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Abstract
We study the relationship between various one-way communication complexity measures of a
composed function with the analogous decision tree complexity of the outer function. We consider
two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs.
More generally, we show the following when the gadget is Inner Product on 2b input bits for all
b ≥ 2, denoted IP.

If f is a total Boolean function that depends on all of its n input bits, then the bounded-error
one-way quantum communication complexity of f ◦ IP equals Ω(n(b − 1)).
If f is a partial Boolean function, then the deterministic one-way communication complexity of
f ◦ IP is at least Ω(b · D→

dt(f)), where D→
dt(f) denotes non-adaptive decision tree complexity of f .

To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We
then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound.
Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede
and Khachatrian [Adv. Appl. Math.’98], and Frankl and Tokushige [Comb.’99].

It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way
communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f .
In contrast, we show the following when the inner gadget is the AND function on 2 input bits.

There exists a function for which even the quantum non-adaptive AND decision tree complexity
of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND.
However, for symmetric functions f , the non-adaptive AND decision tree complexity of f is at
most quadratic in the (even two-way) communication complexity of f ◦ AND.

In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does
not lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first
bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a
connection between the one-way communication complexity of f and the Möbius sparsity of f , and
then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the
non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior
work on combinatorial group testing; for the sake of completeness, we include a proof of this result.

It is well known that the rank of the communication matrix of a function F is an upper bound
on its deterministic one-way communication complexity. This bound is known to be tight for some
F . However, in our final result we show that this is not the case when F = f ◦ AND. More precisely
we show that for all f , the deterministic one-way communication complexity of F = f ◦ AND is at
most (rank(MF ))(1 − Ω(1)), where MF denotes the communication matrix of F .
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1 Introduction

Composed functions are important objects of study in analysis of Boolean functions and
computational complexity. For Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1}, their composition f ◦g : ({0, 1}m)n → {0, 1} is defined as follows: f ◦g(x1, . . . , xn) :=
f(g(x1), . . . , g(xn)). In other words, f ◦ g is the function obtained by first computing g on
n disjoint inputs of m bits each, and then computing f on the n resultant bits. Composed
functions have been extensively looked at in the complexity theory literature, with respect
to various complexity measures [8, 24, 39, 42, 43, 9, 44, 35, 5, 18, 2, 17, 4].

Of particular interest to us is the case when g is a communication problem (also referred
to as “gadget”). More precisely, let g : {0, 1}b × {0, 1}b → {0, 1} and f : {0, 1}n → {0, 1}
be Boolean functions. Consider the following communication problem: Alice has input
x = (x1, . . . , xn) and Bob has input y = (y1 . . . , yn) where xi, yi ∈ {0, 1}b for all i ∈ [n].
Their goal is to compute f ◦ g((x1, y1), . . . , (xn, yn)) using as little communication as possible.
A natural protocol is the following: Alice and Bob jointly simulate an efficient query algorithm
for f , using an optimal communication protocol for g to answer each query. Lifting theorems
are statements that say this naive protocol is essentially optimal. Such theorems enable us
to prove lower bounds on the rich model of communication complexity by proving feasibly
easier-to-prove lower bounds in the query complexity (decision tree) model. Various lifting
theorems have been proved in the literature [19, 13, 38, 20, 11, 48, 16, 21, 22, 27, 30, 10].

In this work we are interested in the one-way communication complexity of composed
functions. Here, a natural protocol is for Alice and Bob to simulate a non-adaptive decision
tree for the outer function, using an optimal one-way communication protocol for the inner
function. Thus, the one-way communication complexity of f ◦ g is at most the non-adaptive
decision tree complexity of f times the one-way communication complexity of g.

Lifting theorems in the one-way model are less studied than in the two-way model.
Montanaro and Osborne [36] observed that the deterministic one-way communication com-
plexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f . Thus,
non-adaptive parity decision tree complexity lifts “perfectly” to deterministic communication
complexity with the XOR gadget. Kannan et al. [25] showed that under uniformly distributed
inputs, bounded-error non-adaptive parity decision tree complexity lifts to one-way bounded-
error distributional communication complexity with the XOR gadget. Hosseini, Lovett and
Yaroslavtsev [23] showed that randomized non-adaptive parity decision tree complexity lifts
to randomized communication complexity with the XOR gadget in the one-way broadcasting
model with Θ(n) players.
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We explore the tightness of the naive communication upper bound for two different choices
of the gadget g: the Inner Product function, and the two-input AND function. For each
choice of g, we compare the one-way communication complexity of f ◦ g with an appropriate
type of non-adaptive decision tree complexity of f . Below, we motivate and state our results
for each choice of the gadget. Formal definitions of the measures considered in this section
can be found in Section 2 and Appendix A.

Inner Product Gadget

Let Q→
cc,ε(·), R→

cc,ε(·) and D→
cc (·) denote quantum ε-error, randomized ε-error and deterministic

one-way communication complexity, respectively. When we allow the parties to share an
arbitrary input-independent entangled state in the beginning of the protocol, denote the
one-way quantum ε-error communication complexity by Q∗,→

cc,ε (·). Let Q→
dt(·) and D→

dt(·) denote
bounded-error quantum non-adaptive decision tree complexity and deterministic non-adaptive
decision tree complexity, respectively. For an integer b > 0, let IP : {0, 1}b × {0, 1}b → {0, 1}
denote the Inner Product Modulo 2 function, that outputs the parity of the bitwise AND of
two b-bit input strings. Our first result shows that if f is a total function that depends on all of
its input bits, the quantum (and hence, randomized) bounded-error one-way communication
complexity of f ◦ IP is Ω(n(b − 1)). Let Hbin(·) denote the binary entropy function. If
ε = 1/2− Ω(1), then 1−Hbin(ε) = Ω(1).

▶ Theorem 1.1. Let f : {0, 1}n → {0, 1} be a total Boolean function that depends on all
its inputs (i.e., it is not a junta on a strict subset of its inputs), and let ε ∈ (0, 1/2). Let
IP : {0, 1}b × {0, 1}b → {0, 1} denote the Inner Product function on 2b input bits for b ≥ 1.
Then Q→

cc,ε(f ◦ IP) ≥ (1−Hbin(ε))n(b− 1) and Q∗,→
cc,ε (f ◦ IP) ≥ (1−Hbin(ε))n(b− 1)/2.

▶ Remark 1.2. In an earlier manuscript [40], the second author proved a lower bound of
(1 − Hbin(ε))n(b − 1) on a weaker complexity measure, namely R→

cc,ε(F ), via information-
theoretic tools. Kundu [28] subsequently observed that a quantum lower bound can also be
obtained by additionally using Holevo’s theorem. They also suggested to the second author
via private communication that one might be able to recover these bounds using a result of
Klauck [26]. This is indeed the approach we take, and we thank them for suggesting this
and pointing out the reference.

In order to prove Theorem 1.1, we appeal to a result of Klauck [26, Theorem 3], who
showed that the one-way ε-error quantum communication complexity of a function F is at
least (1−Hbin(ε)) · VC(F ), where VC(F ) denotes the VC-dimension of F (see Definition 2.7).
In the case when the parties can share an arbitrary entangled state in the beginning of a
protocol, Klauck showed a lower bound of (1−Hbin(ε)) ·VC(F )/2. We exhibit a set of inputs
that witnesses the fact that VC(f ◦ IP) ≥ n(b−1). Note that Theorem 1.1 is useful only when
b > 1. Indeed, no non-trivial lifting statement is true for b = 1 when f is the AND function
on n bits, since in this case, f ◦ IP = AND2n, whose one-way communication complexity is 1.

Our second result with the Inner Product gadget relates the deterministic one-way
communication complexity of f ◦ IP to the deterministic non-adaptive decision tree complexity
of f , where f is an arbitrary partial Boolean function.

▶ Theorem 1.3. Let S ⊆ {0, 1}n be arbitrary, and f : S → {0, 1} be a partial Boolean
function. Let b ≥ 2 and IP : {0, 1}b × {0, 1}b → {0, 1}. Then D→

cc (f ◦ IP) = Ω(b · D→
dt(f)).

Given a protocol Π, our proof extracts a set of variables of cardinality linear in the complexity
of Π, whose values always determine the value of f . The following claim which follows
directly from a result due to Ahlswede and Khachatrian [1] and independently Frankl and
Tokushige [15], is a crucial ingredient in our proof.

