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—— Abstract
Assuming that the Permanent polynomial requires algebraic circuits of exponential size, we show
that the class VNP does not have efficiently computable equations. In other words, any nonzero
polynomial that vanishes on the coefficient vectors of all polynomials in the class VNP requires
algebraic circuits of super-polynomial size.

In a recent work of Chatterjee, Kumar, Ramya, Saptharishi and Tengse (FOCS 2020), it was
shown that the subclasses of VP and VNP consisting of polynomials with bounded integer coefficients
do have equations with small algebraic circuits. Their work left open the possibility that these results
could perhaps be extended to all of VP or VNP. The results in this paper show that assuming the
hardness of Permanent, at least for VNP, allowing polynomials with large coefficients does indeed
incur a significant blow up in the circuit complexity of equations.
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1 Introduction

In the context of proving lower bounds in complexity theory, many of the existing approaches
for proving Boolean circuit lower bounds were unified by Razborov and Rudich under
the Natural Proofs framework [15] and they showed that, under standard cryptographic
assumptions, any technique that fits into this framework cannot yield very strong lower
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bounds. In the last few years there has been some work (e.g. [9], [10, 7]) aimed at developing
an analogue of the Natural Proofs framework for algebraic circuit lower bounds. A crucial
notion in this context is that of an equation for a class of polynomials which we now define.

For a class C of polynomials, an equation for C is a family of nonzero polynomials such
that it vanishes on the coefficient vector of polynomials in C.! Informally, an algebraic natural
proof for a class C is a family of equations for C which can be computed by algebraic circuits
of size and degree polynomially bounded in their number of variables. Thus, a lower bound
for C can be proved by exhibiting an explicit polynomial on which an equation for C does
not vanish.

Many of the known algebraic circuit lower bounds fit into this framework of algebraically
natural proofs as observed by several authors [1, 9, 7, 10], thereby motivating the question of
understanding whether techniques in this framework can yield strong algebraic circuit lower
bounds; in particular, whether such techniques are sufficient to separate VNP from VP. In
a recent breakthrough, Limaye, Srikanth and Tavenas [13] proved super-polynomial lower
bounds against constant depth arithmetic circuits over fields of characteristic zero or large.
It is not difficult to observe that this lower bound fits well into the natural proofs framework
as it uses a complexity measure that is based on the rank of certain matrices to prove lower
bounds. Thus, in the natural proofs framework, the first step towards a lower bound for VP
is to understand whether VP has a family of equations which itself is in VP, that is its degree
and its algebraic circuit size are polynomially bounded in the number of the variables. The
next step, of course, would be to show the existence of a polynomial family in VNP which
does not satisfy this family of equations. This work is motivated by the first step of this
framework, that is the question of understanding whether natural and seemingly rich circuit
classes like VP and VNP can have efficiently constructible equations. We briefly discuss prior
work on this problem, before describing our results.

1.1 Complexity of Equations for classes of polynomials

In one of the first results on this problem, Forbes, Shpilka and Volk [7] and Grochow,
Kumar, Saks and Saraf [10] observe that the class VP does not have efficiently constructible
equations if we were to believe that there are hitting set generators for algebraic circuits with
sufficiently succinct descriptions. However, unlike the results of Razborov and Rudich [15],
the plausibility of the pseudorandomness assumption in [7, 10] is not very well understood.
The question of understanding the complexity of equations for VP, or in general any natural
class of algebraic circuits, continues to remain open.

In a recent work of Chatterjee, Kumar, Ramya, Saptharishi and Tengse [4], it was shown
that if we focus on the subclass of VP (in fact, even VNP) consisting of polynomial families
with bounded integer coefficients, then we indeed have efficiently computable equations.
More formally, the main result in [4] was the following.

