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—— Abstract

On sparse graphs, Roditty and Williams [2013] proved that no O(n*~¢)-time algorithm achieves
an approximation factor smaller than % for the diameter problem unless SETH fails. We answer
here an open question formulated in the literature: can we use the structural properties of median
graphs to break this global quadratic barrier?

We propose the first combinatorial algorithm computing exactly all eccentricities of a median
graph in truly subquadratic time. Median graphs constitute the family of graphs which is the most
studied in metric graph theory because their structure represents many other discrete and geometric
concepts, such as CAT(0) cube complexes. Our result generalizes a recent one, stating that there is
a linear-time algorithm for computing all eccentricities in median graphs with bounded dimension d,
i.e. the dimension of the largest induced hypercube (note that 1-dimensional median graphs are
exactly the forests). This prerequisite on d is not necessarily anymore to determine all eccentricities
in subquadratic time. The execution time of our algorithm is 0(711'6456 logO(D n).
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1 Introduction

Median graphs can be certainly identified as the most important family of graphs in metric
graph theory. They are related to numerous areas: universal algebra [3, 16], CAT(0) cube
complexes [5, 20], abstract models of concurrency [11, 37], and genetics [8, 10]. Let d(a,b) be
the length (i.e. the number of edges) of the shortest (a,b)-path for a,b € V and I(a,b) be
the set made up of all vertices u metrically between a and b, i.e. d(a,b) = d(a,u) + d(u,b).
Median graphs are the graphs such that for any triplet of distinct vertices x,y,z € V, set
I(z,y) N I(y,2z) NI(z,x) is a singleton, containing the median m(x,y, z) of this triplet.
The purpose of this article is to break the quadratic barrier for the computation time
of certain metric parameters on median graphs. In particular, we focus on one of the most
fundamental problems in algorithmic graph theory related to distances: the diameter. Given
an undirected graph G = (V, E), the diameter is the maximum distance d(u,v) for all
u,v € V. Two vertices at maximum distance form a diametral pair. An even more general
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All Eccentricities on Median Graphs in Subquadratic Time

problem consists in determining all eccentricities of the graph. The eccentricity ecc(v) of a
vertex v is the maximum length of a shortest path starting from v: ecc(v) = maxy, ey d(v, w).
The diameter is thus the maximum eccentricity.

1.1 State of the art

Executing a Breadth First Search (BFS) from each vertex of an input graph G suffices
to obtain its eccentricities in O(n |E|), with n = |V|. As median graphs are relatively
sparse, |E| < nlogn, these multiple BFSs compute all eccentricities in time O(n?logn) for
this class of graphs. Very efficient algorithms determining the diameter already exist on
other classes of graphs, for example [2, 18, 24]. Many works have also been devoted to
approximation algorithms for this parameter. Chechik et al. [19] showed that the diameter
can be approximated within a factor % in time O(m%) on general graphs. On sparse graphs,
it was shown in [36] that no O(n?~¢)-time algorithm achieves an approximation factor smaller
than % for the diameter unless the Strong Exponential Time Hypothesis (SETH) fails.

Median graphs are bipartite and can be isometrically embedded into hypercubes. They
are the 1-skeletons of CAT(0) cube complexes [20] and the domains of event structures [11].
They admit structural properties, such as the Mulder’s convex expansion [34, 35]. They are
strongly related to hypercubes retracts [4], Cartesian products and gated amalgams [5], but
also Helly hypergraphs [33]. They do not contain induced Ks 3, otherwise a triplet of vertices
would admit at least two medians. The dimension d of a median graph G is the dimension
of its largest induced hypercube. The value of this parameter is at most |logn| and meets
this upper bound when G is a hypercube. Moreover, parameter d takes part in the sparsity
of median graphs: |E| < dn.

An important concept related to median graphs is the equivalence relation ©. This is the
reflexive and transitive closure of relation O, where two edges are in Oy if they are opposite
in a common 4-cycle. A O-class is an equivalence class of ©. Each O-class of a median graph
forms a matching cutset, splitting the graph into two convex connected components, called
halfspaces. The number ¢ < n of ©-classes corresponds to the dimension of the hypercube in
which the median graph G isometrically embeds. Value ¢ satisfies the Euler-type formula
2n —m —q < 2 [29]. A recent LexBFS-based algorithm [13] identifies the ©-classes in linear
time O(|E|) = O(dn).

There exist efficient algorithms for some metric parameters on median graphs. For
example, the median set and the Wiener index can be determined in O(]E|) [13]. Subfamilies
of median graphs have also been studied. There is an algorithm computing the diameter
and the radius in linear time for squaregraphs [21]. A more recent contribution introduces
a quasilinear time algorithm - running in O(n logo(l) n) - for the diameter on cube-free
median graphs [23], using distance and routing labeling schemes proposed in [22]. Eventually,
a linear-time algorithm [15] for the diameter on constant-dimension median graphs was
proposed, i.e. for median graphs satisfying d = O(1).

The existence of a truly subquadratic-time algorithm for the diameter on all median
graphs is open and was recently formulated in [13, 15, 23]. An even more ambitious question
can be asked. Can this subquadratic barrier be overpassed for the problem of finding all
eccentricities of a median graph 7 As the total size of the output is linear and this problem
generalizes the diameter one, this question is legitimate. More generally, the question holds
for all metric parameters (except the median set and the Wiener index for which a linear-time
algorithm was recently designed). We propose here the first subquadratic-time algorithm
computing all eccentricities on median graphs.
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1.2 Contributions

Our first contribution in this paper is the design of a quasilinear, i.e. O((logn)?®n), time
algorithm computing the diameter of simplex graphs. A simplex graph K(G) = (Vk, Ek)
of a graph G is obtained by considering the induced complete graphs (cliques) of G as
vertices Vi . Then, two of these cliques are connected by an edge if they differ by only one
element: one is C, the other is C'U {v}. These edges form the set Ex. All simplex graphs
are median [5, 12]. Moreover, we observe that simplex graphs fulfil an interesting property:
they admit a central vertex - representing the empty clique - and every ©-class has an edge
incident to that vertex.

First, this algorithm extends the set of median graphs for which a quasilinear time
procedure computing the diameter exists. Indeed, simplex graphs form a sub-class of median
graphs containing instances with unbounded dimension d.

There is a combinatorial algorithm determining the diameter and all eccentricities of
simplex graphs in O((d® + logn)n): Theorem 3.8, Section 3.

Second, we remark that this method can be integrated to the algorithm already proposed
in [15] to compute all eccentricities of median graphs in time O(29(@1°e¢@)p). This allows us
to decrease this running time. Thanks to this modification, the new algorithm proposed
computes all eccentricities of a median graph in O(din), where notation O neglects poly-
logarithmic factors. Even if the algorithm stays linear for constant-dimension median graphs,
observe that the dependence on d decreases, from a slightly super-exponential function to a
simple exponential one.

There is a combinatorial algorithm determining all eccentricities of median graphs in
0O(2%4n): Theorem 4.16, Section 4.1.

