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Preface

The International Symposium on Theoretical Aspects of Computer Science (STACS) confer-
ence series is an internationally leading forum for original research on theoretical aspects
of computer science. Typical areas are: algorithms and data structures, including: design
of parallel, distributed, approximation, parameterized and randomised algorithms; analysis
of algorithms and combinatorics of data structures; computational geometry, cryptography,
algorithmic learning theory, algorithmic game theory; automata and formal languages, in-
cluding: algebraic and categorical methods, coding theory; complexity and computability,
including: computational and structural complexity theory, parameterised complexity, ran-
domness in computation; logic in computer science, including: finite model theory, database
theory, semantics, specification verification, rewriting and deduction; current challenges, for
example: natural computing, quantum computing, mobile and net computing, computational
social choice.

STACS is held alternately in France and in Germany. This year’s conference (taking place
virtually from March 15 to 18 in Marseille) is the 39th in the series. Previous meetings took
place in Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988),
Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen
(1994), München (1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille
(2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005),
Marseille (2006), Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund
(2011), Paris (2012), Kiel (2013), Lyon (2014), München (2015), Orléans (2016), Hannover
(2017), Caen (2018), Berlin (2019), Montpellier (2020), and Saarbrücken (2021).

The interest in STACS has remained at a very high level over the past years. The
STACS 2022 call for papers led to 203 submissions with authors from 37 countries. Each
paper was assigned to three program committee members who, at their discretion, asked
external reviewers for reports. For the eighth time within the STACS conference series, there
was also a rebuttal period during which authors could submit remarks to the PC concerning
the reviews of their papers. In addition, and for the second time, STACS 2022 employed a
lightweight double-blind reviewing process: submissions should not reveal the identity of the
authors in any way. However, it was still possible for authors to disseminate their ideas or
draft versions of their paper as they normally would, for instance by posting drafts on the
web or giving talks on their results. The committee selected 57 papers during a four-week
electronic meeting held in November and December 2021. This means an acceptance rate
around 28%. As co-chairs of the program committee, we would like to sincerely thank all its
members and the 403 external reviewers for their valuable work. In particular, there were
intense and interesting discussions inside the PC committee. The very high quality of the
submissions made the selection an extremely difficult task.

We would like to express our thanks to the four invited speakers: Marie Albenque (LIX,
École Polytechnique, France), Maria-Florina Balcan (Carnegie Mellon University, USA),
Amina Doumane (CNRS, LIP, ENS Lyon, France), and Fabian Kuhn (University of Freiburg,
Germany). STACS 2020 in Montpellier was one of the last conferences that took place
physically before the Covid-19 lockdown happened the next week. STACS 2021 took place as
a virtual conference as many other conferences before, with pre-recorded videos, short online
presentations and discussions, and online social events. We were hoping that STACS 2022
would be proposed as a hybrid conference, with a major proportion of the participants on-site
in Marseille. However, the rise of the Covid-19 Omicron variant of the pandemic made this
39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).
Editors: Petra Berenbrink and Benjamin Monmege
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possibility less and less likely. In January 2022, after asking the opinion of the authors, it
appeared that at most 30% of the participants still wanted to participate on-site. With the
big proportion of online talks that this implies, the experience of on-site participants would
be strongly deteriorated. Thus, to improve the quality of the event for all participants, it was
decided to turn STACS 2022 as an online event. We hope that the pandemic situation will
evolve in such a way that the next STACS events will be able to have an on-site component.

We thank Michael Wagner from the LIPIcs team for assisting us in the publication process
and the final production of the proceedings. These proceedings contain extended abstracts
of the accepted contributions and abstracts of the invited talks. The authors retain their
rights and make their work available under a Creative Commons license. The proceedings
are published electronically by Schloss Dagstuhl – Leibniz-Center for Informatics within
their LIPIcs series. Finally we would like to thank Aix-Marseille University, Laboratoire
d’Informatique et Systèmes, Institut Archimède, and CNRS for their support.

Marseille, March 2022 Petra Berenbrink and Benjamin Monmege
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Local Limit of Random Discrete Surface with (Or
Without!) a Statistical Physics Model
Marie Albenque # Ñ

LIX, École Polytechnique, CNRS, Palaiseau, France

Abstract
A planar map is an embedding of a planar graph in the sphere, considered up to deformations. A
triangulation is a planar map, where all the faces are triangles.

In 2003, in order to define a model of generic planar geometry, Angel and Schramm studied the
limit of random triangulations on the sphere, [3]. They proved that this model of random maps
converges for the Benjamini-Schramm topology (see [4]), or local topology, towards the now famous
Uniform Infinite Planar Triangulation (or UIPT), a probability distribution on infinite triangulations,
see Figure 1. Soon after, Angel [2] studied some properties of the UIPT. He established that the
volume of the balls the UIPT of radius R scales as R4. Similar results (but with quite different
proofs) were then obtained for quadrangulations by Chassaing and Durhuus and Krikun.

The results cited above deal with models of maps that fall in the same “universality class”,
identified in the physics literature as the class of “pure 2D quantum gravity”: the generating series
all admit the same critical exponent and the volume of the balls of the local limits of several of
those models of random maps are known to grow as R4. To capture this universal behaviour, a good
framework is to consider scaling limits of random maps in the Gromov Hausdorff topology. Indeed,
for a wide variety of models the scaling limit exists and is the so-called Brownian map [6, 7], see
Figure 2.

To escape this pure gravity behaviour, physicists have long ago understood that one should
“couple gravity with matter”, that is, consider models of random maps endowed with a statistical
physics model. I will present in particular the case of triangulations decorated by an Ising model.
It consists in colouring in black and white the vertices of a triangulation, and consider probability
distribution which are now biased by their number of monochromatic edges. In a recent work, in
collaboration with Laurent Ménard and Gilles Schaeffer [1], we proved that the local limit of this
model also exists.

In this talk, I will present these results and explain the main ideas underlying their proof, which
rely in part on some enumerative formulas obtained by Tutte in the 60s [8], or their generalization
to coloured triangulations by Bernardi and Bousquet-Mélou [5].

Figure 1 A simulation of a large uniform
triangulation, which gives an approximation of
the UIPT (© I. Kortchemski).

Figure 2 A simulation of a large uniform
triangulation, which gives an approximation of
the Brownian map (© I. Kortchemski).
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Generalization Guarantees for Data-Driven
Mechanism Design
Maria-Florina Balcan
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Many mechanisms including pricing mechanisms and auctions typically come with a variety of
tunable parameters which impact significantly their desired performance guarantees. Data-driven
mechanism design is a powerful approach for designing mechanisms, where these parameters are
tuned via machine learning based on data. In this talk I will discuss how techniques from machine
learning theory can be adapted and extended to analyze generalization guarantees of data-driven
mechanism design.
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Deterministic Distributed Symmetry Breaking
at the Example of Distributed Graph Coloring
Fabian Kuhn #

University of Freiburg, Germany

Abstract
The problem of obtaining fast deterministic algorithms for distributed symmetry breaking problems
in graphs has long been considered one of the most challenging problems in the area of distributed
graph algorithms. Consider for example the distributed coloring problem, where a (computer)
network is modeled by an arbitrary graph G = (V, E) and the objective is to compute a vertex
coloring of G by running a distributed algorithm on the graph G. It is maybe not surprising that
randomization can be a helpful tool to efficiently compute such a coloring. In fact, as long as each
node v ∈ V can choose among deg(v)+1 different colors, even an almost trivial algorithm in which all
nodes keep trying a random available color allows to color all nodes in O(log n) parallel steps. How to
obtain a similarly efficient deterministic distributed coloring algorithm is far less obvious. In fact, for
a long time, there has been an exponential gap between the time complexities of the best randomized
and the best deterministic distributed algorithms for various graph coloring variants and for many
other basic graph problems. In the last few years, there however has been substantial progress on
deterministic distributed graph algorithms that are nearly as fast as randomized algorithms for the
same tasks. In particular, in a recent breakthrough, Rozhoň and Ghaffari managed to reduce the
gap between the randomized and deterministic complexities of locally checkable graph problems to
at most poly log n.

In the talk, we give a brief overview of the history of the problem of finding fast deterministic
algorithms for distributed symmetry breaking problems and of what we know about the relation
between deterministic and randomized distributed algorithms for such problems. Together with some
additional recent developments, the result of Rozhoň and Ghaffari provides a generic, somewhat
brute-force way to efficiently derandomize randomized distributed algorithms. Apart from this, there
has also been substantial progress on more direct, problem-specific algorithms. In the talk, we in
particular discuss some novel deterministic distributed graph coloring algorithms. The algorithms
are signficantly faster and we believe also simpler than previous algorithms for the same coloring
problems.
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Abstract
For a source node, v, and target node, w, the traceroute command iteratively issues “kth-hop”
queries, for k = 1, 2, . . . , δ(v, w), which return the name of the kth vertex on a shortest path from v

to w, where δ(v, w) is the distance between v and w, that is, the number of edges in a shortest-path
from v to w. The traceroute command is often used for network mapping applications, the study of
the connectivity of networks, and it has been studied theoretically with respect to biases it introduces
for network mapping when only a subset of nodes in the network can be the source of traceroute
queries. In this paper, we provide efficient network mapping algorithms, that are based on kth-hop
traceroute queries. Our results include an algorithm that runs in a constant number of parallel
rounds with a subquadratic number of queries under reasonable assumptions about the sampling
coverage of the nodes that may issue kth-hop traceroute queries. In addition, we introduce a
number of new algorithmic techniques, including a high-probability parametric parallelization of a
graph clustering technique of Thorup and Zwick, which may be of independent interest.
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Keywords and phrases Network mapping, graph algorithms, parallel algorithms, distributed com-
puting, query complexity, kth-hop queries
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1 Introduction

Network mapping involves inferring the topology of a communication network, such as the
Internet, from queries, e.g., see Figure 1 and [24, 49]. A prominent technique for network
mapping is active probing using the Unix traceroute command to perform queries that
reveal routing-path information, e.g., see [24, 32, 49]. We formulate the network mapping
problem as follows. Suppose we are given access to a subset, U ⊆ V , of the vertices of a
connected, undirected, unweighted graph, G = (V, E), so that the distance, δ(u, v), between
two vertices, u and v, in G is defined as the number of edges on a shortest path joining u

and v in G. The n vertices in U are known, but the set of edges, E, is unknown. The subset
U represents vantage point nodes from which we may issue the following type of queries:

kth-hop(k, u, v): return the vertex, w, that is the kth vertex on a shortest path from u to
v in G. If k ≥ δ(u, v), then return v.

Note that for u, v ∈ U , kth-hop(k, u, v) returns vertices in a single shortest path from
u to v. Shortest paths in G are not necessarily unique, however. So, for example, if
δ(u, v) = δ(u, w) + δ(w, v), it is not necessarily the case that kth-hop(δ(u, w), u, v) = w. In
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Figure 1 Partial map of the Internet circa 2005. Image by The Opte Project, unchanged and
licensed under the Creative Commons Attribution 2.5 Generic license.

the network mapping problem, we are interested in using kth-hop queries to learn the edges
of the induced shortest-path graph, H = (U, Ẽ), such that there is an edge (u, v) ∈ Ẽ, for
u, v ∈ U , if and only if no kth-hop(k, u, v) query would return a vertex w ∈ U other than v,
that is, kth-hop(k, u, v) would return vertices of a shortest path from u to v that does not
include any other vertex in U . Thus, H is a weighted, connected, undirected graph such that
each edge (u, v) in H has weight δ(u, v).

Our motivation for focusing on kth-hop queries is that they form the “inner loop” of
how traceroute works by default. In particular, by default traceroute works by sending a
series of packets in a network from a source, u, to a destination, v, with the packets having
increasing time-to-live (TTL) values, up to an upper bound for the diameter, diam(G), of G,
which traceroute typically sets to 30 or 64 by default depending on the underlying operating
system. The TTL field in a packet is decremented with each hop it traverses and when
it reaches 1, then that node sends an ICMP message to the source address (with message
including the node’s address), e.g., see [1, 2]. Thus, the traceroute tool can be viewed as
first performing a kth-hop(1, u, v) query, then a kth-hop(2, u, v) query, and so on, until getting
a response from the vertex v. In fact, one can use options with the traceroute command to
issue a kth-hop query directly, e.g., to find the 5th hop from a node to example.com, one
could use the command, “traceroute -m 5 -M 5 example.com”.

Our formulation of the network mapping problem abstracts away certain system issues.
In particular, we are implicitly assuming that messages in G are routed along shortest paths,
which is a widely used setting assumed by the prior work [4,20,26]. An important system
issue that we do not abstract away, however, is that only vertices in U ⊆ V may issue
queries. Indeed, there is some interesting prior work regarding the sampling biases introduced
by only being able to issue queries from a subset, U , of the set of vertices, V , in G. For
example, Achlioptas, Clauset, Kempe, and Moore [4] show that traceroute sampling1 finds
power-law degree distributions in both ∆-regular and Poisson-distributed random graphs,
even though these underlying graphs do not themselves have power-law degree distributions,
which is a statistical finding in experiments by Lakhina, Byers, Crovella, and Xie [37]. Maciej,

1 Traceroute sampling samples the network graph as the union of paths that packets traverse in performing
traceroute queries from a subset of the nodes in a network.
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Markopoulou, and Patrick [36] study ways to correct for this bias when samping large graphs.
Further, Zhang, Kolaczyk, and Spencer [50] and Flaxman and Vera [26] study ways to correct
for this bias for estimating degree distributions. Interestingly, Barrat, Alvarez-Hamelin,
Dall’Asta, Vázquez, and Vespignani [13] provide an analysis that power laws still exist in
the Internet graph in spite of the traceroute sampling bias, which these authors show is
related to betweenness (see also [20]).

In spite of this interesting prior work concerning the sampling biases inherent in performing
traceroute queries only from the nodes in the subset, U , we are not familiar with any prior
work on efficient algorithms for solving the network mapping problem. We focus on two
complexity measures for a network mapping algorithm, A, in terms of n = |U |:

Q(n): the query complexity of A. This is the total number of kth-hop queries issued. This
complexity measure comes from learning theory (e.g., see [5, 18,22,43]) and complexity
theory (where it is also known as “decision-tree complexity,” e.g., see [16,48]).
R(n): the round complexity of A. This is the number of rounds of querying performed by
A, where the queries issued in a round are given in a batch such that any query issued
in a round may not depend on the response to any other query in that round (but each
query may depend on results of queries from previous rounds).

Prior Related Work. As mentioned above, we are not aware of prior algorithmic work on
network mapping. If we analyze the algorithm used in existing mapping systems that use
active probing, this amounts to a brute-force quadratic algorithm implemented by cooperating
nodes of the network, which perform a traceroute to every other known node in the network,
e.g., see [23, 24, 33]. Viewed combinatorially, this algorithm has query complexity, Q(n), that
is O(diam(G) · n2), and round complexity, R(n), that is O(diam(G)), for kth-hop queries.

The network mapping problem is related to graph reconstruction, e.g., see [3,6, 7, 9–12,
14,15,17,18,21,27–30,34,35,38,40–42,44,46, 47]. In this problem, one is given a connected
unweighted graph, G = (V, E), for which V is known and goal is to discover E through
queries, such as:

distance(u, v): return the distance, δ(u, v), between u to v in G.
shortest-path(u, v): return the vertices (in order) in a shortest path from u to v in G.

There is also work on other types of queries, including vertex-betweenness queries [3]; queries
returning whether a given subset of vertices induce a given edge [9–12,15,17]; queries returning
the number of edges induced by a given subset of vertices [18,27–29]; queries returning all
shortest paths from a given node to all other nodes [14,42]; queries returning the distance
between two leaves in a phylogenetic tree [6, 7,30,35,40,47]; and queries returning whether a
given vertex is an ancestor of another given vertex in a rooted tree [6, 7, 46].

There are a number of important differences between the network mapping problem
and graph reconstruction, however. Most significantly, the graph reconstruction problem
assumes queries can be performed for any vertices in V , whereas in the network mapping
problem we may only issue kth-hop queries for nodes in the subset U ⊆ V . In addition, even
if we restrict the network mapping problem to the case where U = V , previous work on
graph reconstruction has not considered kth-hop queries, which, as we mentioned above, form
the “inner-loop” for how traceroute works and are distinct from distance and shortest-path
queries. For example, it doesn’t seem possible to simulate a kth-hop query with fewer than
Θ(n) distance queries, while a distance query can be simulated with O(log diam(G)) kth-hop
queries via binary search. Also, although it is trivial to simulate a kth-hop query with a single
shortest-path query, it takes Θ(diam(G)) kth-hop queries to simulate a single shortest-path
query. Thus, kth-hop queries are strictly weaker than shortest-path queries while being better
at capturing the true message complexity of the traceroute command.
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Another difference between the network mapping problem and graph reconstruction
is that previous work on graph reconstruction has mostly focused on how to sequentially
reconstruct the graph, G, whereas the network mapping problem is inherently parallel, due to
the motivation from mapping real-world networks, where each node is a computer. In terms
of previous work on graph reconstruction in parallel, Mathieu and Zhou [38] recently provided
a simple algorithm to reconstruct a connected, unweighted graph G, using an expected
number of Õ(N5/3) distance queries in 2 rounds.2 They also show that their algorithm takes
an expected number of Õ(N) distance queries to reconstruct a random ∆-regular graphs.

The most relevant prior work on graph reconstruction, however, is by Kannan, Mathieu,
and Zhou [34], who show how to reconstruct a connected, unweighted graph, G, using an
expected number of O(∆3N3/2 log2 N log log N) distance queries, or an expected number of
N1+O(τ(N)) shortest-path queries, where N = |V | and τ(N) =

√
(log log N + log ∆)/ log N ,

which is o(1) when ∆, the maximum degree of G, is No(1). They also show that verifying a
given set of edges can be done using O(N1+O(τ(N))) expected distance queries.

Our Results. A preliminary announcement of some of this paper’s results, using distance
queries for graph reconstruction, where queries can be performed for any vertices in V , was
presented in [8].

In Section 2, we introduce a new technique that may be of independent interest, where
we provide a new parallel implementation of a well-known graph clustering technique of
Thorup and Zwick [45] with round complexity of O(1), while their original implementation
implies an expected round complexity of O(log n). In doing so, we introduce a parameter
that allows to trade off parallel time and cluster size. Moreover, we show that our complexity
bounds hold with high probability,3 whereas Thorup and Zwick proved their complexity
bounds only in expectation. In Section 3, we will use this new construction to compute a
graph-theoretic Voronoi diagram in our network mapping algorithm. On the other hand,
our graph clustering technique can be applied to other problems, such as that studied by
Honiden, Houle, and Sommer [31] for balancing graph-theoretic Voronoi diagrams, to reduce
the number of centers to O(s) from O(s log n).

In Section 3, we provide the first non-trivial algorithmic results for the network mapping
problem. Our query complexities and round complexities are characterized in terms of
n = |U | and some interesting parameters that capture the sampling coverage provided by the
set U . For example, in addition to characterizing complexities in terms of ∆, the maximum
degree of the graph, H, we introduce a distance coverage parameter, δmax, which is the
maximum weight for an edge in H, and a nearby-vertices parameter, µ, which is an upper
bound on the number of vertices within a distance of 2δmax of any given vertex v ∈ U . As we
show, these parameters are required for the sake of efficiency, for we show that without these
parameters the network mapping problem has a quadratic query-complexity lower bound.
For example, under reasonable assumptions regarding these parameters, we are the first to
give a constant-round network-mapping algorithm with query complexity better than the
trivial brute-force algorithm.

In Section 4, we introduce a greedy approach for network mapping that is based on parallel
greedy approximate set cover, which allows us to achieve a near-quasilinear query complexity
(when ∆ is no(1)). As with a related sequential greedy graph reconstruction result of Kannan,
Mathieu, and Zhou [34], our query and round complexity bounds are parameterized in terms

2 The notation Õ(f(N)) is equivalent with O(f(N) · polylog(f(N))).
3 We say an event holds with high probability (w.h.p.) if it occurs with probability at least 1 − 1/n.
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of the best sequential query complexity for verifying the edges of a graph using distance
queries (without knowing the exact value of this query complexity). Further, for small values
of the parameters, δmax and ∆, our greedy approach uses a near-quasilinear number of
kth-hop queries, which are strictly weaker than the shortest-path queries used by Kannan,
Mathieu, and Zhou. We summarize our results in Table 1.

Table 1 Our w.h.p. bounds for the network mapping problem, where ϵ denotes a fixed constant,
0 < ϵ < 1/2, n = |U | and ∆, δmax, µ, and τ(·) are as defined above.

R(n) Q(n)

O(1) O(δmax µ n3/2+ϵ)

O(log n · log diam(G)) O(µ n3/2 log3/2 n · log diam(G))

if U ⊂ V : O(∆n) diam(G) · n1+O(τ(n))

if U = V : O(∆n log n) n1+O(τ(n))

2 Parallel Graph Clustering

Thorup and Zwick [45] introduced a graph clustering technique in presenting a stretch4 3
network routing scheme. We begin by describing our parallel graph clustering algorithm,
which may be of independent interest, as it provides a parameterized parallel extension of
the one by Thorup and Zwick [45]. Also, whereas Thorup and Zwick establish their bounds
in expectation, we establish ours with high probability. In Section 3, we apply our parallel
graph clustering algorithm in creating a graph-theoretic Voronoi diagram for our network
mapping algorithm.

We begin with some review from Thorup and Zwick [45]. Let G = (V, E) be a connected,
undirected n-vertex graph, and let δ(u, v) denote the distance between vertices u and v in G.
In this section, we allow G to be weighted, where δ(u, v) is the sum of weights on a shortest
path (lowest weight path) from u to v, but in our algorithms for parallel network mapping,
we assume G is unweighted, in which case δ(u, v) is the number of edges on a shortest path
from u to v. For a subset A ⊆ V , let δ(A, v) = mina∈A δ(a, v), and, for vertices w, v ∈ V , let
CA(w) be the cluster of w and BA(v) be the bunch of v with respect to A, defined as follows:

CA(w) = {v ∈ V | δ(w, v) < δ(A, v)} and BA(v) = {w ∈ V | δ(w, v) < δ(A, v)}.

Note that if w ∈ A, then CA(w) = ∅. Also, observe that bunches and clusters are
“inverses” of each other, in that v ∈ CA(w) if and only if w ∈ BA(v). In addition, notice
that clusters and bunches can only shrink as we add vertices to A; that is, if A′ ⊆ A, then
CA(w) ⊆ CA′(w) and BA(v) ⊆ BA′(v), for all v and w in V .

Now, let β ∈ [4, n), be a “parallelism” parameter and let s ∈ [4 ln n, n) be a “size”
parameter. Define a subset, A ⊆ V , to be a set of (β, s)-balanced centers if |CA(w)| ≤ βn/s,
for all w ∈ V . Thorup and Zwick [45] give a sequential algorithm for finding a set of (4, s)-
balanced centers of expected size O(s log n). In Algorithm 1, we give a parallel algorithm for
finding a set of (β, s)-balanced centers of size O(s logβ n) in O(logβ n) rounds w.h.p. Thus,
the parameter β allows one to trade off parallel time and cluster size.

4 Routing Stretch is the worst ratio between the length of a path on which a message is routed and the
length of the shortest path in the network from the source to the destination.
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Algorithm 1 parallel-centers(V, s, β).

1 A← ∅, W ← V

2 while |W | > 0 do
3 A′ ← Sample(W, s) // a random sample of expected size s (or W if s ≥ |W |)
4 A← A ∪A′

5 for w ∈W do in parallel
6 CA(w)← {v ∈ V : δ(w, v) < δ(A, v)}
7 W ← {w ∈W : |CA(w)| > βn/s}
8 return A

Our algorithm (Algorithm 1) takes a graph G = (V, E) as input and initializes A, the
eventual output of the algorithm, to be empty, and W , the set of nodes v ∈ V where
|CA(v)| > βn/s, to be V . Then, we iteratively add Sample(W, s) to A, and replace W with
vertices w ∈ W such that |CA(w)| > βn/s, in parallel, where the function, Sample(W, s),
returns W if |W | ≤ s and, otherwise, returns a set of elements from W such that each
element in W is selected independently at random with probability s/|W |. We continue in
this way until W = ∅.

Since the size of a cluster, |CA(w)|, does not increase as we add more vertices to A, the
set A returned by our algorithm is a set of (β, s)-balanced centers. Also, the Sample function
returns a sample of size at most 2s with probability at least 1 − e−s/3, which holds with
high probability across all iterations when s ≥ 4 ln n, by a standard Chernoff bound, e.g.,
see [39, p. 69]. Incidentally, Thorup and Zwick use the same Sample function, but don’t
bound its maximum size as we do. This high-probability upper bound for the sample size
is not sufficient to achieve a high-probability bound, however, for the entire parallel graph
clustering algorithm.

To that end, we define a parameter, α, as follows:

α =
{

2 if β ≤ ((4/3)e)4

(4/3)eβ1/2 otherwise

where e ≈ 2.71828 is Euler’s number. This definition of α is made so that we may achieve
high probability bounds for a range of β values.

Let Wi denote the set W at the beginning of iteration i, let A′
i denote the set A′ that was

added in iteration i, and let Ai denote the set A in this iteration, including the set, A′
i, i.e.,

Ai = Ai−1 ∪A′
i, for i = 1, 2, . . ., where A0 = ∅. Say that iteration i is “bad” if the following

inequality holds:∑
w∈Wi

|CA′
i
(w)| > αn|Wi|

s
,

and that otherwise it is “good”. Note that, since Wi is a given for iteration i, whether
iteration i is good or bad depends only on A′

i.

▶ Lemma 1 (Thorup-Zwick [45], Lemma 3.2). Let W ⊆ V , let 1 ≤ s ≤ n, and let A′ ←
Sample(W, s). Then, for every v ∈ V , E[ |BA′(v) ∩W | ] ≤ |W |/s.

This implies the following:

E

[ ∑
w∈Wi

|CA′
i
(w)|

]
= E

[ ∑
v∈V

|BA′
i
(v) ∩Wi|

]
≤ n|Wi|

s
.



R. Afshar, M. T. Goodrich, P. Matias, and M. C. Osegueda 4:7

Therefore, by Markov’s inequality, an iteration is bad with probability at most 1/α.
Let Wi+1 denote the set of vertices, W , whose clusters have size at least βn/s at the

end of a good iteration i. As Wi+1 ⊆ Wi, and CAi
(w) ⊆ CA′

i
(w), for all w ∈ V , in a good

iteration we have:

βn|Wi+1|
s

≤
∑

w∈Wi

|CAi(w)| ≤
∑

w∈Wi

|CA′
i
(w)| ≤ αn|Wi|

s
;

hence, |Wi+1| ≤ (α/β)|Wi| in a good iteration. Thus, the number of good iterations of our
algorithm is O(log(β/α) n), which is O(logβ n) for either choice of α. Moreover, because an
iteration is good independent of whether any other iteration is good or bad, we may use
standard and non-standard Chernoff bounds to show that the number of bad iterations is
also O(logβ n) w.h.p., for either value of α. (See Appendix A.1.) This gives us the following:

▶ Theorem 2. Given an undirected, connected graph, G = (V, E), we can find a set, A, of
(β, s)-balanced centers of size O(s logβ n) in O(logβ n) parallel rounds w.h.p.

