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Abstract

Given integers k ≥ 2 and a1, . . . , ak ≥ 1, let a := (a1, . . . , ak) and n := a1 + · · · + ak. An a-multiset
permutation is a string of length n that contains exactly ai symbols i for each i = 1, . . . , k. In
this work we consider the problem of exhaustively generating all a-multiset permutations by star
transpositions, i.e., in each step, the first entry of the string is transposed with any other entry
distinct from the first one. This is a far-ranging generalization of several known results. For example,
it is known that permutations (a1 = · · · = ak = 1) can be generated by star transpositions, while
combinations (k = 2) can be generated by these operations if and only if they are balanced (a1 = a2),
with the positive case following from the middle levels theorem. To understand the problem in
general, we introduce a parameter ∆(a) := n − 2 max{a1, . . . , ak} that allows us to distinguish
three different regimes for this problem. We show that if ∆(a) < 0, then a star transposition Gray
code for a-multiset permutations does not exist. We also construct such Gray codes for the case
∆(a) > 0, assuming that they exist for the case ∆(a) = 0. For the case ∆(a) = 0 we present some
partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the
underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams.
In particular, we prove that the middle levels graph is Hamilton-laceable.
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34:2 Star Transposition Gray Codes for Multiset Permutations

1 Introduction

Permutations and combinations are two of the most fundamental classes of combinatorial
objects. Specifically, k-permutations are all linear orderings of [k] := {1, . . . , k}, and their
number is k!. Moreover, (α, β)-combinations are all β-element subsets of [n] where n := α+β,
and their number is

(
n
α

)
=

(
n
β

)
. Permutations and combinations are generalized by so-called

multiset permutations, and in this paper we consider the task of listing them such that any
two consecutive objects in the list differ by particular transpositions, i.e., by swapping two
elements. Such a listing of objects subject to a “small change” operation is often referred to
as Gray code [27, 30]. One of the standard references for algorithms that efficiently generate
various combinatorial objects, including permutations and combinations, is Knuth’s book [19]
(see also [25]).

1.1 Permutation generation

There is a vast number of Gray codes for permutation generation, most prominently the
Steinhaus-Johnson-Trotter algorithm [18, 40], which generates all k-permutations by adjacent
transpositions, i.e., swaps of two neighboring entries of the permutation; see Figure 1 (a). In
this work, we focus on star transpositions, i.e., swaps of the first entry of the permutation with
any later entry. An efficient algorithm for generating permutations by star transpositions was
found by Ehrlich, and it is described as Algorithm E in Knuth’s book [19, Section 7.2.1.2];
see Figure 1 (b). For any permutation generation algorithm based on transpositions, we can
define the transposition graph as the graph with vertex set [k], and an edge between i and j if
the algorithm uses transpositions between the ith and jth entry of the permutation. Clearly,
the transposition graph for adjacent transpositions is a path, whereas the transposition graph
for star transpositions is a star (hence the name “star transposition”). In fact, Kompel’maher
and Liskovec [20], and independently Slater [36], showed that all k-permutations can be
generated for any transposition tree on [k]. Transposition Gray codes for permutations
with additional restrictions were studied by Compton and Williamson [7] and by Shen and
Williams [33].

SJT Ehrlich Zaks Corbett Sawada/
Williams

(a) (b) (c) (d) (e)

Figure 1 Gray codes for 4-permutations (SJT=Steinhaus-Johnson-Trotter).
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Several known algorithms for permutation generation use operations other than trans-
positions. Specifically, Zaks [43] presented an algorithm for generating permutations by
prefix reversals; see Figure 1 (c). Moreover, Corbett [8] showed that all k-permutations
can be generated by cyclic left shifts of any prefix of the permutation by one position; see
Figure 1 (d). Another notable result is Sawada and Williams’ recent solution [32] of the
Sigma-Tau problem, proving that all k-permutations can be generated by cyclic left shifts
of the entire permutation by one position or transpositions of the first two elements; see
Figure 1 (e).

