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Abstract
We consider a matching problem in a bipartite graph G = (A ∪ B, E) where vertices have strict
preferences over their neighbors. A matching M is popular if for any matching N , the number of
vertices that prefer M is at least the number that prefer N ; thus M does not lose a head-to-head
election against any matching where vertices are voters. It is easy to find popular matchings; however
when there are edge costs, it is NP-hard to find (or even approximate) a min-cost popular matching.
This hardness motivates relaxations of popularity.

Here we introduce fairly popular matchings. A fairly popular matching may lose elections but
there is no good matching (wrt popularity) that defeats a fairly popular matching. In particular,
any matching that defeats a fairly popular matching does not occur in the support of any popular
mixed matching. We show that a min-cost fairly popular matching can be computed in polynomial
time and the fairly popular matching polytope has a compact extended formulation.

We also show the following hardness result: given a matching M , it is NP-complete to decide
if there exists a popular matching that defeats M . Interestingly, there exists a set K of at most
m popular matchings in G (where |E| = m) such that if a matching is defeated by some popular
matching in G then it has to be defeated by one of the matchings in K.
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1 Introduction

Our input is a bipartite graph G = (A ∪ B,E) on n vertices and m edges where every
vertex has a strict ranking of its neighbors. Such a graph is also called a marriage instance
and this is a very well-studied model in two-sided matching markets. A matching M is
stable if no edge blocks it; edge (a, b) blocks M if both a and b prefer each other to their
respective assignments in M . The existence of stable matchings in a marriage instance and
the Gale-Shapley algorithm [14] to find one are classical results in algorithms.

Stable matchings are used in many real-world applications such as matching students
to schools and colleges [1, 3] and medical residents to hospitals [5, 28]. Stability is a rather
strict notion – all stable matchings match the same subset of vertices [15] and the size of a
stable matching might be only half the size of a maximum matching. In several applications,
the notion of stability can be relaxed to a less demanding notion for the sake of collective
welfare.

Popularity is a meaningful relaxation of stability based on empowering matchings (instead
of edges) to block other matchings. Any pair of matchings, say M and N , can be compared
by holding an election between them where every vertex v either casts a vote for the matching
in {M,N} where it gets a better partner (and being unmatched is its worst choice) or v
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41:2 Fairly Popular Matchings and Optimality

abstains from voting if it is indifferent between M and N . Let ϕ(M,N) (resp., ϕ(N,M))
be the number of votes for M (resp., N). Matching N is more popular than matching M
(equivalently, N defeats M) if ϕ(N,M) > ϕ(M,N). Let ∆(M,N) = ϕ(M,N) − ϕ(N,M).

▶ Definition 1. A matching M is popular if there is no matching more popular than M , i.e.,
∆(M,N) ≥ 0 for all matchings N in G.

Gärdenfors [16] introduced the notion of popularity in 1975 where he showed that every
stable matching is popular. In fact, stable matchings are min-size popular matchings [18].
Hence relaxing stability to popularity allows larger matchings and more generally, matchings
with lower cost (when every edge has a cost) to be feasible.

Several algorithmic and hardness results for popular matchings have been obtained during
the last decade and we refer to [6] for a survey. We know efficient algorithms for only a
few popular matching problems such as the max-size popular matching problem and the
popular edge problem [7, 18, 21]. Many natural optimization problems in popular matchings
such as the min-cost popular matching problem are NP-hard [10]; moreover, this problem is
NP-hard to approximate to any multiplicative factor. Though relaxing stability to popularity
promises matchings with improved optimality, finding these matchings is hard.

The extension complexity of the popular matching polytope of G is 2Ω(m/log m) [9].
Thus formulating the convex hull of edge incidence vectors of matchings M that satisfy
∆(M,N) ≥ 0 for all matchings N is hard. This motivates relaxing popularity, i.e., let us
waive some constraints ∆(M,N) ≥ 0. For what matchings N would it be justified to do so?

Suppose N is “very unpopular” – then N is not a viable alternative and it seems fair to
not give N the power to block other matchings. Forbidding very unpopular matchings from
blocking others is similar in spirit to legal assignments [8] (a relaxation of stable matchings)
where only edges that belong to legal assignments are allowed to block matchings. Thus our
goal is to come up with a filter that tests matchings for a natural relaxation of popularity
and forbid the ones that fail our test to block matchings.

So we seek to identify a subset S of the set of all matchings in G such that:
(a) Every matching outside S fails our test that checks for “mild popularity”.
(b) It is easy to optimize over matchings M that satisfy ∆(M,N) ≥ 0 for all N ∈ S.
(c) For any matching T /∈ S, there is at least one matching N ∈ S such that ∆(T,N) < 0.

▶ Remark 2. Note that property (c) is independent of property (a); the latter says every
matching T /∈ S has to fail our test of mild popularity while the former says any matching
T /∈ S has to be defeated by a matching in S, so we will not have ∆(T,N) ≥ 0 for all N ∈ S.

The unpopularity of a matching T is typically measured by its unpopularity factor [27],
defined as u(T ) = maxN ̸=T ϕ(N,T )/ϕ(T,N). A matching T is popular if and only if u(T ) ≤ 1.
Suppose we define a matching T to be very unpopular if u(T ) > k for some k. Is it easy to
compute a min-cost matching M such that ∆(M,N) ≥ 0 for all matchings N with u(N) ≤ k?

When k = n− 1, it means that no Pareto optimal matching defeats M – observe that
such a matching M has to be popular. So the above problem is NP-hard for k = n− 1. We
show this problem is coNP-hard for k = 1 (see Remark 9). Thus using unpopularity factor
to come up with a test of mild popularity does not look very promising for tractability.

Our main result. Rather than unpopularity factor, we will use popular mixed matchings [26]
to define a natural relaxation of popularity. A mixed matching Π is a probability distribution
or a lottery over matchings, so Π = {(M0, p0), . . . , (Mk, pk)} where M0, . . . ,Mk are matchings,
pi > 0 for all i, and

∑k
i=0 pi = 1. The notion of popularity can be extended to mixed

matchings; the mixed matching Π is popular if ∆(Π, N) =
∑k

i=0 pi · ∆(Mi, N) ≥ 0 for all
matchings N .
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The matchings M0, . . . ,Mk are said to be in the support of Π = {(M0, p0), . . . , (Mk, pk)}.
Let us call a matching M supporting if there exists a popular mixed matching Π whose
support contains M . So every supporting matching participates in some popular lottery over
matchings, thus the “supporting” property is a natural relaxation of popularity – we will use
this property as our condition for mild popularity. We define fairly popular matchings now.

▶ Definition 3. A matching M is fairly popular if ∆(M,N) ≥ 0 ∀ supporting matchings N .

For any matching T that defeats a fairly popular matching M , it is the case that even with
the help of other matchings, T cannot form a popular mixture. Thus it is natural to regard
a non-supporting matching T as being “very unpopular”. So we set the supporting property
as our threshold for mild popularity – thus elections against non-supporting matchings will
not be relevant. In other words, even if ∆(M,T ) < 0 for a non-supporting matching T , the
matching M will continue to be feasible. Intriguingly, waiving the constraints ∆(M,T ) ≥ 0
for non-supporting matchings T makes the resulting polytope easy to describe.

▶ Theorem 4. Given a marriage instance G = (A ∪B,E) with edge costs, a min-cost fairly
popular matching can be computed in polynomial time. Furthermore, the convex hull of edge
incidence vectors of fairly popular matchings has a compact extended formulation.

Key to the above theorem is our characterization of supporting matchings (see Theorem 5).
Any point x ∈ Rm

≥0 such that
∑

e∈δ(v) xe ≤ 1 for each vertex v is a fractional matching
and x is equivalent to a mixed matching (Birkhoff-von Neumann theorem). A fractional
matching x is popular if Π is a popular mixed matching, where Π is any mixed matching that
corresponds to x (see [26]). An edge e is a popular fractional edge if there exists a popular
fractional matching x with xe > 0. Let Ep ⊆ E be the set of popular fractional edges.

Let us call a vertex v stable if v is matched in any (equivalently, every [15]) stable matching
in G. So unstable vertices are those left unmatched in every stable matching.

▶ Theorem 5. Let G = (A ∪B,E) be a marriage instance and let M be a matching in G.
The following three statements are equivalent.
1. M is supporting, i.e., M occurs in the support of some popular mixed matching.
2. No popular mixed matching defeats M , i.e., ∆(Π,M) = 0 ∀ popular mixed matchings Π.
3. M matches all stable vertices and M ⊆ Ep.

▶ Remark 6. Theorem 5 implies that any matching that is non-supporting is defeated by
some popular mixed matching and thus, by some supporting matching (since every popular
mixed matching is a lottery over supporting matchings). So S = {supporting matchings}
satisfies properties (a), (b), and (c) stated earlier. Thus every fairly popular matching is also
supporting.

Observe that the set of popular matchings does not satisfy the property that any matching
outside this set has to be defeated by at least one matching in this set. That is, it is not
the case that every unpopular matching has to lose to one or more popular matchings. For
example, consider the following instance where A = {a0, a1, a2} and B = {b0, b1}.

a0 : b0 ≻ b1 a1 : b0 ≻ b1 a2 : b1

b0 : a0 ≻ a1 b1 : a0 ≻ a1 ≻ a2

Here a0 and b0 are each other’s top choice neighbors and a0’s second choice is b1 and
b0’s second choice is a1 and so on. The above instance has only one popular matching
P = {(a0, b0), (a1, b1)}. The matching M = {(a0, b1), (a1, b0)} is not popular since the
matching N = {(a0, b0), (a2, b1)} is more popular than M ; the vertices a0, b0, a2 prefer N
while a1, b1 prefer M . Observe that the popular matching P is not more popular than M .
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41:4 Fairly Popular Matchings and Optimality

Interestingly, M is a supporting matching since the mixed matching Π = {(M, 1
2 ), (P, 1

2 )}
is popular. Moreover, M is fairly popular since N is the only matching that defeats M and
observe that N leaves the stable vertex a1 unmatched, hence N is not a supporting matching.

