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Abstract
We study the basic problem of distinguishing between two symmetric probability distributions over
n bits by observing k bits of a sample, subject to the constraint that all (k − 1)-wise marginal
distributions of the two distributions are identical to each other. Previous works of Bogdanov et
al. [3] and of Huang and Viola [8] have established approximately tight results on the maximal
possible statistical distance between the k-wise marginals of such distributions when k is at most a
small constant fraction of n. Naor and Shamir [12] gave a tight bound for all k in the special case
k = n and when distinguishing with the OR function; they also derived a non-tight result for general
k and n. Krause and Simon [9] gave improved upper and lower bounds for general k and n when
distinguishing with the OR function, but these bounds are exponentially far apart when k = Ω(n).
In this work we provide sharp upper and lower bounds on the maximal statistical distance that hold
for all k and n. Upper bounds on the statistical distance have typically been obtained by providing
uniform low-degree polynomial approximations to certain higher-degree polynomials. This is the
first work to construct suitable non-uniform approximations for this purpose; the sharpness and
wider applicability of our result stems from this non-uniformity.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases bounded indistinguishability, randomness, secret sharing, polynomial ap-
proximation

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.59

1 Introduction

We consider pairs of distributions µ and ν over {0, 1}n. The distributions µ and ν are said to
be perfectly j-wise indistinguishable if for any subset S ⊆ [n] of size at most j, the marginal
distributions µS and νS over indices in S are identically distributed. The distributions are
k-wise reconstructible with advantage ϵ (alternatively, ϵ-distinguishable) if there exists a set
S ⊆ [n] of indices of size k and a statistical test T : {0, 1}|S| → {0, 1} such that

|EX∼µ[T (X|S)] − EY ∼ν [T (Y |S)]| ≥ ϵ,

where X|S is the restriction of random variable X to the bits located at the indices in S.
Equivalently, µ and ν are j-wise indistinguishable if all size ≤ j marginal distributions have
0 total variation distance; µ and ν are k-wise reconstructible with advantage ϵ if any of the
k-wise marginals have total variation distance at least ϵ. The distributions are symmetric if
µ and ν are invariant under permutation (see definitions in Section 2); for such distributions
the size of S is relevant for distinguishing but not the choice of indices.

Cryptographic motivation

Work of Bogdanov et al. [2] considered this notion of indistinguishability as a way to capture
cryptographic secret sharing schemes in a minimal setting. Their observation was that a
single bit secret can be shared by sampling n bits from µ or from ν, depending on the
secret: the j-wise indistinguishability of the distributions provides a security guarantee that
any size ≤ j coalition of colluding parties learn nothing about the secret from their joint
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shares. The secret reconstruction function for the scheme is a test T applied over the shares
of sufficiently many (possibly all) parties. A key question in their work was how large j

could be taken so that there exists a T that is both computable with AC0 circuits and has
reconstruction advantage ϵ = Ω(1) against some pair of j-wise indistinguishable distributions.
The special case of T = OR captures the notion of visual cryptography, introduced by Naor
and Shamir [12] in 1994. Their work considered j-wise indistinguishable distributions and
attempted to maximise the reconstruction advantage of OR taken over j + 1 bits. They gave
a tight bound for all j in the special case j = n − 1; they also derived a non-tight result for
general j and n. Krause and Simon [9] gave improved upper and lower bounds for general
j and n, but these bounds are exponentially far apart when j = Ω(n). In this work (as
in [4], [8]), we consider the statistical distance between the distributions, which includes the
study of tests T that are not in AC0 and reconstruction advantage ϵ that may be vanishing.
These results can be interpreted as tight existence or non-existence conditions for 1-bit secret
sharing schemes of arbitrary reconstruction complexity.

Approximate degree motivation

The work [2] largely proceeded by a connection to the theory of approximate degree of Boolean
functions. The ϵ-approximate degree of a Boolean function f : {0, 1}n → R, denoted d̃egϵ(f),
is the least degree of a multivariate real-valued polynomial p such that |p(x) − f(x)| ≤ ϵ

for all inputs x ∈ {0, 1}n. This quantity has received significant attention, owing to its
polynomial equivalence to many other complexity measures including sensitivity, exact degree,
deterministic and randomized query complexity [14], and quantum query complexity [5].
By linear programming duality, f has ϵ-approximate degree more than j if and only if
there exists a pair of probability distributions µ and ν over {0, 1}n such that µ and ν

are j-wise indistinguishable and n-wise reconstructible with advantage 2ϵ by f (see for
example [2, 17, 6]). The approximate degree of all symmetric Boolean functions was resolved
in the constant-error regime ϵ = Θ(1) by Paturi [15] and in the general error regime by de
Wolf [7] using an argument based on quantum algorithms (see also Sherstov [18] and Bun and
Thaler [6]). This implies tight upper and lower bounds on the ability of any given symmetric
Boolean function to reconstruct from indistinguishable distributions when given access to a
full sample of n bits. In this work, we consider reconstruction when given access to a subset
of the bits.