For example, if β = 4, then A is constructed to have size O(s log n) in O(log n) rounds; if
β = nϵ, for constant 0 < ϵ < 1/2, then A is constructed to have size O(s) in O(1) rounds.

3 Our Fast Parallel Network Mapping Algorithms

In this section, we provide our fast parallel network mapping algorithms for a connected,
undirected, unweighted network, G = (V, E), given a subset U ⊆ V from which we may
perform kth-hop queries. We denote the size of U by n and the size of V by N . Let H be
the graph induced by the shortest paths in G between pairs of vertices in U . That is, H

has vertex set U and there is an edge (u, v) in H, for u, v ∈ U , if the shortest path between
u and v in G determined by kth-hop queries contains no other vertex in U besides u and
v. The weight of each edge (u, v) in H is the distance, δ(u, v), between u and v in G. The
goal of network mapping is to determine the edges of H (which can then be used to easily
determine the vertices in G in a shortest path corresponding to each edge (u, v) in H in a
single round of δ(u, v) kth-hop queries). We assume we know the value of δmax, which is the
weight of a maximum-weight edge in H . For example, if U = V , then δmax = 1. In the worst
case, δmax is equal to the diameter of G, but in real-world network mapping applications,
δmax is likely to be a constant.

We perform all the queries needed in our parallel network mapping algorithms in a
subroutine, Distances(v, W ), which determines the distance, δ(v, w), for a given v ∈ U and
every other w ∈ W ⊆ U . We describe two possible implementations for Distances(v, W ),
which we choose between depending on our desired goals. In our first implementation, we
perform a simple binary search using kth-hop(k, v, w) queries to determine δ(v, w), for each
w. This requires O(log diam(G)) rounds and a total of O(|W | log diam(G)) kth-hop queries,
and this implementation doesn’t require any assumptions about W . Note that we assume
that we know diam(G), and if this is not the case, we can instead perform a doubling binary
search with the same query complexity. In our second implementation, we perform δmax
kth-hop(k, w, v) queries in parallel, for each w, for k = 1 to δmax. This implementation
requires a single round of O(δmax |W |) kth-hop queries, and it requires that v ∈W , and the
nodes in W induce a connected subgraph of H that contains the shortest path in H from
each w in W to v, and that we are only interested in finding the edges of this subgraph.
This set of queries finds all the edges of a breadth-first search (BFS) tree, Bv, rooted at v,
in the induced graph, H, since a shortest path from w to v is also a shortest path from v
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4:8 Mapping Networks via Parallel kth-Hop Traceroute Queries

Algorithm 2 Our parallel querying algorithm, estimated-parallel-centers(U, s, β), for finding
a set of (β, s)-balanced centers A.

1 A← ∅, W ← U

2 T ← c1(s/β) log n // c1 is a constant set in the analysis
3 while |W | > 0 do
4 A′ ← Sample(W, s)
5 A← A ∪A′

6 R← a random subset with v ∈ U chosen independently with probability T/n

7 for each r ∈ R do in parallel
8 Distances(r, U)
9 for w ∈W do in parallel

10 S(w)← {v ∈ R : δ(w, v) < δ(A, v)} // S(w) = CA(w) ∩R

11 W ← {w ∈W : |S(w)| > 2βT/s} // that is, |S(w)|(n/T ) > 2βn/s

12 return A

to w, and a subpath of any shortest path is a shortest path for its endpoints. Thus, in this
second implementation, we can determine δ(v, w), for each w ∈ U , from Bv, by summing the
weights of the edges from v to w in Bv (which doesn’t require any additional queries). This
gives us the following lemma.

▶ Lemma 3. Distances(v, W ) can be implemented in O(log diam(G)) rounds using a total of
O(|W | log diam(G)) kth-hop queries. Alternatively, if v ∈W , and the subgraph of H induced
by W is connected and we are interested only in finding the edges of this subgraph, then
Distances(v, W ) can be implemented in 1 round with O(δmax |W |) kth-hop queries.

Let the cluster of vertex w with respect to centers A be CA(w) = {v ∈ U | δ(w, v) <

δ(A, v)}. The key idea of our parallel network mapping algorithm is to first find a set, A, of
(β, s)-balanced centers, using our parallel algorithm from the previous section, and then use
this set of centers to compute a graph-theoretic Voronoi diagram [25,31] for G, from which
we may efficiently then perform a brute-force querying step for each Voronoi region. This
approach is similar in spirit to the one by Kannan, Mathieu, Zhou [34, Section 2], with some
key important differences: i) the restriction of our queries to the vantage point U ⊆ V and
the parameters capturing sampling coverage of set U , ii) the usage of kth-hop queries, and
iii) our parallel graph clustering that allows us to trade off between round complexity and
query complexity.

The initial center-finding step builds a set, A, of size O(s logβ n) such that each vertex in
U has a cluster with respect to A of size at most βn/s. One of the challenges in implementing
this algorithm efficiently in parallel using kth-hop queries is that we need to determine cluster
sizes for all vertices in U in each iteration, which would take too many queries to compute
exactly. So, rather than compute such sizes exactly, we instead build a global random set, R,
which we use to approximate the size of each cluster. We give the details in Algorithm 2.

▶ Lemma 4. Our estimated-parallel-centers algorithm constructs a set, A, of (3β, s)-balanced
centers of size O(s logβ n). Suppose Distances(r, U) executes in R(n) rounds and Q(n) kth-hop
queries. Then estimated-parallel-centers algorithm executes in O(R(n) logβ n) rounds and
O(Q(n)(s/β) log n logβ n) kth-hop queries, w.h.p.

Proof. See Appendix A.2. ◀
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w2

w1

a
CA(w2)

CA(w1)

≤ 2δmax

Figure 2 This figure represents a partial structure of our Voronoi Diagram. Blue vertices represent
centers from A. The circle centered at a ∈ A represents the vertices of distance at most 2δmax from
a. We use clusters of nearby vertices of a to discover boundary edges. For simplicity, we draw only
two clusters for two arbitrary nodes w1, w2 ∈ N2δmax (a).

Now that we have defined and analyzed the function estimated-parallel-centers(U, s, β), let
us next turn to our parallel algorithm for mapping a connected, undirected graph, G = (V, E),
given a subset, U ⊆ V , from which we can perform kth-hop queries. This algorithm takes as
input the vertex set U , and outputs, Ẽ, the set of edges of the induced graph, H , defined by
the vertex set U and the shortest paths in G returned by kth-hop queries.

Let A ⊆ U be a set of centers, which in our network mapping algorithm will come from a
call to our estimated-parallel-centers(U, s, β) algorithm, but a graph-theoretic Voronoi diagram
can be defined for any weighted graph and any set of centers. Given a center, a ∈ A, define
the Voronoi cell, VorA(a), for a in H as VorA(a) = {v ∈ U : δ(a, v) ≤ δ(A\{a}, v)}. The
graph-theoretic Voronoi diagram for A in U consists of the union of Voronoi cells, VorA(a),
for each center, a ∈ A. We say that an edge (v, w) ∈ Ẽ is an interior edge if v, w ∈ VorA(a),
for some center a ∈ A, and it is a boundary edge if v ∈ VorA(a) and w ∈ VorA(b), where
a ̸= b. If we were to perform a set of kth-hop queries for every pair of vertices in a Voronoi
cell, then we are guaranteed to discover every internal edge in VorA(a), but we will miss
boundary edges going between two Voronoi cells. Thus, we need to “branch out” a little bit
from the vertices of VorA(a) in order to discover all the boundary edges. To facilitate this,
for any center, a ∈ A, let N2δmax(a) be the set of “nearby” vertices in H, that is, vertices
that are within a distance of 2δmax of a. Formally,

N2δmax(a) = {v ∈ U : δ(a, v) ≤ 2δmax}.

We assume we know µ, the maximum size of N2δmax(a), for any a ∈ A. Of course, µ < n.
The following lemma shows that it is sufficient to consider these nearby neighbors, for each
center a ∈ A, in order to cover all the edges in H, including interior edges and boundary
edges. (See also Figure 2.)

We give the details of our network mapping algorithm in Algorithm 3. Through a call to
estimated-parallel-centers(U, s, β), we find a set of (O(β), s)-balanced centers, A. Next, we
build a BFS tree from each vertex a ∈ A to be able to identify nodes in N2δmax(a). Then,
our mapping algorithm, map, constructs graph-theoretic Voronoi diagram for the centers in
A, and then “branches out” from each center a ∈ A by considering the nodes in N2δmax(a)
and the clusters defined by nodes in N2δmax(a). Finally, after having done this Voronoi
decomposition, our algorithm performs exhaustive searches in each cluster in parallel. This
part of the algorithm uses a method, Exhaustive-Query(W ), which finds all the edges of H

between vertices in W by calling Distances(v, W ), for each v ∈W .
The following lemmas establish the correctness and performance complexities for our

network mapping algorithm.
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Algorithm 3 Parallel network mapping using kth-hop queries.

1 Function map(U):
2 A← estimated-parallel-centers(U, s, β)
3 for each a ∈ A do in parallel
4 Distances(a, U) // gives us N2δmax(a) as well
5 for each a ∈ A do in parallel
6 Ea ← Exhaustive-Query(N2δmax(a))
7 for b ∈ N2δmax(a) do in parallel
8 Distances(b, U)
9 CA(b)← {v ∈ U : δ(b, v) < δ(A, v)}

10 Ea,b ← Exhaustive-Query(CA(b))
11 return

⋃
a∈A

(
Ea ∪

⋃
b∈N2δmax (a) Ea,b

)

▶ Lemma 5. Let (u, v) be an edge in H. Then there exists a center, a ∈ A, such that u and
v are both in N2δmax(a) or both in CA(b), for some b ∈ N2δmax(a).

Proof. Let (u, v) be an edge in H, and note that, by definition, δ(u, v) ≤ δmax. Assume,
without loss of generality, that δ(A, u) ≤ δ(A, v). Also, let a be a vertex in A such that
δ(a, u) = δ(A, u). If δ(a, u) ≤ δmax, then both u and v are in N2δmax(a), by the triangle
inequality. So, suppose δ(a, u) > δmax. Let b be a vertex in U on a shortest path from a to u

such that δmax < δ(a, b) ≤ 2δmax. Note that b must exist, since no edge in H has weight more
than δmax (it is possible that b = u). Further, b is in N2δmax(a) and δ(a, u) = δ(a, b) + δ(b, u).
Also, δ(b, u) < δ(a, u) = δ(A, u); hence, u is in CA(b).

By the triangle inequality, and the above observations,

δ(b, v) ≤ δ(b, u) + δ(u, v)
≤ δ(b, u) + δmax

= δ(a, u)− δ(a, b) + δmax

< δ(a, u)− δmax + δmax

= δ(a, u)
= δ(A, u).

Therefore, δ(b, v) < δ(A, v); hence, v is also in CA(b). ◀

▶ Lemma 6. If Distances(v, W ) executes in R(|W |) rounds using Q(|W |) kth-hop queries,
then Algorithm 3 uses O(Q(n)(s/β) log n logβ n + µ(Q(n) + (βn/s)Q(βn/s))s logβ n) queries
in O(R(n) logβ n) rounds, w.h.p., where µ = maxa∈A |N2δmax(a)|.

Proof. By Lemma 4, estimated-parallel-centers(U, s, β) executes in O(R(n) logβ n) rounds
and O(Q(n)(s/β) log n logβ n) kth-hop queries, and returns a set of (3β, s)-balanced centers
of size O(s logβ n), w.h.p. The parallel Distances calls in line 4 thus executes in O(R(n))
rounds using O(Q(n)s logβ n) kth-hop queries, w.h.p., and the calls to Exhaustive-Query in
line 6 execute in O(R(µ)) rounds using a total of O(µQ(µ)s logβ n) kth-hop queries, but
these bounds are dominated by the Distances calls in line 8, all of which execute in O(R(n))
rounds using O(µQ(n)s logβ n) kth-hop queries, w.h.p. Finally, the calls to Exhaustive-Query
in line 10 execute in O(R(βn/s)) rounds using O(µ(βn/s)Q(βn/s)s logβ n) kth-hop queries,
w.h.p. ◀
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Plugging in our derived bounds for Distances, we get the following theorem.

▶ Theorem 7. Given a connected graph, G = (V, E), and subset, U ⊆ V , one can map
the n-vertex induced shortest-path graph, H, with respect to G and U in O(1) rounds using
O(δmax µ n3/2+ϵ) kth-hop queries, for constant 0 < ϵ < 1/2, w.h.p. Alternatively, one can
map H in O(log n · log diam(G)) rounds using O(µ n3/2 log3/2 n · log diam(G)) queries, w.h.p.

Proof. For the first result, set β = nϵ and s = n1/2+ϵ, and let us use the implementation
of Distances that executes in 1 round using O(δmax n) kth-hop queries from Lemma 3. For
the second result, set β = 4 and s = (n/ log n)1/2 and let us use the implementation of
Distances that executes in O(log diam(G)) rounds using O(n log diam(G)) kth-hop queries
from Lemma 3. The bounds follow by Lemma 6. ◀

For example, depending on the values of δmax and µ, the above theorem establishes an
improvement over the brute-force querying algorithm for solving the parallel network mapping
problem in O(1) rounds. The following theorem shows that bounding the parameters δmax
and µ is needed in order to do better than a quadratic number of kth-hop queries.

▶ Theorem 8. There is an infinite family of n-vertex graphs, G, such that mapping the
induced shortest-path graph, H, for a set, U , of O(n) vertices requires Ω(n2) kth-hop queries,
when µ is Θ(n) and δmax is Θ(log n), even if G has maximum degree 3.

Proof. Let G be the graph of a complete binary tree with n nodes and let U be the set of
leaves of G. Thus, the distance in H between any node, v, in the left subtree of G, and a
node, w, in the right subtree of G, is 2 log n. Thus, δmax = 2 log n and µ is Θ(n). Now, let
G′ be G plus a single path in G of length (2 log n)− 1 between two vertices, v and w, in U

such that v is in the left subtree of G and w is in the right subtree of G. Thus, there is an
edge with weight (2 log n)− 1 joining v and w in the induced shortest-path graph, H ′, for G′,
and otherwise H ′ has the same edge set as H. But there are Ω(n2) such possible pairs and
the only way to discover the edge (v, w) in H is to perform a kth-hop(k, v, w) query. Any
other type of kth-hop query cannot distinguish between H and H ′. ◀

4 A Greedy Network Mapping Algorithm

Kannan, Methieu, and Zhou [34] introduce a proof technique that sequentially uses a
verification algorithm for unweighted graphs as an oracle for issuing shortest-path queries in
a greedy graph reconstruction algorithm. In this section, we show how to adapt this proof
technique to a parallel setting and apply it to map the weighted graph, H . For example, our
algorithm uses kth-hop queries and provides parallelism according to a parameter, 1 ≤ p < n.

Our greedy algorithm is based on performing steps of the classic greedy set cover algorithm
in parallel batches. Recall that in this problem, one is given a collection of sets, S1, S2, . . . , Sm,
whose union is the universe U , and the goal is to find a smallest sub-collection of sets whose
union is U , that is, a sub-collection that covers U . The greedy algorithm repeatedly chooses
the set covering the maximum number of uncovered items in U , and this results in a number
of sets that is at most an O(log n) factor more than optimum [19].

Let f(n, ∆) be the query complexity of the best sequential algorithm for the problem of
graph verification for any connected unweighted graph of n vertices and maximum degree
∆ via distance queries, that is, for determining whether an unknown graph, G = (V, E), is
equal to a given graph, Ĝ = (V, Ê). For example, Kannan, Methieu, and Zhou [34] show
that f(n, ∆) is n1+O(τ(n)), where τ(n) =

√
(log log n + log ∆)/ log n. The function, f(n, ∆),

is used only in our analysis, where we show that, given a parallelism parameter, 1 ≤ p < n,
our parallel network mapping algorithm can be tuned to have the desired query complexity,
Q(n), and round complexity, R(n).
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The distance queries in an unweighted graph verification algorithm perform two functions
– confirming that edges in Ê are actually in E and confirming that edges not in Ê are
also not in E, that is, confirming every (u, v) /∈ Ê is not in E. To that latter end, let
δ̂h(u, v) denote the hop-count (number of edges) distance between u and v based on the
edges in Ê, and let Êc denote the set of non-edges in Ĝ, that is, the set of pairs, (u, v),
such that u ̸= v and (u, v) /∈ Ê. Similarly, let Ec denote the set of non-edges in G. For
any set of tentative edges, Ê, define the following set for each pair of vertices, (u, v) ∈ Êc:
Su,v(Ê) =

{
(x, y) ∈ Êc | δ̂h(u, x) + δ̂h(y, v) + 1 < δ̂h(u, v)

}
.

Kannan, Methieu, and Zhou [34] prove the following two lemmas.

▶ Lemma 9. Suppose Ê ⊆ E. For any (u, v) ∈ Êc, if δh(u, v) = δ̂h(u, v), where δh(u, v)
denotes the hop-count distance between u and v in G, then Su,v(Ê) ⊆ Ec, that is, each pair
in Su,v(Ê) is a non-edge in G.

▶ Lemma 10. If a set of distance queries, T , verifies that every non-edge of Ĝ is a non-edge
of G, then ∪(u,v)∈T Su,v(Ê) = Êc.

We present our parallel greedy algorithm for mapping H = (U, Ẽ) in G = (V, E), for
when U ⊂ V , that is, we incrementally build our tentative edge set Ê ⊆ Ẽ:
1. We initialize a set of tentative edges, Ê, to a spanning tree of H by calling kth-hop(k, v, u)

from every vertex, v ∈ U , to an arbitrarily chosen vertex, u ∈ U , for k = 1, . . . , diam(G),
in parallel. We initialize a set of confirmed non-edges of H, F ← ∅. Note that we always
maintain that F ⊆ Êc. This requires 1 round of O(diam(G)n) kth-hop queries.

2. We compute all the Su,v(Ê) sets, for pairs (u, v) ∈ Êc, which requires no queries.
3. We perform p steps of the greedy set-cover algorithm applied to the sets, Su,v(Ê)\F ,

with the goal of covering the remaining pairs, in Êc\F , in a greedy fashion, which also
requires no queries. Let {(u1, v1), (u2, v2), . . . , (up, vp)} denote the vertex pairs for the
Su,v(Ê) sets chosen by these greedy steps.

4. We perform kth-hop(k, ui, vi) queries, for k = 1, . . . , diam(G), in parallel, to determine
the actual hop-count distance, δh(ui, vi), between ui and vi in H, for each i = 1, 2, . . . , p

in parallel. This step requires O(1) rounds of O(p · diam(G)) kth-hop queries in total.
5. For each i such that δh(ui, vi) = δ̂h(ui, vi), we add all the pairs in Sui,vi

(Ê) to F . If
F = Êc, then we are done, by Lemma 10.

6. Otherwise, if F ̸= Êc and δh(ui, vi) = δ̂h(ui, vi), for all i = 1, 2, . . . , p, then we repeat the
above process, performing another p steps of greedy set cover, looping back to Step 3.

7. If, on the other hand, F ̸= Êc and δh(ui, vi) < δ̂h(ui, vi), for some i, then there must
be at least one edge on a shortest path from ui to vi that is in Ẽ and not yet in Ê. In
this case, we add all such edges (which were discovered when we performed the diam(G)
kth-hop(k, ui, vi) queries) to Ê, and repeat the above greedy searching for this updated
set, Ê, of candidate edges, returning to Step 2.

This gives us the following result.

▶ Theorem 11. Let f(n, ∆) be the query complexity of an optimal sequential algorithm for
graph verification for any unweighted connected graph with n vertices and maximum degree
∆ using distance queries. Then, for 1 ≤ p < n, our parallel network mapping algorithm has
kth-hop query complexity, Q(n) ∈ O((∆np + f(n, ∆) log n)diam(G)) and round complexity,
R(n) ∈ O((∆n + (f(n, ∆)/p) log n)), if U ⊂ V , or Q(n) ∈ O((∆np + f(n, ∆) log n) log n)
and round complexity, R(n) ∈ O((∆n + (f(n, ∆)/p) log n) log n), if U = V .

Proof. See Appendix A.3. ◀
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Thus, setting p to be nO(τ(n)) gives us the following.

▶ Corollary 12. One can solve the network mapping problem with query complexity, Q(n),
that is diam(G) · n1+O(τ(n)) and round complexity, R(n), that is O(∆n), if U ⊂ V , or with
Q(n) that is n1+O(τ(n)) and round complexity, R(n), that is O(∆n log n), if U = V .

This query complexity is within an no(1) factor of optimal when ∆ is no(1), by the following
simple lower bound.

▶ Theorem 13. Solving the network mapping problem for an n-vertex graph, G, with
maximum degree, ∆, requires Ω(∆n) kth-hop queries, even if H has only n edges.

Proof. Let H be a caterpillar (i.e., a tree where every leaf is at distance 1 from a vertex on
a central path), such that every internal node has degree ∆. Choose any pair, u and v, of
sibling leaves and connect them with an edge. The only way to discover the edge, (u, v), is to
perform a kth-hop(k, u, v) query, for k ≥ 1. Thus, in expectation, any graph reconstruction
algorithm must perform a query for over half of the pairs of siblings in H, that is, at least
Ω((n/∆)∆2) = Ω(∆n) queries, in order to discover all the edges of H. ◀

5 Conclusion

We have given efficient algorithms for solving the network mapping problem in parallel. Such
algorithms show the effectiveness of kth-hop queries, even though they are weaker than
shortest-path queries. Our methods assume knowledge of δmax and µ, but this assumption
can be relaxed at the expense of increasing the round complexity by an O(log n) factor, while
keeping the query complexity unchanged, by using our algorithm as a blackbox to perform a
doubling search for the values of these parameters. Our methods also assume kth-hop(k, u, v)
remains same in the algorithm, which is a reasonable assumption in static routing. In our
network mapping formulation, we abstracted away some system issues such that when the
TTL field of a packet reaches 1, the node sends an ICMP message to the source address;
however, in the real Internet, some nodes may have their ICMP responses switched off.
Therefore, a direction to extend this work would be to design algorithms addressing such
system issues.

We have also given new, parallel implementations for graph clustering, which provide
tradeoffs between the number of center vertices and the sizes of clusters. Even for sequential
algorithms, this result may prove useful for applications where minimizing the number of
center points is a primary optimization goal. For instance, one can apply our construction to
the problems studied by Honiden et al. [31] for balancing graph-theoretic Voronoi diagrams
to shave a O(log n) factor of the number of centers. It seems likely, therefore, that this result
will have other applications as well.
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A Omitted Proofs

Here, we provide proofs that were omitted in the body of this paper.

A.1 Bounding the number of Bad Iterations for Parallel Graph
Clustering

Recall that we chose α in our parallel graph clustering algorithm according to the formula

α =
{
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and we said an iteration is “bad” if
∑

w∈Wi
|CA′

i
(w)| > αn|Wi|

s and otherwise it is “good.”
We also noted, by Markov’s inequality, that an iteration is bad with probability at most 1/α.
Further, note that L = log(β/α) n = O(logβ n) is the maximum number of good iterations,
for either choice for α. We wish to show that the number of bad iterations is O(L) w.h.p.

Since Wi is a given for iteration i, whether iteration i is good or bad depends only on A′
i;

therefore, an iteration is good independent of whether any other iteration is good or bad,
so, for the sake of analysis, consider a set of c0L iterations (i.e., padding out with “dummy”
iterations if necessary) where c0 ≥ 4 is a constant chosen below and each iteration is bad
independently with probability 1/α. Let X denote the number of bad iterations in this
set. So E[X] = c0L/α; hence, the probability that over 3/4 of our iterations are bad can
be bounded as p = Pr(X > (3/4)c0L) = Pr(X > (3/4)α · E[X]). Thus, at least L of our
iterations are good with probability at least 1− p.
Case 1: α = 2. In this case, β is O(1); hence, L is Θ(logβ n) = Θ(log n), since β ≥ 4.

Futher, Pr(X > (3/4)α · E[X]) = Pr(X > (3/2) · E[X]), and, by a standard Chernoff
bound,5 e.g., see [39, p. 69],

Pr(X > (3/2) · E[X]) ≤ e−E[X]/12 = e−c0L/24.

Thus, choosing c0 so that c0L/24 ≥ 2 ln n, we will have more than (3/4)c0L bad iterations
with probability at most 1/n2.

Case 2: α = (4/3)eβ1/2. In this case, (α/β) ≤ β−1/4; hence, L is O(logβ n). Further, we
have that Pr(X > (3/4)c0L) = Pr(X > (3/4)α · E[X]) = Pr(X > eβ1/2 · E[X]), and, by
a non-standard Chernoff bound,6 e.g., see [39, p. 70],

Pr(X > eβ1/2 · E[X]) ≤
(

e

eβ1/2

)(3/4)c0L

= β −(3/8)c0L.

Thus, by choosing c0 so that (3/8)c0L ≥ 2 logβ n, we will have more than (3/4)c0L bad
iterations with probability at most 1/n2.

Therefore, we have the following.

▶ Lemma 14. The number of good and bad iterations in Algorithm 1 is O(logβ n) w.h.p.

A.2 The Complexity of the estimated-parallel-centers Algorithm
Recall that the estimated-parallel-centers algorithm uses a global random sample set, R,
for estimating cluster sizes, where R is a random subset of U of size T = c1(s/β) log n.
Recall that, for each vertex w ∈ W , we defined S(w) such that S(w) = R ∩ CA(w). Thus,
E[|S(w)|] = |CA(w)|(T/n). We are interested in showing that w.h.p. this sample of CA(w) is
giving neither an over-estimate nor an under-estimate for the size of CA(w), which we define
respectively as follows:

Over-estimate event: |CA(w)| ≤ βn/s, but |S(w)| > 2βT/s. In this case, we would be
including w in W even though its cluster size is sufficiently small.
Under-estimate event: |CA(w)| > 3βn/s, but |S(w)| ≤ 2βT/s. In this case, we would be
excluding w from W even though its cluster size is big.

Let us consider each of these types of events in turn.

5 Pr(X ≥ (1 + δ) · E[X]) ≤ e−E[X]·δ2/3, for 0 < δ ≤ 1.
6 Pr(X ≥ (1 + δ) · E[X]) ≤ (e/(1 + δ))(1+δ)·E[X].
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Over-estimate event. We wish to bound the probability that |CA(w)| ≤ βn/s but |S(w)| >
2βT/s, where T = c1(s/β) log n. Let X denote the sum of |CA(w)| indicator random variables
for counting the members of CA(w) ∩R, i.e., where each variable is 1 independently with
probability T/n. Thus, E[X] = E[|S(w)|] = |CA(w)|(T/n). So

Pr(|S(w)| > 2βT/s) = Pr(X > 2βT/s) = Pr
(

X >
2βn

s|CA(w)| · E[X]
)

= Pr(X > (1 + δ) · E[X]),

where

δ =
(

2βn

s|CA(w)| − 1
)

> 1.