The second and main contribution in this paper is the design of a subquadratic-time
dynamic programming procedure which computes all eccentricities of any median graph.
Here, the linear-time simple-exponential-FPT algorithm for all eccentricities presented above
plays a crucial role: it is the base case. This framework consists in partitioning recursively
the input graph G into the halfspaces of its largest ©-class. With our construction, the leaves
of this recursive tree are median graphs with dimension at most L% logn| and we can apply
the former linear-time FPT algorithm.

There is a combinatorial algorithm determining all eccentricities of median graphs in
O(n3): Theorem 4.22, Section 4.2.

We terminate by mentioning a possible improvement of this algorithm. Based on a faster
enumeration of sets of pairwise orthogonal ©-classes, its running time can be decreased to
O(n?), where B = 1.6456. Due to page limit, this extra part is omitted. A long version of
this paper presents this result [14].

All these outcomes put in evidence a relationship between the design of linear-time FPT
algorithms and the design of subquadratic-time algorithms determining metric parameters
on median graphs. We hope that the ideas proposed to establish all these results represent
interesting tools to break the quadratic barrier on other open questions.

1.3 Organization

In Section 2, we remind the definition of median graphs. The well-known properties and
concepts related to them are listed, among them O-classes, signature, and POFs. Section 3
summarizes our contribution on simplex graphs. In Section 4, we show how to obtain a linear-
time simple-exponential-FPT algorithm for all eccentricities of a median graph, parameterized
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by the dimension d. Thanks to it, we propose a dynamic programming procedure to reduce
the computation of eccentricities of any median graph to the same problem on a collection of
median subgraphs of sub-logarithmic dimension.

2 Median graphs

In this section, we recall some notions related to distances in graphs, and more particularly
median graphs. Two important tools are presented: the ©-classes, which are equivalence
classes over the edge set, and the Pairwise Orthogonal Families (POFs) characterizing
O-classes belonging to a common hypercube.

2.1 ©®-classes

All graphs G = (V, E) considered in this paper are undirected, unweighted, simple, finite
and connected. We denote by N (u) the open neighborhood of uw € V| i.e. the set of vertices
adjacent to u in G. We extend it naturally: for any set A C V, the neighborhood N(A) of A
is the set of vertices outside A adjacent to some u € A.

Given two vertices u,v € V, let d(u,v) be the distance between u and v, i.e. the length
of the shortest (u,v)-path. The eccentricity ecc(u) of a vertex u € V' is the length of the
longest shortest path starting from w. Put formally, ecc(u) is the maximum value d(u,v)
for all v € V: ecc(u) = maxyey d(u,v). The diameter of graph G is the maximum distance
between two of its vertices: diam(G) = max,ecy ecc(u).

We denote by I(u,v) the interval of pair u,v. It contains exactly the vertices which lie
metrically between u and v: I(u,v) = {x € V : d(u,z) + d(z,v) = d(u,v)}. The vertices of
I(u,v) are lying on at least one shortest (u,v)-path.

We say that a set H C V (or the induced subgraph G [H]) is convez if I(u,v) C H for
any pair u,v € H. Moreover, we say that H is gated if any vertex v ¢ H admits a gate
gu(v) € H, i.e. a vertex that belongs to all intervals I(v,x), z € H. For any x € H, we have
d(v, gg (v)) + d(gm (v), z) = d(v,z). Gated sets are convex by definition.

Given an integer k > 1, the hypercube of dimension k, Q, is a graph representing all the
subsets of {1,...,k} as the vertex set. An edge connects two subsets if one is included into
the other and they differ by only one element. Hypercube Qs is a square and @3 is a 3-cube.

» Definition 2.1 (Median graph). A graph is median if, for any triplet x,y,z of distinct
vertices, the set I(x,y) N I(y,z) NI(z,x) contains exactly one vertex m(x,y, z) called the
median of x,y, z.

Observe that certain well-known families of graphs are median: trees, grids, square-
graphs [7], and hypercubes Q. Median graphs are bipartite and do not contain an induced
Ky 3 [5, 26, 34]. They can be obtained by Mulder’s convex expansion [34, 35] starting from
a single vertex.

Now, we define a parameter which has a strong influence on the study of median graphs.
The dimension d = dim(G) of a median graph G is the dimension of the largest hypercube
contained in G as an induced subgraph. In other words, G admits Q4 as an induced subgraph,
but not Q4+1. Median graphs with d = 1 are exactly the trees. Median graphs with d < 2
are called cube-free median graphs.

Figure 1 presents three examples of median graphs. (a) is a tree: d = 1. (b) is a cube-free
median graph: it has dimension d = 2. To be more precise, it is a squaregraph [7], which is a
sub-family of cube-free median graphs. The last one (c) is a 4-cube: it has dimension d = 4.
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(a) Tree, d =1. (b) Squaregraph, d = 2. (c) 4-cube, d = 4.

Figure 1 Examples of median graphs.

We provide a list of properties satisfied by median graphs. In particular, we define the
notion of ©-classes which is a key ingredient of several existing algorithms [13, 25, 27].
In general graphs, all gated subgraphs are convex. The reverse is true in median graphs.

» Lemma 2.2 (Convex<Gated [5, 13]). Any convex subgraph of a median graph is gated.

To improve readibility, edges (u,v) € E are sometimes denoted by uv. We remind the
notion of ©-class, which is well explained in [13], and enumerate some properties related to
it. We say that the edges uv and xy are in relation Oy if they form a square uvyzx, where uv
and zy are opposite edges. Then, © refers to the reflexive and transitive closure of relation
©g. Let ¢ be the number of equivalence classes obtained with this relation. The classes of
the equivalence relation © are denoted by Ei,..., E,. Concretely, two edges uv and w'v’
belong to the same ©-class if there is a sequence uv = ugvg, u1v1,. . ., u,v, = uv'v’ such that
u;v; and wu;41v;41 are opposite edges of a square. We denote by £ the set of ©-classes:
& ={E,...,E,;}. To avoid confusions, let us highlight that parameter ¢ is different from
the dimension d: for example, on trees, d = 1 whereas ¢ = n — 1. Moreover, the dimension d
is at most |logn| in general.

» Lemma 2.3 (O-classes in linear time [13]). There exists an algorithm which computes the
O©-classes E1,...,Eq of a median graph in linear time O(|E|) = O(dn).

In median graphs, each class F;, 1 <1 < g, is a perfect matching cutset and its two sides
H! and H} verify nice properties, that are presented below.

» Lemma 2.4 (Halfspaces of E; [13, 25, 35]). For any 1 < i < g, the graph G deprived
of edges of E;, i.e. G\E; = (V, E\E;), has two connected components H] and H!', called
halfspaces. Edges of E; form a matching: they have no endpoint in common. Halfspaces
satisfy the following properties.

Both H} and H[' are convezx/gated.

If wo is an edge of E; with w € H] and v € H/, then H = W(u,v) =

{z eV d(z,u) <d(z,v)} and H = W(v,u) ={z € V : d(z,v) < d(z,u)}.

We denote by OH] the subset of H! containing the vertices which are adjacent to a vertex
in H': OH! = N(H/"). Put differently, set OH] is made up of vertices of H] which are
endpoints of edges in F;. Symmetrically, set 0H/' contains the vertices of H! which are

adjacent to H]. We say these sets are the boundaries of halfspaces H! and H!' respectively.