Prior work

Works of Bogdanov et al. [3] and of Huang and Viola [8] extended the study of the indis-
tinguishability of symmetric distributions to the setting of reconstructing with a subset of
indices. They considered the extent to which symmetric j-wise indistinguishable distributions
must have statistically close k-wise marginals for k > j. In particular, [3] shows that if µ and
ν are symmetric over n-bit strings and perfectly j-wise indistinguishable, then the statistical
distance between k-wise marginals is at most O(j3/2) · e−j2/1156k for all j < k ≤ n/64. The
analogous result in [8] gives a similar bound and also applies to k at most some (unspecified)
constant fraction of n. A matching lower bound given in [3] shows that there exists a pair of
distributions that are j-wise indistinguishable but reconstructable with the ORk function
with advantage at least k−1/2 · e−O(−j2/k). This lower bound extends to all j < k ≤ n.

We note that in the sharp reconstruction setting where k = j + 1, the upper bound
O(j3/2) · e−j2/1156k solely demonstrates a behaviour of monotonic exponential decrease in k.
Extension of this upper bound to k > n/64 is of particular interest because it would illuminate
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and quantify the behaviour that the maximum statistical distance must reach a minimum at
some k ∈ [n/64, n] and start to increase once k becomes large enough. Specifically, we know
this behaviour changes because the XORn function can distinguish perfectly between a pair
of symmetric distributions that are (n − 1)-wise indistinguishable (the two distributions are
uniform over n bits, conditioned on the sum of all n bits being either even or odd).

In addition, the lower bound for OR in [3] does apply to k up to n but is unlikely to
come close to matching any upper bound on statistical distance since OR is a weak statistical
distinguisher and the bound is also monotonically decreasing.

Our contribution

In the present work, we extend the results of [3] and [8] to the setting of parameters where
k may range freely from 0 to n − 1 (the case k = n is trivial in light of the XOR example
above). We consider the sharp threshold reconstruction setting j = k − 1 (see prior work
section) and our results are tight up to polynomial factors.

▶ Theorem 1. There exists an absolute constant c such that for any k ∈ [0, n − 1] and any
pair of symmetric (k − 1)-wise indistinguishable distributions µ, ν over {0, 1}n, the statistical
distance between all k-wise marginals of µ and ν is at most:

O(nc) · (n − k) n−k
2 · (n + k) n+k

2

2k · nn

▶ Theorem 2. For any k ∈ [0, n − 1], there exists a statistical test T : {0, 1}k → {0, 1} and a
pair of symmetric (k −1)-wise indistinguishable distributions µ, ν such that the reconstruction
advantage of T is at least

(n − k) n−k
2 · (n + k) n+k

2

2k · nn
.

An indistinguishability game. The upper and lower bounds of Theorems 1 and 2 allow us
to approximately find the value of k so that the task of using k bits to distinguish symmetric
perfectly (k − 1)-wise indistinguishable distributions over {0, 1}n is most difficult. For n an
integer fixed in advance, this can be expressed in terms of a game:

Player 1 selects integer k < n.
Player 2 chooses a pair µ, ν of symmetric, perfectly (k − 1)-wise indistinguishable distri-
butions over {0, 1}n.
The payoff p2 of Player 2 is defined as the statistical distance between the k-wise marginals
of µ and ν and the payoff of Player 1 is p1 = 1 − p2.

We show that the optimal strategy of Player 1 is essentially to select k = 0.6n. More precisely:

▶ Corollary 3. In the indistinguishability game defined above, let k∗ be an optimal strategy
of Player 1. Then, for any arbitrarily small positive constant ϵ, and n sufficiently large, k∗

satisfies:

|k∗ − 0.6n| ≤ ϵn.

A naive assumption would be that for a fixed n and k ranging in [0, n], the behaviour of the
quantity being bound in Theorems 1 and 2 is symmetric around the centre of the interval
[0, n], or namely that the optimal strategy of Player 1 is to choose k = n/2. Corollary 3
demonstrates that this is false.

STACS 2022
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Finally, Theorem 1 can be translated into Fourier analytic language. We consider a
function f : {−1, 1}n → R and write it in the Fourier basis as f(x) =

∑
S⊆[n] f̂(S) ·

∏
i∈S xi,

where f̂(S) = Ex∈{−1,1}n [f(x) ·
∏

i∈S xi].

▶ Corollary 4. Let f : {−1, 1}n → R be a real-value Boolean function that is symmetric
(|S| = |S′| =⇒ f̂(S) = f̂(S′)), has no low-degree terms (|S| ≤ k − 1 =⇒ f̂(S) = 0), and
has low 1-norm (

∑
z∈{−1,1}n |f(z)| = 1). Then, for any S of size k, we have:

f̂(S) ≤ O(nc) · (n − k) n−k
2 · (n + k) n+k

2

2k · nn
.