STACS 2022
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▶ Theorem 1.4. Let q ≥ 3 and 1 ≤ d ≤ n/3. Let A ⊆ [q]n be such that for all x(1) =
(x(1)

1 , . . . , x
(1)
n ), x(2) = (x(2)

1 , . . . , x
(2)
n ) ∈ A, |{i ∈ [n] | x(1)

i = x
(2)
i }| ≥ d. Then, |A| < qn− d

10 .

We refer the reader to the full version of our paper [33] for a proof.
▶ Remark 1.5. An analogous lifting theorem for deterministic one-way protocols for total
outer functions follows as a special case of both Theorem 1.1 and Theorem 1.3. However,
the statement admits a simple and direct proof based on a fooling set argument.

Theorem 1.1 and Theorem 1.3 give lower bounds even when the gadget is the Inner
Product function on 4 input bits (and lower bounds do not hold for the Inner Product gadget
with fewer inputs). It is worth mentioning here that prior works that consider lifting theorems
with the Inner Product gadget [11, 48, 10], albeit in the two-way model of communication
complexity, require a super-constant gadget size.

AND Gadget

Interactive communication complexity of functions of the form f ◦ AND have gained a recent
interest [27, 47]. In order to state and motivate our results regarding when the inner gadget
is the 2-bit AND function, we first discuss some known results in the case when the inner
gadget is the 2-bit XOR function.

Consider non-adaptive decision trees, where the trees are allowed to query arbitrary
parities of the input variables. Denote the minimum cost (number of parity queries) of
such a tree computing a Boolean function f , by NAPDT(f). An efficient non-adaptive
parity decision tree for f can easily be simulated to obtain an efficient deterministic one-way
communication protocol for f ◦ XOR. Thus, D→

cc (f ◦ XOR) ≤ NAPDT(f). Montanaro and
Osborne [36] observed that this inequality is, in fact, tight for all Boolean functions. More
precisely,

▷ Claim 1.6 ([36]). For all Boolean functions f : {0, 1}n → {0, 1}, D→
cc (f ◦ XOR) =

NAPDT(f).

If the inner gadget were AND instead of XOR, then the natural analogous decision tree
model to consider would be non-adaptive decision trees that have query access to arbitrary
ANDs of subsets of inputs. Denote the minimum cost (number of AND queries) of such a tree
computing a Boolean function f by NAADT(f). Clearly, D→

cc (f ◦AND) is bounded from above
by NAADT(f), since a non-adaptive AND decision tree can be easily simulated to give a
one-way communication protocol for f ◦AND of the same complexity. Thus, D→

cc (f ◦AND) ≤
NAADT(f). On the other hand, one can show that D→

cc (f ◦ AND) ≥ log(NAADT(f)) (see
Claim 4.3). Thus

log(NAADT(f)) ≤ D→
cc (f ◦ AND) ≤ NAADT(f). (1)

We explore if an analogous statement to Claim 1.6 holds true if the inner function were
AND instead of XOR. That is, is the second inequality in Equation (1) always tight?

We give a negative answer in a very strong sense and exhibit a function for which the
first inequality is tight (up to an additive constant). We show that there is an exponential
separation between these measures even if one allows the decision trees to have quantum
query access to ANDs of subsets of input variables. It is worth noting that, in contrast, if one
is given quantum query access to parities (in place of ANDs) of subsets of input variables,
then one can completely recover an n-bit string using just 1 query [6], rendering this model
trivial. Let QNAADT(f) denote the bounded-error quantum non-adaptive AND decision
tree complexity of f .
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▶ Theorem 1.7. There exists a function f : {0, 1}n → {0, 1} such that QNAADT(f) =
Ω(2D→

cc (f◦AND)).

The function f we use to witness the bound in Theorem 1.7 is a modification of the well-
studied Odd-Max-Bit function, which we denote OMBn. This function outputs 1 if and only
if the maximum index of the input string that contains a 0, is odd (see Definition 2.3). A
⌈log(n+1)⌉-cost one-way communication protocol is easy to show, since Alice can simply send
Bob the maximum index where her input is 0 (if it exists), and Bob can use this along with
his input to conclude the parity of the maximum index where the bitwise AND of their inputs
is 0. A crucial property that we use to show a lower bound of Ω(n) on QNAADT(OMBn) is
that OMBn has large alternating number, that is, there is a monotone path on the Boolean
hypercube from 0n to 1n on which the value of OMBn flips many times.

Theorem 1.7 implies that, in contrast to the lifting theorem with the XOR gadget
(Claim 1.6), the measure of non-adaptive AND decision tree complexity does not lift to
a one-way communication lower bound for f ◦ AND. However we show that a statement
analogous to Claim 1.6 does hold true for symmetric functions f , albeit with a quadratic
factor, even when the measure is two-way communication complexity, denoted Dcc(·).

▶ Theorem 1.8. Let f : {0, 1}n → {0, 1} be a symmetric function. Then NAADT(f) =
O(Dcc(f ◦ AND)2).

In fact we prove a stronger bound in which Dcc(f ◦ AND) above is replaced by
log rank(Mf◦AND), where Mf◦AND denotes the communication matrix of f ◦ AND. That
is, we show that for symmetric functions f ,

NAADT(f) = O(log2 rank(Mf◦AND)). (2)

Since it is well known (Equation (6)) that the communication complexity of a function is
at least as large as the logarithm of the rank of its communication matrix, this implies
Theorem 1.8. There have been multiple works (see, for example, [8, 47, 27] and the references
therein) studying the communication complexity of AND functions in connection with
the log-rank conjecture [31] which states that the communication complexity is bounded
from above by a polynomial in the logarithm of the rank of the communication matrix.
Among other things, Buhrman and de Wolf [8] observed that the log-rank conjecture
holds for symmetric functions composed with AND. In particular, they showed that if f
is symmetric, then Dcc(f ◦ AND) = O(log rank(Mf◦AND))). Most recently, Knop et al. [27]
showed that Dcc(f ◦ AND) = O(poly(log rank(Mf◦AND), logn) for all Boolean functions
f : {0, 1}n → {0, 1}, nearly resolving the log-rank conjecture for AND functions.

While we have a quadratically worse dependence in the RHS of Equation (2) as compared
to the above-mentioned bound for symmetric functions due to Buhrman and de Wolf, our
upper bound is on a complexity measure that can be exponentially larger than communication
complexity in general (Theorem 1.7).

Buhrman and de Wolf showed a lower bound on log rank(Mf◦AND) for symmetric functions
f . An upper bound on NAADT(f) implicitly follows from prior work on group testing [14],
but we provide a self-contained probabilistic proof for completeness. Combining these two
results yields Equation (2), and hence Theorem 1.8.

Suitable analogues of Theorem 1.7 and Theorem 1.8 can be easily seen to hold when
the inner gadget is OR instead of AND. In this case, the relevant decision tree model
is non-adaptive OR decision trees. Interestingly, these decision trees are studied in the
seemingly different context of non-adaptive group testing algorithms. Non-adaptive group
testing is an active area of research (see, for, example, [12] and the references therein), and
has additionally gained significant interest of late in view of the ongoing pandemic (see, for
example, [50]).

STACS 2022
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Our final result regarding the AND gadget deals with the relationship between one-way
communication complexity and rank of the underlying communication matrix. It is easy to
show that for functions F : {0, 1}m × {0, 1}n → {0, 1},

log rank(MF ) ≤ D→
cc (F ) ≤ rank(MF ), (3)

where MF denotes the communication matrix of F and is defined by MF (x, y) = F (x, y),
and rank(·) denotes real rank. The first bound can be seen to be tight for functions with
maximal rank, for example the Equality function. The second inequality is tight, for example,
for the Addressing function on (logn+n) input bits (see Definition A.1) where Alice receives
n target bits and Bob receives logn addressing bits. Sanyal [41] showed that the upper
bound can be improved for functions of the form F = f ◦ XOR. More precisely they showed
that for all Boolean functions f : {0, 1}n → {0, 1},

D→
cc (f ◦ XOR) ≤ O

(√
rank(Mf◦XOR) log rank(Mf◦XOR)

)
, (4)

and moreover this bound is tight up to the logarithmic factor on the RHS, when f is the
Addressing function. We show that the same bound does not hold when the XOR gadget is
replaced by AND. We show that (see [33, Corollary A.5]) when f is the Addressing function,
then

D→
cc (f ◦ AND) ≥ rank(Mf◦AND)log3 2 ≈ rank(Mf◦AND)0.63, (5)

Thus it is plausible that the upper bound in terms of rank from Equation (3) might be tight
for some function of the form f ◦ AND. We show that this is not the case.