» Theorem 1 ([4]). For every constant ¢ > 0, there is a polynomial family {Py. .} € VPg 2
such that for all large n and N = ("‘;"c), the following are true.
For every family {f.} € VNPq, where f,, is an n-variate polynomial of degree at most n°
and coefficients in {—1,0,1}, we have

PN,c(m(fn)) =0

L Strictly speaking, these notions need us to work with families of polynomials, even though we sometimes
drop the word family for ease of exposition.

2 For a field F, VPr denotes the class VP where the coefficients of the polynomials are from the field F.
Similarly, VNP denotes the class VNP where the coefficients of the polynomials are from the field F.
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There exists a family {h,} of n-variate polynomials and degree at most n® with coefficients
in {—1,0,1} such that

Py o(coeff(h,)) #0.

Here, Coeﬁ(f) denotes the coefficient vector of a polynomial f.

Many of the natural and well studied polynomial families like the Determinant, the
Permanent, Iterated Matrix Multiplication, etc., have this property of bounded coefficients,
and in fact the above result even holds when the coefficients are as large as poly(N). Thus,
Theorem 1 could be interpreted as some evidence that perhaps we could still hope to prove
lower bounds for one of these polynomial families via proofs which are algebraically natural.
Extending Theorem 1 to obtain efficiently constructible equations for all of VP (or even for
slightly weaker models like formulas or constant depth algebraic circuits) is an extremely
interesting open question. In fact, even a conditional resolution of this problem in either
direction, be it showing that the bounded coefficients condition in Theorem 1 can be removed,
or showing that there are no such equations, would be extremely interesting and would
provide much needed insight into whether or not there is a natural-proofs-like barrier for
algebraic circuit lower bounds.

1.2 Our results

In this paper, we show that assuming the Permanent is hard, the constraint of bounded
coefficients in Theorem 1 is necessary for efficient equations for VNP. More formally, we
show the following theorem.

» Theorem 2 (Conditional Hardness of Equations for VNP). Let € > 0 be a constant. Suppose,
for an m large enough, we have that Perm,, requires circuits of size 2™ .

Then, for n =m&*, any d <n and N = (”:d), we have that every nonzero polynomial
P(xy,... ,xI\Q) that vanishes on all coefficient vectors of polynomials in VNP¢c(n,d) has size
20.1n 73n'

at least
» Remark. Our proof of the above theorem easily extends to any field of characteristic zero.
We shall just work with the complex numbers for better readability.

Extending the result in Theorem 2 to hardness of equations for VP, even under the
assumption that Permanent is sufficiently hard, is an extremely interesting open question.
Such an extension would answer the main question investigated in [7, 10] and show a natural-
proofs-like barrier for a fairly general family of lower bound proof techniques in algebraic
complexity. Our proof of Theorem 2 however crucially relies on some of the properties of
VNP and does not appear to extend to VP.

Although the proof of the above theorem is quite elementary, the main message (in our
opinion) is that we do not® have compelling evidence to rule out, or accept, the efficacy of
algebraic natural proofs towards proving strong lower bounds for rich classes of algebraic
circuits.

1.3 An overview of the proof

As was observed in [7, 10], a lower bound for equations for a class of polynomials is
equivalent to showing the existence of succinctly describable hitting sets for this class. For
our proof we show that, assuming that the permanent is sufficiently hard, the coefficient

3 Or rather, the results of [4] and the above theorem seem to provide some evidence for both sides!
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vectors of polynomials in VNP form a hitting set for the class VP. The connection between
hardness and randomness in algebraic complexity is well known via a result of Kabanets and
Impagliazzo [11], and we use this connection, along with some additional ideas for our proof.
We briefly describe a high level sketch of our proof in a bit more detail now.