In addition,

δ · E[X] =
(

2βn

s|CA(w)| − 1
)
· |CA(w)|T

n
= 2βT

s
− |CA(w)|T

n

≥ 2βT

s
− βT

s
= βT

s
= c1 log n.

Thus, by a standard Chernoff bound,7 and the fact that δ > 1,

Pr(X ≥ (1 + δ) · E[X]) ≤ e−δ2·E[X]/(2+δ) ≤ e−δ·E[X]/3 ≤ e−(c1 log n)/3 ≤ 1
n3 ,

for c1 ≥ 9 ln 2 ≈ 6.24.

Under-estimate event. We wish to bound the probability that |CA(w)| > 3βn/s but
|S(w)| ≤ 2βT/s, where T = c1(s/β) log n. Let X denote the sum of |CA(w)| indicator
random variables for counting the members of CA(w) ∩ R, i.e., where each variable is 1
independently with probability T/n. Thus, E[X] = E[|S(w)|] = |CA(w)|(T/n) > 3c1 log n. So

Pr(|S(w)| ≤ 2βT/s) = Pr(X ≤ 2βT/s)

= Pr
(

X ≤ 2βn

s|CA(w)| · E[X]
)
≤ Pr(X ≤ (2/3) · E[X]).

Thus, by a standard Chernoff bound,8 e.g., see [39, p. 71],

Pr(|S(w)| ≤ 2βT/s) ≤ e−(3c1 log n)/18 ≤ 1
n3 ,

when c1 ≥ 18 ln 2 ≈ 12.48.

Of course, R is the same random sampling set for all our samples, S(w), for w ∈ W .
Nevertheless, by a union bound, the above analysis shows that R causes an over-estimate
event or an under-estimate event, for some S(w), with probability at most 1/n2.

By the bound on over-estimate events, we have shown that w.h.p. every cluster with size
over βn/s is included in W in any given iteration of our estimated-parallel-centers algorithm.
In addition, by the bound on under-estimate events, we have shown that w.h.p. every vertex,

7 Pr(X ≥ (1 + δ) · E[X]) ≤ e−δ2·E[X]/(2+δ), for δ > 0, e.g., see https://en.wikipedia.org/wiki/
Chernoff_bound.

8 Pr(X ≤ (1 − δ) · E[X]) ≤ e−δ2·E[X]/2, for 0 < δ < 1.

https://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Chernoff_bound
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w, that we exclude from W has a cluster size of at most 3βn/s. Thus, using essentially the
same analysis as we gave for the proofs of Theorem 2 and Lemma 14, and noting that each
iteration of our estimated-parallel-centers algorithm has round complexity O(R(n)) and query
complexity O(Q(n)(s/β) log n), where R(n) and Q(n) are the respective round and query
complexities for the Distances algorithm, we have the following.

▶ Lemma 15 (Lemma 4). Our estimated-parallel-centers algorithm constructs a set, A,
of (3β, s)-balanced centers of size O(s logβ n). Suppose Distances(r, U) executes in R(n)
rounds and Q(n) kth-hop queries. Then estimated-parallel-centers algorithm executes in
O(R(n) logβ n) rounds and O(Q(n)(s/β) log n logβ n) kth-hop queries, w.h.p.

A.3 Greedy Algorithm Proofs
Our description of our greedy algorithm given above in the body of our paper was for the
case when U ⊂ V . For the case when U = V , we modify our algorithm to be the following
(note that in this case, hop-count distance and graph distance are the same):
1. We initialize a set of tentative edges, Ê, to a spanning tree of H by calling kth-hop(1, v, u)

from every vertex, v ∈ U , to an arbitrarily chosen vertex, u ∈ U . We initialize a set of
confirmed non-edges, F ← ∅. This requires 1 round of O(n) kth-hop queries.

2. We compute all the Su,v(Ê) sets, for pairs (u, v) ∈ Êc, which requires no queries.
3. We perform p steps of the greedy set-cover algorithm applied to the sets, Su,v(Ê)\F ,

with the goal of covering the remaining pairs, in Êc\F , in a greedy fashion, which also
requires no queries. Let {(u1, v1), (u2, v2), . . . , (up, vp)} denote the vertex pairs for the
Su,v(Ê) sets chosen by these greedy steps.

4. We perform a binary search using kth-hop queries to determine the actual distance,
δ(ui, vi), between ui and vi in H, for each i = 1, 2, . . . , p in parallel. This step requires
O(log n) rounds of O(p log n) kth-hop queries in total.

5. For each i such that δ(ui, vi) = δ̂(ui, vi), we add all the pairs in Sui,vi
(Ê) to F . If F = Êc,

then we are done, by Lemma 10.
6. Otherwise, if F ̸= Êc and δ(ui, vi) = δ̂(ui, vi), for all i = 1, 2, . . . , p, then we repeat the

above process, performing another p steps of greedy set cover, repeating a loop returning
to Step 3.

7. If, on the other hand, F ̸= Êc and δ(ui, vi) < δ̂(ui, vi), for some i, then there must be at
least one edge on a shortest path from ui to vi that is in E and not yet in Ê. In this
case, we perform a binary search, described below, to find at least one such an edge,
add all such edges to Ê, and repeat the above greedy searching for this updated set, Ê,
of candidate edges, returning to Step 2. This step requires O(log n) rounds of at most
O(p log n) kth-hop queries in total.

Before we give our analysis, let us describe the details for the binary search to find
an undiscovered edge when δ(ui, vi) < δ̂(ui, vi), for some i. We begin with a query, kth-
hop(k, ui, vi), where k = ⌊δ(ui, vi)/2⌋, and let w denote the returned vertex. So, δ(ui, w) = k

and δ(w, vi) = δ(ui, vi)− k. Since δ(ui, vi) < δ̂(ui, vi), we know that δ(ui, w) < δ̂(ui, w) or
δ(w, vi) < δ̂(w, vi). Thus, we recursively search for one of these until we discover a new edge
not in Ê, which must exist, since δ(ui, vi) < δ̂(ui, vi).

▶ Theorem 16 (Theorem 11). Let f(n, ∆) be the query complexity of an optimal sequential
algorithm for graph verification for any unweighted connected graph with n vertices and
maximum degree ∆ using distance queries. Then, for 1 ≤ p < n, our parallel network
mapping algorithm has kth-hop query complexity, Q(n) ∈ O((∆np + f(n, ∆) log n)diam(G))
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and round complexity, R(n) ∈ O((∆n + (f(n, ∆)/p) log n)), if U ⊂ V , or Q(n) ∈ O((∆np +
f(n, ∆) log n) log n) and round complexity, R(n) ∈ O((∆n + (f(n, ∆)/p) log n) log n), if
U = V .

Proof. Building a spanning tree of H is a one-time expense taking O(n · diam(G)) kth-hop
queries and a round complexity of O(1) (step 1), for the case when U ⊂ V , or O(n) queries
with a round complexity of O(1) (step 1), for the case when U = V . Each iteration of our
greedy algorithm takes O(p · diam(G)) kth-hop queries with a round complexity of O(1)
(step 4), for the case when U ⊂ V , or O(p log n) kth-hop queries with a round complexity of
O(log n) (step 4 and step 7), for the case when U = V .

In the case when δh(ui, vi) < δ̂h(ui, vi), for some i ∈ [1, p], we discover at least one new
edge – let us charge the queries for this iteration to this edge. Thus, the total number of
kth-hop queries due to this case is O(∆np ·diam(G)), with O(∆n) rounds, for the U ⊂ V case,
or O(∆np log n), with O(∆n log n) rounds, for the U = V case. So, let us consider the case
when δh(ui, vi) = δ̂h(ui, vi), for all i ∈ [1, p], which we call a “completely-greedy” iteration.
We will provide an upper bound for the number of such iterations. Recall that in step 3, for
the case when U ⊂ V (similarly in step 3, for the case when U = V ) we performed p steps
of greedy set-cover algorithm applied to the sets, Su,v(Ê)\F , with the goal of covering the
remaining pairs, in Êc\F without additional queries. Let Fi denote the set of (x, y) pairs
covered by the i-th step of this greedy set-cover algorithm, for i = 1, 2, . . . , p. Thus,

|F1| ≥ |F2| ≥ · · · ≥ |Fp|,

and at the moment we chose the subset Fi it was the largest subset covering the uncovered
pairs in Ui = Êc\(

⋃i−1
j=1 Fj∪F ). The optimal sequential graph verification algorithm performs

f(n, ∆) distance queries and confirms all the pairs in Êc. Thus, in particular, this optimal
algorithm must perform queries that cover Ui as a part of its f(n, ∆) queries; hence, because
Fi is the subset for a distance query that covers the largest number of pairs in Ui, and the
average number of pairs in Ui covered by any distance query of the optimal algorithm is at
least |Ui|/f(n, ∆), we have that

|Fi| ≥
|Ui|

f(n, ∆) .

Thus, in any iteration of our algorithm, since we perform p greedy steps, the size of the
remaining pairs in Êc\F is reduced by a multiplicative factor of(

1− 1
f(n, ∆)

)p

≤ e−p/f(n,∆).

Therefore, since Êc ≤ n(n− 1) and by the end of our algorithm we cover every pair in Êc,
the total number of completely-greedy iterations, g, can be bounded above by the smallest
value of g such that

e−(p/f(n,∆))g < n−2;

therefore, the total number of completely-greedy iterations, g, is at most O((f(n, ∆)/p) log n).
Note that the set Êc is potentially growing during our algorithm, with completely-greedy
iterations possibly interspersed with iterations that discover new edges in Ẽ. Nevertheless,
the above analysis still holds, because (1) the function, f(n, ∆) is a uniform bound for any
connected graph with n nodes and maximum degree ∆, and (2) each time we (greedily)
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confirm that δ̂(u, v) = δ(u, v) for a set, Su,v(Ê), all the pairs in Su,v(Ê) are, in fact, non-edges
in Ẽc. The claimed complexity bounds follow then, since each completely-greedy iteration
requires O(p · diam(G)) kth-hop queries with round complexity O(1), for the U ⊂ V case, or
O(p log n) kth-hop queries with round complexity O(log n), for the U = V case. ◀
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Abstract
The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear
recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity
problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or
positivity) has been open for half a century: The best known decidability results are for LRS with
special properties (e.g., low order recurrences). On the other hand, these problems are much easier
for “uninitialized” variants, where the initial configuration is not fixed but can vary arbitrarily:
checking if there is an initial configuration from which the LRS stays positive can be decided by
polynomial time algorithms (Tiwari in 2004, Braverman in 2006).

In this paper, we consider problems that lie between the initialized and uninitialized variant.
More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration
in a neighborhood of a given initial configuration. This can be considered as a robust variant
of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of
decidability: if the neighborhood is given as part of the input, then robust Skolem and robust
positivity are Diophantine-hard, i.e., solving either would entail major breakthrough in Diophantine
approximations, as happens for (non-robust) positivity. Interestingly, this is the first Diophantine-
hardness result on a variant of the Skolem problem, to the best of our knowledge. On the other hand,
if one asks whether such a neighborhood exists, then the problems turn out to be decidable in their
full generality, with PSPACE complexity. Our analysis is based on the set of initial configurations
such that positivity holds, which leads to new insights into these difficult problems, and interesting
geometrical interpretations.
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1 Introduction

A linear recurrence relation (LRR) is a relation un+κ =
∑κ−1
j=0 aj ·un+j for all n, κ ∈ N, κ ≥ 1,

defined by a tuple of non-negative, rational coefficients (a0, . . . , aκ−1) . Given the first κ
entries of the recurrence u0, . . . uκ−1 (called the initial configuration), the LRR uniquely
defines an infinite sequence (un)n∈N, called a Linear Recurrence Sequence (LRS). The Skolem
problem asks, given an LRS, i.e., a recurrence relation and an initial configuration, whether
the sequence ever hits 0, i.e. does there exist n ∈ N with un = 0. The positivity problem is a
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variant where the question asked is whether for all n ∈ N, un ≥ 0. Both these problems have
applications in software verification, probabilistic model checking, discrete dynamic systems,
theoretical biology, economics.

While the statements seem simple, the decidability of these problems remains open since
their introduction in the 1930’s. Only partial decidability results are known, e.g., when the
dimension is <5 [29]. For a subclass of LRS called simple, positivity is decidable for order
<10 [23]. On top of the inability to provide an algorithm to decide Skolem or positivity in
the general case, the authors of [24] prove an important hardness result: solving positivity
would entail a major breakthroughs in Diophantine approximations. More precisely, one
would be able to approximate the type of many transcendental numbers t, i.e., how close one
can approximate t with rational numbers with small denominators.

This hardness result contrasts with positive results obtained for relaxations of the problems.
First, the continuous relaxation, where instead of considering discrete steps for the recurrence,
Chonev et al [13] considers a continuous process, and some corresponding questions turn out
to be decidable subject to Schanuel’s Conjecture. Second, instead of considering a fixed initial
configuration, [28, 12] consider every possible configuration as initial, i.e., they ask if there
exists an initial configuration starting from which ensures that all entries of the sequence
remain positive (this is sometimes called the uninitialized positivity problem). Surprisingly
they show that this problem can be decided in PTIME. More recently, this result has been
extended to processes with choices [5].

In this paper, we consider a natural variant that lies between the hard question of fixed
initial configuration [24], and the easy question when the initial configuration is totally
unconstrained [28, 12]. More precisely, we ask whether starting from an initial configuration
in a neighborhood, all entries of the recurrence sequence remain positive (we call this the
robust positivity problem) or away from zero (we call this the robust Skolem problem). An
immediate question that arises is whether the neighborhood is part of the input or not
and it turns out that this has a significant impact on decidability, as we discuss next. Our
motivation to look at these problems comes from their role in capturing a powerful and
natural notion of robustness, where the exact initial configuration cannot be fixed with
arbitrarily high precision (which is often the case with real systems).

Since we need to tackle multiple initial configurations, we reason about the set of initial
configurations from which positivity holds, which is sufficient to answer robustness questions.
For that, we revisit the usual algebraic equations in a more graphical manner, which forms
the crux of our approach. This allows us to reinterpret and generalize the hardness result of
[23], giving our first main contribution: if the neighborhood is given as a fixed ball, then
the problems remain hard: both robust Skolem and robust positivity are Diophantine-hard.
Interestingly, this holds regardless of whether the ball is open or closed.

We then turn to the problems where the ball is not fixed, and ask if there exists a radius
ψ > 0 such that 0 or negative numbers can be avoided from every initial configuration in
the ψ ball around a given initial configuration. Our second main contribution is to show
that this robust version of the Skolem and positivity problems are both decidable in full
generality, with PSPACE complexities.

Related work. As mentioned earlier, the Skolem problem and its variants have received a
lot of attention. Given the hardness of these problems, ε-approximate solutions have been
considered, e.g., in [9, 1] with different definitions of approximations. In comparison with
our work, these are designed towards allowing approximate model checking. More recently
the notion of imprecision in Skolem and related problems was considered in [6, 15]. In [6],
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the authors consider rounding functions at every step of the trajectory. In [15], the so called
Pseudo-Skolem problem is defined, where imprecisions up to ε are allowed at every step of
the trajectory, which is shown to be decidable in PTIME. These are quite different from
our notion of robustness, which faithfully considers the trajectories generated from a ball
representing ε-perturbations around the initial configuration. Lastly, [22] considers real
numbers as input (instead of rational numbers). This allows one to consider the set of initial
configurations for which decidability of Skolem is not known, and show that this set has
Lebesgue measure 0.

2 Preliminaries

Let κ be any non-negative integer (which will be used to denote the order of the LRS). Let
c,d be two vectors of Rκ that can be seen as one dimensional matrices of Rκ×1. The distance
between c,d is defined as ||c− d|| =

√
(c− d)T (c− d), the standard L2 distance. In this

paper, we will consider two norms on vectors: the first is the standard L2 norm ||c||. The
second is size(c), denoting the size of its bit representation i.e., number of bits needed to
write down c (for complexity). We use the same notation for scalar constants with size(a)
denoting the number of bits to represent a real/rational constant a. An algebraic number α
is a root of a polynomial p with integer coefficients. It can be represented uniquely [20] by a
4-tuple (p, a, b, r) as the only root of p at distance < r of a + ib, with a, b, r ∈ Q (also see
Appendix A.1). We define size(α) as the size of the bit representation of (p, a, b, r).

2.1 Linear Recurrence Sequences
We start by defining linear recurrence relations and sequences over rationals.

▶ Definition 1. A linear recurrence relation (un)n∈N of order κ is specified by a tuple of
coefficients a = (a0, . . . , aκ−1) ∈ Qκ. Given an initial configuration c = (c0, . . . , cκ−1) ∈ Qκ,
the LRR uniquely defines a linear recurrence sequence (LRS henceforth), which is the sequence
(un(c))n∈N, inductively defined as uj(c) = cj for j ≤ κ− 1, and

un+κ(c) =
κ−1∑
j=0

ajun+j(c) for all n ∈ N.

The companion matrix associated with the LRR/LRS (it does not depend upon the initial
configuration c) is:

M =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . aκ−1

 .

The characteristic polynomial of the LRR/LRS is Xκ −
∑κ−1
j=0 ajX

j. The LRS is said to be
simple if every root of the characteristic polynomial has multiplicity one. The size s of the
LRS is the size of its bit representation and is given by s =

∑κ−1
j=0 (size(aj) + size(cj)).

Notice that given an initial configuration c ∈ Qκ, we have that Mnc = (un(c), . . . , un+κ−1(c)).
Reasoning in the κ dimensions (un, . . . , un+κ−1) is a very useful technique that we will use
throughout the paper as it displays the LRR as a linear transformation M.
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The characteristic roots of an LRR/LRS are the roots of its characteristic polynomial,
and also the eigenvalues of the companion matrix. Let γ1, . . . , γr ∈ C be the characteristic
roots of the LRR/LRS. An eigenvalue γi is called dominant if it has maximal modulus
|γi| = maxj≤r |γj |, and residual otherwise. For all j ≤ r, γj is algebraic and size(γj) = sO(1).
We denote by mj the multiplicity of γj . We have

∑r
j=1 mj = κ.

▶ Proposition 2 (Exponential polynomial solution [16]). Given an initial configuration c, there
exists a unique tuple of coefficients (αij(c))i≤r,j<mr

such that for all n,

un(c) =
r∑
i=1

mr−1∑
j=0

αij(c)nj
 γni .

The coefficients αij(c) can be solved for from the initial state c [17]. It is implicit in
the solution that for all i, j, both αij and 1

αij
are algebraic with values and norms upper

bounded by 2sO(1) . A formal proof of this claim can be found in [2, Lemmas 4, 5, 6].
If the LRS is simple, then by definition mi = 1 for all i, and un =

∑r
i=1 αi(c)γni , with

αi(c) linear in c, ie αi(λc + λ′c′) = λαi(c) + λ′αi(c′).

▶ Example 3. Consider the Linear Recurrence Relation of order 6 with a =
(−1, 4,−8, 10,−8, 4), i.e. un+6 = 4un+5 − 8un+4 + 10un+3 − 8un+2 + 4un+1 − un. The
roots of the characteristic polynomial are 1, ei2πθ, e−i2πθ, with θ = 1

3 , each with multiplicity
2, and all dominant (they have the same modulus 1). The exponential polynomial solution is
of the form un(c) = z(c)n+ z′(c) + (x(c)n+ x′(c))ei2πnθ + (y(c)n+ y′(c))e−i2πnθ. As un(c)
is real, we must have that x(c), y(c) are conjugates, as well as x′(c), y′(c), and thus:

un(c) = z(c)n+z′(c)+2(Re(x(c))n+Re(x′(c))) cos(2πnθ)+2(Im(x(c))n+Im(x′(c))) sin(2πnθ).

2.2 Skolem and positivity problems
▶ Definition 4 (Skolem problem). Let (un)n∈N an LRR and c ∈ Qκ. The Skolem problem is
to determine if there exists n ∈ N such that un(c) = 0. The positivity (resp. strict positivity)
problem is to determine if for all n ∈ N, un(c) ≥ 0 (resp. un(c) > 0).

In this work, we will be more interested in the complement problem of Skolem: namely,
whether un(c) ̸= 0 for all n. This is of course equivalent in terms of decidability, but this
formulation is more meaningful in terms of robustness, where we want to robustly avoid 0.

The famous Skolem-Mahler-Lech theorem states that the set {i | ui(c) = 0} is the union
of a finite set F and finitely many arithmetic progressions [27, 18, 8]. These arithmetic
progressions can be computed but the hard part lies in deciding if the set F is empty:
although we know that there is N such that for all n > N , n /∈ F , we do not have an effective
bound on this N in general. The Skolem problem has been shown to be decidable for LRS of
order up to 4 [21, 29] and is still open for LRS of higher order. Also, only an NP-hardness
bound is known if the order is unrestricted [10, 3].

For simple LRS, positivity has been shown to be decidable up to order 9 [23]. In [25],
it is proved that positivity for simple LRS is hard for co∃R, the class of problems whose
complements are solvable in the existential theory of the reals. A last result, from [24],
shows the difficulty of positivity, linking it to Diophantine approximation: how close one can
approximate a transcendental number with a rational number with small denominator. We
will follow the reasoning from [24]. The Diophantine approximation type of a real number x
is defined as:

L(x) = inf
{
c ∈ R |

∣∣∣x− n

m

∣∣∣ < c

m2 , n,m ∈ Z
}
.
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As mentioned in [24], the Diophantine approximation type of most transcendental numbers
is unknown. Let A = {p+ qi ∈ C | p, q ∈ Q \ {0}, p2 + q2 = 1}, i.e., the set of points on the
unit circle of C with rational real and imaginary parts, excluding 1,−1, i and −i. The set A
consists of algebraic numbers of degree 2, none of which are roots of unity [24]. In particular,
writing p+ qi = 2i2πθ = (−1)2θ, we have that θ /∈ Q [24]. We denote:

T =
{
θ ∈ (−1/2, 1/2] | e2πiθ ∈ A

}
.

As argued in [24], the set T is dense in (− 1
2 ,

1
2 ], and is made only of transcendental

numbers. In general, we don’t have a method to compute L(θ) for θ ∈ T (or approximate it
with arbitrary precision):

▶ Definition 5. We say that a problem is T -Diophantine hard if its decidability entails that
for all θ ∈ T and ε > 0, one can compute a number ℓ such that |ℓ− L(θ)| ≤ ε.

Remarkably, in [24], it is shown that if one can solve the positivity problem in general,
then one can also approximate L(θ). That is,

▶ Theorem 6 ([24]). Positivity for LRS of order 6 is T -Diophantine hard.

3 Robust Skolem and Robust Positivity

Both Skolem and Positivity consider a single initial configuration c. In this article, we
investigate the notion of robustness, that is, whether the property is true in a neighborhood
of c, which is important for real systems, where setting c with an arbitrary precision is not
possible. We will consider two variants. The first one fixes the neighborhood as a ball Bψ of
radius ψ > 0 around an initial configuration c, while the second one asks for the existence of
an ψ > 0 such that for every initial configuration in Bψ, the respective condition is satisfied.

▶ Definition 7 (Robustness for Skolem and Positivity). Let (un)n∈N be a linear recurrence
relation (specified by the coefficient a ∈ Qκ), and c ∈ Qκ an initial configuration.

Given ψ > 0, the robust Skolem (resp. robust positivity) problem is to determine if
for all c′ with ||c′ − c|| < ψ (open balls), or ||c′ − c|| ≤ ψ (closed balls), we have un(c′) ̸= 0
(resp. un(c′) ≥ 0) for all n ∈ N.

The ∃-robust Skolem (resp. ∃-robust positivity) problem is to determine if there exists
ψ > 0 such that for all ||c′ − c|| < ψ we have un(c′) ̸= 0 (resp. un(c′) ≥ 0) for all n ∈ N.

Notice that we do not consider explicitly the case of closed balls for ∃-robust Skolem (resp.
positivity), because there exists an open ball of radius ψ > 0 for which robust Skolem (resp.
positivity) holds iff there exists a closed ball of radius ψ′ > 0 (e.g. ψ′ = ψ

2 ) for which it holds.
Our main results investigate the decidability and complexity of these problems.

▶ Theorem 8. Robust Skolem and robust positivity are T -Diophantine hard, even restricted
to recurrence relations of order 6 for open or closed balls of rational radius ψ.

Our first result means that uninitialized positivity really needs the initial configuration
to take a value possibly anywhere in the space rather than in a fixed neighborhood to obtain
decidability via [28, 12]. We remark that Diophantine-hardness is known for the non-robust
variant of positivity [24], but to the best of our knowledge, it was not known for any variant
of the Skolem problem.

Surprisingly, by relaxing the neighborhood to be as small as desired, one obtains decidab-
ility in full generality, as stated by our second main result:
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▶ Theorem 9. ∃-robust Skolem and ∃-robust positivity are decidable in PSPACE.

The main difference between our techniques and several past work (except [4] which
is restricted to eigenvalues being roots of unity) is as follows: given an LRR (un)n∈N, our
intuition and proofs hinge on representing the set P of initial configurations d from which
positivity holds. Formally:

P = {d ∈ Rk | un(d) ≥ 0 for all n ∈ N}.

We may note that the set P is convex. To see this, observe that for d, d′ ∈ P , for all
α, β > 0 with α+ β = 1, we have αd + βd′ ∈ P as un(αd + βd′) = αun(d) + βun(d′) ≥ 0
for all n. We also remark that a definition similar to P is possible for the set S of initial
configurations from which 0 is avoided. But it turns out that that set is much harder to
represent (e.g., it is not convex in general). Using P surprisingly suffices to deal with robust
Skolem as well.

In Section 4, we provide the geometric intuitions behind our ideas as well as set up the
notations for the proofs of the above theorems. We exploit the geometric intuitions from
Section 4 in Section 5, to prove Theorem 8 and in Section 6, to prove Theorem 9.

4 Geometrical representation of an LRR for Diophantine-hardness

We will show that, as for the non-robust variant, hardness starts at order 6. Hence, in this
section and the next, we will focus on a particular LRR of order κ = 6, sufficient for the
proof of hardness, i.e. Theorem 8. In Section 6, we will generalize some of the constructions
explored here to obtain decidability of ∃-robust Skolem.

Let θ ∈ T , i.e. ei2πθ = p+ qi ∈ A, with both p, q rational and p2 + q2 = 1. We want to
approximate L(θ) (indeed this is the problem that is “Diophantine-hard”). Consider the
Linear Recurrence Relation of order 6 defined by a = (−1, 4p+ 2,−(4p2 + 8p+ 3), 8p2 + 8p+
4,−(4p2 + 8p + 2), 4p + 2). The roots of the characteristic polynomial are 1, ei2πθ, e−i2πθ,
each with multiplicity 2, and all dominant (they have the same modulus 1). Example 3
is a particular case of this a, with p = 1

2 = cos(π3 ). However, notice that θ = 1
3 /∈ T as it

corresponds to q = sin(π3 ) =
√

3
2 /∈ Q. Now, since un(c) is a real number for any n and real

initial configuration c, we can write the exponential polynomial solution in the form:

un(c) =zdom(c)n− xdom(c)n cos(2πnθ)− ydom(c)n sin(2πnθ)
+ zres(c)− xres(c) cos(2πnθ)− yres(c) sin(2πnθ).

