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Abstract
The intrinsic complexity of a relation on a given computable structure is captured by the notion of
its degree spectrum – the set of Turing degrees of images of the relation in all computable isomorphic
copies of that structure. We investigate the intrinsic complexity of unary total recursive functions on
nonnegative integers with standard order. According to existing results, the possible spectra of such
functions include three sets consisting of precisely: the computable degree, all c.e. degrees and all
∆2 degrees. These results, however, fall far short of the full classification. In this paper, we obtain
a more complete picture by giving a few criteria for a function to have intrinsic complexity equal
to one of the three candidate sets of degrees. Our investigations are based on the notion of block
functions and a broader class of quasi-block functions beyond which all functions of interest have
intrinsic complexity equal to the c.e. degrees. We also answer the questions raised by Wright [21]
and Harrison-Trainor [10] by showing that the division between computable, c.e. and ∆2 degrees is
insufficient in this context as there is a unary total recursive function whose spectrum contains all
c.e. degrees but is strictly contained in the ∆2 degrees.
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1 Introduction

In mathematics we study structures of various sorts like rings, fields or linear orders. In
computability theory we investigate the complexity of countable objects. A combination
of the two – computable structure theory – examines the relationship between complexity
and structure in the above sense [1, 14]. One of the main research programs in computable
structure theory consists in the study of how complexity of a relation on a given structure
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8:2 Intrinsic Complexity of Recursive Functions on (ω, <)

behaves under isomorphisms (see, e.g., [17, 9, 11, 7]). Recall that a structure is computable
if its domain and basic relations are uniformly computable. The complexity of a relation can
be captured by a measure such as Turing degrees. This leads to the notion of the degree
spectrum (of a computable relation on a computable structure) – the set of Turing degrees
assumed by the images of that relation in all computable isomorphic copies of that structure.
This notion captures what might otherwise be called the intrinsic complexity of a relation.

A natural motivation for investigating intrinsic complexity comes from treating computable
copies of a structure as notations: we regard the elements of the copy as names for the
members of the structure, with the underlying isomorphism acting as a naming function.
A computable copy of a structure is thus a notation in which all the basic relations are
computable (meaning that their images within the copy are computable). This is essentially
Shapiro’s idea, as studied, though in a very restricted sense, in [18]. But this analogy goes
further. Shapiro insisted, not without reason, that computations are not performed directly
on numbers but rather on their names (using the terminology of computable structure theory:
computations are not performed on the underlying structure but on isomorphic copies). This
intuition transfers to all computation-dependent notions, including complexity. In the end,
the intricate notion of intrinsic complexity boils down to the study of how difficult it is to
compute the relation in notations in which all the basic relations are computable.

Following Downey et al. [5] and Wright [21], we investigate degree spectra on the most
common ordering: non-negative integers with the standard less than relation, denoted by
(ω, <). We study this question in the restricted setting of specific binary relations of general
interest – graphs of unary total computable functions. As an example of how isomorphism
might influence the complexity of a such a function, consider the successor. By a well-known
result (see, e.g., Example 1.3 in [2]), there is an isomorphic copy of (ω, <) in which the
image of the successor computes the halting problem. In general, however, as one can easily
observe, the range of intrinsic complexity of a computable relation on (ω, <) is restricted
to ∆2 degrees and, therefore, each isomorphic image of such a relation is learnable (i.e., it
possesses a recursive approximation) or, equivalently, Turing reducible to the halting problem
[8, 16, 19].

Several results from the literature partially characterize degree spectra of such functions.
Moses [15] provided a syntactical characterization of intrinsically computable (i.e. having
only the computable degree in their spectrum) n-ary relations on (ω, <). These results imply
that a total unary recursive function is intrinsically computable if and only if it is almost
constant or almost identity (see Proposition 6). In [5], Downey, Khoussainov, Miller and
Yu examined degree spectra of unary relations on (ω, <). Their results show, among others,
that the spectrum of any infinite coinfinite computable unary relation on (ω, <) contains all
c.e. degrees (Theorem 1.1 in [5]). Wright extended their results by showing the following.

▶ Theorem 1 (Wright [21]). The spectrum of a computable n-ary relation which is not
intrinsically computable contains all c.e. degrees.

He was also able to show that a computable unary relation which is not intrinsically
computable has ∆2 degrees as a spectrum (see, also, [12]).

Wright asked in [21] whether the computable, the c.e. and the ∆2 degrees exhaust
possible degree spectra for computable n-ary relations on (ω, <). Roughly at about the same
time, Harrison-Trainor posed a related question in [10] where he showed that there exists a
computable relation R on (ω, <) such that its degree spectrum either
(1) contains the c.e. degrees but does not contain all of the ∆2 degrees, or
(2) consists of exactly all ∆2 degrees but R does not have this degree spectrum uniformly.
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Harrison-Trainor conjectured that (1) holds for the relation he constructed. We construct a
unary total computable function (hence, a computable binary relation) witnessing (1). This
also answers Wright’s question.

Results of this paper are heavily based on certain structural characteristics of functions,
which we refer to as the block and (a weaker) quasi-block property. Intuitively, each block
function on (ω, <) is defined by multiple sub-functions where each sub-function applies to a
different finite <-interval of ω (Definition 10). A quasi-block function is one for which there
are increasingly long initial <-segments such that no number from within the segment is
sent outside. The usefulness of these properties is clear in view of the observation that any
computable non-quasi-block function has exactly all c.e. degrees as a spectrum (Theorem 18).
One of the main contributions of the paper consists in the complete characterization of
degree spectra of block functions which have at most finitely many isomorphism types of
their elementary sub-functions (Theorem 14). The second main contribution is Theorem 23
which answers Wright’s and Harrison-Trainor’s questions.

2 Definitions

▶ Definition 2. (ω, ≺) is a computable copy of (ω, <) if ≺ is a computable ordering on ω

and structures (ω, <) and (ω, ≺) are isomorphic.

▶ Definition 3. Let R be a relation on (ω, <), i.e. R ⊆ ωk, for some k ∈ ω, and let A be a
computable copy of (ω, <). If φ is an isomorphism from (ω, <) to A, we write RA for the
image of R under φ.

▶ Definition 4. Let R be a relation on (ω, <). The degree spectrum or spectrum of R on
(ω, <), in symbols DgSp(ω,<)(R), is the set of Turing degrees of RA over all computable
copies A of (ω, <).

Throughout the article, we use abbreviated forms: spectrum of R and DgSp(R).

▶ Definition 5. Let R be a relation on (ω, <). The relation R is intrinsically computable if
DgSp(R) contains only the computable degree.

Let A = (A, <A) be a linear order. If a ≤A b, then [a; b]A and [a; b)A denote the intervals
{x : a ≤A x ≤A b} and {x : a ≤A x <A b}, respectively. If the order A is clear from the
context, then we omit the subscript A. Succ is the successor function on (ω, <). ⟨·, ·⟩ is the
pairing function. Computability-related notation is standard and follows [20]. For example,
≤T denotes the Turing reduction.