Techniques and roadmap

The established technique to develop indistinguishability upper bounds for symmetric distri-
butions is to decompose an arbitrary statistical test into a small basis using the fact that
without loss of generality, the best test is a symmetric function. The basis we work over is Qw

for w = 0, ..., k where Qw is a Boolean function that observes k bits and accepts if and only if
the observed Hamming weight is exactly w. Providing a low-degree polynomial approximation
to Qw rules out the existence of distributions that can be reconstructed with Qw. In practice,
a Minsky-Papert symmetrization (see Fact 13 for details) is applied to Boolean function Qw

to reduce the problem of its approximation to a problem of approximating a real-valued
univariate polynomial with a lower degree polynomial. Due to the discrete domain of Qw

(the Boolean cube), the univariate approximations need not be uniform, but are instead
over a set of separated points on the real line, each representing a Hamming weight of input
(for example, −1, −1 + 2/n, ..., 1 − 2/n, 1). However, this fact is not typically exploited, and
previous works have constructed approximations that have low error over the entire interval
[−1, 1].
Prior works have not obtained statistical distance upper bounds for k close to n because
the approach taken to approximating (the symmetrized version of) Qw has been to use
Chebyshev polynomials to provide uniform approximations to Qw over all of [−1, 1] instead
of discrete approximations. This strategy breaks down for large k because the difficulty of
uniform approximations diverges from the difficulty of the approximation over the relevant
discrete set. This observation motivates the use of discrete Chebyshev polynomials (also
known as Gram polynomials) to construct approximations that yield upper bounds on the
maximum statistical distance.
We provide a lower bound on statistical distance based on hardness of approximation with
discrete Chebyshev polynomials. This follows from their orthogonality and from linear
programming duality. We believe that prior techniques via orthogonality of (non-discrete)
Chebyshev polynomials could be used to show this result (indeed the lower bound res-
ult from [3] applies to all k up to n and the technique they use should be extendable to
distinguishers more powerful than OR).

2 Preliminaries

We use the standard notion of statistical distance (total variation distance) through-
out this paper. Specifically, the statistical distance between µ and ν is 1

2 ||µ − ν||1, or
1
2
∑

z∈{0,1}n | PrX∼µ[X = z] − PrY ∼ν [Y = z]|. This is equivalent to the reconstruction
advantage of the optimal statistical test for µ and ν that observes all n bits.
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We will be working with polynomial approximations over different discrete sets of points. We
define Dout

n as the set of points {−1, −1+2/n, ..., 1} and Din
n as {−1+1/n, −1+3/n, ..., 1−1/n}.

It is easy to check that |Dout
n | = n+1, that |Din

n | = n. Further, we have the basic relationships:

Dout
n =

{
n + 1

n
· x : x ∈ Din

n+1

}
(1)

Din
n ⊂

{
x − 1

n
: x ∈ Dout

n

}
(2)

For simplicity we will use ≲ to hide factors polynomial in n.

Symmetric distributions and functions

Let f : {0, 1}n → R be a function. We say that f is symmetric if the output of f depends
only on the Hamming weight of its input. A probability distribution µ is symmetric if the
corresponding probability mass function mapping inputs to probabilities is a symmetric
function. We also will need two further facts about distinguishing symmetric distributions.
Proofs of these appear in [3].

▶ Fact 5. Suppose that µ is a symmetric distribution over {0, 1}n. For S ⊆ {0, ..., n}, let
µ|S denote the restriction of µ to the indices in S. Then, µ|S is also symmetric.

▶ Fact 6. Suppose that µ and ν are symmetric distributions over {0, 1}n. Then without loss
of generality, the best statistical test Q : {0, 1}n → [0, 1] for distinguishing between µ and ν is
a symmetric function. In particular, we have:

max
symmetric Q

{EX∼µ[Q(X)] − EY ∼ν [Q(Y )]} = max
Q

{EX∼µ[Q(X)] − EY ∼ν [Q(Y )]}.

2.1 Discrete Chebyshev polynomials
The discrete Chebyshev polynomials, for parameter n are a family of real polynomials
{ϕd}d=0,...,n−1. Borrowing notation from [1], we have that the polynomials have the following
properties:

The family of polynomials {ϕd}d=0,...,n−1 are orthogonal with respect to the bilinear form
given by

(ϕi, ϕj) := 1
n

·
∑

x∈Din
n

ϕi(x) · ϕj(x) (3)

For each d:

||ϕd|| := (ϕd, ϕd)1/2 = 1 (4)

For each d:

deg(ϕd) = d (5)

The polynomials satisfy the recurrence:

ϕd(x) = 2αd−1 · x · ϕd−1(x) − αd−1

αd−2
· ϕd−2(x) (6)

STACS 2022
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αd−1 = n

d
·
(

d2 − 1/4
n2 − d2

)1/2

(7)

where we have ϕ0 = 1, ϕ−1 = 0, and α−1 = 1.

Every degree k < n polynomial p : R → R has a unique expansion in the discrete
Chebyshev basis:

p(t) =
k∑

d=0
cdϕd(t),

where c0, . . . , ck are the discrete Chebyshev coefficients of p.