The coefficients zdom(c), xdom(c), ydom(c) and zres(c), xres(c), yres(c) are associated with
the initial configuration c of the LRS. In the following, we reason in the basis of vectors
−−→zdom,−−−→xdom,

−−→ydom,−−→zres,−−→xres,−−→yres, as the geometrical interpretation is simpler in this basis. We
will eventually get back to the original coordinate vector basis at the end of the process.
From e.g., [17, Section 2], we know that we can transform from one basis to the other using
an invertible Matrix C with C · c = (zdom(c), xdom(c), ydom(c), zres(c), xres(c), yres(c)).

We study the positivity of un by studying the positivity of vn = un

n , for all n ≥ 1. We
denote vdomn (zdom, xdom, ydom) = zdom − xdom cos(2πnθ) − ydom sin(2πnθ), which we call
the dominant part of vn, while we denote vresn (zres, xres, yres) = 1

n (zres − xres cos(2πnθ)−
yres sin(2πnθ)), which we call the residual part of vn. The residual part tends towards 0
when n tends towards infinity because of the coefficient 1

n .
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−−→zdom

(0, . . . , 0)
Hyperplane H1

Figure 1 Visual representation of the cone P(0,0,0).

4.1 High-Level intuition and Geometrical Interpretation
We provide a geometrical interpretation of set P . We cannot characterize it exactly, even
in this particular LRR of order κ = 6 (else we could decide positivity for this case which is
known to be Diophantine hard). To describe P , we define its “section” over (zdom, xdom, ydom)
given (zres, xres, yres):

P(zres,xres,yres) = {(zdom, xdom, ydom) | vn(zdom, xdom, ydom, zres, xres, yres) ≥ 0 for all n}.

It suffices to characterize P(zres,xres,yres) for all (zres, xres, yres) in order to characterize P ,
as P = {(zdom, xdom, ydom, zres, xres, yres) | (zdom, xdom, ydom) ∈ P(zres,xres,yres)}. Among
these sets, one is particularly interesting: P(0,0,0), as it is the set of tuples (zdom, xdom, ydom)
such that vdomn (zdom, xdom, ydom) ≥ 0 for all n ∈ N. Our reason for focussing on this
representation of P is three-fold. First, unlike P , the set P(0,0,0) can be characterized exactly,
as a cone depicted in Figure 1 (this will be formally shown in Lemma 10 below). Second,
the set P(zres,xres,yres) is in 3 dimensions that we can represent more intuitively than a
6 dimensional set. Last but not least, we can show that P(zres,xres,yres) ⊆ P(0,0,0) for all
(zres, xres, yres) (Lemma 12).

On the other hand, we also consider a related set in 6 dimensions:

Pdom = {(zdom, xdom, ydom, zres, xres, yres) | ∀n, vdomn (zdom, xdom, ydom)) ≥ 0}.

We note that P(0,0,0) is the projection of Pdom over the 3 dimensions (zdom, xdom, ydom). Also,
characterizing P(0,0,0) is sufficient to characterize Pdom as (zdom, xdom, ydom, zres, xres, yres) ∈
Pdom iff (zdom, xdom, ydom) ∈ P(0,0,0). As P(zres,xres,yres) ⊆ P(0,0,0) for all (zres, xres, yres),
we have P ⊆ Pdom.

We are now ready to represent P(zres,xres,yres) given some value (zres, xres, yres). We can
interpret P(zres,xres,yres) in terms of half spaces: P(zres,xres,yres) =

⋂∞
m=1 H

+
m(zres, xres, yres),

with H+
m(zres, xres, yres) = {(zdom, xdom, ydom) | vm(zdom, xdom, ydom, zres, xres, yres)) ≥ 0}.

The half space H+
m(zres, xres, yres) is delimited by hyperplane

Hm(zres, xres, yres) = {(zdom, xdom, ydom) | vm(zdom, xdom, ydom, zres, xres, yres)) = 0}

which is a vector space (cos(2πmθ) and sin(2πmθ) are constant when m is fixed).
Consider the case of (zres, xres, yres) = (0, 0, 0). We denote H+

m = H+
m(0, 0, 0) and

Hm = Hm(0, 0, 0) for all m. For instance, H0 = {(zdom, xdom, ydom) | zdom = xdom}, as
vdom0 (zdom, xdom, ydom) = zdom − xdom.

Let Mdom be the matrix associated with LRS (vdomn )n∈N. We have Hm = MdomHm−1 =
Mm

domH0. We characterize Mdom in Lemma 11 as a rotation around −−→zdom of angle −2πθ,
which allows to characterize Hm as the hyperplane which is the rotation of H0 of angle 2mπθ
around −−→zdom. That is, the cone shape for P(0,0,0)is obtained by cutting away chunk of the
3D space delimited by hyperplanes (Hm), the rotation 2nπθ being dense in [−π, π].
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Figure 2 Sections of P(0,0,0) (in black) and P(zres,xres,yres) (in dashed red), carved out by
hyperplanes (Hi) (in black) and (Hi(zres, xres, yres)) (in red) respectively.

Coming back to some value (zres, xres, yres) ̸= (0, 0, 0), we have that the hyperplane
Hn(zres, xres, yres) is parallel to the hyperplane Hn (which is tangent to the cone P(0,0,0)),
because for Hn of the form uzdom+vxdom+wydom = 0, we have Hn(zres, xres, yres) is defined
by {(zdom, xdom, ydom) | uzdom+vxdom+wydom = C}, for C = zres+xres cos(2πnθ)+yres sin(2πnθ)

n

a constant as n is fixed.
Thus, with this idea in mind, we can visualize P(zres,xres,yres) as depicted in Figure 2,

using P(0,0,0) and the hyperplanes Hn(zres, xres, yres) parallel to Hn, with an explicit bound
on the distance from Hn(zres, xres, yres) to Hn, which further tends towards 0 as n tends
towards infinity. Next, we formalize the above intuition/picture into lemmas.

4.2 Characterization of P(0,0,0) and representing P(zres,xres,yres)

We now formalize some of the ideas in the above subsection. First, we start with Lemma 10
which shows that P(0,0,0) describes a cone, as displayed on Figure 1.

▶ Lemma 10. P(0,0,0) = {(zdom, xdom, ydom) | zdom ≥
√
x2
dom + y2

dom}.

Proof. We have cos(2πnθ)2 + sin(2πnθ)2 = 1 and cos(2πnθ) is dense in [−1, 1] as θ /∈ Q.
Denote X = cos(2πnθ), and study the function f(X) = xdomX + ydom

√
1−X2. Its

derivative is f ′(X) = xdom − ydomX√
1−X

√
1+X . We have f ′(X) = 0 iff X = X0 =

xdom√
x2

dom
+y2

dom

. This gives a maximum for f(X0) = x2
dom+y2

dom√
x2

dom
+y2

dom

=
√
x2
dom + y2

dom. Thus,

for all (zdom, xdom, ydom) with zdom ≥
√
x2
dom + y2

dom, we have zdom ≥ max(f(X)) and
vn((zdom, xdom, ydom, zres, xres, yres) ≥ zdom − f(X) ≥ 0 for all n. On the other hand, if
zdom <

√
x2
dom + y2

dom, then there exists n such that f(cos(2πnθ)) is arbitrarily close to
max f(X) > zdom, and in particular vn = zdom − f(cos(2πnθ)) < 0. ◀

We show in Appendix A.2 the following lemma which states the linear function Mdom

associated with the LRR (vdomn )n∈N is actually a rotation of angle −2πθ.

▶ Lemma 11. Mdom(zdom, xdom, ydom) = (zdom, xdom cos(2πθ) + ydom sin(2πθ),
ydom cos(2πθ)− xdom sin(2πθ)), that is Mdom is a rotation around axis −→z of angle −2πθ.



S. Akshay, H. Bazille, B. Genest, and M. Vahanwala 5:9

Finally, the following lemma implies that P ⊆ Pdom.

▶ Lemma 12. For all zres, xres, yres, we have P(zres,xres,yres) ⊆ P(0,0,0).

Proof. We use the following simple but important observation. Let (un)n∈N be an LRS
where all roots have modulus 1, i.e., each root is of the form γ = eiθ, with distinct values of
θ. Let uj be the jth element of the LRS, with j ∈ N. Then for all ε,N , there exists n > N

with |un − uj | < ε. That is, for each value visited, the LRS will visit arbitrarily close values
an infinite number of times. This is the case in particular of vdomn .

Now, assume for contradiction that there is a configuration (zdom, xdom, ydom) in
P(zres,xres,yres) \ P(0,0,0). Since (zdom, xdom, ydom) /∈ P(0,0,0), there exists m with
vdomm (zdom, xdom, ydom) < 0. We let ε = |vdom

m (zdom,xdom,ydom)|
3 and N such that for all n > N ,

|vresn | < ε (because it converges towards 0 when n tends towards infinity). From the above ob-
servation, we obtain an n > N such that |vdomn (zdom, xdom, ydom)−vdomm (zdom, xdom, ydom)| <
ε. Thus:

vn(zdom, xdom, ydom, zres, xres, yres) < vdomn (zdom, xdom, ydom) + vresn (zres, xres, yres)
< vdomm (zdom, xdom, ydom) + ε+ ε < 0.

A contradiction with (zres, xdom, ydom) ∈ P(zres,xres,yres). ◀

5 Proof of Theorem 8

5.1 Intuition for hardness of (robust) positivity
Consider a vector d = (zdom, xdom, ydom, zres, xres, yres) on the surface of Pdom, that is,
(zdom, xdom, ydom) ∈ P(0,0,0). Consider the subset of P(0,0,0) which consists of points whose
first coordinate zdom is the same as that of d. For all n, let en be the point of this section
where hyperplane Hn is tangent to P(0,0,0). Let τ be the angle made between the center b of
the section, e0 and d. Hence, e0 is at angle 0 and en at angle 2πnθ mod 2π. We depict this
pictorially in Figure 3.

We have that un(d) ≥ 0 for all n iff d is in the intersection of all half spaces defined by
Hi(zres, xres, yres). As 2πnθ mod 2π is dense in [0, 2π), for all β > 0, there is a n such that
en is at angle αn ∈ [τ − β, τ + β], hence Hn will be ε-close to d. To know whether d is in
the half space defined by Hn(zres, xres, yres), we need to compare the distance ε between
Hn and d, with the value of n. If the value of n is too large, then the distance between
Hn(zres, xres, yres) and Hn is smaller than ε, and d is in the half space H+

n (zres, xres, yres).
In other words, for (un(d))n∈N not to be positive, n needs to be both small enough and

such that 2πnθ mod 2π is close to τ . This is similar to L(θ) being small, as shown in Lemma
13.

Now, for robust positivity (Theorem 8), we consider a ball B entirely in Pdom, tangent to
the surface of Pdom only on point d. The ball will be positive iff the curvature of the ball is
steeper than the curvature from hyperplanes Hn(zres, xres, yres)n∈N around d, as shown in
Lemma 14. This will correspond again to computing L(θ), thus showing hardness.

5.2 Formalizing the proof for closed balls and robust positivity
In this section, we formalize the intuition given above, in the case of a closed ball and for
robust positivity. We will extend this to the full proof of Theorem 8 in the next subsection.
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Figure 3 Representation of a section of P(0,0,0), with hyperplanes H0, H10 being represented.

We start by picking L(θ) = inf(c ∈ R | |θ − k
n | ≤

c
n2 , k, n ∈ N \ {0}), i.e., L(θ) =

inf(c ∈ R | |2πnθ − 2πk| ≤ 2πc
n , k, n ∈ N \ {0}). Denoting L+(θ) = inf(c ∈ R | 2πnθ

mod 2π ≤ 2πc
n , n ∈ N) and L−(θ) = inf(c ∈ R | | − 2πnθ mod 2π| ≤ 2πc

n , n ∈ N), we get
L(θ) = min(L+(θ), L−(θ)).

We show how to ε-approximate L+(θ) in the following, using an oracle for robust positivity,
following ideas in [24]. To compute some ℓ that is ε-close to L+(θ) for a given ε > 0, we
perform a binary search on ℓ. An old observation of Dirichlet shows that every real number
has Diophantine approximation type at most 1. Further, L(θ) ≥ 0 by definition. So, for the
binary search, we start with a lower bound ℓmin = 0 and an upper bound ℓmax = 1. For
ℓ := ℓmin+ℓmax

2 , we want to know if ℓ ≥ L+(θ)− ε (and then we set ℓmin := ℓ) or whether
ℓ ≤ L+(θ) + ε (and then we set ℓmax := ℓ). Approximating L−(θ) is done in a symmetric
way, and L(θ) can be approximated accordingly.

For an interval I of N, we denote L+
I (θ) = inf(c ∈ R | 2πnθ mod 2π ≤ 2πc

n , n ∈ I). For
instance, we have L+

N (θ) = L+(θ). We will denote > n1 for the interval I = {n1+1, n1+2, . . .}.

Let ε > 0 and ℓ be a guess to check against L+(θ). Consider the closed ball Bℓψ of
radius

√
2ψ, centered at c = (2 + ψ, 2− ψ, 0, 0, 0, 2πℓ), with ψ < 1

3 and ψ < πℓ. Notice that
d = (2, 2, 0, 0, 0, 2πℓ) ∈ Bℓψ, on its surface, as ||c − d|| =

√
2ψ. The ball Bℓψ is entirely in

Pdom (see Lemma 20 in Appendix A.3, which is not necessary for the rest of the proofs, it
is a sanity check because of Lemma 12). Further, the surface of the ball is tangent to the
surface of Pdom in d as 22 = 4 = (2 + 0)2 satisfies the equation of Lemma 10. In other words,
this the only point where the ball Bℓψ intersects the surface of Pdom.

We first explain the relationship between the positivity of (un(d)) and L(θ), which is the
crux of the proof of Theorem 6 by [24].

▶ Lemma 13. There is a computable n1 > 0 such that for all n2 ≥ n1, we have (un(d))n>n2

positive implies L+
>n2(θ) > ℓ− ε and (un(d))n>n2 not positive implies L+

>n2(θ) < ℓ+ ε.

Proof. Let αn = 2πnθ mod 2π ≥ 0. Considering the Taylor development for αn > 0 close
to 0 of (1− cos(αn)) and sin(αn), we get un(d) = 2

2α
2
n− 2πℓαn

n + f(αn), with f(αn) = O(α3
n).

We have un(d) ≤ 0 iff 2πℓαn

n is larger than α2
n(1 + f(αn)

α2
n

), that is iff αn ≤ 2πℓ
n(1+ f(αn)

α2
n

)
.
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There exists a value α0 > 0 such that αn < α0 implies 1− ε
ℓ ≤

1
(1+ f(αn)

α2
n

)
≤ 1 + ε

ℓ . That

is, if un(d) ≤ 0 and αn < α0, then L+(θ) ≤ ℓ+ ε. Let n0 = ⌊ πℓ
1−cos(α0)⌋+ 1. As | sin(α)| ≤ 1,

if αn > α0, then for all n > n0, un(d) > 2(1− cos(α0))− 2πℓ 1−cos(α0)
πℓ = 0 is positive. We

define n1 = max(n0, ⌊ 2π(ℓ−ε)
α0

⌋+ 1).
That is, if un(d) ≤ 0 with n > n1, then n > n0 and αn < α0, and thus L+

>n1(θ) ≤ ℓ+ ε.
Otherwise, for all n > n1, we have un(d) is positive and 2πnθ mod 2π > ℓ− ε. Thus we

have L+
>n1(θ) ≥ ℓ− ε. ◀

The ball Bℓψ is chosen to have the following crucial Lemma to approximate L+(θ):

▶ Lemma 14. If L+(θ) ≥ ℓ+ ε, there exists an explicitly computable ψ such that un(d′) ≥ 0
for all n > n1 and all d′ ∈ Bℓψ, for the n1 from Lemma 13.

The proof of Lemma 14 uses Lemmas 10, 11 and the description of Hn(zres, xres, yres) as
parallel and at a bounded distance to Hn.

Proof. Let e = (2 + ψ + z′
dom, 2− ψ + x′

dom, ydom, zres, xres, 2πℓ+ y′
res) ∈ Bℓψ, and use the

same notation λ1, λ2, λ3 as in the proof of Lemma 20. We write λ3 = cos(β), and we get
x′
dom =

√
2 cos(β)λ2λ1ψ and y′

dom =
√

2 sin(β)λ2λ1ψ.
Consider the Circle Cdom, section of P(0,0,0) over −−−→xdom,−−→ydom for zdom = 2 +ψ+ z′

dom. It is
of diameter 2+ψ+z′

dom. Let α the angle (bd′,be) with b = (2+ψ+z′
dom, 0, 0, zres, xres, 2πℓ+

y′
res) and d′ = (2 + ψ + z′

dom, 2 + ψ + z′
dom, 0, zres, xres, 2πℓ+ y′

res).
Consider r the distance between b and e. We have cos(α) = 2−(1−

√
2 cos β|λ2|λ1)ψ
r . Hence

x ≥ 2 − ψ ≥ 1. We also have sinα =
√

2|λ2|λ1ψ sin β
r ≤ ψ. Thus α is small wrt 1, and

r = 2−(1−
√

2 cos β|λ2|λ1)ψ
cos(α) = (1 +O(α2))(2− (1−

√
2 cosβ|λ2|λ1)ψ).

We want to know whether e is in P(zres,xres,2πℓ+y′
res). It is not the case iff there exists an

half space H+
n (zres, xres, 2πℓ+y′

res) such that e /∈ H+
n (zres, xres, 2πℓ+y′

res). Take n with nθ
mod 2π < α. As L+(θ) ≥ ℓ+ ε, we have n > 2π(ℓ+ε)

α > 2πℓ
α . That is, the remainder for this

α is bounded by ψ
√

2−2λ2
1

n + 2πℓ
n sinα < α(sinα+ ψ

√
2−2λ2

1
2πℓ ). The diameter of the Cdom circle

is 2 + ψ + z′
dom. By Lemma 10 and the description of Hn(zres, xres, yres) as parallel to Hn,

Figure 4 Representation of B in the section over −−−→xdom,−−→ydom at height ℓ = 2 +ψ+ z′
dom over −−→zdom.
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5:12 On Robustness for the Skolem and Positivity Problems

characterized by Lemma 11, and at a distance from Hn which we can effectively bound for
all n ∈ N, we obtain that if r is smaller than 2 + ψ ±

√
2
√

1− λ2
2λ1ψ − α(sinα+ ψ

√
2−2λ2

1
2πℓ ),

then e is in P(zres,xres,2πℓ+y′
res).

That is, we want 2+ψ±
√

2
√

1− λ2
2λ1ψ−α(sinα+ ψ

√
2−2λ2

1
2πℓ )−r = ψ(2±

√
2
√

1− λ2
2λ1−

√
2 cosβ|λ2|λ1) − α

√
2−2λ2

1
2πℓ )) + O(α2) > 0. Now remark that |

√
2
√

1− λ2
2λ1ψ +

√
2 cosβ|λ2|λ1| ≤ λ1(

√
2 + 2 cos2 β). And also |λ1(

√
2 + 2 cos2 β) + α

ψ
√

2−2λ2
1

2πℓ )| ≤√
2 + 2 cos2 β + α2 ψ2

πℓ , applying twice the same reasoning as in the proof of Lemma 15.
We now prove that we have ψ(1− cos2 β) = ψ sin2 β dominates any O(α2) for ψ small,

i.e., we prove that for any f = O(α2), we have f
ψ(sin2 β) tends to 0 as ψ tends to 0. In

particular, for all ψ small enough, the fraction is below 1, i.e., (sin2 β)ψ > f . We have
(sin2 β)ψ ≥ r2 sin2(α)

ψ ≥ sin2(α)
ψ as r ∈ [1, 3]. This indeed dominates any function O(α2), as

α
sinα is bounded in [−π2 ,

π
2 ]. In particular, sin2 β > α2 ψ2

2πℓ ) for ψ small enough.

Now, we write
√

2 + 2 cos2 β + α2 ψ2

πℓ = 2
√

1− 1
2 (sin2 β − α2 ψ2

2πℓ ) ≤ 2(1 − 1
4 (sin2 β −

1
4α

2 ψ2

2πℓ )) using the Taylor development of
√

1− r, and the fact that (sin2 β − α2 ψ2

2πℓ ) > 0
because ψ is small enough. Thus, we obtain ψ(2−2(1− 1

4 (sin2 β))+O(α2) = ψ
4 (sin2 β)+O(α2),

which is positive for ψ small enough, and e is in P(zres,xres,2πℓ+y′
res).

Notice that the function in O(α2) is well defined and well known, and thus Ψ small
enough can be effectively computed. ◀

Let us explain why these two Lemmas suffice, provided that we have an oracle for ψ-robust
positivity, to answer either L+(θ) ≤ ℓ + ε or L+(θ) ≥ ℓ − ε, which proves Theorem 8 for
robust positivity and closed balls. Intuitively, if the ball Bℓψ is positive, then in particular
(un(d)) is positive since d ∈ Bℓψ and we have L+

>n1(θ) > ℓ− ε by Lemma 13. Otherwise, the
ball is not positive and Lemma 14 shows that L+(θ) < ℓ+ ε, granted that the radius of the
ball is small enough.

Proof of Theorem 8 for robust positivity and closed balls. Let ε > 0. Assume that an ℓ

has been fixed, such that we want to know either L+(θ) < ℓ + ε or L+(θ) > ℓ − ε. First,
we fix ψ given by Lemma 14. We remark that Bℓψ corresponds to a ball in the coordinates
(zdom, xdom, ydom, zres, xres, yres) (which are not necessarily orthonormal), not in the original
coordinates (v0, v1, v2, v3, v4, v5). Taking the transformation from the latter to the former,
which is a linear operator H, the ball Bℓψ corresponds to an ovaloid O in the original
coordinates. We can explicitly define a ball B′ ⊆ O in the original coordinates, with d ∈ B′.
Notice that we can choose B′ with an arbitrarily small radius, so in particular we can choose
this radius to be rational without loss of generality.

We first compute L+
≤n1

(θ), which is easy as it only involves a bounded number of indices
n. If L+

≤n1
(θ) < ℓ+ ε, then we know L+(θ) ≤ L+

≤n1
(θ) < ℓ+ ε and we stop.

Otherwise L+
≤n1

(θ) ≥ ℓ + ε, and we check whether un(d′) ≥ 0 for all n > n1 and all
d′ ∈ B′, using the robust positivity oracle (by starting from Mn1(v0, . . . , vk) rather than
(v0, . . . , vk)). If it is positive, then in particular it is for d′ = d, and applying Lemma 13, we
obtain L+

>n1(θ) > ℓ− ε. Combined with L+
≤n1

(θ) ≥ ℓ+ ε, we obtain L+(θ) > ℓ− ε.
The last case means that there is un(d′) < 0 for some n > n1 and d ∈ B′ ⊆ Bℓψ. Applying

the contrapositive of Lemma 14, we obtain that L+(θ) < ℓ+ ε. ◀
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5.3 Case of Open Balls and robust Skolem
In this subsection, we extend the proof of Theorem 8 to show that considering open or
closed balls does not make a difference for the Diophantine-hardness. Further, there is also
no difference whether we consider the robust Skolem problem (0 is avoided), the robust
positivity problem (negative numbers are avoided), or the robust strict positivity problem
(negative and 0 are avoided).

Let B be an open ball and cl(B) its topological closure, which is the closed ball consisting
of B and its surface. Consider the following statements:
1. Robust Positivity holds for the closed ball cl(B)
2. Robust Positivity holds for the open ball B
3. Robust Strict Positivity holds for the open ball B
4. Robust Skolem holds for the open ball B
5. Robust Strict Positivity holds for the closed ball cl(B)
6. Robust Skolem holds for the closed ball cl(B)

We show that equivalence results between these statements. This allows us to conclude
that having open or closed balls does not make a difference for T -Diophantine hardness of
Skolem and (strict) positivity. Formally, we have the following.

▶ Lemma 15. (1), (2) and (3) are equivalent. Further, for balls B containing at least one
initial configuration d0 in its interior that is strictly positive, i.e. un(d0) > 0 for all n, both
(3) and (4) are equivalent and (5) and (6) are equivalent.

Proof. (1) implying (2) is trivial. (2) implies (1): we show the contrapositive. Suppose there
exists an initial configuration d on the surface of the ball B and an integer n such that
un(d) = y < 0. Recall that M is the companion matrix, and un(d) is the first component of
(Mn.d), so un(x) is a continuous function. Thus, there exists a neighbourhood of d, such
that for all d′ in the neighbourhood, un(d′) < y/2 < 0. This neighbourhood intersects the
open ball B enclosed by the surface, and picking d′ in this intersection shows that Robust
Positivity does not hold in the open ball.

(3) implying (2) is trivial. (2) implies (3): Assume for the sake of contradiction that there
is an initial configuration c′ in the open ball B such that un(c′) = 0. Consider any open O

around c′ entirely in the open ball B. We have that c′ is on hyperplane Hn by definition.
That is, there are initial configurations in O on both sides of Hn. In particular, there is an
initial configuration c′′ in O, hence in B, with c′′ /∈ H+

n , i.e. un(c′′) < 0, a contradiction
with B being robustly positive.

(3) implies (4) is trivial. (4) implies (3): We consider the contrapositive: if we have an
initial configuration d1 of B which is not strictly positive, then un(d1) ≤ 0 for some n, and
there is a barycenter d2 between d0,d1 which satisfies un(d2) = 0, i.e. negation of (4). To
be more precise, we can choose d2 = −un(d1)

un(d1)−un(c) d0 + un(d1)
un(d1)−un(d0) d1.

Now, (5) and (6) are equivalent for balls containing at least one initial configuration d0
that is strictly positive in its interior (same proof as for the equivalence between (3) and (4)
above). However, notice that (5,6) are not equivalent with (1,2,3,4) in general. ◀

We are now ready to prove Theorem 8 for open balls B. It suffices to remark that the
center c of Bℓψ is strictly in the interior of Pdom, and thus it will be eventually strictly positive
by Lemma 10, that is there exists n2 > n1 such that un(c) > 0 for all n > n2, and we can
choose d0 = c. Hence by Lemma 15, robustness (for n > max(n1, n2)) of positivity, strict
positivity and Skolem are equivalent on B, and these are equivalent with robust positivity of
cl(B) which was proved T -Diophantine hard in the previous section.
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5:14 On Robustness for the Skolem and Positivity Problems

It remains to prove Theorem 8 for robust Skolem for closed balls B. For that, it suffices
to easily adapt Lemma 13, replacing (un(d))n>n2 positive by strictly positive, and obtain the
T -Diophantine hardness for robust strict positivity of closed balls. We again apply Lemma
15 ((5) and (6) are equivalent) to obtain hardness for robust Skolem of closed balls.

6 Proof of Theorem 9

We now turn to the proof of Theorem 9, generalizing elements from Section 4.