A hardness result. As observed above, it is not the case that every unpopular matching
has to be defeated by some popular matching. This motivates the following question: how
easy is it to decide if there exists a popular matching that defeats a given matching M? This
is a natural question when matching M is already in place and we want to replace M with a
popular matching. An ideal matching would be a popular matching that is more popular
than M , if such a matching exists. Interestingly, we can show a “compactness” result. Note
that G may have more than 2n popular matchings [32].

▶ Proposition 7. There is a set K of at most m popular matchings in G such that any
matching defeated by some popular matching in G has to be defeated by a matching in K.

However, deciding if there is a popular matching that defeats a given matching is hard.

▶ Theorem 8. Given a marriage instance G = (A ∪ B,E) and a matching M in G, it is
NP-complete to decide if there exists any popular matching that is more popular than M .

▶ Remark 9. It was mentioned earlier that it is coNP-hard to compute a min-cost matching
that is not defeated by any popular matching. This hardness follows from Theorem 8 by
setting cost(e) = 0 for each e ∈ M and cost(e) = 1 for any e /∈ M .

For any matching M , if there is a popular matching that defeats M then it is natural to
regard M as a very unpopular matching (as there is a popular matching better than M).
However to define a mildly popular matching as one that is undefeated by popular matchings
would not have been very helpful as we know it is coNP-hard to identify such matchings
(by Theorem 8). A natural strengthening of this property would have been to say that a
matching M is mildly popular if and only if M is undefeated by popular mixed matchings.
This is precisely one of the characterizations of supporting matchings (by Theorem 5).

Related results. The min-cost stable matching problem is very well-studied with several
polynomial time algorithms [11, 12, 13, 20, 33] to solve this problem; furthermore, the stable
matching polytope has a simple and elegant linear size formulation in Rm [29, 31]. It is
known that the popular fractional matching polytope of G is half-integral [19].

A min-cost popular matching in G can be computed in O∗(2n/4) time [25]. The in-
tractability of the min-cost popular matching problem has motivated relaxations such as
quasi-popularity [9] and semi-popularity [25]. A matching M is quasi-popular if u(M) ≤ 2.
Computing a min-cost quasi-popular matching is NP-hard; however a quasi-popular matching
of cost at most that of a min-cost popular matching can be computed in polynomial time [9].
A matching M is semi-popular if ∆(M,N) ≥ 0 for at least half the matchings N in G. A
bicriteria approximation algorithm was given in [25] to find an almost semi-popular matching
whose cost is at most twice the cost of a min-cost popular matching.

Our techniques. The characterization of supporting matchings (given in Section 2) uses
the half-integrality of the popular fractional matching polytope in a marriage instance [19]
along with Hall’s theorem. A technical lemma used here (and proved in the appendix) is
based on the existence of certain helpful stable matchings as shown in [17].

Our characterization of supporting matchings implies that a matching M is fairly popular
if and only if M = ∪CMc, where C is a connected component in the subgraph (A ∪B,Ep)
and every matching Mc in this decomposition has a certain witness or dual certificate. We
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show a surjective mapping from the union of sets of stable matchings in two auxiliary graphs
G′

c and G′′
c to the set of such matchings Mc. Let S ′

c (resp., S ′′
c ) be the stable matching

polytope of G′
c (resp., G′′

c ). The convex hull of S ′
c ∪ S ′′

c is an extension of the convex hull
of edge incidence vectors of such matchings Mc. Using Balas’ theorem [2] to formulate the
convex hull of S ′

c ∪ S ′′
c leads to Theorem 4 proved in Section 3.

The LP-machinery for popular matchings was introduced in [26] and used in [19, 22]
to study popular fractional matchings. The graphs G′

c and G′′
c are inspired by instances

from [7, 23, 24] that solve variants of the popular matching problem by modeling them as
stable matching problems in appropriate graphs. Our novelty is in our characterization of
supporting matchings – this leads to a characterization of fairly popular matchings which
allows us to formulate an extension of the fairly popular matching polytope F with poly(m,n)
many constraints, i.e., we show the polytope F has a compact extended formulation.

Our NP-hardness proof (given in Section 4) is based on the NP-hardness (from [10]) of
deciding if there exists a popular matching that contains a given pair of edges.

2 A Characterization of Supporting Matchings

We prove Theorem 5 in this section. Before we characterize supporting matchings, it will be
useful to recall some properties of popular fractional matchings in a marriage instance G.

A fractional matching x in G is a convex combination of matchings (by Birkhoff-von
Neumann theorem). Recall that x is popular if Π is a popular mixed matching, where Π is
any mixed matching that is equivalent to x. Alternatively, as shown in [26], x is popular if
∆(x,M) ≥ 0 for all matchings M where ∆(x,M) =

∑
u∈A∪B voteu(x,M) and voteu(x,M)

is u’s fractional vote (a value in [−1, 1]) for its assignment in x versus its assignment in M .
Section 4 has more details on comparing a matching M with a fractional matching x.

The popular fractional matching polytope of G is the convex hull of all popular fractional
matchings in G. It was shown in [19] that the popular fractional matching polytope of G is
half-integral. The proof of half-integrality uses the graph H = (AH ∪BH , EH) defined below.

The graph H can be regarded as consisting of two copies of G = (A ∪ B,E) (see
Figure 1). The vertex set AH = A0 ∪B1 and BH = B0 ∪A1, where Ai = {ai : a ∈ A} and
Bi = {bi : b ∈ B} for i = 0, 1. The edge set EH of H is described below.

For every (a, b) ∈ E, there are 2 edges (a0, b0) and (a1, b1) in EH .
For every u ∈ A ∪B, there is a single edge (u0, u1) in EH .

AH BH

A0 B0

A1B1
a1

b0

b1

a0

Figure 1 The vertex set of H has 2 copies u0 and u1 of every vertex u in G.

For any u ∈ A ∪B: if u’s preference order in G is v ≻ v′ ≻ · · · ≻ v′′ then ui’s preference
order (for i = 0, 1) in H is vi ≻ v′

i ≻ · · · ≻ v′′
i ≻ u1−i; so ui’s last choice neighbor is u1−i.

The graph H admits a perfect stable matching, i.e., one that matches all vertices. Let S
be any stable matching in G. Consider the matching S′ in H defined as S0 ∪S1 ∪{(u0, u1) : u
is unmatched in S} where Si = {(ai, bi) : (a, b) ∈ S} for i = 0, 1. It is easy to see that S′ is a
perfect stable matching in H.
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41:6 Fairly Popular Matchings and Optimality

It was shown in [19, Theorem 2] that if a marriage instance has a perfect stable matching
then its popular fractional matching polytope is integral. Thus the popular fractional
matching polytope of H is integral.

The function f . For any matching N in G, there is a corresponding matching N ′ in H

defined as {(a0, b0), (a1, b1) : (a, b) ∈ N}∪{(u0, u1) : u is unmatched in N}. This map extends
to fractional matchings, so for any fractional matching x in G, there is a corresponding
fractional matching x′ in H. Similarly, there is a map f from the set of fractional matchings
in H to the set of fractional matchings in G: f(y) = x where x(a,b) = (y(a0,b0) + y(a1,b1))/2
for any (a, b) ∈ E. Observe that f(x′) = x where x′ is the fractional matching in H that
corresponds to x in G. If the fractional matching y is popular in H then the fractional
matching f(y) is popular in G since ∆(f(y), N) = ∆(y,N ′)/2 for any matching N in G.

Note that (a, b) ∈ E is a popular fractional edge in G, i.e., (a, b) ∈ Ep, if and only if
(a0, b0) and (a1, b1) are popular fractional edges in H. Since the popular fractional matching
polytope of H is integral, it follows that (a0, b0) and (a1, b1) are popular edges1 in H. Also,
(u0, u1) is a popular edge in H if and only if u is an unstable vertex in G.

Proof of Theorem 5
We need to show the following three statements are equivalent.
1. M is supporting.
2. No popular mixed matching defeats M .
3. M matches all stable vertices and M ⊆ Ep.

Proof of 1⇒2. Let M be a supporting matching. Then there exists a popular mixed
matching Π = {(M0, p0), . . . , (Mk, pk)} where M = Mi for some i. Suppose there is a popular
mixed matching Π′ that defeats M , i.e., ∆(Π′,M) > 0. Because both Π and Π′ are popular
mixed matchings, we have ∆(Π′,Π) =

∑
j pj · ∆(Π′,Mj) = 0. Since ∆(Π′,Mi) > 0 and

∆(Π′,Π) = 0, there has to exist some matching Mj on which Π has support such that
∆(Π′,Mj) < 0. However this contradicts Π′’s popularity, thus 1⇒2.

Proof of 2⇒3. This part needs the following technical lemma. The proof of Lemma 10
uses the existence of certain helpful stable matchings as shown in [17] and is given in the
appendix. Call an edge e unpopular if there exists no popular matching that contains e.

▶ Lemma 10. Any matching in H that contains an unpopular edge is defeated by some
popular matching in H.

Let M be a matching in G such that either M has an edge not in Ep or some stable vertex
is left unmatched in M . So the matching M ′ = {(a0, b0), (a1, b1) : (a, b) ∈ M} ∪ {(u0, u1) : u
is unmatched in M} in H has an edge that is not a popular edge. Then some popular
matching P in H defeats M ′ (by Lemma 10).

Recall the map f from the set of fractional matchings in H to the set of fractional
matchings in G defined earlier in Section 2. Let r = f(P ). The fractional matching r

is popular in G because P is a popular matching in H. Since ∆(P,M ′) > 0, we have
∆(r,M) > 0. The fractional matching r can be regarded as a mixed matching Π; moreover,
Π is popular since r is popular. Thus there is a popular mixed matching Π that is more
popular than M , a contradiction to M satisfying property 2. Thus 2⇒3.

1 An edge e is popular if there is a popular matching that contains e.
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Proof of 3⇒1. Let e = (a, b) ∈ M . Since M ⊆ Ep, by what was discussed earlier in
Section 2, there are popular matchings M0

e and M1
e in H that contain (a0, b0) and (a1, b1),

respectively. For any vertex u left unmatched in M , it has to be the case that u is an unstable
vertex in G. So there is a popular matching Mu in H that contains (u0, u1).

