1]. We analyze these strategies in detail using three factors that
contribute to the makespan. The analysis implies that a ρ-competitive algorithm for the basic
online (M , m)-scheduling problem can be converted into a min{2ρ + 1/2, ρ + 2}-competitive
algorithm for the general case (Corollaries 2 and 4). We remark that this extends the result
by Shmoys et al. [21]. They deal with only the fixed state case (i.e., M = R0), and their
method results in a 2ρ-competitive algorithm. If ρ is greater than 2, our method leads to a
better competitive ratio. Consequently, we only need to focus on the basic case.

STACS 2022

32:4 Online Scheduling on Identical Machines with a Metric State Space

Then, focusing only on unknown destination states and processing times, we present an
O(log m/ log log m)-competitive algorithm for the basic online (M , m)-scheduling problem
(Algorithm 1) in Section 4.1. Our algorithm first partition the jobs into m groups and assigns
one group to each machine based only on the information of source states. To shorten the
makespan, we set machines that complete their assigned groups to process a group that has
not yet complete. It is not a good idea to assign additional machines to an uncompleted
group immediately and greedily: this method may cause a machine making a vain effort
to assist one completing soon. Thus, we control reassignments. Namely, we appropriately
wait and reassign jobs so that the number of assisting machines increases exponentially
with base q where qq > m ≥ (q − 1)q−1. Our analysis is not only elementary but also it
shows a tight competitive ratio for the basic problem. This result together with the above
conversion implies our main algorithmic result. We can see the ratio is the best possible
because we show that any online algorithm is Ω(log m/ log log m)-competitive for the basic
online (M , m)-scheduling problem. Note that this lower bound also holds for the cases of (i)
pj = d(aj , bj) for all job j, (ii) aj = bj for all job j, and (iii) the destination state and the
processing time of each job are revealed at the moment when some machine starts processing
the job.

We also discuss the competitive ratio of special cases in Section 5. One is a single machine
case. We show that Algorithm 1 is 3-competitive for the basic online (M , 1)-scheduling
problem, and prove that no online algorithm has the competitive ratio better than 2.255
and 3.181 for the basic and the general problems, respectively. We note that our bound
of 3.181 improves the best known lower bound of 1 + 3

√
2

2 ≈ 3.12 for the online dial-a-ride
problem under the incomplete information model [19]. Another is a two-machine case. We
improve Algorithm 1 to obtain a 3.5-competitive and a (4 +

√
3

2)-competitive algorithm for
the basic and the general online (M , 2)-scheduling problem, respectively. In addition, when
the optimal values of the TSP with a single machine and m machines are close, we provide a
13/3-competitive algorithm for the basic online (R, m)-scheduling problem.

Finally, we discuss several other variants of our problem in Section 6: minimizing the
total completion time is hopeless, the open setting (the machines do not need to return to
the origin) can easily be reduced to the closed setting (the machines do not need to return
to the origin) with loss of factor 2, and preemption does not help if the destination state and
the processing time of each job are revealed upon completion.

Due to space limitations, some proofs are deferred to Appendix A.

Table 1 Summary of our results and previous work.

incomplete info. model complete info. model
release time # machines upper bound lower bound upper bound lower bound

general m Θ(log m
log log m

) (Thms. 8, 7) 2 [1]
1 4 (Thm. 13) 3.181 (Thm. 15)

0 (basic) m Θ(log m
log log m

) (Thms. 9, 7) 1
1 3 (Thm. 12) 2.255 (Thm. 14)

2 Preliminaries

An instance of the online (M , m)-scheduling problem is specified by a metric space M = (X, d)
with a distinguished origin o ∈ X, the number of machines m, and a set of jobs J . Let
[m] = {1, 2, . . . , m} be the set of machines. Note that d : X ×X → R+ is a function such

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:5

that for any x, y, z ∈ X, the following holds: (i) d(x, y) = 0 ⇐⇒ x = y, (ii) d(x, y) = d(y, x),
and (iii) d(x, z) ≤ d(x, y) + d(y, z). We assume that M is path-connected, i.e., for any pair
of points x, y ∈ X, there is a continuous path γ : [0, 1] → X with γ(0) = x and γ(1) = y

of length d(x, y). Examples of such metric spaces are the real line R, the Euclidean plane
R2, and a circle R/Z, where we assume that each set has the Euclidean distance. Each job
j ∈ J is associated with a tuple (aj , bj , pj , rj) ∈ X × X × R+ × R+, where aj and bj are
respectively the source and the destination states, pj is the processing time, and rj is the
release time of job j. When processing a job j by a machine in state s, it is first necessary to
change the state of machine to aj in time d(s, aj). Then after the machine starts to process
job j, the machine’s state is changed continuously from aj , and finally reaches bj . Possibly
the process is done without state change (e.g., injection molds remain unchanged during
production of one item). A job j is called empty if aj = bj and pj = 0. Assume that the
state of each machine i is the origin o at time 0 (i.e., si(0) = o), the state can be changed
in at most unit speed (i.e., d(si(t), si(t′)) ≤ |t − t′| for all i ∈ [m] and t, t′ ∈ R+), and the
processing time pj is at least d(aj , bj) for all job j. Each machine can process at most one
job at a time. We do not allow preemption; once a machine starts processing a job, it is not
permitted to stop until the process is completed. The objective of the problem is to minimize
the completion time (makespan), which is the time when the machines have completed all
jobs and returned to o.

A (feasible) schedule is a sequence of processing and states change of the machines
satisfying the following: (1) the state of each machine is the origin o at time 0 and at the end,
(2) the state of each machine is changed in at most unit speed, and (3) every job is processed
on or after its release time. An online algorithm decides a partial schedule in real-time. We
focus on the incomplete information model in which an online algorithm has no information
about the destination state and the processing time of each job until the job is completed.
The source state of each job is revealed at its release time.

We evaluate the performance of an online algorithm by the competitive ratio. Throughout
the paper, we only care about deterministic online algorithms. For a problem instance I,
we denote the completion time by an algorithm ALG and an optimal offline algorithm OPT
by ALG(I) and OPT(I), respectively. We assume that the optimal offline algorithm knows
the information of all the jobs in advance. An algorithm ALG is said to be c-competitive if
ALG(I) ≤ c ·OPT(I) for any instance I of the online (basic) (M , m)-scheduling problem.
We refer to the schedule of the optimal offline algorithm as the optimal offline schedule.

3 Reduction to the Basic Problem

In this section, we consider three natural strategies, called IGNORE, REPLAN, and SMART-
START, to convert an algorithm for the basic online (M , m)-scheduling problem into an
algorithm for the online (M , m)-scheduling problem. These strategies are applied to the
(complete information) online dial-a-ride problem in [1]. IGNORE is a strategy that runs an
optimal subsequent schedule (which can be computed in the complete information setting)
for unprocessed jobs if they exist, ignoring all new jobs until all machines finish the assigned
jobs and come back to the origin o. REPLAN is a greedy strategy that stops the current
plan whenever a new job is released, makes all the machines return to the origin o right after
the current process, and starts a replanned optimal subsequent schedule for the remaining
jobs. We remark that these two strategies decide when to start independently of processing
times, while SMARTSTART uses the information. SMARTSTART is similar to IGNORE,
but it may keep the machines idle for a time depending on an estimated processing time of

STACS 2022

32:6 Online Scheduling on Identical Machines with a Metric State Space

remaining jobs (which is, for example, calculated by assuming that the processing time is all
zero). These strategies do not move machines until some jobs are released, and hence we do
not need to consider the instance with no jobs, called the empty instance, in the competitive
analysis.