6.1 Intuitions for the proof of Theorem 9
Let (un)n∈N be a recurrence relation defined by coefficients a ∈ Qκ. As before, we will
consider (vn)n∈N = (un

fn
)n∈N, for fn such that the dominant coefficients of (vn)n∈N are of the

form αeinθ. We will then decompose the exponential solution of (vn)n∈N as a dominant term
(vdomn )n∈N made of coefficients αeinθ, and a residue (vresn )n∈N with (vresn )n∈N −→

n→+∞
0. For

an initial distribution a, we denote by adom its projection on dominant space. As before, we
define Pdom = {a | ∀n, vdomn (adom) ≥ 0}.

To solve ∃-robust Skolem and ∃-robust positivity, the reasoning is based on the range of
the dominant term. For ∃-robust Skolem, we consider the minimum absolute value ν of the
dominant term |vdomn (c0)| obtained for the center of the neighborhood c0.

ν > 0. Then as the residue has negligible contribution to (vn)n∈N for large n, we show
that the LRS will ultimately avoid zero beyond a threshold index nthr. Having assured
ourselves of the long run behaviour, it suffices to check the value of the LRS up to nthr,
where the residue can have significant contribution, to see whether the LRS satisfies
robust Skolem.
ν = 0. Then we show in Proposition 18 that the LRS does not satisfy robust Skolem: no
matter how small we pick a neighbourhood around c0, there will always exist a c in that
neighbourhood that hits zero at some iteration.
Further, Proposition 17 states that ν can be computed effectively.

For robust positivity, we let µ be the minimum value of the dominant term (and not of its
absolute value). Thus, µ can take three kinds of values: µ > 0 (c0 ∈ Pdom) and we proceed
as for ν > 0; µ < 0 (c0 /∈ Pdom) and then there exists a n such that the LRS from c0 is
negative; and µ = 0 (c0 is at the surface of Pdom), and then we can show that there exists a
configuration arbitrarily close to c such that the LRS from that configuration is negative.

6.2 Range of the Dominant Term
We first define the normalized exponential polynomial solution (vn)n∈N:

▶ Definition 16. Let (un)n∈N be an LRS of general term un(c) =
∑r
i=1

∑mr−1
j=0 pijn

jγni ,
with ρ being the modulus of the dominant roots and m + 1 the maximal multiplicity of a
dominant root. Define vn(c) = un(c)

nmρn for n > 0, and v0(c) = u0(c).

We call every term of vn which converges towards 0 as n tends towards infinity residual,
while the other terms, of the form αeiθ are dominant. We denote {θj | j = 1, . . . , k} the set
of θ in dominant terms, and αj(c) the associated coefficient. We define:

vdomn (c) =
∑

αj(c)einθj and vresn (c) = vn(c)− vdomn (c) = O( 1
n

)→n→∞ 0.
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As we explained in Section 6.1, knowing the range of (vdomn )n∈N is crucial in order to solve
∃-robust Skolem and positivity. In Section 4 and 5, we dealt with hardness via an example
which had 3 dominant roots, and it was rather simple to determine the min/max value
(computed in the proof of Lemma 10). The general case is not so easy however, because
there may be relationships between the θj which may alter the range of (vdomn )n∈N.

A tedious but now rather classical way to compute the range of (vdomn )n∈N is by invoking
Masser’s theorem [19] (Theorem 21 in Appendix A.4), to describe the set of tuples that can
be reached (at least arbitrarily close) by sn = (einθ1 , . . . , einθk ) for n ∈ N, as used in [23,
Theorem 4]. We can describe a continuous relaxation of {sn | n ∈ N} as a set T of tuples
t = (t1, . . . , tk) of complex numbers with |tj | = 1 for all j. The set T is the set of linear
combinations of the finite basis given by Theorem 21, which describes a Torus, independent
of the initial configuration c. Notice that T may be discrete and have finitely many points
(the case where θj

2π ∈ Q), else, it is continuous and has uncountably many points.
We have sn ∈ T for all n ∈ N. Further, Kronecker [11] (Theorem 22 in Appendix A.4)

implies that for all t = (t1, . . . , tk) ∈ T and ε > 0, there exists an n such that |tj − einθj | ≤ ε
for all j ≤ k. For every initial configuration c and element of the torus t ∈ T , we denote
dominant(c, t) =

∑
j αj(c)tj . Thus, for all n and all c, we have vdomn (c) = dominant(c, sn).

Conversely, for all t ∈ T, ε > 0, there exists n with |vdomn (c)− dominant(c, t)| ≤ ε, for all c.
Using Renegar’s result [26], one can compute effectively the range of dominant(c, t) over T ,

and thus of (vdomn )n∈N. A simple adaptation allows to compute the range of |dominant(c, t)|.
In the following, we fix c0 to be the center of the neighborhood and define

µ = min
t∈T

(dominant(c0, t)) and ν = min
t∈T
|dominant(c0, t)|.

▶ Proposition 17. µ and ν are algebraic and can be efficiently computed. Further, we have
|µ|, |ν| < 2sO(1) and 1

|µ| ,
1

|ν| < 2sO(1)

Proof. The statement for µ comes directly from Renegar [26], stating that we can compute
the min and max values µ = mint∈T (dominant(c0, t)) and µ′ = maxt∈T (dominant(c0, t))
over t in the torus T . The statement for ν is a corollary obtained as follows:

If µ > 0 (un(c0) ≥ µ > 0 for all n ∈ N), then ν = µ and we are done.
If µ′ < 0 (un(c0) ≤ µ′ < 0 for all n), then ν = −µ′.
If T is discrete, we enumerate the polynomially many values of t (noting that they all
correspond to λth roots of unity, and Masser polynomially bounds λ) to compute ν as
the minimum of the absolute values.
Otherwise, we have µ < 0 < µ′, that is there exist two elements t, t′ ∈ T with
dominant(c0, t) < 0 < dominant(c0, t′). As x 7→ dominant(c0,x) is continuous over
T , there is a t′′ ∈ T with dominant(c0, t′′) = 0, that is ν = 0. ◀

We now state that if µ ≤ 0, then ∃-robust positivity does not hold, while if ν = 0, then
∃-robust Skolem does not hold.

▶ Proposition 18. If µ ≤ 0, then ∀ε > 0, ∃n, cε with |c0 − cε| ≤ ε such that vn(cε) < 0.
If ν = 0, then ∀ε > 0, ∃n, cε with |c0 − cε| ≤ ε such that vn(cε) = 0.

To prove Proposition 18, we reason as follows. For every n, let distance(c, Hn) be the
distance between an initial configuration c and the hyperplane Hn = {c′ | vn(c′) = 0} =
{c′ | un(c′) = 0}. If distance(c0, Hn) < ε, then there exists a cε with |c0 − cε| ≤ ε such
that vn(cε) = 0 (∃-robust Skolem does not hold). It also implies the existence of a c′

ε with
|c0 − c′

ε| ≤ ε and vn(c′
ε) < 0, as there will be initial configurations in the ε neighborhood

of c0 on both sides of Hn, thus some will be outside of H+
n = {c′ | vn(c′) ≥ 0}, thus with

vn(cε) < 0 (∃-robust positivity does not hold).
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▶ Lemma 19. There exists C such that for all n, distance(c, Hn) ≤ C · |vn(c)|.

Lemma 19, proved in Appendix A.4, implies that if for all α > 0, there exists nα with
|vnα(c)| < α, then there exists n with distance(c, Hn) < ε (choose n = nα for α = ε

2C ).

Proof of Proposition 18. Consider the first statement. If µ < 0, then there exists n with
|vresn (c0)| ≤ µ

2 as vresn (c0)→n→∞ 0. Thus vn(c0) = vdomn (c0)+vresn (c0) < µ
2 . That is, cε = c0

satisfies the statement. Otherwise, µ = 0. We prove that for all α > 0, we have a nα such that
|vnα

(c0)| ≤ α, which suffices by Lemma 19. Let α > 0 arbitrarily small, and let N such that
for all n > N , |vresn (c0)| ≤ α

2 . This N exists as vresn (c0)→n→∞ 0. By Kronecker, as µ = 0,
there exists nα > N with |vdomnα

(c0)| < α
2 . Thus |vnα(c0)| ≤ |vdomnα

(c0)|+ |vresnα
(c0)| ≤ α.

We now prove the second statement in the same way. Assume ν = 0, and let ε > 0.
We again prove that for all α > 0, we have a nα such that |vnα(c0)| ≤ α, which suffices by
Lemma 19. Let α > 0 arbitrarily small, and let N such that for all n > N , |vresn (c0)| ≤ α

2 .
This N exists as vresn (c0) →n→∞ 0. By Kronecker, as ν = 0, there exists nα > N with
|vdomnα

(c0)| < α
2 . Thus |vnα

(c0)| ≤ |vdomnα
(c0)|+ |vresnα

(c0)| ≤ α. ◀

6.3 Decidability and complexity for ∃-robust Skolem and ∃-robust
positivity

We now turn to deciding ∃-robust Skolem and positivity as stated in Theorem 9, using
Proposition 18. The algorithm for ∃-robust Skolem is as follows (as detailed in Algorithm 1
in Appendix A.4). First, we compute ν ← mint∈T |dominant(c, t)| using Proposition 17, for
c the initial configuration around which we are looking for a neighborhood. If ν = 0, then
∃-robust Skolem does not hold. Otherwise, we compute N such that vresn (c0) < ν

2 for all
n > N . Then we check if vn(c0) = 0 for some n ≤ N . If yes, then ∃-robust Skolem does not
hold, otherwise it holds. This algorithm can readily be adapted to provide an ε > 0 such
that for all c with |c− c0| ≤ ε, we have uc ̸= 0, as well as to decide robust positivity.

The correctness of the above algorithm follows from Proposition 18, because if ν > 0,
then for all n > N , vn(c0) > ν − ν

2 ≥
ν
2 > 0, and this remains > 0 in a neighborhood of c0.

Denoting ν′(c) = minn≤N |vn(c)|, if ν′(c0) > 0, then also ν′(c) for c in a neighborhood of c0.
We now argue about the complexity. Both µ and 1/µ = 2sO(1) are bounded (Proposi-

tion 17). We thus have nthr = 2sO(1) because vresn (c0) = O( 1
n ). This is the number of iterates

we have to explicitly check, which gives the PSPACE complexity. This finally completes the
proof of Theorem 9.

7 Conclusion

We have formulated a natural notion of robustness for the Skolem and positivity problems and
shown several results: for a given neighborhood around an initial configuration c0, we show
Diophantine-hardness for both problems. Interestingly, this is the first Diophantine-hardness
result for a variant of Skolem as far as we know. This implies that for uninitialized positivity,
the fact that the initial configuration c0 is arbitrary is crucial to decidability [28, 12], as
having a fixed ball around c0 is not sufficient.

On the other hand, we proved decidability of ∃-robust Skolem/Positivity around an
initial configuration in full generality, hence this problem is simpler. It is also more practical
because in a real system, it is often impossible to determine the initial configuration with
absolute accuracy. Our results can provide a precision with which it is sufficient to set the
initial configuration. Beyond these results, we provided geometrical reinterpretations of
Skolem/positivity, shedding a new light on this hard open problem.
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A Appendix

A.1 Regarding algebraic numbers and their bit representation
A complex number α is said to be algebraic if it is a root of a polynomial with integer
coefficients. For an algebraic number α, its defining polynomial pα is the unique polynomial
of least degree of Z[X] such that the GCD of its coefficients is 1 and α is one of its roots.
Given a polynomial p ∈ Z[X], we denote the length of its representation size(p), its height
H(p) the maximum absolute value of the coefficients of p and d(p) the degree of p. When
the context is clear, we will only use H and d.

A separation bound provided in [20] has established that for distinct roots α and β of a
polynomial p ∈ Z[x], |α− β| >

√
6

d(d+1)/2Hd−1 . This bound allows one to represent an algebraic
number α as a 4-tuple (p, a, b, r) where α is the only root of p at distance ≤ r if a+ ib, and
we denote sizeα the size of this representation, i.e., number of bits needed to write down this
4-tuple.

Further, we note that two distinct algebraic numbers α and β, are always roots of pαpβ ,
and we have that

1
|α− β|

= 2(||α||+||β||)O(1)
. (1)

Given a polynomial p ∈ Z[X], one can compute its roots in polynomial time wrt size(p) [7].
Since algebraic numbers form a field, given α, β two algebraic numbers, one can always
compute the representations of α+ β, αβ, 1

α , Re(α), Im(α) in polynomial time wrt size(α) +
size(β) [7, 14].



S. Akshay, H. Bazille, B. Genest, and M. Vahanwala 5:19

A.2 Proofs for Section 4
▶ Lemma 11. Mdom(zdom, xdom, ydom) = (zdom, xdom cos(2πθ) + ydom sin(2πθ),
ydom cos(2πθ)− xdom sin(2πθ)), that is Mdom is a rotation around axis −→z of angle −2πθ.

Proof. We use the formulas cos(a + b) = cos(a) cos(b) − sin(a) sin(b) and sin(a + b) =
sin(a) cos(b) + cos(a) sin(b).

Matrix Mdom transforms vdomn (zdom, xdom, ydom) into vdomn+1(zdom, xdom, ydom). Us-
ing the formulas above with a = 2πnθ, b = 2πθ, we have that for all n ≥
1, vdomn+1(zdom, xdom, ydom) = vdomn (zdom, xdom cos(2πθ) + ydom sin(2πθ), ydom cos(2πθ) −
xdom sin(2πθ)) for all n, and thus Mdom transforms (zdom, xdom, ydom) into
(zdom, xdom cos(2πθ) + ydom sin(2πθ), ydom cos(2πθ)− xdom sin(2πθ)).

Now, consider a point p in 2D space at cartesian coordinates (xdom, ydom). Its polar
coordinates are (r, α), with r =

√
x2
dom + y2

dom the distance between (0, 0) and p. Con-
sider the point at polar coordinates (r, α − 2πθ). Thus it is at cartesian coordinates
(r cos(α − 2πθ), r sin(α − 2πθ)) = (r cos(α) cos(2πθ) + r sin(α) sin(2πθ), r sin(α) cos(2πθ) −
r cos(α) sin(2πθ)) = xdom cos(2πθ) + ydom sin(2πθ), ydom cos(2πθ) − xdom sin(2πθ)).
Hence the rotation of angle −2πθ transforms (xdom, ydom) into (xdom cos(2πθ) +
ydom sin(2πθ), ydom cos(2πθ)− xdom sin(2πθ)). ◀

A.3 Proofs for Section 5
We now show that Bℓψ is fully in Pdom, tangent to the surface of Pdom, for d = (2, 2, 0, 0, 0, 2πℓ).

▶ Lemma 20. Let d = (2, 2, 0, 0, 0, 2πℓ). For all d′ ̸= d with d′ ∈ Bℓψ, we have d′ is strictly
in Pdom, ie for all n vdomn (d′) > 0.

Proof. Let d′ = (2 + ψ + z′
dom, 2 − ψ + x′

dom, ydom, zres, xres, 2πℓ + y′
res) ∈ Bℓψ \ {d}. We

now show that d′ is strictly in Pdom, i.e. (2 + ψ + z′
dom)−

√
(2− ψ + x′

dom)2 + y2
dom > 0.

We have z′
dom

2 +x′
dom

2 + y2
dom ≤ 2ψ2, and we write z′

dom
2 +x′

dom
2 + y2

dom = 2λ2
1ψ

2, with
λ1 ∈ [0, 1] and λ1 = 1 iff (zres, xres, y′

res) = (0, 0, 0). We also write x′
dom

2 + y2
dom = 2λ2

2λ
2
1ψ

2

with λ2
2 ∈ [0, 1], i.e. z′

dom
2 = 2(1− λ2

2)λ2
1ψ. We write x′

dom
2 = 2λ2

3λ
2
2λ

2
1ψ

2, with λ3 ∈ [0, 1]
and λ3 = 1 iff ydom = 0. We write x′

dom =
√

2λ3λ2λ1ψ and z′
dom = ±

√
2
√

1− λ2
2λ1ψ. That

is, d is the configuration with λ1 = λ3 = 1 and λ2 =
√

2
2 .

We have (2 − ψ + x′
dom)2 + y2

dom = (2 − ψ)2 + x′2
dom + y2

dom + 2(2 − ψ)x′
dom = (2 −

ψ)2 + 2λ2
2λ

2
1ψ

2 + 2
√

2(2 − ψ)λ3λ2λ1ψ ≤ (2 − ψ)2 + 2λ2
2λ

2
1ψ

2 + 2
√

2(2 − ψ)|λ2|λ1ψ = (2 −
ψ +
√

2|λ2|λ1ψ)2, with equality iff λ3 = 1, ie when ydom = 0. Given that ψ < 1
3 , we have

2− ψ +
√

2|λ2|λ1ψ > 0.
Thus (2 + ψ + z′

dom)−
√

(2− ψ − x′
dom)2 + y2

dom ≥ 2 + ψ ±
√

2
√

1− λ2
2λ1ψ − (2− ψ +√

2|λ2|λ1ψ) = 2ψ −
√

2(|λ2| ±
√

1− λ2
2)λ1ψ ≥ 2ψ − 2λ1ψ ≥ 0 as (|λ2| ±

√
1− λ2

2) ≤
√

2,
with equality iff λ2 = ±

√
2

2 . That is, for all d′ ∈ Bℓψ, d′ ∈ Pdom, and it is strictly inside
whenever d′ ̸= d (one can check that λ1 = λ3 = 1 and λ2 = −

√
2

2 does not yield the overall
equality). ◀

A.4 Results and Proofs for Section 6
A deep result of Masser [19] shows that integer multiplicative relationships between algebraic
numbers can be elicited efficiently.
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▶ Theorem 21 (Masser [19]). Let k, be fixed, and let eiθ1 , ..., eiθk be complex algebraic
numbers of unit modulus. Consider the free abelian group L under addition given by L =
{(λ1, ..., λk) ∈ Zk : eiλ1θ1 ...eiλkθk = 1}. L has a basis {l1, ..., lp} ⊂ Zk with p ≤ k. The
basis can be computed in time polynomial and each entry in the basis vector is polynomially
bounded in size(eiθ1), ..., size(eiθk ).

Kronecker theorem [11] states that each linear combination t of the basis given by Masser
theorem can be approximated by a power sn of s = (eiθ1 , . . . , eiθk ).

▶ Theorem 22 (Kronecker [11]). Let θ1, ..., θk, ϕ1, ..., ϕk ∈ [0, 2π). The following two state-
ments are equivalent:

For any ϵ′ > 0, there exist n,m1, ...,mk ∈ Z such that for 1 ≤ j ≤ k we have |nθj − ϕj −
2mjπ| ≤ ϵ′
For every tuple (λ1, ...λk) of integers such that

∑k
j=1 λjθj ∈ 2πZ we have

∑k
j=1 λjϕj ∈

2πZ

Finally, we provide the reasoning why constant C independent of n exists which bounds
the distance, i.e., we prove Lemma 19.

▶ Lemma 19. There exists C such that for all n, distance(c, Hn) ≤ C · |vn(c)|.

Proof. Let n ∈ N. We have distance(c, Hn) = |un(c)|
||y|| for y the first row of Mn by basic

geometry. Let H be the transformation matrix between the basis of initial configurations
and the basis of the exponential polynomial solution of (un)n∈N. Let x = (x1, . . . , xκ)
with xi = nkρnj so that to cover every root ρj and multiplicities k = 1, . . . ,mj . We have
un(c) = y · c = x · (H · c) for all initial configurations c, i.e., y = x · H. That is, there
exists a constant D > 0 depending upon H with ||y|| ≥ Dnmρn for ρ the modulus of
a dominant root and m + 1 the highest multiplicity of a root of modulus ρ. We obtain
distance(c, Hn) ≤ |un(c)|

Dnmρn = |vn(c)|
D . ◀

Finally, we provide Algorithm 1 for ∃-robust Skolem.

Algorithm 1 Robust Skolem.

Data: Companion matrix M ∈ Qκ×κ of (un)n∈N and center of ball c0 ∈ Qκ
1 {γj}j ← eigenvalues of M, ρ← maxj |γj |, {eiθj}kj=1 ← {γi/ρ | |γi| = ρ}
2 Determine T Torus obtained by applying Masser’s result (Theorem 21) to {θj}kj=1
3 ν ← mint∈T |dominant(c, t)| (Proposition 17)
4 if ν = 0 then
5 return NO (Proposition 18)
6 else
7 Compute N such that vresn (c0) < ν

2 for all n > N

8 foreach n ∈ {0, 1, . . . , N} do
9 if vn(c0) = 0 then

10 return NO
11 end
12 end
13 return YES
14 end
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Abstract
We consider robust network design problems where an uncertain traffic vector belonging to a
polytope has to be dynamically routed to minimize either the network congestion or some linear
reservation cost. We focus on the variant in which the underlying graph is directed. We prove
that an O(

√
k) = O(n)-approximation can be obtained by solving the problem under static routing,

where k is the number of commodities and n is the number of nodes. This improves previous results
of Hajiaghayi et al. [SODA’2005] and matches the Ω(n) lower bound of Ene et al. [STOC’2016] and
the Ω(

√
k) lower bound of Azar et al. [STOC’2003]. Finally, we introduce a slightly more general

problem version where some flow restrictions can be added. We show that it cannot be approximated
within a ratio of k

c
log log k (resp. n

c
log log n ) for some constant c. Making use of a weaker complexity

assumption, we prove that there is no approximation within a factor of 2log1−ϵ k (resp. 2log1−ϵ n) for
any ϵ > 0.
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1 Introduction

Network optimization [38, 28] plays a crucial role for telecommunication operators since it
permits to carefully invest in infrastructures. As the traffic is continuously increasing, the
network’s capacity needs to be expanded through careful investments every year. However,
the dynamic nature of the traffic due to ordinary daily fluctuations, long term evolution
and unpredictable events requires to consider uncertainty on the traffic demand when
dimensioning network resources. In this context, we provide new approximability results on
two tightly related variants of the robust network design problem, the minimization of either
the congestion or a linear cost.

Let us consider a directed graph G = (V (G), E(G)) representing a communication network.
The traffic is characterized by a set of commodities h ∈ H associated to different node pairs
and traffic values dh. The demand vector d = (dh)h∈H is assumed to be uncertain and more
precisely to belong to a polyhedral set D. The polyhedral model was introduced in [6, 7] as
an extension of the hose model [14, 17], where limits on the total traffic going into (resp. out
of) a node are considered.
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The routing of a commodity h can be represented by a unit flow (also called routing
template) fh,. = (fh,e)e∈E(G) from the source s(h) to the sink t(h).

When solving a robust network design problem, several objective functions can be
considered. Given a capacity ce for each edge e, one might be interested in minimizing the
congestion given by maxe∈E(G)

ue

ce
where ue is the reserved capacity on edge e. Another

common objective function is given by the linear reservation cost
∑

e∈E(G) λeue. This can
also represent the average congestion by taking λe = 1

ce
. The goal is to choose a reservation

vector u so that the network is able to support any demand vector d ∈ D, i.e., there exists a
(fractional) routing serving every commodity such that the total flow on each edge e is less
than the reservation ue.

The robust network design problem that we are focusing on in this paper, is referred to
as dynamic routing in the literature since the network is optimized such that any realization
of traffic vector in the uncertainty set has its own routing (i.e., fh,. depends on d). The
robust network design problem where a linear reservation cost is minimized was proved to be
co-NP hard in [21] when the graph is directed. A stronger co-NP hardness result is given
in [12] where the graph is undirected (this implies the directed case result). Some exact
solution methods for robust network design have been considered in [13, 30]. Some special
cases where dynamic routing is easy to compute have been described in [8, 18, 31]. For each
of the two problems of congestion minimization and linear reservation cost minimization
under dynamic routing, it is proved in [1] that the optimal value cannot be approximated
within any constant (unless P = NP ) and within Ω( log n

log log n ) (under ETH assumption) for
an undirected graph having n vertices. This leads again to the same inapproximability result
for the directed case.

Routing with uncertain demands has received a significant interest from the community.
As opposed to dynamic routing, static routing or stable routing was introduced in [6]: it
consists in choosing a fixed flow fh,. of value 1 for each commodity h. Static routing is
also called oblivious routing in [2, 3]. In this case, polynomial-time algorithms to compute
optimal static routing (with respect to either congestion or linear reservation cost) have been
proposed [2, 3, 6, 7] based on either duality or cutting-plane algorithms.

To further improve solutions of static routing and overcome complexity issues related
to dynamic routing, a number of restrictions on routing have been considered to design
polynomial-time algorithms. This includes, for example, the approaches proposed in [5, 9,
27, 34, 35, 39].

Most of the literature studied the undirected case of the robust network design problem
while only a few papers, such as [3, 7, 21, 24], address the directed case. In this work, we
mainly focus on the approximability of robust network design problems under dynamic
routing in directed networks, while minimizing either congestion or some linear reservation
cost.

In the rest of this section, we summarize the main contributions of the paper and their
positioning with regard to prior work. Then, we review some related state of the art.

1.1 Our results
We prove that compared to dynamic routing, when static routing is considered, congestion
is multiplied by a factor less than or equal to

√
8k where k is the number of commodities.

This implies that the gap between static routing and dynamic routing for the congestion
minimization problem is O(

√
k) = O(n) where n is the number of nodes. The best-known

previous bound is O(
√

kn
1
4 log n) and was given by [24]. The same

√
8k bound applies

to the linear reservation cost problem. The new upper bound matches the Ω(
√

k) lower
bound of [3] and the Ω(n) lower bound of [16].
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We introduce a more general version of the two robust network design problems (related to
congestion and linear cost) by considering some flow restrictions (each commodity h can
only be routed through edges inside a given subset Eh). The upper bound

√
8k = O(n)

is still valid and the static versions of the problems can still be solved in polynomial-time.
We show some strong inapproximability results for this problem. More precisely, we
prove that unless NP ⊆ SUBEXP , neither minimum dynamic congestion nor optimal
linear cost can be approximated within a ratio of k

c
log log k (resp. n

c
log log n ) for some

constant c. Making use of a weaker assumption, we get that unless NP ⊆ QP , there is
no approximation within a factor of 2log1−ϵ k (resp. 2log1−ϵ n) for any ϵ > 0. This result
improves the Ω( log n

log log n ) inapproximability bound of [1] for the undirected case that also
applies to the directed one.

