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Abstract
We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical
machines in the presence of a uniform communication delay. Such precedence-constrained jobs can
be modeled as a directed acyclic graph, G = (V, E). In this setting, if two precedence-constrained
jobs u and v, with v dependent on u (u ≺ v), are scheduled on different machines, then v must start
at least ρ time units after u completes. The scheduling objective is to minimize makespan, i.e. the
total time from when the first job starts to when the last job finishes. The focus of this paper is
to provide an efficient approximation algorithm with near-linear running time. We build on the
algorithm of Lepere and Rapine [STACS 2002] for this problem to give an O

( ln ρ
ln ln ρ

)
-approximation

algorithm that runs in Õ(|V | + |E|) time.
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1 Introduction

The problem of efficiently scheduling a set of jobs over a number of machines is a fundamental
optimization problem in computer science that becomes ever more relevant as computational
workloads become larger and more complex. Furthermore, in real-world data centers, there
exists non-trivial communication delay when data is transferred between different machines.
There is a variety of very recent literature devoted to the theoretical study of this topic
[10, 11, 21]. However, all such literature to date focuses on obtaining algorithms with good
approximation factors for the schedule length, but these algorithms require ω(n2) time (and
potentially polynomially more) to compute the schedule. In this paper, we instead focus
on efficient, near-linear time algorithms for scheduling while maintaining an approximation
factor equal to that obtained by the best-known algorithm for our setting [19].

Even simplistic formulations of the scheduling problem (e.g. precedence-constrained jobs
with unit length to be scheduled on M machines) are typically NP-hard, and there is a
rich body of literature on designing good approximation algorithms for the many variations
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47:2 Scheduling with Communication Delay in Near-Linear Time

of multiprocessor scheduling (refer to [6] for a comprehensive history of such problems).
Motivated by a desire to better understand the computational complexity of scheduling
problems and to tackle rapidly growing input sizes, we ask the following research question:

How computationally expensive is it to perform approximately-optimal scheduling?

In this paper, we focus on the classical problem of multiprocessor scheduling with
communication delays on identical machines where all jobs have unit size. The jobs that
need to be scheduled have data dependencies between them, where the output of one job acts
as the input to another. These dependencies are represented using a directed acyclic graph
(DAG) G = (V,E) where each vertex v ∈ V corresponds to a job and an edge (u, v) ∈ E
indicates that job u must be scheduled before v. In our multiprocessor environment, if these
two jobs are scheduled on different machines, then some additional time must be spent to
transfer data between them. We consider the problem with uniform communication delay; in
this setting, a uniform delay of ρ is incurred for transferring data between any two machines.
Thus for any edge (u, v) ∈ E, if the jobs u and v are scheduled on different machines, then v
must be scheduled at least ρ units of time after u finishes. Since the communication delay ρ
may be large, it may actually be more efficient for a machine to recompute some jobs rather
than wait for the results to be communicated. Such duplication of work can reduce schedule
length by up to a logarithmic factor [21] and has been shown to be effective in minimizing
latency in schedulers for grid computing and cloud environments [5, 7]. Our scheduling
objective is to minimize the makespan of the schedule, i.e., the completion time of the last
job. In the standard three field notation for scheduling problems, this problem is denoted
“P | duplication,prec, pj = 1, c | Cmax”, where c indicates uniform communication delay.

This problem was studied by Lepere and Rapine, who devised an O(ln ρ/ ln ln ρ)-
approximation algorithm for it [19], under the assumption that the optimal solution takes at
least ρ time. However, their analysis was primarily concerned with getting a good quality
solution and less with optimizing the running time of their polynomial-time algorithm. A
naïve implementation of their algorithm takes roughly O(mρ+ n lnM) time, where n and m
are the numbers of vertices and edges in the DAG, respectively, and M is the number of
machines. This runtime is based on two bottlenecks, (i) the computation of ancestor sets,
which can be done in O(mρ) time via propagating in topological order plus merging and (ii)
list scheduling, which can be done in O(n lnM) time by using a priority queue to look up
the least loaded machine when scheduling a set of jobs.

However, with growing input sizes, it is highly desirable to obtain a scheduling algorithm
whose running time is linear in the size of the input. Our primary contribution is to design a
near-linear time randomized approximation algorithm while preserving the approximation
ratio of the Lepere-Rapine algorithm:

▶ Theorem 1. There is an O(ln ρ/ ln ln ρ)-approximation algorithm for scheduling jobs with
precedence constraints on a set of identical machines in the presence of a uniform communic-
ation delay that runs in O

(
n lnM + m ln3 n ln ρ

ln ln ρ

)
time, with high probability, assuming that

the optimal solution has cost at least ρ.

Of course, this is tight, up to log factors, because any algorithm for this problem must
respect the precedence constraints, which require Ω(n+m) time to read in. In the settings
where our algorithm is more efficient than Lepere-Rapine, the approximation factor of
the algorithm is still very small (near-constant in the cases where ρ = poly logn), yet our
algorithm achieves a better runtime while maintaining the same approximation compared to
the previous best-known algorithm for the problem.
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1.1 Related Work
Algorithms for scheduling problems under different models have been studied for decades,
and there is a rich literature on the topic (refer to [6] for a comprehensive look). Here we
review work on theoretical aspects of scheduling with communication delay, which is most
relevant to our results.

Without duplication, scheduling a DAG of unit-length jobs with unit communication
delay was shown to be NP-hard by Rayward-Smith [29], who also gave a 3-approximation
for this problem. Munier and König gave a 4/3-approximation for an unbounded number
of machines [24], and Hanen and Munier gave a 7/3-approximation for a bounded number
of machines [15]. Hardness of approximation results were shown in [3, 16, 28]. In recent
results, Kulkarni et al. [18] gave a quasi-polynomial time approximation scheme for a constant
number of machines and a constant communication delay, whereas Davies et al. [10] gave
an O(log ρ logM) approximation for general delay and number of machines. Even more
recently, Davies et al. [11] presented a O(log4 n)-approximation algorithm for the problem
of minimizing the weighted sum of completion times on related machines in the presence
of communication delays. They also obtained a O(log3 n)-approximation algorithm under
the same model but for the problem of minimizing makespan under communication delay.
Notably, none of the aforementioned algorithms consider duplication and the most recent
algorithms have running times that are large polynomials.

Allowing the duplication of jobs was first studied by Papadimitriou and Yannakakis [27],
who obtained a 2-approximation algorithm for scheduling a DAG of identical jobs on an
unlimited number of identical machines. A number of papers have improved the results for
this setting [1, 9, 26]. With a finite number of machines, Munier and Hanen [23] proposed
a 2-approximation algorithm for the case of unit communication delay, and Munier [22]
gave a constant approximation for the case of tree precedence graphs. For a general DAG
and a fixed delay ρ, Lepere and Rapine [19] gave an algorithm that finds a solution of cost
O(log ρ/ log log ρ) · (OPT + ρ), which is a true approximation if one assumes that OPT ≥ ρ.
This is the main result that our paper builds on. It applies to a set of identical machines and
a set of jobs with unit processing times. Recently, an O(logM log ρ/ log log ρ) approximation
has been obtained for a more general setting of M machines that run at different speeds
and jobs of different lengths by Maiti et al. [21], also under the assumption that OPT ≥ ρ.
However, the running time of this algorithm is a large polynomial (ω(n2)), as it requires
solving an LP with Ω(Mn2) variables.

Our results so far only apply to scheduling with duplication. In Maiti et al. [21], a
polynomial-time reduction is presented that transforms a schedule with duplication into one
without duplication (with a polylogarithmic increase in makespan). However, this reduction
involves constructing an auxiliary graph of possibly Ω(ρ2) size, and thus does not lend itself
easily to a near-linear time algorithm. It would be interesting to see if a near-linear time
reduction could be found.

1.2 Technical Contributions
A naïve implementation of the Lepere-Rapine algorithm is bottlenecked by the need to
determine the set of all ancestors of a vertex v in the graph, as well as the intersection of this
set with a set of already scheduled vertices. Since the ancestor sets may significantly overlap
with each other, trying to compute them explicitly (e.g., using DFS to write them down)
results in superlinear work. We use a variety of technical ideas to only compute the essential
size information that the algorithm needs to make decisions about these ancestor sets.