▶ Theorem 1.9. Let f : {0, 1}n : {0, 1} be a Boolean function. Then,

D→
cc (f ◦ AND) ≤ (rank(Mf◦AND))(1− Ω(1)).

We show that D→
cc (f ◦ AND) is equal to the logarithm of a measure that we define in this

work: the Möbius pattern complexity of f , which is the total number of distinct evaluations of
the monomials in the Möbius expansion of f (see Section 2 for a formal definition of Möbius
expansion).

▶ Definition 1.10 (Möbius pattern complexity). Let f : {0, 1}n → {0, 1} be a Boolean function,
and let f =

∑
S∈Sf

f̃(S)ANDS be its Möbius expansion. For an input x ∈ {0, 1}n, define
the pattern of x to be (ANDS(x))S∈Sf

. Define the Möbius pattern complexity of f , denoted

PatM(f), by PatM(f) :=
∣∣∣{P ∈ {0, 1}Sf : P = (ANDS(x))S∈Sf

for some x ∈ {0, 1}n
}∣∣∣.

When clear from context, we refer to the Möbius pattern complexity of f just as the pattern
complexity of f .

All of our results involving bounds for D→
cc (f ◦AND) use the above-mentioned equivalence

between it and log(PatM(f)) (see Claim 4.1). We unravel interesting mathematical structure
in the Möbius supports of Boolean functions, and use them to bound their pattern complexity.
We hope that pattern complexity will prove useful in future research.

Organization

We introduce the necessary preliminaries in Section 2. In Section 3 we prove our results
regarding the Inner Product gadget (Theorem 1.1 and Theorem 1.3). In Section 4 we prove
our results regarding the AND gadget (Theorem 1.7 and Theorem 1.8). We provide remaining
preliminaries and missing proofs from the main text in the remaining appendices. Due to
space constraints, some proofs are deferred to the full version of our paper [33].
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2 Preliminaries

All logarithms in this paper are taken base 2. We use the notation [n] to denote the set
{1, . . . , n}. We often identify subsets of [n] with their corresponding characteristic vectors
in {0, 1}n. The view we take will be clear from context. Let S ⊆ {0, 1}n be an arbitrary
subset of the Boolean hypercube, and let f : S → {0, 1} be a partial Boolean function. If
S = {0, 1}n, then f is said to be a total Boolean function. When not explicitly mentioned
otherwise, we assume Boolean functions to be total.

▶ Definition 2.1 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hbin(p), is defined
to be the Shannon entropy of a random variable taking two distinct values with probabilities p
and 1− p.

Hbin(p) := p log 1
p

+ (1− p) log 1
1− p .

We now define the Inner Product Modulo 2 function on 2b input bits, denoted IP (we
drop the dependence of IP on b for convenience; the value of b will be clear from context).

▶ Definition 2.2 (Inner Product Modulo 2). For an integer b > 0, define the Inner Product
Modulo 2 function, denoted IP : {0, 1}b × {0, 1}b → {0, 1} by IP(x1, . . . , xb, y1, . . . , yb) =
⊕i∈[b](AND(xi, yi)).

If f is a partial function, so is f ◦ IP.

▶ Definition 2.3 (Odd-Max-Bit). Define the Odd-Max-Bit function,1 denoted OMBn :
{0, 1}n → {0, 1}, by OMBn(x) = 1 if max {i ∈ [n] : xi = 0} is odd, and OMBn(x) = 0
otherwise. Define OMBn(1n) = 0.

Möbius Expansion of Boolean Functions

Every Boolean function f : {0, 1}n → {0, 1} has a unique expansion as f =
∑

S⊆[n] f̃(S)ANDS ,
where ANDS denotes the AND of the input variables in S and each f̃(S) is a real number.
We refer to the functions ANDS as monomials, the expansion as the Möbius expansion of f ,
and the real coefficients f̃(S) as the Möbius coefficients of f . It is known [3] that the Möbius
coefficients can be expressed as f̃(S) =

∑
X⊆S(−1)|S\X|f(X). Define the Möbius support of

f , denoted Sf , to be the set Sf :=
{
S ⊆ [n] : f̃(S) ̸= 0

}
. Define the Möbius sparsity of f ,

denoted spar(f), to be spar(f) := |Sf |.

Decision Trees and Their Variants

For a partial Boolean function f : S→ {0, 1}, the deterministic non-adaptive query complexity
(alternatively the non-adaptive decision tree complexity) D→

dt(f) is the minimum integer
k such that the following is true: there exist k indices i1, . . . , ik ∈ [n], such that for
every Boolean assignment ai1 , . . . , aik

to the input variables xi1 , . . . , xik
, f is constant on

S ∩ {x ∈ {0, 1}n | ∀j = 1, . . . , k, xij = aij}. Equivalently D→
dt(f) is the minimum number of

variables such that f can be expressed as a function of these variables. It is easy to see that
if f is a total function that depends on all input variables, then D→

dt(f) = n.

1 In the literature, OMBn is typically defined with a 1 in the max instead of 0. That function behaves
very differently from our OMBn. For example, it is known that even the weakly unbounded-error
communication complexity of OMBn ◦ AND (under the standard definition of OMBn) is polynomially
large in n [7]. In contrast, it is easy to show that even the deterministic one-way communication
complexity of OMBn ◦ AND equals ⌈log(n + 1)⌉ with our definition (see Theorem 4.8).

STACS 2022
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Define the non-adaptive parity decision tree complexity of f : {0, 1}n → {0, 1}, denoted
by NAPDT(f), to be the minimum number of parities such that f can be expressed as
a function of these parities. Define the non-adaptive AND decision tree complexity of
f : {0, 1}n → {0, 1}, denoted by NAADT(f), to be the minimum number of monomials
such that f can be expressed as a function of these monomials. Any set of monomials S
whose evaluations determine f is called an NAADT basis for f . We also require the natural
randomized and quantum analogues of non-adaptive AND decision tree complexity, denoted
RNAADT(·) and QNAADT(·), respectively. Formal definitions of these measures can be found
in Appendix A. We first note some simple observations about the non-adaptive AND decision
tree complexity of Boolean functions.

▷ Claim 2.4. Let f : {0, 1}n → {0, 1} be a Boolean function and let S = {S1, . . . , Sk} be a
NAADT basis for f . Then, every monomial in the Möbius support of f equals

∏
i∈T ANDSi ,

for some T ⊆ [k].

Proof. Since S is an NAADT basis for f , the values of {ANDSi
: i ∈ [k]} determine the value

of f . That is, we can express f as

f =
∑

T ⊆[k]

bT

∏
i∈T

ANDSi

∏
j /∈T

(1− ANDSj ),

for some values of bT ∈ {0, 1}. Expanding this expression only yields monomials that are
products of ANDSi ’s from S. The claim now follows since the Möbius expansion of a Boolean
function is unique. ◁

▷ Claim 2.5. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius sparsity r. Then
log r ≤ NAADT(f) ≤ r.

Proof. The upper bound NAADT(f) ≤ r follows from the fact that knowing the values of all
ANDs in the Möbius support of f immediately yields the value of f by plugging these values
in the Möbius expansion of f . That is, the Möbius support of f acts as an NAADT basis
for f .

For the lower bound, let NAADT(f) = k, and let S = {S1, . . . , Sk} be an NAADT basis
for f . Claim 2.4 implies that every monomial in the Möbius expansion of f is a product of
some of these ANDSi ’s. Thus, the Möbius sparsity of f is at most 2k, yielding the required
lower bound. ◁

Every Boolean function f : {0, 1}n → R can be uniquely written as f =∑
S⊆[n]

f̂(S)(−1)⊕j∈Sxj . This representation is called the Fourier expansion of f and the

real values f̂(S) are called the Fourier coefficients of f . The Fourier sparsity of f is defined to
be number of non-zero Fourier coefficients of f . Sanyal [41] showed the following relationship
between non-adaptive parity decision complexity of a Boolean function and its Fourier
sparsity.

▶ Theorem 2.6 ([41]). Let f : {0, 1}n → {−1, 1} be a Boolean function with Fourier sparsity
r. Then NAPDT(f) = O(

√
r log r).

This theorem is tight up to the logarithmic factor, witnessed by the Addressing function.
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Communication Complexity

The standard model of two-party communication complexity was introduced by Yao [49]. In
this model, there are two parties, say Alice and Bob, each with inputs x, y ∈ {0, 1}n. They
wish to jointly compute a function F (x, y) of their inputs for some function F : U → {0, 1}
that is known to them, where U is a subset of {0, 1}n × {0, 1}n. They use a communication
protocol agreed upon in advance. The cost of the protocol is the number of bits exchanged
in the worst case (over all inputs). Alice and Bob are required to output the correct answer
for all inputs (x, y) ∈ U . The communication complexity of F is the best cost of a protocol
that computes F , and we denote it by Dcc(F ). See, for example, [29], for an introduction to
communication complexity.