Suppose M = {e1, . . . , eℓ} and let u1, . . . , ut be left unmatched in M . Consider the 2ℓ+ t

matchings M0
e1
, . . . ,M0

eℓ
,M1

e1
, . . . ,M1

eℓ
and Mu1 , . . . ,Mut in H analogous to the matchings

M0
e ,M

1
e , and Mu defined above. Let H ′ be the graph whose edge set is the multiset of edges

present in these 2ℓ+ t matchings, i.e., multiple copies of an edge are present in this edge set
if this edge is present in more than one matching. The graph H ′ is (2ℓ+ t)-regular since each
of these 2ℓ + t matchings is popular and hence, perfect in H (recall that H has a perfect
stable matching and stable matchings are min-size popular matchings).

Observe that M ′ = {(a0, b0), (a1, b1) : (a, b) ∈ M} ∪ {(u0, u1) : u is unmatched in M}
belongs to H ′. Delete M ′ from H ′. Since M ′ is a perfect matching in H ′, the resulting
graph H ′′ = H ′ \M ′ is (2ℓ+ t− 1)-regular. It follows from Hall’s theorem that H ′′ can be
decomposed into 2ℓ+ t− 1 perfect matchings N ′

1, . . . , N
′
2ℓ+t−1. Thus we have:

IM ′ + IN ′
1

+ · · · + IN ′
2ℓ+t−1

= IM0
e1

+ · · · + IM1
eℓ

+ IMu1
+ · · · + IMut

,

where for any matching N , the vector IN is its edge incidence vector.
The 2ℓ + t matchings M0

e1
, . . . ,M1

eℓ
,Mu1 , . . . ,Mut

(on the right hand side above) are
popular in H. Hence the fractional matching q = (IM0

e1
+ · · · + IMut

)/(2ℓ+ t), which can
also be written as (IM ′ + IN ′

1
+ · · · + IN ′

2ℓ+t−1
)/(2ℓ+ t), is popular in H.

So r = f(q) is a popular fractional matching in G. The mixed matching Π =
{(M, 1

2ℓ+t ), . . .} is equivalent to r and it has support on M . Moreover, Π is a popular
mixed matching since r is a popular fractional matching. Thus M is a supporting matching.
Hence 3⇒1. ◀

3 The Fairly Popular Matching Polytope

We prove Theorem 4 in this section. We will see an LP framework for fairly popular matchings
in Section 3.1. A characterization of fairly popular matchings will be given in Section 3.2. In
Sections 3.3 and 3.4, this characterization will be used to solve the min-cost fairly popular
matching problem in polynomial time.

3.1 An LP Framework
Our input instance is G = (A ∪ B,E). Let Ep ⊆ E be the set of popular fractional edges
in G. The set Ep can be computed in linear time by running the popular edge algorithm
(from [7]) in the instance H described in Section 2.

Let Ẽp = Ep ∪ {(u, u) : u is an unstable vertex in G} and let Gp = (A∪B, Ẽp). We know
from Theorem 5 that every perfect matching Ñ in Gp is a supporting matching N augmented
with self-loops at vertices left unmatched in N ; conversely, every supporting matching N
augmented with self-loops at unmatched vertices is a perfect matching Ñ in Gp.

Let M be any matching in G. In order to decide if there exists a supporting matching
that defeats M , the following edge weight function in Gp will be useful. For any (a, b) ∈ Ep:

let wtM (a, b) =


2 if (a, b) is a blocking edge to M ;
−2 if a and b prefer their partners in M to each other;
0 otherwise.

For any unstable vertex u, let wtM (u, u) = 0 if u is left unmatched in M , else wtM (u, u) = −1.

STACS 2022
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Consider the following linear program (LP1). For any vertex v, let δp(v) be the set of
edges incident to v in Gp.

maximize
∑

e∈Ẽp

wtM (e) · xe (LP1)

subject to∑
e∈δp(v)

xe = 1 ∀ v ∈ A ∪B and xe ≥ 0 ∀ e ∈ Ẽp.

Since the constraint matrix is totally unimodular, (LP1) is integral. This LP computes a
max-weight perfect matching Ñ in Gp (so N is supporting by Theorem 5) with respect to
the edge weight function wtM . The following claim is easy to see.

▷ Claim 11. For any perfect matching Ñ in Gp, we have wtM (Ñ) = ∆(N,M).

Proof. For any edge e = (a, b) ∈ Ep, observe that wtM (e) = votea(b,M) + voteb(a,M) where
for any vertex v and neighbor v′, votev(v′,M) ∈ {±1, 0} is v’s vote for v′ versus its assignment
in M . So votev(v′,M) = 1 if v prefers v′ to its assignment in M , it is −1 if v prefers its
assignment in M to v′, otherwise it is 0. Similarly, for any unstable vertex v, wtM (v, v) is 0
if M leaves v unmatched, else it is −1.

Hence for any perfect matching Ñ in Gp, observe that wtM (Ñ) is the sum of votes of
all vertices, where each vertex votes for its assignment in N versus its assignment in M . In
other words, wtM (Ñ) = ϕ(N,M) − ϕ(M,N) = ∆(N,M). ◁

It follows from Claim 11 that if the optimal value of (LP1) is positive then there exists a
supporting matching that defeats M ; else ∆(N,M) ≤ 0 for all supporting matchings N , so M
is fairly popular. Note that for any stable matching N in G, we have wtM (Ñ) = ∆(N,M) ≥ 0
(due to N ’s popularity in G). So the optimal value of (LP1) has to be at least 0. Hence M
is fairly popular if and only if the optimal value of (LP1) is 0.

Let U ⊆ A ∪ B be the set of unstable vertices in G. The linear program (LP2) is the
dual LP.

minimize
∑

v∈A∪B

αv (LP2)

subject to

αa + αb ≥ wtM (a, b) ∀ (a, b) ∈ Ep and αu ≥ wtM (u, u) ∀u ∈ U.

So M is fairly popular if and only if the optimal value of (LP2) is 0.

3.2 Witnesses for Fairly Popular Matchings
Let C be any connected component in Gp = (A ∪ B, Ẽp). Since all stable matchings in G

match the stable vertices of C among themselves, the number of stable vertices in CA = C∩A
is the same as the number of stable vertices in CB = C ∩B. Hence there are k stable vertices
in CA if and only if there are k stable vertices in CB .

▶ Lemma 12. A matching M is fairly popular if and only if there exists a feasible solution
α to (LP2) such that for every connected component C in Gp, we have

∑
v∈C αv = 0 and

furthermore,
either αv ∈ {0,±2,±4, . . . , ±2k} for all v ∈ C

or αv ∈ {±1,±3,±5, . . . ,±(2k + 1)} for all v ∈ C,
where 2k is the number of stable vertices in C.
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Proof. Let M be a matching such that there exists a feasible solution α to (LP2) with∑
v∈C αv = 0 for every connected component C in Gp. Then

∑
v∈A∪B αv = 0 and so the

optimal value of (LP2) is 0. Hence M is fairly popular.
Conversely, let M be a fairly popular matching in G and let α be an optimal solution to

(LP2). The constraint matrix of (LP2) is totally unimodular, so we can assume that α ∈ Zn.
Let C be any connected component in Gp. We have wtM (Ñc) ≥ 0 where N is any stable

matching in G and Nc = N ∩ (C × C). Hence
∑

v∈C αv ≥ 0. Moreover,
∑

C

∑
v∈C αv =∑

v∈A∪B αv = 0 since M is fairly popular. Hence it has to be the case that
∑

v∈C αv = 0 for
every connected component C in Gp.

Every edge in Ep belongs to some popular fractional matching in G. Let q be the popular
fractional matching that (a, b) ∈ Ep belongs to, where a and b are vertices in C. We have
∆(q,M) = 0 since q is a popular fractional matching, thus q is an optimal solution to (LP1).
Because α is an optimal solution to (LP2), we have αa + αb = wtM (a, b) by complementary
slackness, i.e., every edge in Gp is tight. So αa + αb = wtM (a, b) ∈ {0,±2} for all (a, b) ∈ Ep.
Hence the α-values of all the vertices in C have the same parity.

Suppose every vertex of C is stable. Then we can update the α-values of vertices in
C as follows for any value t: αa = αa − t for all a ∈ CA and αb = αb + t for all b ∈ CB.
The updated α-values are also a feasible solution to (LP2) since the sum αa + αb for any
(a, b) ∈ Ep (where a and b are in C) is unchanged by this update; moreover, we assumed that
C has no unstable vertex, so there is no constraint αu ≥ wtM (u, u) for any u ∈ C.

Moreover, the sum of α-values of all vertices in C is unchanged by this update since
|CA| = |CB | = k (because C has only stable vertices), so

∑
v∈C αv = 0. Thus we can preserve

optimality and shift α-values so as to make αv = 0 for some v ∈ C. All the edges in Gp

are tight, so the matched partners of vertices with α-value 0 also have α-value 0 and all
neighbors in C of vertices with α-value 0 have their α-values in {0,±2}. Their partners have
α-values in {0,±2} and neighbors of these vertices have α-values in {0,±2,±4} and so on.
Since the number of stable vertices in CA (and also in CB) is k, we can conclude that there
exists an optimal solution α to (LP2) such that αv ∈ {0,±2, . . . ,±2k} for all v ∈ C.

Let us now assume that C has at least one unstable vertex. Consider the matching
Ñ = N ∪ {(u, u) : u ∈ U}, where N is any stable matching in G and U is the set of unstable
vertices in G. The matching Ñ is an optimal solution to (LP1). By complementary slackness,
we have αu = wtM (u, u) for every u ∈ U . Hence αu ∈ {0,−1} for every u ∈ U . Since the
α-values of all the vertices in C have the same parity, we have the following two cases.
Case 1. The α-values of all the vertices in C are even. Then αu = 0 for every u ∈ U ∩C. As

argued above (when C had no unstable vertex), this implies that αv ∈ {0,±2, . . . ,±2k}
for all v ∈ C.