STACS 2022
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Size estimation via sketching. We use streaming techniques to quickly estimate the
sizes of all ancestor sets simultaneously. It costs O((|V |+ |E|) log2 n) time to make such
an estimate once, so we are careful to do so sparingly.
Work charging argument. Since we cannot compute our size estimates too often, we
still need to perform some DFS for ancestor sets. We control the amount of work spent
doing so by carefully charging the edges searched to the edges we manage to schedule.
Sampling and pruning. Because we cannot brute-force search all ancestor sets, we
randomly sample vertices, using a consecutive run of unscheduleable vertices as evidence
that many vertices are not schedulable. This allows us to pay for an expensive size-
estimator computation to prune many ancestor sets simultaneously.

1.3 Organization
The main contribution of this paper is our algorithm for scheduling small subgraphs in
near-linear time. We provide a detailed description and analysis of this algorithm in Section 5.
Then, we proceed with our algorithm for scheduling general graphs in Section 6. Due to
space constraints we defer all proofs of our analysis to the Appendix.

2 Problem Definition and Preliminaries

An instance of scheduling with communication delay is specified by a directed acyclic graph
G = (V,E), a quantity M ≥ 1 of identical machines, and an integer communication delay
ρ > 1. We assume that time is slotted and let T = {1, 2, . . .} denote the set of integer times.
Each vertex v ∈ V corresponds to a job with processing time 1 and a directed edge (u, v) ∈ E
represents the precedence constraint that job v depends on job u. In total, there are n = |V |
vertices (representing jobs) and m = |E| precedence constraints. The parameter ρ indicates
the amount of time required to communicate the result of a job computed on one machine to
another. In other words, a job v can be scheduled on a machine at time t only if all jobs
u with (u, v) ∈ E have either completed on the same machine before time t or on another
machine before time t− ρ. We allow for a job to be duplicated, i.e., copies of the same vertex
v ∈ V may be processed on different machines. Let M be the set of machines available to
schedule the jobs. A schedule σ is represented by a set of triples {(m, v, t)} ⊂ M× V × T
where each triple represents that job v is scheduled on machine m at time t. The goal is to
obtain a feasible schedule that minimizes the makespan, i.e., the completion time of the last
job. Let OPT denote the makespan of an optimal schedule. Since ρ represents the amount
of time required to communicate between machines, and in practice, any schedule must
communicate the results of the computation, we assume that OPT ≥ ρ as is standard in
literature [19, 21].

We now set up some notation to help us better discuss dependencies arising from the
precedence constraints of G. For any vertex v ∈ V , let Pred(v) ≜ {u ∈ V | (u, v) ∈ E} be the
set of (immediate) predecessors of v in the graph G, and similarly let Succ(v) ≜ {w ∈ V |
(v, w) ∈ E} be the set of (immediate) successors. For H = (VH , EH), a subgraph of G, we use
AH(v) ≜ {u ∈ VH | ∃ a directed path from u to v in H} ∪ {v} to denote the set of (indirect)
ancestors of v, including v itself. Similarly, for S ⊆ V , we use AH(S) ≜

⋃
v∈S AH(v) to

denote the indirect ancestors of the entire set S. We use EH(S) to denote the edges of the
subgraph induced by AH(S). We drop the subscript H when the subgraph H is clear from
context. Throughout, we use the phrase with high probability to indicate with probability at
least 1− 1

nc for any constant c ≥ 1.
For convenience, we summarize the notation we use throughout the paper in Table 1.
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Table 1 Table of Symbols.

Symbol Meaning

G = (V, E) main input graph
n = |V |, m = |E| number of vertices / edges
H = (VH , EH) subgraph to be scheduled in each phase

ρ communication delay
u, v vertices

AH(v) set of ancestors of vertex v in graph H including v

AH(S) AH(S) =
⋃

v∈S
AH(v) in graph H

EH(v) [resp., EH(S)] edges induced by AH(v) [resp., AH(S)] in graph H

âH(v), êH(v) estimated size of AH(v) and EH(v)
M number of machines
γ threshold for fresh vs. stale vertices

3 Technical Overview

We start by reviewing the algorithm of Lepere and Rapine [19], shown in Algorithm 1, as
our algorithm follows a similar outline. Then we describe the technical improvements of our
algorithm to achieve near-linear running time.

Algorithm 1 Outline of Lepere Rapine Scheduling Algorithm [19].

1 while G is non-empty do
2 Let H be a subgraph of G induced by vertices with at most ρ+ 1 ancestors
3 while H is non-empty do
4 for each vertex v in H do
5 if greater than γ fraction of AH(v) is unscheduled then
6 Add AH(v), in topological order, to a machine with earliest end time

7 Insert a delay until C + ρ on all machines, where C is the latest end time
8 Remove scheduled vertices from H

9 Delete vertices in H from G

Description of Lepere-Rapine [19]. The outer loop (Algorithm 1) iteratively finds small
subgraphs of G which consist of vertices that have height at most ρ + 1. We show in this
paper that instead of considering their definition of height, it is sufficient in our algorithm to
consider small subgraphs to be those with at most 2ρ ancestors. We call one iteration of this
loop a phase. Within the phase, H is fully scheduled, after which the algorithm goes on to
the next “slice” of G. However, H is not scheduled all at once, but instead each iteration
of the inner while loop (Algorithm 1) schedules a subset of H, which we call a batch. To
determine which vertices of H make it into a batch, the algorithm checks the fraction of
ancestors of each vertex that have already been scheduled in the same batch. If this fraction
for a vertex v is low (we call v fresh in that case), then its ancestor set AH(v) is list-scheduled
as a unit, i.e. ancestor jobs are duplicated, topologically sorted, and placed on one machine.
If the fraction of scheduled ancestors is high (in which case we call v stale), v is skipped in
this iteration. We skip v to avoid excessive duplication that would create too much load on

STACS 2022
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(a) Initial input DAG.
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	𝑏

	𝑐

	𝑑

	𝑒

Small Subgraph Schedule

	𝑒

	𝑎 	𝑐	𝑏 	𝑑

	𝑎 	𝑐

(b) Find a small subgraph in the input graph and schedule
the small subgraph.

	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

	𝑓

	𝑔

	ℎ
	𝑓

	𝑔

	ℎ

Add 𝜌 delay

	𝑔	𝑓 	ℎ

New Small Subgraph

Remaining Schedule
Schedule

	𝑒

	𝑎 	𝑐	𝑏 	𝑑

	𝑎 	𝑐

(c) Remove scheduled vertices from the graph. Add a ρ com-
munication delay to the schedule after the previously scheduled
jobs. Find a new small subgraph and schedule it.

Figure 1 Overview of the Lepere-Rapine algorithm for scheduling general graphs.

the machines. After each batch is placed on the machines, a delay of ρ is added to the end
of the schedule to allow all the results to propagate. This allows the scheduled jobs to be
deleted from H. This algorithm is illustrated pictorially in Figure 1.

Runtime Challenges with Lepere-Rapine. Naively, both finding the small subgraphs as
well as determining each batch takes Ω(nρ2) time. Determining which nodes belong in the
current small subgraph is a matter of whether their ancestor counts are more than ρ or at
most ρ. A standard procedure would be to apply DFS and merge ancestor sets, but that
can easily run in Ω(ρ2) time per node (a node may have Ω(ρ) direct parents, each with an
ancestor size of Ω(ρ) that needs to get merged in).

The other technical hurdle is in determining the batches to schedule. We would like to
schedule vertices whose ancestors do not overlap too much. To illustrate the difficulty of
applying sketching-based methods (e.g. min-hash), consider the following example. Suppose
that ρ2 elements have already been scheduled in this batch. Now, we want to find the number
of ancestors of vertex v, A(v), that intersect with the currently scheduled batch, where
|A(v)| ≤ ρ by construction. By the lower bound given in [25], even estimating (up to 1± ϵ
relative error with constant probability) the size of this intersection would require sketches
of size at least ε−2(ρ2/ρ) = ε−2ρ. Using such ρ-sized sketches over all batches and all small
subgraphs require Ω(nρ) time in total.