Kabanets and Impagliazzo [11] showed that using any explicit polynomial family {f,}
that is sufficiently hard, one can construct a hitting set generator for VP, that is, we can
construct a polynomial map Gen; : F¥ — F! that “fools” any small algebraic circuit C
on t variables in the sense that C(y1,y2,...,¥y:) is nonzero if and only if the k-variate
polynomial C' o Geny is nonzero. In a typical invocation of this result, the parameter k is
much smaller than ¢ (typically & = polylogt). Thus, this gives a reduction from the question
of polynomial identity testing for t-variate polynomials to polynomial identity testing for
k-variate polynomials. Another related way of interpreting this connection is that if {f,}
is sufficiently hard then Geny is a polynomial map whose image does not have an equation
with small circuit size. Thus, assuming the hardness of the Permanent, this immediately
gives us a polynomial map (with appropriate parameters) such that its image does not have
an efficiently constructible equation.

For the proof of Theorem 2, we show that the points in the image of the map Genpe,,, can
be viewed as the coefficient vectors of polynomials in VNP, or, equivalently in the terminology
in [7, 10], that the Kabanets-Impagliazzo hitting set generator is VNP-succinct. To this
end, we work with a specific instantiation of the construction of the Kabanets-Impagliazzo
generator where the underlying construction of combinatorial designs is based on Reed-
Solomon codes. Although this is perhaps the most well known construction of combinatorial
designs, there are other (and in some parameters, better) constructions known. However, our
proof relies on the properties of this particular construction to obtain the succinct description.
Our final proof is fairly short and elementary, and is based on extremely simple algebraic
ideas and making generous use of the fact that we are trying to prove a lower bound for
equations for VNP and not VP.

Proof ldea

Let us assume that for some constant € > 0 and for all* m € N, Perm,, requires circuits of
size 2™ . Kabanets and Impagliazzo [11] showed that, for every combinatorial design D (a
collection of subsets of a universe with small pairwise intersection) of appropriate parameters,
the map

Genperm (z) = (Perm(zg) : S € D)

where zg denotes the variables of in z restricted to the indices in .S, is a hitting set generator
for circuits of size 2°(™7). Our main goal is to construct a polynomial F(y,z) in VNP such
that

F(y,z) = Z mong(y) - Perm(zg) (1.1)
SeD

By choosing parameters carefully, this would immediately imply that any equation on N-

variables, for N = (";d), that vanishes on the coefficient vector of polynomials in VNP(n,d)

(which are n-variate polynomials in VNP of degree at most d) requires size super-polynomial
in N.

4 To be more precise, we should work with this condition for “infinitely often” m € N and obtain that VNP
does not have efficient equations infinitely often. We avoid this technicality for the sake of simplicity
and the proof continues to hold for the more precise version with suitable additional care.
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To show that the polynomial F(y,z) in Equation 1.1 is in VNP, we use a specific
combinatorial design. For the combinatorial design D obtained via Reed-Solomon codes,
every set in the design can be interpreted as a univariate polynomial g of appropriate degree
over a finite field. The degree of g (say §) and size of the finite field (say p) are related to
the parameters of the design D. Now,

é
F(y,z) = Z (H y/) - Perm(zgy)), (1.2)

g€F, [v]
deg(g)<d

where (go, - ..,gs) is the coefficient vector of the univariate polynomial g. Expressing F(y, z)
$
in Equation 1.2 as a polynomial in VNP requires us to implement the product (H y/) as a
i=0

polynomial when given the binary representation of coefficients g, ..., gs via a binary vector
t of appropriate length (say r). This is done via the polynomial Mon(t,y) in Subsection 3.1
in a straightforward manner. Furthermore, we want to algebraically implement the selection

zg for a set S in the combinatorial design when given the polynomial g corresponding to S.

This is implemented via the polynomial RS-Design(t,z) in Subsection 3.2. Finally, we have

F(y,z) = Z Mon(t,y) - Perm(RS-Design(t, z))
te{0,1}"

which is clearly in VNP as Perm,, is in VNP and polynomials Mon(t, y) and RS-Design(t, z)
are efficiently computable. We refer the reader to Section 3 for complete details.

