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Abstract
The perfect matching index of a cubic graph G, denoted by π(G), is the smallest number of perfect
matchings needed to cover all the edges of G; it is correctly defined for every bridgeless cubic graph.
The value of π(G) is always at least 3, and if G has no 3-edge-colouring, then π(G) ≥ 4. On the
other hand, a long-standing conjecture of Berge suggests that π(G) never exceeds 5. It was proved
by Esperet and Mazzuoccolo [J. Graph Theory 77 (2014), 144–157] that it is NP-complete to decide
for a 2-connected cubic graph whether π(G) ≤ 4. A disadvantage of the proof (noted by the authors)
is that the constructed graphs have 2-cuts. We show that small cuts can be avoided and that the
problem remains NP-complete even for nontrivial snarks – cyclically 4-edge-connected cubic graphs
of girth at least 5 with no 3-edge-colouring. Our proof significantly differs from the one due to
Esperet and Mazzuoccolo in that it combines nowhere-zero flow methods with elements of projective
geometry, without referring to perfect matchings explicitly.
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1 Introduction

It is well known [7] that every bridgeless cubic graph has a perfect matching that contains
an arbitrarily preassigned edge. As a consequence, each such graph can be expressed as a
union of a collection of its perfect matchings. The smallest number of perfect matchings
needed for this purpose is its perfect matching index, denoted by π(G). Although no constant
bound on π(G) is known, a fascinating conjecture of Berge (see [8]) suggests that five perfect
matchings should do for every bridgeless cubic graph G.

Clearly, π(G) = 3 if and only if G is 3-edge-colourable, so if G has chromatic index 4,
the value of π(G) is at least 4. Understanding the cubic graphs that require more than four
perfect matchings to cover their edges is fundamental for any approach that might lead to
proving or disproving Berge’s conjecture. However, nontrivial examples of cubic graphs with
perfect matching index at least 5 appear to be very rare and are difficult to find. In the list
comprising all 64 326 024 nontrivial snarks – cyclically 4-edge-connected cubic graphs of
girth at least 5 with no 3-edge-colouring – on up to 36 vertices, generated by Brinkmann
et al. [2], there are only two graphs that cannot be covered with four perfect matchings:
the Petersen graph and the windmill snark W34 on 34 vertices displayed in Figure 1. The
latter snark provides the starting point for several infinite families of snarks with π ≥ 5,
see [1, 2, 3, 5].
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Figure 1 Windmill snark W34 on 34 vertices.

It transpires that the structure of graphs with perfect matching index at least 5 is far
from being simple. In fact, deciding whether π(G) ≤ 4 is an NP-complete problem, which
was proved by Esperet and Mazzuoccolo [3] in 2014. However, as the authors write in [3],
“The gadgets used in the proof of NP-completeness have many 2-edge-cuts, so our [first]
result does not say much about 3-edge-connected cubic graphs.” In particular, they leave the
NP-completeness problem open for nontrivial snarks. In this context it may be useful to
realise that it is the class of nontrivial snarks which is particularly important for the problem.
Indeed, several profound conjectures in graph theory, including the celebrated cycle double
cover conjecture and the shortest cycle cover conjecture (also known as the 7/5-conjecture),
can be reduced to nontrivial snarks with perfect matching index at least 5, see Steffen [9,
Theorem 3.1].

The purpose of this contribution is to prove that deciding whether π(G) ≤ 4 remains
NP-complete even in the family of nontrivial snarks. Like the proof of NP-completeness due
to Esperet and Mazzuoccolo [3], our proof employs reduction to 3-edge-colourability, which
is known to be NP-complete by a result of Holyer [4]. On the other hand, its characteristic
feature consists in avoiding direct use of perfect matchings, replacing them with nowhere-zero
flows possessing an additional geometric structure within the 3-dimensional projective space
P3(F2) over the 2-element field. Although our methods heavily depend on the theory of
tetrahedral flows developed in [5], we include all the necessary definitions and results from [5]
to make the present paper self-contained.