Since ρ may be super-logarithmic, these naive implementations don’t quite meet our goal
of a near-linear time algorithm. To summarize, the two main technical challenges for our
setting are the following:
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▶ Challenge 1. We must be able to find the small subgraphs in near-linear time.

▶ Challenge 2. We must be able to find the vertices to add to each batch B in near-linear
time.

We solve Challenge 1 by relaxing the definition of small subgraph and using count-distinct
estimators (discussed in Section 4). The majority of our paper focuses on solving Challenge 2
which requires several new techniques for the problem outlined in the rest of this section
(Section 3.1 and Section 3.2). The below procedures run on a small subgraph, H = (VH , EH),
where the number of ancestors of each vertex is bounded by 2ρ. Note the factor of 2
results from our count-distinct estimator. This is described in Section 5. Our algorithm for
scheduling small subgraphs is shown pictorially in Figure 2.

3.1 Sampling Vertices to Add to the Batch
We first partition the set of unscheduled vertices in VH into buckets based on the estimated
number of edges in the subgraph induced by their ancestors. (We place vertex v – if it has
no ancestors – into the bucket with the smallest index.) We partition by edges instead of
vertices because the number of edges in the induced subgraph of the ancestors affects our
running time. More formally, let Si be the set of vertices not yet scheduled in iteration i

(Algorithm 1, Algorithm 1). We partition Si into k = O(log ρ) buckets K1, . . . ,Kk such that
bucket Kj contains all vertices w ∈ Si where ê(w) ∈ [2j , 2j+1); ê(w) denotes the estimated
number of edges in the subgraph induced by ancestors of w.

From each bucket Kj , in decreasing order of j, we sample vertices, sequentially, without
replacement. For each sampled vertex v, we enumerate its ancestors and determine how
many are in the current batch B. If at least a γ-fraction of the vertices are not in B and at
least a γ-fraction of the edges (with both endpoints in B) in the induced subgraph GHi(v)
are not in B, then add v and all its ancestors to B. We call such a vertex v fresh. Otherwise,
we do not add v to B and label this vertex as stale. For our algorithms, we set γ = 1√

ρ to
minimize the approximation factor but γ can be set to any value γ < 1/2. Lepere-Rapine did
not consider edges in their algorithm because the number of edges in the induced subgraph
does not affect the schedule length; however, considering edges is crucial for our algorithm to
run in near-linear time.

For each bucket sequentially, we sample vertices uniformly at random, until we have
sampled O(logn) consecutive vertices that are stale (or we have run out of vertices and the
bucket is empty). Then, the key intuition is that for every v that we add to B, we can afford
to charge the cost of enumerating the ancestor set for O(logn) additional vertices in the same
bucket as well as O(logn) additional vertices in each bucket with smaller j to it. Because we
are looking at buckets with decreasing indices, we can charge the additional vertices found in
future buckets to the most recently found fresh vertex.

3.2 Pruning All Stale Vertices from Buckets
After we have performed the sampling procedure, we are still not done. Our goal is to make
sure that all vertices which are not included in B are approximately stale. This means that
we must remove the stale vertices so that we can perform our sampling procedure again in
a smaller sample space in order to find additional fresh vertices. To accomplish this, we
perform a pruning procedure involving re-estimating the ancestor sets consisting of vertices
that have not been added to the batch. Using these estimates, we remove all stale vertices
from our buckets. Note that we do not rebucket the vertices because none of the ancestor

STACS 2022
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sets of the vertices changed sizes. Then, we perform our sampling procedure above (again) to
find more fresh vertices. The key is that since we removed all stale vertices, the first sampled
vertex from the non-empty bucket with the largest index is fresh.

We perform the above sampling and pruning procedures until each bucket is empty. Then,
we schedule the batch and remove all scheduled vertices from H and proceed again with the
procedure until the graph is empty. We perform a standard simple greedy list scheduling
algorithm (Appendix B) on our batch on M machines.

	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

(a) Input small subgraph.

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒

0 ancestor edges 1 ancestor edge 3-4 ancestor edges

(b) Vertices are bucketed according to the
estimate of the number of edges in the
induced subgraph of its ancestors.

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒	𝑎 	𝑐	𝑎 	𝑐	𝑎 	𝑒

	𝑎 	𝑒
𝑆

❌ ✅✅

(c) Vertices are uniformly at random sampled from buckets. Then, vertices
which have sufficiently many ancestors and ancestor edges not in S are
added to S.

	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

(d) Vertices which are in S or have a large
proportion of ancestors or ancestor edges
in S are pruned from buckets. b and d are
pruned in this example.

	𝑎

	𝑒	𝑎 	𝑐

(e) Vertices in S and all ancest-
ors are scheduled by duplicating
ancestors and list scheduling.

Figure 2 Overview of our scheduling small subgraphs algorithm. We choose γ = 2/3 here for
illustration purposes but in our algorithms γ < 1/2.

4 Estimating Number of Ancestors

Let G̃ = (Ṽ , Ẽ) be an arbitrary directed, acyclic graph. We first present our algorithm to
estimate the number of ancestors of any vertex v ∈ Ṽ . Consider any vertex v ∈ Ṽ and
let p1, p2, . . . pℓ be the predecessors of v in G̃. Then we have AG̃(v) = ∪ℓi=1AG̃(pi) ∪ {v}
and hence |AG̃(v)| is the number of distinct elements in the multiset ∪ℓi=1AG̃(pi) ∪ {v}. In
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order to estimate |AG̃(v)| efficiently, we use a procedure to estimate the number of distinct
elements in a data stream. This problem, known as the count-distinct problem, is well studied
and many efficient estimators exist [2, 4, 30, 12, 17]. Since we need to estimate |AG̃(v)|
for all vertices v ∈ Ṽ in near-linear time, we require an additional mergeable property to
ensure that we can efficiently obtain an estimate for |AG̃(v)| from the estimates of the parent
ancestor set sizes {|AG̃(p1)|, . . . , |AG̃(pℓ)|}.

We formally define the notion of a count-distinct estimator and the mergeable property.

▶ Definition 2. For any multiset S, let |S| denote the number of distinct elements in S. We
say T is an (ε, δ,D)-CountDistinctEstimator for S if it uses space D and returns a value ŝ
such that (1− ε)|S| ≤ ŝ ≤ (1 + ε)|S| with probability at least (1− δ).

▶ Definition 3 (Mergeable Property). An (ε, δ,D)-CountDistinctEstimator exhibits the merge-
able property if estimator T1 for multiset S1 and estimator T2 for multiset S2 can be merged
in O(D) time using O(D) space into an (ε, δ,D)-estimator for S1 ∪ S2.

We note that the count-distinct estimator in [4] satisfies the mergeable property and
suffices for our purposes. We include a description of the procedure and a proof of the
mergeable property in Appendix A.

▶ Lemma 4 ([4]). For any constant ε > 0 and d ≥ 1, there exists an
(
ε, 1
nd
, O

( 1
ε2 log2 n

))
-

CountDistinctEstimator that satisfies the mergeable property where n denotes an upper bound
on the number of distinct elements.

Given such an estimator, one can readily estimate the number of ancestors of each vertex
v ∈ Ṽ in near-linear time by traversing the vertices of the graph in topological order. An
estimator for vertex v can be obtained by merging the estimators for each predecessor of
v. Similarly, we can also estimate the number of edges |E(v)| in the subgraph induced
by ancestors of any vertex v in near-linear time. We defer a detailed description of these
procedures to Algorithm 7 in Appendix A and Algorithm 9 in our full paper [20].

▶ Lemma 5. Given any input graph G̃ = (Ṽ , Ẽ) and constants ε > 0, d ≥ 1, there exists an
algorithm that runs in O

(
(|Ṽ |+ |Ẽ|) log2 n

)
time and returns estimates â(v) and ê(v) for

each v ∈ Ṽ such that (1 − ε)|AG̃(v)| ≤ â(v) ≤ (1 + ε)|AG̃(v)| and (1 − ε)|EG̃(v)| ≤ ê(v) ≤
(1 + ε)|EG̃(v)| with probability at least 1− 1

nd
.