Related results

The concept of algebraically natural proofs was first studied in the works of Forbes, Shpilka
and Volk [7] and Grochow, Kumar, Saks and Saraf [10] who showed that constructing efficient
equations for a class directly contradicts a corresponding succinct derandomization of the
polynomial identity testing problem. In fact, Forbes, Shpilka and Volk [7] unconditionally
ruled out equations for depth-three multilinear formulas computable by certain structured
classes of algebraic circuits using this connection. However, this does not imply anything
about complexity of equations for general classes of algebraic circuits such as VP and VNP.
In the context of proving algebraic circuit lower bounds, Efremenko, Garg, Oliveira and
Wigderson [6] and Garg, Makam, Oliveira and Wigderson [8] explore limitations of proving
algebraic circuit lower bounds via rank based methods. However, these results are not directly
concerned with the complexity of equations for circuit classes.

Recently, Blaser, Ikenmeyer, Jindal and Lysikov [2] studied the complexity of equations
in a slightly different context. They studied a problem called “matrix completion rank”, a
measure for tensors that is NP-hard to compute. Assuming coNP ¢ IBPP, they construct
an explicit tensor of large (border) completion rank such that any efficient equation for
the class of tensors of small completion rank must necessarily also vanish on this tensor of
large completion rank. That is, efficient equations cannot certify that this specific tensor
has large (border) completion rank. Subsequently, this result was generalized to min-rank
or slice-rank [3]. The set-up in these papers is different from the that in our paper, and
that of [10, 7]. One way to interpret this difference is that [2] shows that “variety of small
completion rank tensors” cannot be “cut out” by efficient equations, whereas the set-up
of [10, 7] and our paper would ask if every equation for this variety requires large complexity.
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In the context of equations for varieties in algebraic complexity, Kumar and Volk [12]
proved polynomial degree bounds on the equations of the Zariski closure of the set of non-rigid
matrices as well as small linear circuits over all large enough fields.

2 Preliminaries

2.1 Notation

We use [n] to denote the set {1,...,n} and [n] to denote the set {0,1,...,n}. We also
use N>¢ to denote the set of non-negative integers.

We use boldface letters such as x,y to denote tuples, typically of variables. When
necessary, we adorn them with a subscript such as yj,) to denote the length of the tuple.
We also use x° to denote the monomial []z{*. We write x=¢ for the set of all monomials
of degree at most d in x, and F[x]<¢ for the set of polynomials in x over the field F of
degree at most d.

As usual, we identify the elements of F), with {0, 1,...,p— 1} and think of [n] as a subset
of I, in the natural way for any n < p.

2.2 Some basic definitions
Circuit classes

» Definition 3 (Algebraic circuits). An algebraic circuit is specified by a directed acyclic graph,
with leaves (indegree zero; also called inputs) labelled by field constants or variables, and
internal nodes labelled by + or x. The nodes with outdegree zero are called the outputs of the
circuit. Computation proceeds in the natural way, where inductively each + gate computes
the sum of its children and each X gate computes the product of its children.

The size of the circuit is defined as the number of nodes in the underlying graph.

» Definition 4 (VP and VNP). A family of polynomials {f,}, where f, is n-variate, is said
to be in VP if deg(f,) and the algebraic circuit complexity of fr are bounded by a polynomial
function of n. That is, there is a constant ¢ > 0 such that for all large enough n we have
deg(fn), size(fn) < nC.

A family of polynomials { f,} is said to be in VNP if there is a family {gn(x[n] , y[m])} € VP
such that m is bounded by a polynomial function of n and

L) =Y glxy)

ye{0,1}™

For some n,d € N, let C,, 4 be a class of n-variate polynomials of total degree at most

d. That is, C,q C F[x]<%. Similarly, we will use VP(n,d) and VNP(n,d) to denote the

intersection of VP and VNP respectively, with F[x[n]]fd.

Equations and succinct hitting sets

» Definition 5 (Equations for a class). For N = (”:d), a nonzero polynomial Py (Z) is called

an equation for C, q if for all f(x) € Cp 4, we have that PN(coeﬁ(f)) =0, where coeﬁ(f) is
the coefficient vector of f.