We finish this section with a brief list of basic definitions used throughout the paper.
Our graphs will be mostly cubic, simple, although parallel edges and loops are not

automatically excluded. A circuit is a connected 2-regular graph. A graph G is said to
be cyclically k-edge-connected if the removal of fewer than k edges from G cannot create a
graph with at least two components containing circuits. An edge cut S in G that separates
two circuits from each other is cycle-separating. A (proper) edge-colouring of a graph G

is a mapping from the edge set of G to a set of colours such that adjacent edges receive
distinct colours. A k-edge-colouring is an edge colouring using k colours. A 2-connected
cubic graph that does not admit a 3-edge-colouring is called a snark. A snark is nontrivial if
it is cyclically 4-edge-connected and has no circuits of length smaller than 5.

For for more details and general context we refer the reader to [5].

2 Main results

Our point of departure is the result of Esperet and Mazzuoccolo [3, Theorem 2] which
establishes NP-completeness of deciding whether π(G) ≤ 4 in the class of bridgeless cubic
graphs. We briefly summarise their proof.
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Let G be an arbitrary bridgeless cubic graph. Inflate every vertex of G to a triangle,
thereby producing a graph G′. Next, construct a new cubic graph G′′ as follows. Take the
Tietze graph T , which arises from the Petersen graph by inflating one of the vertices to a
triangle, and remove an edge e lying on the triangle of T . For each edge x lying on a triangle
of G′ take a copy Tx of T − e, remove x from G′, and connect the two 2-valent vertices of
G′ − x to the two 2-valent vertices of Tx in such a way that 3-regularity is restored. The
graph G′′ is now obtained by repeating the just described procedure with each edge of G′

lying on a triangle, see Figure 2. The substantial part of the proof of NP-completeness
presented in [3] consists in checking that π(G′′) = 4 if and only if G is 3-edge-colourable.

Figure 2 The construction of Esperet and Mazzuoccolo; T − e denotes the Tietze graph with one
edge removed.

.

Clearly, each copy Tx of T − e is separated from the rest of G′′ by a 2-edge-cut, so G′′ has
a plenty of 2-cuts. Considering the importance of nontrivial snarks for Berge’s conjecture and
other related conjectures it is a legitimate question to ask whether small cuts in the proof of
NP-completeness can be avoided. Our main result answers this question in the positive.

▶ Theorem 1. Deciding whether a nontrivial snark G satisfies π(G) ≤ 4 is an NP-complete
problem.

The previous theorem is a direct consequence of the following more detailed statement.

▶ Theorem 2. For every 2-connected cubic graph G of order n one can construct a derived
graph G♯ on 102n vertices which is a nontrivial snark. Moreover, π(G♯) = 4 if and only if G
is 3-edge-colourable.

The derived graph G♯ will be constructed by substituting the vertices of G with “fat
vertices” (vertex gadgets, which we call tripoles) and the edges of G with “fat edges” (edge
gadgets, which we call dipoles). Dipoles and tripoles, and more generally multipoles, are
structures similar to graphs: like graphs, they consist of vertices and edges, each edge having
two half-edges. In addition to proper edges, multipoles may contain dangling edges, with only
one half-edge incident with a vertex, and even isolated edges, which are not incident with
any vertex at all. Thus a dangling edge has one free half-edge while an isolated edge has
two free half-edges. A dipole is a multipole whose free half-edges are partitioned into two
subsets, the input connector and the output connector, while a tripole has its free half-edges
distributed into three connectors. All multipoles in this paper are cubic, that is to say, every
vertex is incident with exactly three half-edges. Moreover, all connectors will be of size 2.

We now describe the conctruction of G♯ in detail. Let G be an arbitrary 2-connected
cubic graph.

STACS 2022
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For vertex gadgets we use copies of the tripole W0 consisting of three isolated edges a, b,
and c (and no vertices) in which each connector consists of half-edges that belong to two
distinct edges; the tripole W0 is shown in Figure 3.

Figure 3 The tripole W0.

For edge gadgets we take copies of a dipole H68 on 68 vertices; it is somewhat more
complicated to describe. First, take the windmill snark W34 of order 34 shown in Figure 1
and severe the edges uu′ and vv′ indicated in the figure thereby producing four dangling
edges distributed into two pairs. The resulting dipole, which we denote by D34, is displayed
in Figure 4. The input connector {d, k} is formed from the half-edges belonging to the
dangling edges incident with u and v, respectively, while the output connector {q,m} is
formed from those incident with u′ and v′. To finish the construction of H68, take two copies
of D34 and weld the half-edges of their input connectors identically, that is to say, join d to
d and k to k. The result is the dipole on 68 vertices whose both connectors are copies of the
output connector of D34 – this is the required H68.