1.2 Related work

Let us first consider that the graph is undirected and a linear cost is minimized. A result
attributed to A. Gupta ([11], see also [19] for a more detailed presentation) leads to an O(log n)
approximation algorithm for linear cost under dynamic fractional routing. Furthermore,
this approximation is achieved by a routing on a (fixed) single tree. In particular, this
shows that the ratios between the dynamic and the static solutions under fractional routing
( linsta-frac

lindyn-frac
) (lin denotes here the optimal linear cost of the solution) and between single

path and fractional routing under the static model ( linsta-sing
linsta-frac

) is in O(log n) and provides
an O(log n) approximation for static single path routing linsta-sing. On the other hand [33]
shows that the static single path problem cannot be approximated within a Ω(log

1
4 −ϵ n)

ratio unless NP ̸⊂ ZPTIME(npolylog(n)). As noticed in [19], this implies (assuming this
complexity conjecture) that the gap linsta-sing

linsta-frac
is in Ω(log

1
4 −ϵ n). [19] has shown that the gap

linsta-frac
lindyn-frac

is Ω(log n).
For the linear cost objective function and undirected graphs, an extensively studied

polyhedron is the symmetric hose model. The demand vector is here not oriented (i.e,
there is no distinction between a demand from i to j and a demand from j to i), and
uncertainty is defined by considering an upper-bound limit bi for the sum of demands related
to node i. A 2-approximation has been found for the dynamic fractional case [17, 21] based
on tree routing (where we route through a static tree that should be found) showing that
linsta-tree
lindyn-frac

≤ 2. It has been conjectured that this solution resulted in an optimal solution
for the static single path routing. This question has been open for some time and has
become known as the VPN conjecture. It was finally answered by the affirmative in [20]. The
asymmetric hose polytope was also considered in many papers. An approximation algorithm
is proposed to compute linsta-sing within a ratio of 3.39 [15] (or more precisely 2 plus the
best approximation ratio for the Steiner tree problem). If D is a balanced asymmetric hose
polytope, i.e.,

∑
v∈V bout

v =
∑

v∈V bin
v where bin

v (resp. bout
v ) is the upper bound for the traffic

entering into (resp. going out of) v, then the best approximation factor becomes 2 [15].
Moreover, if we assume that bout

v = bin
b , then linsta-sing is easy to compute and we get that

linsta-tree = linsta-sing [32]. In other words, there is some similarity with the case where D is
a symmetric hose polytope.

When congestion is considered, [36] proved the existence of an oblivious (or static) routing
with a competitive ratio of O(log3 n) with respect to optimum routing of any traffic matrix.
Then, [25] improved the bound to O(log2 n log log n) and gave a polynomial-time algorithm
to find such a static routing. Finally, [37] described an O(log n) approximation algorithm
for static routing with minimum congestion. Notice that the bound given by static routing
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cannot provide a better bound than O(log n) since a lower bound of Ω(log n) is achieved by
static routing for planar graphs [29, 4]. It has also been shown in [23] that the gap between
the dynamic fractional routing and a dynamic fractional routing restricted to a polynomial
number of paths can be Ω( log n

log log n ).
In a recent study on the approximability of robust network design [1] for the undirected

case, it was proved that minimum dynamic congestion and the optimal linear cost cannot
be approximated within any constant factor. Then using the ETH conjecture, it is shown
there that they cannot be approximated within Ω( log n

log log n ). This implies that the well-
known O(log n) approximation ratio established in [37] is tight. Using a Lagrange relaxation
approach, it is also shown in [1] that any α-approximation algorithm for the robust network
design problem with linear reservation costs directly leads to an α-approximation for the
problem of minimum congestion. This is used there to prove in a different way the O(log n)
result of [37] starting from the one of [22] (attributed to A. Gupta and related to the linear
cost minimization).

The closest papers to ours are [3, 16, 24]. When a directed graph is considered and
congestion is minimized, [3] has shown that the gap between static fractional routing and
dynamic fractional routing can be Ω(

√
k) while [24] proves that the gap is upper-bounded by

O(
√

kn
1
4 log n). Since the instance provided in [3] contains vertices with large degree, [24]

studied the version where the degree is less than some constant and all commodities have the
same sink. An instance with a Ω(

√
n) gap was then provided in [24], while the upper bound

becomes O(
√

n log n). [24] considered also the case of symmetric demands (in that paper,
symmetry means that for any two nodes u and v, the demand from u to v is equal to the
demand from v to u) and shows that the upper bound of the static to dynamic ratio becomes
O(
√

k log5/2 n). A general Ω(n) lower bound was later proposed in [16]. They also introduced
the notion of balance for directed graphs. A weighted directed graph is α-balanced if for
every subset S ⊆ V , the total weight of edges going from S to V \S is within a factor α of
the total weight of edges directed from V \S to S. Using this new parameter, they show that
for single source instances an upper bound of O(α log3 n

log log n ) holds for the competitive ratio of
static routing.

2 Preliminaries

In this section, we give more formal definitions of the robust network design problems
considered in this paper. Some notation and basic results are also recalled. The congestion
minimization variant takes as input a graph G = (V, E), a vector of link capacities c ∈ RE

+
and a set of commodities H. Each commodity h ∈ H has a source s(h) and destination
t(h) in V . We also have as input a polytope D of all possible demand vectors d ∈ RH

+
specifying the demand dh that needs to be sent from s(h) to t(h). An instance I of the
congestion minimization problem might be denoted by I = (G, c,H,D). We use n to denote
the number of nodes (n = |V |), while k denotes the number of commodities (k = |H|). Given
two nodes s, t ∈ V , a routing template (also called a unit flow) from s to t is a vector f ∈ RE

+
satisfying the standard flow conservation constraints. For each vertex v,

∑
e∈δ+(v)

fe−
∑

e∈δ−(v)
fe

is required to be equal to 1,−1 or 0 when v is respectively the source s, the destination t

or any other node, where δ+(v) (resp. δ−(v)) denotes the set of edges going out of (resp.
entering into) v.

A vector f ∈ RH×E
+ is a routing if for each commodity h ∈ H, fh,. = (fh,e)e∈E is a

routing template from s(h) to t(h). The set of all possible routing schemes is denoted by
F ⊆ RH×E

+ . The total flow on each link e ∈ E is
∑

h∈H
fh,edh and its congestion is the total
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flow on the link e divided by its capacity ce. Let cong(f, d) denote the maximum congestion
over all links e ∈ E, i.e. cong(f, d) = max

e∈E

∑
h∈H

fh,edh

ce
. Two problems can be considered

depending on whether the routing can be adapted to each demand vector d in D or if only
one fixed routing f ∈ F can be used. In the first case, the routing is said to be dynamic.
The dynamic congestion is formally defined as: congdyn(I) = max

d∈D
min
f∈F

cong(f, d). In the

second case, the routing is said to be static (or oblivious). This static congestion is formally
defined as: congsta(I) = min

f∈F
max
d∈D

cong(f, d). Notice that when clear from the context, we

might use notation congdyn(D) and congsta(D) to insist on the dependency on D when all
other parameters of the instance I are fixed.

In the same way, we can define the robust linear reservation problem. As already said in
Section 1, given a positive cost vector (λe)e∈E , we aim to reserve a capacity ue ≥ 0 on each
link e such that

∑
e∈E λeue is minimized and

∑
h∈H

fh,edh ≤ ue holds for any demand vector

d. An instance can then be denoted by (G, λ,H,D). We also have two variants depending
on routing. The optimal cost is then denoted by lindyn(I) (or lindyn(D)) and linsta(I) (or
linsta(D)). Notice that only fractional routing is considered in this paper (this is why the
subscript frac used in Section 1.2 is omitted in the rest of the paper).

For concise notation, the four variants of the robust optimization problems considered in
this paper will simply be denoted by linsta, lindyn, congsta and congdyn.

All previous definitions still make sense even when D is not a polytope. However, the
next lemma tells us that the optimal objective value does not increase when the uncertainty
set S is replaced by its convex-hull (this lemma can be considered as a folklore result that is
implicitly used in many robust optimization papers).

▶ Lemma 1. Let S ⊂ RH
+ be a compact set. Then congsta(S) = congsta (conv(S)),

congdyn(S) = congdyn(conv(S)), linsta(S) = linsta (conv(S)), and lindyn(S) =
lindyn(conv(S)).

Proof. Since S ⊆ conv(S), we have congsta(S) ≤ congsta (conv(S)) and congdyn(S) ≤
congdyn(conv(S)). The same holds for the robust linear cost problem. Moreover, given a static
routing solution f and the corresponding reservation vector u, we have

∑
h∈H

fh,edh ≤ ue for any

d ∈ S. Consider any point d′ of conv(S) written as d′ =
∑

d∈S αdd (αd ≥ 0,
∑

d∈S αd = 1). By
multiplying the previous inequalities by αd and summing them all, we get that

∑
h∈H

fh,ed′
h ≤ ue

implying that f and u are feasible. Therefore, we have linsta(S) = linsta (conv(S)). The
proof can be easily extended to the dynamic routing version and to the congestion objective
function. ◀

Let us now focus on the connection between the congestion problem and the linear cost
problem. The first proposition is from [19] and states that if the static to dynamic ratio is
less than or equal to α for the congestion problem, then the same applies to the robust linear
reservation problem.

▶ Proposition 2 ([19]). Let I = (G, c,H,D) and assume that congsta(I) ≤ α congdyn(I)
for some α ≥ 1 and for any vector c ∈ RH

+ . Then linsta(I ′) ≤ α lindyn(I ′) where I ′ =
(G, λ,H,D) for any cost vector λ ∈ RH

+ .

Proof. Given a cost vector λ, let c∗
dyn ∈ RE

+ be the reservation vector (i.e., u) obtained when
the linear cost is minimized under dynamic routing. Let then I = (G, c∗

dyn,H,D). We clearly
have congdyn(I) ≤ 1 and congsta(I) ≤ α congdyn(I) ≤ α. Therefore, α c∗

dyn is a feasible
reservation vector for the linsta problem related to instance I ′ = (G, λ,H,D) and its cost is
α times the cost of c∗

dyn. ◀
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A converse result is presented in [1]. While the proof in [1] was given in the context of
undirected graphs, it can be repeated verbatim for the directed case (the proof is based on a
Lagrange relaxation approach and a careful application of the ellipsoid method).

▶ Proposition 3 ([1]). Let I ′ = (G, λ,H,D) and assume that linsta(I ′) ≤ α lindyn(I ′) for
some α ≥ 1 and for any cost vector λ ∈ RH

+ . Then congsta(I) ≤ α congdyn(I) where
I = (G, c,H,D) for any capacity vector c ∈ RH

+ . Moreover, any β-approximation (β ≥ 1)
for lindyn leads to a β-approximation for congdyn.

To close this section, let us recall some notation and assumptions that will be used in the
rest of the paper. The uncertainty set (i.e., the set of demand vectors) D is assumed to be
polyhedral and down monotone (i.e., if d ∈ D, then d′ ∈ D for any 0 ≤ d′ ≤ d). Let dmax(D)
be the vector representing the maximum commodity values (i.e., dmax

h (D) = maxd∈D dh).
We will naturally assume that dmax

h > 0 for any h ∈ H since otherwise the commodity can
just be ignored. When the polytope D is clear from the context, we just write dmax (instead
of dmax(D)).

Let I, J be some set of indices. For a vector v ∈ RI×J and i ∈ I we denote by vi,. the
vector w ∈ RJ defined by wj = vi,j . Given a set X ∈ RI and λ ≥ 0, we denote by λX the
set {λx|x ∈ X}.

3 Approximation of dynamic congestion by static congestion

We are going to prove Theorem 4 stating that compared to dynamic routing, when static
routing is considered, congestion is multiplied by a factor less than or equal to

√
8k. This

result improves the upper bound O(
√

kn1/4 log n) from [24]. It implies that the gap between
static and dynamic congestion is O(

√
k) = O(n). By combining Proposition 2 with Theorem

4, we also obtain similar results for the minimization of a linear reservation cost, i.e., that
linsta(D) ≤

√
8k.lindyn(D).

▶ Theorem 4. congsta(D) ≤
√

8k.congdyn(D). Therefore congsta(D)
congdyn(D) = O(n).

To derive an upper bound for the ratio congsta(D)/congdyn(D), our strategy first consists
in approximating the uncertainty set either by a box or a simplex where congsta(D) =
congdyn(D). While this method yields an O(k) upper bound, we obtain further improvement
by partitioning the set of commodities into two sets H1, H2 and considering a box
approximation for D1 and a simplex approximation for D2, where D1 and D2 are respectively
the projections of D on RH1 and RH2 .

To prove Theorem 4, we first present some preliminary lemmas.
Lemma 5 states that if the uncertainty set D can be well approximated by another set

D′ for which congsta(D′) = congdyn(D′), then congsta(D) gives a good approximation of
congdyn(D).

▶ Lemma 5. Let D and D′ be two compact subsets of RH
+ and α ∈ R+ such that D′ ⊆ D ⊆ αD′

and congsta(D′) = congdyn(D′). Then congsta(D) ≤ α · congdyn(D).

Proof. The proof of this lemma relies on two simple facts. The first one is that if we scale
the demand values by a factor α, then the congestion (either static or dynamic) is also
scaled by the same factor α. The second fact is that congdyn and congsta are increasing
in D. In other words, if D1 and D2 are two subsets of RH

+ such that D1 ⊆ D2, then
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congdyn(D1) ≤ congdyn(D2) and congsta(D1) ≤ congsta(D2). Combining the two facts, we
can write the following:

congsta(D) ≤ congsta(αD′) = α · congsta(D′) = α · congdyn(D′) ≤ α · congdyn(D) (1)

◀

We now provide in Lemmas 6 and 7 two classes of polytopes, based on box and simplex
sets, for which congsta(D) = congdyn(D).

For a vector dmax ∈ RH
+ , let B(dmax) be the box set defined by {d ∈ RH| 0 ≤ d ≤ dmax}.

▶ Lemma 6. Let D = B(dmax) for some dmax ∈ RH
+ . Then congdyn(D) = congsta(D).

Proof. For a routing f ∈ F and a demand vector d ∈ D, we have cong(f, d) ≤ cong(f, dmax).
Since dmax ∈ D, it implies that max

d∈D
cong(f, d) = cong(f, dmax). Minimizing both sides

of the equality over f ∈ F , we get that congsta(D) = min
f∈F

cong(f, dmax). We can also

write that min
f∈F

cong(f, d) ≤ min
f∈F

cong(f, dmax). Taking the maximum over all d ∈ D leads

to congdyn(D) = max
d∈D

min
f∈F

cong(f, d) ≤ min
f∈F

cong(f, dmax). Since dmax ∈ D, the previous

inequality becomes congdyn(D) = min
f∈F

cong(f, dmax). ◀

For a vector d ∈ RH
+ , let ∆(d) be the simplex set whose vertices are the zero vector and

the k vectors dheh where eh denotes the vector in RH
+ with a component of 1 for commodity

h and 0 otherwise. Formally, we have ∆(d) = conv ({dheh|h ∈ D} ∪ {0}).

▶ Lemma 7. Let D = ∆(dmax) where dmax ∈ RH
+ . Then congdyn(D) = congsta(D).

Proof. Assume that congdyn(D) has been computed and consider the obtained dynamic
routing. The extreme points of D are the demand vectors {dmax

h eh|h ∈ H} ∪ {0}. For
each demand vector dmax

h eh, we consider the flow fh,. representing its routing. Let us
build a static routing f just by routing each commodity h in accordance to fh,.. By
construction, taking the extreme points of D, we have congsta({dmax

h eh|h ∈ H} ∪ {0}) =
congdyn({dmax

h eh|h ∈ H}∪ {0}). By considering the convex-hulls and applying Lemma 1, we
get that congdyn(D) = congsta(D). ◀

Let α1(D) = max
d∈D

∑
h∈H

dh

dmax
h

(remember that dmax
h = maxd∈D dh). It is then clear

that ∆(dmax) ⊆ D ⊆ α1(D)∆(dmax). Consider the box B(dmax) and let α2(D) be the
smallest factor α such that dmax/α belongs to D. In other words, α2(D) represents
the best approximation ratio that can be obtained through boxes. We obviously have

1
α2(D)B(dmax) ⊆ D ⊆ B(dmax). Figure 1 illustrates the approximations by boxes and
simplices for a 2-dimensional demand polytope D.

Since 1
kB(dmax) ⊆ ∆(dmax) ⊆ D ⊆ B(dmax), α2(D) is always less than or equal to k.

And by definition, α1(D) is also less than or equal to k.
It is easy to check that the upper bound k is reached since α1(B(dmax)) = k and

α2(∆(dmax)) = k. In other words, using box and simplex approximations with the approach
above, we cannot expect to prove a better upper bound for the ratio congsta(D)/congdyn(D)
for arbitrary uncertainty sets.

A more refined strategy is to take the best of the two bounds α1(D), α2(D). The next
proposition states that a better bound is obtained if D is permutation-invariant (i.e., by
permuting the components of any vector d of D we always get a vector inside D). The proof
is provided in Appendix.
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𝒟

𝑑2

𝑑1

𝑑𝑚𝑎𝑥

𝛼1(𝒟) =
3

2

𝛼2 𝒟 =
4

3

Figure 1 Approximation using boxes and simplices: example of a 2-dimensional demand
polytope D.

▶ Proposition 8. If D is permutation-invariant then min{α1(D), α2(D)} ≤
√

k.

One can wonder whether a general O(
√

k) bound can be obtained by trying to find a
better upper bound for min{α1(D), α2(D)}. The following example, on a specific polytope D,
shows that this is not possible. Let D be the product of a box B(d1) of dimension k/2 and a
simplex ∆(d2) of the same dimension. Using the remark above we know that α1(B(d1)) = k/2
and α2(∆(d2)) = k/2 implying that α1(D) ≥ k/2 and α2(D) ≥ k/2.

To overcome this difficulty, we are going to partition the set of commodities H into two
well-chosen subsets H1 and H2, then we approximate D1 (resp. D2) defined as the projection
of D on RH1 (resp. RH2) using a simplex (resp. a box). The algorithm used to partition the
set of commodities is an adaptation of an algorithm of [10] proposed in a different context.
We will also slightly improve the analysis of this algorithm (

√
8k instead of 3

√
k).

Let us start with Lemma 9 where we show how an approximation of congdyn in D can be
obtained from congsta using the approximations related to D1 and D2.

▶ Lemma 9. Let H1,H2 be a partition of H and D1,D2 be the projection of D on RH1

and RH2 . Suppose that for some α1, α2 ≥ 1 we have congsta(D1) ≤ α1congdyn(D1) and
congsta(D2) ≤ α2congdyn(D2), then congsta(D) ≤ (α1 + α2)congdyn(D).

Proof. We first show that we have congsta(D) ≤ congsta(D1) + congsta(D2).

congsta(D) = max
d∈D

min
f∈F

cong(f, d)

≤ max
d1∈D1,d2∈D2

min
f∈F

cong(f, d1) + cong(f, d2)

= max
d1∈D1

min
f∈F

cong(f, d1) + max
d2∈D2

min
f∈F

cong(f, d2)

= congsta(D1) + congsta(D2)

We now prove the lemma: congsta(D) ≤ congsta(D1) + congsta(D2) ≤ α1congdyn(D1) +
α2congdyn(D2) ≤ (α1 + α2)congdyn(D). ◀

Let us now present Algorithm 1 that can be seen as a direct adaptation of the partitioning
algorithm of [10] (Algorithm A, Fig. 1) for our dynamic routing problem. It has initially
been introduced for the analysis of affine policies in a class of two-stage adaptive linear
optimization problems. The main idea of Algorithm 1 is to partition the set of commodities
into two sets H1 and H2 and to produce a vector β ∈ RH

+ such that max
d∈D

∑
h∈H1

dh

dmax
h
≤ γ
√

k
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(i.e., α1(D1) ≤ γ
√

k for γ > 0) and βh ≥ dmax
h for any h ∈ H2. The returned vector β is built

as a sum of at most Z points of D where Z is the number of iterations of the algorithm. Since
the vector 1

Z β belongs to D, we deduce that α2(D2) ≤ Z. We will show in Lemma 10 that
Z is less than or equal to 2

√
k

γ leading to α2(D2) ≤ 2
√

k
γ . Notice that γ is equal to 1 in the

original algorithm of [10]. Let us describe more precisely the different steps of Algorithm 1.
At iteration i, Hi

1,Hi
2 denote the current partitions of commodities while Di

1,Di
2 denote the

projections of D on RHi
1 and RHi

2 . A vector bi is also defined and used to update Hi
1,Hi

2.
We start with H0

1 = H, H0
2 = ∅ and b0 = 0.

If α1(Di
1) > γ

√
k then we consider a traffic vector ui maximizing

∑
h∈Hi−1

1

dh

dmax
h

, otherwise

a partition is returned. The vector ui is then used to update bi (lines 5-7). Observe that
only the components related to commodities inside Hi−1

1 are updated while the others do
not change. This means that the returned vector β =

∑
1≤i≤Z

ui (line 19) is such that β ≥ bZ .

The sets Hi
1 and Hi

2 are updated by moving each commodity h ∈ Hi−1
1 to Hi

2 if bi
h ≥ dmax

h

(lines 8-15). Notice that we always have Hi
1 ⊆ Hi−1

1 . It is then clear that when the algorithm
stops, the obtained partition satisfies what is announced above. The only fact that remains
to be proved is that the number of iterations Z is bounded by 2

√
k

γ .

Algorithm 1 Commodity partitioning algorithm (adapted from [10]).

1: Initialize i← 0, H0
1 ← H,H0

2 ← ∅, b0 ← 0
2: while α1(Di

1) > γ
√

k do
3: i← i + 1
4: ui ∈ arg max

d∈D

∑
h∈Hi−1

1

dh

dmax
h

5: for all h ∈ H do
6: bi

h =
{

bi−1
h + ui

h if h ∈ Hi−1
1

bi−1
h otherwise

7: end for
8: for all h ∈ Hi−1

1 do
9: if bi

h ≥ dmax
h then

10: Hi
1 ← Hi−1

1 \{h}
11: Hi

2 ← Hi−1
2 ∪ {h}

12: else
13: Hi

1 ← Hi−1
1 , Hi

2 ← Hi−1
2

14: end if
15: end for
16: end while
17: Z ← i, H1 ← HZ

1 ,H2 ← HZ
2

18: β ←
∑

1≤i≤Z

ui

▶ Lemma 10. For any γ > 0, the commodity set H can be partitioned in two subsets H1,H2
such that α1(D1) ≤ γ

√
k and α2(D2) ≤ 2

√
k

γ where D1,D2 are the projections of D on RH1

and RH2 .

Proof. We only have to prove that Z ≤ 2
√

k
γ . This can be done by slightly modifying the

proof of Lemma 10 of [10].
We first argue that bZ

h ≤ 2dmax
h for all h ∈ H. For h ∈ H, let i(h) be the last iteration

number when h ∈ Hi
1. Therefore we have b

i(h)−1
h ≤ dmax

h . Also ui(h) ≤ dmax
h leading to

b
i(h)
h ≤ 2dmax

h . Now for i ≥ i(h) we have bZ
h = bi

h = b
i(h)
h implying that,

∑
h∈H

bZ
h

dmax
h
≤ 2k.
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Alternatively,
∑

h∈H

bZ
h

dmax
h

=
∑

h∈H

Z∑
i=1

bi
h−bi−1

h

dmax
h

=
Z∑

i=1

∑
h∈H

bi
h−bi−1

h

dmax
h

=
Z∑

i=1

∑
h∈Hi−1

1

ui
h

dmax
h
≥

Z∑
i=1

γ
√

k =

Zγ
√

k. Therefore we have that Zγ
√

k ≤
∑

h∈H

bZ
h

dmax
h
≤ 2k which implies that Z ≤ 2

√
k

γ . Since

β is the sum of Z points in D, we have B( 1
Z β) ⊆ D. Moreover, the projection β2 of β on

RH2 satisfies D2 ⊆ B(β2) and thus α2(D2) ≤ 2
√

k
γ . ◀

To prove Theorem 4, we only have to take γ =
√

2, use Lemma 10, and then invoke
Lemma 9 to conclude. Using k = O(n2), we get that the ratio congsta

congdyn
is O(n).

4 Inapproximability with flow restrictions

Let us consider a more general variant of the robust congestion problem where each commodity
can only be routed on a subset of allowed edges Eh ⊆ E. These restrictions seem to be quite
natural to ensure quality of service requirements such as delay constraints.

Observe first that congsta can still be computed in polynomial-time for this variant.
Moreover, the O(

√
k) bound of Section 3 still holds here since all the proofs presented there

do not change if we assume that each commodity h can only be routed using edges inside Eh.
The Ω( log n

log log n ) inapproximability bound shown for the undirected case [1] (under ETH
assumption) still applies to the directed case (with and without flow restrictions). It is
however quite far from the O(

√
k) approximation ratio deduced from Section 3. We will prove

stronger inapproximability results for the generalisation of congdyn with flow restrictions
under some classical complexity conjectures.

A standard way to prove this kind of results is to first prove that the problem is
inapproximable under some constant and then to amplify this constant, see for example [26].

Let us first introduce some additional notations. Taking into account the flow restrictions
and given a subset of edges C ⊆ E, let HC ⊆ H be the set commodities such that each valid
path related to any commodity h ∈ HC intersects C. Even if C is not necessarily a cut
in the standard sense of graph theory, C is called a cut in what follows. Given a demand
vector d ∈ D and a cut C,

∑
h∈HC

dh/
∑

e∈C

ce, is obviously a lower bound of congdyn(D). The

maximum over all demand vectors d ∈ D and all cuts C of the ratio
∑

h∈HC

dh/
∑

e∈C

ce is called

cut congestion and denoted by congcut(D). We also use EH to denote the set of all flow
restrictions: EH = (Eh)h∈H. An instance of congdyn with flow restrictions is then defined by
(G, c,H,D, EH).

In Lemma 11, we will prove that it is NP-hard to distinguish between instances where
congdyn(D) is less than or equal to 1 and those where the cut congestion congcut(D) is greater
than or equal to 1 + ρ for some constant ρ > 0. Then, in Lemma 12, we will show that given
two instances of this problem, it is possible to build some kind of product instance whose
dynamic congestion is less than or equal to the product of the dynamic congestion of the two
instances and the cut congestion is greater than or equal to the product of the cut congestion
of the two initial instances. Finally, by repetitively using the product of Lemma 12 on the
instance of Lemma 11, we can amplify the gap leading to some strong inapproximability
results.

Given a 3-SAT instance φ, val(φ) denotes the maximum proportion of clauses that
can be simultaneously satisfied (thus φ is satisfiable when val(φ) = 1 ). We will consider
polytopes D that can be expressed through linear constraints and auxiliary variables ξ, i.e.,
D = {d ∈ RH|Ad + Bξ ≤ b} where A and B are matrices of polynomial size (the maximum
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of the number of columns and the number of rows is polynomially bounded). Notice that it
is important to consider polytopes that can be easily described (otherwise the difficulty of
solving congdyn would be a consequence of the difficulty of describing the polytope).

▶ Lemma 11. For 0 < ρ < 1, there is a polynomial-time mapping from a 3-SAT instance φ

to an instance I = (G, c,H,D) of congdyn where D = {d ∈ RH|Ad + Bξ ≤ b} such that:
If val(φ) ≤ 1− ρ then congdyn(I) ≤ 1
If φ is satisfiable then congcut(I) ≥ 1 + ρ.

Furthermore, |V (G)|, |E(G)|, |H| and the size of the matrices A and B defining D are all
O(m) where m is the number of clauses of φ.