Figure 2 illustrates the notions of ©-class, halfspace and boundary on a small example. In
this particular case, an halfspace is equal to its boundary: 0H/ = H/’. The vertices of OH/
are colored in blue.
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Figure 2 A class E; with sets H], H', 0H], 0H/'.

» Lemma 2.5 (Boundaries [13, 25, 35]). Both OH| and OH! are convex/gated. Moreover,
the edges of E; define an isomorphism between OH| and OH!'.

As a consequence, suppose uv and u’v’ belong to E;: if uu’ is an edge and belongs to
class E;, then vv’ is an edge too and it belongs to E;. We terminate this list of lemmas with
a last property dealing with the orientation of edges from a canonical basepoint vg € V. The
vg-orientation of the edges of G according to vg is such that, for any edge uv, the orientation
is ud if d(vo,u) < d(vg,v). Indeed, we cannot have d(vg,u) = d(vg,v) as G is bipartite. The
vp-orientation is acyclic.

» Lemma 2.6 (Orientation [13]). All edges can be oriented according to any canonical
basepoint vy.

From now on, we suppose that an arbitrary basepoint vg € V has been selected and we
refer automatically to the vg-orientation when we mention incoming or outgoing edges.

2.2 Shortest paths and signature

We fix an arbitrary canonical basepoint vy and for each class E;, we say that the halfspace
containing vo is H]. Given two vertices u,v € V, we define the set which contains the
O-classes separating u from v.

» Definition 2.7 (Signature o, ,). We say that the signature of the pair of vertices u,v,
denoted by 044, is the set of classes E; such that u and v are separated in G\E;. In other
words, u and v are in different halfspaces of E;.

The signature of two vertices provide us with the composition of any shortest (u,v)-path.
Indeed, all shortest (u,v)-paths contain exactly one edge for each class in oy .

» Lemma 2.8 ([15]). For any shortest (u,v)-path P, the edges in P belong to classes in
Ouw and, for any E; € o,,, there is exactly one edge of E; in path P. Conversely, a path
containing at most one edge of each ©-class is a shortest path between its departure and its
arrival.

This result is a direct consequence of the convexity of halfspaces. By contradiction, a
shortest path that would pass through two edges of some O-class E; would escape temporarily
from an halfspace, say w.l.o.g H}, which is convex (Lemma 2.4).

Definition 2.7 can be generalized: given a set of edges B C F, its signature is the set of
©-classes represented in that set: {E; : uv € E; N B}. The signature of a path is the set of
classes which have at least one edge in this path. In this way, the signature o, , is also the
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signature of any shortest (u,v)-path. The signature of a hypercube is the set of ©-classes
represented in its edges: the cardinality of the signature is thus equal to the dimension of
the hypercube.

2.3 Orthogonal ©-classes and hypercubes

We present now another important notion on median graphs: orthogonality.

» Definition 2.9 (Orthogonal ©-classes). We say that classes E; and E; are orthogonal
(denoted by E; 1 Ej;) if there is a square wvyzx in G, where uv,xzy € E; and ux,vy € Ej.

We say that E; and E; are parallel if they are not orthogonal, that is H; C H; for some
H; € {H],H]'}, H; € {H},H]}. We define the sets of pairwise orthogonal ©-classes.

» Definition 2.10 (Pairwise Orthogonal Family). We say that a set of classes X C & is a
Pairwise Orthogonal Family (POF for short) if for any pair E;, E;, € X, we have E; L Ej,.

For any induced hypercube of G, its basis (resp. anti-basis) is the closest vertex (resp.

farthest) to v in it. All edges of the hypercube indicent to the basis are outgoing from it in

the vg-orientation. Hypercubes are in bijection with pairs (u, L), where u is a vertex (the

basis of the hypercube) and L is a POF outgoing from u (the signature of the hypercube).
The full version of this subsection is put in Appendix A.

3 Simplex graphs

Due to page limit, the proofs in this Section are omitted. Given any undirected graph G,
the vertices of the simplex graph K (G) associated to G represent the induced cliques (not
necessarily maximal) of G. Two of these cliques are connected by an edge if they differ by
exactly one element.

» Definition 3.1 (Simplex graphs [9]). The simplex graph K(G) = (Vk,Ek) of G = (V,E)
is made up of the vertex set Vig = {C C V : C induced complete graph of G} and the edge
set Ex ={(C,C"): C,C" e Vi, C C C",|C'| —|C| =1}.

Simplex graphs can be characterized as particular median graphs.

» Theorem 3.2. Let G be a median graph. The following statements are equivalent:

(1) G is a simplex graph.

(2) There is a vertex vg € V(G) such that each O-class of G is adjacent to vy, i.e. V1 <i <
q,3v; € V(G),vov; € E;.

(3) There is a vertex vg € V(G) contained in any mazimal hypercube of G.

In this section only, on simplex graphs, the canonical basepoint v is not selected arbitrarily.

We fix vy as a vertex adjacent to all ©-classes, as put in evidence by Theorem 3.2. We call
vo the central vertex of the simplex graph.

» Definition 3.3 (Crossing graphs [9, 28]). Let G be a median graph. Its crossing graph G#
is the graph obtained by considering ©-classes as its vertices and such that two ©-classes are
adjacent if they are orthogonal.

Restricted to simplex graphs, this transformation is the reverse of K: indeed, as stated
n [28], G = K(G)#. The clique number of G# is exactly the dimension of median graph
G. For example, the crossing graph of a cube-free median graph contains no triangle. Each
simplex graph admits a central vertex (vg in Theorem 3.2) which represents the empty clique
of G#.

9:7
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Now, we focus on the problem of determining a diametral pair of a simplex graph G and
more generally all eccentricities. Observe that the distance between the central vertex vy and
any vertex u of G can be deduced directly from the set £~ (u) of ©-classes incoming into u.
We state that oy, = £ (u). This is a consequence of Theorem 3.2: all ©-classes of £~ (u)
are adjacent to vy, so vp is the basis of the hypercube with signature £~ (u) and anti-basis u.
A shortest (vg, u)-path is thus made up of edges of this hypercube. The distance d(vo,u) is
equal to its dimension: d(vo,u) = |~ (u)].

A key result is the fact that the central vertex vy of the simplex graph belongs to the
interval I(u,v) of any pair u, v satisfying d(u,v) = ecc(u).

» Lemma 3.4. Let u,v € V(G) such that d(u,v) = ecc(u). Then, vy € I(u,v).

Two vertices u,v forming a diametral pair cannot share a common incoming ©-class
E;, in other words £~ (u) N €~ (v) = 0, otherwise m = m(u,v,v) € I(u,v) C H/ and
vo € H]. Moreover, the distance d(u, v) is exactly |£~ (u)|+]E~ (v)| because |~ (u)| = d(vo, u)
and |€~(v)| = d(vp,v). So, determining the diameter of a simplex graph G is equivalent
to maximizing the sum |X| + |Y|, where X and Y are two POFs of G that are disjoint.
Computing the diameter is equivalent to find the largest pair of disjoint cliques in the crossing
graph G7#. Similarly, the eccentricity of a vertex u is exactly the size |~ (u)| + |£~(v)| of
the largest pair of disjoint POFs (£~ (u),E~ (v)). Now, we can define the notion of opposite.