All of the aforementioned results can be seen as explicit constructions of Hamilton
paths in the Cayley graph of the symmetric group, generated by different sets of generators
(transpositions, reversals, or shifts). It is an open problem whether the Cayley graph of the
symmetric group has a Hamilton path for any set of generators [28]. This is a special case of
the well-known open problem whether any connected Cayley graph has a Hamilton path, or
even more generally, whether this is the case for any vertex-transitive graph [21].

1.2 Combination generation and the middle levels conjecture
In a computer, (α, β)-combinations can be conveniently represented by bitstrings of
length n := α + β, where the ith bit is 1 if the element i is in the set and 0 otherwise. For
example, the (5, 3)-combination {1, 6, 7} is represented by the string 10000110.

In the 1980s, Buck and Wiedemann [3] conjectured that all (α, α)-combinations can be
generated by star transpositions for every α ≥ 1, i.e., in every step we swap the first bit of the
bitstring representation with a later bit. Figure 2 (a) shows such a star transposition Gray
code for (4, 4)-combinations. Buck and Wiedemann’s conjecture was raised independently by
Havel [15], as a question about the existence of a Hamilton cycle through the middle two
levels of the (2α − 1)-dimensional hypercube. This conjecture became known as middle levels
conjecture, and it attracted considerable attention in the literature and made its way into
popular books [9, 42], until it was answered affirmatively by Mütze [23]; see also [13].

Similarly to permutations, there are also many known methods for generating general
(α, β)-combinations that use operations other than star transpositions, see [5, 11, 17, 29, 38].
In particular, (α, β)-combinations can be generated by adjacent transpositions if and only if
α = 1, β = 1, or α and β are both odd [3, 10, 26].

1.3 Multiset permutations
Shen and Williams [34] proposed a far-ranging generalization of the middle levels conjecture
that connects permutations and combinations. Their conjecture is about multiset permuta-
tions. For integers k ≥ 2 and a1, . . . , ak ≥ 1, an (a1, . . . , ak)-multiset permutation is a string
over the alphabet {1, . . . , k} that contains exactly ai occurrences of the symbol i. We refer
to the sequence a := (a1, . . . , ak) as the frequency vector, as it specifies the frequency of each
symbol. The length of a multiset permutation is na := a1 + · · · + ak, and if the context is
clear we omit the index and simply write n = na. If all symbols appear equally often, i.e.,
a1 = · · · = ak = α, we use the abbreviation αk := (a1, . . . , ak). For example 123433153 is a
(2, 1, 4, 1)-multiset permutation, and 331232142144 is a 34-multiset permutation.

Clearly, multiset permutations are a generalization of permutations and combinations.
Specifically, k-permutations are 1k-multiset permutations, and (α, β)-combinations are (α, β)-
multiset permutations (up to shifting the symbol names 1, 2 7→ 0, 1). Stachowiak [37] showed
that (a1, . . . , ak)-multiset permutations can be generated by adjacent transpositions if and
only if at least two of the ai are odd.

STACS 2022
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0 1 1 2 3

(a) (a1, a2) = (4, 4) (b) (a1, a2, a3) = (2, 2, 2)

Figure 2 Star transposition Gray codes for (a) (4, 4)- and (b) (2, 2, 2)-multiset permutations.
The strings are arranged in clockwise order, starting at 12 o’clock, with the first entry on the inner
track, and the last entry on the outer track. As every star transposition changes the first entry, the
color on the inner track changes in every step.

G(1, 1)
12

21

112 121
G(2, 1)