If X ⊆ ω is a ∆2 set, then one can choose its computable approximation ξ(k, s), i.e. a
{0, 1}-valued computable function such that lims ξ(k, s) = X(k), for all k. We often use
notation Xs(k) for ξ(k, s).

3 Results

The following two statements will be useful (the proof of the first one is in the full version).

▶ Proposition 6. Let f be a unary total computable function. Then f is intrinsically
computable if and only if either f is almost constant, or f is almost identity.

▶ Proposition 7 (see, e.g., Example 1.3 in [2]). The spectrum of successor is equal to the c.e.
degrees.

STACS 2022
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▶ Theorem 8. Let f be a unary computable function with finite range. If f is not intrinsically
computable then its spectrum is equal to the ∆2 degrees.

Proof. The proof is based on the ideas from Theorem 1.2 of [21]. We provide a detailed
exposition, so that a reader could familiarize themselves with the proof techniques.

We fix c0 ̸= c1 such that f−1(ci) is infinite. Without loss of generality, one may assume
that c0 = 0 and c1 = 1.

Let X ⊆ ω be an arbitrary ∆2 set. We build a computable isomorphic copy A = (ω, <A)
of the order (ω, <) such that fA is Turing equivalent to the set X. Our construction will
ensure that the following two conditions hold:

(i) k ∈ X if and only if fA(2k) = 1, for all k;
(ii) the restriction of fA to the set of odd numbers (i.e., fA ↾ {2k+1 : k ∈ ω}) is computable.

It is clear that these conditions imply fA ≡T X.
Let M be a large enough natural number such that

(∀x > M)[the f -preimage of f(x) is infinite, and x ̸∈ range(f)].

Beforehand, we use odd numbers to copy the initial segment [0; M ] of (ω, <). More formally,
we put 2k + 1 <A 2l + 1 for all k < l ≤ M . In addition, any newly added (to the copy A)
number will be strictly A-greater than 2M + 1.

Our construction satisfies the following requirements:

e ∈ X ⇔ fA(2e) = 1,

e ̸∈ X ⇔ fA(2e) = 0.
(Re)

As usual, this will be achieved by working with a computable approximation Xs(e).
By As we denote the finite structure built at a stage s. At each stage s, there is a natural

isomorphic embedding hs from As into (ω, <). If As consists of a0 <A a1 <A a2 <A . . . <A
an, then we assume that hs(ai) = i, for all i ≤ n.

This convention allows one to talk about values fAs
(x) for elements x ∈ As. We simply

assume that

fAs
(ai) = h−1

s ◦ f ◦ hs(ai).

Our construction will ensure that fA(x) = lims fAs
(x), for all x. Sometimes (when the usage

context is unambiguous), we write just fA(x) in place of fAs
(x).

Strategy Re in isolation. Suppose that (s0 + 1) is the first stage of work for this strategy.
Then we add 2e to the right end of A. Since we want to ensure that fAs0+1(2e) = Xs0+1(e),
we also add (if needed) finitely many fresh odd numbers in-between As and 2e, i.e., we set

a <A 2k + 1 <A 2e,

for a ∈ As0 and newly added numbers 2k + 1.
We say that Re requires attention at a stage s if the current value fAs

(2e) is not equal
to Xs(e). In order to deal with Re, we introduce the following important ingredient of our
proof techniques. For the sake of future convenience, we give a general description of the
module.

Pushing-to-the-right module (PtR-module). We split the (current finite) structure As into
three intervals: B <A C <A D, where, say, we have B = [a; b]A, C = {c0 <A c1 <A
. . . <A cm}, and D = {d0 <A d1 <A . . . <A dn}. Informally speaking, the module aims
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to achieve the following goal: while preserving all values fA(x) for x ∈ B ∪ D, we want
to change the function fA ↾ C in such a way that fA satisfies a particular requirement.
In addition, we require that C remains an interval inside F .
More formally, we extend the structure As to a finite structure F (which is intended to
be an initial segment of As+1) with the following properties:

every element x ∈ F \ As is a fresh odd number, and each such x satisfies either
B <A x <A C or x >A C;
fF (di) = fAs

(di) for all i ≤ n;
the new values fF (cj) satisfy some target condition.

In the future, when we talk about a particular instance of the module, we will always
explicitly specify the desired target condition.
Roughly speaking, our module keeps the interval B fixed, while all elements from C ∪ D

are pushed to the right (with the help of newly added odd numbers). In addition, the
elements of C stick together.

Going back to Re: if Re requires attention at a stage s, then we implement the following
actions.

The PtR-module for the strategy Re. In our Re-setting, we choose the middle interval
C as the singleton {2e}. The desired target condition is a natural one: we aim to satisfy
fA(2e) = Xs(e).

We build a finite structure F extending As as dictated by the PtR-module. Then
we declare that F is the output of our module, and proceed further. This concludes the
description of the Re-strategy.

Construction. At a stage s + 1, we work with strategies Re, for e ≤ s. So, a strategy Re

starts working at the stage e + 1. For each Re (in turn), our actions follow the description
given above. After Ri finished its work, the PtR-module of the next strategy Ri+1 works with
the finite structure produced by Ri. Since the described PtR-module preserves fA ↾ (B ∪ D),
our strategies do not injure each other. We define A =

⋃
s∈ω As, where As+1 is the final

content of our structure produced by the PtR-module of Rs at the end of stage s + 1.

Verification. First, we show that in the construction, every application of a PtR-module is
successful (i.e., one can always build a desired structure F).

In order to prove this, we consider our structures from a different angle: the structure
(ω, <, f) can be treated as an infinite string β over a finite alphabet Σ = range(f), where
the i-th symbol β(i) of the string is equal to f(i), i ∈ ω.

Then the construction of F in the PtR-module can be re-interpreted as follows. We are
given three finite strings, namely σ, τ (of length one), and ρ (of length n+1), for the intervals
B, C = {2e}, and D correspondingly. Our task is to find finite strings τ ′, ρ′

0, ρ′
1, . . . , ρ′

n with
the following property:

σ τ ′ a ρ′
0 ρ(0) ρ′

1 ρ(1) . . . ρ′
n ρ(n),

where a = Xs(e), is an initial segment of β.
This task can be always implemented successfully – this is a consequence of the following

simple combinatorial fact.

STACS 2022
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▶ Remark 9. Let Σ be a finite alphabet, and let α ∈ Σω be an infinite string over Σ. Suppose
that every symbol from Σ occurs infinitely often in α. Then for every finite string σ ∈ Σ<ω

of length m > 0, one can find finite strings τ0, τ1, . . . , τm−1 such that

τ0 σ(0) τ1 σ(1) . . . τm−1 σ(m − 1) is an initial segment of α. ⌟

So, we deduce that all applications of a PtR-module are successful. Hence, if e ≤ s, then
by the end of the stage s + 1 we have fAs+1(2e) = Xs(e). This implies that every requirement
Re is satisfied.

Each element a ∈ A moves (to the right) only finitely often. Indeed, there are only finitely
many even numbers 2e such that 2e ≤A a. Consider a stage s∗ such that the values Xs(e)
(for these 2e) never change after s∗. Clearly, the element a never moves after the stage s∗.