Case 2: The α-values of all the vertices in C are odd. Then αu = −1 for every u ∈ U ∩ C.
An analogous argument to the one above shows that αv ∈ {±1,±3, . . . ,±(2k + 1)} for
all v ∈ C. ◀

A characterization of fairly popular matchings. By Lemma 12, a matching M is fairly
popular if and only if M = ∪CMc where for every connected component C in Gp, there
exists γ (this is the vector α in Lemma 12 restricted to vertices in C) such that:
1.

∑
v∈C γv = 0;

2. γa + γb ≥ wtMc
(a, b) for (a, b) ∈ Ep ∩ (C × C) and γu ≥ wtMc

(u, u) for u ∈ U ∩ C;
3. either γv ∈ {0,±2, . . . ,±2k} for all v ∈ C or γv ∈ {±1,±3, . . . ,±(2k + 1)} for all v ∈ C,

where 2k is the number of stable vertices in C.
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Witnesses. We know that M is fairly popular if and only if for each connected component
C in Gp, there exists γ such that Mc = M ∩ (C×C) and γ satisfy properties 1-3 given above.
Such a vector γ will be called a witness of Mc. Let Gc = (C,Ec) where Ec = Ep ∩ (C × C).

▶ Definition 13. Call a matching Mc in Gc valid if it has a witness, i.e., there exists a
vector γ such that Mc and γ satisfy properties 1-3 given above.

Let Fc be the convex hull of edge incidence vectors of all valid matchings in Gc. By
Lemma 12, Fc is the convex hull of F0

c ∪ F1
c where:

F0
c is the convex hull of edge incidence vectors of valid matchings in Gc with a witness γ

such that γv ∈ {0,±2, . . . ,±2k} for all v ∈ C.
F1

c is the convex hull of edge incidence vectors of valid matchings in Gc with a witness γ
such that γv ∈ {±1,±3, . . . ,±(2k + 1)} for all v ∈ C.

3.3 Two Useful Stable Matching Instances
Let C be any connected component in Gp with |C| ≥ 2. We will now describe instances
G′

c and G′′
c such that the stable matching polytope of G′

c (resp., G′′
c ) is an extension of F0

c

(resp., F1
c ). Let S be the set of stable vertices in G and let |S ∩ C| = 2k.

The instance G′
c = (A′

c ∪ B′
c, E′

c). Every a ∈ S∩CA has 2k+1 copies a−k, . . . , a0, . . . , ak

in A′
c. Recall that U is the set of unstable vertices in G. Every a ∈ U ∩ CA has exactly one

copy a0 in A′
c.

Let B′
c = {b̃ : b ∈ CB} ∪ {d1−k(a), . . . , dk(a) : a ∈ S ∩ CA}, where the set {b̃ : b ∈ CB}

is a copy of CB. Along with vertices in {b̃ : b ∈ CB}, the set B′
c contains 2k dummy

vertices d1−k(a), . . . , dk(a) for each a ∈ S ∩ CA. The purpose of the 2k dummy vertices
d1−k(a), . . . , dk(a) is to ensure that only one of a−k, . . . , a−1, a0, a1, . . . , ak is matched to a
non-dummy neighbor in any stable matching in G′

c.
For any a ∈ S∩CA, the set E′

c has the edges (ai−1, di(a)) and (ai, di(a)) for 1−k ≤ i ≤ k.
For every edge (a, b) in Ec, the following edges are in E′

c. Since vertices in U form an
independent set, note that at least one of a, b has to be in S.
1. If only one of a, b is in S then there is only one edge (a0, b̃) in E′

c.
2. If both a and b are in S then there are 2k + 1 edges (ai, b̃) in E′

c where −k ≤ i ≤ k.

Let a’s preference order among its neighbors in Gc be b1 ≻ · · · ≻ br.

If a ∈ U then the preference order of a0 is b̃1 ≻ · · · ≻ b̃r.
Suppose a ∈ S. The vertex a0’s preference order is d0(a) ≻ b̃1 ≻ · · · ≻ b̃r ≻ d1(a). Note
that all of a’s neighbors in Gc are present in a0’s preference list – this will not be so for
ai, where i ̸= 0. Let t1, . . . , ts be a’s neighbors in Gc that are in S. Let a’s preference
order among these neighbors be t1 ≻ · · · ≻ ts.
a−k’s preference order in G′

c is t̃1 ≻ · · · ≻ t̃s ≻ d1−k(a).
For i ∈ {1 −k, . . . , k− 1} \ {0}: ai’s preference order is di(a) ≻ t̃1 ≻ · · · ≻ t̃s ≻ di+1(a).
ak’s preference order in G′

c is dk(a) ≻ t̃1 ≻ · · · ≻ t̃s.
For any i, the preference order of di(a) is ai−1 ≻ ai.

Consider any b ∈ CB . Let b’s preference order for its neighbors in Gc be a ≻ · · · ≻ z. If
b ∈ U then b̃’s preference order for its neighbors in G′

c is a0 ≻ · · · ≻ z0.
Suppose b ∈ S. Let {a′, . . . , z′} ⊆ {a, . . . , z} be the set of b’s neighbors in Gc that are in

S. Let b’s preference order among these neighbors be a′ ≻ · · · ≻ z′. The preference order of
b̃ in G′

c is:

a′
k ≻ · · · ≻ z′

k︸ ︷︷ ︸
level k neighbors

≻ · · · ≻ a′
1 ≻ · · · ≻ z′

1︸ ︷︷ ︸
level 1 neighbors

≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors

≻ · · · ≻ a′
−k ≻ · · · ≻ z′

−k︸ ︷︷ ︸
level −k neighbors
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So copies of all neighbors of b in Gc are present only in level 0. Note that b̃ prefers
subscript/level i neighbors to level j neighbors for any i > j.

Stable matchings in G′
c. For any valid matching Mc in Gc with a witness γ such that

γv ∈ {0,±2, . . . ,±2k} for all v ∈ C, define M ′
c in G′

c as follows. For every (a, b) ∈ Mc:
include the edge (ai, b̃) in M ′

c where γa = −2i;
for j < i and a ∈ S do: add the edge (aj , dj+1(a)) to M ′

c;
for j > i and a ∈ S do: add the edge (aj , dj(a)) to M ′

c.

We will show in Lemma 14 that M ′
c is a stable matching in G′

c. Conversely, let M ′
c be

any stable matching in G′
c. Let Mc be the preimage of M ′

c, i.e., Mc is obtained by deleting
all edges in M ′

c that are incident to dummy vertices and replacing any edge (ai, b̃) ∈ E′
c with

(a, b) ∈ Ec. Note that Mc is a matching in Gc because all dummy vertices (being top choice
neighbors) have to be matched in any stable matching in G′

c and so at most one of the ai’s
can be matched to a non-dummy neighbor in M ′

c.
We will show in Lemma 14 that Mc is a valid matching in Gc. The proof of Lemma 14

uses ideas from [23, 24] and is given in the appendix.

▶ Lemma 14. Mc is a valid matching in Gc with a witness γ such that γv ∈ {0,±2, . . . ,±2k}
for all v ∈ C if and only if M ′

c is a stable matching in G′
c.

The instance G′′
c = (A′′

c ∪ B′′
c , E′′

c ). Every a ∈ S ∩ CA has 2k + 2 copies a−k, . . . , a−1,
a0, . . . , ak+1 in A′′

c . Every a ∈ U ∩ CA has k + 2 copies a−k, . . . , a−1, a0, a1 in A′′
c . Let

B′′
c = {b̃ : b ∈ CB}∪{d1−k(a), . . . , dk+1(a) : a ∈ S∩CA}∪{d1−k(a), . . . , d1(a) : a ∈ U ∩CA}.

As before, the set {b̃ : b ∈ CB} is a copy of the set CB . Along with vertices in {b̃ : b ∈ CB},
the set B′′

c contains 2k + 1 dummy vertices for each a ∈ S ∩ CA and k + 1 dummy vertices
for each a ∈ U ∩ CA. For each edge (a, b) ∈ Ec, the following edges are in E′′

c :
1. If a ∈ U (so b ∈ S) then there are k + 2 edges (ai, b̃) in E′′

c where −k ≤ i ≤ 1.
2. If b ∈ U (so a ∈ S) then there are k + 2 edges (ai, b̃) in E′′

c where 0 ≤ i ≤ k + 1.
3. If both a and b are in S then there are 2k + 2 edges (ai, b̃) in E′′

c where −k ≤ i ≤ k + 1.

Let a ∈ CA. The set E′′
c also has the edges (ai−1, di(a)) and (ai, di(a)) for 1−k ≤ i ≤ k+1

if a ∈ S and for 1 − k ≤ i ≤ 1 if a ∈ U . For any i, the preference order of di(a) is ai−1 ≻ ai.
Let a’s preference order among its neighbors in Gc be b1 ≻ · · · ≻ br. Let t1, . . . , ts be

a’s neighbors in Gc that are in S and let t1 ≻ · · · ≻ ts be a’s preference order among these
neighbors.

a−k’s preference order in G′′
c is t̃1 ≻ · · · ≻ t̃s ≻ d1−k(a).

ai’s preference order is di(a) ≻ t̃1 ≻ · · · ≻ t̃s ≻ di+1(a) for 1 − k ≤ i ≤ −1.
If a ∈ U then all of a’s neighbors are in S and a0’s preference order is d0(a) ≻ b̃1 ≻ · · · ≻
b̃r ≻ d1(a) and a1’s preference order is d1(a) ≻ b̃1 ≻ · · · ≻ b̃r.
If a ∈ S then ai’s preference order is di(a) ≻ b̃1 ≻ · · · ≻ b̃r ≻ di+1(a) for 0 ≤ i ≤ k and
ak+1’s preference order is dk+1(a) ≻ b̃1 ≻ · · · ≻ b̃r.