Figure 4 The dipole D34.

Finally, we assemble G♯ from the building blocks.
1. For each vertex v of G we take a cyclic permutation Rv of the edges incident with v.

The collection R = (Rv)v∈V (G) is the rotation system for G, as it is generally known in
topological graph theory [6]. The choice of R is irrelevant, yet R is important for keeping
the track of the construction. (We will not pursue the topological connection any further.
No knowledge of topological graph theory is therefore required.)

2. Next, we create the corresponding vertex gadget Xv as a copy of the tripole W0. We
associate each connector of Xv with an edge of G incident with v: for each such edge z
we let {z′, z′′} be the corresponding connector and we further require that the half-edges
z′ and (Rv(z))′′ constitute one edge, see Figure 5.
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3. For any edge e = uv of G incident with v we create the corresponding edge gadget Ye as
a copy of H68 and associate its connectors with the endvertices of e.

4. Finally, we glue Ye to Xv. If {q′,m′} is the connector of Ye associated with v, we take
the connector {e′, e′′} of Xv associated with e and attach q′ to e′ and m′ to e′′. As soon
as the gluing procedure is performed with each edge e and with both its endvertices,
the construction of the derived graph G♯ is completed. It is easy to see that if G has n
vertices, then G♯ has 102n vertices. It follows that G♯ can be constructed from G in a
polynomial number of steps with respect to the number of vertices of G.

Figure 5 Substituting a vertex of G with a vertex gadget.

Recall that deciding whether a cubic graph is 3-edge-colourable is a well known NP-
complete problem [4]. Therefore, from the construction of G♯ it is clear that to prove
Theorem 1 it suffices to show that π(G♯) = 4 if and only if G is 3-edge-colourable.

3 Geometric background

In this section we prepare the machinery required for the proof of Theorem 1. As already
indicated, the main idea of our proof consists in representing covers of a cubic graph with
four perfect matchings by flows possessing a certain geometric structure. We now explain
this idea in detail.

First of all, recall that a flow on a graph G is a function ϕ : E(G) → A, with values in
an abelian group A, together with an orientation of G, such that the following property is
fulfilled: at each vertex of G the sum of all incoming values equals the sum of all outgoing
ones (Kirchhoff’s law). More specifically, ϕ is an A-flow. A flow ϕ is nowhere-zero if ϕ(e) ̸= 0
for each edge e of G. The choice of an orientation for a flow is immaterial because the
orientation of any edge can be reversed and its value can be replaced with the inverse
without violating the Kirchhoff law. Furthermore, if x = −x for every x ∈ A, one can ignore
orientation altogether. This is possible precisely when A is isomorphic to an elementary
abelian 2-group Zn

2 .
Let G be a cubic graph that admits a covering C = {P1, P2, P3, P4} of its edges with four

perfect matchings; note that the matchings need not be pairwise distinct. Clearly, C can be
unambiguously represented by the mapping

ξC : E(G) → Z4
2

where the i-th coordinate of ξC(e) equals 1 ∈ Z2 whenever the edge e does not belong to the
perfect matching Pi. It is not difficult to see that ξC is a nowhere-zero Z4

2-flow on G.

STACS 2022
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In order to reveal important properties of this flow it is convenient to identify the set
Z4

2 − {0} with the point set of the 3-dimensional projective space PG(3, 2) over the 2-element
field. Recall that the n-dimensional projective space PG(n, 2) = Pn(F2) over the 2-element
field F2 is an incidence geometry whose points can be identified with the nonzero vectors of
the (n+ 1)-dimensional vector space Fn+1

2 and whose lines are formed by the triples {x, y, z}
of points such that x+ y + z = 0. The 3-dimensional projective space PG(3, 2) consists of 15
points and 35 lines. The crucial observation concerning the flow ξC is that for every vertex
v of G the values assigned by ξC to the edges incident with v form a line of PG(3, 2). The
theory which we now outline generalises this observation.