We deduce that the structure A is a computable copy of (ω, <). For every k, after the
value fAs

(2k + 1) is defined for the first time, this value never changes (since the PtR-mo-
dule always preserves the restriction fA ↾ (B ∪ D)). Therefore, our structure A satisfies
Conditions (i) and (ii) defined above. Theorem 8 is proved. ◀

3.1 Block and Quasi-Block Functions
From now on, we study some natural subclasses of unary total recursive functions with
infinite range.

▶ Definition 10. Let f : ω → ω be a total function. An interval I of (ω, <) is f -closed if
for all x ∈ I, f(x) ∈ I and f−1(x) ⊆ I. For a finite non-empty interval I ⊂ ω, the structure
(I, <, f ↾ I) is an f -block if it has the following properties:

I is an f -closed interval and it cannot be written as a disjoint union of several f -closed
intervals;
{x ∈ ω : x < I} is f -closed.

The function f is a block function if for every a ∈ ω, there is an f -block containing a.
If (I, <, f ↾ I) is an f -block, we refer to its isomorphism type as an f -type (or a type).

The second condition of the definition above ensures that for a block function f , every
element is contained in a unique f -block. Observe that in Fig. 1, without this condition, the
element 2 would be an f -block itself, which we would like to avoid.
▶ Remark 11. For any computable block function f there is a 1-1 computable enumeration
of its types. f can be represented by the unique infinite string αf : ω → [0; N), where [0, N)
is the domain of the enumeration, for some N ∈ ω ∪ {+∞}. For example, if I0, I1, . . . , IN

are all (isomorphism types of) f -blocks, then (ω, <, f) can be treated as an infinite string
αf : ω → {n : 0 ≤ n ≤ N}, e.g. a string 012012012 . . . corresponds to a disjoint sum of the
following form: I0 + I1 + I2 + I0 + I1 + I2 + I0 + I1 + I2 + . . .

▶ Example 12. f(n) = 2 · ⌊ n
2 ⌋ is a block function. Its spectrum consists of all ∆2 degrees by

Theorem 14 below.

▶ Example 13. Consider finite structures Jn from Figure 1. Let g be the involution such
that (ω, <, g) ∼= J0 + J1 + J2 + . . . Clearly, g is a block function. In the full version, we show
that its degree spectrum is all of the c.e. degrees.

▶ Theorem 14. Let f be a computable block function such that it has only finitely many
f -types and f is not almost identity. Then the spectrum DgSp(f) consists of all ∆2 degrees.

Due to space constraints, the proof has been moved to the appendix.
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Figure 1 Structures Jn = ([1; 6 + 2n], <, f), for n = 0, 1, 2, where f is the involution such that
f(k) = k iff k = 2 or k = 6 + 2n − 1, and f(k) = k + 3 for odd numbers ≤ 6 + 2n − 3.

The notion of a quasi-block function is a generalization of the notion of a block function.
Unlike blocks which are disjoint and follow each other, quasi-blocks are increasingly larger
and they are initial segments of ω.

▶ Definition 15. We say that f : ω → ω is a quasi-block function if there are arbitrarily long
finite initial segments of ω closed under f . For any such segment I = [0; n], the structure
(I, <, f ↾ I) is an f -quasi-block.

If f is a quasi-block function but not a block function, we call f a proper quasi-block
function.

▶ Example 16. Euler’s function is a function φ such that if n > 0, then φ(n) is the number
of such m ≤ n that m and n are relatively prime. φ is a proper quasi-block function. Since
φ has a computable non-decreasing lower bound ⌊

√
n
2 ⌋ diverging to ∞ (see, e.g., [13, p. 9]),

the spectrum of φ is equal to the c.e. degrees by Theorem 19.

▶ Example 17. The function nd : ω → ω assigning to each n > 0 the number of its divisors
is a proper quasi-block function.

Below we describe a method used to show that the degree spectrum of a certain unary
recursive function f consists exactly of c.e. degrees.

Retrieving the Successor module (RS) on (ω, <, f), for f recursive, is a scheme of al-
gorithms which, for any computable copy A of (ω, <) and an initial segment It of
A satisfying some condition R (to be specified in a concrete implementation) computes,
uniformly in t and relative to fA, a longer initial segment It+1 of A satisfying R, which
enables us to construct an increasing sequence of initial segments I0 ⊂ I1 ⊂ . . ..

Suppose that there exists a concrete implementation of the RS-module for (ω, <, f).
We wish to show that the degree spectrum of f on (ω, <) consists of exactly c.e. degrees.
To this aim, we want to show that SuccA is Turing-reducible to fA. We also observe
that the reduction in the other direction works. We conclude that SuccA ≡T fA, hence
DgSp(Succ) = DgSp(f), i.e. they consist of all c.e. degrees. This conclusion is based on
Proposition 7.

Suppose that an initial segment of ω up to n (according to <) has already been determined,
along with its isomorphic image It in (ω, ≺). Let us adopt a convention that the isomorphic
image of each number i is ki. Observe that for each number i such that ki ≺ kn we know
how to determine its successor in (ω, ≺). In an application of the RS-module, given kn – the
rightmost element of It – we get some km and m such that kn ≺ km and [k0; km]A satisfies
R. We know that in A there are exactly m − n − 1 elements between kn and km. Since the
ordering ≺ is recursive, we can check elements one by one until we determine what elements
(and in what order) are between kn and km. This way we extend the initial segment It of A
to a larger initial segment It+1 satisfying R and we are able to retrieve more values of the
successor in this structure.

STACS 2022



8:8 Intrinsic Complexity of Recursive Functions on (ω, <)

▶ Theorem 18. The spectrum of any unary total computable non-quasi-block function is
equal to the c.e. degrees.

Proof. We show that the RS module can be used for (ω, <, f). Given a computable copy A
of (ω, <), we set I0 as the image of some initial segment of (ω, <) such that for every position
n outside of I0 there is m ≤ n such that f(m) > n. The condition R states that there is a
position j within It such that f(j) > n. Then if we already know It and want to determine
It+1, we calculate both f(j) and fA(kj) from the condition R, obtaining some values of
these functions m and km, each of them somewhere behind n and kn in their sequences. ◀

▶ Theorem 19. If f is a recursive proper quasi-block function with a computable non-
decreasing lower bound diverging to +∞, then its spectrum consists of exactly c.e. degrees.

Proof. We claim that there exist only finitely many quasi-blocks closed under both f and
f−1. Observe that if there were infinitely many such quasi-blocks, then f would be a block
function. Observe also that if f is as above, then we are able to calculate how many times
each of its values is assumed.

We utilise the RS module. The segment I0 is any initial segment such that none of its
super-quasi-blocks is closed under both f and f−1. Assume we already have a segment It of
A retrieved. It satisfies the condition R stating that it is an initial segment which is not
closed under both f and f−1.