2.2 Bounds on factorials and binomial coefficients

We will make use of double factorials, which are given by:

n!! :=
⌊n/2⌋∏
i=0

n − 2i (8)

and satisfy, when n is even:

n!! = 2n/2 · (n/2)! (9)

For n odd, we simply observe that (n − 1)!! ≲ n!! ≲ (n + 1)!! and apply the bound in (9).
We will bound factorials using

n! = Θ(
√

n) ·
(n

e

)n

(10)

and the central binomial coefficient using(
2n

n

)
= Θ(1/

√
n) · 22n (11)

2.3 Approximate degree of Boolean functions

Let f : {0, 1}n → {0, 1} be a Boolean function. We will use d̃egϵ(f) to denote the minimum
degree of any real polynomial p : {0, 1}n → R that approximates f to within ϵ at every point
in {0, 1}n.

Paper organisation. In Section 3, we prove a lemma about the expression of monomials
in the discrete Chebyshev basis. In Section 4 we construct discrete approximations to the
monomial and prove a complementary hardness of approximation result in Section 5. In
Section 6 we quantify the precise approximation problem that we need to solve and justify
this using symmetrization and linear programming duality techniques. Sections 7 and 8
justify Theorem 1 and Theorem 2, respectively. In the Appendix, we handle proofs of some
technical claims and proofs of Corollaries 3 and 4.
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3 Monomials in the discrete Chebyshev basis

▶ Lemma 7. Fix integer k < n. Let C be the leading coefficient in the expansion of xk in
the discrete Chebyshev polynomial basis with parameter n. Then, C satisfies:

1
(2n)k

·

√
(n + k)!
(n − k)! ≲ C ≲

1
(2n)k

·

√
(n + k)!
(n − k)!

Proof. From the recurrence definition of the discrete Chebyshev polynomials in Equation 6,
we have that

x · ϕi = 1
2αi−1

ϕi+1 + 1
2αi−2

ϕi−1

Application of this recursion, along with the base case ϕ0 = 1, yields that the discrete
Chebyshev representation of xk has its highest degree coefficient given by

C =
k−1∏
i=0

1
2αi

= 2−k ·
k−1∏
i=0

1
αi

(12)

From the definition of the αi in Equation 7, we have that
k−1∏
i=0

αi = nk−1

(k − 1)!

√
(12 − 1/4)(22 − 1/4) · ... · ((k − 1)2 − 1/4)

(n2 − 12)(n2 − 22) · ... · (n2 − (k − 1)2)

= nk−1

(k − 1)!

√
(12 − 1/4)(22 − 1/4) · ... · ((k − 1)2 − 1/4)

(n + 1)(n − 1)(n + 2)(n − 2) · ... · (n + k − 1)(n − k + 1)

= nk−1 ·

√
n!(n − k)!

(n − 1)!(n + k − 1)! ·

√
(12 − 1/4)(22 − 1/4) · ... · ((k − 1)2 − 1/4)

(k − 1)2 · ... · 12

= nk−1 ·

√
n · (n − k)!
(n + k − 1)! ·

√√√√k−1∏
i=1

(i − 1/2)(i + 1/2)
i2 .

Application of the upper bound in Claim 20 yields that
∏k−1

i=0 αi ≤ nk−1 ·
√

n·(n−k)!
(n+k−1)! .

This, in conjunction with Equation 12, justifies the lower bound in the statement of this
lemma. For the upper bound, application of the lower bound in Claim 20 yields that∏k−1

i=0 αi ≥ 3
4(k−1)2 · nk−1 ·

√
n·(n−k)!
(n+k−1)! , which completes the proof in light of Equation 12. ◀

4 Discrete approximations for the monomial

▶ Corollary 8. Fix integers k < n. There exists a degree at most k − 1 polynomial approxim-
ation for the monomial xk over Dout

n with error ϵ satisfying:

ϵ ≲ (2(n + 1))−k ·

√
(n + k + 1)!
(n − k + 1)!

Proof. It suffices to provide a degree at most k − 1 approximation p to the monomial
( n+1

n · x)k over Din
n+1 because then the degree at most k − 1 approximation p′ := p( n

n+1 · x)
will be an approximation to xk over Dout

n , by Equation 1. By Lemma 7, the expansion of
( n+1

n · x)k in the Gram basis with parameter n + 1 is given by

Ck · ϕk + Ck−1 · ϕk−1 + ... + C0 · ϕ0,

STACS 2022
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where Ck ≲
(

n+1
n

)k · 1
(2(n+1))k ·

√
(n+k+1)!
(n−k+1)! ≲ 1

(2(n+1))k ·
√

(n+k+1)!
(n−k+1)! . By Equation 4 and

Cauchy-Schwarz, maxDin
n+1

ϕk ≲ 1 and the corollary follows by taking the approximation∑k−1
i=0 Ci · ϕi. ◀

Comparison to the uniform approach

Newman and Rivlin [13], and Sachdeva and Vishnoi [16] showed that any degree ≤ k − 1
uniform approximation to the monomial xk over [−1, 1] will have error 2−k+1 (and that
this is tight). For large enough values of n and k, the upper bound in the statement of
Corollary 8 is smaller. In Section 7 we see that the bound 2−k+1 is insufficient to get a
non-trivial indistinguishability upper bound for k close to n.