Alternatively, we also say that a polynomial Py (Z) vanishes on the coefficient vectors of
polynomials in class C if Py (coeff(f)) =0 for all f € C.
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» Definition 6 (Hitting Set Generator (HSG)). A polynomial map G : F* — F" given by
G(z1,.-.,20) = (91(2),...,9n(2)) is said to be a hitting set generator (HSG) for a class
C C F[x] of polynomials if for all nonzero P € C, Po G = P(g1,...,gn) Z 0.

We review the definition of succinct hitting sets introduced [10, 7].

» Definition 7 (Succinct Hitting Sets for a class of polynomials [10, 7]). For N = ("), we
say that a class of N-variate polynomials Dy has C,, 4-succinct hitting sets if for all nonzero
Pn(Z) € Dy, there exists some f € Cy, 4 such that PN(coeﬁ(f)) #0.

Hardness to randomness connection

For our proofs, we will need the following notion of combinatorial designs, which is a collection
of subsets of a universe with small pairwise intersection.

» Definition 8 (Combinatorial designs). A family of sets {S1,...,Sn} C [¢] is said to be an
(£, m,n)-design if

|Si| = m for each i € [N]

|S; N S;| < n for any i # j.

Kabanets and Impagliazzo [11] obtain hitting set generators from polynomials that are
hard to compute for algebraic circuits. The following lemma is crucial to the proof of our
main theorem.

» Lemma 2.1 (HSG from Hardness [11]). Let {S1,...,Sn} be an (£,m,n)-design and f(x)
be an m-variate, individual degree d polynomial that requires circuits of size s. Then for fresh
variables y¢, the polynomial map KI—gen(Nl,mm)(f) :F¢ — TN given by

(f(ysi), - f(ysy)) (2.2)

18 a hitting set generator for all circuits of size at most (%)

3 Proof of the main theorem

Notation

1. For a vector t = (t1,...,t.), we will use the short-hand tl(:lj) to denote the variable
L(i-at+j+1)- This would be convenient when we consider the coordinates of t as blocks of
length a.

2. For integers a, p, we shall use Mod(a, p) to denote the unique integer a, € [0, p — 1] such
that a, = a mod p.

As mentioned in the overview, the strategy is to convert the hitting set generator given
in (2.2) into a succinct hitting set generator. Therefore, we would like to associate the
coordinates of (2.2) into coefficients of a suitable polynomial. That is, we would like to build
a polynomial in VNP of the form

9(Y1, e Yoy 21,y 2t) = Z m- f(zg,,)

mGySd

with the monomials m € y=¢ suitably indexing into the sets of the combinatorial design.

The above expression already resembles a VNP-definition and with a little care this can be
made effective. We will first show that the different components of the above expression can
be made succinct using the following constructions.

44:7
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3.1 Building monomials from exponent vectors

For n,r € N, let a = |r/n], and define Mon, ,,(t,y) as follows.

Mon’(‘,n(tla st Y, yn) = H H (tgz)y?—]‘rl + (1 - tify))

The following observation is now immediate from the definition above.

» Observation 9. For any (e1,...,e,) € [d]™, we have

Mon, ,,(Bin(e1), ..., Bin(en), y1,---,Yn) = Y1 - - Yo",

where Bin(e) is the tuple corresponding to the binary representation of e, and r = n -
[logy (d+1)]. Furthermore, the polynomial Mon, ,, is computable by an algebraic circuit of
size poly(n,r).

3.2 Indexing Combinatorial Designs Algebraically

Next, we need to effectively compute the hard polynomial f on sets of variables in a
combinatorial design, indexed by the respective monomials. We will need to simulate some
computations modulo a fixed prime p. The following claim will be helpful for that purpose.

> Claim 10. For any ¢,b,p € N>( with ¢ < p, there exists a unique univariate polynomial
Qi p(v) € Qv] of degree at most b such that

1 if0<a<band a =1 (modp),

Qivp(a) {0 if 0 <a<banda#i (modp).