We wish to algorithmically construct It+1, a segment of A, satisfying the same condition
R. If there is n ∈ It such that fA(n) >A It, we set It+1 as the segment consisting of
all elements up to fA(n). If not, then there must be m ∈ It such that for some n >A It,
fA(n) = m. What is more, for every such m there are only finitely many arguments satisfying
this identity and we are able to determine what they are (by looking at their isomorphic
images in the standard copy). If M is the largest of these elements, then we set It+1 as the
segment until M . ◀

▶ Theorem 20. There exists a recursive proper quasi-block function f with a non-decreasing
lower bound diverging to +∞ but with no such computable bound, with all c.e. degrees as a
spectrum.

Proof. Consider a set A ⊆ ω which is ∆2 but not computable. Observe that for each such
set there is a recursive sequence g of natural numbers such that each natural number appears
in g at most finitely many times and for any n ∈ ω, n ∈ A iff the number of occurrences of n

in g is odd.
f is going to be g modified in such a way that we put some fixed points between elements

of g, pushing these elements to the right, to ensure that f is a quasi-block function. We
will be able to easily distinguish (within f) old elements of g from the new filler elements,
because only the new elements are going to be fixed points of f .

We construct f by finite extension, starting from the empty function. Initially, all elements
of sequence g are unused. At any given stage, suppose that g(m) is the least unused element
of sequence g and that n is the least argument such that f(n) is not defined yet. If g(m) ≥ n,
then for each i = n, . . . , g(m) assign f(i) = i. Regardless of whether you performed the
previous instruction, assign value g(m) to the least i such that f(i) has no value set yet. We
declare that g(m) is used and go to the next stage.

This is a quasi-block function because each argument n is either a fixed point or is a
number from sequence g which has been pushed so far to the right that f(n) < n. Hence
every finite initial segment of ω is closed under f . However, this is not a block function. If it
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were, then every m such that f(m) = n would need to be in the same block as n. Then we
would be able to count how many times n is assumed as the value of f and hence A would
be decidable.

The lower bound of f diverges to ∞ because every value can be assumed only finitely often.
However, no such bound is computable because otherwise we would be able to determine
the last occurrence of every number in g and A would be computable. Observe we can
assume that this bound is non-decreasing. We just need to set f(n) = the largest m such
that f(i) ≥ m whenever i ≥ n.

If A is a c.e. set, then we utilise the RS module to show that the degree spectrum of f

consists of exactly the c.e. degrees. We can assume without loss of generality that g assumes
each of its values only once, then so does f if we ignore fixed points.

We take I0 such that behind it there are no quasi-blocks closed under f−1. The condition
R states that there is an element n > It such that f(n) ∈ It. Observe that such element
is determined uniquely. We want to retrieve It+1 ⊇ It satisfying R. We need to look for
n described above and then to fill in all the missing numbers between It and n. Since the
segment thus obtained is not a block, it needs to satisfy R. We call this segment It+1. ◀

3.2 Unusual Degree Spectrum
In this section we answer Wright’s question (Question 6.2 in [21]). The result we prove here
is also relevant for Harrison-Trainor’s question (p. 5 in [10]). Recall a representation of a
block function f as an infinite sequence αf of (the indices of) types (see, Remark 11).

▶ Definition 21. Let f be a computable block function with infinitely many types. The
counting function for f is defined by cf (n) = #{i : αf (i) = n}.

▶ Proposition 22. Let f be a computable block function with all types pairwise non-embed-
dable, each occurring finitely often. Then deg(cf ) is c.e. and fA ≥T cf implies that deg(fA)
is c.e.

Proof. C≤
f := {(k, n) : k ≤ cf (n)} is c.e., C≥

f := {(k, n) : k ≥ cf (n)} is co-c.e., so
deg(C≤

f ⊕ C≥
f ) is c.e. Since C≤

f ⊕ C≥
f ≡T cf , cf is of c.e. degree.

Assume that fA ≥T cf . Then this implies SuccA ≤T fA. Indeed, this fact can be
illustrated by an example: with the oracle fA, one could recover that the structure A has, say,
precisely two cycles of size 7. Since such a cycle is not embeddable into any other f -block,
we could compute the precise positions of the two fA-cycles of size 7 (by looking at the
standard copy of A). Suppose that b is the rightmost element of the rightmost fA-cycle of
size 7. Using this information, we could recover the values SuccA(x) for all x <A b. Since all
f -types are pairwise non-embeddable, we can “iterate” this process and compute SuccA(x)
for all x.

Note that SuccA ≥T fA always (for a computable f). Hence fA ≡T SuccA, and thus, by
Proposition 7, fA is of c.e. degree. ◀

▶ Theorem 23. There exists a total computable function whose degree spectrum strictly
contains all c.e. degrees and is strictly contained in the ∆2 degrees.

We construct a computable block function f with infinitely many types and each cf (n)
finite. We want cf <T 0′ and a computable copy A of (ω, <) with fA of non-c.e. degree.
Combining this with Proposition 22 and a result by Cooper, Lempp and Watson from [4]
(see Theorem 29) finishes the proof.
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0 2i − 11 2 ... 2i − 2

Figure 2 Ci = ([0; 2i − 1], <, fi), where the order < is standard and fi corresponds to the arrows.

As u·
Ct0

·v
Ct1

Figure 3 As+1 after reserving ⟨u, v⟩ and tickets t0, t1, t2 for R⟨e1,e2,n⟩.

For each e, e1, e2, n ∈ ω, we have the following requirements:

Ie : I ̸≃ ΦJ
e , Je : J ̸≃ ΦI

e, and R⟨e1,e2,n⟩ : ΦΓfA
e1 ̸≃ Wn ∨ ΦWn

e2
̸≃ ΓfA ,

where ΓfA is the graph of fA. J is to make I incomplete while I is going to compute cf .
The non-c.e. degree requirements are based on [6, p. 195] (see, also, [3]).

At stage s we have finite sets Is, Js, and a finite structure As = (As, <As
, fAs

) with
fAs : As → As total. Eventually, we set A =

⋃
s∈ω As. We assume some recursive ω-type

ordering of Ie, Je, R⟨e1,e2,n⟩, for all e, e1, e2, n ∈ ω. During construction, requirements
reserve numbers and, in order to be satisfied, they wait until those numbers meet certain
conditions, in which case we say that they need attention.

Ie (or Je) needs attention at stage s + 1, if some x reserved for it at stage s and
Is(x) = ΦJs

e,s (or Js(x) = ΦIs
e,s).

R⟨e1,e2,n⟩ needs attention at stage s + 1 if, at stage s, some ⟨u, v⟩ is reserved for it, along
with certain t0, t1, t2 (called tickets), and, for some z, ⟨u, v⟩ < z < s:

(α) Φ
ΓfAs
e1,s [z] = Wn,s[z] and (β) ΦWn,s[z]

e2,s (⟨u, v⟩) = ΓfAs
(⟨u, v⟩).

We use a variant of PtR (the proof of Theorem 8). In each application of PtR we
distinguish E – the set of fresh numbers – for which we formulate an additional E-condition.