211

123
G(1, 1, 1)

213

132

231
312
321

G(2, 1, 1)
2113 2131 2311

3112 3121 3211

1132

1312

1231

1213

13211123

G(2, 2)
1122

2112 2121

1212 1221

2211

G(1, 1, 1, 1) 1234
2134 4231

3214

4213 2314

3124

4123

1423

2413
3412

4312

1342

2341

3241
4132

1324

2143

3421

1432

3142

4321

1243

2431

G(3, 2)
21112 11122

11212

12112

21211 2211121211

21121

12121

11212

Figure 3 Star transposition graphs G(a) for several small multiset permutations a. Vertices
are colored according to the first entry of the multiset permutations, and these color classes form
independent sets. In G(2, 1, 1), an odd cycle is highlighted.
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Shen and Williams [34] conjectured that all αk-multiset permutations can be generated by
star transpositions, for any α ≥ 1 and k ≥ 2. We state their conjecture in terms of Hamilton
cycles in a suitably defined graph, as follows. We write Π(a) = Π(a1, . . . , ak) for the set of all
(a1, . . . , ak)-multiset permutations. Moreover, we let G(a) = G(a1, . . . , ak) denote the graph
on the vertex set Π(a) = Π(a1, . . . , ak) with an edge between any two multiset permutations
that differ in a star transposition, i.e., in swapping the first entry of the multiset permutation
with any entry at positions 2, . . . , n that is distinct from the first one. Figure 3 shows various
examples of the graph G(a). When denoting specific multiset permutations we sometimes
omit commas and brackets for brevity, for example 1312214 ∈ Π(3, 2, 1, 1).

▶ Conjecture 1 ([34]). For any α ≥ 1 and k ≥ 2, the graph G(αk) has a Hamilton cycle.

In this and the following statements, the single edge G(1, 1) is also considered a cycle,
as it gives a cyclic Gray code. Note that G(a1, . . . , ak) is vertex-transitive if and only if
a1 = · · · = ak =: α. In this case, Conjecture 1 is an interesting instance of the aforementioned
conjecture of Lovász [21] on Hamilton paths in vertex-transitive graphs.

Evidence for Conjecture 1 comes from the results mentioned in Sections 1.1 and 1.2
on generating permutations by star transpositions and the solution of the middle levels
conjecture, respectively, formulated in terms of the graph G(a) below. These known results
settle the boundary cases α = 1 and k ≥ 2, and α ≥ 1 and k = 2, respectively, of Conjecture 1.

▶ Theorem 2 (Ehrlich; [20]; [36]). For any k ≥ 2, the graph G(1k) has a Hamilton cycle.

▶ Theorem 3 ([23, 13]). For any α ≥ 1, the graph G(α, α) has a Hamilton cycle.

In their paper, Shen and Williams also provided an ad-hoc solution for the first case
of their conjecture that is not covered by Theorems 2 and 3, namely a Hamilton cycle in
G(2, 2, 2), which is displayed in Figure 2 (b).

We approach Conjecture 1 by tackling the following even more general question: For which
frequency vectors a = (a1, . . . , ak) does the graph G(a) have a Hamilton cycle? By renaming
symbols, we may assume w.l.o.g. that the entries of the vector a are non-increasing, i.e.,

a1 ≥ a2 ≥ · · · ≥ ak. (1)

We can thus think of the vector a as an integer partition of n.

2 Our results

For any i ∈ [n] and c ∈ [k], we write Π(a)i,c for the set of all multiset permutations from Π(a)
whose ith symbol equals c. Note that every star transposition changes the first entry; see
the inner track of each of the two wheels in Figure 2. As a consequence, G(a) is a k-partite
graph with partition classes Π(a)1,1, . . . , Π(a)1,k; see Figure 3. Moreover, the partition
class Π(a)1,1 is a largest one because of (1). This k-partition of the graph G(a) is a potential
obstacle for the existence of Hamilton cycles and paths. Specifically, if one partition class
is larger than all others combined, then there cannot be a Hamilton cycle, and if the size
difference is more than 1, then there cannot be a Hamilton path.

We capture this by defining a parameter ∆(a) for any integer partition a = (a1, . . . , ak) as

∆(a) := n − 2a1 = −a1 +
k∑

i=2
ai. (2)

STACS 2022
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We will see that if ∆(a) < 0, then the partition class Π(a)1,1 of the graph G(a) is larger
than all others combined, excluding the existence of Hamilton cycles. On the other hand,
if ∆(a) ≥ 0, then every partition class of the graph G(a) is at most as large as all others
combined (equality holds if ∆(a) = 0), which does not exclude the existence of a Hamilton
cycle. The cases with ∆(a) = 0 lie on the boundary between the two regimes, and they are
the hardest in terms of proving Hamiltonicity. These cases can be seen as generalizations of
the middle levels conjecture, namely the case a = (α, α) captured by Theorem 3, which also
satisfies ∆(a) = 0.