5 Hardness of discrete monomial approximations

▶ Corollary 9. Fix integers k < n. Any degree at most k − 1 polynomial approximation to
the monomial xk must have error (pointwise over Dout

n ) at least:

(2n)−k ·

√
(n + k)!
(n − k)!

The proof of the main corollary of this section appears at the end of this section after
two lemmas have been established.

▶ Lemma 10. Let p be a degree k polynomial with degree k coefficient C in the discrete
Chebyshev basis with parameter n. Then, any degree k − 1 approximating polynomial will
have error at least |C| at some point over Din

n .

Proof. Let q be any degree at most k − 1 polynomial. Let ci be the degree i coefficient in
the discrete Chebyshev representation of p − q, and note that because the degree of q is at
most k − 1, we have that ck = C. By orthogonality of the discrete Chebyshev polynomials,
and Equations 3 and 4,

Et∼Din
n

[(p(t) − q(t))2] = c2
0 +

k∑
d=1

(cd)2 Et∼Din
n

[ϕd(t)2] ≥ c2
k = C2.

It follows that the approximation error |p(t) − q(t)| must exceed |C| for some t ∈ Din
n . ◀

▶ Lemma 11. Let p be a degree k polynomial such that for any degree at most k − 1
polynomial q, maxt∈Din

n
{|p(t) − q(t)|} ≥ ϵ. Then, for any degree k − 1 polynomial q′,

maxt∈Dout
n

{|p(t) − q′(t)|} ≥ ϵ.

Proof. We consider the contrapositive and show that existence of a degree at most k − 1
polynomial p̃ for p over Dout

n with error at most ϵ implies an approximation for p over
Din

n with the same degree and error parameters. We have that p̃(x + 1/n) is a degree
k − 1 ϵ−approximation of p(1 + 1/n) over {x − 1

n : x ∈ Dout
n } ⊃ Din

n , where the set
relation follows from Equation 2. Our approximation is then p̃(t + 1/n) + p(t) − p(t +
1/n), which is degree k − 1 because p(t) − p(t + 1/n) is degree k − 1. We have that
maxt∈Din

n
| (p̃(t + 1/n) + p(t) − p(t + 1/n))−p(t)| = maxt∈Din

n
|p̃(t+1/n)−p(t+1/n)| ≤ ϵ. ◀

Proof of Corollary 9. Lemma 7 and Lemma 10 imply that any degree at most k − 1 polyno-
mial approximation to xk must have error at least (2n)−k ·

√
(n+k)!
(n−k)! over Din

n . The corollary
then follows from Lemma 11. ◀
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6 Symmetrization and duality

Our main upper and lower bounds will be justified by reducing to an approximation theoretic
question using a linear programming duality relation.

▷ Claim 12 (see, for example, Theorem 1.2 in [2]). d̃egϵ/2(F ) ≥ k if and only if there
exists a pair of perfectly k-wise indistinguishable distributions µ, ν over {0, 1}n such that
EX∼µ[F (X)] − EY ∼ν [F (Y )] ≥ ϵ.

We are interested in Boolean functions as statistical tests that witness k bits of a sample
from a distribution. To this end, let Qw denote the function on {0, 1}k that outputs 1 if
and only if the Hamming weight is exactly w. We also use Qw(x|S) to represent Qw when
evaluated on a string of n bits, where x|S is the restriction of the n bits to the k indices in
the set S ⊆ [n].

▶ Fact 13. Let S ⊆ [n] be any set of size k. There exists a univariate polynomial pw of
degree at most k such that the following holds. For all t ∈ Dout

n , pw(t) = EZ [Qw(Z|S)]
where Z is a uniformly random string of n bits conditioned on having Hamming weight
ϕ−1(t) = (1 − t)n/2 ∈ {0, 1, . . . , n}.

Proof. This statement is a simple extension of Minsky and Papert’s classic symmetrization
technique [11] and also appears in [3]; we reproduce the proof here for convenience. Minsky and
Papert showed that for any polynomial P : {0, 1}n → R, there exists a univariate polynomial
p of degree at most the total degree of P , such that for all i ∈ {0, . . . , n}, p(i) = E|x|=i[P (x)].
Apply this result to P (x) = Qw(x|S) and let pw(t) = p(ϕ−1(t)) = p ((1 − t)n/2). The fact
then follows from the observation that the total degree of Qw(x|S) is at most k, since this
function is a k-junta. ◀

▶ Corollary 14. Suppose that for all degree ≤ k − 1 polynomials q we have that
maxt∈Dout

n
{|pw(t) − q|} ≥ ϵ. Then, d̃egϵ(Qw(x|S)) ≥ k − 1.

Proof. We prove the contrapositive. Let Q̃ be a degree at most k − 1 approximation to
Qw(x|S) over {0, 1}n with pointwise error strictly less than ϵ. Taking the Minsky-Papert
symmetrization of Q̃ in conjunction with a scale and shift, yields a univariate polynomial q

of degree at most k − 1 such that maxt∈Dout
n

{|pw(t) − q|} < ϵ. ◀

6.1 Properties of pw

The value pw(t) is a probability for every t ∈ Dout
n . Moreover, this probability must equal

zero when the Hamming weight of Z is less than w or greater than n − k + w. Therefore pw

has k distinct zeros at the points Zw = Z− ∪ Z+, where

Z− = {−1 + 2h/n : h = 0, ..., k − w − 1} , Z+ = {1 − 2h/n : h = 0, ..., w − 1}. (13)

and so pw must have the form

pw(t) = Cw ·
∏

z∈Zw

(t − z) (14)

for some Cw that does not depend on t.