Proof. Lemma 15 provides us with our desired approximation. Now, all that remains to
show is that Algorithm 7 and Algorithm 9 in our full paper [20] runs within our desired time
bounds. Algorithm 7 visits each vertex exactly once. For each vertex, it merges the estimators
of each of its immediate predecessors. By Lemma 16, each merge takes O

( 1
ε2 log2 n

)
time.

Because we visit each vertex exactly once, we also visit each predecessor edge exactly once.
This means that in total we perform O

(
m
ε2 log2 n

)
merges. Since ε is constant, this algorithm

requires O(m log2 n) time. The same proof follows for Algorithm 9 in our full paper [20]. ◀

Throughout the remaining parts of the paper, we assume that ε = 1/3 in our estimation
procedures and do not explicitly give our results in terms of ε.

5 Scheduling Small Subgraphs in Near-Linear Time

Here, we consider subgraphs H = (V,E) such that every vertex in the graph has a bounded
number of ancestors and obtain a schedule for such small subgraphs in near-linear time.
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47:10 Scheduling with Communication Delay in Near-Linear Time

▶ Definition 6. A small subgraph is a graph H = (VH , EH) where each vertex v ∈ VH has
at most 2ρ ancestors.

Our main algorithm schedules a small graph in batches using Algorithm 3. After scheduling
a batch of vertices, we insert a communication delay of ρ time units so that results of the
computation from the previous batch are shared with all machines (similar to Lepere-Rapine).
Then, we remove all vertices that we scheduled and compute the next batch from the smaller
graph. We present this algorithm in Algorithm 2.

Algorithm 2 ScheduleSmallSubgraph(H, γ).

Result: A schedule of small subgraph H on M processors.
Input: H = (VH , EH) where |AH(v)| ≤ 2ρ for all v ∈ VH and parameter

0 < γ < 1/2.
1 while H ̸= ∅ do
2 B ← FindBatch(H, γ). [Algorithm 3]
3 List schedule A(v) using the M processors for all v ∈ B. (Appendix B)
4 Insert communication delay of ρ time units into the schedule.
5 Remove each v ∈ A(B) and all edges adjacent to v from H.
6 end

Our algorithm for scheduling small subgraphs relies on two key building blocks – estimating
the sizes of the ancestor sets (and ancestor edges) of each vertex (Section 4), and using
these estimates to find a batch of vertices that can be scheduled without any communication
(possibly by duplicating some vertices). We show how to find a batch in Section 5.1.

5.1 Batching Algorithm
Recall that the plan is for our algorithm to schedule a small subgraph by successively
scheduling maximal subsets of vertices in the graph whose ancestors do not overlap too
much; we call such a set of vertices a batch. After scheduling each batch, we remove all the
scheduled vertices from the graph and iterate on the remaining subgraph.

A detailed description of this procedure is given in Algorithm 3. For each vertex v ∈ VH ,
let â(v) and ê(v) denote the estimated sizes of AH(v) and EH(v) respectively (henceforth
referred to as A(v) and E(v)). Then the i-th bucket, Ki, is defined as Ki = {v ∈ VH |
2i ≤ ê(v) < 2i+1}. Since every node v ∈ VH has at most O(ρ) ancestors, there are only
k = O(log ρ) such buckets. Recall that from Lemma 5, this estimation can be performed
in near-linear time. The algorithm maintains a batch B of vertices that is initially empty.
For each non-empty bucket Ki (processed in decreasing order of size), we repeatedly sample
nodes uniformly at random from the bucket (without replacement).

For each sampled node v ∈ Ki, we explicitly enumerate the ancestor sets A(v) and E(v)
and also compute A(v) \ A(B) and E(v) \ E(B). Since we can maintain the ancestor sets of
the current batch B in a hash table, this enumeration takes O(|E(v)|) time. A sampled node
v is said to be fresh if |A(v) \ A(B)| > γ|A(v)| and |E(v) \ E(B)| > γ|E(v)|; and said to be
stale otherwise. The algorithm adds all fresh nodes to the batch B and continues sampling
from the bucket until it samples Θ(logn) consecutive stale nodes. Once all the buckets have
been processed, we prune the buckets to remove all stale nodes and then repeat the sampling
procedure until all buckets are empty.

A bucket Ki is reduced when 1) a vertex, v, in it is added to B, 2) a sampled vertex v is
stale and 3) during the pruning process. No vertex remains unscheduled because either a
vertex v is scheduled in the current batch or it is stale. For all stale vertices, in Algorithm 2,
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we remove all the scheduled ancestors of these stale vertices (so the vertices become fresh
again). We repeat the procedure given in Algorithm 3 (Algorithm 2 of Algorithm 2) until
the entire graph is scheduled (Algorithm 2 of Algorithm 2) so that all vertices are eventually
scheduled. The pruning procedure is presented in Algorithm 4. In this step, we again
estimate the sizes of ancestor sets of all vertices in the graph H \A(B) to determine whether
a vertex is stale.

Algorithm 3 FindBatch(H, γ).

Result: Returns batch B, the batch of vertices to schedule.
Input: A subgraph H = (VH , EH) such that |AH(v)| ≤ 2ρ for all v ∈ VH ;

0 < γ < 1/2.
1 Let N = Θ(logn).
2 Initially, B ← ∅ and all nodes are unmarked.
3 Obtain estimates â(v) and ê(v) for all v ∈ VH .
4 Let bucket Ki = {v ∈ VH : 2i ≤ ê(v) < 2i+1}.
5 while at least one bucket is non-empty do
6 for i = k to 1 do
7 Let s = 0.
8 while s < N and |Ki| > 0 do
9 Let v be a uniformly sampled node in bucket Ki.

10 Find A(v) and A(v) \ A(B) as well as E(v) and E(v) \ E(B).
11 if |A(v) \ A(B)| > γ|A(v)| and |E(v) \ E(B)| > γ|E(v)| then
12 Mark v as fresh, add v and its ancestors to B.
13 Set s = 0.
14 else
15 Mark v as stale. s = s+ 1.
16 Remove v from Ki.

17 K1, . . . ,Kk ← Prune(H, B, K1, . . . , Kk) [Algorithm 4].
18 Return B.

5.2 Analysis
We first provide two key properties of the batch B of vertices found by Algorithm 3 that are
crucial for our final approximation factor and then analyze the running time of the algorithm.
Due to space constraints, some proofs are relegated to Appendix C.

Quality of the Schedule. We show that B comprises of vertices whose ancestor sets do not
overlap significantly, and further that it is the “maximal” such set.

▶ Lemma 7. The batch B returned by Algorithm 3 satisfies |A(B)| > γ
∑
v∈B |A(v)| and

|E(B)| > γ
∑
v∈B |E(v)|.

Proof. Let B(ℓ) ⊆ B denote the set containing the first ℓ vertices added to B by the algorithm.
We prove the lemma via induction. In the base case, B(1) consists of a single vertex and
trivially satisfies the claim. Now suppose that the claim is true for some ℓ ≥ 1 and let v be the
(ℓ+1)-th vertex to be added to B. By Algorithm 3 of Algorithm 3, we add a vertex v into B(ℓ)

if and only if |A(v)\A(B(ℓ))| > γ|A(v)| and |E(v)\E(B(ℓ))| > γ|E(v)|. Furthermore, since we
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Algorithm 4 Prune(H, B, K1, . . . , Kk).

Result: New buckets K1, . . . ,Kk.
Input: A graph H = (V,E), a batch B ⊆ V , and buckets K1, . . . ,Kk.

1 Obtain estimates âH(v) and êH(v) for all nodes v ∈ ∪ki=1Ki in the graph H.
2 Let H ′ ← H \ A(B)
3 Obtain estimates âH′(v) and êH′(v) for all nodes v ∈ ∪ki=1Ki in the graph H ′.
4 for i = k to 1 do
5 for each node v in bucket Ki do

6 X ← âH′(v)
âH(v) .

7 Y ← êH′(v)
êH(v) .

8 if X ≤ 2γ or Y ≤ 2γ then
9 Remove v from Ki.