Let ALG0 be an algorithm for the basic online (M , m)-scheduling problem, and let I0
be an instance. We analyze our conversions by the following three factors that contribute
to the makespan: (i) the optimal completion time OPT(I0), (ii) the mean sum p(I0)/m of
processing times per machine, where p(I0) =

∑
j∈J pj for the jobs in I0, and (iii) the lower

bound LB(I0) on the minimum completion time for I0, which is given by the optimal value
of the m-traveling salesman problem (m-TSP) over the source states. We refer to the m-TSP
as the problem of finding m tours that visit every location so as to minimize the length of
the longest tour [11]. The 1-TSP coincides with TSP. In what follows, we assume that

ALG0(I0) ≤ αOPT(I0) + β · p(I0)/m + γLB(I0), (1)

where α, β, and γ are nonnegative reals independent from I0. Note that ALG0 is (α + β + γ)-
competitive because OPT(I0) ≥ p(I0)/m and OPT(I0) ≥ LB(I0). In addition, α + γ ≥ 1
because ALG0(I0) ≤ (α + γ) ·OPT(I0) for any instance I0 with p(I0) = 0. For a set S′ of
jobs, we denote by S′

0 the instance of the basic (M , m)-scheduling problem with job set S′.
We first consider the following IGNORE algorithm. The machines remain idle (i.e., the

machines are in the origin and not working) until a non-empty set S of unprocessed jobs
appear. The algorithm then immediately processes S following the schedule obtained by
ALG0 for S0. We refer to this schedule as a subschedule for S. All jobs that arrive during
the execution of the subschedule are temporarily ignored until the subschedule is completed
and all machines become idle again. Then, the algorithm continues the same process.

▶ Theorem 1. IGNORE is (2α + β + 2γ + 1/2)-competitive for the online (M , m)-scheduling
problem.

Proof. We fix a non-empty instance I. Let t∗ be the last released time of jobs in I.
Suppose that the machines are idle at time t∗. Let R be the set of jobs processed in

the last subschedule of the IGNORE algorithm. By construction, the length of the last
subschedule is ALG0(R0) ≤ αOPT(R0) + βp(R0)/m + γLB(R0) ≤ (α + β + γ)OPT(I). Since
t∗ ≤ OPT(I) and α + β ≥ 1, it holds that

IGNORE(I) = t∗ + ALG0(R0) ≤ t∗ + (α + β + γ) ·OPT(I)
≤ (1 + α + β + γ)OPT(I) ≤ (2α + β + 2γ + 1/2)OPT(I).

Now suppose that some machines are not idle at time t∗. Then t∗ is in the second last
subschedule of the algorithm, and the last subschedule starts right after the second last
subschedule ends. Let R and S be the sets of jobs processed in the last and the second last
subschedule, respectively. We denote by r′ = min(a,b,p,r)∈R r.

Let qi be the state of machine i at time r′ in the optimal offline schedule for I. Thus,
maxi∈[m] d(o, qi) ≤ r′ ≤ OPT(I) and OPT(I) ≥ 2 maxi∈[m] d(o, qi). For the instance R0, the
minimum makespan is OPT(R0). On the other hand, when we first move each machine
i to state qi, and then imitate an optimal offline schedule for I after time r′, ignoring
jobs not in R, the makespan will be maxi∈[m] d(o, qi) + OPT(I) − r′. Thus, we see that
OPT(R0) ≤ maxi∈[m] d(o, qi) + OPT(I)− r′. Hence, we obtain that

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:7

IGNORE(I)
≤ r′ + ALG0(S0) + ALG0(R0)
≤ r′ + (α + γ)OPT(S0) + (α + γ)OPT(R0) + βp(S0)/m + βp(R0)/m

≤ r′ + (α + γ)OPT(I) + (α + γ)OPT(R0) + βp(I0)/m + (α + γ − 1)(r′ −max
i

d(o, qi))

≤ (α + γ)
(

r′ + OPT(R0)− max
i∈[m]

d(o, qi)
)

+ (α + β + γ)OPT(I) + max
i∈[m]

d(o, qi)

≤ (2α + β + 2γ + 1/2)OPT(I). ◀

▶ Corollary 2. If there exists a ρ-competitive algorithm for the basic online (M , m)-scheduling
problem, then there exists a (2ρ+1/2)-competitive algorithm for the online (M , m)-scheduling
problem.

Next, we consider the following REPLAN algorithm. When a new job is released, the
REPLAN algorithm calls all the machines, and each machine comes back to the origin o

immediately after completing the currently processing job. After all machines are returned,
it processes the unprocessed jobs S following the schedule obtained by ALG0 for S0.

▶ Theorem 3. REPLAN is (α + β + γ + 2)-competitive for the online (M , m)-scheduling
problem.

Proof. We fix a non-empty instance I. Let t∗ be the last release time of jobs appearing in I,
and let R be the set of unprocessed jobs at time t∗.

At the time t∗, all machines are made to directly return to the origin o as soon as possible.
A machine that is not processing any job (including on the way to some job) at time t∗

can return in t∗ (≤ OPT(I)) time, and a machine that is processing job j can return in
pj + d(bj , o) (≤ OPT(I)) time. Thus, all machines return in at most OPT(I) time. After all
the machines have returned to the origin o, it takes ALG0(R0) ≤ αOPT(R0) + βp(R0)/m +
γLB(R0) ≤ (α + β + γ)OPT(I) time to complete all the jobs in R. Hence, the completion
time by REPLAN is at most

REPLAN(I) ≤ t∗ + OPT(I) + (α + β + γ)OPT(I) ≤ (α + β + γ + 2)OPT(I). ◀

▶ Corollary 4. If there exists a ρ-competitive algorithm for the basic online (M , m)-scheduling
problem, then there exists a (ρ + 2)-competitive algorithm for the online (M , m)-scheduling
problem.

Finally, we discuss the SMARTSTART strategy, which is originally proposed for the
complete information model [1]. SMARTSTART calculates the minimum completion time
T for the unprocessed jobs and waits until the time T . However, this is impossible in the
incomplete information model. Therefore, we use LB(I0) as an alternative parameter to
decide when to start.

To be precise, the algorithm SMARTSTART has a fixed parameter θ ≥ 0, which will be
optimized later. When the machines are idle, and there is a non-empty set S of unprocessed
jobs, the algorithm computes LB(S0). The algorithm keeps machines idle until the time
θ · LB(S0) if it is before the time. Then, it immediately processes S following the schedule
obtained by ALG0 for S0. The algorithm ignores all jobs that arrived during the execution
of the subschedule until the subschedule is completed and all machines become idle again.

STACS 2022

32:8 Online Scheduling on Identical Machines with a Metric State Space

▶ Theorem 5. SMARTSTART is 6α+4β+4γ+1+
√

(2α+1)2+8γ

4 -competitive for the online

(M , m)-scheduling problem by setting θ = 2α+1+
√

(2α+1)2+8γ

4 .

We remark that similar statements to Theorems 1, 3, and 5 hold for other settings such
as complete information and preemptive setting. Corollaries 2 and 4 yield that we only need
to construct an O(log m/ log log m)-competitive algorithm for the basic case, and we do this
in the next section. We mention that SMARTSTART derives better competitive algorithms
than others for the single and two machine cases as shown Section 5.