Consider any b ∈ CB . Let b’s preference order for its neighbors in Gc be a ≻ · · · ≻ z. If
b ∈ U then a, . . . , z are in S and b̃’s preference order among its neighbors in G′′

c is:

ak+1 ≻ · · · ≻ zk+1︸ ︷︷ ︸
level k + 1 neighbors

≻ ak ≻ · · · ≻ zk︸ ︷︷ ︸
level k neighbors

≻ · · · ≻ a1 ≻ · · · ≻ z1︸ ︷︷ ︸
level 1 neighbors

≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors
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Suppose b ∈ S. Let a′, . . . , z′ be b’s neighbors in Gc that are in S and let b’s preference order
among these neighbors be a′ ≻ · · · ≻ z′. Then the preference order of b̃ in G′′

c is:

a′
k+1 ≻ · · · ≻ z′

k+1︸ ︷︷ ︸
level k + 1 neighbors

≻ · · · ≻ a′
2 ≻ · · · ≻ z′

2︸ ︷︷ ︸
level 2 neighbors

≻ a1 ≻ · · · ≻ z1︸ ︷︷ ︸
level 1 neighbors

≻ · · · ≻ a−k ≻ · · · ≻ z−k︸ ︷︷ ︸
level −k neighbors

Note that copies of all neighbors of b in Gc are present in level i only for −k ≤ i ≤ 1.

Stable matchings in G′′
c . For any valid matching Mc in Gc with a witness γ such that

γv ∈ {±1,±3, . . . ,±(2k+1)} for all v ∈ C, define M ′′
c in G′′

c as follows. For every (a, b) ∈ Mc:

include the edge (ai, b̃) in M ′′
c where γa = −(2i− 1);

for j < i do: add the edge (aj , dj+1(a)) to M ′′
c ;

for j > i do: add the edge (aj , dj(a)) to M ′′
c .

We will show that M ′′
c is a stable matching in G′′

c . Conversely, let M ′′
c be any stable

matching in G′′
c . As before, let Mc be the preimage of M ′′

c ; observe that Mc is a matching
in Gc. Lemma 15 (proved in the appendix) shows that Mc is a valid matching in Gc.

▶ Lemma 15. Mc is a valid matching in Gc with a witness γ such that γv ∈ {±1,±3, . . . ,
±(2k + 1)} for all v ∈ C if and only if M ′′

c is a stable matching in G′′
c .

3.4 A compact extended formulation
For any vertex v in G′

c, let δ′
c(v) be the set of edges incident to v in G′

c and for any neighbor u
of v, let {w ≻v u} be the set of all neighbors of v in G′

c that v prefers to u. Let T ′
c be the set

of vertices in G′
c matched in any stable matching in this graph. Consider constraints (1)-(3)

in variables ye where e ∈ E′
c and λc (this variable will be defined later).∑

w: w≻ai
b̃

y(ai,w) +
∑

s: s≻b̃ai

y(s,b̃) + y(ai,b̃) ≥ λc ∀(ai, b̃) ∈ E′
c (1)

∑
e∈δ′

c(v)

ye ≤ λc ∀v ∈ A′
c ∪B′

c (2)

∑
e∈δ′

c(v)

ye = λc ∀v ∈ T ′
c and ye ≥ 0 ∀e ∈ E′

c. (3)

Constraints (1)-(3) with 1 replacing λc (wherever λc occurs) describe the stable matching
polytope S ′

c of G′
c (by [29]). The stability constraint for any edge (ai, b̃) in E′

c is given by (1)
with 1 replacing λc. The stability constraint for edge (ai−1, di(a)) (resp., (ai, di(a))) is given
by

∑
e∈δ′

c(v) ye = 1 with v = ai−1 (resp., v = di(a)). Note that both ai−1 and di(a) are in T ′
c.

By Lemma 14, the constraints formulating S ′
c along with y(a,b) =

∑
i y(ai,b̃) for (a, b) ∈ Ec

describe an extension of the convex hull F0
c of the edge incidence vectors of valid matchings

in Gc with a witness γ such that γv ∈ {0,±2, . . . ,±2k} for all v ∈ C.
For any vertex v in G′′

c , let δ′′
c (v) be the set of edges incident to v in G′′

c and for any
neighbor u of v, let {w ≻v u} be the set of all neighbors of v in G′′

c that v prefers to u. Let
T ′′

c be the set of vertices in G′′
c matched in any stable matching in this graph. Consider

constraints (4)-(6) in variables ze where e ∈ E′′
c and λc.∑

w: w≻ai
b̃

z(ai,w) +
∑

s: s≻b̃ai

z(s,b̃) + z(ai,b̃) ≥ 1 − λc ∀(ai, b̃) ∈ E′′
c (4)

∑
e∈δ′′

c (v)

ze ≤ 1 − λc ∀v ∈ A′′
c ∪B′′

c (5)

∑
e∈δ′′

c (v)

ze = 1 − λc ∀v ∈ T ′′
c and ze ≥ 0 ∀e ∈ E′′

c (6)
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Constraints (4)–(6) with 1 replacing 1 − λc (wherever 1 − λc occurs) describe the stable
matching polytope S ′′

c of G′′
c (by [29]). The stability constraint for (ai, b̃) ∈ E′′

c is given by (4)
with 1 replacing 1 − λc; the stability constraint for edge (ai−1, di(a)) (resp., (ai, di(a))) is
given by

∑
e∈δ′′

c (v) ze = 1 with v = ai−1 (resp., v = di(a)). Both ai−1 and di(a) are in T ′′
c .

By Lemma 15, the constraints formulating S ′′
c along with z(a,b) =

∑
i z(ai,b̃) for (a, b) ∈ Ec

describe an extension of the convex hull F1
c of the edge incidence vectors of valid matchings

in Gc with a witness γ such that γv ∈ {±1,±3, . . . ,±(2k + 1)} for all v ∈ C.
We know from Lemma 12 that any valid matching in C has a witness γ where either

(i) γv ∈ {0, . . . ,±2k} for all v ∈ C or (ii) γv ∈ {±1, . . . ,±(2k + 1)} for all v ∈ C. So the
convex hull of F0

c ∪ F1
c is the valid matching polytope Fc of Gc. Consider constraints (7)-(8).

x(a,b) =
∑

i

y(ai,b̃) +
∑

i

z(ai,b̃) ∀(a, b) ∈ Ec (7)

xe = 0 ∀e ∈ (E ∩ (C × C)) \ Ec and 0 ≤ λc ≤ 1 (8)

The summations over i in constraint (7) are over appropriate i, i.e., if a and b are in S

then x(a,b) =
∑k

i=−k y(ai,b̃) +
∑k+1

i=−k z(ai,b̃). If a is in U then x(a,b) = y(a0,b̃) +
∑1

i=−k z(ai,b̃)

and if b is in U then x(a,b) = y(a0,b̃) +
∑k+1

i=0 z(ai,b̃).
Using Balas’ theorem [2] to formulate an extension of the convex hull of F0

c ∪F1
c introduces

the variable λc ∈ [0, 1] and we get constraints (1)-(8) as given above. Thus the polytope
defined by (1)-(8) is an extension of the polytope Fc. Hence Theorem 16 follows.

▶ Theorem 16. The polytope Pc defined by constraints (1)-(8) is an extension of the convex
hull Fc of edge incidence vectors of valid matchings in Gc.

For any two distinct connected components C and C ′ in Gp, the variables in the formu-
lation of Pc and those in the formulation of Pc′ are distinct. By listing the constraints in
the formulation of Pc over all the non-trivial connected components C in Gp (i.e., |C| ≥ 2)
along with xe = 0 for e ∈ E \ ∪CEc (where the union is over all the non-trivial connected
components C in Gp), we obtain a compact extended formulation for the fairly popular
matching polytope of G. Linear programming on this formulation finds a min-cost fairly
popular matching in G in polynomial time. This proves Theorem 4 stated in Section 1.

4 A Hardness Result

We prove Proposition 7 and Theorem 8 in this section. Let MG be the matching polytope
of the bipartite graph G = (A ∪ B,E) where |A ∪ B| = n and |E| = m. The polytope
MG ⊆ Rm is described by the following constraints:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ A ∪B and xe ≥ 0 ∀e ∈ E.

For any vertex v, δ(v) is the set of edges in E incident to v. Any point x ∈ MG is a
fractional matching. Let Ẽ = E ∪ {(v, v) : v ∈ A ∪B} and let G̃ = (A ∪B, Ẽ). That is, G̃
has self-loops (v, v) for all v ∈ A∪B. The interpretation is that every vertex v is its own last
choice neighbor. So we can regard any fractional matching x as a perfect fractional matching
in G̃ by setting x(v,v) = 1 −

∑
e∈δ(v) xe for all vertices v.

For any matching M , recall the edge weight function wtM defined in Section 3. This
was defined in the graph Gp = (A ∪ B, Ẽp) and it easily extends (by the same definition)
to G̃ = (A ∪ B, Ẽ). For any edge e ∈ E, wtM (e) ∈ {0,±2} and for any self-loop (v, v),
wtM (v, v) ∈ {0,−1}. For any fractional matching x:

∆(x,M) = wtM (x) =
∑
e∈Ẽ

wtM (e) · xe.
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As shown in [26], this is exactly the same as defining ∆(x,M) = ∆(Π,M) where Π is
any mixed matching that is equivalent to x. Any popular matching M satisfies ∆(x,M) ≤ 0
for all x ∈ MG. Note that the constraint ∆(x,M) ≤ 0 involves m+ n variables xe for e ∈ Ẽ.
By substituting x(v,v) = 1 −

∑
e∈δ(v) xe for every vertex v, this constraint involves only the

m variables xe for e ∈ E.

▶ Observation 17. Let X ⊆ Rm be the convex hull of the edge incidence vectors of matchings
that are not defeated by any popular matching. The polytope X is a face of MG.

Proof. Every x ∈ MG satisfies ∆(x,N) ≤ 0 for all popular matchings N . So the intersection
of MG with the constraints ∆(x,N) = 0 for all popular matchings N is a face Q of MG.
The polytope Q is integral and every integral point in Q is the edge incidence vector of a
matching not defeated by any popular matching. Moreover, the edge incidence vector of
every matching that is not defeated by any popular matching is in Q. Hence Q = X . ◀

The following constraints in the variables xe for e ∈ E describe the polytope X :

∆(x,N) = 0 ∀ popular matchings N,
∑

e∈δ(v)

xe ≤ 1 ∀ v ∈ A∪B, and xe ≥ 0 ∀ e ∈ E.