10 Return the new buckets K1, . . . ,Kk.

enumerate A(v) via DFS, our calculation of the cardinality of each of these sets is exact. We
now have, |A(B(ℓ+1))| = |A(B(ℓ))|+ |A(v) \ A(B)| > |A(B(ℓ))|+ γ|A(v)|. By the induction
hypothesis, we now have |A(B(ℓ+1))| > γ

∑
w∈B(ℓ) A(w) + γA(v) = γ

∑
w∈B(ℓ+1) A(w). The

same proof also holds for E(B) and the lemma follows. ◀

▶ Lemma 8. If a vertex w was not added to B, it is pruned by Algorithm 4, with high
probability. If a vertex v is pruned by Algorithm 4, then |A(v) \ A(B)| ≤ 4γ|A(v)| or
|E(v) \ E(B)| ≤ 4γ|E(v)|, with high probability.

Proof. We first prove that any vertex v that is not added to B must be removed from its
bucket by Algorithm 4. Any vertex not added to B must have |A(v) \ A(B)| ≤ γ|A(v)|.
By Lemma 5, âH′(v) ≤ 4/3|A(v)\A(B)| and âH(v) ≥ 2/3|A(v)|, with high probability. This
must mean that âH′ (v)

âH(v) ≤
4/3|A(v)\A(B)|

2/3|A(v)| ≤ 4/3γ|A(v)|
2/3|A(v)| ≤ 2γ. Thus, v will be pruned. The

same proof holds for êH′(v).
We now prove that the pruning procedure successfully prunes vertices with not too

many unique ancestors. In Algorithm 4, by Lemma 5 (setting ϵ = 1/3), we have with high
probability, âH′(v) ≥ 2/3|AH′(v)|. Similarly, with high probability, âH(v) ≤ 4/3|AH(v)|.
This means X = âH′ (v)

âH(v) ≥
2/3|AH′ (v)|
4/3|AH(v)| = 1

2

(
|AH′ (v)|
|AH(v)|

)
. By the same argument, we also have

Y = êH′ (v)
êH(v) ≥

1
2

(
|EH′ (v)|
|EH(v)|

)
with high probability.

By Algorithm 4 of Algorithm 4, when we remove a vertex v we have either X ≤ 2γ or
Y ≤ 2γ. By the above, X,Y ≥ 1

2 (4γ) = 2γ. Thus, the largest that
(

|AH′ (v)|
|AH(v)|

)
or

(
|EH′ (v)|
|EH(v)|

)
can be while still being pruned is 4γ. Thus, with high probability, we have either |AH′ (v)|

|AH(v)| ≤ 4γ
or |EH′ (v)|

|EH(v)| ≤ 4γ. Since AH′(v) = A(v) \ A(B), the claim follows. ◀

The above two lemmas tell us that there are enough unique elements in each batch B, any
vertex not added to B will be pruned w.h.p., and the pruning procedure only prunes vertices
with a large enough overlap with B w.h.p. This allows us to show the following lemma on
the length of the schedule produced by Algorithm 2 for small subgraph H. We first show
that we only call Algorithm 3 at most O

(
log1/γ(ρ)

)
times from Algorithm 2 of Algorithm 2.
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▶ Lemma 9. The number of batches needed to be scheduled before all vertices in H are
scheduled is at most 4 log1/4γ(2ρ), with high probability.

Proof. By Lemma 8, each vertex v we do not schedule in a batch B has at least (1−4γ)|A(v)|
vertices in A(B) or at least (1− 4γ)|E(v)| edges in E(B). Since we assumed that all vertices
in H have ≤ 2ρ ancestors, this means that v can only remain unscheduled for at most
2 log1/4γ(4ρ2) batches until A(v) and E(v) both become empty (Gv can have at most 4ρ2

edges). ◀

Using Lemma 9, we can prove the length of the schedule for H using Algorithm 2. The
proof of this lemma is similar to the proof of schedule length of small subgraphs in [19].

▶ Lemma 10. With high probability, the schedule obtained from Algorithm 2 has size at most
|VH |
γM + 12ρ log1/4γ(2ρ) on M processors.

Proof. By definition of the input, each A(v) for v ∈ VH has at most 2ρ elements. Recall
that we schedule all elements in each batch B by duplicating the common shared ancestors
such that we obtain a set of independent ancestor sets to schedule. Then, we use a standard
list scheduling algorithm to schedule these lists; see Appendix B for a classic list scheduling
algorithm. Each vertex in H gets scheduled in exactly one batch since we remove all scheduled
vertices from the subgraph used to compute the next batch. Let B1, B2, . . . , Bk denote the
batches scheduled by Algorithm 2. Let Hi be the subgraph obtained from H by removing
batches B0, . . . , Bi−1 and adjacent edges. (B0 is empty.) By Lemma 7, with high probability,
for each batch Bi, we have

∑
v∈Bi |AHi(v)| ≤ 1

γ |AHi(Bi)|. Let Zi = 1
γ |AHi(Bi)|.

Graham’s list scheduling algorithm [13] for independent jobs is known to produce a
schedule whose length is at most the total length of jobs divided by the number of machines,
plus the length of the longest job. In our case, we treat each ancestor set as one big
independent job, and thus for each batch Bi, this bound becomes Zi/M + 2ρ.

Finally Algorithm 2 inserts an idle time of ρ between two successive batches. The total
length of the schedule is thus upper bounded by (where k is the number of batches):

k∑
i=1

(
Zi
M

+ 2ρ+ ρ

)
≤ 3ρ · 4 log1/4γ(2ρ)

k∑
i=1

Zi
M

(by Lemma 9)

≤ 3ρ · 4 log1/4γ(2ρ) + 1
γM
·
k∑
i=1
|AHi(Bi)|

= |VH |
γM

+ 12ρ log1/4γ(2ρ) ◀

Running Time. In order to analyze the running time of Algorithm 3, we need a couple of
technical lemmas. The key observation is that although computing the ancestor sets A(v)
and E(v) (in Algorithm 3) of a vertex v takes O(|E(v)|) time in the worst case, we can bound
the total amount of time spent computing these ancestor sets by the size of the ancestor sets
scheduled in the batch. There are two main components to the analysis. First, we show that
after every iteration of the pruning step, the number of vertices in each bucket reduces by
at least a constant fraction and hence the sampling procedure is repeated at most O(lnn)
times per batch. Secondly, we use a charging argument to upper bound the amount of time
spent enumerating the ancestor sets of sampled vertices.
Finding Stale Vertices. We first argue that with high probability, there are at most O(lnn)
iterations of the while loop in Algorithm 3 of Algorithm 3. Intuitively, in each iteration of the
while loop, the number of vertices in any bucket Ki reduces by at least a constant fraction.
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▶ Lemma 11. We perform O(lnn) iterations of sampling and pruning, with high probability,
before all buckets are empty. In other words, with high probability, Algorithm 3 of Algorithm 3
runs for O(lnn) iterations.

Proof. We prove the lemma for one bucket Ki and by the union bound, the lemma holds
for all buckets. First, any sampled vertex which is fresh is added to B. Furthermore, we
showed in Lemma 8 that any vertex which is stale is removed from Ki by Algorithm 4. Since
the estimates â(v) and ê(v) are within a 1

3 -factor of |A(v)| and |E(v)|, respectively, we can
upper bound âH′ (v)

âH(v) ≤ 2 · |A(v)\A(B)|
|A(v)| (same holds for ê(v)). If a vertex v is stale, then with

high probability, we have either âH′ (v)
âH(v) ≤

2|A(v)\A(B)|
|A(v)| ≤ 2γ or êH′ (v)

êH(v) ≤ 2γ, and it is removed
by Algorithm 4 of Algorithm 4. Since any fresh vertices that are sampled gets added into B
and all stale vertices are pruned at the end of each iteration, it only remains to show a large
enough number of stale vertices are pruned.

Lemma 17 guarantees that, with high probability, at least (1−ψ)-fraction of the vertices in
Ki are stale for any constant ψ ∈ (0, 1). Then, Algorithm 4 removes at least (1−ψ)|Ki| vertices
in Ki in each iteration. The number of iterations needed is then log1/(1−ψ)(|Ki|) = O(lnn).