3.2.1 Construction
Let (Ci)i∈ω be a computable sequence of cycles, where Ci is of length 2i (Figure 2). Put
I0 = J0 = ∅, A0 = (∅, ∅, ∅). Requirements have no reserved numbers, no numbers are frozen.
Below we describe stage s + 1, for s ∈ ω.

1. If no requirement needs attention at stage s+1, we choose the highest priority requirement
with no reservation. If this is some Ie (or Je), we reserve for it the least fresh number x.
If the highest priority requirement with no reservation is some R⟨e1,e2,n⟩, we reserve for it
the least number ⟨u, v⟩, fresh for As (i.e. u, v do not occur in As), and three consecutive
fresh numbers t0, t1, t2, called tickets. We apply PtR by setting B = As, C = D = ∅ and
E ⊇ {u, v} such that |E| = 2t0 + 2t1 with every x ∈ E being fresh for As. We build a
structure E = (E, <E , g) where <E is a linear order satisfying the E-condition, depicted
in Figure 3, which is:

Ct0 + Ct1
∼= E ,

u is the <E -last element in the block corresponding to Ct0 , and
v the <E -first element in the block corresponding to Ct1 .

We set As+1 = As + E . We have ⟨u, v⟩ /∈ ΓfAs+1
. We enumerate ticket t0 into I.
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Ar−1
u·

Ct0

·v
Ct1 T (added at stages > r)

Figure 4 As when R⟨e1,e2,n⟩ receives attention for the first time with ⟨u, v⟩ and tickets t0, t1, t2,
assuming that the reservation has been made at stage r.

Ar−1
Ct0 Ct1 T

u· → ·v
Ct1 Ct0 T

Figure 5 The result of reaction to first attention for R⟨e1,e2,n⟩ with reservation ⟨u, v⟩ and tickets
t0, t1, t2. Gray part is occupied by fresh numbers, thick part represents pushed numbers.

2. If a requirement needs attention, pick the highest one. We say it receives attention.
If this is Ie, some x is reserved for Ie at stage s and Is(x) = ΦJs

e,s(x). Put x into I,
freeze the computation ΦJs

e,s(x) and cancel all freezings and reservations for lower priority
requirements. Deal with with Je accordingly.
Suppose the highest priority requirement needing attention is some R⟨e1,e2,n⟩. Some ⟨u, v⟩
is reserved for R⟨e1,e2,n⟩ at stage s with some tickets t0, t1, t2. Below we describe reactions
to first and second attention received by R⟨e1,e2,n⟩ with reservation ⟨u, v⟩, t0, t1, t2.

(i) Suppose the reservation for R⟨e1,e2,n⟩ has been made at stage r. After r and before
s + 1 the structure A might have been extended by some T (thick line in Figure
4). The idea is that we push to the right all numbers that occupy the highlighted
positions in Figure 4 and obtain the structure as in Figure 5.
More formally, divide As into As = B + C + D, where B ∼= Ar−1, C ∼= Ct0 + Ct1 and
D ∼= T , and apply PtR. Take |C ∪ D| numbers, fresh for As, and make F out of
them. Build a structure F = (F, <F ; g), where <F is a linear order, satisfying the
F -condition F ∼= C + D. We rebuild C to get C′ = (C, <C ; h) where C′ satisfies the
C-condition C′ ∼= Ct1 + Ct0 . We set As+1 = B + F + C′ + D (Figure 5).
Observe that pushed numbers from C + D assume in As+1 the same structure as
in As except that the behavior of fAs+1 (on numbers from C) mimics Ct1 + Ct0 .
This makes ΓfAs+1

(⟨u, v⟩) = 1 and thus R⟨e1,e2,n⟩ is satisfied at stage s + 1. We
enumerate t1 into I and invalidate all reservations and freezings for lower priority
requirements.

(ii) Suppose R⟨e1,e2,n⟩ has made the reservation at stage r and received the first attention
at stage p + 1. By the time we got to stage s + 1, the structure A might have been
extended by some U (Figure 6).
The idea is that we push all numbers occupying the highlighted positions in Figure
6 and obtain the structure as in Figure 7.
More formally, we divide As = B + C + D in a way that B ∼= Ar−1 + Ct0 + Ct1 + T ,
C ∼= Ct1 + Ct0 and D ∼= T + U with u, v residing in a copy of Ct1 within C. We
apply PtR with B, C, D defined above. Let F be the set of |C ∪ D| numbers,

Ar−1
Ct0 Ct1 T u· → ·v

Ct1 Ct0 T U added at stages > p + 1

Figure 6 As when R⟨e1,e2,n⟩ receives attention for the second time with ⟨u, v⟩ and tickets t0, t1, t2,
assuming that the reservation has been made at stage r.
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T UAr−1
Ct0 Ct1 T Ct1 Ct0

u·
Ct0

·v
Ct1

T U

Figure 7 The result of reaction to second attention of R⟨e1,e2,n⟩. Gray part is occupied by fresh
numbers, thick part represents pushed numbers.

fresh for As. We build a finite structure F = (F, <F , g), where <F is a linear
order, satisfying the F -condition F ∼= C + D. We rebuild C to get C′ = (C, <C , h)
satisfying the C-condition C′ ∼= Ct0 + Ct1 . We set As+1 = B + F + C′ + D. We have
ΓfAs+1

(⟨u, v⟩) = 0. R⟨e1,e2,n⟩ is satisfied at stage s + 1. We enumerate t2 into I and
invalidate all reservations and freezings for lower priority requirements.

3.2.2 Verification
Due to space constraints, the proof of the following lemma can be found in the full version.

▶ Lemma 24. A is computable.

▶ Lemma 25. Every requirement is eventually satisfied. Hence, I, J are intermediate and
fA is of non-c.e. degree.

Proof. This follows from finite injury. It remains to observe that each requirement can
receive attention only finitely many times with the same numbers reserved for it. This is clear
for Ie, Je (see, e.g. [20, Chap. VII.2]). We show that no R⟨e1,e2,n⟩ needs attention more than
twice with the same ⟨u, v⟩ and tickets t0, t1, t2 reserved for it. The PtR modules that we use to
satisfy each R⟨e1,e2,n⟩ are carefully arranged to make the standard pattern of verification work
(cf. [6, p. 196]). Suppose the reservation was made at stage r, the first attention was at stage
s + 1 and the second at stage t + 1. Since ⟨u, v⟩, t0, t1, t2 are reserved for R⟨e1,e2,n⟩ at stage
t ≥ s + 1, no requirement with lower priority than R⟨e1,e2,n⟩ has received attention at any
stage u, t ≥ u ≥ s + 1. Actions performed at stage t + 1 lead to At+1 ↾ As = As ↾ As (where
As is the domain of As). Therefore, Φ

ΓfAt+1↾As
e1 [z] = Φ

ΓfAs↾As
e1 [z] = Φ

ΓfAs
e1 [z] = Wn,s[z].