4 Algorithm and Hardness of the Basic Problem

In this section, we show our main results for the basic online (M , m)-scheduling problem.
We first present an O(log m/ log log m)-competitive algorithm in Section 4.1, and then prove
that this is best possible among deterministic online algorithms in Section 4.2.

Specifically, we show the following theorems.

▶ Theorem 6. For any metric M , there exists an O(log m/ log log m)-competitive algorithm
for the basic online (M , m)-scheduling problem.

▶ Theorem 7. There exists a metric M such that every online algorithm is
Ω(log m/ log log m)-competitive for the basic online (M , m)-scheduling problem.

We remark that Theorem 6 together with Theorem 1 or 3 in the previous section implies
our main result for the general case.

▶ Theorem 8. For any metric M , there exists an O(log m/ log log m)-competitive algorithm
for the online (M , m)-scheduling problem.

The lower bound on the basic case also applies to the general case, and hence we see that
the competitive ratio of O(log m/ log log m) is best possible.

4.1 Upper bound
Let I be an instance of the basic online (M , m)-scheduling problem. Recall that we know
the source states of all the jobs. A simple way to construct a reasonable schedule for the
problem would be to use a shortest tour for the source states. More precisely, we solve the
m-TSP over the source states. Let C1, . . . , Cm be the optimal solution of the m-TSP over
the source states. Then each machine i processes jobs appearing in (directed) tour Ci in the
order of Ci. After processing a job, the machine returns to its source state and moves on to
the next job. Unfortunately, the competitive ratio of this simple method is Ω(m) even when
the metric is R2 (see Example 21 in Appendix).

The reason why the above simple method did not work well is that some machines
spend time in idleness. We resolve this issue by carefully reassigning idle machines to an
uncompleted tour. A tour is said to be completed if all the jobs appearing in the tour have
been completed, and all the machines assigned to the tour have returned to the origin o.
We describe the idea of our algorithm. We first assign machine i to each tour Ci, and each
machine processes jobs in the assigned tour in the same way as the simple method. If a tour
takes a long time to be completed, our algorithm additionally assigns idle machines to the
tour. Each machine travels along the assigned tour. When a machine arrives at the source of
an unprocessed job, then it processes the job, returns to its source, and continues the travel

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:9

(see Figure 1). The point of our algorithm is that it does not reassign machines immediately
and greedily. Our algorithm reassigns machines so that the number of machines assigned to
each uncompleted tour increases exponentially by the following rule. To avoid reassigning to
a tour that will be completed soon, the algorithm waits for a certain number of idle machines
before reassigning. This exponential increase in the number of assigned machines will help
us analyze the competitive ratio of the algorithm.

4

4
2

2

p1 = 2
d(a1, b1) = 2

p2 = 3
d(a2, b2) = 3

p3 = 4
d(a3, b3) = 4

a1

a2

a3

o
(a) A tour Ci.

t0 2 10
o

a1

a2
a3
o

(b) Diagram of machines’ locations.

Figure 1 A process of a tour when three machines assigned at time 0, 2, and 10, respectively.

Let q be a positive integer, which will be set later. The execution of our algorithm
consists of phases. In phase k, our algorithm adds idle machines to each uncompleted tour
so that the number of assigned machines for the tour is qk−1. The phase k continues until
the number of uncompleted tours decreases to ⌊m/qk⌋. The algorithm terminates in phase
k∗ with m/qk∗−1 ≥ 1 > m/qk∗ , that is, k∗ = ⌊logq m⌋ + 1 (≤ q). Then, we set q so as
to bound the makespan. Intuitively, the number of phases increases as q becomes smaller,
and the time length of each phase increases as q becomes larger. We set q to the integer
such that qq > m ≥ (q − 1)q−1, taking the tradeoff between them into account. Note that
q = Θ(log m/ log log m).

Our algorithm is summarized as Algorithm 1. Note that, at line 6, the number of
uncompleted tours may become less than ⌊m/qk⌋ because of multiple tours being completed
at the same time. In such a case, we break ties arbitrarily to choose ⌊m/qk⌋ tours for phase
k and carry the other (already completed) tours over into the next phase.

Algorithm 1 The proposed algorithm for the basic online(M , m)-scheduling problem.

1 Let q be the integer such that qq > m ≥ (q − 1)q−1;
2 Set k∗ ← ⌊logq m⌋+ 1;
3 Compute optimal m-TSP tours C1, . . . , Cm over the sources;
4 for k ← 1, 2, . . . , k∗ do
5 Assign available machines to the uncompleted tours so that the number of

assigned machines becomes qk−1 for each tour;
6 Continue the process for each uncompleted tour until the number of uncompleted

tours becomes ⌊m/qk⌋;

We prove that Algorithm 1 is O(log m/ log log m)-competitive for any metric M , which
immediately yields Theorem 6.

▶ Theorem 9. For any metric M , Algorithm 1 is O(log m/ log log m)-competitive for the
basic online (M , m)-scheduling problem.

STACS 2022

32:10 Online Scheduling on Identical Machines with a Metric State Space

We prove this theorem in the following. We define ℓi to be the length of tour Ci (over
the sources) and Ji to be the set of all jobs corresponding to Ci for each i ∈ [m]. Let
hsum

i =
∑

j∈Ji
(pj + d(bj , aj)) and hmax

i = maxj∈Ji
(pj + d(bj , aj)). Note that if one machine

processes jobs in Ji according to Ci, then it takes at most ℓi + hsum
i time.

We first provide lower bounds on the optimal offline makespan OPT(I).

▶ Lemma 10. OPT(I) ≥ max{maxi∈[m] ℓi, maxi∈[m] hmax
i ,

∑
i∈[m] hsum

i /(2m)}.

Proof. As the optimal offline algorithm must reach all source states and maxi∈[m] ℓi is the
optimal value of m-TSP over the sources, we have OPT(I) ≥ maxi∈[m] ℓi.

Let j∗ be a job such that pj∗ + d(bj∗ , aj∗) = maxi∈[m] hmax
i (= maxj∈J(pj + d(bj , aj))).

Since j∗ must be processed at some time, we have

OPT(I) ≥ d(o, aj∗) + p∗ + d(bj∗ , o) ≥ p∗ + d(bj∗ , aj∗) = max
i∈[m]

hmax
i ,

where the second inequality holds by the triangle inequality.
Finally, the makespan is not less than the mean sum of processing times spent by each

machine. By this and the assumption that p ≥ d(a, b) for each job, we obtain

OPT(I) ≥ 1
m

∑
j∈J

pj ≥
∑
j∈J

pj + d(aj , bj)
2m

=
∑

i∈[m]

hsum
i

2m
. ◀

We analyze the completion time for each set of jobs Ji in terms of ℓi, hmax
i , and hsum

i .

▶ Lemma 11. For a set of jobs Ji, let κ be the number of machines assigned for Ji throughout
the algorithm. Then, the process for Ji is completed within ℓi + hmax

i + hsum
i

κ from the time
when the last machine was added.