Since there exists O(log ρ) buckets and O(m) estimates, we can take the union bound on
the probability of success over all buckets and estimates. We obtain, with high probability,
O(logn) iterations are necessary before all buckets are empty. ◀

Charging the Cost of Examining Stale Sets. Here we describe our charging argument that
allows us to explictly enumerate the ancestor set of each sampled vertex. Computing the
ancestor set of a vertex v takes time O(|E(v)|) using DFS. Since a fresh vertex gets added to
the batch, the cost of computing the ancestor set of a fresh vertex can be easily bounded by
the set of edges in E(B), achieving a total cost, specifically, of O

(
1
γ |E(B)|

)
. Our charging

argument allows us to bound the cost of computing ancestor sets of sampled stale vertices
by charging it to the most recently sampled fresh vertex. Using the above, we provide the
runtime of Algorithm 3 below and then the runtime of Algorithm 2.

▶ Lemma 12. Algorithm 3 runs in O
(

1
γ |EH(B)| ln ρ lnn+ |EH | ln3 n

)
time, with high

probability.

Proof. The runtime of Algorithm 3 consists of three parts: the time to sample and enumerate
ancestor sets, the time to prune stale vertices, and the time to list schedule all vertices in B.

By Lemma 18, the time it takes to enumerate all sampled ancestor sets is
O

(
1
γ |E(B)| log ρ logn

)
over all iterations of the loops on Algorithm 3 and Algorithm 3

of Algorithm 3.
The time it takes to run Algorithm 4 is O(|EH | ln2 n) since obtaining the estimates for

each node (by Lemma 5), creating graph H ′, and calculating X and Y for each node in the
bucket can be done in that time. By Lemma 11, we perform O(lnn) iterations of pruning,
with high probability. Thus, the total time to prune the graph is O(|EH | ln3 n). ◀

▶ Lemma 13. Given a graph H = (VH , EH) where |A(v)| ≤ 2ρ for each v ∈ VH and
parameter γ ∈ (0, 1/2), the time it takes to compute the schedule of H using Algorithm 2 is,
with high probability, O

(
1
γ |EH | ln ρ lnn+ |EH | ln1/4γ ρ ln3 n+ |VH | lnM

)
.

Proof. By Lemma 9, we perform O(log1/4γ ρ) calls to Algorithm 3. Each call to Algorithm 3
requires O

(
1
γ |EH(B)| ln ρ lnn+ |EH | ln3 n

)
time by Lemma 12. However, we know that each

vertex (and edges adjacent to it) is scheduled in exactly one batch.
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For each batch B, our greedy list scheduling procedure schedules each A(v) for v ∈ B
greedily and independently by duplicating vertices that appear in more than one ancestor
set. Thus, enumerating all the ancestor sets require O

(
1
γ |E(B)|

)
time by Lemma 7. When

M > |B|, we easily schedule each list on a separate machine in O
(

1
γ |E(B)|

)
time. Otherwise,

to schedule the lists, we maintain a priority queue of the machine finishing times. For each
list, we greedily assign it to the machine that has the smallest finishing time. We can perform
this procedure using O(M lnM) time. Since M ≤ |B|, this results in O(|B| ln |B|) time to
assign ancestor sets to machines.

Thus, the total runtime of all calls to Algorithm 3 is

log1/4γ ρ∑
i=1

O

(
1
γ
|EH(Bi)| ln ρ lnn+ |EH | ln3 n+ 1

γ
|E(Bi)|+ |B| ln |B|

)
= O

(
1
γ
|EH | ln ρ lnn+ |EH | ln1/4γ ρ ln3 n

)
.

Then, the time it takes to perform Algorithm 2 of Algorithm 2 is O(1) per iteration.
Scheduling vertices with no adjacent edges requires |B| ln |B| = O(|VH | lnM) time. Finally,
the time it takes to remove each v ∈ A(B) and all edges adjacent to v from H for each batch
B is O(|VH |+ |EH |). Doing this for O(ln1/4γ ρ) iterations results in O(|VH |+ |EH | ln1/4γ ρ)
time. ◀

6 Scheduling General Graphs

We now present our main scheduling algorithm for scheduling any DAG G = (V,E) (the
full pseudocode is included in Appendix C in our full paper [20]). This algorithm also uses
as a subroutine the procedure for estimating the number of ancestors of each vertex in G

as described in Section 4. We use the estimates to compute the small subgraphs which we
pass into Algorithm 2 to schedule. We produce the small subgraphs by setting the cutoff for
the estimates to be 4

3ρ. This produces small graphs where the number of ancestors of each
vertex is upper bounded by 2ρ, with high probability. We present a simplified algorithm
below in Algorithm 5. The full pseudocode for our main algorithm is given in Algorithm 10
in our full paper [20].

Algorithm 5 ScheduleGeneralGraph(G).

Result: A schedule of the input graph G = (V,E) on M processors.
Input: A directed acyclic task graph G = (V,E).

1 Let H ← ∅ represent a list of small subgraphs that we will build.
2 while G is not empty do
3 Let VH be the set of vertices in G where â(v) ≤ 4

3ρ for each v ∈ VH .
4 Compute edge set EH to be all edges induced by VH .
5 Add H = (VH , EH) to H.
6 Remove VH and all incident edges from G.
7 end
8 for H ∈ H in the order they were added do
9 Call ScheduleSmallSubgraph(H) to obtain a schedule of H. [Algorithm 2]

10 end
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Quality of the Schedule and Running Time. Let OPT be the length of the optimal schedule.
We first give two bounds on OPT, and then relate them to the length of the schedule found
by our algorithm. A detailed set of proofs is provided in Appendix C.2.

Our main algorithm, Algorithm 5, partitions the vertices of G into small subgraphs H ∈ H.
It does so based on estimates of ancestor set sizes. We first lower bound OPT by working
with exact ancestor set sizes. Since the schedule produced by our algorithm cannot have
length smaller than OPT, this process also provides a lower bound on our schedule length.
Then, we show that Algorithm 5 does not output more small subgraphs than the number of
subgraphs produced by working with exact ancestor set sizes, with high probability.

The crucial fact in obtaining our final runtime is that producing the estimates of the
number of ancestors of each vertex requires Õ(|V | + |E|) time in total over the course of
finding all small subgraphs. Together, these facts allow us to obtain Theorem 14.

▶ Theorem 14. On input graph G = (V,E), Algorithm 5 produces a schedule of length at
most O

(
ln ρ

ln ln ρ · (OPT + ρ)
)

and runs in time O
(
n lnM + m ln3 n ln ρ

ln ln ρ

)
, with high probability.

Proof. By Lemma 21, Algorithm 3 is called at most L times. Then, since each vertex is in
at most one small subgraph (and hence each edge is in at most one small subgraph), the
total runtime for all the calls (by Lemma 13) is

L∑
i=1

O

(
1
γ
|EHi | ln ρ lnn+ |EHi | ln1/4γ ρ ln3 n+ |VHi | lnM

)
= O

(
1
γ
|E| ln ρ lnn+ |E| ln1/4γ ρ ln3 n+ |V | lnM

)
.

Furthermore, each iteration of Algorithm 5 requires estimating â(v) for a set of vertices
v, adding v to H, and checking all successors of v. First, we show that â(v) is computed at
most twice for each vertex in V , and then, we show that the rest of the steps are efficient.

Each vertex contained in the queue, Q, in Algorithm 3, either does not have any ancestors,
or all of its ancestors are in H (the current subgraph). If a vertex v ∈ Q was not added to
H during iteration i, then it must have at least one ancestor in iteration i and no ancestors
in iteration i+ 1. Since v has no ancestors in iteration i+ 1, it must be added to Hi+1. The
time it takes to compute the estimate for one vertex is O(ln2 n). Thus, the total time it takes
to compute the estimate of the number of ancestors of all vertices is O

(
m ln2 n

)
. Adding v

to H and checking all successors can be done in O(m) time in total across all vertices and
subgraphs. Finally removing each v ∈ H from G can be done in O(m) time in total for all v.