At stage s + 1 we had ΦWn,s[z]
e2 (⟨u, v⟩) = ΓfAs

(⟨u, v⟩) ̸= ΓfAt
(⟨u, v⟩). Since at stage t + 1

we had ΦWn,t[z]
e2 (⟨u, v⟩) = ΓfAt

(⟨u, v⟩) we must have Wn,t[z] ̸= Wn,s[z]. Hence, for some x,

Φ
ΓfAt+1↾As
e1 (x) = Wn,s(x) ̸= Wn,t(x). Now, observe that At+1 ↾ As does not change at any

later stage at which ⟨u, v⟩ is reserved for R⟨e1,e2,n⟩. Hence, for all such stages w ≥ t + 1,
Φ

ΓfAw↾As
e1,w (w) ̸= Wn,w(x) and R⟨e1,e2,n⟩ does not need attention at stage w + 1. ◀

▶ Lemma 26. For every n ∈ ω, cf (n) is finite and is never increased due to numbers > n + 2
entering I.

Proof. Suppose the contrary. Then there exists n such that cf (n) is increased because of
some k > n + 2 entering I. Let s + 1 be the stage at which this happens. Since cf (n) is
increased at stage s + 1, Cn is present in As+1. Since cf (n) is increased due to k entering
I, k must be associated at stage s + 1 with some Ri. Hence, k is one of the tickets t0, t1, t2
paired with Ri at this point. There are three cases.
(k = t0) This is when Ri is initialized and receives tickets t0, t1, t2 (see Figure 3). For cf (n)

to increase, we must have n = t0 or n = t1. n = t0 is not possible because then we would
have k = t0 = n which contradicts k > n + 2. n = t1 is also not possible because we
would have k = t0 = t1 − 1 = n − 1 which contradicts k > n + 2.
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(k = t1) This is when Ri receives first attention with tickets t0, t1, t2 (see Figure 4). Cn

must occur somewhere at the highlighted positions in Figure 4 because this fragment
of the structure is copied leading to an increase of cf . Hence, n = t0 or n = t1, or Cn

occurs in T . n ≠ t0 because otherwise n = t0, k = t1 = t0 + 1 = n + 1 which contradicts
k > n + 2. n cannot be t1 because otherwise n = t1 = k which contradicts k > n + 2.
Hence, Cn occurs in T . However, this is also not possible for the following reason. We
know that k = t1 enters I so this is due to Ri acting when receiving the first attention
with tickets t0, t1, t2. This means that no requirement Rj of higher priority than Ri (i.e.,
with j < i) has received attention after Ri got associated with tickets t0, t1, t2 (up to the
current stage) – otherwise Ri’s tickets would have been reassigned to numbers different
than t0, t1, t2. Therefore, Cn entered the construction after Ri was assigned to t0, t1, t2.
Hence, by the construction (i.e. the way we choose and assign tickets to requirements
(re)entering the construction), n is a ticket for some lower priority requirement Rl (l > i).
But when n enters the construction as a ticket of such Rl, n is chosen as a fresh number
so, in particular, n > t1 = k which contradicts k > n + 2.

(k = t2) This is when Ri receives attention for the second time with tickets t0, t1, t2 (see
Figure 6). Cn occurs somewhere at the highlighted positions in Figure 6, i.e. n = t0 or
n = t1, or Cn occurs in T + U . n ̸= t0 because otherwise n = t0, k = t2 = t0 + 2 = n + 2
which contradicts k > n + 2. n ̸= t1 because otherwise n = t1, k = t2 = t1 + 1 = n + 1
which contradicts k > n + 2. Therefore, n occurs in T + U . The rest of the argument is
similar to the analogical place of the previous case (k = t1). ◀

▶ Lemma 27. cf ≤T I.

Proof. To compute cf (n), find s such that Is[n + 2] = I[n + 2]. By Lemma 26 and the fact
that cf (n) is increased only due to numbers entering I, cf (n) is not increased at stages > s

(no additional copies of Cn are added to fA). Return the number of copies of Cn in fAs
. ◀

Due to space constraints, the proof of the following lemma can be found in the full version.

▶ Lemma 28. fA ≤T cf .

By Lemmas 25, 26, 27 and 28: 0 <T fA ≤ cf ≤T I <T 0′. The spectrum of f is not
trivial by Proposition 6. By Theorem 1, DgSp(f) contains all c.e. degrees. Since fA is of
non-c.e. degree, DgSp(f) ̸= the c.e. degrees. To show that DgSp(f) ̸= the ∆2 degrees, we
need the following theorem.

▶ Theorem 29 (Cooper, Lempp and Watson, [4]). Given c.e. sets U <T V there is a proper
d.c.e. set C of properly d.c.e. degree such that U <T C <T V .

Assume, for a contradiction, that DgSp(f) consists of the ∆2 degrees. By Theorem 29,
DgSp(f) ∩ {deg(A) : cf ≤T A ≤T 0′} contains a proper d.c.e. degree. However, by
Proposition 22, DgSp(f) ∩ {deg(A) : cf ≤T A ≤T 0′} contains only c.e. degrees. This is a
contradiction, so the degree spectrum of f is different then the ∆2 degrees. This completes
the proof.

4 Conclusions and Open Questions

We have investigated the problem of intrinsic complexity of computable relations on (ω, <),
as measured by their degree spectra, in the restricted setting of graphs of unary total
computable functions. It has been known that possible candidates for intrinsic complexities
of such functions include three sets consisting of precisely: the computable degree, all c.e.
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degrees, and all ∆2 degrees. Imposing certain structural constraints on such functions has
led us to the notions of block functions (Definition 10) and a broader class of quasi-block
functions (Definition 15). Non-quasi-block functions have intrinsic complexity equal to the c.e.
degrees (Theorem 18) which redirects all focus to quasi-block functions. We have obtained
several results on this class, most prominently the one on block-functions with finitely many
types (Theorem 14) showing that their intrinsic complexity is either trivial or equal to the
∆2 degrees. However, the most surprising result is that on an unusual degree spectrum
(Theorem 23) which proves the existence of a block function having intrinsic complexity
different from the already known three candidates. To the best of our knowledge, this theorem
answers Question 6.2 from [21] formulated by Wright who asked whether there are relations
on (ω, <) with other degree spectra (than the three known candidates). Harrison-Trainor
obtained a related result though for a different relation. However, for his relation it is not
known whether its spectrum is intermediate (see Section 1 for details, as well as [10]).

A few questions arise immediately. Note, for example, that our solution to Wright’s
question invites the hypothesis, possibly to be proven using some kind of permitting, that
there exist infinitely many spectra of computable block functions on (ω, <). A parallel
question is what degrees such nonstandard spectra contain. Observe that even for the
function constructed in Theorem 23 the exact contents of its spectrum are unknown. We
finish the paper with the general open question: what are the possible kinds of nonstandard
spectra of computable block functions on (ω, <)?
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A Proof of Theorem 14

▶ Theorem 14. Let f be a computable block function such that it has only finitely many
f -types and f is not almost identity. Then the spectrum DgSp(f) consists of all ∆2 degrees.

Proof. Let I0, I1, . . . , IN be all (isomorphism types of) f -blocks. We represent the structure
B = (ω, <, f) by αf according to Remark 11. As in Theorem 8, we fix a ∆2 set X. Our goal
is to construct a computable copy A = (ω, <A) of (ω, <) such that fA ≡T X. In general, we
follow the notations of Theorem 8 (e.g., fAs(x) is defined in the same way as in the previous
proof).