Proof. Given a 3-SAT instance φ with m clauses, we build an instance of congdyn as follows.
We consider two nodes: a source s and a destination t. Then, for each i = 1, ..., m we
create a path form s to t containing three directed edges ei,j of capacity 1 for j = 1, 2, 3
corresponding to the i− th clause of φ. For each i = 1, ..., m and j = 1, 2, 3, H contains a
commodity hi,j with the same source and destination as edge ei,j . We also add a commodity
hs,t from s to t. The polytope D is defined as follows. We set dhs,t

= ρ ·m. For each literal
l (i.e. a variable or its negation) of the 3-SAT instance φ we add an auxiliary variable ξl.
Intuitively ξl = 1 will correspond to setting the literal l to true. For each variable v, we add
the constraint ξv + ξ¬v = 1 in addition to non-negativity constraints ξv ≥ 0 and ξ¬v ≥ 0.
For each i = 1, ..., m and j = 1, 2, 3, we consider the constraint dhi,j

= ξli,j
where li,j is the

literal appearing in the i − th clause in the j − th position. Observe that the size of D is
O(m). The numbers of nodes, edges and commodities are also O(m).

Consider first the case val(φ) ≤ 1− ρ. The set of extreme points of D is such that the
ξl variables take their values in {0, 1}. The maximum dynamic congestion is attained for a
demand vector of this form (see Lemma 1). Let d be such a demand vector and consider the
corresponding solution of the 3-SAT instance φ. Notice that demand dhi,j can only be routed
on ei,j . If for some i = 1, ..., m the i− th clause is false, then the demands dhi,1 , dhi,2 , dhi,3

are equal to 0 and therefore one unit of flow of the commodity hs,t can be routed on the path
(ei,1, ei,2, ei,3). Since val(φ) ≤ 1− ρ, there are at least m · ρ such indices i (i.e., false clauses)
and therefore the demand dhs,t

can be routed with a congestion less than or equal to 1.
We now consider the case where φ is satisfiable. Let d be the demand vector corresponding

to a truth assignment satisfying φ. For each i = 1, ..., m, let j(i) be the position of a literal
set to true in the i− th clause. Therefore we have dhi,j(i) = 1 for all i = 1, ..., m. Consider
the cut C = {ei,j(i)|i = 1, ..., m}. C intersects the paths related to the m demands dhi,j(i) of
value 1 in addition to demand dhs,t

of value m · ρ. The total capacity of this cut is m while
the sum of demands belonging to C is m + m · ρ. Therefore the congestion of this cut is
m+m·ρ

m = 1 + ρ. ◀

Next Lemma (whose proof is provided in Appendix) shows how to build a product instance
leading to some gap amplification.

▶ Lemma 12. Given two instances of congdyn with flow restrictions I1 = (G1, c1,H1,D1, EH1)
and I2 = (G2, c2,H2,D2, EH2), we can build a new instance I = I1 × I2 = (G, c,H,D, EH)
such that:

congdyn(I) ≤ congdyn(I1) · congdyn(I2)
congcut(I) ≥ congcut(I1) · congcut(I2).

Furthermore, we have |E(G)| = |E(G1)| · (|E(G2)|+ 2|V (G2)|), |V (G)| = |V (G1)|+ |V (G2)| ·
|E(G1)|, |H| = |H1| · |H2| and the size of D is less than or equal to the product of the sizes
of D1 and D2.
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Combining the two previous lemmas, one can amplify the gap as follows.

▶ Lemma 13. For some 0 < ρ < 1 and each p ∈ N, each 3-SAT instance φ can be
mapped to an instance Ip = (Gp, cp,Hp,Dp, EHp) of congdyn with flow restrictions where
Dp = {d ∈ RHp |Apd + Bpξ ≤ bp} such that:

If val(φ) ≤ 1− ρ then congdyn(Ip) ≤ 1
If φ is satisfiable then congcut(Ip) ≥ (1 + ρ)p.

Furthermore, there exists a positive constant θ such that |V (Gp)|, |E(Gp)|, |Hp| and the size
of the matrices Ap and Bp defining Dp are all less than or equal to (θm)p where m is the
number of clauses of φ.

Proof. Let I1 be the instance defined in Lemma 11. We recursively build Ip as the product of
Ip−1 and I1. Using notation of Lemma 12, we take I1 = Ip−1, I2 = I1 and Ip = I = I1×I2.
Using what is already known about the size of the instance I1 of Lemma 11 and the results
of Lemma 12, a simple induction proves the existence of a constant θ such that (θm)p is an
upper bound of the number of vertices, number of edges, number of commodities and the
size of the matrices defining the polytope Dp. ◀

By making use of some standard complexity assumptions, inapproxiambility resuls can
be directly deduced from the previous lemma.

▶ Proposition 14. Unless NP ⊆ SUBEXP , congdyn with flow restrictions cannot be
approximated within a factor of k

c′
log log k (resp. n

c′
log log n ) for some constant c′.

Proof. SUBEXP is the class of problems that can be solved in 2nϵ time for all ϵ > 0.
Therefore, if NP ̸⊆ SUBEXP then there is a constant ϵ0 > 0 such that no algorithm can
solve the Gap-3-SAT problem in time O(2mϵ0 ) where m is the number of clauses of the
3-SAT instance.
Let ϵ1 < ϵ0 and let p(m) = mϵ1

log m . The size of the instance Ip(m) is polynomial in mp(m).
Therefore if we run a polynomial approximation algorithm on the instance Ip(m), the running
time will be mc1p(m) for some constant c1. Furthermore, mc1p(m) = mc1

mϵ1
log m = 2c1mϵ1

< 2mϵ0

for big enough m.
The number of commodities k in the instance Ip(m) is bounded by (θm)p(m). We

consequently have log k ≤ log(θm) mϵ1

log m implying that m > a log
1

ϵ1 k for some constant a and
big enough m.

The gap between the congestion of the instances Ip(m) corresponding to a 3-SAT instance
for which val(φ) < 1− ρ and those for which val(φ) = 1 is:

(1 + ρ)p(m) > (1 + ρ)p(a log
1

ϵ1 k) = (1 + ρ)
aϵ1 log k

1
ϵ1

log a log k
> k

c′
log log k for some constant c’.

Hence, if a polynomial-time algorithm could solve congdyn with flow restrictions within
an approximation ratio of O(k

c′
log log k ), we could use it to solve the Gap-3-SAT problem in

O(2mϵ0 ) time. The same proof applies if parameter n (the number of vertices) is considered
instead of k. ◀

A slightly weaker inapproximability result is obtained using a weaker complexity
assumption (the proof is provided in Appendix).

▶ Proposition 15. Unless NP ⊆ QP , congdyn with flow restrictions cannot be approximated
within a factor of 2log1−ϵ k (resp. 2log1−ϵ n) for any ϵ > 0.

Using the last part of Proposition 3, all inapproximability results stated for the congestion
problem congdyn are also valid for lindyn.
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A Appendix

Proof of Proposition 8. Let d∗ be the demand maximizing max
d∈D

∑
h∈H

dh

dmax
h

. Since D is

permutation-invariant, dmax
h = dmax

h′ for all h, h′ ∈ H and d∗ can be chosen such that
d∗

h = d∗
h′ for all h, h′ ∈ H. Consequently, we have α1(D) ≤ k

d∗
h0

dmax
h0

. Moreover, since
d∗

h0
dmax

h0
B(dmax) ⊆ D ⊆ B(dmax) we also have α2(D) ≤ dmax

h0
d∗

h0
. Therefore, using notation

x = d∗
h0

dmax
h0

, we get that min{α1(D), α2(D)} ≤ min{kx, 1
x} and x is such that 0 ≤ x ≤ 1. To

conclude, observe that max
0≤x≤1

min{kx, 1
x} =

√
k. ◀

Proof of Lemma 12. Let I1 = (G1, c1,H1,D1, EH1) and I2 = (G2, c2,H2,D2, EH2) be two
instances of congdyn with flow restrictions. We denote by G′

2 the graph obtained from G2 by
adding two nodes s(G2) and t(G2) to G2, an edge from s(G2) to each node of G2 having an
infinite capacity (i.e., |V (G2)| edges), and an edge from each node of G2 to t(G2) having
also an infinite capacity (i.e., |V (G2)| edges). We build a graph G by replacing each edge e

of G1 by a copy of G′
2 while identifying the node s(e) (resp. t(e)) with the node s(G2) (resp.
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𝑢1 𝑢2 𝑢3

ℎ′

𝑒1
′ 𝑒2

′

(a) G1, H1.

𝑢1 𝑢2 𝑢3

𝑣1

𝑣2

𝑣3 𝑣1

𝑣2

𝑣3

(ℎ′, ℎ1)

(ℎ′, ℎ2)

(ℎ′, ℎ3)

(𝑒1
′ , e1)

(𝑒1
′ , e2)

(𝑒1
′ , e3) (𝑒2

′ , e1)

(𝑒2
′ , e2)

(𝑒2
′ , e3)

(b) G, H.

𝑣1

𝑣2

𝑣3

ℎ2

ℎ3
ℎ1

𝑒1

𝑒2

𝑒3

(c) G2, H2.

𝑢1 𝑢2 𝑢3

𝑣1

𝑣2

𝑣3 𝑣1

𝑣2

𝑣3

(ℎ′, ℎ1)

(𝑒1
′ , e1)

(𝑒1
′ , e2)

(𝑒1
′ , e3) (𝑒2

′ , e1)

(𝑒2
′ , e2)

(𝑒2
′ , e3)

(d) E(h′,h1): the set of edges allowed for commodity (h′, h1).

Figure 2 Illustration of the construction of the product instance.

t(G2)). Figure 2 illustrates the construction of the product instance. We denote by (e1, e2)
the edge e2 in G′

2 corresponding to the copy of G′
2 related to e1 ∈ E(G1). The capacity of

the edge (e1, e2) is the product of the capacity of edges e1 and e2: c(e1,e2) = c1e1 · c2e2 .

We create a set of commodities H in G by taking H = H1 × H2 and assuming that
s(h1, h2) = sh1 and t(h1, h2) = th1 for (h1, h2) ∈ H. We also assume that edges of type
(s(G2) = s(e), v) can only be used by a commodity (h1, h2) ∈ H if s(h2) = v. Similarly, edges
of type (v, t(G2) = t(e)) can only be used by (h1, h2) if t(h2) = v. In other words, when a
commodity (h1, h2) is routed through the copy of G2 related to an edge e ∈ E(G1), then it
should enter from s(h2) and leave at t(h2) (cf. Figure 2). Other flow restrictions are added
by considering the restrictions related to I1 and I2. If h′ ∈ H1 is not allowed to use edge
e′ ∈ E(G1), then all commodities (h′, h2) are not allowed to be routed through the e′ copy
of G′

2. Moreover, if e2 ∈ E(G2) does not belong to Eh2 for some h2 ∈ H2, then for each
e1 ∈ E(G1) and each h1 ∈ H1, (e1, e2) cannot be used to route commodity (h1, h2).
Observe that |E(G)| = |E(G1)| · (|E(G2)|+ 2|V (G2)|), |V (G)| = |V (G1)|+ |V (G2)| · |E(G1)|.

We define D as the set of vectors d ∈ RH1×H2
+ such that there is a vector d1 ∈ D1 satisfying

dh1,. ∈ d1
h1
D2 for all h1 ∈ H1. The constraint dh1,. ∈ d1

h1
D2 can be enforced with linear

inequalities as follows. Suppose that D2 = {d2 ∈ RH2 |A2d2 + B2ξ ≤ b2} for some matrices
A2, B2. We also assume that this description contains the constraints d2

h2
/d2 max

h2
≤ 1 for all

h2 ∈ H2 in addition to the non-negativity constraints of demand values d2
h2

. Then we can
write the constraint dh1,. ∈ d1

h1
D2 as A2dh1,. + B2ξ′ − d1

h1
b2 ≤ 0. Indeed, d1

h1
= 0 implies

dh1,. = 0 while for d1
h1

> 0 we have A2dh1,. + B2ξ′ − d1
h1

b2 ≤ 0 if and only if dh1,./d1
h1
∈ D2.

Polytope D is then defined by constraints A2dh1,. + B2ξh1 − d1
h1

b2 ≤ 0 for each h1 ∈ H1 in
addition to A1d1 + B1ξ ≤ b1. Observe that a subscript h1 is added to express the fact that
the auxiliary variables ξh1 depend on h1 ∈ H1. Notice also that the size of the matrices
defining D is less than or equal to the product of the sizes of the matrices defining D1 and D2.

STACS 2022
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We will now prove that congdyn(I) ≤ congdyn(I1) · congdyn(I2). Let d be a vector in D
and let d1 ∈ D1 be a vector such that dh1,. ∈ d1

h1
D2. For h1 in H1, we define d2,h1 ∈ D2 by

d2,h1
h2

= dh1h2
d1

h1
if d1

h1
̸= 0 and d2,h1 = 0 if d1

h1
= 0. We clearly have dh1,h2 = d1

h1
· d2,h1

h2
for all

h1 ∈ H1, h2 ∈ H2.
Let f1, f2,h1 be the optimal routing schemes for d1 ∈ RH1 and d2,h1 ∈ RH2 for h1 ∈ H1. To
route commodity (h1, h2), we consider the following multi-commodity flow in G defined by
f(h1,h2),(e1,e2) = f1

h1,e1
f2,h1

h2,e2
. The total flow on the edge (e1, e2) is then given by:∑

(h1,h2)∈H1×H2

d1
h1

d2,h1
h2

f(h1,h2),(e1,e2) =
∑

h1∈H1

d1
h1

f1
h1,e1

∑
h2∈H1

d2,h1
h2

f2,h1
h2,e2

≤
∑

h1∈H1

d1
h1

f1
h1,e1

congdyn(I2)c2e2

≤ congdyn(I1) · congdyn(I2) · c1e1 · c2e2

= congdyn(I1) · congdyn(I2) · c(e1,e2).

Since this holds for any edge (e1, e2) of G (the other edges of G have an infinite capacity),
we deduce that congdyn(I) ≤ congdyn(I1) · congdyn(I2).

Let us now show that congcut(I) ≥ congcut(I1) · congcut(I2). Let C1 (resp. C2) be a cut
of G1 (resp. G2) achieving the maximal congestion congcut(I1) (resp. congcut(I2)), and let
d1 ∈ D1 (resp. d2 ∈ D2) be a demand vector for which the maximal cut congestion is obtained.
In other words, we have

∑
h1∈HC1

d1
h1

/
∑

e1∈C1

ce1 = congcut(I1) and
∑

h1∈HC2

d2
h2

/
∑

e2∈C2

ce2 =

congcut(I2).
Observe that the set of edges C1 × C2 is a cut of G that is intersecting all demands of
HC1 ×HC2 . Notice that the flow restrictions that have been considered are crucial here to
guarantee the previous fact. Let d ∈ RH be the demand defined by d(h1,h2) = d1

h1
· d2

h2
. Since

d1 ∈ D1 and d2 ∈ D2, we also have d ∈ D. The congestion on the cut C1 × C2 is given by:∑
(h1,h2)∈HC1 ×HC2

d(h1,h2)∑
(e1,e2)∈C1×C2

c(e1,e2)
=

∑
h1∈HC1

d1
h1∑

e1∈C1

c1e1
·

∑
h2∈HC2

d2
h2∑

e2∈C2

c2e2

= congcut(I1) · congcut(I2).

This clearly implies that congcut(I) ≥ congcut(I1) · congcut(I2). ◀

Proof of Proposition 15. Let us take p(m) = logc1(m) for an arbitrary constant c1. If we
run a polynomial-time algorithm on instance the instance Ip(m), we get an algorithm running
in poly-logarithmic time. The number of commodities k is bounded by (θm)p(m). Thus
log k ≤ logc1 m log θm < logc1+2 m for big enough m and therefore m > exp(log

1
c1+2 k).

The gap between the congestion of the instances Ip(m) corresponding to 3-SAT instances
such that val(φ) < 1− ρ and those such that val(φ) = 1 is:

(1 + ρ)p(m) > (1 + ρ)p(log
1

c1+2 k))

= (1 + ρ)log
c1

c1+2 k

> (1 + ρ)log1−ϵ k

for any ϵ > 0 if we take c1 such that c1
c1+2 > 1 − ϵ. The (1 + ρ) term can be replaced by

2 by observing that 2log1−ϵ′
k = o((1 + ρ)log1−ϵ k) for any ϵ′ < ϵ. The same proof applies if

parameter n is considered instead of k. ◀
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Abstract
We study first-order logic (FO) over the structure consisting of finite words over some alphabet A,
together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation
fragments, this logic is well-understood: If every word is available as a constant, then even the Σ1

(i.e., existential) fragment is undecidable, already for binary alphabets A.
However, up to now, little is known about the expressiveness of the quantifier alternation

fragments: For example, the undecidability proof for the existential fragment relies on Diophantine
equations and only shows that recursively enumerable languages over a singleton alphabet (and
some auxiliary predicates) are definable.

We show that if |A| ≥ 3, then a relation is definable in the existential fragment over A with
constants if and only if it is recursively enumerable. This implies characterizations for all fragments Σi:
If |A| ≥ 3, then a relation is definable in Σi if and only if it belongs to the i-th level of the arithmetical
hierarchy. In addition, our result yields an analogous complete description of the Σi-fragments for
i ≥ 2 of the pure logic, where the words of A∗ are not available as constants.
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1 Introduction

The subword ordering. A word u is a subword of another word v if u can be obtained from
v by deleting letters at an arbitrary set of positions. The subword ordering has been studied
intensively over the last few decades. On the one hand, it appears in many classical results
of theoretical computer science. For example, subwords have been a central topic in string
algorithms [4, 12, 28]. Moreover, their combinatorial properties are the basis for verifying
lossy channel systems [1]. Particularly in recent years, subwords have received a considerable
amount of attention. Notable examples include lower bounds in fine-grained complexity [8, 9]
and algorithms to compute the set of all subwords of formal languages [2, 3, 6, 10, 15, 16, 32,
33, 34]. Subwords are also the basis of Simon’s congruence [31], which has been studied from
algorithmic [13, 14] and combinatorial [5, 11, 20, 22] viewpoints.

First-order logic over subwords. The importance of subwords has motivated the study
of first-order logics (FO) over the subword ordering. This has been considered in two
variants: In the pure logic, one has FO over the structure (A∗,≼), where A is an alphabet
and ≼ is the subword ordering. In the version with constants, we have the structure
(A∗,≼, (w)w∈A∗), which has a constant for each word from A∗. Traditionally for FO, the
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7:2 Existential Definability over the Subword Ordering

primary questions are decidability and definability, particularly regarding quantifier alternation
fragments Σi. Here, decidability refers to the truth problem: Given a formula φ in a particular
fragment over (A∗,≼) or (A∗,≼, (w)w∈A∗), respectively, does φ hold? By definability, we
mean understanding which relations can be defined by formulas in a particular fragment.
The Σi-fragment consists of formulas in prenex form that begin with existential quantifiers
and then alternate i− 1 times between blocks of universal and existential quantifiers. For
example, the formula

∃x : (a ̸≼ x ∨ b ̸≼ x) ∧ x ̸≼ u ∧ x ≼ v

belongs to the Σ1-fragment, also called the existential fragment over (A∗,≼, (w)w∈A∗) with
A = {a, b}. The formula has free variables u, v and refers to the constants a and b. It holds
if and only if v has more b’s or more a’s than u.

For FO over subwords, decidability is well-understood. In the pure logic, the Σ2-fragment
is undecidable, already over two letters [17, Corollary III.6], whereas the Σ1-fragment (i.e.,
existential formulas) is decidable [25, Theorem 2.2] and NP-complete [21, Theorem 2.1]. This
fueled hope that the Σ1-fragment might even be decidable with constants, but this turned out
to be undecidable, already over two letters [17, Theorem III.3]. Decidability (and complexity)
have also been studied for the two-variable fragment [21, 22, 26], and extended with counting
quantifiers and regular predicates [26, 27].

Nevertheless, little is known about definability. Kudinov, Selivanov, and Yartseva
have shown that using arbitrary first-order formulas over (A∗,≼), one can define exactly
the relations from the arithmetical hierarchy1 that are invariant under automorphisms of
(A∗,≼) [24, Theorem 5], if |A| ≥ 2. However, this does not explain definability of the
Σi-fragments. For example, in order to define all recursively enumerable languages, as far as
we can see, their proof requires several quantifier alternations. An undecidability proof by
Karandikar and Schnoebelen [21, Theorem 4.6] for the Σ2-fragment can easily be adapted to
show that for each alphabet A, there exists a larger alphabet B such that every recursively
enumerable language L ⊆ A∗ is definable in the Σ2-fragment over (B∗,≼, (w)w∈B∗). However,
a full description of the expressiveness of the Σ2-fragment is missing.

Existential formulas. The expressiveness of existential formulas is even further from being
understood. The undecidability proof in [17] reduces from solvability of Diophantine equations,
i.e., polynomial equations over integers, which is a well-known undecidable problem [29].
To this end, it is shown in [17] that the relations ADD = {(am, an, am+n) | m,n ∈ N} and
MULT = {(am, an, am·n) | m,n ∈ N} are definable existentially using the subword ordering, if
one has at least two letters. Since Diophantine equations can be used to define all recursively
enumerable relations over natural numbers, this implies that all recursively enumerable
relations involving a single letter are definable existentially. However, this says little about
which languages (let alone relations) over more than one letter are definable. For example, it
is not clear whether the language of all w ∈ {a, b}∗ that do not contain aba as an infix, or the
reversal relation REVA = {(u, v) | u, v ∈ A∗, v is the reversal of u}, are definable – it seems
particularly difficult to define them over the subword ordering using the methods from [17].

Contribution. We show that for any alphabet A with |A| ≥ 3, every recursively enumerable
relation R ⊆ (A∗)k, k ∈ N, is existentially definable in (A∗,≼, (w)w∈A∗). Since every
existentially definable relation is clearly recursively enumerable (via a simple enumerative

1 Also known as the Kleene–Mostowski hierarchy.
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algorithm), this completely describes the expressiveness of existential formulas for |A| ≥ 3.
Despite the undecidability of the existential fragment [17], we find it surprising that all
recursively enumerable relations – including relations like REVA – are existentially definable.

Our result yields characterizations of the Σi-fragments for every i ≥ 2: It implies that for
each i ≥ 2, the Σi-fragment over (A∗,≼, (w)w∈A∗) can define exactly the relations in Σ0

i , the
i-th level of the arithmetical hierarchy, assuming |A| ≥ 3. This also provides a description of
Σi in the pure logic: It follows that in the Σi-fragment over (A∗,≼), one can define exactly
the relations in Σ0

i that are invariant under automorphisms of (A∗,≼), if |A| ≥ 3.
Since [17] shows that all recursively enumerable languages over one letter are definable

in (A∗,≼, (w)w∈A∗) if |A| ≥ 2, it would suffice to define a bijection between a∗ and A∗

using subwords. However, since this seems hard to do directly, our proof follows a different
route. We first show how to define rational transductions and then a special language from
which one can build every recursively enumerable relation via rational transductions and
intersections. In particular, a byproduct is a direct proof of undecidability of the existential
fragment in the case of |A| ≥ 3 that avoids using undecidability of Diophantine equations2.

Key ingredients. The undecidability proof for the existential fragment from [17] shows
that the relations ADD and MULT are definable, in addition to auxiliary predicates that are
needed for this, such as concatenation and letter counting predicates of the form “|u|a = |v|b”.
With these methods, it is difficult to express that a certain property holds locally – by
which we mean: at every position in a word. Using concatenation, we can define languages
like (anb)∗ for each n ∈ N (see Section 3), which “locally look like anb”. But if we want to
express that, e.g., aba does not occur as an infix, this is of little help, because words avoiding
an infix need not be periodic. The ability to disallow infixes would aid us in defining rational
transductions via runs of transducers, as these are little more than configuration sequences
where pairs of configurations that are not connected by a transition do not occur as infixes.
Such local properties are often easy to state with universal quantification, but this is not
available in existential formulas.

An important theme in our proof is to express such local properties by carefully con-
structing long words in which w has to embed in order for w to have the local property. For
example, our first lemma says: Each set X ⊆ A=ℓ can be characterized as the set of words
(of length ≥ ℓ) that embed into each word in a finite set P . This allows us to define sets X∗.

Steps I–III of our proof use techniques of this type to express rational transductions. In
Step IV, we then define the special language G = {anbn | n ≥ 0}∗, which has the property
that all recursively enumerable languages can be obtained from G using rational transductions
and intersection. This yields all recursively enumerable relations over two letters in Step V.

In sum, Steps I–V let us define all recursively enumerable relations over {a, b}, provided
that the alphabet A contains an additional auxiliary letter. It then remains to define
recursively enumerable relations that can also involve all other letters in A. We do this in
Step VI by observing that each word w ∈ A∗ is determined by its projections to binary
alphabets B ⊆ A. This allows us to compare words by looking at two letters at a time and
use the other (currently unused) letters for auxiliary means.

2 Our proof relies on the definability of concatenation and certain counting predicates (see Section 3),
which was shown directly in [17], without using computational completeness of Diophantine equations.
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7:4 Existential Definability over the Subword Ordering

2 Main results

We say that u is a subword of v, written u ≼ v, if there exist words u1, . . . , un and v0, . . . , vn

such that u = u1 · · ·un and v = v0u1v1 · · ·unvn.

Subword logic. We consider first-order logic over the structure (A∗,≼) and first-order
logic over the structure (A∗,≼, (w)w∈A∗) enriched with constant symbols w for every word
w ∈ A∗. A first-order formula φ with free variables x1, . . . , xk defines a relation R ⊆ (A∗)k

if R contains exactly those tuples of words (w1, . . . , wk) that satisfy3 the formula φ.
Let us define the quantifier alternation fragments of first-order logic. A formula without

quantifiers is called Σ0-formula or Π0-formula. For i ≥ 1, a Σi-formula (resp. Πi-formula)
is one of the form ∃x1 · · · ∃xnφ (resp. ∀x1 · · · ∀xnφ), where φ is a a Πi−1-formula (resp.
Σi−1-formula), x1, . . . , xn are variables, and n ≥ 0. In other words, a Σi-formula is in prenex
form and its quantifiers begin with a block of existential quantifiers and alternate at most i−1
times between universal and existential quantifiers. The Σi-fragment (Πi-fragment) consists
of the Σi-formulas (Πi-formulas). In particular, the Σ1-fragment (called the existential
fragment) consists of the formulas in prenex form that only contain existential quantifiers.

Expressiveness with constants. Our main technical contribution is the following.

▶ Theorem 2.1. Let A be an alphabet with |A| ≥ 3. A relation is definable in the Σ1-fragment
over (A∗,≼, (w)w∈A∗) if and only if it is recursively enumerable.

We prove Theorem 2.1 in Section 3. Theorem 2.1 in particular yields a description of what is
expressible using Σi-formulas for each i ≥ 1. Recall that the arithmetical hierarchy consists
of classes Σ0

1,Σ0
2, . . ., where Σ0

1 = RE is the class of recursively enumerable relations, and
for i ≥ 2, we have Σ0

i = REΣ0
i−1 . Here, for a class of relations C, REC denotes the class of

relations recognized by oracle Turing machines with access to oracles over the class C.

▶ Corollary 2.2. Let A be an alphabet with |A| ≥ 3 and let i ≥ 1. A relation is definable in
the Σi-fragment over (A∗,≼, (w)w∈A∗) if and only if it belongs to Σ0

i .