Figure 6 The tetrahedron in P G(3, 2) spanned by points p1, p2, p3, and p4.

We start with the necessary geometric concepts. A tetrahedron T = T (p1, p2, p3, p4)
in PG(3, 2) is a configuration consisting of ten points and six lines spanned by a set
{p1, p2, p3, p4} of four points of PG(3, 2) in general position; the latter means that the set
{p1, p2, p3, p4} constitutes a basis of the vector space F4

2. These four points are the corner
points of T . Any two distinct corner points c1, c2 ∈ {p1, p2, p3, p4} belong to a unique line
ℓ = {c1, c2, c1 + c2} of T whose third point c1 + c2 is the midpoint of ℓ. Each line of T
is uniquely determined by its midpoint. The tetrahedron T (p1, p2, p3, p4) is depicted in
Figure 6.

Given a tetrahedron T , a T -flow on a cubic graph G is a mapping ϕ : E(G) → P (T ) from
the edge set of G to the point set P (T ) of T such that for each vertex v of G the three edges
e1, e2, and e3 incident with v receive values that form a line of T . The latter means that
ϕ(e1) +ϕ(e2) +ϕ(e3) = 0, which amounts to the Kirchhoff law for ϕ. Thus a T -flow is indeed
a flow. A tetrahedral flow on G is a T -flow for some tetrahedron T in PG(3, 2). Note that
any tetrahedal flow is also a proper edge colouring, which is why we occasionally refer to a
T -flow as a colouring.

The next theorem provides a characterisation of cubic graphs with perfect matching index
at most 4 in terms of tetrahedral flows. Due to the result of Esperet and Mazzuocollo [3],
this characterisation is not efficient in the strict algorithmic sense, nevertheless, it is very
useful.

▶ Theorem 3. A cubic graph G can have its edges covered with four perfect matchings if
and only if it admits a tetrahedral flow. Moreover, there exists a one-to-one correspondence
between coverings of G with four perfect matchings and T -flows, where T is an arbitrary fixed
tetrahedron in PG(3, 2).
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The way in which we apply Theorem 3 to the investigation of cubic graphs with perfect
matching index at least 5 is based on the following idea: Suppose that a graph G in question
has a cycle-separating 4-edge-cut S. Severing the edges of S produces two multipoles X1 and
X2 with four dangling edges each, which we arrange into dipoles correspondingly. Choosing
an input connector in each of them permits us to analyse how pairs of points of a tetrahedron
in PG(3, 2) are transformed via a tetrahedral flow from the input connector to the output,
and to check whether the tetrahedral flows through X1 are always in conflict with the
tetrahedral flows through X2. This is why we need to examine which pairs of points can
occur on the connectors of a dipole equipped with a tetrahedral flow.

For the rest of this section fix an arbitrary tetrahedron T (p1, p2, p3, p4) = T in PG(3, 2).
Consider a dipole X = X(I,O) with input connector I = {g1, g2} and output connector
O = {h1, h2}. Given subsets {x, y} and {x′, y′} of P (T ), we say that X has a transition

{x, y} → {x′, y′}

or that {x, y} → {x′, y′} is a transition through X, if there exists a T -flow ϕ on X such
that {ϕ(g1), ϕ(g2)} = {x, y} and {ϕ(h1), ϕ(h2)} = {x′, y′}. By the Kirchhoff law, for each
transition {x, y} → {x′, y′} through X we have x+ y = x′ + y′. This common value is called
the trace of the transition; it can be any element of Z4

2.
In order to get better insight into possible transitions through a dipole it is useful to

classify pairs of points of T according to their geometric shape. We say that two sets A
and B of points of a tetrahedron T have the same shape if there exists a collineation (in
other words, an automorphism) of PG(3, 2) that preserves T and takes A to B. A geometric
shape, or simply a shape, is an equivalence class of all point sets having the same shape.
The shape of a set of points of T is a geometric shape it belongs to. It is proved in [5] that
each pair {x, y} of points of T , where possibly x = y, falls into one of the following seven
shapes: line segment ls, half-line hl, angle ang, altitude alt, axis ax, double corner point
dc, and double midpoint dm. Their typical representatives are, respectively, the following
pairs: {p1, p2}, {p1, p1 + p2}, {p1 + p2, p1 + p3}, {p1, p2 + p3}, {p1 + p2, p3 + p4}, {p1, p1},
and {p1 + p2, p1 + p2}. The set

Σ = {ls, hl, ang, alt, ax, dc, dm}

comprises all shapes of point pairs of T .