» Definition 3.5. Let G be a simplex graph and X a POF of G. We denote by op(X) the
opposite of X, i.e. the POF Y disjoint from X with the maximum cardinality.

op(X) = argmax |Y].
YNX=0

With this definition, the eccentricity of a vertex u, if we fix X, = £ (u), is written
ecc(u) = | X, | + Jop(X,)|. Hence, the diameter of the simplex graph G can be written as the
size of the largest pair POF-opposite: diam(G) = maxxes(|X]| + [op(X)]).

We propose now the definition of two problems on simplex graphs. The first one, called
OPPOSITES (OPP) consists in finding all pairs POF-opposite. Its output has thus a linear
size. Given the solution of OPP on graph G, one can deduce both the diameter and all
eccentricities in O(n) time with the formula: ecc(u) = | X, | + |op(Xy)|-

» Definition 3.6 (OPP).
Input: Simplex graph G, central vertex vy.
Output: For each POF X, its opposite op(X).

We define an even larger version of the problem where a positive integer weight is
associated with each POF. We call it WEIGHTED OPPOSITES (WOPP).

» Definition 3.7 (WOPP).
Input: Simplex graph G, central vertex vy, weight function w : L — N7T.
Output: For each POF X, its weighted opposite Y mazimizing w(Y') such that XNY = ().

Obviously, OPP is a special case of WOPP when w is the cardinality function. We
show that WOPP can be solved in quasilinear time O((d® +logn)n), as d < |logn]. As a
consequence, all eccentricities of a simplex graph G can also be determined with such time
complexity.

» Theorem 3.8. There is a combinatorial algorithm solving WOPP in time O((d® +logn)n).
Consequently, it determines all eccentricities of a simplex graph with this running time.
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4 Subquadratic-time algorithm for all eccentricities on median graphs

This section introduces the design of algorithms computing all eccentricities for the whole
class of median graphs (not only simplex graphs). We begin in Section 4.1 with the proposal
of a linear-time FPT algorithm, parameterized by the dimension d, running in 2°(@n. It is
based on some techniques of a paper of the literature [15] which provides a slightly super-
exponential time algorithm - running in 2°(¢1°2 4y _ for the same problem. We prove that
replacing one step of this procedure by the partitioning conceived in Section 3 allows us to
decrease the exponential dependence on d.

Thanks to this outcome, in Section 4.2, we are able to design a first subquadratic-time
algorithm for all median graphs running in O(n%) The proof of the Lemmas which are not
given in this subsection are put in Appendix B.

4.1 Linear FPT algorithm for constant-dimension median graphs

We remind in this subsection the different steps needed to obtain a linear-time algorithm
computing all eccentricities of a median graph with constant dimension, d = O(1). We show
how Theorem 3.8 can be integrated to it in order to improve the dependence on d. Let us
begin with a reminder of the former result.

» Lemma 4.1 ([15]). There is a combinatorial algorithm computing all eccentricities in a
median graph G with running time O(2¢1°84+ ),

Some parts of this subsection are redundant with [15], however we keep this subsection
self-contained. The new outcomes presented are Theorems 4.10 and 4.16.

The algorithm evoked by Lemma 4.1 consists in the computation of three kinds of labels:
ladder labels @, opposite labels op and anti-ladder labels v. The order in which they are
given correspond to their respective dependence: op-labelings are functions of labels ¢ and
1-labelings are functions of both labels ¢ and op. The definition of op-labelings on general
median graphs is closely related to the computation of eccentricities on simplex graphs evoked
in Section 3.

4.1.1 Ladder labels

Some preliminary work has to be done before giving the definition of labels ¢. We introduce
the notion of ladder set. It is defined only for pairs of vertices u, v satisfying the condition
u € I(vp,v). In this situation, the edges of shortest (u,v)-paths are all oriented towards v
with the vg-orientation.

» Definition 4.2 (Ladder set L, ,). Let u,v € V such that u € I(vo,v). The ladder set L, ,
is the subset of 0y, which contains the ©-classes admitting an edge adjacent to u.

Figure 3 shows a small median graph with four vertices vy, u, v, 2 such that u € I(vg,v)
and u € I(vg, z). It gives the composition of ladder sets L, , and Ly 4.

A key characterization on ladder sets states that their ©-classes are pairwise orthogonal.
In brief, every set L, , is a POF. Let us remind that the adjacency of all ©-classes of a POF
L with the same vertex u implies the existence of a (unique) hypercube not only signed with
this POF L but also containing v (Lemma A.5). If additionnally POF L is outgoing from
u - said differently, the edges adjacent to u belonging to a ©-class of L leave u -, then v is
the basis of the hypercube. As the ©-classes of L, , are adjacent to u by definition, there is
a natural bijection between (i) hypercubes (ii) pairs made up of a vertex u and a POF L
outgoing from w and (iii) pairs vertex-ladder set (u, L, .).
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° — o o

Vo u E2

Figure 3 Examples of ladder sets: Ly, = {F2, E3}, Lu,o = {E1, E2, E3}.

» Lemma 4.3 ([15]). Every ladder set Ly, is a POF. For any ordering T of the ©-classes
in Ly, v, there is a shortest (u,v)-path such that, for any 1 <i < |Ly,|, the i first edge of
the path belongs to the i" ©-class of Ly, in ordering T.

The necessary background to introduce labels ¢ is now known.

» Definition 4.4 (Labels ¢ [15]). Given a vertex w and a POF L outgoing from u, let ¢(u, L)
be the mazimum distance d(u,v) such that u € I(vg,v) and L, , = L.

Intuitively, integer ¢(u, L) provides us with the maximum length of a shortest path
starting from u into “direction” L. Observe that the total size of labels ¢ on a median graph
G does not exceed O(2%n), according to Lemma A.7. We provide another notion related to
orthogonality which will be used in the remainder.

» Definition 4.5 (L-parallelism). We say that a POF L' is L-parallel if, for any E; € L',
LU{E;} is not a POF.

When L’ is a L-parallel POF, we have L N L' = (), otherwise L U {E,} = L for some
E; € L'. Presented differently, a L-parallel POF is such that any of its ©-classes is parallel
to at least one ©-class of L.

A combinatorial algorithm running in O(22%n) which computes all labels @(u, L) was
identified in [15]): we provide an overview of it. There is a crucial relationship between a label
©(u, L) and the labels of (i) the anti-basis u* of the hypercube with basis u and signature L
and (ii) the L-parallel POFs outgoing from u™.

» Lemma 4.6 (Inductive formula for labels ¢ [15]). Let uw € V, L be a POF outgoing from u
and @Q be the hypercube with basis u and signature L. We denote by u™ the opposite vertez
of w in Q: u is the basis of Q and u™ its anti-basis. A vertex v # u™ wverifies u € I(vg,v)
and Ly, = L if and only if (i) ut € I(vg,v) and (ii) ladder set L+ , is L-parallel.