▷ Claim 15. The coefficient Cw on the highest degree term of pw in the monomial basis has
absolute value:(

k
w

)(
n−k

1
2 (n−k)

)(
n

1
2 (n−k+2w)

) · nk · (n − k)!!2

(n − k + 2w)!! · (n − 2w + k)!!

STACS 2022



59:10 Sharp Indistinguishability Bounds from Non-Uniform Approximations

Proof. The polynomial pw is of degree k with all of its zeroes lying in Zw. We evaluate pw

at a point t′ which is necessarily outside of Zw and thus not a zero of pw. We set:

t′ := 1
2 (max{Z−} + min{Z+}) = k − 2w

n

To evaluate pw(t′), we use that the value pw(t′) is the probability that Qw(x|S) accepts given
that x is chosen uniformly at random, conditioned on the event that the Hamming weight of
x is exactly ϕ−1(t′) = 1

2 (n − k + 2w).

Pr
[
Qw(x|S) = 1 : |x| = 1

2(n − k + 2w)
]

= pw(t′) = Cw ·
∏

z∈Zw

(t′ − z),

from which it follows that

Cw =

(
k
w

)(
n−k

1
2 (n−k)

)(
n

1
2 (n−k+2w)

)
·
∏

z∈Zw
(t′ − z)

We have that:∏
z∈Zw

(t′ − z) =
∏

z∈Z−

(t′ − z)
∏

z∈Z+

(t′ − z)

= (−1)|Z+|
∏

z∈Z+

(z − t′)2
∏

z∈Z−:−z ̸∈Z+

(t′ − z),

where the final equality assumes that w ≤ k/2. This is without loss of generality; when
w > k/2, the same calculation holds with the roles of Z+ and Z− reversed. From this we
compute that:

1
|
∏

z∈Zw
(t′ − z)|

= 1
(1 − k−2

n )2 · (1 − k−2
n + 2

n )2 · ... · (1 − k−2
n + 2(w−1)

n )2 ·
∏

z∈Z−:−z ̸∈Z+
(t′ − z)

= n2w · (n − k)!!2

(n − k + 2w)!!2 ·
∏

z∈Z−:−z ̸∈Z+
(t′ − z)

= n2w · (n − k)!!2

(n − k + 2w)!!2 ·
∏k−2w−1

i=0 ( k−2w
n + 1 − 2i

n )

= nk · (n − k)!!2

(n − k + 2w)!! · (n + k − 2w)!! ,

from which the claim follows. ◁

We also will need the following fact, which is justified in the Appendix.

▶ Lemma 16. The value Cw is maximized when w = k/2; in particular with

Ck/2 =
(

k
k/2
)(

n−k
(n−k)/2

)(
n

n/2
) · nk · (n − k)!!2

n!!2

7 Upper bound

We begin by providing an upper bound on the distinguishing advantage of a given Qw test.

▶ Lemma 17. For any w = 0, ..., k and pair of (k − 1)-wise indistinguishable distributions,
the function Qw reconstructs with advantage ϵ, satisfying:

ϵ ≲
(n − k) n−k

2 · (n + k) n+k
2

2k · nn
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Proof. By Corollary 8, there exists a degree k − 1 polynomial approximation to pw over
Dout

n with error

≲ Cw · 1
(2(n + 1))k

·

√
(n + k + 1)!
(n − k + 1)! (15)

By Claim 15 and Lemma 16 this is upper bounded by (up to poly(n) factors):(
k

k/2
)(

n−k
(n−k)/2

)(
n

n/2
) · nk · (n − k)!!2

n!!2 · 1
(2(n + 1))k

·

√
(n + k + 1)!
(n − k + 1)!

≲
k! · (n − k)! · nk

(k/2)!2 · n! · 2k
· 1

(2n + 2)k
·

√
(n + k + 1)!
(n − k + 1)!

≲
(n − k)n−k · (2e)k

nn
· nk

2k
· 1

(2n + 2)k
· (n + k + 1)(n+k+1)/2)

ek · (n − k + 1)(n−k+1)/2

≲
(n − k)(n−k−1)/2 · (n + k + 1)(n+k+1)/2

2k · nn

≲
(n − k)(n−k)/2 · (n + k)(n+k)/2

2k · nn
,

where we have used Equations 11, 10, and 9 to bound the central binomial coefficient, the
factorial, and the double factorial, respectively. ◀

Comparison to the uniform approach

We saw in Section 4 that any uniform approximation to the monomial would have error
2−k+1. Substituting that bound into Equation 15 and carrying out the same calculation
would yield an upper bound of ek·(n−k)n−k

2k·nn−k , which for k ≈ n is ≳ (e/2)n. Because any
distinguishing advantage must be at most 1, this is a vacuous bound.