Figure 7 An angle (left) and a line segment (right).

Each transition {x, y} → {x′, y′} through a dipole X between point pairs induces a
transition between their shapes. To be more precise, for elements s and t of Σ we say that
X has a transition

s → t

STACS 2022
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if X has a transition {x, y} → {x′, y′} such that s is the shape of {x, y} and t is the shape
of {x′, y′}. It can be shown (see [5, Theorem 5.1]) that all transitions through any dipole
have the form s → s except possibly the transitions ls → ang or ang → ls, and the
transitions dc → dm and dm → dc between the degenerate point pairs. The two exceptional
non-degenerate shapes ang and ls are illustrated in Figure 7.

For a detailed account of the theory of tetrahedral flows we refer the reader to [5].

4 The proof

In this section we prove Theorems 1 and 2. As previously mentioned, it suffices to prove the
latter.

Our first step is to stablish several useful properties of the edge gadget, the dipole H68.
Recall that H68 consists of two copies of the dipole D34 whose input connectors have been
identically glued together. The dipole D34 is the smallest example of what in [5] is called an
extended Halin dipole. Every extended Halin dipole arises from a Halin snark (defined in [5])
by severing two edges in a manner similar to the construction of D34 from W34 (the latter
being the smallest Halin snark). The crucial property of an extended Halin dipole, proved in
[5, Theorem 8.8], is that every transition through it has the form

ang → ls.

One such transition through D34 is displayed in Figure 8. The flow is encoded as follows:
the label i stands for the corner point pi of the tetrahedron T (p1, p2, p3, p4) while the label
ij stands for the midpoint pi + pj . We will use this encoding in the rest of this paper.

The fact that ang → ls is the only possible transition of shapes through D34 can be
checked directly, but without deeper involvement of the theory outlined in the previous
section the proof would be quite tedious.

Figure 8 Transition ang → ls through D34; encoding of colours: i 7→ pi, ij 7→ pi + pj .

We need the following lemma.

▶ Lemma 4. Every transition {x, y} → {x′, y′} through the dipole H68 has the form

ls → ls.

Such a transition exists for any line segment {x, y} in T . Moreover, {x, y} = {x′, y′}, and
the two points may occur on the connectors of H68 in any order.
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Proof. Recall that H68 is created from two copies of the dipole D34 whose input connectors
are joined identically. Since ang → ls is the only possible transition through D34, it follows
that the only transition through H68 is of the form ls → ls. If {x, y} → {x′, y′} is any such
transition, then x+ y = x′ + y′ by the Kirchhoff law. Each line of a tetrahedron is uniquely
determined by its midpoint, so x+ y and x′ + y′ must be midpoints of the same line, and in
turn the line segments {x, y} and {x′, y′} must be identical.

Now, let ψ+ denote the flow displayed in Figure 8. In terms of ordered pairs of points,
ψ+ induces the transition (p1 + p3, p2 + p3) → (p1, p2), where the input pair stands for
(ψ+(d), ψ+(k)) and the output pair stands for (ψ+(q), ψ+(m)). The dipole D34 has another
tetrahedral flow ψ−, namely one that represents the transition (p1 + p3, p2 + p3) → (p2, p1)
with the output values swapped. This flow can easily be obtained from ψ+ by interchanging
p1 and p2 on the unique path in D34 which starts with the half-edge q of the output connector,
leads through two internal edges, one incident with u′ and the other incident with v′, and
terminates in the output connector with the half-edge m. The flows ψ+ and ψ− can be
combined into four distinct tetrahedral flows on H68 which transform the line segment
{p1, p2} into itself in such a way that both the input pair and the output pair occur in any
preassigned ordering. By symmetry, the same is true for any other line segment of T . The
lemma follows. ◀

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We first prove that G♯ is not 3-edge-colourable irrespectively of the
choice of G. Observe that in the language of tetrahedral flows a cubic graph is 3-edge-
colourable if and only if it admits a tetrahedral flow using a single line of the tetrahedron. As
we already know, every tetrahedral flow on D34 induces a transition of the form ang → ls.
Since the points of an angle do not lie on the same line of T , every tetrahedral flow on D34
must use points of at least two lines of the tetrahedron. Thus D34 is not 3-edge-colourable,
and consequently neither is G♯.