Proof. Throughout this proof, we only focus on the elapsed time after the last investment
of machines for Ji. Let x and y be the machines that return to the origin o first and last,
respectively. Suppose to the contrary that y returns to the origin o after time ℓi + hmax

i +
hsum

i /κ. As the sum of the completion times of κ machines for Ji is at most κ · ℓi + hsum
i , x

will complete the process on and before time ℓi + hsum
i /κ. Thus, x returns to o at least hmax

i

time earlier than y.
Consider the time when y starts processing the last job j∗ in Ji. Here, y processes at

least one job since otherwise y returns to the origin o by time ℓi, which is a contradiction.
When working on j∗, the machine y must precede (or be at the same point as) the machine
x, since otherwise y does not process j∗. Therefore, the time at which x return to the origin
o is at most pj∗ + d(bj∗ , aj∗) time earlier than y. However, this contradicts the assumption
because pj∗ + d(bj∗ , aj∗) ≤ hmax

i . ◀

Combining the above two lemmas, we can prove Theorem 9. For each phase k ∈ [k∗], let
τk ∈ R+ be the time length of phase k, and let Sk ⊆ [m] be the set of tours completed in
phase k. Note that |Sk| = ⌊m/qk−1⌋ − ⌊m/qk⌋ (∀k ∈ [k∗]) and the makespan of the schedule
obtained by the algorithm is

∑k∗

k=1 τk. We will bound the value τk by using Lemma 11.
Using the lemma in an intuitive way, we can obtain that τk ≤ maxi∈Sk

(
ℓi + hmax

i + hsum
i

qk−1

)
.

However, this does not work well because it is far from
∑

i∈[m] hsum
i /(2m), which is the only

tool we have now to bound hsum
i by OPT(I). Our main idea to overcome this issue is to use

Sk+1 instead of Sk, which allows us to evaluate τk as an average rather than a maximum.
By combining this with the exponential increase in the number of machines in each phase,
we can obtain the desired upper bound.

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:11

Proof of Theorem 9. It is sufficient to prove
∑k∗

k=1 τk = O(q) · OPT(I) because O(q) =
O(log m/ log log m).

We first bound τk for each phase k ∈ [k∗−1]. By Lemma 11, we have τk ≤ ℓi +hmax
i + hsum

i

qk−1

for any i ∈ Sk+1. Hence, by Lemma 10, we obtain

τk ≤ min
i∈Sk+1

(
ℓi + hmax

i + hsum
i

qk−1

)
≤ 1
|Sk+1|

∑
i∈Sk+1

(
ℓi + hmax

i + hsum
i

qk−1

)

≤ 2OPT(I) +
∑

i∈Sk+1

hsum
i

qk−1 · |Sk+1|
= 2OPT(I) + 2m

qk−1 · |Sk+1|
·

∑
i∈Sk+1

hsum
i

2m
.

As |Sk+1| = ⌊m/qk⌋ − ⌊m/qk+1⌋ ≥ ⌊m/qk⌋ − 1
q ⌊m/qk⌋ = (1− 1/q)⌊m/qk⌋, we get

2m

qk−1 · |Sk+1|
≤ 2q · m/qk

⌊m/qk⌋ − 1
q ⌊m/qk⌋

= 2q · 1
1− 1/q

· m/qk

⌊m/qk⌋
≤ 8q,

where the second inequality holds by q ≥ 2 and m/qk ≥ 1. Thus, we obtain

τk ≤ 2OPT(I) + 8q
∑

i∈Sk+1

hsum
i

2m
. (2)

Next, we bound τk∗ . By Lemmas 10 and 11, we have

τk∗ ≤ max
i∈Sk∗

(
ℓi + hmax

i + hsum
i

qk∗−1

)
≤ 2OPT(I) + max

i∈Sk∗

hsum
i

qk∗−1

< 2OPT(I) + 2q · max
i∈Sk∗

hsum
i

2m
≤ (2 + 2q)OPT(I), (3)

where the third inequality holds by m < qk∗ .
Hence, by (2) and (3), we obtain

k∗∑
k=1

τk ≤ 2(k∗ − 1) ·OPT(I) + 8q

k∗−1∑
k=1

∑
i∈Sk+1

hsum
i

2m
+ (2 + 2q) ·OPT(I)

≤ 4q ·OPT(I) + 8q ·
∑

i∈[m]

hsum
i

2m
≤ 4q ·OPT(I) + 8q ·OPT(I) = 12q ·OPT(I).

Therefore, Algorithm 1 is O(log m/ log log m)-competitive. ◀

Before concluding this subsection, we would like to mention that we can also construct a
polynomial-time O(log m/ log log m)-competitive algorithm for the online (M , m)-scheduling
problem by using a constant approximation solution of m-TSP (which can be computed in
polynomial-time [11]) instead of the optimal one in Algorithm 1.

4.2 Lower bound
We prove Theorem 7 that the competitive ratio O(log m/ log log m) is best possible.

Proof of Theorem 7. We define a star-shaped metric M = (X, d) with o = (0, 0) as follows:

X =
(
N× (0, 1]

)
∪ {o} and d

(
(i, x), (j, y)

)
=

{
|x− y| if i = j,

x + y if i ̸= j.

Let us denote the end point (i, 1) ∈ X by σi.

STACS 2022

32:12 Online Scheduling on Identical Machines with a Metric State Space

Let q be the positive integer such that qq ≤ m < (q + 1)q+1. For each i ∈ [qq], we prepare
sufficiently many jobs (say m2) that are either (σi, σi, 0) or (σi, σi, 1), depending on the
actions taken by the online algorithm. We will refer to jobs (σi, σi, 0) and (σi, σi, 1) as empty
and non-empty, respectively.

We fix an online algorithm. Then the adversary partitions the index set [qq] of end points
into q + 1 sets S1, S2, . . . , Sq+1 based on the behavior of the algorithm. For each k ∈ [q + 1],
every job with source σi (i ∈ Sk) will be set to be non-empty if the algorithm picks it (strictly)
before time k, and empty otherwise. For each time t and i ∈ [qq], we denote by κi(t) the
number of machines such that the distance to σi is less than 1 at time t (i.e., machines at
positions in {(i, x) | x ∈ (0, 1]}). Define S1 to be the set of indices i ∈ [qq] of end points with
the qq − qq−1 largest values of κi(1). Hence, |S1| = qq − qq−1 and κi(1) ≥ κi′(1) for any
i ∈ S1 and i′ /∈ S1. Similarly, for each k = 2, 3, . . . , q, define Sk sequentially to be the set
of i ∈ [qq] \

⋃k−1
k′=1 Sk′ such that κi(k) (i ∈ Sk) are the qq+1−k − pq−k largest values among

κi′(k) (i′ ∈ [qq] \
⋃k

k′=1 Sk′). Finally, define Sq+1 to be the set of remaining indices, i.e.,
Sq+1 = [qq] \

⋃q
k′=1 Sk′ . We remark that Sk’s are disjoint, and Sq+1 is a singleton because∑q

k′=1 |Sk′ | =
∑q

k′=1(qq+1−k′ − qq−k′) = qq − 1.
As some jobs with source σi (i ∈ Sk) must be processed at time q + 1 or later, the

makespan of the schedule obtained by the online algorithm is at least q + 2.
For each k ∈ [q], let Jk be the set of non-empty jobs that were started to be processed in

the interval [k, k + 1). We observe the cardinality of Jk. Recall that it takes one unit time
to process a non-empty job. Hence, each machine can process at most one job in Jk. In
addition, in order for a machine to start processing a job with source σi in the interval, the
distance from σi from its state at time k must be less than 1. Since the sources of jobs in Jk

are located at σi for some i ∈
⋃q+1

k′=k+1 Sk′ , we obtain that

|Jk| ≤
∑

i∈
⋃q+1

k′=k+1
Sk′

κi(k) ≤ m ·

∣∣∣⋃q+1
k′=k+1 Sk′

∣∣∣∣∣∣⋃q+1
k′=k Sk′

∣∣∣ = m · qq−k

qq+1−k
·m = m

q
.