In a deterministic one-way communication protocol, Alice sends a message m(x) to Bob.
Then Bob outputs a bit depending on m(x) and y. The complexity of the protocol is the
maximum number of bits a message contains for any input x to Alice. In a randomized
one-way protocol, the parties share some common random bits R. Alice’s message is a
function of x and R. Bob’s output is a function of m(x), y and R. The protocol Π is said
to compute F with error ε ∈ (0, 1/2) if for every (x, y) ∈ U , the probability over R of the
event that Bob’s output equals F (x, y) is at least 1 − ε. The cost of the protocol is the
maximum number of bits contained in Alice’s message for any x and R. In the one-way
quantum model, Alice sends Bob a quantum message, after which Bob performs a projective
measurement and outputs the measurement outcome. Depending on the model of interest,
Alice and Bob may or may not share an arbitrary input-independent entangled state for free.
We refer the reader to [46] for an introduction to quantum communication complexity. As in
the randomized setting, a protocol Π computes F with error ε if Pr[Π(x, y) ̸= f(x, y)] ≤ ε
for all (x, y) ∈ U .

The deterministic (ε-error randomized, ε-error quantum, ε-error quantum with entan-
glement, respectively) one-way communication complexity of F , denoted by D→

cc (·) (R→
cc,ε(·),

Q→
cc,ε(·), Q∗,→

cc,ε (·), respectively), is the minimum cost of any deterministic (ε-error randomized,
ε-error quantum, ε-error quantum with entanglement, respectively) one-way communication
protocol for F .

Total functions F whose domain is {0, 1}n × {0, 1}n induce a communication matrix MF

whose rows and columns are indexed by strings in {0, 1}n, and the (x, y)’th entry equals
F (x, y). It is known that

log rank(MF ) ≤ Dcc(F ) ≤ O(
√

rank(MF ) log rank(MF )), (6)

where rank(·) denotes real rank. The first inequality is well known (see, for instance [29]),
and the second inequality was shown by Lovett [32]. One of the most famous conjectures
in communication complexity is the log-rank conjecture, due to Lovász and Saks [31], that
proposes that the communication complexity of any Boolean function is polylogarithmic in its
rank, i.e. the first inequality in Equation (6) is always tight up to a polynomial dependence.

Buhrman and de Wolf [8] observed that the Möbius sparsity of a Boolean function f

equals the rank of the communication matrix of f ◦ AND. That is, for all Boolean functions
f : {0, 1}n → {0, 1},

spar(f) = rank(Mf◦AND). (7)

In view of the first inequality in Equation (6), this yields

Dcc(f ◦ AND) ≥ log(spar(f)). (8)

We require the definition of the Vapnik-Chervonenkis (VC) dimension [45].
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▶ Definition 2.7 (VC-dimension). Consider a function F : {0, 1}n × {0, 1}n → {0, 1}. A
subset of columns C of MF is said to be shattered if all of the 2|C| patterns of 0’s and 1’s
are attained by some row of MF when restricted to the columns C. The VC-dimension of a
function F : {0, 1}n × {0, 1}n, denoted VC(F ), is the maximum size of a shattered subset of
columns of MF .

Klauck [26] showed that the one-way quantum communication complexity of a function
F is bounded below by the VC-dimension of F .

▶ Theorem 2.8 ([26, Theorem 3]). Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function.
Then, Q→

cc,ε(F ) ≥ (1−Hbin(ε))VC(F ) and Q∗,→
cc,ε (F ) ≥ (1−Hbin(ε))VC(F )/2.

3 Composition with Inner Product

In this section we prove Theorem 1.1 and Theorem 1.3, which are our results regarding the
quantum and deterministic one-way communication complexities, respectively, of functions
composed with a small Inner Product gadget.

Quantum Complexity

Proof of Theorem 1.1. By Theorem 2.8, it suffices to show that VC(f ◦ IP) ≥ n(b − 1).
Since f is a function that depends on all its input variables, the following holds. For
each index i ∈ [n], there exist inputs z(i,0) = z

(i)
1 , . . . , z

(i)
i−1, 0, z

(i)
i+1, . . . , z

(i)
n and z(i,1) =

z
(i)
1 , . . . , z

(i)
i−1, 1, z

(i)
i+1, . . . , z

(i)
n such that f(z(i,0)) = vi and f(z(i,1)) = 1 − vi. That is, z(i,0)

and z(i,1) have different function values, but differ only on the i’th bit.
For each i ∈ [n] and j ∈ {2, 3, . . . , b}, define a string y(i,j) ∈ {0, 1}nb as follows. For all

k ∈ [n] and ℓ ∈ [b],

y
(i,j)
k,ℓ =


z

(i)
k if k ̸= i and ℓ = 1

1 if k = i and ℓ = j

0 otherwise.

That is, for k ̸= i, the k’th block of y(i,j) is (z(i)
k , 0b−1), and the i’th block of y(i,j) is

(0j−1, 1, 0b−j). Consider the set of n(b − 1)-many columns of Mf◦IP, one for each y(i,j).
We now show that this set of columns is shattered. Consider an arbitrary string c =
c1,2, . . . , c1,b, . . . , cn,2, . . . , cn,b ∈ {0, 1}n(b−1). We now show the existence of a row that yields
this string on restriction to the columns described above. Define a string x ∈ {0, 1}nb as
follows. For all i ∈ [n] and j ∈ [b], xi,1 = 1 and

xi,j =
{
ci,j if vi = 0
1− ci,j if vi = 1.

That is, the first element of each block of x is 1, and the remaining part of any block, say
the i’th block, equals either the string ci,2, . . . , ci,b or its bitwise negation, depending on the
value of vi.

To complete the proof, we claim that the row of Mf◦IP corresponding to this string x
equals the string c when restricted to the columns

{
y(i,j)}

i∈[n],j∈{2,3,...,b}. To see this, fix
i ∈ [n] and j ∈ {2, 3, . . . , b} and consider Mf◦IP(x, y(i,j)). Next, for each k ∈ [n] with k ̸= i,
the inner product of the k’th block of x with the k’th block of y equals z(i)

k , since xk,1 = 1
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and the first element of the k’th block of y(i,j) equals z(i)
k , and all other elements of the block

are 0 by definition. In the i’th block of y(i,j), only the j’th element is non-zero, and equals 1
by definition. Moreover, xi,j = ci,j if vi = 0, and equals 1− ci,j otherwise. Hence, the inner
products of the i’th blocks of x and y(i,j) equals ci,j if vi = 0, and equals 1− ci,j otherwise.
Thus, the string obtained on taking the block-wise inner product of x and y(i,j) equals
z

(i)
1 , . . . , z

(i)
i−1, ci,j , z

(i)
i+1, . . . , z

(i)
n if vi = 0 and z(i)

1 , . . . , z
(i)
i−1, 1− ci,j , z

(i)
i+1, . . . , z

(i)
n if vi = 1. By

our definitions of z(i,0), z(i,1) and vi for each i ∈ [n], it follows that the value of f when
applied to either of these inputs equals ci,j . This concludes the proof. ◀

Deterministic Complexity

We now prove Theorem 1.3, which gives a lower bound on the deterministic one-way
communication complexity of f ◦ IP for partial functions f . A crucial ingredient of our proof
is Theorem 1.4. Now we proceed to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let q := 2b − 1 and let Π be an optimal one-way deterministic
protocol for f ◦ IP of complexity D→

cc (f ◦ IP) =: c log q. The theorem is trivially true if
c ≥ n/30 since D→

dt(f) ≤ n. In the remainder of the proof we assume that c < n/30. Π
induces a partition of {0, 1}nb into at most qc parts; each part corresponds to a distinct
message. There are (2b − 1)n = qn inputs (x1, . . . , xn) to Alice such that for each i, xi ̸= 0b.
Let Z be the set of those inputs. Identify Z with [q]n. By the pigeon-hole principle there
exists one part P in the partition induced by Π that contains at least qn−c strings in Z.
We now invoke Theorem 1.4 with d set to 10c. This is applicable since d ≤ n/3 and the
assumption b ≥ 2 implies that q ≥ 3. Theorem 1.4 implies that there are two strings
x(1) = (x(1)

1 , . . . , x
(1)
n ), x(2) = (x(2)

1 , . . . , x
(2)
n ) ∈ P ∩Z such that |{i ∈ [n] | x(1)

i = x
(2)
i }| < 10c.