Next we prove that G♯ is a nontrivial snark. Obviously, the girth of G♯ is 5. To see
that G is cyclically 4-edge-connected it is sufficient to realise that the underlying graph G is
2-connected and that each edge gadget arises from a cyclically 4-edge-connected cubic graphs
by severing two independent edges. A straightforward case analysis, which we leave to the
reader, shows that G♯ has no k-edge-cut with k < 4 that separates a subgraph containing a
cycle from the rest of G♯. Summing up, G♯ is a nontrivial snark.

We proceed to proving that π(G♯) = 4 if and only if G is 3-edge-colourable. We do it in
two steps.

▷ Claim. If π(G♯) = 4, then G is 3-edge-colourable.

Proof. Assume that π(G♯) = 4. By Theorem 3, G♯ admits a T -flow ϕ where T = T (p1, p2,

p3, p4). For each edge e of G let ϕ′(e) denote the trace of the transition through the edge
gadget Ye of G♯ induced by ϕ. Since all edge gadgets of G♯ are copies of H68, for each edge e
of G the value ϕ′(e) is a midpoint of T .

Consider an arbitrary vertex v of G, and let e1, e2, and e3 be the edges incident with v.
By Kirchhoff’s law, the outflow from the vertex gadget Xv must be 0, which in turn implies
that ϕ′(e1) + ϕ′(e2) + ϕ′(e3) = 0. The values ϕ′(e1), ϕ′(e2), and ϕ′(e3) are nonzero and
therefore pairwise distinct. It follows that ϕ′ : E(G) → Z4

2 is a nowhere-zero flow and the
same time a proper edge colouring. As a colouring, ϕ uses (at most) six colours, the midpoints
of T .

STACS 2022
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Next we prove that ϕ′(e1), ϕ′(e2), and ϕ′(e3) are midpoints of the same triangle of T .
By a triangle we mean a configuration of three lines of T spanned by three distinct corner
points of T . Clearly, three distinct lines of T form a triangle if and only if any two of them
intersect, but the intersection of all three is empty. Set ϕ′(ei) = mi for each i ∈ {1, 2, 3}; as
already mentioned, m1, m2, and m3 are pairwise distinct. Let ℓi denote the unique line of T
containing mi. We first prove that any two of the lines ℓ1, ℓ2, and ℓ3 intersect. Suppose not,
and assume that, say, ℓ1 and ℓ2 are disjoint. The position of any pair of disjoint lines of T
implies that exists a permutation σ of {1, 2, 3, 4} such that ℓ1 is the line through pσ(1) and
pσ(2), and ℓ2 is the line through pσ(3) and pσ(4). Since m1 +m2 +m3 = 0, we conclude that

m3 = pσ(1) + pσ(2) + pσ(3) + pσ(4) = p1 + p2 + p3 + p4,

which is not a midpoint of any line of T . Therefore ℓ1, ℓ2, and ℓ3 are distinct pairwise
intersecting lines. Next we prove that ℓ1 ∩ℓ2 ∩ℓ3 = ∅. Indeed, if there is a point p ∈ ℓ1 ∩ℓ2 ∩ℓ3,
then p is a corner point of T and ℓ1, ℓ2, and ℓ3 are the three lines of T containing p. But then
m1 +m2 +m3 = p1 + p2 + p3 + p4 ̸= 0, which is impossible. The only remaining possibility
is that ℓ1, ℓ2, and ℓ3 form a triangle. The latter means that there exist three distinct corner
points c1, c2, and c3 of T such that m1 = c2 + c3, m2 = c1 + c3, and m3 = c1 + c2.

Now we are ready to produce a proper 3-edge-colouring of G. Let us define the mapping
ψ from the set of all midpoints of T to the set {1, 2, 3} as follows:

p1 + p2, p3 + p4 7→ 1,
p1 + p3, p2 + p4 7→ 2,
p1 + p4, p2 + p3 7→ 3.