▶ Theorem 4. For any integer partition a = (a1, . . . , ak) with ∆(a) < 0 the graph G(a)
does not have a Hamilton cycle, and it does not have a Hamilton path unless a = (2, 1).

For k = 2 symbols, the condition ∆(a) < 0 is equivalent to a1 > a2, i.e., there is no star
transposition Gray code for “unbalanced” combinations.

We now discuss the cases ∆(a) ≥ 0. Our first main goal is to reduce all cases with ∆(a) > 0
to cases with ∆(a) = 0. For doing so, it is helpful to consider stronger notions of Hamiltonicity.
Specifically, we consider Hamilton-connectedness and Hamilton-laceability, which have been
heavily studied (see [1, 2, 6, 14, 16, 35]). A graph is called Hamilton-connected if there is
a Hamilton path between any two distinct vertices. A bipartite graph is called Hamilton-
laceable if there is a Hamilton path between any pair of vertices from the two partition classes.
In general, the graphs G(a) are not bipartite, so we say that G(a) is 1-laceable if there is a
Hamilton path between any vertex in Π(a)1,1 and any vertex not in Π(a)1,1, i.e., between
any vertex with first symbol 1 and any vertex with first symbol distinct from 1.

This approach is inspired by the following result of Tchuente [39], who strengthened
Theorem 2 considerably.

▶ Theorem 5 ([39]). For any k ≥ 4, the graph G(1k) is Hamilton-laceable.

The key insight is that proving a stronger property makes the proof easier and shorter,
because the inductive statement is more powerful and flexible; see Section 3.2 below. En-
couraged by this, we raise the following conjecture about graphs G(a) with ∆(a) = 0. It
is another natural and far-ranging generalization of the middle levels conjecture, which we
support by extensive computer experiments and by proving some special cases.

▶ Conjecture 6. For any integer partition a = (a1, . . . , ak) with ∆(a) = 0 the graph G(a) is
Hamilton-1-laceable, unless a = (2, 2).

The exceptional graph G(2, 2) mentioned in this conjecture is a 6-cycle; see Figure 3.
Assuming the validity of this conjecture, we settle all cases G(a) with ∆(a) > 0 in the
strongest possible sense. While being a conditional result, the main purpose of this theorem
is to reduce all cases ∆(a) ≥ 0 to the boundary cases ∆(a) = 0.

▶ Theorem 7. Conditional on Conjecture 6, for any integer partition a = (a1, . . . , ak) with
∆(a) > 0 the graph G(a) is Hamilton-connected, unless a = (1, 1, 1) or a = 1k for k ≥ 4,
and possibly unless a = (α, α, 1) for α ≥ 3.

The dependence of Theorem 7 on Conjecture 6 can be captured more precisely. Specifically,
G(a) with ∆(a) > 0 is shown to be Hamilton-connected, assuming that G(b) with ∆(b) = 0
is Hamilton-1-laceable for all integer partitions b that are majorized componentwise by a.

The three exceptions mentioned in Theorem 7 are well understood: Specifically, G(1, 1, 1)
is a 6-cycle; see Figure 3. Furthermore, G(1k) for k ≥ 4 is Hamilton-laceable by Theorem 5.
Lastly, we will show that G(α, α, 1) for α ≥ 3 satisfies a variant of Hamilton-laceability, which
also guarantees a Hamilton cycle. In fact, we believe that G(α, α, 1) is Hamilton-connected,
but we cannot prove it.
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We provide the following evidence for Conjecture 6. First of all, with com-
puter help we verified that G(a) is indeed Hamilton-1-laceable for all integer par-
titions a ̸= (2, 2) with ∆(a) = 0 that satisfy n ≤ 8, i.e., for a ∈
{(1, 1), (2, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (4, 4), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}. Fur-
thermore, we prove the case of k = 2 symbols unconditionally. Note that for k = 2,
Hamilton-1-laceability is the same as Hamilton-laceability. Recall that G(α, α) is isomorphic
to the subgraph of the (2α − 1)-dimensional hypercube induced by the middle two levels, so
the following result is a considerable strengthening of Theorem 3, the middle levels theorem.