As the algorithm starts to process any non-empty job at a time in [1, q+1) =
⋃q

k=1[k, k+1),
the total number of non-empty jobs is

∑
k∈[q] |Jk| ≤ (m/q) · q = m. Hence, the optimal

offline makespan is at most the sum of 2 time units to process the empty jobs and 3 time
units to process the non-empty jobs, which equals 5. Therefore, the competitive ratio is at
least (q + 2)/5 = Ω(log m/ log log m). ◀

5 Special Cases

In this section, we focus on the following three special cases: (i) single machine case (m = 1),
(ii) two machines case (m = 2), and (iii) the optimal values of the 1-TSP and the m-TSP are
close. In particular, for cases (ii) and (iii), we provide algorithms that improves Algorithm 1.

5.1 Single machine case

In this subsection, we consider the case where there is only one machine, i.e., m = 1. We
first show that Algorithm 1 with m = 1 is 3-competitive.

▶ Theorem 12. For any metric M , Algorithm 1 is 3-competitive for the basic online
(M , 1)-scheduling problem.

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:13

We remark that the competitive ratio 3 is tight for Algorithm 1. To see this, let us
consider an instance with M = R and three jobs, where job 1 is (1, 0, 1), job 2 is (1, 1, 0),
and job 3 is (0, 1, 1). In Algorithm 1, the machine processes the jobs in the order 1, 2, 3, and
the makespan is 6. On the other hand, the optimal offline makespan is 2 by processing jobs
in the order 3, 2, 2. Hence, the competitive ratio of Algorithm 1 is at least 3 when m = 1.

The proof of Theorem 12 implies that the makespan of the schedule obtained by Algo-
rithm 1 is at most 2p(I) + LB(I) for any instance I, i.e., (α, β, γ) = (0, 2, 1) for the values in
(1). By Theorems 1, 3, and 5, the competitive ratios of IGNORE, REPLAN, and SMART-
START incorporating with Algorithm 1 are 4.5, 5, and 4 for the online (M , 1)-scheduling
problem, respectively. We remark that our SMARTSTART is the same algorithm as the
BOUNCER algorithm proposed by Lipmann et al. [19] (if it uses SMARTSTART as a
2-competitive algorithm for the online TSP over the sources).

▶ Theorem 13. For any metric M , there exists a 4-competitive algorithm for the online
(M , 1)-scheduling problem.

Next, we provide a lower bound of the competitive ratio for the basic online (M , 1)-
scheduling problem.

▶ Theorem 14. There exists no 2.255-competitive algorithm even for the basic online
([−1, +1], 1)-scheduling problem.

Proof. Fixing an algorithm, we construct an adversary that gives the lower bound. Let η

and ξ be the solutions of the following equations:

(8 + 2η)/4 = (10 + 2ξ)/(4 + 2η) = 12/(4 + 2ξ).

Note that 0.5101 < η < 0.5102 and 0.6606 < ξ < 0.6607.
Suppose that there are 6 jobs in total, three of which have their source state in +1, and

the other three have their source state in −1. Without loss of generality, the algorithm first
serves a job in +1. Then, the adversary sets the first job to be (1, 1− η, η). We prove the
theorem by cases according to the behavior of the algorithm (see Figure 2).

+1−1 1 − ηo
(a) Case 1.

+1−1 1 − η−1 + ξ o
(b) Case 2.1.

+1−1 1 − η−1 + ξ o
(c) Case 2.2.

Figure 2 Adversarial instance for the basic online ([−1, +1], 1)-scheduling problem.

Case 1. Suppose that the algorithm next serves another job in +1. Then the adversary sets
the remaining jobs in +1 to be (1, 1, 0), (1, 1, 0). After jobs in +1, the machine moves to
−1, and the adversary sets the first job in −1 chosen by the algorithm to be (−1, 1, 2),
and the remaining jobs to be (−1,−1, 0), (−1,−1, 0). Then the algorithm takes time at
least 1 + η × 2 + 2 + 2 + 2 + 1 = 8 + 2η, while the optimal offline makespan is 4. Hence,
the competitive ratio is at least (8 + 2η)/4 > 2.255.

Case 2. Suppose that the algorithm next serves a job in −1. Then, the adversary sets the
job to be (−1,−1 + ξ). We divide cases according to the third job which the machine
processes.

STACS 2022

32:14 Online Scheduling on Identical Machines with a Metric State Space

Case 2.1. If the third job is in −1, then the remaining jobs are set to be (−1,−1, 0),
(−1,−1, 0), (1,−1, 2), (1, 1, 0), and the algorithm is made to choose the jobs in this order.
The algorithm takes time at least 10 + 2ξ while the optimal offline makespan is 4 + 2η.
Hence, the competitive ratio is at least (10 + 2ξ)/(4 + 2η) > 2.255.

Case 2.2. If the third job is in +1, then the remaining jobs are set to be (1, 1, 0), (1, 1, 0),
(−1, 1, 2), (−1,−1, 0), and the algorithm is made to choose the jobs in this order. The
algorithm takes time at least 12 while the optimal offline makespan is 4 + 2ξ. Hence, the
competitive ratio is at least 12/(4 + 2ξ) > 2.255.

Therefore, the competitive ratio is at least 2.255 in any cases. ◀

Combining the instance in the proof of Theorem 14 with the idea of setting jobs used
in [19, Theorem 4], we can obtain a lower bound of 3.181 for the general case. This result also
improves the best known lower bound of 1 + 3

√
2

2 ≈ 3.12 for the online dial-a-ride problem
under the incomplete information model [19].

▶ Theorem 15. For some metric M , there exists no 3.181-competitive algorithm for the
online (M , 1)-scheduling problem.

Proof. Let η = 0.362 . . . , ξ = 0.514 . . ., and ρ = 3.181 . . . be the unique numbers satisfying

ρ = 12 + 2 · η
4 = 14 + 2 · ξ

4 + 2 · η = 16
4 + 2 · ξ . (4)

Let N ∈ N be an integer bigger than 1.25/(ρ−3.181), and let M be the star graph with 2 ·N
leaves, each of which is at unit distance from the origin o. Consider an online algorithm ALG.
We construct an instance for which ALG has makespan 3.181 times longer than the optimal
(offline) schedule. Initially, there are three jobs (whose sources are) in each leaf. Each time
ALG processes a job before time 4 ·N − 4, the adversary sets the job to be empty, and adds
a job with the same source and the release time being one unit amount of time later. Thus,
at most 4 ·N − 4 jobs are added by time 4 ·N − 4, and there are exactly three unprocessed
jobs (including unreleased jobs) in each leaf at time 4 ·N − 4. We call them the decisive jobs
(as in [19]), and specify their processing information below.

Because it takes two units of time to travel between leaves, at least two of the 2 · N
leaves, say 0− and 0+, are left unvisited by ALG during the time interval [0, 4 · N − 4).
Likewise, among the 2 · N − 2 remaining leaves, there are two, say 1− and 1+, that are
unvisited during [4, 4 ·N − 4). Continuing in this way, we can name the leaves 0±, 1±, . . . ,
(N − 1)± so that for each j ∈ {0, . . . , N − 1}, neither j− nor j+ is visited by ALG during
[4 · j, 4 ·N − 4). We identify the path Mj ⊆M between j− and j+ (through o) with the
interval [−1, +1], and determine the processing information of the six decisive jobs in j± by
the order in which ALG processes them, in the way described in the cases 1, 2.1, and 2.2 in
the proof of Theorem 14 (but now with the new η and ξ defined in (4)).