Proof. We can define a unique univariate polynomial Q; ,(v) satisfying the conditions of
the claim via interpolation to make a unique univariate polynomial take a value of 0 or 1
according to the conditions of the claim. Since, there are b conditions, there always exists
such a polynomial of degree at most b. <

For any n,b,p € N> with n < p, define

n
Seln b p(Uty .oy, v) = Z Ui - Qi bp(v).
i=1

» Observation 11. For any n,b,p € N>o with n < p, for any 0 < a < b, we have that

Seln,b,p(ula ceey Un, 0,) = UMod(a,p) = Ua mod p

The degree of Sel, b s at most (b+ 1) and can be computed by an algebraic circuit of size
poly(b).

Proof. From the definition of the univariate polynomial Q;; ,(v) of degree b in Claim 10,
Qipp(a) outputs 1 if and only if ¢ = a mod p. Hence, Sel,, p p(u1,. .., Un,a) IS Ug mod p and
is of degree at most (b+ 1). <

And finally, we choose a specific combinatorial design to instantiate Lemma 2.1.
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3.3 Reed-Solomon-based combinatorial designs

For any prime p and any choice of a < p, the following is an explicit construction of a
(p?, p, a)-combinatorial design of size p?®, defined as follows:

For every univariate polynomial g(¢) € F,[t] of degree less than a, we add the set
Sy ={(i,9(@) : i €F,} CF, xF, to the collection.

Since any two distinct univariate polynomials of degree less than a can agree on at most a
points, it follows that the above is indeed a (p?, p, a)-design.

The advantage of this specific construction is that it can be made succinct as follows.
For r = a - |logy p|, let t1,...,t, be variables taking values in {0,1}. The values assigned to
t-variables can be interpreted as a univariate over IF,, of degree < a by considering t € {0,1}"
as a matrix with a rows and |log, p| columns each 5. The binary vector in each row represents
an element in F),. We illustrate this with an example.

-+

Il
oS = O O =
_= O O = =
—_ o Rk O R
Wk =N

12

<

—~

<

~—

Forp=11,a=>5, g(v) = 7+ 2v + v? + 403 4 20* € Fy11[v],
t is a 5 x 3 matrix that encodes the coefficients of g(v).
Let z denote the p? variables {zl, ceey 2p2 }, put in into a p X p matrix. Let S be a set in

the Reed-Solomon-based (p?, p, a)-combinatorial design. We want to implement the selection
zg algebraically. In the following, we design a vector of polynomials that outputs the vector of

variables (zéf)g)(o) mod p?* Z;I:)I,g(pfl) mod p). Note that as mentioned above the polynomial
g can be specified via variables t1,...,t.. That is,

RS-Design,, ,(t1, .- tr, 21, .-, 2p2) € (F[t,z])P , for r =a- [log, p],
RS-Design,, ,(t1, ... tr, 21, .+, 2p2)it1 = Selp p3 (zi%), ce zg;g)_p Ri,ayp(t)> , Viel,,

a—1 £p—1

where R; ,,(t) = Z Z tf};) 25 ) - Mod(#/, p) | ,
7=0 | \ k=0

with ¢, = [log, p] .
» Observation 12. For any prime p, a < p, and t € {0,1}" for r = a - |[log, p|, we have
RS-Design,, ,(t,2) = (2,40 : @ € Fp),

where g(v) € F,,[v] is the univariate whose coefficient vector is represented by the bit-vector
t. Furthermore, the polynomial RS-Design, , is computable by an algebraic circuit of size

poly(p).

p,a

5 Working with |log, p] bits (as opposed to [log, p]) makes the proofs much simpler, and does not affect
the size of the design by much.