A consequence of the previous lemma is that we can distinguish two cases for the
computation of p(u, L). In the first case, p(u, L) = |L|: it occurs when the farthest-to-u
vertex with ladder set L is u™ (base case). Indeed, u™ is a candidate as o, ,+ = L: shortest
(u,u™)-paths pass through hypercube Q. This situation happens when either no ©-class is
outgoing from u™* or when all ©-classes outgoing from u™ are orthogonal to L. In the second
case, there are vertices farther to u than u™ with ladder set L. As announced in Lemma 4.6,
o(u, L) is a function of labels @(u™,-).

o(u, L) = max (IL| + ¢ (u®, LT)). (1)
LT POF outgoing from ut
VE;eL", LU{E;} not POF
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If there exists such a POF L™, then the label ¢(u, L) is given by Equation (1). Otherwise,
it is given by the first case. Briefly, the algorithm consists in listing all pairs vertex-ladder set
((u, L), (u™, L)) such that u* is the anti-basis of the hypercube of basis u and signature L.
For each of it, we verify whether L™ is L-parallel. If it is, we update ¢(u, L) if |L|+p(ut, LT)
is greater than the current value. The total number of pairs ((u, L), (u™, LT)) is upper-
bounded by 229n: there are at most 29n pairs (u™, L") (bijection with hypercubes) and, for
each of them, there are at most 2¢ compatible pair (u, L) such that u* is the anti-basis of
(u, L). Indeed, the number of edges incoming into u™ is at most d (Lemma A.6). For this
reason, the computation of ¢-labelings takes O(2%4n).

» Theorem 4.7 (Computation of labels ¢ [15]). There is a combinatorial algorithm which
determines all labels @(u, L) in O(2%Mn). It also stores, for each pair (u,L), a vertex v
satisfying L, ., = L and d(u,v) = ¢(u, L), denoted by p(u,L).

4.1.2 Opposite labels

The second type of labels needed to compute all eccentricities of a median graph G are
opposite labels. Given a vertex u and a POF L outgoing from u, let op,, (L) denote a POF
outgoing from u with maximum label ¢ which is disjoint from L. As for ¢, the total size of
op-labelings is O(29n).

» Definition 4.8 (Labels op [15]). Let u € V and L be a POF outgoing from u. Let op,(L)
be one of the POF L' outgoing from u, disjoint from L, which mazimizes value @(u, L").

On simplex graphs, the opposite function provides in fact the op-labelings of vertex wvg:
op(X) = op,, (X). As all vertices belong to hypercubes with basis vg, the ladder set L, , for
any vertex v € V is exactly the set £~ (v) of ©-classes incoming into v. So, value p(vg, X) is
the distance d(vg, v) between vy and the only vertex v with ladder set L, ., = X.

On general median graphs, the opposite label op, (L) allows us to obtain the maximum
distance d(s,t) such that v = m(s,t,v9) and the ladder set L,,  is L.

» Lemma 4.9 (Relationship between medians and disjoint outgoing POFs [15]). Let L, L’ be
two POF's outgoing from a vertex w. Let s (resp. t) be a vertex such that u € I(vg,s) (resp.
u € I(vg,t)) and Ly s = L (resp. Ly = L'). Then, u € I(s,t) if and only if LN L' = 0.
Therefore, given a single verter s such that u € I(vg, s) and Ly s = L, the mazimum distance
d(s,v) we can have with median m(s,v,vo) = u is exactly d(u, s) + ©(u, op,(L)).

Going further, given a vertex u € V', the maximum distance d(s, t) such that u = m(s, ¢, vg)
is the maximum value ¢(u, L) + ¢(u,op, (L)), where L is a POF outgoing from u.

An algorithm was initially proposed to compute all labels op,, (L) consisting in a brute
force bounded tree search [15]. Its execution time was O(20(41°84)p) leading to the global
same asymptotic running time (Lemma 4.1) for finding all eccentricities.

Fortunately, the quasilinear time algorithm determining the eccentricities on simplex
graphs (Theorem 3.8, Section 3) offers us the opportunity to decrease the exponential term
to a simple exponential function 2¢. For any u € V, let G,, = G [V,,] be the star graph of
u, using a definition from [22]. Its vertex set V;, is made up of the vertices belonging to
a hypercube with basis v in G. Graph G, is the induced subgraph of G on vertex set V,,
(see Figure 8 for an example). Chepoi et al. [22] showed that graph G, is a gated/convex
subgraph of G. Applying the algorithm of Theorem 3.8 on the simplex graph G, provides us
with the opposite labels of u.

» Theorem 4.10 (B.1, Computation of labels op). There is a combinatorial algorithm which
determines all labels op, (L) in O(2n).
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4.1.3 Anti-ladder labels

We terminate with anti-ladder labels v which play the converse role of ladder labels .
While ¢(u, L) is defined for POFs L outgoing from u, labels ¢ (u, R) are defined for POFs R
incoming into u, i.e. every ©-class of the POF has an edge entering u. As any such pair
(u, R) can be associated with a hypercube of anti-basis u and signature R (Lemma A.6), the
total size of -labelings is at most O(29n) too.

The notion of milestone intervenes in the definition of labels ). We consider two vertices
u, v such that u € I(vg,v). Milestones are defined recursively.

» Definition 4.11 (Milestones II(u,v)). Let Ly, be the ladder set of u,v and u™ be the
anti-basis of the hypercube with basis u and signature Ly . If ut = v, then pair u,v admits
two milestones: 1(u,v) = {u,v}. Otherwise, the set Il(u,v) is the union of I(u™,v) with
vertezr u: M(u,v) = {u} U (ut,v).

The milestones are the successive anti-bases of the hypercubes formed by the vertices and
ladder sets traversed from u to v. Both vertices u and v are contained in II(w, v). The first
milestone is u, the second is the anti-basis u™ of the hypercube with basis u and signature
L, . The third one is the anti-basis u™t of the hypercube with basis u™ and signature
L+ ,, etc. All milestones are metrically between u and v: II(u,v) C I(u,v).

» Definition 4.12 (Penultimate milestone 7 (u,v)). We say that the milestone in (u,v)
different from v but the closest to it is called the penultimate milestone. We denote it by
7 (u,v). Furthermore, we denote by fu,q, the anti-ladder set of u, v, i.e. the ©-classes of the
hypercube with basis 7(u,v) and anti-basis v.

Vo u

Figure 4 A pair u,v with u € I(vo,v) and its milestones I1(u,v) in red.

Figure 4 shows the milestones IT(u,v) = {u,u™,u™",v}. The hypercubes with the
following pair basis-signature are highlighted with dashed edges: (u, Ly ), (ut, Ly+ ), and
(ut*, Ly++ ,). We have 7(u,v) = u™ and L, , = L,++ , is drawn in purple.

Let R be a POF incoming to some vertex u and u~ be the basis of the hypercube with
anti-basis u and signature R. Label ¢ (u, R) intuitively represents the maximum distance of
a shortest path arriving to vertex u from “direction” R.