Let I := {i ∈ [n] | x(1)
i = x

(2)
i }. Let z = (z1, . . . , zn) denote a generic input to f . We

claim that for each Boolean assignment (ai)i∈I to the variables in I, f is constant on
S∩{z : ∀i ∈ I, zi = ai}. This will prove the theorem, since querying the variables {zi | i ∈ I}
determines f ; thus D→

dt(f) ≤ |I| < 10c. Towards a contradiction, assume that there exist
z(1), z(2) ∈ S ∩ {z : ∀i ∈ I, zi = ai} such that f(z(1)) ̸= f(z(2)). We will construct a string
y = (y1, . . . , yn) ∈ {0, 1}nb in the following way:
i ∈ I : Choose yi such that IP(yi, x

(1)
i ) = IP(yi, x

(2)
i ) = ai.

i /∈ I : Choose yi such that IP(yi, x
(1)
i ) = z

(1)
i and IP(yi, x

(2)
i ) = z

(2)
i .

Note that we can always choose a y as above since for each i ∈ [n], x(1)
i , x

(2)
i ≠ 0b, and for each

i /∈ I, x(1)
i ̸= x

(2)
i . By the above construction, f ◦ IP(x(1), y) = f(z(1)) and f ◦ IP(x(2), y) =

f(z(2)). Since by assumption f(z(1)) ̸= f(z(2)), we have that f ◦ IP(x(1), y) ̸= f ◦ IP(x(2), y).
But since Alice sends the same message on inputs x(1) and x(2), Π produces the same output
on (x(1), y) and (x(2), y). This contradicts the correctness of Π. ◀

▶ Remark 3.1. It can be seen that the proof of Theorem 1.3 also works when the inner gadget
g : {0, 1}b1 × {0, 1}b2 → {0, 1} satisfies the following general property: There exists a subset
X of {0, 1}b1 (Alice’s input in the gadget) such that:
|X| ≥ 3,
for all x1 ̸= x2 ∈ X and all b1, b2 ∈ {0, 1}, there exists y ∈ {0, 1}b2 such that g(x1, y) = b1
and g(x2, y) = b2.

This is satisfied, for example, for the Addressing function on {0, 1}log b+b when b ≥ 4 (see
Definition A.1). For g = IPb, the set X equals {0, 1}b \

{
0b

}
.
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4 Composition with AND

We first investigate the relationship between non-adaptive AND decision tree complexity
and Möbius sparsity of Boolean functions. Recall that Claim 2.5 shows that for all Boolean
functions f : {0, 1}n → {0, 1}, log spar(f) ≤ NAADT(f) ≤ spar(f). A natural question to
ask is whether both of the bounds are tight, i.e. are there Boolean functions witnessing
tightness of each bound? The first bound is trivially tight for any Boolean function with
full Möbius sparsity, for example, the NOR function: querying all the input bits (which
is querying n many ANDs) immediately yields the value of the function, and its Möbius
sparsity can be shown to be 2n. One might expect that the upper bound is not tight in
view of Theorem 2.6. The Addressing function witnesses tightness of the quadratic gap in
Theorem 2.6. This gives rise to the natural question of whether an analogous bound holds true
in the Möbius-world: is it true for all Boolean functions f that NAADT(f) = Õ(

√
spar(f))?

Interestingly we show (see [33, Appendix A]) that the Addressing function already gives a
negative answer to this question. In Claim 4.6 we observe that the function OMBn witnesses
tightness of the second inequality in Claim 2.5, that is, NAADT(OMBn) = spar(f) for even
n (and NAADT(OMBn) = spar(f)− 1 for odd n). We then use this same function to prove
Theorem 1.7, which gives a maximal separation between QNAADT(f) and D→

cc (f ◦ AND2).
Finally, we prove Theorem 1.8, which says that NAADT(f) is at most quadratically large in
Dcc(f ◦ AND) for symmetric f .

Pattern Complexity and One-Way Communication Complexity

In this section we observe that the logarithm of the pattern complexity, PatM(f), of a Boolean
function f equals the deterministic one-way communication complexity of f ◦ AND. We
also give bounds on NAADT(f) in terms of PatM(f). As a consequence we also show that
D→

cc (f ◦ AND) ≥ log(NAADT(f)).

▷ Claim 4.1. Let f : {0, 1}n → {0, 1} be a Boolean function. Then D→
cc (f ◦ AND) =

⌈log(PatM(f))⌉.

Proof. Write the Möbius expansion of f as

f =
∑

S∈Sf

f̃(S)ANDS . (9)

Say PatM(f) = k. We first show that D→
cc (f ◦ AND) ≤ ⌈log k⌉ by exhibiting a one-way

protocol of cost ⌈log k⌉. Alice computes the pattern of x and sends Bob the pattern using
⌈log k⌉ bits of communication. Bob now knows the values of {ANDS(x) : S ∈ Sf}. Since
Bob can compute {ANDS(y) : S ∈ Sf} without any communication, he can now compute
the value of f ◦ AND(x, y) using the formula

(f ◦ AND)(x, y) =
∑

S∈Sf

f̃(S)ANDS(x)ANDS(y).

It remains to show that D→
cc (f ◦ AND) ≥ ⌈log k⌉. Let D→

cc (f ◦ AND) = d. Thus there are
at most 2d messages that Alice can send Bob. We show that any two inputs x, x′ ∈ {0, 1}n

for which Alice sends the same message have the same pattern, which would prove 2d ≥ k,
and prove the claim since d must be an integer.
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Let x, x′ be 2 inputs to Alice for which her message to Bob is m. We have

(f ◦ AND)(x, y) =
∑

S∈Sf

f̃(S)ANDS(x)ANDS(y)

(f ◦ AND)(x′, y) =
∑

S∈Sf

f̃(S)ANDS(x′)ANDS(y)

Since m and y completely determine the value of the function, we must have∑
S∈Sf

f̃(S)ANDS(x)ANDS(y) =
∑

S∈Sf

f̃(S)ANDS(x′)ANDS(y) for all y ∈ {0, 1}n.

Define the functions gx, gx′ : {0, 1}n → {0, 1} by

gx(y) =
∑

S∈Sf

f̃(S)ANDS(x)ANDS(y)

gx′(y) =
∑

S∈Sf

f̃(S)ANDS(x′)ANDS(y).

Thus by uniqueness of the Möbius expansion of Boolean functions, gx = gx′ as functions
of y. This implies g̃x(S) = g̃x′(S) for all S ∈ Sf . Since g̃x(S) = f̃(S)ANDS(x) and
g̃x′(S) = f̃(S)ANDS(x′) for all S ∈ Sf ,

ANDS(x) = ANDS(x′) for all S ∈ Sf ,

This shows that the pattern induced by x and the pattern induced by x′ are the same,
concluding the proof. ◁

Next we show that the pattern complexity of f is bounded below by the Möbius sparsity
of f .

▷ Claim 4.2. Let f : {0, 1}n → {0, 1} be a Boolean function. Then PatM(f) ≥ spar(f).

Proof. Recall that Sf denotes the Möbius support of f . For each S ∈ Sf , define the input
xS to be the n-bit characteristic vector of the set S. We now show that each of these inputs
induces a different pattern for f . Let S1 ̸= S2 ∈ Sf , with |S1| ≥ |S2|. Since they are different
sets, there must be an index j ∈ S1 such that j /∈ S2. Note that ANDS1(xS1) = 1. On the
other hand xS2

j = 0 implies ANDS1(xS2) = 0. Hence xS1 and xS2 induce different patterns.
Since spar(f) = |Sf |, this completes the proof. ◁

From Claim 2.5 we know that spar(f) ≥ NAADT(f) and from Claim 4.1 we know that
D→

cc (f ◦ AND) = ⌈log(PatM(f))⌉. Along with Claim 4.2, these imply the following claim.

▷ Claim 4.3. Let f : {0, 1}n → {0, 1} be a Boolean function. Then ⌈log(NAADT(f))⌉ ≤
D→

cc (f ◦ AND) ≤ NAADT(f).