Since every triangle is determined by three distinct corner points c1, c2 and c3 of T , its
midpoints c1 + c2, c2 + c3, and c1 + c3 receive from ψ three distinct values. In other words,
ψϕ′ is a proper 3-edge-colouring of G, which establishes the claim. ◁

▷ Claim. If G is 3-edge-colourable, then π(G♯) = 4.

Proof. Assume that G is 3-edge-colourable. By Theorem 3, it is sufficient to find a tetrahedral
flow on G♯. Our aim is to construct a tetrahedral flow γ♯ of G♯ by departing from a 3-edge-
colouring γ : E(G) → {1, 2, 3}.

First of all, we colour the vertex gadgets. With respect to the chosen rotation system R

for G the vertices of G fall into two types depending on whether the cyclic order of colours
around the vertex is (1, 2, 3) (Type 1 ) or (1, 3, 2) (Type 2 ). Consider a vertex v of G, which
is incident with edges f , g, and h, and let Xv be the corresponding vertex gadget. Recall
that the connectors of Xv are {f ′, f ′′}, {g′, g′′}, and {h′, h′′}, and that for each edge x of G
incident with v, the free half-edges x′ and (R(x))′′ constitute one edge of Xv, see Figure 5.
Let a, b, and c be the edges of Xv that have the half-edges f ′, g′, and h′, respectively.

Without loss of generality we may assume that γ(f) = 1. We intend to colour the edges
of Xv with three distinct corner points of the tetrahedron T , say p1, p2, and p3, in such a
way that the connector {f ′, f ′′} receives colours from the line segment {p2, p3}. This choice
implies that under the colouring γ♯ the edge b must receive colour p1. The colours of the
remaining two edges will depend on the type of v. If v is Type 1, then γ(g) = 2, and γ(h) = 3,
and we set γ♯(a) = p3, γ♯(b) = p1, and γ♯(c) = p2, see Figure 9. If v is Type 2, then γ(g) = 3,
and γ(h) = 2, and we set γ♯(a) = p2, γ♯(b) = p1, and γ♯(c) = p3, see Figure 10. We have
thus coloured every vertex gadget of Xv in such a way that the connector {x′, x′′} of Xv

corresponding to the edge x of G incident with v receives colours from the line segment
{p1, p2, p3} − {pi} if and only if γ(x) = i ∈ {1, 2, 3}.
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Figure 9 Colouring a vertex gadget that corresponds to a vertex of Type 1.

Figure 10 Colouring a vertex gadget that corresponds to a vertex of Type 2.

Next we colour the edge gadgets of G♯. Consider an arbitrary edge x = uv of G of
colour, say, γ(x) = 1. We know that the half-edges in the connectors of both Xu and
Xv corresponding to x receive colours from the line segment {p2, p3}. We now choose the
tetrahedral colouring for the edge gadget Yx which transforms the line segment {p2, p3} into
itself in such a way that the ordering of colours in both the input and the output of Yx fits
the ordering in the corresponding connectors of Xu and Xv. As argued in Lemma 4, such a
colouring always exists. For edges of colours 2 and 3 we proceed analogously. In this way we
transform a 3-edge-colouring γ of G into a tetrahedral colouring (that is, a tetrahedral flow)
of G♯. By Theorem 3, π(G♯) = 4. This completes the proof of the claim as well as that of
Theorem 2. ◁

◀

5 Final remark

The statement of Theorem 2 implies that the derived graph G♯ is cyclically 4-edge-connected.
If we relax cyclic 4-connectivity to 2-connectivity or 3-connectivity, the corresponding
statement becomes significantly easier to prove. Indeed, take an arbitrary 2-edge-connected
cubic graph G and substitute each vertex v with a copy Xv of the 3-pole Q obtained from
the Petersen graph by removing a vertex. Identify the dangling edges of Xv with the edges
of G incident with v, thereby producing a 2-connected cubic graph G+; if G is 3-connected,
so is G+. Since Q is uncolourable, G+ is a snark, though a trivial one. By employing our
geometric theory it can be proved that π(G+) = 4 if and only if G is 3-edge-colourable.

STACS 2022
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