▶ Theorem 8. For any α ≥ 3, the graph G(α, α) is Hamilton-laceable.

We also have the following (unconditional) result for k = 3 symbols.

▶ Theorem 9. For any α ≥ 2, the graph G(α, α − 1, 1) has a Hamilton cycle.

Lastly, we consider integer partitions a = (a1, . . . , ak), k ≥ 3, with ∆(a) ≥ 0 and
an upper bound on the part size, i.e., a1 ≤ α for some constant α. By the remarks
after Theorem 7, the inductive proof of the theorem for such integer partitions only re-
lies on Conjecture 6 being satisfied for integer partitions with the same upper bound
on the part size. For any fixed bound α, there are only finitely many such partitions
with ∆(a) = 0 that can be checked by computer. For example, for α = 4 these are
a ∈ {(2, 1, 1), (3, 2, 1), (3, 1, 1, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}. This yields the
following (unconditional) result.

▶ Theorem 10. For α ∈ {2, 3, 4} and any integer partition a = (a1, . . . , ak) with ∆(a) > 0
and a1 = α, the graph G(a) is Hamilton-connected.

In words, Theorem 10 settles all integer partitions a whose largest part is at most 4. In
particular, this settles the cases α ∈ {2, 3, 4} and k ≥ 2 of Shen and Williams’ Conjecture 1
in a rather strong sense.

3 Proof ideas

In this section, we give a high-level overview of the main ideas and techniques used in our
proofs. No formal proofs of our results are presented in this extended abstract due to space
constraints, but they can be found in the preprint [12].

3.1 The case ∆(a) < 0
The main idea for proving Theorem 4 is that if ∆(a) < 0, then the partition class Π(a)1,1 of
the graph G(a) is larger than all others combined, which excludes the existence of a Hamilton
cycle. To exclude the existence of a Hamilton path, we show that the size difference is strictly
more than 1, unless a = (2, 1). Note that the graph G(2, 1) is the path on three vertices, so
in this case the size difference is precisely 1. These arguments are based on straightforward
algebraic manipulations involving multinomial coefficients.

3.2 The case ∆(a) > 0
To prove Theorem 7, it is convenient to think of an integer partition a = (a1, . . . , ak) as an
infinite non-increasing sequence (a1, a2, . . .), with only k nonzero entries at the beginning.
Given two such integer partitions a = (a1, a2, . . .) and b = (b1, b2, . . .), we write b ≺ a if
bi ≤ ai for all i ≥ 1. Integer partitions with the partial order ≺ form a lattice, which is the

STACS 2022
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1
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31132

3111

31111
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321

3211

321112222 22211

22221 222111

221111

222221
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3222 32211

322

321111

322111

32221132222

322221

322222

33

331

3311

33111

331111

332

3321

3322 33211

33221

33222

332111

332211
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332222

333

3331

33311

333111

3332

33321

333211

333221

333222

3333

33331

333311

333321

333322

33332

0

1

2

3

4

∆(a) =

5

6

7

< 0

22222 22221132221

0 → 12 → 31 → 2

222222

33322

Figure 4 The lattice of integer partitions a = (a1, . . . , ak) with largest part a1 ≤ 3. The
coordinates are projected into three dimensions depending on which value is increased.

sublattice of the infinite lattice NN cut out by the hyperplanes defined by (1); see Figure 4.
The cover relations in this lattice are given by decrementing any of the ai for which ai > ai+1.
We write b ≺· a for partitions a ̸= b if b ≺ a and there is no c /∈ {a, b} with b ≺ c ≺ a.

In this lattice of integer partitions, the hyperplane defined by ∆(a) = 0 separates the cases
where Hamiltonicity is impossible, which lie on the side of the hyperplane where ∆(a) < 0
(Theorem 4), from the cases where Hamiltonicity can be established more easily, which lie
on the side of the hyperplane where ∆(a) > 0 (Theorem 7). The cases ∆(a) = 0 on the
hyperplane are the hardest ones (Conjecture 6).