» Definition 4.13 (Labels ¢ [15]). The label 1(u, R) is the mazimum distance d(u,v) we can
obtain with a vertex v satisfying the following properties:

m = m(u,v,vy) # u,

the anti-ladder set of m,u is R: fm,u = R.
Equivalently, vertex u™ is the penultimate milestone of pair m,u: v~ =7 (m,u).

As for the computation of labels ¢, there is an induction process to determine all ¢ (u, R).
As the base case, suppose that u~ = vy. The largest distance d(u,v) we can obtain with a
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vertex v such that vg € I(u,v) consists in considering the opposite op,, (R) of R which is
outgoing from vg. Hence, ¢(u, R) = |R| 4 ¢(vo, 0p,,, (R)).

For the induction step, we distinguish two cases. In the first one, assume that m(u, v, vg) =
u” - equivalently, IT(m, u) = II(u~,u) = {u",u}. A shortest (u,v)-path is the concatenation
of the shortest (u, u™)-path of length | R| with a shortest (v, v)-path, and u~ € I(vg,v). The

largest distance d(u,v) we can have, as for the base case, is ¥(u, R) = |R| + ¢(u~,0p,,- (R)).

In the second case, m # u~, an inductive formula allows us to obtain ¢ (u, R). A
consequence of Lemma 4.6 is that, for two consecutive milestones in II(u,v), say u and u™*
w.lo.g, then L+ , is L, ,-parallel. This observation, applied to the penultimate milestone,
provides us with the following theorem.

» Lemma 4.14 (Inductive formula for labels ¢ [15]). Let u,v € V and u € I(vg,v). Let L be
a POF outgoing from v and w the anti-basis of hypercube (v, L). The following propositions
are equivalent:

(i) vertex v is the penultimate milestone of (u,w): T(u,w) = v,

(ii) the milestones of (u,w) are the milestones of (u,v) with w: I(u,w) = II(u,v) U{w},
(iii) the POF L is Zu,,,—pamllel.

Set II(m, u) admits at least three milestones: m, u~, and u. Let R~ be the POF incoming
to u~ which is the ladder set (but also the signature) of (i) the milestone just before u~
and (ii) u~. According to Lemma 4.14, vertex v~ is the penultimate milestone of (m,w) if
and only if R~ U{E;} is not a POF, for each E; € R. For this reason, value ¥(u, R) can be
expressed as:

Y(u,R) = max (IR + 9™, R7)) (2)
R~ POF incoming to u
VE;eR,R™U{E;} not POF
Our algorithm consists in taking the maximum value between the two cases. The number
of pairs ((u, R), (u~, R™)) which satisfy the condition described in Equation (2) is at most
22dp: it is identical to the one presented for ¢-labelings.

» Theorem 4.15 (Computation of labels ¢ [15]). There is a combinatorial algorithm which
determines all labels 1) (u, R) in O(2%n).

4.1.4 Better time complexity for all eccentricities

The computation of all labels ¢(u, L), op,, (L) and 1 (u, R) gives an algorithm which determines
all eccentricities. Indeed, each eccentricity ecc(u) is a function of certain labels ¢ and 1. Let
v be a vertex in G such that ecc(u) = d(u, v). If m = m(u, v,vy) = u, then u € I(vg,v) and
value d(u,v) is given by a label ¢(u, L). Otherwise, if m # wu, let u~ be the penultimate

milestone in II(m,u) and R be the classes of the hypercube with basis 4~ and anti-basis u.

The eccentricity of u is given by a label ¥(u, R). Conversely, each ¢(u, L) and 1 (u, R) is the
distance between u and another vertex by definition. Therefore, we have:

ecc(u) = max Jnax o(u, L), max P(u, R) (3)
outgoing from u incoming to w

In other words, the eccentricity of u is the maximum label ¢ or ¢ centered at u. We
can conclude with the main result of this subsection: the eccentricities of any median graph
can be determined in linear time multiplied by a simple exponential function 2°(4 of the
dimension d.
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» Theorem 4.16 (All eccentricities in O(22¢n)-time for median graphs). There is a combinat-
orial algorithm computing the list of all eccentricities of a median graph G in time O(2%n).

4.2 Tackling the general case

Our new FPT algorithm for computing the list of eccentricities in a median graph has
a runtime in 2°@n, with d being the dimension (Theorem 4.16). This runtime stays
subquadratic in n as long as d < alogn, for some constant o < 1. In what follows, we
present a simple partitioning scheme for median graphs into convex subgraphs of dimension
at most alogn, for an arbitrary value of @ < 1. By doing so, we obtain (in combination with
Theorem 4.16) the first known subquadratic-time algorithm for computing all eccentricities
in a median graph.

We start with a simple relation between the eccentricity function of a median graph and
the respective eccentricity functions of any two complementary halfspaces.

» Lemma 4.17 (B.2). Let G be a median graph. For every 1 < i < g, let v € V(H]) be
arbitrary, and let v* € OH]' be its gate. Then, ecc(v) = max{eccy:(v),d(v,v*) + eccyr (v*)}.

We will use this above Lemma 4.17 later in our proof in order to compute in linear time
the list of eccentricities in a median graph being given the lists of eccentricities in any two
complementary halfspaces.

Next, we give simple properties of ©-classes, to be used in the analysis of our main
algorithm in this section (see Lemma 4.21).

» Lemma 4.18 (B.3). Let H and G be median graphs. If H is an induced subgraph of G
then, every ©-class of H is contained in a ©-class of G.

This above Lemma 4.18 can be strenghtened in the special case of isometric subgraphs.

» Lemma 4.19 (B.4). Let H and G be median graphs, and let Eq,Es, ..., E, denote the
O-classes of G. If H is an isometric subgraph of G then, the ©-classes of H are exactly the
nonempty subsets among E; N E(H), for 1 <i<q.

An important consequence of Lemma 4.18 is the following relation between the dimension
d of a median graph and the cardinality of its ©-classes.

» Lemma 4.20. Let G be a median graph, and let D := max{|E;| | 1 < i < ¢} be the
maximum cardinality of a ©-class of G. Then, d = dim(G) < [log D| + 1.

Proof. Any induced d-dimensional hypercube of G contains exactly 297! edges of its ©-classes,

so 2¢-1 < D. <
We are now ready to present our main technical contribution in this section.

» Lemma 4.21. If there is an algorithm for computing all eccentricities in an n-vertex
~ ~ 1

median graph of dimension at most d in O(c* - n) time, then in O(n*~ THeEe ) time we can

compute all eccentricities in any n-vertex median graph.

Proof. Let G be an n-vertex median graph. We compute its O-classes F1, E, ..., E,, that
takes linear time (Lemma 2.3). For some parameter D (to be fixed later in the proof),
let us assume without loss of generality F1, Es, ..., E, to be the subset of all ©-classes of
cardinality > D, for some p < q. Note that we have p < |E|/D = O(n/D).
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We reduce the problem of computing all eccentricities in G' to the same problem on every
connected component of G\ (E1 UEyU...UE,). More formally, we construct a rooted
binary tree T', whose leaves are labelled with convex subgraphs of G. Initially, T is reduced
to a single node with label equal to G. Then, for i = 1...p, we further refine this tree so
that, at the end of any step i, its leaves are labelled with the connected components of
G\ (E1UEyU...UE;). An example of T is shown in Figure 5 with D = 3 and two O-classes
reaching this cardinality bound.