Proof. For the upper bound on D→
cc (f ◦ AND), let S = {S1, . . . , Sk} be an NAADT basis for

f . By Claim 2.4, every monomial in the Möbius support of f is a product of some of these
ANDSi

’s. Since there are at most 2k possible values for {ANDSi
(x) : i ∈ [k]} and since these

completely determine the pattern of x for any given x ∈ {0, 1}n, we have

PatM(f) ≤ 2NAADT(f),

which proves the required upper bound in view of Claim 4.1.
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For the lower bound, we have

D→
cc (f ◦ AND) = ⌈log(PatM(f))⌉ ≥ ⌈log(spar(f))⌉ ≥ ⌈log(NAADT(f))⌉,

where the equality follows from Claim 4.1, the first inequality follows from Claim 4.2 and the
last inequality follows from Claim 2.5. ◁

The pattern complexity of f is trivially at most 2spar(f) since each pattern is a spar(f)-bit
string. Interestingly we show that there is no function for which this bound is tight.

▷ Claim 4.4. Let f : {0, 1}n → {0, 1} be a Boolean function. Then PatM(f) ≤
2(1−Ω(1))spar(f).

We prove Claim 4.4 in Appendix B. Its proof proceeds by analyzing the identity f2 = f

and using it to deduce “dependencies” between monomials in the Möbius support of f . The
analogous relation in the Fourier-world has been nearly determined by Sanyal [41]; their
main result (Theorem 2.6) essentially shows that the Fourier analog of pattern complexity of
a Boolean function is at most exponential in the square root of its Fourier sparsity. This is a
stronger bound than that in Claim 4.4, but the same bound cannot hold in the Möbius-world
since the Addressing function witnesses PatM(ADDRn) ≥ 2spar(ADDRn)log3 2 (see [33, Appendix
A]). Nevertheless we conjecture that a stronger bound than that of Claim 4.4 is possible.

▶ Conjecture 4.5. Let f : {0, 1}n → {0, 1} be a Boolean function. Then PatM(f) ≤
2(spar(f)1−Ω(1)).

Conjecture 4.5 would strengthen Theorem 1.9, showing that D→
cc (f ◦ AND) =

rank(Mf◦AND)1−Ω(1).

Proof of Theorem 1.9. We have

D→
cc (f ◦ AND) = ⌈log(PatM(f))⌉ ≤ (1− Ω(1))spar(f) ≤ (1− Ω(1))rank(Mf◦AND),

where the equality holds by Claim 4.1, the first inequality follows from Claim 4.4 and the
last inequality holds by Equation (7). ◀

Our results regarding the one-way communication complexity of f ◦AND use the Booleanness
of f to bring out mathematical insights about the dependencies of monomials in the Möbius
support of f . These dependencies enable us to establish interesting bounds on the pattern
complexity of f . We hope that pattern complexity will find more use in future research.

Deterministic AND Complexity

We prove in this section that the non-adaptive AND decision tree complexity of OMBn is
maximal whereas the one-way communication complexity of OMBn ◦ AND is small.

▷ Claim 4.6. Let n be a positive integer. Then NAADT(OMBn) = n. Moreover,
spar(OMBn) = n if n is even, and spar(OMBn) = n+ 1 if n is odd.

Proof of Claim 4.6. Write the polynomial representation of OMBn as OMBn(x) =

(1− xn) · 0 + xn(1− xn−1) · 1 + xnxn−1OMBn−2(x1, . . . , xn−2) if n is even, or (10)
(1− xn) · 1 + xn(1− xn−1) · 0 + xnxn−1OMBn−2(x1, . . . , xn−2) if n is odd. (11)
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The Möbius support of OMBn equals {{j, . . . , n} : j ≤ n} ∪ {∅} if n is odd, and
{{j, . . . , n} : j ≤ n} if n is even. Thus spar(OMBn) = n + 1 if n is odd, and equals n
if n is even.

We now show that the NAADT(OMBn) = n. Let S denote a NAADT basis for OMBn. By
Claim 2.4, any monomial in the Möbius expansion of OMBn can be expressed as a product
of some ANDs from S. Thus, {n} must participate in S since it appears in its Möbius
support. Next, since {n− 1, n} appears in the support as well, either {n− 1, n} or {n− 1}
must appear in S. Continuing iteratively, we conclude that for all i ∈ [n], there must exist
a set in S that contains i, but does not contain any j for j < i. This implies that |S| ≥ n.
Equality holds since NAADT(f) ≤ n for any Boolean function f : {0, 1}n → {0, 1}. ◁

Thus OMBn witnesses that non-adaptive AND decision tree complexity can be as large as
sparsity. We remark here that OMBn admits a simple (adaptive) AND-decision tree that
makes O(logn) AND-queries in the worst case. This uses a binary search using AND-queries
to determine the right-most index where a 0 is present. One might expect that a result
similar to Claim 1.6 holds when the inner function is AND instead of XOR. That is, it is
plausible that the deterministic one-way communication complexity of f ◦ AND equals the
non-adaptive AND decision tree complexity of f . We show that this is not true, and exhibit
an exponential separation between D→

cc (OMBn ◦ AND) and NAADT(OMBn).

▷ Claim 4.7. Let n be a positive integer. Then D→
cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉.

Proof. From Equation (10) we have that the Möbius support of OMBn equals the set
S = {{n} , {n− 1, n} , . . . , {n, n− 1, . . . , 1}} if n is an even integer, and equals the set
S = {∅, {n} , {n− 1, n} , . . . , {n, n− 1, . . . , 1}} if n is an odd integer. It is easy to verify that
the only possible Möbius patterns attainable (ignoring the empty set since it always evaluates
to 1) are 1i0n−i, for i ∈ {0, 1, . . . , n}. Moreover, all of these patterns are attainable: the
pattern 1i0n−i is attained by the input string 0n−i1i. Thus PatM(OMBn) = n+ 1. Claim 4.1
implies D→

cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉. ◁

We obtain our main result of this section, which follows from Claim 4.6 and Claim 4.7.

▶ Theorem 4.8. Let n be a positive integer. Then NAADT(OMBn) = n and D→
cc (OMBn ◦

AND) = ⌈log(n+ 1)⌉.

Quantum Complexity

We prove that even the quantum non-adaptive AND decision tree complexity of OMBn is
Ω(n). We refer the reader to Section A for necessary preliminaries of quantum computing.
In view of the small one-way communication complexity of OMBn ◦ AND from Claim 4.7,
Theorem 1.7 then follows.

▶ Theorem 4.9. Let n be a positive integer. Then QNAADT(OMBn) = Ω(n).

Before we prove this theorem, we introduce an auxiliary function and state some properties
of it that are of use to us.

▶ Definition 4.10. Let n be a positive integer. Define the set S ⊂ {0, 1}n to be S ={
x ∈ {0, 1}n : x = 0i1n−i for some i ∈ [n]

}
. Define the partial function OMB′

n : S→ {0, 1}
by OMB′

n(x) = OMBn(x).

▷ Claim 4.11. Let n be a positive integer. Then RNAADT(OMB′
n) = R→

dt(OMB′
n) and

QNAADT(OMB′
n) = Q→

dt(OMB′
n).
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We require the following result, which follows implicitly from a result of Montanaro [34].

▶ Theorem 4.12. Let S ⊆ {0, 1}n, I ⊆ [n] and f : S→ {0, 1} be such that for all i ∈ I there
exists x ∈ S such that f(x⊕ ei) = 1− f(x). Then Q→

dt(f) = Ω(|I|).

We defer the proofs of Claim 4.11 and Theorem 4.12 to the full version of our paper [33,
Section 4.3].

Proof of Theorem 4.9. Clearly QNAADT(OMBn) ≥ QNAADT(OMB′
n). Claim 4.11

implies that QNAADT(OMB′
n) = Q→

dt(OMB′
n). Recall that the domain of OMB′

n

equals S =
{
x ∈ {0, 1}n : x = 0i1n−i for some i ∈ [n]

}
. By definition, OMB′

n(0i1n−i) ̸=
OMB′

n(0i−11n−i+1) for all i ∈ [n]. Thus Theorem 4.12 is applicable with I = [n] and
f = OMB′

n. Combining the above, we have QNAADT(OMBn) ≥ QNAADT(OMB′
n) =

Q→
dt(OMB′

n) = Ω(n). ◀

Proof of Theorem 1.7. It follows from Claim 4.7 and Theorem 4.9. ◀

Symmetric Functions

In this section we show that symmetric functions f admit efficient non-adaptive AND decision
trees in terms of the deterministic (even two-way) communication complexity of f ◦AND. We
require the following bounds on the Möbius sparsity of symmetric functions, due to Buhrman
and de Wolf [8]. For a non-constant symmetric function f : {0, 1}n → {0, 1}, define the
following measure which captures the smallest Hamming weight inputs before which f is not
a constant: switch(f) := min {k : f is a constant on all x such that |x| < n− k}.