Note that some jobs may be unreleased at time 4N − 3. This affects Case 1 in the proof
of Theorem 14, in which the machine processes three jobs in the same leaf consecutively.
However, since the machine skips unreleased jobs and has to come back later, the completion
time gets longer. Thus, we may assume that three jobs are released on each leaf.

By the analysis there, the amount of time after 4 ·N − 5 spent by ALG in Mj is at least
8 + 2 · η, 10 + 2 · ξ, and 12 in the three cases, respectively, whereas the best schedule for the
basic (Mj , 1)-scheduling instance given by the six decisive jobs in j± (forgetting their release
times) has makespan 4, 4 + 2 · η, and 4 + 2 · ξ, respectively. Note that simply concatenating
these best schedules for j = 0, . . . , N − 1 gives an offline schedule for our whole instance,

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:15

since all jobs in j± appear by time 4 · j + 1. Thus, writing N1, N2.1, and N2.2 for the number
of j ∈ {0, . . . , N − 1} for which the three cases happen (N1 + N2.1 + N2.2 = N), we can
bound from below the ratio of ALG’s makespan to the optimal by

(4 ·N − 5) + N1 · (8 + 2 · η) + N2.1 · (10 + 2 · ξ) + N2.2 · 12
N1 · 4 + N2.1 · (4 + 2 · η) + N2.2 · (4 + 2 · ξ)

=N1 · (12 + 2 · η) + N2.1 · (14 + 2 · ξ) + N2.2 · 16 − 5
N1 · 4 + N2.1 · (4 + 2 · η) + N2.2 · (4 + 2 · ξ)

≥min
{

12 + 2 · η
4 ,

14 + 2 · ξ
4 + 2 · η ,

16
4 + 2 · ξ

}
− 5

N · 4 ≥ ρ− 1.25
N

> 3.181. ◀

5.2 Two machines case
In this subsection, we focus on the two-machine case, i.e., m = 2. As shown in Example 22
in Appendix, the competitive ratio of Algorithm 1 is at least 4 even for the basic online
(R, 2)-scheduling problem. In fact, we can improve Algorithm 1 as follows. The main idea is
to move the machines in the opposite directions in phase 2. Formally, our algorithm can be
stated as follows. The algorithm first computes optimal 2-TSP tours C1 and C2 over the
sources. Then, machine i travels along Ci in a direction (i = 1, 2). When a machine arrives
at the source of an unprocessed job, then it processes the job, returns to its source, and
continues the travel. If C1 is completed first, then machine 1 now travels along C2 in the
reverse direction. Similarly for the case when C2 is completed. When all jobs have been
processed, each machine directly returns to the origin as soon as possible.

▶ Theorem 16. For any metric M , there exists a 3.5-competitive algorithm for the basic
online (M , 2)-scheduling problem.

We can also prove that the makespan of the above schedule is at most 1
2 OPT(I) + 2 ·

p(I)/2 + LB(I), i.e., (α, β, γ) = (1/2, 2, 1) for the values in (1). Thus, the competitive ratio
of SMARTSTART incorporating with the above algorithm is 4 +

√
3

2 ≈ 4.866 by Theorem 5.

▶ Theorem 17. For any metric M , there exists a (4 +
√

3
2)-competitive algorithm for the

online (M , 2)-scheduling problem.

5.3 Special metrics
Finally, we improve Algorithm 1 for the case where the optimal values of 1-TSP and m-TSP
are close. A typical example of such a situation is instances with the half-line metric: the
optimal value of 1-TSP coincides with that of m-TSP for any m because the values are twice
the distance between origin and the rightmost source. The main idea of the improvement
is to use the optimal 1-TSP tour instead of the m-TSP. This reduces the completion time
because the number of phases is reduced to one. We further reduce the completion time by
moving the machines in both directions of the optimal 1-TSP tour.

To be more precise, our algorithm first computes an optimal 1-TSP tour C over the
sources. After that, half the machines (i.e., ⌈m/2⌉ machines) travel along the tour in a
direction, and the other half (i.e., ⌊m/2⌋ machines) travel along the tour in the opposite
direction. When a machine arrives at the source of an unprocessed job, then it processes
the job, returns to its source, and continues the travel. When all jobs have been processed
(including processing), each machine directly returns to the origin as soon as possible.

STACS 2022

32:16 Online Scheduling on Identical Machines with a Metric State Space

▶ Theorem 18. Fix the number of machines m ≥ 2 and the metric M . Suppose that the
ratio between the optimal values of 1-TSP and m-TSP is at most µ for any instance on M .
There exists a (⌈m/2⌉

m ·µ + 3)-competitive algorithm for the online (M , m)-scheduling problem.

Note that ⌈m/2⌉
m ≤ 2/3 for any m ≥ 2. Additionally, recall that, when m = 1, there is a

3-competitive algorithm for any metric (Theorem 13). As the value µ can be taken as 1 and
2 for R+ and R, respectively, we can obtain the following corollaries.

▶ Corollary 19. For any m, there exists a 11/3-competitive algorithm for the basic online
(R+, m)-scheduling problem.

▶ Corollary 20. For any m, there exists a 13/3-competitive algorithm for the basic online
(R, m)-scheduling problem.

6 Other Settings

In this section, we discuss other variants of online (M , m)-scheduling problems.
We first consider minimizing the total completion time, i.e., the sum of completion times

of all jobs. We observe that if the objective is to minimize the total completion time, any
online algorithm is not competitive even for the basic online (R0, 1)-scheduling problem. Fix
an online algorithm. Let n be a positive integer and consider an instance with n jobs with
source and destination being the origin o. Suppose that the algorithm first processes job
j∗. We set (aj , bj , pj) = (o, o, 0) for all j ̸= j∗ and (aj∗ , bj∗ , pj∗) = (o, o, 1). Then, the total
completion time of the algorithm is at least n as the completion time of every job is at least
1, but the optimal total completion time is 1 by processing job j∗ last. As n can be taken as
an arbitrarily large number, any algorithm is not competitive.

For the case where the processing time is known (but the destination state is not), we can
design a constant competitive algorithm. In fact, we can obtain a 3-competitive algorithm
for the basic case by using a solution of m-TSP in which the processing time is taken into
account. On the other hand, if the destination state is known (but the processing time is
not), the competitive ratio is Θ(log m/ log log m) since the lower bound shown in Theorem 7
also holds in this setting.

Next, we observe the case where the machines do not need to return to the origin, i.e.,
the objective is to minimize the time until all jobs have been completed. Such a setting is
called open or nomadic, whereas the setting of our problem is said to be closed or homing. It
is not difficult to see that the optimal makespan for the open setting is not less than half of
the optimal makespan for the closed setting. Hence, if there exists a ρ-competitive algorithm
for the closed setting, then there exists a 2ρ-competitive algorithm for the open setting.
By combining this with 8, we obtain an O(log m/ log log m)-competitive algorithm for the
open version of the online (M , m)-scheduling problem. For the open version of the basic
online (M , 1)-scheduling problem, we can obtain a 3-competitive algorithm by the same
way as Algorithm 1 (but use the path TSP). In addition, for the open version of the online
(M , 1)-scheduling problem, we can obtain a 6-competitive algorithm by applying REPLAN.