As earlier, we use γ =
√

ln ρ, so the total runtime summing the above can be up-
per bounded by O

(
n lnM + m ln3 n ln ρ

ln ln ρ

)
. Thus, the algorithm produces a schedule of

length O
(

ln ρ
ln ln ρ · (OPT + ρ)

)
(by Theorem 22) and the total runtime of the algorithm

is O
(
n lnM + m ln3 n ln ρ

ln ln ρ

)
, with high probability. ◀

Theorem 14 gives the main result of our paper stated informally in Theorem 1 of the
introduction.
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A Count-Distinct Estimator [4]

We provide the algorithm of Bar-Yossef et al. [4] in Algorithm 6 (Appendix A) in our full
paper [20]. The algorithm of [4] works as follows. Provided a multiset S of elements where
n = |S|, we pick t = c

ε2 where c is some fixed constant c ≥ 1 and H, a 2-univesal hash family.
Then, we choose O(logn) hash functions from H uniformly at random, without replacement.
For each hash function hi : [n]→ [n3] (i = O(logn)), we maintain a balanced binary tree Ti
of the smallest t values seen so far from the hash outputs of hi. Initially, all Ti are empty.
We iterate through S and for each aj ∈ S, we compute hi(aj) using each hi that we picked;
we update Ti if hi(aj) is smaller than the largest element in Ti or if the size of Ti is smaller
than t. After iterating through all of S, for each Ti, we add the largest value of each tree
Ti to a list L. Then, we sort L and find the median value ℓ (using the median trick). We
return tn3/ℓ as our estimate.

We now show how to use Bar-Yossef et al. [4] to get our desired mergeable estimator. Let
TX be the set of trees Ti ∈ TX maintained for the estimator defined by Bar-Yossef et al. [4]
for multiset X. Since each Ti has size at most O(t) = O

( 1
ε2

)
, the total space required to

store all Ti is O
( 1
ε2 log2 n

)
in bits. We can initialize our estimator on input d by picking a

set of random hash functions: h1, . . . , hd logn ∈ H. Let H be the set of picked hash function.
Then, for each set S, we initialize d logn trees Ti ∈ TS and maintain TS in memory. The
elements of Ti are computed using hi ∈ H. Let DS denote the estimator for S. Using TS for
set S, we can implement the following functions (pseudocode for the three functions can be
found in Algorithm 6):
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CountDistinctEstimator.insert(DS, x): Insert hi(x) into Ti ∈ TS for each i ∈ [d logn].
If Ti has size greater than t, delete the largest element of Ti.
CountDistinctEstimator.merge(DS1 , DS2): Here we assume that the same set of hash
functions are used for both DS1 and DS2 . For each pair of T1,i ∈ TS1 and T2,i ∈ TS2 for
hash function hi, build a new tree Ti by taking the t smallest elements from T1,i ∪ T2,i.
CountDistinctEstimator.estimateCardinality(DS): Let ℓ be the median value of the
largest values of the trees Ti ∈ TS . Return tN/ℓ.

Algorithm 6 Initialize New CountDistinctEstimator.

Input: DS , TS , t, hi ∈ H are as defined above for multiset S. Let n = |S|.
1 CountDistinctEstimator.insert(DS, x):
2 for Ti ∈ TS do
3 Compute hi(x).
4 if Ti has less than t elements or hi(x) is smaller than the largest value in Ti

then
5 Insert hi(x) into Ti.
6 end
7 if Ti has more than t elements then
8 Remove the largest element in Ti.
9 end

10 end
11 CountDistinctEstimator.merge(DS1 , DS2):
12 for T1,i ∈ TS1 , T2,i ∈ TS2 do
13 Perform inorder traversal of T1,i and T2,i to obtain non-decreasing lists of

elements, L1,i and L2,i.
14 Merge L1,i and L2,i to obtain a new non-decreasing list of elements, L.
15 Build a new balanced binary tree from the first t elements of L.
16 end
17 CountDistinctEstimator.estimateCardinality(DS):
18 for Ti ∈ TS do
19 Insert largest element of Ti into list L.
20 end
21 Sort L.
22 Let ℓ be the median of L.
23 Return tn3/ℓ.

The estimator provided in Bar-Yossef et al. [4] satisfies the following lemmas as proven
in [8] (specifically it is proven that the estimator is unbiased):

▶ Lemma 15 ([4]). The Bar-Yossef et al. [4] estimator is an
(
ε, 1
nd
, O

( 1
ε2 log2 n

))
-estimator

for the count-distinct problem.

▶ Lemma 16. Furthermore, the insert, merge, and estimate cardinality functions of the
Bar-Yossef et al. [4] estimator can be implemented in O

( 1
ε2 log2 n

)
time.

Proof. CountDistinctEstimator.insert requires O(log t) time to insert hi(x) and O(log t)
time to remove the largest element. Thus, this method requires O

(
log

( 1
ε

))
= O

( 1
ε2

)
time.

CountDistinctEstimator.merge requires O(t) = O
( 1
ε2

)
time to merge T1,i and T2,i and also

O(t) time to build the new tree. Finally, CountDistinctEstimator.estimateCardinality
requires O(logn) time to create the list L and O(logn log logn) time to sort and find the
median. ◀
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Estimating the Number of Ancestors and Edges. Using the count-distinct estimator
described above, we can provide our full algorithms for estimating the number of ancestors
and the number of edges in the induced subgraph of every vertex in a given input graph.

Our complete algorithm for estimating the number of ancestors â(v) of every vertex in
an input graph is given in Algorithm 7. Our algorithm for finding ê(v) for every vertex in
the input graph is given in Algorithm 9 in our full paper [20].

Algorithm 7 Estimate Number of Ancestors.

Result: Estimate âH(v) such that (1− ϵ)|AH(v)| ≤ âH(v) ≤ (1 + ϵ)|AH(v)|, ∀v ∈ V .
1 Input: A graph H = (V,E).
2 Topologically sort all the vertices in H.
3 for vertex w in the topological order of vertices in H do
4 Let Pred(w) be the set of predecessors of w.
5 Let Dw ← New

(
ε, 1
nd
, O

( 1
ε2 log2 n

))
-CountDistinctEstimator for w.

6 CountDistinctEstimator.insert(Dw, w)
7 for v ∈ Pred(w) do
8 Dw = CountDistinctEstimator.merge(Dw,Dv).
9 end

10 âH(w) = CountDistinctEstimator.estimateCardinality(Dw)
11 end

B List Scheduling

Here we provide a brief description of the classic Graham list scheduling algorithm [14]. For
our purposes, we are given a set of vertices and their ancestors. We duplicate the ancestors
for each vertex v so that each vertex and its ancestors is scheduled as a single unit with job
size equal to the number of ancestors of v. Then, we perform the following greedy procedure:
for each vertex v, we sequentially assign v to the machine Mi ∈M with smallest load (i.e.
load is defined by the jobs lengths of all jobs assigned to it). We can maintain loads of the
machines in a heap to determine the machine with the lowest load at any time. To schedule
n jobs using this procedure requires O(n lnM) time.

C Deferred Proofs

In this section, we include all of the proofs deferred from the main text.

C.1 Runtime of Scheduling Small Subgraphs
▶ Lemma 17. For any constant d ≥ 1 and ψ > 0, there is a constant c ≥ 1 such that, with
probability at least 1− 1

nd
, at most a ψ-fraction of remaining nodes in each bucket are fresh

after sampling c lnn stale vertices consecutively.

Proof. The main approach behind the proof is that we show that for any bucket where a
constant fraction ψ of the vertices in the bucket are fresh, for any c lnn consecutively sampled
vertices, we expect to see ψc lnn fresh vertices. Furthermore, we show a concentration bound
around this expected number of vertices using the Chernoff bound. Thus, we can conclude
that if we see c lnn stale vertices consecutively (with no good vertices), then with high
probability, at most a small constant fraction of the remaining nodes in the bucket is fresh.