STACS 2022



44:10

If VNP Is Hard, Then so Are Equations for It

Proof. Fix some t € {0,1}". From the definition of R; 4, (t), it is clear that R; , ,(t) returns
an integer « such that g(i) = @ mod p where t encodes the coefficients of the polynomial g(¢)
in binary. Furthermore, since Mod(i/, p) is the unique integer ¢ € [0, p— 1] with ¢ = i/ mod p,
it also follows that R; ,,(t) is an integer in the range [0, p%]. Hence,

Sel, p3 p (zi(,%), ce sz;)_l, Rm,p(t)) = Zi,g(i)

as claimed. <

3.4 The VNP-Succinct-KI generator

We are now ready to show the VNP-succinctness of the Kabanets-Impagliazzo hitting set
generator when using a hard polynomial from VNP and a Reed-Solomon-based combinatorial
design.

For a prime p and for the largest number m such that m? < p, we will use Permp, € Flyy,]
to denote Perm,, applied to the first m? variables of y.

We now define the polynomial F}, o ,(¥n], Z[p2]) as follows.

FrapWis s Un 21,00, 2p2) = Z Mon,. ,(t,y) - Permy, (RS-Designp,a(t, z)) (3.1)
te{0,1}"

where r = a - |log, p|

It is evident from the above definition that the polynomial F,, , ,(y,2) is in VNP for any p
that is poly(n), when seen as a polynomial in y-variables with coefficients from C[z].
From the construction, we have that

Fn,a,p(yh ey Yny R1y e Zp2) = Zye : Perm[p](zse)7
e

where {Se} is an appropriate ordering of the Reed-Solomon-based (p?, p, a)-combinatorial
design of size p®, described in Subsection 3.3. Note that we define the polynomial F, , ,(y,z)
with three parameters n, a, p although for our purposes we will only use a = n.

3.5 Putting it all together

We are now ready to show that if the Permanent polynomial is exponentially hard, then any
polynomial P that vanishes on the coefficient vectors of all polynomials in the class VNP
requires super-polynomial size to compute it.

» Theorem 2 (Conditional Hardness of Equations for VNP). Let € > 0 be a constant. Suppose,
for an m large enough, we have that Perm,, requires circuits of size 2™ .

Then, for n =m*, any d <n and N = (”:d), we have that every nonzero polynomial
P(z1,...,zN) that vanishes on all coefficient vectors of polynomials in VNP¢(n,d) has size
at least 20-1n"=3n,

Proof. Let p be the smallest prime larger than m?; we know that p < 2m?2. We will again
use Permyp, € Fyp,] to denote Perm,, acting on the first m? variables of y. Therefore, if
Perm,,, requires size 2" then so does Permyy,.

Consider the polynomial F}, . ,(¥[n], Zp2)) € VNP defined in (3.1), which we interpret as a
polynomial in y with coefficients in C[z]. The individual degree in y is at least d, and at
most p.
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Let anﬁg’p(y[nbz[pz]) denote the polynomial obtained from F, , , by discarding all terms
whose total degree in y exceeds d. By standard homogenisation arguments, it follows that
an’;iw € VNP as well. Therefore,

an,g,p(y’ z) = Z y® - Permy (zs, ),
deg(y©)<d

where Se, for various e, is an appropriate indexing into a (p?, p, n)-combinatorial design of
size N. Since the individual degree in y of F}, ,, , was at least d, every coefficient of Frgﬁ’p is
Permp,(zs) for some S in the combinatorial design. In other words, the coefficient vector of

F=2 s precisely Kl-geny 2, ,(Permp,).

n,m,p
Suppose P(z1,...,zy) is a nonzero equation for VNP(n, d), then in particular it should
be zero on the coefficient vector of Fi=f (y,a) € VNP for any a € CP*. By the Polynomial

Identity Lemma [14, 5, 17, 16], this implies that P must be zero on the coefficient vector of
Ft (y.2) € (Clz])[y], where coefficients are formal polynomials in C[z]. Since the coefficient

vector of F=¢ (y,z) is just Kl-geny 2, ,(Permp,)), the contrapositive of Lemma 2.1 gives

7,1,p
that

size(P) > size(Permp,))®! _ size(Perm,y, )

N .27 N . on
20.17n5
— 1 P >

size(P) N o

Since N = (n:d) < 22 it follows that size(P) is at least at least 90.1n*—3n <

Concluding that VNP has no efficient equations

Note that for a family {Py} to be a family of equations for a class C, we want that for all
large enough n, the corresponding polynomial Py should vanish on the coefficient vectors of
all n-variate polynomials in C. This condition is particularly important if we want to use
equations for C to prove lower bounds against it, since a family of polynomials {f,,} is said
to be computable in size s(n) if size(f,) < s(n) for all large enough n.