Finally, we discuss the preemptive version, i.e., the machines are allowed to preempt jobs
in any point and resume the job later. We can observe that the competitive ratio of the
basic online (M , m)-scheduling problem is lower bounded by Ω(log m/ log log m) even when
the source and the destination states are the same for all jobs. To see this, we consider an
adversary similar to the one shown in Theorem 7. Consider the same metric, sources and the
destinations of the jobs, and partition of the end points S1, S2, . . . , Sq+1. However, we set
the processing time of each job j with source in Sk to be min{t + ϵ, 1} for each k ∈ [q + 1],

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:17

where t is the total processing length of that job j has been processed by time k and ϵ > 0.
Then, the makespan of the schedule obtained by the online algorithm is at least q + 2 while
the optimal offline makespan is at most 5. Therefore, by setting ϵ→ 0, the competitive ratio
is at least (q + 2)/5 = Ω(log m/ log log m).

References
1 Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau. Online Dial-a-Ride Problems: Mini-

mizing the Completion Time. In Proceedings of STACS, volume 1770, pages 639–650, 2000.
2 G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the On-Line

Travelling Salesman. Algorithmica, 29(4):560–581, 2001.
3 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.

Competitive algorithms for the on-line traveling salesman. In Proceedings of the 4th Workshop
on Algorithms and Data Structures, pages 206–217, 1995.

4 Alexander Birx. Competitive analysis of the online dial-a-ride problem. PhD thesis, Technische
Universität Darmstadt, 2020.

5 Alexander Birx and Yann Disser. Tight analysis of the smartstart algorithm for online
dial-a-ride on the line. SIAM Journal on Discrete Mathematics, 34(2):1409–1443, 2020.

6 Alexander Birx, Yann Disser, and Kevin Schewior. Improved bounds for open online dial-a-ride
on the line. In Proceedings of Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), volume 145, 2019.

7 Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Miriam Schlöter, Kevin Schewior, and Leen Stougie. Tight Bounds for Online TSP
on the Line. ACM Transactions on Algorithms, 17(1):1–58, 2021.

8 Michiel Blom, Sven O Krumke, Willem E de Paepe, and Leen Stougie. The online tsp against
fair adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

9 Vincenzo Bonifaci, Maarten Lipmann, and Leen Stougie. Online multi-server dial-a-ride
problems. SPOR-Report : reports in statistics, probability and operations research. Technische
Universiteit Eindhoven, 2006.

10 Esteban Feuerstein and Leen Stougie. On-line single-server dial-a-ride problems. Theoretical
Computer Science, 268(1):91–105, 2001.

11 Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation Algorithms for
Some Routing Problems. SIAM Journal on Computing, 7(2):178–193, 1978.

12 Giorgio Gambosi and Gaia Nicosia. On-line scheduling with setup costs. Information Processing
Letters, 73(1–2):61–68, 2000.

13 R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

14 Dan Gusfield. Bounds for naive multiple machine scheduling with release times and deadlines.
Journal of Algorithms, 5(1):1–6, 1984.

15 Leslie A. Hall and David B. Shmoys. Approximation schemes for constrained scheduling
problems. In Proceedings of Annual Symposium on Foundations of Computer Science, pages
134–139, 1989.

16 Hongtao Hu, K. K.H. Ng, and Yichen Qin. Robust Parallel Machine Scheduling Problem with
Uncertainties and Sequence-Dependent Setup Time. Scientific Programming, 2016, 2016.

17 Patrick Jaillet and Michael R. Wagner. Generalized online routing: New competitive ratios,
resource augmentation, and asymptotic analyses. Operations Research, 56(3):745–757, 2008.

18 Sven O. Krumke. Online optimization: Competitive analysis and beyond. PhD thesis, Technis-
che Universität Berlin, 2001.

19 Maarten Lipmann, Xiwen Lu, Willem E. de Paepe, Rene A. Sitters, and Leen Stougie. On-Line
Dial-a-Ride Problems Under a Restricted Information Model. Algorithmica, 40(4):319–329,
2004.

STACS 2022

32:18 Online Scheduling on Identical Machines with a Metric State Space

20 David M Miller, Hui-Chuan Chen, Jessica Matson, and Qiang Liu. A hybrid genetic algorithm
for the single machine scheduling problem. Journal of Heuristics, 5(4):437–454, 1999.

21 David B. Shmoys, Joel Wein, and David P. Williamson. Scheduling parallel machines on-line.
SIAM Journal on Computing, 24(6):1313–1331, 1995.

A Omitted proofs and examples

▶ Theorem 5. SMARTSTART is 6α+4β+4γ+1+
√

(2α+1)2+8γ

4 -competitive for the online

(M , m)-scheduling problem by setting θ = 2α+1+
√

(2α+1)2+8γ

4 .

Proof. We note that θ satisfies the equality (2α + 1)θ + γ = 2θ2. We consider a non-empty
instance I. Let S be the set of jobs processed in the last subschedule of the SMARTSTART
algorithm, and let tS be the time when the execution of the subschedule started.

Suppose that the machines are idle just before time tS . In this case, tS = θ · LB(S0) and
we have

SMARTSTART(I) = tS + ALG0(S0)
≤ θ · LB(S0) + αOPT(S0) + β · p(S0)/m + γLB(S0)
≤ (θ + α + β + γ)OPT(I)

=
6α + 4β + 4γ + 1 +

√
(2α + 1)2 + 8γ

4 ·OPT(I).

Next, suppose that the last subschedule is started immediately after the second last one.
Let R be the set of jobs processed in the second last subschedule and let tR be the time
when the second last subschedule is started. Define λ = 1

2 + γ
2θ (= θ − α). Then, we have

SMARTSTART(I)
= tR + ALG0(R0) + ALG0(S0)
≤ tR + (αOPT(R0) + β · p(R0)/m + γLB(R0)) + (α + γ)OPT(S0) + βp(S0)/m

≤ (1 + γ/θ)tR + (α + β)OPT(I) + (α + γ − λ)OPT(S0) + λOPT(S0)
≤ (1 + γ/θ)tR + (2α + β + γ − λ)OPT(I) + λOPT(S0)
= 2λ · tR + (2α + β + γ − λ)OPT(I) + λOPT(S0),

where the second inequality holds by tR ≥ θ · LB(R0) and p(R0)/m + p(S0)/m ≤ OPT(I),
and the third inequality holds by α + γ ≥ λ. Let f ∈ arg maxj∈S d(o, aj). As OPT(S0) ≤
OPT(I)− tR + d(o, af), we have,

SMARTSTART(I) ≤ 2λ · tR + (2α + β + γ − λ)OPT(I) + λ(OPT(I)− tR + d(o, af))
= (2α + β + γ)OPT(I) + λ(tR + d(o, af))
≤ (2α + β + γ + λ)OPT(I) = (α + β + γ + θ)OPT(I)

=
6α + 4β + 4γ + 1 +

√
(2α + 1)2 + 8γ

4 ·OPT(I). ◀

▶ Example 21. To observe this, consider an instance with m2 jobs, where the source,
destination, and processing time of job j are respectively

aj = bj =
(
cos 2π(j−1)

m , sin 2π(j−1)
m

)
and pj =

{
100 if j ≡ 1 (mod m),
0 otherwise.

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:19

Note that only jobs 1, m + 1, . . . , m(m− 1) + 1 are non-empty. Then, the makespan of the
schedule obtained by the simple method is 100m + 2. Indeed, each machine processes m jobs
i, m + i, . . . , m(m− 1) + i for some i. The completion time of the machine processing jobs
1, . . . , m(m− 1) + 1 is 100m + 2, while that of others is 2. On the other hand, the optimal
schedule is that each machine processes each of the m non-empty jobs, and then machine
i processes jobs i, m + i, . . . , m(m− 1) + i for i = 2, . . . , m − 1 (see also Figure 3). The
makespan of this schedule is at most 104, and hence the competitive ratio is (100m+2)/104 =
Ω(m).

o

(a) Simple method.

o

(b) Optimal.