There are exponentially many constraints here. However, X is a polytope in Rm and so
at most m of the tight constraints ∆(x,N) = 0 are necessary and the rest are redundant.
Thus there exist at most k ≤ m popular matchings N1, . . . , Nk such that if a matching M
satisfies ∆(M,Ni) = 0 for 1 ≤ i ≤ k then the edge incidence vector of M belongs to X , i.e.,
such a matching M is not defeated by any popular matching. Hence Proposition 7 follows.

The NP-hardness proof. We now prove Theorem 8 which states that in spite of the
compactness result given by Proposition 7, it is NP-complete to decide if there exists a
popular matching that defeats a given matching M . The reduction is from 1-in-3 SAT. This
is the set of 3CNF formulas where each clause has 3 literals, none negated, such that there is
a satisfying assignment that makes exactly one literal true in each clause.

Given such an input formula ψ, to decide if ψ is 1-in-3 satisfiable is NP-complete [30].
Given ψ, as done in [10], we will construct an instance G described below. The graph G has
several gadgets. We are interested in two particular gadgets illustrated in Figure 2. These
are on the 8 vertices: a0, z

′, u0, u
′
0 ∈ A and b0, z, v0, v

′
0 ∈ B.
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Figure 2 The numbers on edges denote preferences: 1 is top choice, 2 is second choice, and 3 is
third choice; ∗ denotes a number > 1. The red edges are present in all stable matchings and the
blue edges are present in all max-size popular matchings in G.

The top choices of z and z′ are u0 and v0, respectively. However (z, u0) and (z′, v0) (the
dashed edges in Figure 2) do not belong to any popular matching. The vertices z, z′ are
adjacent to many vertices in the rest of the graph: we refer to [10] for these details – it is
these vertices in the rest of the graph that represent the given formula ψ.
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Let P be any popular matching in G. It was shown in [10] that P contains either
(a0, b0) or the pair (a0, z), (z′, b0). Also P contains either the pair (u0, v0), (u′

0, v
′
0) or the

pair (u0, v
′
0), (u′

0, v0). No other edge incident to any of these 8 vertices in Figure 2 belongs to
any popular matching in G. The following hardness result [10, Theorem 4.2] will be crucial.

▶ Theorem 18 ([10]). The instance G has a popular matching that contains the three edges
(u0, v

′
0), (u′

0, v0), and (a0, b0) if and only if ψ is 1-in-3 satisfiable.

We will use the above instance G = (A ∪B,E) to show the NP-hardness of deciding if
there exists a popular matching that defeats a given matching M . Let M = M0 ∪M1 where
M1 = {(a0, b0), (u0, z), (z′, v0), (u′

0, v
′
0)} and M0 is any stable matching in the subgraph

induced on (A ∪B) \ S, where S = {a0, b0, z
′, z, u0, v0, u

′
0, v

′
0}.

▶ Lemma 19. There exists a popular matching in G that defeats M if and only if ψ is 1-in-3
satisfiable.

Proof. Let G1 be the subgraph of G induced on S and let G0 be the subgraph induced on
(A ∪B) \ S, where S = {a0, b0, z, z

′, u0, v0, u1, v1}.

The ⇒ direction. Suppose there is a popular matching N that is more popular than M .
No edge between G0 and G1 belongs to any popular matching [10], hence N = N0 ∪ N1,
where Ni is within Gi, for i = 0, 1. Since N is popular in G, the matchings N0 and N1 have
to be popular in G0 and G1, respectively.

We have ∆(N,M) = ∆(N0,M0) + ∆(N1,M1). Since ∆(N,M) > 0 and ∆(N0,M0) = 0
(because M0 and N0 are popular matchings in G0), it follows that ∆(N1,M1) > 0.

The graph G1 has three popular matchings and only one of them defeats M1. This
is the matching {(u0, v

′
0), (u′

0, v0), (a0, b0)} that leaves z, z′ unmatched. It is easy to check
that the other popular matchings in G1 – these are P = {(a0, b0), (u0, v0), (u′

0, v
′
0)} and

P ′ = {(a0, z), (z′, b0), (u0, v
′
0), (u′

0, v0)} – do not defeat M1.
So N1 = {(u0, v

′
0), (u′

0, v0), (a0, b0)}. We have ∆(N1,M1) = 4 − 2 = 2 since u0, v0, u
′
0, v

′
0

prefer N1 to M1 while z, z′ prefer M1 to N1 and a0, b0 are indifferent between N1 and M1.
Since N1 ⊆ N , it follows that N is a popular matching in G that contains (u0, v

′
0), (u′

0, v0),
and (a0, b0). This means that ψ is 1-in-3 satisfiable (by Theorem 18).

The ⇐ direction. Suppose ψ is 1-in-3 satisfiable. Then we know from Theorem 18 that
there is a popular matching P that contains the edges (u0, v

′
0), (u′

0, v0), (a0, b0). We claim
that ∆(P,M) > 0. Let us partition P into P0 ∪ P1 where P1 = {(u0, v

′
0), (u′

0, v0), (a0, b0)}
and P0 = P \ P1. We have ∆(P,M) = ∆(P1,M1) + ∆(P0,M0).

Observe that ∆(P1,M1) = 4 − 2 = 2. Moreover, ∆(P0,M0) = 0 by the popularity of P0
and M0 in G0. So ∆(P,M) = 2, i.e., the popular matching P defeats M . ◀

Lemma 19 shows that it is NP-hard to decide if there exists a popular matching that
defeats a given matching M . This problem is NP-complete since a “yes”-instance M has a
popular matching (which is easy to verify [4, 18]) that defeats it. Thus Theorem 8 stated in
Section 1 follows.

5 Conclusions

We introduced a relaxation of popular matchings called fairly popular matchings in a marriage
instance G = (A ∪B,E). Unlike popular matchings, fairly popular matchings may lose to
other matchings; however any matching N that defeats a fairly popular matching M does
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not belong to the support of any popular mixed matching, thus such a matching N can be
considered to be quite far from being popular. So there is no “viable alternative” that defeats
a fairly popular matching. Hence fairly popular matchings are a meaningful generalization of
popular matchings.

We characterized matchings that belong to the support of popular mixed matchings. We
showed that a matching M belongs to the support of a popular mixed matching if and only if
M is undefeated by popular mixed matchings. We also gave a combinatorial characterization
of such matchings. This allowed us to characterize fairly popular matchings in terms of
witnesses and to use the stable matching machinery to formulate a compact extension of
the fairly popular matching polytope. Thus the min-cost fairly popular matching problem
can be solved in polynomial time. We also showed that it is NP-complete to decide if there
exists a popular matching that is more popular than a given matching M .
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A Appendix: Missing Proofs

We prove Lemma 10 here. Before we prove this lemma, we discuss some preliminaries that
will be used in this proof. Let G̃ = (A ∪B, Ẽ) be the graph G augmented with self-loops at
all vertices. So each vertex v regards itself as its last choice neighbor and any matching M
in G becomes a perfect matching M̃ in G̃ by augmenting M with self-loops at vertices left
unmatched in M .

For any matching M , recall the edge weight function wtM defined at the start of Section 3
in Gp. We now extend this edge weight function to all edges e in G, so wtM (e) ∈ {±2, 0}
where wtM (e) = 2 if e blocks M and so on. For any vertex v, let wtM (v, v) = 0 if v is left
unmatched in M , else wtM (v, v) = −1.

For any matching N in G, we have wtM (Ñ) = ∆(N,M). So M is popular in G if and
only if wtM (Ñ) ≤ 0 for all matchings N . Since wtM (M̃) = 0, the matching M is popular
in G if and only if the optimal value of (LP3) is 0. The linear program (LP4) is the dual LP.

▶ Theorem 20 ([22, 26]). A matching M in G = (A ∪B,E) is popular if and only if there
exists y ∈ {0,±1}n such that

∑
v∈A∪B yv = 0 along with ya +yb ≥ wtM (a, b) for all (a, b) ∈ E

and yv ≥ wtM (v, v) for all v ∈ A ∪B.
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max
∑
e∈Ẽ

wtM (e) · xe (LP3)

s.t.
∑

e∈δ(v)∪{(v,v)}

xe = 1 ∀ v ∈ A ∪B

xe ≥ 0 ∀ e ∈ Ẽ.

min
∑

v∈A∪B

yv (LP4)

s.t. ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E

yv ≥ wtM (v, v) ∀ v ∈ A ∪B.

We will call a vector y, as given in Theorem 20, a dual certificate for popular matching M .
Note that 0 is a dual certificate for any stable matching since a matching M is stable if and
only if wtM (e) ≤ 0 for all edges e.

We need to show in Lemma 10 that any matching in H = (AH ∪BH , EH) (see Figure 1) not
defeated by any popular matching contains only popular edges. Every popular matching in H
is perfect (since H has a perfect stable matching). As shown in [7], in such a case, there is a
surjective map from the set of stable matchings in an auxiliary instance H ′ = (A′

H ∪B′
H , E

′
H)

to the set of popular matchings in H. The graph H ′ is defined as follows:
A′

H = {a, a′ : a ∈ AH}. So every a ∈ AH has two copies a and a′ in A′
H .

B′
H = BH ∪ {d(a) : a ∈ AH}. So for every a ∈ AH , there is a dummy vertex d(a) in B′

H .

The vertex d(a) has only two neighbors a, a′ and d(a) prefers a to a′. Every (a, b) ∈ EH

has two copies (a, b) and (a′, b) in E′
H . For any a ∈ AH , if a’s preference order in H is

b1 ≻ · · · ≻ br then a’s preference order in H ′ is b1 ≻ · · · ≻ br ≻ d(a) and a′’s preference order
in H ′ is d(a) ≻ b1 ≻ · · · ≻ br.