Q. C. Liu, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 47:21

Algorithm 3 samples the vertices in each bucket Ki consecutively, uniformly at random
without replacement, until a new fresh vertex is found or at least c lnn stale vertices are
sampled consecutively. Let F be the set of fresh and stale vertices sampled (and removed)
so far from bucket Ki up to the most recent time a fresh vertex was sampled from Ki (i.e.
F includes all vertices sampled including and up to the most recent fresh vertex sampled
from Ki). Let ψ be some fraction 0 < ψ < 1. Suppose at most a ψ-fraction of the vertices in
bucket Ki are fresh after removing the previously sampled F vertices. Such an ψ exists for
every bucket with at least one fresh vertex and one stale vertex after doing such removals.
(In the case when all vertices in the bucket are fresh, all vertices from that bucket will be
sampled and added to B. If all vertices in the bucket are stale, then c lnn stale vertices will
be sampled immediately.)

From here on out, we assume the bucket Ki only contains the remaining vertices after the
previously sampled F vertices were removed. We assume the number of remaining vertices
in Ki is more than c lnn. The probability that each of the next sampled vertices is a fresh
vertex is at least ψ. The expected number of fresh vertices in the c lnn samples from Ki is
lower bounded by:

c lnn∑
i=1

(
i ·

(
c lnn
i

)
ψi(1− ψ)c lnn−i

)
= ψc lnn.

Suppose for our analysis that we only remove stale vertices when we sample them (and
not fresh vertices). The above is a lower bound, in this setting, on the expected number
of sampled fresh vertices from Ki since ψ is the fraction of fresh vertices after removing F ;
if we remove more stale vertices, the fraction of fresh vertices cannot decrease so ψ upper
bounds the fraction of fresh vertices in Ki as we remove more stale vertices. This assumption
is the same as our algorithm when all c lnn sampled vertices are stale.

By the Chernoff bound, the probability that we sample less than (1 − ε)ψc lnn fresh
vertices is less than exp

(
− ε

2ψc lnn
2

)
. When c > 1

(1−ε)ψ , (1− ε)ψc lnn ≥ 1 for any 0 < ε < 1
and 0 < ψ < 1. Then, the probability that no fresh vertices are sampled is less than
exp

(
− ε

2ψc lnn
2

)
= n

−ε2ψc
2 . It is easy to consider the case for constant ψ ∈ (0, 1). If ψ = o(1),

then there exists a constant ϕ for which at most a ϕ-fraction of the vertices in Ki are fresh.
If ψ = ω(1), then the probability becomes super-polynomially small. We can sample c lnn
vertices for large enough constant c ≥ 6d

ε2ψ such that with probability at least 1− 1
nd

for any
constant d ≥ 1, there exists less than ψ-fraction of vertices in the bucket that are fresh if the
next c lnn sampled vertices are stale. The factor of 6 in the bound c ≥ 6d

ε2ψ is useful when
we take the union bound over multiple trials (at most O(n2)) for all buckets used during the
course of this algorithm. ◀

▶ Lemma 18. With high probability, the total runtime of enumerating the ancestor sets of all
sampled vertices in Algorithm 3 is O

(
1
γ |E(B)| ln ρ lnn

)
. In other words, the total runtime

of performing all iterations of Algorithm 3 of Algorithm 3 is O
(

1
γ |E(B)| ln ρ lnn

)
, with high

probability.

Proof. First, we calculate the runtime of enumerating the ancestor sets of each element of B.
By Lemma 7, |E(B)| ≥ γ

∑
v∈B |E(v)|. Hence, the amount of time to enumerate all ancestor

sets of every vertex in B is at most 1
γ |E(B)|.

We employ the following charging scheme to calculate the total time necessary to enumerate
the ancestor sets of all sampled stale vertices. Let u be the most recent vertex added to
B from some bucket Ki. We charge the cost of enumerating the ancestor sets of all stale
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vertices sampled after u to the cost of enumerating the ancestor set of u. Since we sample at
most O(logn) consecutive stale vertices from each bucket before moving to the next bucket,
u gets charged with at most the work of enumerating O(log ρ logn) vertices from the same
or smaller buckets. With high probability, the largest ancestor set in bucket Ki has a size at
most four times the smallest ancestor set size. Since we sample vertices in decreasing bucket
size, we charge at most O(|E(v)| log ρ logn) work to v.

By our bound on the cost of enumerating all ancestor sets of vertices in B, the additional
charged cost results in a total cost of

∑
v∈B |E(v)|·O(log ρ logn) = O( 1

γ |E(B)| log ρ logn). ◀

C.2 Quality of the Schedule Produced by the Main Algorithm
Assuming we are working with exact ancestor set sizes, we would wind up with vertex
sets V1 ≜ {v ∈ V : |A(v)| ≤ ρ} and, inductively, for i > 1, Vi ≜ {v ∈ V \

⋃i−1
j=1 Vj :

|A(v) \
⋃i−1
j=1 Vj | ≤ ρ}. Let L be the maximum index such that VL is nonempty.

The following lemma follows a similar argument as that found in Lepere-Rapine [19]
(although we have simplified the analysis). We repeat it here for completeness.

▶ Lemma 19. OPT ≥ (L− 1)ρ.

Proof. We show by induction on i that in any valid schedule, there exists a job v ∈ Vi that
cannot start earlier than time (i − 1)ρ. Given that, the job in VL starts at time at least
(L− 1)ρ in OPT, proving the lemma.

The base case of i = 1 is trivial. For the induction step, consider a job v ∈ Vi+1. This job
has at least ρ ancestors in Vi (call this set A = A(v) ∩ Vi), since if it had less, v would be
in Vi itself. All jobs in A start no earlier than (i− 1)ρ by the induction hypothesis. There
are two cases. If all of the jobs in A are executed on the same machine as v, then it would
take at least ρ units of time for them to finish before v can start. If at least one job in A is
executed on a different machine than v, then it would take ρ units of time to communicate
the result. In either case, v would start later than the first job in A by at least ρ, and thus
no earlier than i · ρ. ◀

▶ Lemma 20. OPT ≥ |V |/M .

Proof. Every job has to be scheduled on at least one machine, and the makespan is at least
the average load on any machine. ◀

We show that our general algorithm only calls the schedule small subgraph procedure at
most L times, w.h.p.

▶ Lemma 21. With high probability, Algorithm 5 calls Algorithm 2 at most L times on input
graph G = (V,E).

Proof. By construction, the Vi’s are inductively defined by stripping all vertices with
ancestor sets at most ρ in size. With high probability, our estimates â(v) are at most
4
3 |A(v)|. Algorithm 5 only takes vertex v into the subgraph H if â(v) ≤ 4

3ρ. By Lemma 5,
2
3 |A(v)| ≤ â(v) ≤ 4

3 |A(v)|. Then, |A(v)| ≤ 3
2 â(v) ≤ 3

2 ·
4
3ρ = 2ρ. Furthermore, since

|A(v)| ≥ 3
4 · â(v), if â(v) = 4

3ρ, then |A(v)| ≥ ρ. Hence, all vertices with height ρ are added
into H, with high probability. Taken together, this means that all vertices of Vi (even
if their ancestor sets are maximally overestimated) are contained in the small graphs H
produced by iterations one through i of Algorithm 5 of Algorithm 5 Since VL was chosen to
be the last non-empty set, we know our algorithm runs for at most L iterations, with high
probability. ◀
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▶ Theorem 22. Algorithm 5 produces a schedule of length at most O
(

ln ρ
ln ln ρ

)
· (OPT + ρ).

Proof. In Algorithm 2, by Lemma 10, the schedule length obtained from any small subgraph
H is |VH |

γM + 12ρ log1/4γ(2ρ).
Let H be the set of all small subgraphs Algorithm 5 sends to Algorithm 2 to be scheduled.

By Lemma 21, there are at most L of them. Each vertex trivially appears in at most one
subgraph. Then the total length of our schedule is given by∑

H∈H

(
|VH |
γM

+ 12ρ log1/4γ(2ρ)
)

=
∑
H∈H

|VH |
γM

+
∑
H∈H

12ρ log1/4γ(2ρ)

≤ |V |
γM

+ L
(

12ρ log1/4γ(2ρ)
)
.

By Lemmas 19 and 20, this last quantity is upper bounded by

OPT ·
(

1
γ

+ 12 log1/4γ(2ρ)
)

+ ρ · 12 log1/4γ(2ρ)

Setting γ = 1/
√

ln ρ gives our bound of (OPT + ρ) ·O( ln ρ
ln ln ρ ). ◀
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