▷ Claim 4.13 ([8, Lemma 5]). Let n be sufficiently large, let f : {0, 1}n → {0, 1} be a
symmetric Boolean function, and let k := switch(f). Then log spar(f) ≥ 1

2 log
(∑n

i=n−k

(
n
i

))
.

Upper bounds on the non-adaptive AND decision tree complexity of symmetric functions
follow from known results in the non-adaptive group testing literature. To the best of our
knowledge, the following upper bounds were first shown (formulated differently) by Dyachkov
and Rykov [14]. Also see [12] and the references therein.

▶ Theorem 4.14. Let f : {0, 1}n → {0, 1} be a symmetric Boolean function with switch(f) =
k < n/2. Then NAADT(f) = O

(
log2 (

n
k

))
.

We give a self-contained proof of Theorem 4.14 in Appendix C for clarity and completeness.
We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. If switch(f) ≥ n/2, then Claim 4.13 implies that spar(f) = 2Ω(n).
Equation (8) implies that Dcc(f ◦ AND) = Ω(n). Thus, a trivial NAADT of cost n witnesses
NAADT(f) = O(Dcc(f ◦ AND)) in this case.

Hence, we may assume switch(f) = k < n/2. We have

NAADT(f) = O

(
log2

(
n

k

))
= O(log2(spar(f))) = O(Dcc(f ◦ AND)2),

where the first equality follows from Theorem 4.14, the second from Claim 4.13, and the
third from Equation (8). ◀
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A Preliminaries

▶ Definition A.1. For an integer n ≥ 2 that is a power of 2, define the Addressing function,
denoted ADDRn : {0, 1}log n+n → {0, 1}, by

ADDRn(x, y) = ybin(x),

where bin(x) denotes the integer in [n] whose binary representation is x. We refer to the
x-variables as addressing variables and the y-variables as target variables.

▶ Definition A.2 (Non-adaptive parity decision tree complexity). Define the non-adaptive
parity decision tree complexity of f : {0, 1}n → {0, 1}, denoted by NAPDT(f), to be the
minimum number of parities such that f can be expressed as a function of these parities. In
other words, the non-adaptive parity decision tree complexity of f equals the minimal number
k for which there exists S = {{S1, . . . , Sk} : Si ⊆ [n] for all i ∈ [k]} such that the function
value f(x) is determined by the values {⊕j∈Si

xj : i ∈ [k]} for all x ∈ {0, 1}n.

▶ Definition A.3 (Non-adaptive AND decision tree complexity). Define the non-adaptive AND
decision tree complexity of f : {0, 1}n → {0, 1}, denoted by NAADT(f), to be the minimum
number of monomials such that f can be expressed as a function of these monomials. In
other words, the non-adaptive AND decision tree complexity of f equals the minimal number
k for which there exists S = {{S1, . . . , Sk} : Si ⊆ [n] for all i ∈ [k]} such that the function
value f(x) is determined by the values {ANDSi

(x) : i ∈ [k]} for all x ∈ {0, 1}n. We refer to
such a set S as an NAADT basis for f .
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▶ Definition A.4 (Randomized non-adaptive AND decision tree complexity). A randomized
non-adaptive AND decision tree T computing f is a distribution over non-adaptive AND
decision trees with the property that Pr[T (x) = f(x) ≥ 2/3] for all x ∈ {0, 1}n. The cost
of T is the maximum cost of a non-adaptive AND decision tree in its support. Define the
randomized non-adaptive AND decision tree complexity of f : {0, 1}n → {0, 1}, denoted by
RNAADT(f), to be the minimum cost of a randomized non-adaptive AND decision tree that
computes f .

We refer the reader to [37] for the basics of quantum computing.

▶ Definition A.5 (Quantum non-adaptive AND decision tree complexity). A quantum non-
adaptive AND decision tree of cost c is a query algorithm that works with a state space
|S1, . . . , Sc⟩|b⟩|w⟩, where each Sj ⊆ [n], b ∈ {0, 1}c and the last register captures a workspace
of an arbitrary dimension. It is specified by a starting state |ψ⟩ and a projective measurement
{Π, I −Π}. For an input x ∈ {0, 1}n, the action of the non-adaptive query oracle O⊗c

x is
captured by its action on the basis states, described below.

O⊗c
x |S1, . . . , Sc⟩|b1, . . . , bc⟩|w⟩ 7→ |S1, . . . , Sc⟩|b1 ⊕ ANDS1(x), . . . , bc ⊕ ANDSc

(x)⟩|w⟩.

We use Ox to refer to this oracle since c is already unambiguously determined by the state
space. The algorithm accepts x with probability ∥ΠOx|ψ⟩∥2.

Define the quantum non-adaptive AND decision tree complexity of f : {0, 1}n → {0, 1},
denoted by QNAADT(f), to be the minimum cost of a quantum non-adaptive AND decision
tree that outputs the correct value of f(x) with probability at least 2/3 for all x ∈ {0, 1}n.

The quantum non-adaptive query complexity, denoted Q→
dt , is defined similarly, the only

difference being that the sets S1, . . . , Sc are restricted to be singletons. Montanaro [34]
observed that Q→

dt(f) = Ω(n) for all total Boolean functions f : {0, 1}n → {0, 1} that depend
on all input bits. Our proof of Theorem 4.9 uses ideas from their proof.

B Proof of Claim 4.4

In this section we prove Claim 4.4, restated below.

▷ Claim B.1 (Restatement of Claim 4.4). Let f : {0, 1}n → {0, 1} be a Boolean function.
Then PatM(f) ≤ 2(1−Ω(1))spar(f).

Our proof of Claim 4.4 relies on the following observation about the structure of the
Möbius support of any Boolean function.

▷ Claim B.2. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius support Sf . For
any two distinct sets S, T ∈ Sf there exists a set of “partners” p({S, T}) ⊆ Sf such that

p({S, T}) ̸= {S, T},
|p({S, T})| = 2 if S ∪ T /∈ Sf and |p({S, T})| = 1 if S ∪ T ∈ Sf , and⋃

U∈p({S,T }) U = S ∪ T .

Proof. Let
∑

S∈Sf
f̃(S)ANDS be the Möbius expansion of f . Since f has range {0, 1}, we

know that f = f2. However,

f2 =

 ∑
S∈Sf

f̃(S)ANDS

  ∑
T ∈Sf

f̃(T )ANDT

 =
∑

W ⊆[n]

 ∑
S,T ⊆[n]:S∪T =W

f̃(S)f̃(T )

 ANDW .
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Since the Möbius expansion of f is unique, we can compare the two expansions to see that
for all sets W ⊆ [n],

f̃(W ) =
∑

S,T ⊆[n]:S∪T =W

f̃(S)f̃(T ). (12)

As a consequence we have the following structure. Let S ̸= T ∈ Sf such that S ∪ T /∈ Sf .
Since f̃(S ∪ T ) = 0, the summation corresponding to W = S ∪ T in Equation (12) must have
at least one non-zero summand apart from f̃(S)f̃(T ). Hence there must exist U ̸= V ∈ Sf

such that {S, T} ≠ {U, V } and U ∪ V = S ∪ T . We choose an arbitrary such pair {U, V }
and define p({S, T}) = {U, V }. For S, T ∈ Sf such that S ∪ T ∈ Sf , let p({S, T}) be defined
as {S ∪ T}. It clearly satisfies the necessary conditions. ◁

▶ Observation B.3. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius support Sf .
For any two distinct sets S, T ∈ Sf , let p({S, T}) ⊆ Sf be as in Claim B.2. Then for any
pattern P ∈ {0, 1}Sf ,

PS · PT =
∏

W ∈p({S,T })

PW .

Proof. Let P be a pattern in {0, 1}Sf . There must exist an x ∈ {0, 1}n such that for all sets
W ∈ Sf , PW = ANDW (x). Since S ∪ T =

⋃
W ∈p({S,T }) W , we have PS ·PT = ANDS∪T (x) =∏

W ∈p({S,T }) PW . ◀

Proof of Claim 4.4. We analyze the pattern complexity of f in iterations. To define these
iterations, we define a sequence of subsets of Sf , described in Algorithm 1.

Algorithm 1 Defining the Iterations.

Initialize T0 ← ∅, i← 0.
while |Ti| ≤ spar(f)− 2 do

Choose S, T with S ̸= T from Sf \ Ti.
Set Ti+1 ← Ti ∪ {S, T} ∪ p({S, T}).
Set i← i+ 1.

end
Set num_iterations← i.
Set Tnum_iterations+1 ← Sf .