Let b ∈ BH . If b’s preference order in H is a1 ≻ · · · ≻ ak then b’s preference order in H ′

is a′
1 ≻ · · · ≻ a′

k ≻ a1 ≻ · · · ≻ ak, i.e., all its primed neighbors followed by all its unprimed
neighbors, where the order among primed/unprimed neighbors is b’s original order in H.

Let M ′ be any stable matching in H ′. Then M ′ maps to the following matching in H:
M = {(a, b) : (a, b) or (a′, b) is in M ′}.

For each a ∈ AH , note that the stable matching M ′ has to match one of a, a′ to d(a)
since d(a) is the top choice neighbor for a′. The matching M is popular in H since it has
the following witness y ∈ {±1}nH : (where |AH ∪BH | = nH)
1. for a ∈ AH : if (a′, d(a)) ∈ M ′ then ya = 1; else ya = −1.
2. for b ∈ BH : if b’s partner in M ′ is a primed vertex (such as a′) then yb = 1; else yb = −1.
We refer to [7, 19] for the details that y is a feasible solution to (LP2) and

∑
v∈AH ∪BH

yv = 0.

Proof of Lemma 10. Let N be a matching in H that contains an unpopular edge (s, t).
We will now show there is a popular matching in H that defeats N . Call an edge e stable if
there is a stable matching in H that contains e. The following result on stable matchings in
a marriage instance will be useful to us.

▶ Proposition 21 ([17, proof of Lemma 2.5.1]). Suppose (s, t0) and (s, t1) are stable edges
while (s, t) is not a stable edge where t1 ≻s t ≻s t0. Then there is a stable matching M where
both s and t prefer their respective partners in M to each other.

Let tℓ be the partner of s in the AH -optimal stable matching Mℓ in H and let tr be the
partner of s in the BH -optimal stable matching Mr in H.

Case 1. Suppose tℓ ≻s t ≻s tr. Since the edge (s, t) is not stable while (s, tℓ) and (s, tr)
are stable edges, there is a stable matching M in H such that both s and t prefer
their partners in M to each other (by Proposition 21). So wtM (s, t) = −2. This
makes the edge (s, t) slack wrt to the popular matching M and its witness y = 0, i.e.,
wtM (s, t) = −2 < 0 = ys + yt.
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Since y = 0 is a feasible solution to (LP2), wtM (Ñ) =
∑

e∈Ñ wtM (e) <
∑

v yv = 0 (since
wtM (s, t) < ys + yt). Thus ∆(N,M) < 0, i.e., the stable matching M defeats N .

Case 2. Suppose t ≻s tℓ. That is, s prefers t to its most preferred stable partner tℓ in H.
Consider the following two stable matchings in H ′ = (A′

H ∪B′
H , E

′
H):

M ′
r = {(a, b) : (a, b) ∈ Mr} ∪ {(a′, d(a)) : a ∈ AH}

M ′
ℓ = {(a′, b) : (a, b) ∈ Mℓ} ∪ {(a, d(a)) : a ∈ AH}.

The vertex s′ is matched to its top choice neighbor d(s) in M ′
r and it is matched to tℓ in

M ′
ℓ. Recall that d(s) ≻s′ t ≻s′ tℓ. Since (s, t) is not a popular edge in H, the edge (s′, t)

is not stable in H ′. We know that (s′, d(s)) and (s′, tℓ) are stable edges in H ′, hence
there exists a stable matching M ′ in H ′ such that both s′ and t prefer their respective
partners in M ′ to each other (by Proposition 21). Observe that t’s partner in M ′ has to
be a primed neighbor (call it v′) since t cannot prefer an unprimed neighbor to s′. So M ′

contains edges (s′, u) and (v′, t) where s′ and t prefer their respective partners (u and v′)
to each other.
Let the stable matching M ′ in H ′ map to the popular matching M in H; let y ∈ {±1}nH

be M ’s witness as described earlier. There are two subcases here.
The vertex u = d(s). So M ′ contains (s, b) (for some b ∈ BH) and (v′, t) where t prefers
v′ to s′, i.e., t prefers v to s. The edges (s, b), (v, t) are in M , where wtM (s, t) ≤ 0. We
have ys = yt = 1 (by 1. and 2. stated earlier). Hence wtM (s, t) ≤ 0 < 2 = ys + yt.
The vertex u ̸= d(s). So M ′ contains (s′, u) and (v′, t) where s prefers u to t and
similarly, t prefers v to s. The edges (s, u), (v, t) are in M and wtM (s, t) = −2. We have
ys = −1 and yt = 1 (by 1. and 2. stated earlier). Hence wtM (s, t) = −2 < 0 = ys + yt.

So in both cases, the edge (s, t) is slack wrt M and its witness y. So complementary
slackness (the same argument as given in case 1) implies that ∆(N,M) < 0, i.e., the popular
matching M defeats N .

Case 3. The last case is tr ≻s t. So s prefers its least preferred stable partner to t. If t also
prefers its partner in Mr to s then Mr is a stable matching where both s and t prefer
their respective partners to each other. This implies that Mr defeats N .
Else t prefers s to its partner in Mr, i.e., t prefers s to its most preferred stable partner.
Observe that this is exactly the same as case 2 with the roles of s and t swapped. Thus
an analogous argument shows that H has a popular matching that defeats N .

Proof of Lemma 14. Let Mc be a valid matching in Gc with a witness γ such that
γv ∈ {0,±2, . . . ,±2k} for all v ∈ C. Recall that S (resp., U) is the set of stable (resp.,
unstable) vertices in G. We claim that all vertices in S ∩C are matched in Mc and no vertex
in U ∩ C is matched in Mc.

Consider (LP1) with Mc replacing M and Ẽc = Ẽp ∩ (C ×C) replacing Ẽp. The optimal
value of this LP is 0 since there exists a dual feasible solution γ with

∑
u∈C γu = 0 (recall

that γ obeys properties 1-3). Let N be a stable matching in G and let Nc = N ∩ (C × C).
If Mc leaves a vertex v ∈ S ∩ C unmatched then ∆(Nc,Mc) > 0 (as shown in [18]), a
contradiction to the optimal value of (LP1) being 0. Thus Mc matches all vertices in S ∩ C.
Since the self-loop (u, u) ∈ Ñc for any u ∈ U ∩ C, the constraint γu ≥ wtMc(u, u) is tight
(by complementary slackness). Because wtMc

(u, u) ∈ {0,−1} and γu is even, it follows that
γu = wtMc

(u, u) = 0, i.e., u is left unmatched in Mc.
We need to show there is no blocking edge with respect to M ′

c and this proof is similar to
a proof in [24] on popular perfect matchings. Any dummy vertex di(a) is matched either to
its top choice neighbor ai−1 or to its second choice neighbor ai; in the latter case, its top
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choice neighbor ai−1 is matched to a more preferred neighbor. Thus no blocking edge is
incident to any dummy vertex. Let us now show that no blocking edge is incident to any
other vertex in G′

c. Observe that M̃c is an optimal solution to (LP1), so for any (p, q) ∈ Mc,
we have γp + γq = wtMc(p, q) = 0 (by complementary slackness).

Let a ∈ U ∩ CA and let (a, b) ∈ Ec. We have γa = 0 and γa + γb ≥ wtMc
(a, b) ≥ 0. So

γb ≥ 0. If γb = 0 then wtMc(a, b) = 0, i.e., (z0, b̃) ∈ M ′
c for some neighbor z that b prefers

to a. Else γb > 0 and so (zi, b̃) ∈ M ′
c for some neighbor z with −2i = γz = −γb < 0, so i > 0,

i.e., b̃ is matched to a neighbor in G′
c that it prefers to a0. Hence (a0, b̃) does not block M ′

c.
Let us now show there is no blocking edge incident to aℓ, where a ∈ S∩CA and −k ≤ ℓ ≤ k.

Suppose γa = −2i and (a,w) ∈ Mc. Then (ai, w̃) ∈ M ′
c and all of ai+1, . . . , ak are matched

to their respective top choice neighbors di+1(a), . . . , dk(a). Hence there is no blocking edge
incident to aj for j ≥ i+ 1.

Let (a, b) ∈ Ec. If b ∈ U then γb = 0 and γa + γb ≥ wtMc(a, b) ≥ 0. So γa ≥ 0. If γa = 0
then wtMc

(a, b) = 0, i.e., (a0, w̃) ∈ M ′
c for some neighbor w that a prefers to b. Else γa > 0

which implies that i < 0 and so (a0, d0(a)) ∈ Mc. In either case, a0 prefers its partner in M ′
c

to b̃, so (a0, b̃) does not block M ′
c.

Let b ∈ S. Since γa + γb ≥ wtMc
(a, b) ≥ −2, it follows that γb ≥ 2(i − 1). Thus

(zj , b̃) ∈ M ′
c where j ≥ i − 1. Hence b̃ prefers its partner in M ′

c to all aj , where j ≤ i − 2.
We now show that neither (ai−1, b̃) nor (ai, b̃) blocks M ′

c.
If j ≥ i+1 then b̃ prefers its partner zj in M ′

c to both ai and ai−1. Hence neither (ai−1, b̃)
nor (ai, b̃) blocks M ′

c.
If j = i then γa + γb = −2i+ 2i = 0 ≥ wtMc(a, b). Thus either (ai, b̃) ∈ M ′

c or one of ai, b̃

prefers its partner in M ′
c to the other. Hence neither (ai, b̃) nor (ai−1, b̃) blocks M ′

c in
this case as well.
If j = i− 1 then γa + γb = −2i+ 2(i− 1) = −2 ≥ wtMc

(a, b). So wtMc
(a, b) = −2, i.e.,

both a and b prefer their partners in Mc to each other. Hence b̃ prefers zi−1 to ai−1 and
similarly, ai prefers w̃ to b̃. Thus in this case also neither (ai−1, b̃) nor (ai, b̃) blocks M ′

c.

We prove the converse now. Let N be any stable matching in G and let Nc = N ∩ (C×C).
It is easy to check that N ′

c = {(a0, b̃) : (a, b) ∈ Nc} ∪ {(ai, di+1(a)) : a ∈ S ∩ CA and i < 0}
∪{(ai, di(a)) : a ∈ S ∩ CA and i > 0} is a stable matching in G′

c. The set of vertices left
unmatched in N ′

c is {a0, b̃ : a, b ∈ U ∩C}. Hence the stable matching M ′
c matches all vertices

of G′
c except the vertices a0, b̃, where a, b ∈ U ∩ C.