7.1 Proof of upper bound: Theorem 1
▶ Theorem 18. For any pair of (k − 1)-wise indistinguishable distributions µ, ν over {0, 1}n,
the statistical distance ϵ between µ|k and ν|k satisfies:

ϵ ≲
(n − k) n−k

2 · (n + k) n+k
2

2k · nn

Proof. Let T be a general distinguisher on k inputs. By Facts 5 and 6, T can be assumed
to be a symmetric Boolean-valued function and has the representation T =

∑k
w=0 bw · Qw

where each of the bw is either 0 or 1. We bound the distinguishing advantage as follows.
Recalling that µ and ν are k − 1-indistinguishable symmetric distributions over {0, 1}n, for
any set S ⊆ [n] of size k we have:

EX∼µ[T (X|S)] − EY ∼ν [T (Y |S)] =
k∑

w=0
bw

(
E[Qw(X|S)] − E[Qw(Y |S)]

)
≤

k∑
w=0

∣∣E[Qw(X|S)] − E[Qw(Y |S)]
∣∣

≤ (k + 1) · max
w=0,...,k

∣∣E[pw(ϕ(|X|)] − E[pw(ϕ(|Y |))]
∣∣

≲
(n − k) n−k

2 · (n + k) n+k
2

2k · nn
,
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where the final upper bound is from Lemma 17. ◀

8 Proof of lower bound: Theorem 2

▶ Theorem 19. Let Qk/2 be the statistical test over k bits that accepts if and only if the
observed Hamming weight is k/2. There exists a pair of (k − 1)-wise indistinguishable
distributions X, Y such that the reconstruction advantage of Qk/2 is at least ϵ, satisfying:

ϵ ≳
(n − k) n−k

2 · (n + k) n+k
2

2k · nn
.

Proof. By Claim 12 and Corollary 14, it suffices to show that any degree k − 1 polynomial
approximation to pk/2 over Dout

n must have error at least ϵ. Lemma 11 reduces the problem
further to proving hardness of approximation of pk/2 over Din

n . From Claim 15 and Lemma 7,
the coefficient on the degree k term of the discrete Chebyshev representation of pk/2 is

≳

(
k

k/2
)(

n−k
(n−k)/2

)(
n

n/2
) · nk · (n − k)!!2

n!!2 · 1
(2n)k

·

√
(n + k)!
(n − k)! ,

which is ≳ ϵ, by trivially applying the bounds for the central binomial coefficient, factorial,
and double factorial in Section 2. The theorem then follows by applying Lemma 10. ◀

9 Future research

It would be worthwhile to explicitly construct the distributions of Theorem 2 (as done in [10]
to match the non-constructive bounds in [9]). We also ask whether similar methods can
be extended to work in the full setting of [3, 8] in which there may be a gap between the
indistinguishability and reconstruction parameters or in the context of distributions µ, ν

over Σn, where Σ is an alphabet of size larger than 2. Finally, we observe the interplay
between results stemming from classical approximation theory (often featuring Chebyshev
polynomials) and quantum algorithms (notably in the pair of papers [18, 7]) and ask whether
our results can be recovered with a quantum argument.
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A A technical claim

▷ Claim 20. Let v =
∏k

i=1
(i−1/2)(i+1/2)

i2 . Then,

3
4k2 ≤ v ≤ 1

Proof. We have that v =
∏k

i=1
(
1 − 1

4i2

)
, which is a product of numbers less than 1 and

justifies the upper bound. For the lower bound, we have:

1
v

=
k∏

i=1

4i2

4i2 − 1

= 4
3 · 16

15 · ... · 4k2

4k2 − 1

≤ 4
3 · 16

4 · ... · 4k2

4(k − 1)2

= 4k2

3 . ◁
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B Proof of Lemma 16

Proof. We find the maximising value of Cw by expanding the expression for Cw and removing
terms that do not depend on w:

arg max
w

Cw = arg max
w

(
k
w

)(
n−k

1
2 (n−k)

)(
n

1
2 (n−k+2w)

) · nk · (n − k)!!2

(n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

(
k
w

)(
n

1
2 (n−k+2w)

) · 1
(n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

k! · ( n−k+2w
2 )! · (n − n−k+2w

2 )!
w! · (k − w)! · n! · (n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

( n−k+2w
2 )! · ( n+k−2w

2 )!
w! · (k − w)! · (n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

( n−k+2w
2 )! · ( n+k−2w

2 )!
w! · (k − w)! · 2n · ( n−k+2w

2 )! · ( n−2w+k
2 )!

= arg max
w

1
w! · (k − w)! = k/2 ◀

C Proof of Corollary 3

In this section we justify Corollary 3. The proof will rely on two technical lemmas which are
presented prior to the final proof of the corollary.

▶ Lemma 21. Let g = g(ϵ) be defined over [0, 0.4), where g is:

(1.6 + ϵ)0.8+ϵ/2 · (0.4 − ϵ)0.2−ϵ/2

20.6+ϵ

Then, for any positive ϵ in the domain of g, we have g(ϵ) > 4/5.