For i ∈ {0, . . . , num_iterations + 1}, define the partial patterns

Pi :=
{
P ∈ {0, 1}Ti : P = (ANDS(x))S∈Ti

for some x ∈ {0, 1}n
}
.

We now show that

∀j ∈ {0, . . . , num_iterations} , |Pj | ≤
(

15
16

)j

2|Tj |. (13)

We prove this by induction. Equation (13) is true when j = 0 since both sides are 1. Now
let i > 0 and assume as our induction hypothesis that Equation (13) is true when j = i− 1.
As our inductive step, we will prove that for every partial pattern P ∈ Pi−1, the number of
partial patterns Q ∈ Pi that extend P (in the sense that Q restricted to indices in Ti−1 is
equal to P ) is at most (15/16)2|Ti|−|Ti−1|. Since every partial pattern in Pi is an extension
of a partial pattern in Pi−1, this would imply that |Pi| ≤ (15/16)2|Ti|−|Ti−1||Pi−1|. Along
with our induction hypothesis, this will prove Equation (13) for j = i, and hence for all j.
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To prove the inductive step, consider any partial pattern P ∈ Pi−1. Let S, T be the sets
chosen when constructing Ti from Ti−1. We know from Observation B.3 that any partial
pattern Q ∈ Pi must satisfy QS ·QT =

∏
W ∈p({S,T }) QW . Consider the extension Q′ of P

that sets Q′
W = 1 for all W ∈ p({S, T}) and Q′

W = 0 for all W ∈ {S, T} \ p({S, T}). Clearly
such a Q′ does not satisfy Q′

S · Q′
T =

∏
W ∈p({S,T }) Q

′
W . Hence of the 2|Ti|−|Ti−1| possible

extensions of P , at most 2|Ti|−|Ti−1|− 1 will be in Pi. Since |Ti|− |Ti−1| ≤ 4, we can conclude
that

|Pi| ≤ (2|Ti|−|Ti−1| − 1)|Pi−1| ≤ (15/16)2|Ti|−|Ti−1||Pi−1|.

This proves Equation (13).
Finally, note that the while loop in Algorithm 1 quits when |Ti| ≥ spar(f) − 1. Hence

num_iterations ≥ (spar(f) − 1)/4. If it quits with |Ti| = spar(f), then Equation (13)
implies that PatM(f) ≤ (15/16)(spar(f)−1)/42spar(f) ≤ 1.02 · 20.98spar(f). If it quits with
|Ti| = spar(f)− 1, then each of the partial patterns in Pi can have at most two extensions
to actual patterns of f . Hence even in this case PatM(f) ≤ 2.04 · 20.98spar(f). ◁

In fact with a more careful analysis (see [33, Proof of Claim 4.4]) we obtain an upper
bound of PatM(f) ≤ 2((log 6)/3)spar(f)+1 ≈ 20.86spar(f)+1.

C On Non-Adaptive AND Decision Trees for Symmetric Functions

Recall Theorem 4.14, restated below.

▶ Theorem C.1 (Restatement of Theorem 4.14). Let f : {0, 1}n → {0, 1} be a Boolean
function with switch(f) = k < n/2. Then

NAADT(f) = O

(
log2

(
n

k

))
.

The proof is via the probabilistic method. We construct a random family of O
(
log2 (

n
k

))
many ANDs and argue that with non-zero probability, their evaluations on any input
determine the function’s value.

We require the following intermediate claim.

▷ Claim C.2. Let n be a positive integer, and let 1 ≤ k < n/2 be an integer. Then, there
exists a collection X of O

(
log2 (

n
k

))
many subsets of [n] satisfying the following.

∀i1, . . . , ik+1 ∈ [n], j ∈ [k + 1],∃X ∈ X such that ij ∈ X, iℓ /∈ X for all ℓ ̸= j. (14)

Proof. Consider a random set X ⊆ [n] chosen as follows: For each index i ∈ [n] independently,
include i in X with probability 1/(2k). Pick w many sets (where w is a parameter that
we fix later) independently using the above sampling process, giving the multiset of sets
X = {X1, . . . , Xw}.

For fixed i1, . . . , ik+1 ∈ [n], j ∈ [k + 1] and t ∈ [w],

Pr
Xt

[ij ∈ Xt and iℓ /∈ Xt for all ℓ ̸= j] = 1
2k ·

(
1− 1

2k

)k

≥ 1
2k · e , (15)

where the last inequality uses the fact that k ≥ 1 and the standard inequality that 1−x ≥ e−2x

for all 0 ≤ x ≤ 1/2. Thus Equation (15) implies that for fixed i1, . . . , ik+1 ∈ [n] and j ∈ [k+1],

Pr
X

[∄X ∈ X : ij ∈ X and iℓ /∈ X for all ℓ ̸= j] ≤
(

1− 1
2k · e

)w

≤ exp(−w/(2ke)). (16)
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By a union bound over these “bad events” for all i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1], we
conclude that

Pr
X

[∀i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1], ∃X ∈ X : ij ∈ X and iℓ /∈ X for all ℓ ̸= j]

≥ 1−
(

n

k + 1

)
· (k + 1) · exp(−w/(2ke)). (17)

We want to choose w such that this probability is greater than 0. Thus we require

1 >
(

n

k + 1

)
· (k + 1) · exp(−w/(2ke))

⇐⇒ exp(w/(2ke)) > (k + 1) ·
(

n

k + 1

)
⇐⇒ w > 2ke

(
log(k + 1) + log

(
n

k + 1

))
.

Since
(

n
j+1

)
≥ n > j + 1 for all j ∈ {1, 2, 3, . . . , n/2} and n > 2, and since log

(
n
j

)
≥

j log(n/j) ≥ j for all j ∈ {1, 2, . . . , n/2}, it suffices to choose

w ≥ 2e log
(
n

k

) (
2 log

(
n

k + 1

))
. (18)

By standard binomial inequalities we have log
(

n
k+1

)
≤ (k + 1) log(ne/(k + 1)), and log

(
n
k

)
>

k log(n/k). Next, since k + 1 ≤ 2k for k ≥ 1 and ne/(k + 1) < n3/k3 for k ∈ {1, 2, . . . , n/2},
Equation (18) implies that it suffices to choose

w ≥ 2e log
(
n

k

) (
12 log

(
n

k

))
.

For this choice of w, the RHS of Equation (17) is strictly positive. This proves the claim.
◁

Proof of Theorem 4.14. Let f be a symmetric function with switch(f) = k < n/2, and let
X be as in Claim C.2 with |X | = O

(
log2 (

n
k

))
. We now show how X yields a NAADT for f .

Without loss of generality assume that f(x) = 0 for all |x| < n− k (if not, output 1 in place
of 0 in the Output step of Algorithm 2 below).

Algorithm 2 NAADT for f.

Input: x ∈ {0, 1}n

1. Let X be as obtained from Claim C.2.
2. Query {ANDX(x) : X ∈ X} to obtain a string Px ∈ {0, 1}|X |.
Output: f(y) if Px = Py for some y with |y| ≥ n− k, and 0 otherwise.

We show below that the following holds: Px ̸= Py for all x ̸= y ∈ {0, 1}n such that
|y| ≥ n− k. This would show correctness of the algorithm as follows:

If Px = Py for some |y| ≥ n−k, then x must equal y by the above. In this case we output
the correct value since we have learned x.
If Px ̸= Py for any |y| ≥ n− k, then |x| < n− k. Since f evaluates to 0 on all such inputs,
we output the correct value in this case.
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Let x ̸= y ∈ {0, 1}n be two strings such that |y| ≥ n− k. Without loss of generality assume
|y| ≥ |x| (else swap the roles of x and y above). Let Ix, Iy ⊆ [n] denote the sets of indices
where x and y take value 0, respectively. By assumption, x ̸= y and |Ix| ≥ |Iy|. Thus there
exists an index ix ∈ Ix \ Iy.

Since |Iy| ≤ k, by Claim C.2 there exists X ∈ X such that ix ∈ X and X ∩ Iy = ∅. Thus,
for this X we have

ANDX(x) = 0, ANDX(y) = 1.

Hence Px ̸= Py, which proves the correctness of the algorithm and yields the theorem. ◀

▶ Remark C.3. The proof above in fact yields a NAADT of cost O
(
log2 (

n
k

))
for any function

f : {0, 1}n → {0, 1} for which f is a constant on inputs of Hamming weight less than n− k
for some k < n/2 (in particular, f need not be symmetric on inputs of larger Hamming
weight).
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