In order to prove that Mc is valid in Gc, we define γ as follows:
for every vertex u ∈ U ∩ C, let γu = 0;
for every edge (pi, q̃) ∈ M ′

c, let γp = −2i and γq = 2i.

Since −k ≤ i ≤ k, it immediately follows that γv ∈ {0,±2, . . . ,±2k} ∀v ∈ C. For any
u ∈ U ∩ C (each such vertex is unmatched in Mc), we have γu = 0 = wtMc

(u, u). We also
have

∑
v∈C γv =

∑
(p,q)∈Mc

(γp + γq) = 0.
Thus we are left to show the constraints γa + γb ≥ wtMc

(a, b) for all (a, b) ∈ Ec. Then it
will follow that properties 1-3 hold and thus Mc is valid in Gc with γ as a witness. Suppose
γa = −2i and γb = 2j. We need to show that −2i+ 2j ≥ wtMc

(a, b) and this proof is similar
to a proof in [23] on popular critical matchings. Let us consider the following 4 cases:
1. j ≥ i+ 1: So γa + γb ≥ −2i+ 2(i+ 1) = 2 ≥ wtMc

(a, b) since wtMc
(e) ∈ {0,±2} for any

e ∈ E.
2. j = i: Since the edge (ai, b̃) does not block M ′

c, either (ai, b̃) ∈ M ′
c or one of ai, b̃ is

matched to a neighbor preferred to the other. Recall that the preference order of b̃
among level i neighbors in G′

c is exactly as per its preference order in G. Thus either
(a, b) ∈ Mc or one of a, b is matched in Mc to a neighbor preferred to the other. Hence
γa + γb = −2i+ 2i = 0 ≥ wtMc(a, b).
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3. j = i− 1: Observe that a has to be a stable vertex, otherwise i = 0 and the edge (a0, b̃)
would block M ′

c. Since j ≥ −k, we have i = j+ 1 ≥ 1 −k; so there is a vertex di(a) which
(as ai’s top choice) has to be matched in any stable matching in G′

c. Since (ai, w̃) ∈ M ′
c

for some w ∈ B, it follows that (ai−1, di(a)) ∈ M ′
c. So ai−1 is matched to its worst choice

neighbor and because the edge (ai−1, b̃) does not block M ′
c, it follows that (zi−1, b̃) ∈ M ′

c

for some neighbor z that b prefers to a. The vertex b̃ prefers ai to zi−1 since higher level
neighbors are preferred to lower level neighbors. Since the edge (ai, b̃) does not block M ′

c,
it follows that a prefers w to b. Thus both a and b prefer their respective partners in Mc

to each other, so wtMc
(a, b) = −2 = −2i+ 2(i− 1) = γa + γb.

4. j ≤ i− 2: As argued in the above case, a has to be a stable vertex and (ai−1, di(a)) ∈ M ′
c.

So ai−1 is matched to its worst choice neighbor. Either b̃ is unmatched or (zj , b̃) ∈ M ′
c for

some j ≤ i− 2. In either case, M ′
c has a blocking edge – a contradiction to its stability.

Thus we cannot have j ≤ i− 2. ◀

Proof of Lemma 15. The matching Mc has to match all vertices in S∩C, otherwise we have
∆(Nc,Mc) > 0 where N is any stable matching in G and Nc = N ∩ (C × C), contradicting
that there is a feasible solution γ to (LP2)2 with

∑
v∈C γv = 0. Thus M̃c is feasible solution

to (LP1); in fact, it is an optimal solution to (LP1) since wtMc
(M̃c) = ∆(Mc,Mc) = 0. If Mc

leaves a vertex v unmatched then (v, v) ∈ M̃c and so by complementary slackness, we have
γv = wtMc

(v, v) = 0. However all the γ-values are odd. Hence Mc matches all vertices in C.
We need to show that M ′′

c is stable in G′′
c . As argued in the proof of Lemma 14, no

blocking edge can be incident to any dummy vertex. Let us now show that there is no
blocking edge incident to aℓ, where a ∈ CA and ℓ ≥ −k.

Suppose (a,w) ∈ Mc. Let γa = −(2i− 1). Then (ai, w̃) ∈ M ′′
c and (aj , dj(a)) ∈ M ′′

c for
j ≥ i + 1. Since aj is matched to its top choice neighbor dj(a), there is no blocking edge
incident to aj for j ≥ i+ 1.

Let b be any neighbor of a in Gc, i.e., (a, b) ∈ Ec. Then γa + γb ≥ wtMc
(a, b) ≥ −2, so

γb ≥ 2i− 3 = 2(i− 1) − 1. Thus (zj , b̃) ∈ M ′′
c where j ≥ i− 1. Hence b̃ prefers its partner zj

to all aℓ, where ℓ ≤ i− 2. We now show that neither (ai−1, b̃) nor (ai, b̃) blocks M ′′
c .

If j ≥ i + 1 then b̃ prefers its partner zj in M ′′
c to both ai and ai−1. Hence neither

(ai−1, b̃) nor (ai, b̃) blocks M ′
c.

If j = i then γa + γb = −(2i− 1) + (2i− 1) = 0 ≥ wtMc(a, b). Thus either (ai, b̃) ∈ M ′′
c

or one of ai, b̃ prefers its partner in M ′′
c to the other. Hence neither (ai, b̃) nor (ai−1, b̃)

blocks M ′′
c in this case.

If j = i− 1 then wtMc
(a, b) = −2 and so both a and b prefer their partners in Mc to each

other. So b̃ prefers zi−1 to ai−1 and similarly, ai prefers w̃ to b̃. Thus in this case also
neither (ai−1, b̃) nor (ai, b̃) blocks M ′′

c .

We will now prove the converse. We claim that M ′′
c is a perfect matching in G′′

c . Let N
be the max-size popular matching in G computed by the algorithm in [21]; N has a dual
certificate in {0,±1}n where every matched vertex has ±1 in its coordinate. The matching
Nc = N ∩ (C × C) matches all the vertices in C (recall that |C| ≥ 2).

We use N ’s dual certificate restricted to vertices in C (call this β, thus β ∈ {±1}|C|)
to obtain a stable matching N ′′

c in G′′
c . For a ∈ CA, let f(a) = (1 − βa)/2, so f(a) = 0

if βa = 1, else f(a) = 1. Note that f(a) = 1 for every a ∈ U ∩ CA (see [7, 21] for more
details). Let N ′′

c = {(af(a), b̃) : (a, b) ∈ Nc} ∪ {(ai, di+1(a)) : a ∈ CA and i < f(a)}∪
{(ai, di(a)) : a ∈ S ∩ CA and i > f(a)}. The stable matching N ′′

c matches all vertices in G′′
c .

2 This is the LP dual to (LP1) with Mc replacing M and Ẽc = Ẽp ∩ (C × C) replacing Ẽp.

STACS 2022



41:22 Fairly Popular Matchings and Optimality

Hence the stable matching M ′′
c is also a perfect matching in G′′

c . Thus Mc matches all
vertices in C. In order to prove that Mc is a valid matching in Gc, we define γ as follows:

for every edge (pi, q̃) ∈ M ′′
c , let γp = −(2i− 1) and γq = 2i− 1.

Since −k ≤ i ≤ k + 1, we have γv ∈ {±1,±3, . . . ,±(2k + 1)} ∀v ∈ C. We also have∑
v∈C γv =

∑
(p,q)∈Mc

(γp + γq) = 0.
Furthermore, for any a ∈ U ∩ CA, we have (ai, w̃) ∈ M ′′

c where −k ≤ i ≤ 1 for some
neighbor w; thus γa = −(2i− 1) ≥ −1. Similarly, for any b ∈ U ∩ CB , we have (zj , b̃) ∈ M ′′

c

where 0 ≤ j ≤ k + 1 for some neighbor z; thus γb = 2j − 1 ≥ −1. Hence for any u ∈ U ∩ C,
we have γu ≥ −1 = wtMc

(u, u).
Thus we are left to show the constraints γa + γb ≥ wtMc(a, b) for all (a, b) ∈ Ec. Then it

will follow that properties 1-3 hold and thus Mc is valid in Gc with γ as a witness. Suppose
γa = −(2i − 1) and γb = 2j − 1. As done in the proof of Lemma 14, let us consider the
following 4 cases:
1. j ≥ i+ 1: So γa + γb ≥ 2 ≥ wtMc

(a, b) since wtMc
(e) ∈ {0,±2} for any e ∈ E.

2. j = i: Since the edge (ai, b̃) does not block M ′′
c , either (ai, b̃) ∈ M ′′

c or one of ai, b̃ is
matched to a neighbor preferred to the other. Thus either (a, b) ∈ Mc or one of a, b is
matched in Mc to a neighbor preferred to the other. So γa + γb = −(2i− 1) + 2i− 1 =
0 ≥ wtMc

(a, b).
3. j = i − 1: So (ai, w̃) and (zi−1, b̃) are in M ′′

c . The vertex b̃ prefers ai to zi−1 because
higher level neighbors are preferred to lower level neighbors. Since the edge (ai, b̃) does
not block M ′′

c , it follows that ai prefers w̃ to b̃. Observe that (ai−1, d(ai)) ∈ M ′′
c , thus

ai−1 is matched to its worst choice neighbor d(ai). Since the edge (ai−1, b̃) does not block
M ′′

c , it follows that b̃ prefers zi−1 to ai−1. Thus both a and b prefer their respective
partners in Mc to each other, so wtMc(a, b) = −2 = −(2i− 1) + 2(i− 1) − 1 = γa + γb.

4. j ≤ i− 2: We have (zj , b̃) ∈ M ′′
c for some j ≤ i− 2. As argued in the previous case, the

edge (ai−1, d(ai)) ∈ M ′′
c . This means that M ′′

c has a blocking edge, a contradiction to its
stability. Hence this case does not occur. ◀
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