Our proof of Theorem 7 proceeds by induction in this partition lattice and establishes
the Hamiltonicity of G(a) by using the Hamiltonicity of G(b) for all integer partitions b ≺· a,
where Conjecture 6 serves as the base case of the induction. This is based on the observation
that fixing one of the symbols at positions 2, . . . , n in G(a) yields subgraphs that are
isomorphic to G(b) for b ≺· a.
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G(2, 1, 1)

2113 2131 2311

3112 3121 3211

1132

1312

1231

1213

13211123

G(1, 1, 1)

G(2, 1)

G(2, 1)

Figure 5 Decomposing G(2, 1, 1) into three subgraphs by fixing the last symbol.

Specifically, for any a = (a1, . . . , ak), i = 2, . . . , n, and c ∈ [k], the subgraph of G(a)
induced by the vertex set Π(a)i,c is isomorphic to G(b) where b is the partition obtained
from a by decreasing ai by 1 (and possibly sorting the resulting numbers non-increasingly);
see Figure 5.

Moreover, for any b ≺· a we have ∆(b) = ∆(a) − 1 or ∆(b) = ∆(a) + 1. In particular,
if ∆(a) > 0, then we have ∆(b) ≥ 0. For example, the vertex set of G(a) for a = (3, 2, 2)
(∆(a) = 1) can be partitioned into one copy of G(b) for b = (2, 2, 2) (if the fixed symbol
is c = 1; ∆(b) = 2) and two copies of G(b′) for b′ = (3, 2, 1) (if the fixed symbol is c = 2
or c = 3; ∆(b′) = 0). Therefore, we may construct a Hamilton path in G(3, 2, 2) by gluing
together paths in each of these three subgraphs which exist by induction.

While conceptually simple, implementing this idea incurs considerable technical obstacles,
in particular for some of the graphs G(a) with ∆(a) = 1, i.e., instances that are very close
to the hyperplane ∆(a) = 0. The proof is split into several interdependent lemmas, and it is
the technically most demanding part of our work.

Theorem 10 follows immediately from the inductive proof of Theorem 7 and by settling
finitely many cases with computer help.

To further illustrate the ideas outlined before, we close this section by reproducing
Tchuente’s proof of Theorem 5.

x =

y =

u1

v1

uj

vj

π1 = xı̂

π2

πj

uk

vk

π1

πj−1

πj
πj+1

πk

πk = yı̂

...
...

...
...

πk πk−1
πk−1

ı̂

πj+1

πj

πj
πj−1

π1
π2

72 3

a = (1, 1, 1, 1, 1, 1, 1)
∆(a) = 5

4

56 b = (1, 1, 1, 1, 1, 1) ≺· a
∆(b) = 4

4

12 3 45 67

4

3
3

3
3

5
5

5
5

6
6

1
1

1
1

2
2

2
2
4

1

4

7
7

vj−1

π = (7, 3, 2, 4, 1, 5, 6)

uj+1

Figure 6 Illustration of the proof of Theorem 5. The left hand side shows the general schematic
partitioning of the graph G(1k) into blocks, each of which is a copy of G(1k−1), by fixing symbols at
position ı̂. The right hand side shows a concrete example for k = 7.
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Proof of Theorem 5. To prove that G(1k) is Hamilton-laceable, we proceed by induction
on k. The induction basis k = 4 can be checked by straightforward case analysis. For the
induction step, we assume that G(1k−1), k ≥ 5, is Hamilton-laceable, and we prove that
G(1k) is also Hamilton-laceable. Note that 1k−1 ≺· 1k and ∆(1k) = k − 2 = ∆(1k−1) + 1.
The following arguments are illustrated in Figure 6. The partition classes of the graph G(1k)
are given by the parity of the permutations, i.e., by the number of inversions. Therefore,
we consider two distinct permutations x and y of [k] with opposite parity, and we need to
show how to connect them by a Hamilton path in G(1k). As x ̸= y, there is a position ı̂ > 1
in which x and y differ, i.e., xı̂ ≠ yı̂, and this is the position that we will fix to different
symbols. Specifically, we choose a permutation π of [k] such that π1 = xı̂ and πk = yı̂.
The permutation π captures the order in which we will fix symbols at position ı̂. We then
choose permutations uj , vj of [k], j = 1, . . . , k, satisfying u1 = x, vk = y, and such that
uj is obtained from vj−1 by a star transposition of the symbol πj at position 1 with the
symbol πj−1 at position ı̂, for all j = 2, . . . , k. Moreover, we choose uj and vj such that the
parity of the number of inversions after removing the symbol πj is opposite. Specifically,
for uj this parity is the same as for u1 = x if and only if πj has the same parity as π1, and
for vj this parity is the same as for vk = y if and only if πj has the same parity as πk. For
each j = 1, . . . , k, we now consider the permutations whose ı̂th entry equals πj (formally,
this is the set Π(1k)ı̂,πj ). Clearly, the subgraph of G(1k) induced by these permutations is
isomorphic to G(1k−1). In other words, by removing the ı̂th entry and renaming entries
to 1, . . . , k − 1, we obtain permutations of [k − 1]. Consequently, by induction there is a
path in G(1k) that visits all permutations whose ı̂th entry equals πj and that connects uj