Theorem 2 shows that, for m large enough, if there is a constant ¢ > 0 such that
size(Perm,,) > 2m° then for n = m®/* and any d < n, the coefficient vectors of polynomials
in VNP(n, d) form a hitting set for all N-variate polynomials (where N = (”;d)) of degree
poly(N) that are computable by circuits of size poly(/N). Now suppose the Permanent family
is 2 -hard for a constant € > 0, which means that Perm,, is 2™ -hard for infinitely many
m € N. Then using Theorem 2, we can conclude that for any family {Py} € VP, we must
have for infinitely many n that Py ((ﬁ(fn)) # 0 for some f,, € VNP, which then shows
that { Py} is not a family of equations for VNP.

4 Discussion and Open Problems

In the context of proving circuit lower bounds, and in relation to the notion of algebraically
natural proofs, an interesting question that emerges from the recent work of Chatterjee,
Kumar, Ramya, Saptharishi, Tengse [4] (stated in Theorem 1) is whether the condition of
“small coefficients” is necessary for efficiently constructible equations to exist, especially for
the class VP. While this question remains open for VP, our result shows that this additional
restriction on the coefficients is essentially vital for the existence of efficiently constructible
equations for the class VNP, and therefore provides strong evidence against the existence of
efficient equations for VNP.

44:11
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If VNP Is Hard, Then so Are Equations for It

In light of Theorem 1 and Theorem 2 for VNP, one could make a case that equations
for VP might also incur a super-polynomial blow up, without the restriction on coefficients.
On the other hand, it could also be argued that an analogue of Theorem 2 may not be true
for VP, since our proof crucially uses the fact that VNP is “closed under exponential sums”.
In fact, our proof essentially algebrizes the intuition that coefficient vectors of polynomials
in VNP “look random” to a polynomial in VP, provided that VNP was exponentially more
powerful than VP.

Thus, along with the previously known results on efficient equations for polynomials in
VP with bounded coefficients, our result highlights that the existence of such equations for
VP in general continues to remain an intriguing mystery.

Open Problems
We now conclude with some possible directions for extending our results.

Perhaps the most interesting question here is to prove an analogue of Theorem 2 for
equations for VP. This would provide concrete evidence for the possibility that we
cannot hope to prove very strong lower bounds for algebraic circuits using proofs which
proceed via efficiently constructible equations, from a fairly standard complexity theoretic
assumption.

At the moment, we cannot rule out the possibility of there being efficient equations for
VP in general; it may be possible that the bounded coeflicients condition in Theorem 1
can be removed. In particular, the question of proving upper bounds on the complexity
of equations for VP is also extremely interesting, even if one proves such upper bounds
under some reasonable complexity theoretic assumptions. A first step perhaps would be
to prove upper bounds on the complexity of potentially simpler models, like formulas,
algebraic branching programs or constant depth circuits. From the works of Forbes,
Shpilka and Volk [7], we know that such equations for structured subclasses of VP (like
depth-3 multilinear circuits) cannot be too simple (such as sparse polynomials, depth-3
powering circuits, etc.). Can we prove a non-trivial upper bound for equations for these
structured classes within VP?

Another question of interest would be to understand if the hardness assumption in The-
orem 2 can be weakened further. For instance, is it true that VNP does not have efficiently
constructible equations if VP # VNP, or if Perm,, requires circuits of size nPelos(n)?
The current proof seems to need an exponential lower bound for the Permanent.
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