Figure 3 An instance that the simple method does not work well (m = 5).

▶ Theorem 12. For any metric M , Algorithm 1 is 3-competitive for the basic online
(M , 1)-scheduling problem.

Proof. When m = 1, Algorithm 1 just processes the jobs along with an optimal 1-TSP tour
over the sources (there is only one phase). Let hsum =

∑
j∈J (pj + d(bj , aj)) and let ℓ1 be the

length of the optimal 1-TSP tour. By Lemma 10, we observe that hsum ≤ 2p(I) ≤ 2OPT(I)
and ℓ1 = LB(I) ≤ OPT(I). Thus, the makespan of the schedule obtained by the algorithm
is at most ℓ1 + hsum ≤ LB(I) + 2p(I) ≤ 3OPT(I). Therefore, Algorithm 1 is 3-competitive
when m = 1. ◀

▶ Example 22. To observe this, let us consider an instance with 6 jobs, where job 1 is
(0,−1, 1), job 2 is (1, 0, 1), job 3 is (1, 1, 0), job 4 is (0, 1, 1), job 5 is (−1, 0, 1), and job 6
is (−1,−1, 0). It is not difficult to see that an optimal 2-TSP tours over the sources are
C1 = (1, 2, 3, 4) and C2 = (5, 6). In Algorithm 1, machines 1 and 2 processes jobs {1, 2, 3, 4}
and {5, 6} in these orders (see Figure 4). Hence, the makespan of the schedule obtained by
the algorithm is 8. On the other hand, the makespan is 2 if machines 1 and 2 processes
jobs {4, 3, 2} and {1, 6, 5}, respectively, in these orders. Hence, the competitive ratio of
Algorithm 1 is at least 4 when m = 2.

state

t

1

2 3

4

5 6

Figure 4 The schedule of Algorithm 1.

▶ Theorem 16. For any metric M , there exists a 3.5-competitive algorithm for the basic
online (M , 2)-scheduling problem.

STACS 2022

32:20 Online Scheduling on Identical Machines with a Metric State Space

Proof. We analyze the above algorithm. Define ℓ1 and ℓ2 to be the lengths of the tours C1
and C2, respectively, and let hsum =

∑
j∈J

(
pj + d(bj , aj)

)
. By Lemma 10, (ℓ1 + ℓ2)/2 ≤

max{ℓ1, ℓ2} ≤ OPT(I) and hsum ≤ 2
∑

j∈J pj ≤ 4OPT(I). Let τ∗ be the latest time to
start processing a job, and let i be the machine that returns to the origin later (breaking
ties arbitrarily). Let job j be the last job processed by machine i. Note that job j may
be started to be processed earlier than τ∗. We may assume without loss of generality
that such a job exists, because otherwise i processes no jobs and the makespan is at most
max{ℓ1, ℓ2} ≤ OPT(I). Note that τ∗ ≤ 1

2
(
ℓ1 + ℓ2 + hsum)

≤ 3OPT(I).
Suppose that i is processing (or starts processing) job j at time τ∗. Then, the time when

job j is started to process is at the latest 1
2

(
ℓ1 + ℓ2 +

∑
j′∈J\{j}

(
pj′ + d(bj′ , aj′)

))
. Hence,

the makespan is at most

1
2

ℓ1 + ℓ2 +
∑

j′∈J\{j}

(
pj′ + d(bj′ , aj′)

) + pj + d(bj , o)

≤ 1
2

(
ℓ1 + ℓ2 + hsum − pj − d(bj , aj)

)
+ pj + d(o, aj) + d(aj , bj) + d(bj , o)

2
≤ 1

2
(
ℓ1 + ℓ2 + hsum + d(o, aj) + pj + d(bj , o)

)
≤ 7

2OPT(I),

where the last inequality holds by d(o, aj) + pj + d(bj , o) ≤ OPT(I).
Next, suppose that i is returning to a tour after processing job j at time τ∗. Let u be

the state of i at time τ∗. As u is on the way from bj to aj , we have

d(u, o) ≤ min{d(u, aj) + d(aj , o), d(u, bj) + d(bj , o)}

≤ 1
2

((
d(u, aj) + d(aj , o)

)
+

(
d(u, bj) + d(bj , o)

))
= 1

2
(
d(o, aj) + d(aj , bj) + d(bj , o)

)
≤ 1

2OPT(I).

Hence, the makespan is at most τ∗ + d(u, o) ≤ 7
2 OPT(I).

Finally, suppose that i is traveling a tour without processing a job at time τ∗. Let u be
the state of i at time τ∗. Then, d(u, o) ≤ 1

2 max{ℓ1, ℓ2} ≤ 1
2 OPT(I). Hence, the makespan

is at most τ∗ + d(u, o) ≤ 7
2 OPT(I).

Therefore, the competitive ratio of the above algorithm is at most 7/2 = 3.5. ◀

▶ Theorem 18. Fix the number of machines m ≥ 2 and the metric M . Suppose that the
ratio between the optimal values of 1-TSP and m-TSP is at most µ for any instance on M .
There exists a (⌈m/2⌉

m ·µ + 3)-competitive algorithm for the online (M , m)-scheduling problem.

Proof. We analyze the above algorithm. Let ℓ∗
1 and ℓ∗

m be the optimal length of the 1-TSP
and m-TSP over the sources, respectively. In addition, let hsum =

∑
j∈J (pj + d(bj , aj)), and

let τ∗ be the time when the last job started to be processed. Then, τ∗ is at most

1
m

(⌈m/2⌉ · ℓ∗
1 + hsum) ≤ ⌈m/2⌉

m

ℓ∗
1

ℓ∗
m

OPT(I) + OPT(I) ≤
(
⌈m/2⌉

m
· µ + 2

)
OPT(I)

because ℓ∗
m ≤ OPT(I) and hsum/(2m) ≤ OPT(I) by Lemma 10. Next, consider the machine

i∗ that is the last to return to the origin. If i∗ is either in the middle of processing job j or
returning to its source after processing job j at time (just after) τ∗, the makespan is at most

H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:21

τ∗ + pj + d(bj , o) ≤
(

⌈m/2⌉
m · µ + 3

)
OPT(I) because pj + d(bj , o) ≤ d(o, aj) + pj + d(bj , o) ≤

OPT(I). Otherwise, suppose that the state of i∗ at time τ∗ is q, which is located on the way
from aj to aj′ . Then, we have

d(p, o) ≤ min{d(q, aj) + d(aj , o), d(q, aj′) + d(aj′ , o)}

≤ 1
2(d(aj , o) + d(aj , aj′) + d(aj′ , o)) ≤ d(aj , o) + d(aj′ , o) ≤ OPT(I).

Thus, the makespan is at most τ∗ + OPT(I) ≤
(

⌈m/2⌉
m · µ + 3

)
OPT(I). ◀

STACS 2022

	1 Introduction
	1.1 Previous work
	1.2 Our results

	2 Preliminaries
	3 Reduction to the Basic Problem
	4 Algorithm and Hardness of the Basic Problem
	4.1 Upper bound
	4.2 Lower bound

	5 Special Cases
	5.1 Single machine case
	5.2 Two machines case
	5.3 Special metrics

	6 Other Settings
	A Omitted proofs and examples