to vj . The concatenation of those k paths obtained by induction is the desired Hamilton
path in G(1k) from x to y, which completes the induction step. ◀

Note that the constraints imposed on the permutations π and uj , vj , j = 1, . . . , k, in this
proof are very mild, and leave a lot of room for modifications to construct many different
Hamilton paths, possibly so as to satisfy some additional conditions.

3.3 The case ∆(a) = 0
Our proofs of Theorems 8 and 9 build on ideas introduced in the papers [13, 22].

Specifically, the first step in proving Theorem 8 is to build a cycle factor in the
graph G(α, α), i.e., a collection of disjoint cycles in the graph that together visit all vertices.
We then choose vertices x and y from the two partition classes of the graph that we want to
connect by a Hamilton path. In this we can take into account automorphisms of G(α, α), i.e.,
for proving laceability only certain pairs of vertices x and y in the two partition classes have
to be considered. In the next step, we join a small subset of cycles from the factor, including
the ones containing x and y, to a short path between x and y. This is achieved by taking
the symmetric difference of the edge set of the cycle factor with a carefully chosen path P

from x to y that alternately uses edges on one of the cycles from the factor and edges that
go between two such cycles; see Figure 7 (a)+(b). In the last step, we join the remaining
cycles of the factor to the path between x and y, until we end with a Hamilton path from x

to y. Each such joining is achieved by taking the symmetric difference of the cycle factor
with a suitably chosen 6-cycle; see Figure 7 (b)+(c).

It was shown in [13] that the cycles of the aforementioned cycle factor in G(α, α) are
bijectively equivalent to plane trees with α vertices, and the joining operations via 6-cycles can
be interpreted combinatorially as local change operations between two such plane trees. To
prove Theorem 9, we first generalize the construction of this cycle factor in the graph G(α, α)
to a cycle factor in any graph G(a), a = (a1, . . . , ak), with ∆(a) = 0. It turns out that
the cycles of this generalized factor can be interpreted combinatorially as vertex-labeled
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Figure 7 Strategy of the proof of Theorem 8.

plane trees, where exactly ai vertices have the label i for i = 2, . . . , k. If a = (α, α), then
all vertex labels are the same, so we can consider the trees as unlabeled. Moreover, the
joining 6-cycles in G(α, α) generalize nicely to joining 12- or 6-cycles in G(a) with ∆(a) = 0,
and they correspond to local change operations involving sets T of labeled plane trees with
|T | ∈ {2, 3, 5, 6}, depending on the location of vertex labels. For proving Theorem 9, we
consider the special case a = (α, α − 1, 1), i.e., exactly one vertex in the plane trees is labeled
differently from all other vertices, and we show that there is a choice of joining cycles so that
the symmetric difference with the cycle factor yields a Hamilton cycle in the graph G(a).

4 Open questions

We conclude this paper with the following open questions.