Proof. It suffices to show: (a) that g is minimised over its domain at 0 and g(0) = 4/5 and
(b) that g′ > 0 for all positive ϵ. Computing the derivative, we have:

g′(ϵ) = (1/5) ·
(

2−1.6−ϵ · (2 − 5ϵ)0.2−ϵ/2 · (8 + 5ϵ)0.8+ϵ/2 · (ln(1.6 + ϵ) − ln(1.6 − 4ϵ))
)

The statement (a) is justified by checking that 4/5 = g(0) ≤ limϵ→0.4 g(ϵ) and checking that
the derivative is zero only at ϵ = 0. Statement (b) follows from observing that g′ is a product
of exponential terms that are always positive and the factor ln(1.6 + ϵ) − ln(1.6 − 4ϵ), which
is also always positive for positive ϵ because the natural log is an increasing function. ◀

▶ Lemma 22. Let fn denote the function of k in the lower bound of Theorem 2, when n is
sufficiently large and fixed. Similarly, let Fn be the function of k in the upper bound Theorem 1
when n is sufficiently large and fixed. Then, for any fixed ϵ > 0, Fn(0.6n) < fn((0.6 + ϵ)n).

Proof. Fix ϵ > 0 and let δ be g(ϵ) − 4/5. By Lemma 21, δ > 0. The present lemma then
follows immediately from the inequalities:

Fn(0.6n) = O(nc) · (4/5)n ≤ (4/5 + δ)n ≤ gn(ϵ) = fn((0.6 + ϵ)n),

where the first equality is from Theorem 1, the first inequality is true for large enough n, the
second inequality follows from Lemma 21, and the final equality is from the definition of fn

and Theorem 2. ◀
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We now use Lemmas 21 and 22 to prove Corollary 3.

Proof. Fix arbitrary ϵ > 0. In the game of Corollary 3, suppose that Player 1 chooses k̃,
where

k̃ > (0.6 + ϵ) · n.

Then, by Theorem 2 and Lemma 22, Player 2 will be able to choose a symmetric pair
of perfectly (k̃ − 1)-wise indistinguishable distributions where the k̃-wise reconstruction
advantage is at least fn(k̃) > Fn(0.6n). Thus, the payoff of Player 1 will be strictly less than
1 − Fn(0.6n). This k̃ could not have been the optimal strategy for Player 1, since Player 1
can choose 0.6n, where by Theorem 1, Player 2 achieves payoff at most Fn(0.6n) and Player
1 gets payoff at least 1 − Fn(0.6n). Thus, the optimal strategy k∗ cannot be chosen to be as
large as k̃ and we have that

k∗ − 0.6n ≤ ϵn

We omit the proof of the complementary lower bound on k∗ because it follows exactly the
same structure as the upper bound. Together, these bounds imply that |k∗ − 0.6n| ≤ ϵn for
any arbitrarily small positive constant ϵ. ◀

D Proof of Corollary 4

Proof. Suppose that there exists an f that obeys the premises of the corollary, namely
symmetry, no low-degree terms, and symmetry of Fourier coefficients. Define distributions µ, ν

from f as follows (as in the method of [2]): µ(z) = 2 · max{0, f(z)}, ν(z) = 2 · max{0, −f(z)}.
The total weight of each distribution is 1 because

∑
z |f(z)| = 1 and because by assumption

f̂(∅) = 0, which implies that
∑

z f(z) = 0. Thus µ and ν are valid distributions. Next,
observe that for every function χS :=

∏
i∈S xi, the function χS has zero distinguishing

advantage between µ and ν when |S| ≤ k − 1:

f̂(S) = 0 =⇒
∑

z

χS(z)f(z) = 0 =⇒ 1
2

(∑
z

χS(z)µ(z) −
∑

z

χS(z)ν(z)
)

= 0

=⇒ EX∼µ[χS(X|S)] − EY ∼ν [χS(Y |S)] = 0.

The set of all χS for |S| ≤ k − 1 form a basis for all statistical tests on k − 1 bits; thus it
follows immediately that µ and ν are perfectly (k − 1)-wise indistinguishable. The symmetry
of µ and ν follows straightforwardly from the symmetry of the Fourier coefficients of f .

We then have that for any S ⊆ [n] where |S| = k,

f̂(S) = E[χS · f ] = 1
2E[χS · (µ − ν)] = EX∼µ[χS(X|S)] − EY ∼ν [χS(Y |S)]

≤ O(nc) · (n − k) n−k
2 · (n + k) n+k

2

2k · nn

The final inequality follows from Theorem 1 and fact that µ and ν obey the premises of
that theorem, the implication that the statistical distance between any k-wise marginals of µ

and ν is at most O(nc) · (n−k)
n−k

2 ·(n+k)
n+k

2

2k·nn , the fact that χS is a statistical test on k bits,
and the fact that EX∼µ[χS(X|S)] −EY ∼ν [χS(Y |S)] is precisely the reconstruction advantage
of the statistical test χS . ◀
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