Beforehand, we choose a large enough number M such that:
M lies at the right end of its f -block (inside B),
for every x > M , the isomorphism type of its f -block occurs infinitely often in B.

As in the proof of Theorem 8, we copy the interval [0; M ] into our structure A, and all new
elements will be added to the right of this interval.

The proof is split into three cases which depend on the properties of the string αf (each
of the cases requires a separate construction):
(a) There are two different finite strings σ and τ such that:

the lengths of σ and τ are the same;
τ can be obtained via a permutation of σ, i.e., there is a permutation h of the set
{0, 1, . . . , |σ| − 1} such that τ(i) = σ(h(i)), for all i < |σ|;
both σ and τ occur infinitely often in αf .

(b) There is only one block Ik such that k occurs infinitely often in αf .
(c) Neither of the previous two cases holds.

Case (a). For the sake of simplicity, we give a detailed proof for the case when σ = 01 and
τ = 10. After that, we explain how to deal with the general case.
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Our construction satisfies the following requirements:

e ∈ X ⇔ 2e belongs to a block isomorphic to I1,

e ̸∈ X ⇔ 2e belongs to a block isomorphic to I0.
(Re)

Suppose that |I0| + |I1| = q + 1.

Strategy Re in isolation. When Re starts working at a stage s0 + 1, we proceed as follows.
Assume that Xs0(e) = 1 (the other case is treated similarly). We choose q fresh odd numbers
ce

1, ce
2, . . . , ce

q and declare them the companions of 2e. We add the chain

2e <A ce
1 <A ce

2 <A . . . <A ce
q

to the right of As0 . If needed, we add finitely many fresh odd numbers in-between As0 and
2e. This procedure ensures that (at the moment) the finite structure ([2e; ce

q]A, <A, fA) is
isomorphic to the disjoint sum I1 + I0.

The strategy Re requires attention at a stage s if inside the current As, the number 2e

belongs to a copy of I1−Xs(e). When Re requires attention, we apply a PtR-module.

The PtR-module for Re. We choose the middle interval C as the set containing 2e and
all its companions, i.e. C = {2e <A ce

1 <A . . . <A ce
q}. Our target condition is defined as

follows: inside the resulting structure F , the structure (C, <F , fF ↾ C) is isomorphic to the
disjoint sum IXs(e) + I1−Xs(e). As in Theorem 8, the structure F is treated as output of the
module.

The construction is arranged similarly to that of Theorem 8.

Verification. We need to show that every application of a PtR-module is successful. This
follows from two observations:
1. If we want to “transform”, say, I0 + I1 into I1 + I0, then this can be achieved by an

appropriate pushing to the right, since the string τ = 10 occurs infinitely often in αf .
2. Remark 9 guarantees that one can also safely push the interval D (from the PtR-module):

notice that if some block Ir occurs in D, then r occurs infinitely often in αf .
Since pushing to the right is always successful, every requirement Re is satisfied. Note
that given fA as an oracle, one can recover the fA-block of 2e. This fact (together with
Re-requirements) implies that X ≤T fA.

Every element a ∈ A is pushed to the right only finitely often. Therefore, the structure
A is a computable copy of (ω, <).

Given an odd number x = 2k + 1, one can computably determine which of the following
two cases holds:
1. 2k + 1 is a companion ce

t of some even number 2e (in this case, the indices e and t are
also computed effectively), or

2. 2k + 1 is added as a “filler” by some action of an Re-strategy (either by its initial actions,
or by an application of a PtR-module).

In the second case, the value fAs(x) never changes (after being defined for the first time). In
the first case, the oracle X can tell us whether x = ce

t belongs to (a copy of) I0 or I1, and X

can also compute the image fA(x). In a similar way, X computes the images fA(2e), for
e ∈ ω. Hence, we obtain that fA ≡T X. This concludes the case when σ = 01 and τ = 10.

The case of arbitrary σ and τ follows a similar proof outline. We illustrate this by
considering σ = 012301 and τ = 013021. Then our construction will switch between finite
structures

Fσ = I0 + I1 + I2 + I3 + I0 + I1 and Fτ = I0 + I1 + I3 + I0 + I2 + I1.



N. Bazhenov, D. Kalociński, and M. Wrocławski 8:17

Since both σ and τ occur infinitely often in αf , an appropriate PtR-module can always
“transform” Fσ into Fτ , and vice versa.

During the construction, an even number 2e will always belong to the third block from
the left inside F□ (i.e., either I2 in Fσ, or I3 in Fτ ). The third block is chosen because it
corresponds to the first position, where σ and τ differ. The rest of the corresponding copy of
F□ consists of companions of 2e. In the final structure A, we will achieve the following: if
e ∈ X, then 2e lies in a copy of I2; otherwise, 2e belongs to a copy of I3. This concludes the
discussion of Case (a).

Case (b). Without loss of generality, we assume that Ik = I0. We satisfy the following
requirements:

e ∈ X ⇔ 2e lies at the right end of a copy of I0,

e ̸∈ X ⇔ 2e lies at the left end of a copy of I0.
(Re)

Suppose that |I0| = q + 1. Notice that q ≥ 1, since f is not almost identity.

Strategy Re in isolation. 2e will have finitely many odd numbers as its companions. In
contrast to Case (a), these companions could be added stage-by-stage.

When Re starts working at a stage s0 + 1, we proceed as follows. Suppose Xs0(e) = 1
(the other case is similar). Then we choose q fresh odd numbers c1, . . . , cq, and declare that
they are companions of 2e. We set c1 <A . . . <A cq <A 2e (these elements are added to the
right of As0). We ensure that the structure ([c1; 2e]A, <A, fA) is isomorphic to I0 (if needed,
one adds fresh odd numbers in-between As0 and c1).

We also ensure that by the end of each stage s, 2e and its (current) companions form an
interval inside As, and this interval can be treated as a sum of blocks (in As).

The strategy Re requires attention at a stage s if inside the current As, the corresponding
requirement is not satisfied (e.g., if Xs(e) = 0 and 2e lies at the right end of I0). When Re

requires attention, we apply a PtR-module.

The PtR-module for Re. We choose the middle interval C as the set containing 2e and all
its current companions. We consider the following two subcases.

Subcase 1. Assume that right now, Xs(e) = 1 and 2e lies at the left end of a copy of I0.
Then our target condition is defined as follows: inside the resulting output structure F ,
the number 2e should belong to the right end of a copy of I0.
In order to achieve this condition, we add precisely q fresh odd numbers in-between B

and C, and only one fresh odd number in-between C and D. This guarantees that 2e

“moves” to the right end of a block.
Subcase 2. Otherwise, suppose that Xs(e) = 0 and 2e lies at the right end of a copy of I0.

Then we pursue the following condition: inside the output F , 2e should “move” to the
left end of a block I0.
In order to do this, we add one fresh number in-between B and C, and q fresh numbers
in-between C and D.
In both subcases, we declare that the newly added odd numbers belong to the set of
companions of 2e.