We believe that the ideas outlined in Section 3.3 to prove that G(α, α − 1, 1) has a
Hamilton cycle are in principle suitable to prove that G(a) has a Hamilton cycle for all a

with ∆(a) = 0, which would be an important first step towards a proof of Conjecture 6. In
particular, the construction of the cycle factor and gluing tuples based on vertex-labeled
plane trees are fully general. The main difficulty in combining these ingredients lies in
the fact that some gluing cycles join more than two cycles from the factor (namely 3, 5,
or 6 cycles) to a single cycle, and in this case the resulting interactions between different
gluing cycles seem to be hard to control.
We conjecture that G(α, α, 1) for α ≥ 2 is Hamilton-connected, just as all other
graphs G(a) with ∆(a) > 0 covered by Theorem 7. However, we are unable to
prove this based on Conjecture 6. With computer help, we verified that G(α, α, 1)
is Hamilton-connected for α = 2, 3, 4. Proving this in general would streamline our proof
of Theorem 7 considerably, as it would make several auxiliary lemmas redundant. To
prove that G(α, α, 1) is Hamilton-connected, it may help to establish a Hamiltonicity
property for graphs G(a) with ∆(a) = 0 and k ≥ 3 that is stronger than 1-laceability.
Specifically, in addition to a Hamilton path between any vertex in Π(a)1,1 and any
vertex not in Π(a)1,1, we may also ask for a Hamilton path between any two distinct
vertices in Π(a)1,1. We checked by computer whether G(a) has this stronger property
for a ∈ {(2, 1, 1), (3, 2, 1), (3, 1, 1, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}, and it was
satisfied in all cases except for a = (2, 1, 1).
While our proofs are constructive, they are far from yielding efficient algorithms for
computing the corresponding Gray codes. Ideally, one would like algorithms whose
running time is polynomial in n per generated multiset permutation of length n. Such
algorithms are known for the Hamilton cycles mentioned in Theorems 2 and 3, see [19,
Section 7.2.1.2] and [24], respectively. An interesting direction could be to explore greedy
algorithms for generating multiset permutations by star transpositions, which may yield
much simpler constructions to start with, cf. [41, 4, 31].

STACS 2022
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Knuth raised the question whether there are star transposition Gray codes for (α, α)-
combinations whose flip sequence can be partitioned into 2α − 1 blocks, such that each
block is obtained from the previous one by adding +1 modulo 2α − 1. This problem
is a strengthening of the middle levels conjecture, and it was answered affirmatively
in [22]. The Gray code for (4, 4)-combinations shown in Figure 2 (a) has such a 7-fold
cyclic symmetry. We can ask more generally: Are there star transposition Gray codes
for multiset permutations whose flip sequence can be partitioned into n − 1 blocks, such
that each block is obtained from the previous one by adding +1 modulo n − 1? Figure 8
shows an ad-hoc solution for (2, 2, 2)-multiset permutations with 5-fold cyclic symmetry.

A more general version of the problem considered in this paper is the following: We
consider an alphabet {1, . . . , k} of size k ≥ 2, and frequencies a1, . . . , ak ≥ 1 that specify
that symbol i appears exactly ai times for all i = 1, . . . , k. Moreover, there is an additional
integer parameter s with 1 ≤ s ≤ k − 1 that has the following significance. The objects
to be generated are all pairs (S, x), where S is a set or string of s distinct symbols, and x

is a string of the remaining n − s symbols, where n := a1 + · · · + ak. A star transposition
swaps one symbol from S with one symbol from x that is currently not in S, and the
question is whether there is a star transposition Gray code for all those objects.
Note that multiset permutations considered in this paper are the special case when s = 1.
Andrea Sportiello suggested this problem with a1 = · · · = ak = α (uniform frequency)
and S being a set as a generalization of the middle levels conjecture (s = 1, k = 2,
a1 = a2 = α). Moreover, Ajit A. Diwan suggested this problem with a1 = · · · = ak = α

(uniform frequency) and a set S of size s = k − 1. Note that the uniform frequency case is
particularly interesting, as the underlying flip graph for this problem is vertex-transitive
if and only if a1 = · · · = ak (recall Lovász’ conjecture [21]).

1 2 3

Figure 8 Star transposition Gray code for (2, 2, 2)-multiset permutations with 5-fold cyclic
symmetry.
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