For that, we proceed as follows. We consider all leaves of T" whose label H satisfies
E(H)NE; # (. By Lemma 4.19, E(H) N E; is a ©-class of H. Both halfspaces of E;
become the left and right children of H in T. Recall that the leaves of T at this step ¢
are the connected components of G\ (E; U Es U...U E;_1), and in particular that they
form a partition of V' (G). Therefore, each step takes linear time by reduction to computing
the connected components in vertex-disjoint subgraphs of G. Overall, the total time for

constructing the tree T is in O(pm) = O(n?/D).
"]

I
D D (e S R 4 e, D
| 2]

Figure 5 An example of tree T associated with a graph G for D = 3: here, p = 2.

*—o—0

Then, we compute the list of eccentricities for all the subgraphs labelling a node, by
dynamic programming on 7. In particular, doing so we compute the list of eccentricities for
G because it is the label of the root. There are two cases:

If H labels a leaf (base case) then, we claim that we have dim(H) < |log D| + 1. Indeed,

by Lemma 4.18, every ©-class of H is contained in a ©-class of G. Since we removed

all ©-classes of G with at least D edges, the claim now follows from Lemma 4.20. In
particular, we can compute the list of all eccentricities for H in O(cl'8 PIHHV (H)|) =

O(D™2¢|V(H)|) time. Recall that the leaves of T partition V(G), and therefore, the

total runtime for computing the list of eccentricities for the leaves is in O(D'98¢n).

From now on, let us assume H labels an internal node of 7' (inductive case). Let H/, H!

be its children nodes, obtained from the removal of E(H) N E; for some 1 < ¢ < p. — For

convenience, we will say later in the proof that H is an i-node. — Recall that E(H)NE; is a

©-class of H. In particular, H/, H!" are gated subgraphs. By Lemma 4.17, we can compute

in O(JV(H})|) time the eccentricities in H of all vertices in H] if we are given as input:
the list of eccentricities in HY, the list of eccentricities in H/', and for every v € V(H]) its
gate v* € OH/ and the distance d(v,v*). The respective lists of eccentricities for H and

H! were pre-computed by dynamic programming on 7T'. Furthermore, we can compute

the gate v* and d(v,v*) for every vertex v € V(H/), in total O(|V (H)]|) time, by using

a modified BFS rooted at H{' (we refer to [22, Lemma 17] for a detailed description of

this standard procedure). Overall (by proceeding the same way for H{' as for H]) we can

compute the list of eccentricities for H in O(|V(H)|) time. This is in total O(n) time
for the i-nodes (i.e., because they were leaves of T' at step i, and therefore, they are
vertex-disjoint), and so, in total O(pn) = O(n?/D) time for all the internal nodes.

The total runtime for our algorithm is O(n?/D+ D'#°n), and optimized for D = neETT. <
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» Theorem 4.22. There is an O(n5/3)—time algorithm for computing all eccentricities in
median graphs.

Proof. This result directly follows from Theorem 4.16 with Lemma 4.21 (for ¢ = 4). |

As a natural extension of this work, the question of designing a linear-time or quasilinear-
time algorithm to compute the diameter and all eccentricities of median graphs is now open.
With the recursive splitting procedure of Lemma 4.21, unfortunately, the best execution time
we could obtain is O(n%) Reaching this bound could represent a first reasonable objective: it
would “suffice” to propose a FPT combinatorial algorithm which computes all eccentricities
in O(2%n) in order to obtain such time complexity.

Eventually, we note two lines of research on which this paper could have some influence:
(i) the study of efficient algorithms for the computation of other metric parameters on median
graphs (perhaps, the betweenness centrality [1]) and (ii) the design of subquadratic-time
algorithms for the diameter and all eccentricities on larger families of graphs (almost-median
or semi-median graphs [17, 30] for example).
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A Orthogonal ®-classes and hypercubes

We present now another important notion on median graphs: orthogonality. In [31], Kovse
studied a relationship between splits which refer to the halfspaces of ©-classes. It says
that two splits {H/, H]'} and {HJ’, HJ”} are incompatible if the four sets H; N H}, H;' N H},
H{N H}, and H] N H} are nonempty. Another definition was proven equivalent to this one.

» Definition A.1 (Orthogonal ©-classes). We say that classes E; and E; are orthogonal
(E; L E;) if there is a square wvyx in G, where wv,xy € E; and ux,vy € Ej.
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Indeed, classes E; and E; are orthogonal if and only if the splits produced by their
halfspaces are incompatible.

» Lemma A.2 (Orthogonal<rIncompatible [15]). Given two ©-classes E; and E; of a median
graph G, the following statements are equivalent:

Classes E; and E; are orthogonal,

Splits {H], H!'} and {HJ', H]"} are incompatible,

The four sets OH] N OH}, OH] N OH}, OH; N OH], and OH]' N OH] are nonempty.

The concept of orthogonality is sometimes described with different words in the literature
depending on the context: incompatible, concurrent or crossing. We say that F; and FEj
are parallel if they are not orthogonal, that is H; C H; for some H; € {H/,H]'} and
H; e {H;,ij’}.

We pursue with a property on orthogonal ©-classes: if two edges of two orthogonal classes
E; and E; are incident, they belong to a common square.

» Lemma A.3 (Squares [11, 15]). Let zu € E; and uy € E;. If E; and E; are orthogonal,
then there is a vertex v such that uyvz is a square.

Pairwise orthogonal families. We focus on the set of ©-classes which are pairwise orthogonal.

» Definition A.4 (Pairwise Orthogonal Family). We say that a set of classes X C & is a
Pairwise Orthogonal Family (POF for short) if for any pair E;, E, € X, we have E; L Ej,.

This notion is not completely new, since it implicitely appears in certain properties
established on median graphs (for instance, the downward cube property in [13]). The empty
set is considered as a POF. We denote by L the set of POFs of the median graph G. The
notion of POF is strongly related to the induced hypercubes in median graphs. First, observe
that all ©-classes of a median graph form a POF if and only if the graph is a hypercube of
dimension logn [31, 32]. Secondly, the next lemma precises the relationship between POFs
and hypercubes.

» Lemma A.5 (POFs adjacent to a vertex [15]). Let X be a POF, v € V, and assume that
for each E; € X, there is an edge of E; adjacent to v. There exists a hypercube Q) containing
vertex v and all edges of X adjacent to v. Moreover, the ©-classes of the edges of Q are the
classes of X.

There is a natural bijection between the vertices of a median graph and the POFs. The
next lemma exhibits this relationship.