The construction is arranged similarly to the previous ones.
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Verification. Since almost every block from αf is isomorphic to I0, every application of a
PtR-module is successful. In addition, the actions of the PtR-module for Re does not injure
other strategies.

We deduce that all requirements Re are satisfied. Given fA as an oracle, one can recover
the position of 2e inside its fA-block. This implies that X ≤T fA. In addition, a standard
argument shows that A is a computable copy of (ω, <).

Notice the following. Since 2e and its companions always stick together as an interval,
there are only two possible variants of the final fA-block of 2e: either it contains q companions
of 2e added at the very beginning of the work of the Re-strategy, or it contains q closest
(inside A) companions of 2e added by the first application of the PtR-module for Re.

As in the previous case, given an odd number x = 2k + 1, one can determine which of
the following two cases holds:
1. x is a companion of some even number 2e (the index e is recovered effectively), or
2. x is added as a “filler” by some action of an Re-strategy.
In the second case, the value fAs(x) never changes. In the first case, the oracle X can tell
us the content of the final fA-block containing x: indeed, if Xs0(e) = Xs1(e), then at the
stages s0 and s1, the blocks of x inside As0 and As1 contain precisely the same elements.
We deduce that fA ≤T X. This concludes the proof of Case (b).

Case (c). Before describing the construction, we provide a combinatorial analysis of the
string αf .

▶ Lemma 30. If the string αf satisfies neither Case (a) nor Case (b), then there are symbols
b, d, e ∈ Σ such that d ̸= b, e ̸= b, and for every natural number n, there exists m > n such
that the finite string dbme occurs in αf .

Proof. Without loss of generality, one may assume that every symbol from Σ occurs infinitely
often in αf .

For a finite string σ over the alphabet Σ, we denote

#(σ) = |{a ∈ Σ : a occurs in σ}|.

We choose a finite string τ such that τ occurs infinitely often in αf and

#(τ) = max{#(σ) : σ occurs infinitely often in αf }. (1)

Let c be the last symbol of the string τ .
There exists a symbol b such that the string τb = τ b occurs infinitely often in αf .

Equation (1) implies that b occurs in τ (indeed, if b does not occur in τ , then #(τb) = #(τ)+1).
We prove that c = b. Towards a contradiction, assume that c ̸= b. Then τ can be

decomposed as τ = ξ b δ ck for some k ≥ 1 and finite strings ξ, δ. The string τb = ξ b δ ck b

occurs infinitely often in αf . In turn, this implies that both b δ ck and δ ck b occur infinitely
often in αf . Therefore, αf satisfies Case (a), which gives a contradiction.

Hence, we have τ = ρ bk for some k ≥ 1 and finite string ρ, and the string τb = ρ bk+1

occurs infinitely often in αf . Note that #(τb) = #(τ). This implies that by applying
induction, one can show that for every l ≥ 1,

ρ bl occurs infinitely often in αf . (2)

Since αf does not satisfy Case (b), there are at least two different symbols occuring
infinitely often in αf . This fact and Equation (2) imply that for every n ∈ ω, there exist
m > n and two symbols d′ and e′ such that d′ ̸= b, e′ ̸= b, and d′bme′ occurs in αf . After
that, we apply the pigeonhole principle to finish the proof of the lemma. ◀
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By Lemma 30, we may assume that for every n ∈ ω, there exists m > n such that, say,
10m2 occurs in αf . We satisfy the same requirements as in Case (b):

e ∈ X ⇔ 2e lies at the right end of a copy of I0,

e ̸∈ X ⇔ 2e lies at the left end of a copy of I0.
(Re)

In general, our notations also follow those of Case (b).

Strategy Re in isolation. When Re starts working at a stage s0 + 1, we proceed as follows.
Suppose Xs0(e) = 0. We find a large enough number m such that 10m2 occurs in αf , and
the corresponding sequence of f -blocks I1 + I0 + I0 + . . . + I0 + I2 does not intersect with
the image of As0 inside (ω, <).

We add 2e and fresh odd numbers into A ensuring that the newly added elements form a
sequence of fA-blocks:

I1 + I0 + . . . + I0︸ ︷︷ ︸
m times

+I2;

if needed, fresh odd numbers are also added in-between As0 and this sequence. The number
2e lies at the left end of the leftmost block I0. The elements forming I1 and I2 are declared
boundary companions of 2e. The odd numbers forming the inner sequence of I0-s are declared
non-boundary companions of 2e.

As usual, Re requires attention at a stage s if inside the current As, the corresponding
requirement is not satisfied. When Re requires attention, we apply a PtR-module.

The PtR-module for Re. We choose the middle interval C as the set containing 2e and all
its companions. Assume that right now, Xs(e) = 0 and 2e lies at the right end of a copy of
I0 (the other subcase is treated in a similar way). Then the target condition is defined as
follows: inside F , the number 2e belongs to the left end of a copy of I0.

Suppose that right now, the companions of 2e form a sequence of fAs -blocks corresponding
to a finite string 10m2.

We always assume the following: if a fresh number x is added between some companions
of some 2j, then it is declared a non-boundary companion of 2j. In addition, every such
x is put between the I1-block and the I2-block containing the boundary companions of 2j.
Moreover, we require that inside the resulting structure F , the element x becomes a part of
a copy of I0.

In order to achieve the target condition, we proceed as follows. First, we find a large
enough m′ > m such that 10m′2 occurs in αf , and this occurrence of 10m′2 lies to the right
of the image of As inside (ω, <). We add fresh odd numbers in such a way that:

The companions of 2e (including newly added companions) form a sequence of fF -blocks
corresponding to 10m′2 (inside αf ). This is achieved by adding numbers in-between B

and C, and by adding fresh I0-blocks between the I1-block and the I2-block containing
the boundary companions of 2e.
Similarly to Case (b), this procedure must ensure that 2e moves to the left end of an
I0-block.

Second, we carefully push the companions of 2j, where e < j < s, to the right. Consider
each such j (in turn). Suppose that the companions of 2j form a sequence of fAs

-blocks
corresponding to a finite string 10mj 2. We choose a large enough m′

j > mj (again, with
10m′

j 2 occuring in αf to the right of the image of the current (preliminary) version of F).
We add fresh numbers in such a way that:
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The companions of 2j (including new ones) form a sequence of fF -blocks corresponding
to 10m′

j 2 inside αf .
If x is a new companion of 2j, then it belongs to a new I0-block which corresponds to
one of the underlined zeros in the following decomposition:

10m′
j 2 = 10mj 00 . . . 02.

This careful pushing allows to ensure that the PtR-module does not injure strategies Rj , for
j ̸= e. Indeed, after the pushing, the value fA(2j) does not change.

The construction is arranged in a similar way as before.

Verification. The fact that αf contains occurrences of 10m2 for arbitrarily large m implies
that every application of a PtR-module is successful. We deduce that all requirements Re

are satisfied. The rest of the verification is similar to that of Case (b). This concludes the
proof of Theorem 14. ◀
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