» Lemma A.6 (POFs and hypercubes [6, 8, 31]). Consider an arbitrary canonical basepoint
vg € V and the vg-orientation for the median graph G. Given a vertex v € V, let N~ (v) be
the set of edges going into v according to the vy-orientation. Let £~ (v) be the classes of the
edges in N~ (v). The following propositions are true:
For any vertexv € V, £~ (v) is a POF. Moreover, vertex v and the edges of N~ (v) belong
to an induced hypercube formed by the classes £~ (v). Hence, |E~(v)| = |N~(v)| < d.
For any POF X, there is a unique vertex vx such that £~ (vx) = X. Vertex vx is the
closest-to-vg vertex v such that X C £~ (v).
The number of POFs in G is equal to the number n of vertices: n = |L]|.
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Figure 6 Illustration of the bijection between V and the set of POFs.

An example is given in Figure 6 with a small median graph of dimension d = 2. v
is the canonical basepoint and edges are colored according to their ©-class. For example,
v1v3 € FEy. We associate with any POF X of G the vertex vx satisfying £~ (vx) = X with
the vgp-orientation. Obviously, the empty POF is associated with vy which has no incoming
edges.

A straightforward consequence of this bijection is that parameter ¢, the number of ©-
classes, is less than the number of vertices n. But it can be used less trivially to enumerate
the POFs of a median graph in linear time [8, 31]. Given a basepoint vy, we say that the
basis (resp. anti-basis) of an induced hypercube @ is the single vertex v such that all edges
of the hypercube adjacent to v are outgoing from (resp. incoming into) v. Said differently,
the basis of @) is its closest-to-vg vertex and its anti-basis is its farthest-to-vy vertex. What
Lemma A.6 states is also that we can associate with any POF X a hypercube @ x which
contains exactly the classes X and admits vx as its anti-basis. This observation implies that
the number of POFs is less than the number of hypercubes in G. Moreover, the hypercube
Qx is the closest-to-vg hypercube formed with the classes in X. Figure 7a shows a vertex v
with its incoming and outgoing edges with the vg-orientation. The dashed edges represent
the hypercube with anti-basis v and POF £~ (v).

Y OH!' NOH!
............ Ej v
Q/ _.(\.
E; ’
¢ I Lo
I (]
[
(a) The hypercube “induced” by the edges in- (b) A POF signing at least two hypercubes @ and
coming into a vertex (its antibasis). Q' is not maximal.

Figure 7 Properties of POFs.

Number of hypercubes. We remind a formula establishing a relationship between the
number of POFs and the number of hypercubes in the literature. Let a(G) (resp. B(G))
be the number of hypercubes (resp. POFs) in G. Let 8;(G) be the number of POFs of
cardinality ¢ < d in G. According to [8, 31], we have:

d

a(G) =) 2'6,(G). (4)

=0
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Equation (4) produces a natural upper bound for the number of hypercubes.
» Lemma A.7 (Number of hypercubes). a(G) < 29n.

Value «(G) consider all hypercubes, in particular those of dimension 0, i.e. vertices.
From now on, the word “hypercube” refers to the hypercubes of dimension at least one.

Each hypercube in the median graph G can be defined with only its anti-basis v and the
edges N of the hypercube that are adjacent and going into v according to the vg-orientation.
These edges are a subset of N~ (v): N C N~ (v). Conversely, given a vertex v, each subset
of N~ (v) produces a hypercube which admits v as an anti-basis (this hypercube is a sub-
hypercube of the one obtained with v and N~ (v), Lemma A.6). Another possible bijection
is to consider a hypercube as a pair composed of its anti-basis v and the ©-classes & of the
edges in N (its signature).

As a consequence, a simple graph search as BFS enables us to enumerate the hypercubes
in G in time O(d2%n).
» Lemma A.8 (Enumeration of hypercubes [15]). We can enumerate all triplets (v, u,£),
where v is the anti-basis of a hypercube Q, w its basis, and & the signature of @ in time
O(d2%n). Moreover, the list obtained fulfils the following partial order: if d(vy,v) < d(vo, "),
then any triplet (v, u, E) containing v appears before any triplet (v',u’, g’) containing v'.

The enumeration of hypercubes is thus executed in linear time for median graphs with
constant dimension. In summary, given any median graph, one can compute the set of
O-classes and their orthogonality relationship (for each F;, the set of ©-classes orthogonal
to E;) in linear time, and the set of hypercubes with its basis, anti-basis and signature in

O(2%n).

B Proofs of Section 4

» Theorem B.1 (Computation of labels op). There is a combinatorial algorithm which
determines all labels op, (L) in O(2%n).

Proof. Let u € V: we denote by N, the number of hypercubes of G with basis u. Convex
subgraphs of median graphs are also median by considering the original definition of median
graphs (Definition 2.1). Consequently, star graph G,, is median and all its maximal hypercubes
contain a common vertex u. From Theorem 3.2, G, is a simplex graph.

o—o

Vo U

(a) A wvo-oriented median graph G and a vertex u € V. (b) Star graph G..

Figure 8 Example of star graph G.,,.

Any pair (u,L) of G, where L is a POF outgoing from u in G, can be associated to a
unique hypercube with signature L and basis u. Thus, there is a natural bijection between
(i) the POFs of G,, (ii) the vertices of G, and (iii) the POFs L of G outgoing from u. Hence,
[Vi| = Ny.
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We associate with any POF L of G,, the weight w,, (L) = ¢(u, L). We apply the algorithm
evoked in Theorem 3.8. The opposite computed with that configuration correspond exactly to
the labels op,,(L): a POF L’ disjoint from L and maximizing ¢(u, L') among all POFs outgoing
from u. The running time of the algorithm is O((d® + log |V, |) [Vu]) = O((d® + logn)N,,).
Doing it for every vertex u of G, we obtain all opposite labels of G in O(d® + logn)2?n) as

> ey Nu = 2%n (Lemma A.7). <

» Lemma B.2. Let G be a median graph. For every 1 <i < g, let v € V(H]) be arbitrary,
and let v* be its gate in OH]'. Then, ecc(v) = max{eccy:(v),d(v,v*) + eccyy (v*)}.

Proof. We have ecc(v) = eccg(v) = max{d(u,v) | v € V(H])} U {d(w,v) | w € V(H)}.
Since H; is convex, we have max{d(u,v) | u € V(H])} = eccy(v). In the same way, since H’
is gated (and so, convex), we have max{d(w,v) | w € V(H!)} = d(v,v*) + max{d(v*,w) |
w e V(H]")} = d(v,v*) + eccyr (v*). <

» Lemma B.3. Let H and G be median graphs. If H is an induced subgraph of G then,
every ©-class of H is contained in a O-class of G.

Proof. Every square of H is also a square of G. In particular, two edges of H are in relation
Oy if and only if, as edges of GG, they are also in relation ©y. Since the ©-classes of H
(resp., of G) are the transitive closure of its relation ©g, it follows that every ©-class of H is
contained in a ©-class of G. |

» Lemma B.4. Let H and G be median graphs, and let E1, Es, ..., E, denote the ©-classes
of G. If H is an isometric subgraph of G then, the ©-classes of H are exactly the nonempty
subsets among E; N E(H), for 1 <i<gq.

Proof. It is known [38] that two edges uv,zy of G are in the same O-class if and only if
de(u, ) + da(v,y) # da(u,y) + dg(v, ). In particular, since H is isometric in G, two edges
of H are in the same O-class of H if and only if they are in the same ©-class of G. |
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