Expressiveness of the pure logic. Corollary 2.2 completely describes the relations definable
in the structure (A∗,≼, (w)w∈A∗) if |A| ≥ 3. We can use this to derive a description of the
relations definable without constants, i.e., in the structure (A∗,≼). The lack of constants
slightly reduces the expressiveness; to make this precise, we need some terminology. An
automorphism (of (A∗,≼)) is a bijection α : A∗ → A∗ such that u ≼ v if and only if
α(u) ≼ α(v). A relation R ⊆ (A∗)k is automorphism-invariant if for every automorphism α,
we have (v1, . . . , vk) ∈ R if and only if (α(v1), . . . , α(vk)) ∈ R. It is straightforward to check
that every formula over (A∗,≼) defines an automorphism-invariant relation. Thus, in the
Σi-fragment over (A∗,≼), we can only define automorphism-invariant relations inside Σ0

i .

▶ Corollary 2.3. Let A be an alphabet with |A| ≥ 3 and let i ≥ 2. A relation is definable in
the Σi-fragment over (A∗,≼) if and only if it is automorphism-invariant and belongs to Σ0

i .

3 The correspondence between the entries in the tuple and the free variables of φ will always be clear,
because the variables will have an obvious linear order by sorting them alphabetically and by their
index. For example, if φ has free variables xi for 1 ≤ i ≤ k and yj for 1 ≤ j ≤ ℓ, then we order them as
x1, . . . , xk, y1, . . . , yℓ.
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To give some intuition on automorphism-invariant sets, let us recall the classification of
automorphisms of (A∗,≼), shown implicitly by Kudinov, Selivanov, and Yartseva in [24] (for
a short and explicit proof, see [18, Lemma 3.8]): A map α : A∗ → A∗ is an automorphism
of (A∗,≼) if and only if (i) the restriction of α to A is a permutation of A, and (ii) α is
either a word morphism, i.e., α(a1 · · · ak) = α(a1) · · ·α(ak) for any a1, . . . , ak ∈ A, or a word
anti-morphism, i.e., α(a1 · · · ak) = α(ak) · · ·α(a1) for any a1, . . . , ak ∈ A.

Finally, Corollary 2.3 raises the question of whether the Σ1-fragment over (A∗,≼) also
expresses exactly the automorphism-invariant recursively enumerable relations. It does not:

▶ Observation 2.4. Let |A| ≥ 2. There are undecidable relations definable in the Σ1-fragment
over (A∗,≼). However, not every automorphism-invariant regular language is definable in it.

We prove Corollaries 2.2 and 2.3 and Observation 2.4 in Section 4.

3 Existentially defining recursively enumerable relations

In this section, we prove Theorem 2.1. Therefore, we now concentrate on definability in the
Σ1-fragment. Moreover, for an alphabet A, we will sometimes use the phrase Σ1-definable
over A as a shorthand for definability in the Σ1-fragment over the structure (A∗,≼, (w)w∈A∗).

Notation. For an alphabet A, we write A=k, A≥k, and A≤k for the set of words over A
that have length exactly k, at least k, and at most k, respectively. We write |w| for the
length of a word w. If B ⊆ A is a subalphabet of A then |w|B denotes the number of
occurrences of letters a ∈ B in w, or simply |w|a if B = {a} is a singleton. Furthermore, we
write πB : A∗ → B∗ for the projection morphism which keeps only the letters from B. If
B = {a, b}, we also write πa,b for π{a,b}. The downward closure of a word v ∈ A∗ is defined
as v↓ := {u ∈ A∗ | u ≼ v}.

Basic relations. We will use two kinds of relations, concatenation and counting letters,
which are shown to be Σ1-definable in (A∗,≼, (w)w∈A∗) as part of the undecidability proof of
the truth problem in [17, Theorem III.3]. The following relations are Σ1-definable if |A| ≥ 2.
Concatenation The relation {(u, v, w) ∈ (A∗)3 | w = uv}.
Counting letters The relation {(u, v) ∈ (A∗)2 | |u|a = |v|b} for any a, b ∈ A.
Moreover, we will make use of a classical fact from word combinatorics: For u, v ∈ A∗, we
have uv = vu if and only if there is a word r ∈ A∗ with u ∈ r∗ and v ∈ r∗ [7]. In particular,
if p is primitive, meaning that p ∈ A+ and there is no r ∈ A∗ with |r| < |p| and p ∈ r∗, then
up = pu is equivalent to u ∈ p∗. Furthermore, note that by counting letters as above, and
using concatenation, we can also say |u|a = |vw|a, i.e., |u|a = |v|a + |w|a for a ∈ A. With
these building blocks, we can state arbitrary linear equations over terms |u|a with u ∈ A∗

and a ∈ A. For example, we can say |u| = 3 · |v|a + 2 · |w|b for u, v, w ∈ A∗ and a, b ∈ A.
This also allows us to state modulo constraints, such as ∃v : |u|a = 2 · |v|a, i.e., “|u|a is even”.
Finally, counting letters lets us define projections: Note that for B ⊆ A and u, v ∈ A∗, we
have v = πB(u) if and only if v ≼ u and |v|b = |u|b for each b ∈ B as well as ¬(a ≼ v) for
every a ∈ A \B.

For any subalphabet B ⊆ A one can clearly define B∗ over A. Hence definability of a
relation over B also implies definability over the larger alphabet A.
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Finite state transducers. An important ingredient of our proof is to define regular languages
in the subword order, and, more generally, rational transductions, i.e., relations recognized
by finite state transducers.

For k ∈ N, a k-ary finite state transducer T = (Q,A, δ, q0, Qf ) consists of a finite set of
states Q, an input alphabet A, an initial state q0 ∈ Q, a set of final states Qf ⊆ Q, and a
transition relation δ ⊆ Q× (A ∪ {ε})k × Q. For a transition (q, a1, . . . , ak, q

′) ∈ δ, we also
write q (a1,...,ak)−−−−−−→ q′.

The transducer T recognizes the k-ary relation R(T ) ⊆ (A∗)k containing precisely those
k-tuples (w1, . . . , wk), for which there is a transition sequence q0

(a1,1,...,ak,1)−−−−−−−−→ q1
(a1,2,...,ak,2)−−−−−−−−→

. . .
(a1,m,...,ak,m)−−−−−−−−−→ qm with qm ∈ Qf and wi = ai,1ai,2 · · · ai,m for all i ∈ {1, . . . , k}. Such a

transition sequence is called an accepting run of T . We sometimes prefer to think of the
wi as produced output rather than consumed input and thus occasionally use terminology
accordingly. A relation T is called a rational transduction if it is recognized by some finite
state transducer T . Unary transducers (i.e., k = 1) recognize the regular languages.

Overview. As outlined in the introduction, our proof consists of six steps. In Steps I–
III, we show that we can define all rational transductions T ⊆ (A∗)k over the alphabet
B, if |B| ≥ |A| + 1. In Step IV, we define the special language G = {anbn | n ≥ 0}∗.
From G, all recursively enumerable languages can be obtained using rational transductions
and intersection, which in Step V allows us to define over B all recursively enumerable
relations over A, provided that |B| ≥ |A| + 1. Finally, in Step VI, we use projections to
binary alphabets to define arbitrary recursively enumerable relations over A, if |A| ≥ 3.

Step I: Defining Kleene stars. We first define the languages X∗, where X consists of words
of equal length. To this end, we establish an alternative representation for such sets.

▶ Lemma 3.1. Every nonempty set X ⊆ A=ℓ can be written as X = A≥ℓ ∩
⋂

p∈P p↓ for
some finite set P ⊆ A∗.

Proof. We can assume ℓ ≥ 1 since otherwise X = {ε} = A≥0 ∩ ε↓. Let w ∈ A∗ be any
permutation of A (i.e., each letter of A appears exactly once in w). If a ∈ A, then (w \ a)
denotes the word obtained from w by deleting a. For any nonempty word u = a1 · · · ak ∈ A+,
a1, . . . , ak ∈ A, define the word

pu = (w \ a1) (w \ a1) a1 (w \ a2) (w \ a2) a2 · · · (w \ ak−1) (w \ ak−1) ak−1 (w \ ak) (w \ ak).

Note that pu does not contain u as a subword: In trying to embed each letter ai of u into pu,
the first possible choice for a1 comes after the initial sequence (w \ a1) (w \ a1). Similarly,
the next possible choice for each subsequent ai is right after (w \ ai) (w \ ai). However, this
only works until ak−1, since there is no ak at the end of pu.

On the other hand, observe that pu contains every word v ∈ A≤k \ {u} as a subword:
Suppose that v = b1 · · · bm, b1, . . . , bm ∈ A, and let i ∈ [1,m + 1] be the minimal position
with bi ̸= ai or i = m + 1. The prefix b1 · · · bi−1 = a1 · · · ai−1 occurs as a subword of pu,
which in the case i = m+ 1 already is the whole word v. If i ≤ m then bi occurs in (w \ ai),
and bi+1 · · · bm embeds into the subword (w \ ai) ai · · · (w \ ak−1) ak−1 of pu. Thus, we can
write

X = A≥ℓ ∩
⋂

u∈(A=ℓ\X)∪A=ℓ+1

pu↓.

Here u ∈ A=ℓ+1 was added to also exclude all words of length greater than ℓ. ◀
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▶ Lemma 3.2. Let A ⊆ B be finite alphabets and # ∈ B \A. Let X ⊆ A=k and Y ⊆ A=ℓ

be sets. Then (X#Y#)∗ and X∗ are Σ1-definable over B.

Proof. We can clearly assume that X,Y are nonempty. By Lemma 3.1 we can write
X = A≥k ∩

⋂
p∈P p↓ and Y = A≥ℓ ∩

⋂
q∈Q q↓ for some finite sets P,Q ⊆ A∗. We claim that

w ∈ (A ∪ {#})∗ belongs to (X#Y#)∗ if and only if

∃n ∈ N : |w|# = 2n ∧ |w|A = (k + ℓ) · n ∧
∧

p∈P,q∈Q

w ≼ (p#q#)n. (1)

Observe that the number n is uniquely determined by |w|#. The “only if”-direction is
clear. Conversely, suppose that w ∈ (A ∪ {#})∗ satisfies the formula. We can factorize
w = x1#y1# . . . xn#yn# where each xi is a subword of each word p ∈ P , and each yi is
a subword of each word q ∈ Q. If some word xi were strictly longer than k, then it would
belong to X by the representation of X, and in particular would have length k, contradiction.
Therefore each word xi has length at most k, and similarly each word yi has length at most ℓ.
However, since the total length of x1y1 . . . xnyn is (k + ℓ) · n, we must have |xi| = k and
|yi| = ℓ, and hence xi ∈ X and yi ∈ Y for all i ∈ [1, n]. This proves our claim.

Finally, (1) is equivalent to the following Σ1-formula:

(k + ℓ) · |w|# = 2 · |w|A ∧
∧

p∈P,q∈Q

∃u ∈ (p#q#)∗ : (w ≼ u ∧ |u|# = |w|#)

Here, we express u ∈ (p#q#)∗ as follows. If p ̸= q, then p#q# is primitive and u ∈ (p#q#)∗

is equivalent to u(p#q#) = (p#q#)u. If p = q, then u ∈ (p#q#)∗ is equivalent to
up# = p#u and |u|# being even. Finally, to define X∗ we set Y = {ε} and obtain
X∗ = πA((X#Y#)∗). ◀

Step II: Blockwise transductions. On our way towards rational transductions, we work
with a subclass of transductions. If T ⊆ A∗ ×A∗ is any subset, then we define the relation

T ∗ = {(x1 · · ·xn, y1 · · · yn) | n ∈ N, (x1, y1), . . . , (xn, yn) ∈ T}.

We call a transduction blockwise if it is of the form T ∗ for some T ⊆ A=k ×A=ℓ and k, ℓ ∈ N.

▶ Lemma 3.3. Let A ⊆ B be finite alphabets with |B| ≥ |A|+1. Every blockwise transduction
R ⊆ A∗ ×A∗ is Σ1-definable over B.

Proof. Let # ∈ B \A be a symbol. Suppose that R = T ∗ for some T ⊆ A=k ×A=ℓ. Define
the language L = {x#y# | (x, y) ∈ T}∗. Note that

w ∈ L ⇐⇒ w ∈ (A=k#A=ℓ#)∗ ∧ πA(w) ∈ {xy | (x, y) ∈ T}∗,

and hence L is Σ1-definable over B by Lemma 3.2. The languages X = (A=k##)∗ and
Y = (#A=ℓ#)∗ are also definable over B by Lemma 3.2. Then (x, y) ∈ R if and only if

∃w ∈ L, x̂ ∈ X, ŷ ∈ Y : x̂, ŷ ≼ w ∧ |w|# = |x̂|# = |ŷ|# ∧ x = πA(x̂) ∧ y = πA(ŷ). ◀

Step III: Rational transductions. We are ready to define arbitrary rational transductions.

▶ Lemma 3.4. Let A ⊆ B be finite alphabets where |A|+1 ≤ |B| and |B| ≥ 3. Every rational
transduction T ⊆ (A∗)k is Σ1-definable over B.
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Proof. Let a, b ∈ B. Let us first give an overview. Suppose the transducer for T has n
transitions. Of course, we may assume that every run contains at least one transition. The
idea is that a sequence of transitions is encoded by a word, where transition j ∈ {1, . . . , n} is
represented by ajbn+1−j . We will define predicates run and inputi for i ∈ {1, . . . , k} with

(w1, . . . , wk) ∈ T ⇐⇒ ∃w ∈ {a, b}∗ : run(w) ∧
k∧

i=1
inputi(w,wi).

Here, run(w) states that w encodes a sequence of transitions that is a run of the transducer.
Moreover, inputi(w,wi) states that wi ∈ A∗ is the input of this run in the i-th coordinate.

We begin with the predicate run. Let us call the words in X = {ajbn+1−j | j ∈ {1, . . . , n}}
the transition codes. Let ∆ be the set of all words aibn+1−iajbn+1−j for which the target
state of transition i and the source state of transition j are the same. Note that a word
w ∈ X∗ represents a run if
1. w begins with a transition that can be applied in an initial state,
2. w ends with a transition that leads to a final state, and
3. either w ∈ ∆∗ ∩X∆∗X or w ∈ X∆∗ ∩ ∆∗X, depending on whether the run has an even

or an odd number of transitions.
Thus, we can define run(w) using prefix and suffix relations and membership to sets ∆∗. The
prefix and suffix relation can be defined over {a, b}. Finally, we can express w ∈ X∗, w ∈ ∆∗

and similar with Lemma 3.2.
It remains to define the inputi predicate. In the case that every transition reads a single

letter on each input (i.e., no ε input), we can simply replace each transition code in w by
its i-th input letter using a blockwise transduction. To handle ε inputs, we define inputi in
two steps. Fix i and let A = {a1, . . . , am}. We first obtain an encoded version ui of the
i-th input from w: For every transition that reads aj , we replace its transition code with
abjabm−ja. Moreover, for each transition that reads ε, we replace the transition code by
bm+3. Using Lemma 3.3, this replacement is easily achieved using a blockwise transduction.
Hence, each possible input in A ∪ {ε} is encoded using a block from Y ∪ {bm+3}, where
Y = {abjabm−ja | j ∈ {1, . . . ,m}}.

Suppose we have produced the encoded input ui ∈ (Y ∪ {bm+3})∗. In the next step, we
want to define the word vi ∈ Y ∗, which is obtained from ui by removing each block bm+3

from ui. We do this as follows:

vi ∈ Y ∗ ∧ vi ≼ ui ∧ |vi|a = |ui|a.

Note that here, we can express vi ∈ Y ∗ because of Lemma 3.2. In the final step, we turn vi

into the input wi ∈ A by replacing each block abjabm−ja with aj for j ∈ {1, . . . ,m}. This is
just a blockwise transduction and can be defined by Lemma 3.3 because |B| ≥ |A| + 1. ◀

▶ Remark 3.5. We do not use this here, but Lemma 3.4 also holds without the assumption
|B| ≥ 3. Indeed, if |B| = 2, then this would imply |Ai| = 1 for every i. Then we can write
Ai = {ai} for (not necessarily distinct) letters a1, . . . , ak. Since T is rational, the set of all
(x1, . . . , xk) ∈ Nk with (ax1

1 , . . . , axk

k ) ∈ T is semilinear, and thus Σ1-definable in (N,+, 0). It
follows from the known predicates that T is Σ1-definable using subwords over {a1, . . . , ak}.

Step IV: Generator language. Our next ingredient is to express a particular non-regular
language G (and its variant G#):

G = {anbn | n ≥ 0}∗, G# = {anbn# | n ≥ 0}∗.

This will be useful because from G, one can produce all recursively enumerable sets by way
of rational transductions and intersection.
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▶ Lemma 3.6. The language {ab,#}∗ is Σ1-definable over {a, b,#}.

Proof. Note that

u ∈ {ab,#}∗ ⇐⇒ ∃v ∈ #∗ab#∗, w ∈ v∗ : u ≼ w ∧ πa,b(u) = πa,b(w).

Here, the language #∗ab#∗ can be defined using concatenation. Moreover, since every word
in #∗ab#∗ is primitive, we express w ∈ v∗ by saying vw = wv. ◀

▶ Lemma 3.7. Let {a, b} ⊆ A and |A| ≥ 3. The language G is Σ1-definable over A.

Proof. Suppose # ∈ A \ {a, b}. Since G = πa,b(G#), it suffices to define G#. We can define
the language a∗b∗# as a concatenation of a∗, b∗, and #. The next step is to define the
language K = (a∗b∗#)∗. To this end, notice that

w ∈ K ⇐⇒ ∃u ∈ a∗b∗#, v ∈ u∗ : w ≼ v ∧ |w|# = |v|#.

Here, since the words in a∗b∗# are primitive, we can express v ∈ u∗ by saying vu = uv.
Thus, we can define K. Using K and Lemma 3.6, we can define G#, since

w ∈ G# ⇐⇒ w ∈ K ∧ ∃v ∈ {ab,#}∗ : πa,#(w) = πa,#(v) ∧ πb,#(w) = πb,#(v). ◀

Step V: Recursively enumerable relations over two letters. We are now ready to define all
recursively enumerable relations over two letters in (A∗,≼, (w)w∈A∗), provided that |A| ≥ 3.
For two rational transductions T ⊆ A∗ ×B∗ and S ⊆ B∗ × C∗, and a language L ⊆ A∗, we
denote application of T to L as TL = {v ∈ B∗ | ∃u ∈ L : (u, v) ∈ T} ⊆ B∗, and we denote
composition of S and T as S ◦ T = {(u,w) | ∃v ∈ B∗ : (u, v) ∈ T ∧ (v, w) ∈ S} ⊆ A∗ × C∗.
The latter is again a rational transduction (see e.g. [7]).

▶ Lemma 3.8 (Hartmanis & Hopcroft 1970). Every recursively enumerable language L can
be written as L = α(T1G# ∩ T2G#) with a morphism α and rational transductions T1, T2.

Proof. This follows directly from [19, Theorem 1] and the proof of [19, Theorem 2]. ◀

Let us briefly sketch the proof of Lemma 3.8. It essentially states that every recursively
enumerable language can be accepted by a machine with access to two counters that work in
a restricted way. The two counters have instructions to increment, decrement, and zero test
(which correspond to the letters a, b, and # in G#). The restriction, which we call “locally
one-reversal” (L1R) is that in between two zero tests of some counter, the instructions of that
counter must be one-reversal : There is a phase of increments and then a phase of decrements
(in other words, after a decrement, no increments are allowed until the next zero test).

To show this, Hartmanis and Hopcroft use the classical fact that every recursively
enumerable language can be accepted by a four counter machine (without the L1R property).
Then, the four counter values p, q, r, s can be encoded as 2p3q5r7s in a single integer register
that can (i) multiply with, (ii) divide by, (iii) test non-divisibility by the constants 2, 3, 5, 7.
Such a register, in turn, is easily simulated using two L1R-counters: For example, to multiply
by f ∈ {2, 3, 5, 7}, one uses a loop that decrements the first counter and increments the
second by f , until the first counter is zero. The other instructions are similar.

▶ Lemma 3.9. For every recursively enumerable relation R ⊆ ({a, b}∗)k, there is a rational
transduction T ⊆ ({a, b}∗)k+2 such that

(w1, . . . , wk) ∈ R ⇐⇒ ∃u, v ∈ G : (w1, . . . , wk, u, v) ∈ T. (2)
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Proof. We shall build T out of several other transductions. These will be over larger
alphabets, but since we merely compose them to obtain T , this is not an issue.

A standard fact from computability theory states that a relation is recursively enumerable
if and only if it is the homomorphic image of some recursively enumerable language. In
particular, there is a recursively enumerable language L ⊆ B∗ and morphisms β1, . . . , βk such
that R = {(β1(w), . . . , βk(w)) | w ∈ L}. By Lemma 3.8, we may write L = α(T1G# ∩ T2G#)
for a morphism α : C∗ → B∗ and rational transductions T1, T2 ⊆ {a, b,#}∗ × C∗.

Notice that if γ : {a, b,#}∗ → {a, b}∗ is the morphism with γ(a) = a, γ(b) = b, and
γ(#) = abab, then G# = (a∗b∗#)∗ ∩ γ−1(G). This means, there is a rational transduction
S ⊆ {a, b}∗×{a, b,#}∗ with G# = SG. Therefore, we can replace G# in the above expression
for L and arrive at L = α

(
(T1 ◦ S)G∩ (T2 ◦ S)G

)
. In sum, we observe that (w1, . . . , wk) ∈ R

if and only if there exists a w ∈ C∗ with w ∈ (T1 ◦ S)G and w ∈ (T2 ◦ S)G such that
wi = βi(α(w)) for i ∈ {1, . . . , k}. Consider the relation

T = {(β1(α(w)), . . . , βk(α(w)), u, v) | w ∈ C∗, (u,w) ∈ T1 ◦ S, (v, w) ∈ T2 ◦ S}.

Note that T is rational: A transducer can guess w, letter by letter, and on track i ∈ {1, . . . , k},
it outputs the image under βi(α(·)) of each letter. To compute the output on tracks k + 1
and k+ 2, it simulates transducers for T1 ◦S and T2 ◦S. Moreover, we have T ⊆ ({a, b}∗)k+2

and our observation implies that (2) holds. ◀

▶ Lemma 3.10. Let A be an alphabet with {a, b} ⊆ A and |A| ≥ 3. Then every recursively
enumerable relation R ⊆ ({a, b}∗)k is Σ1-definable over A.

Proof. Take the rational transduction T as in Lemma 3.9. Since T ⊆ ({a, b}∗)k+2 and
|A| ≥ |{a, b}| + 1, Lemma 3.4 and Lemma 3.7 yield the result. ◀

Step VI: Arbitrary recursively enumerable relations. We have seen that if |A| ≥ 3, then
we can define over A every recursively enumerable relation over two letters. In the proof, we
use a third letter as an auxiliary letter. Our last step is to define all recursively enumerable
relations that can use all letters of A freely. This clearly implies Theorem 2.1. To this end,
we observe that every word is determined by its binary projections.

▶ Lemma 3.11. Let A be an alphabet with |A| ≥ 2 and let u, v ∈ A∗ such that for every
binary alphabet B ⊆ A, we have πB(u) = πB(v). Then u = v.

Proof. Towards a contradiction, suppose u ̸= v. We clearly have |u| = |v|. Thus, if w ∈ A∗

is the longest common prefix of u and v, then u = wau′ and v = wbv′ for some letters a ̸= b

and words u′, v′ ∈ A∗. But then the words πa,b(u) and πa,b(v) differ: After the common
prefix πa,b(w), the word πa,b(u) continues with a and the word πa,b(v) continues with b. ◀

We now fix a, b ∈ A with a ≠ b. For any binary alphabet B ⊆ A let ρB : A∗ → {a, b}∗ be
any morphism with ρB(B) = {a, b} and ρB(c) = ε for all c ∈ A \ B, i.e., ρB first projects
a word over A to B and then renames the letters from B to {a, b}. Recall that

(|A|
2

)
is the

number of binary alphabets B ⊆ A. We define the encoding function e : A∗ → ({a, b}∗)(
|A|

2 )
which maps a word u ∈ A∗ to the tuple consisting of all words ρB(u) for all binary alphabets
B ⊆ A (in some arbitrary order). Note that e is injective by Lemma 3.11.

▶ Lemma 3.12. If |A| ≥ 3, then e : A∗ → ({a, b}∗)(
|A|

2 ) is Σ1-definable over A.
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Proof. For binary alphabets B,C ⊆ A, a map σ : B∗ → C∗ is called a binary renaming if
(i) σ is a word morphism and (ii) σ restricted to B is a bijection of B and C. If, in addition,
there is a letter # ∈ B ∩ C such that σ(#) = #, then we say that σ fixes a letter.

Observe that if we can Σ1-define all binary renamings, then the encoding function e can
be Σ1-defined using projections and binary renamings. Thus, it remains to define all binary
renamings. For this, note that every binary renaming can be written as a composition of (at
most three) binary renamings that each fix some letter. Hence, it suffices to define any binary
renaming that fixes a letter. Suppose σ : {c,#}∗ → {d,#}∗ with σ(c) = d and σ(#) = #.
Without loss of generality, we assume c ̸= d. Then σ is Σ1-definable since

σ(u) = v ⇐⇒ ∃w ∈ {cd,#}∗ : u = πc,#(w) ∧ v = πd,#(w).

and {cd,#}∗ is definable by Lemma 3.6. ◀

▶ Theorem 3.13. Let A be an alphabet with |A| ≥ 3. Then every recursively enumerable
relation R ⊆ (A∗)k is Σ1-definable in (A∗,≼, (w)w∈A∗).

Proof. The encoding function e is clearly computable and injective by Lemma 3.11. Therefore
a relation R ⊆ (A∗)k is recursively enumerable if and only if the image

e(R) = {(e(w1), . . . , e(wk)) | (w1, . . . , wk) ∈ R} ⊆ ({a, b}∗)k·(|A|
2 )

is recursively enumerable. This means that e(R) is Σ1-definable over A by Lemma 3.10.
Thus, we can define R as well, since we have

(w1, . . . , wk) ∈ R ⇐⇒ (e(w1), . . . , e(wk)) ∈ e(R),

and the function e is Σ1-definable over A by Lemma 3.12. ◀

4 Consequences for other fragments

In this section, we prove Corollaries 2.2 and 2.3 and Observation 2.4. When working with
higher levels (Σ0

i for i ≥ 2) of the arithmetic hierarchy, it will be convenient to use a slightly
different definition than the one using oracle Turing machines: [23, Theorem 35.1] implies
that for i ≥ 1, a relation R ⊆ (A∗)k belongs to Σ0

i+1 if and only if it can be written as
R = π((A∗)k+ℓ \ S), where S ⊆ (A∗)k+ℓ is a relation in Σ0

i and π : (A∗)k+ℓ → (A∗)k is the
projection to the first k coordinates.

Proof of Corollary 2.2. It is immediate that every predicate definable in the Σi-fragment of
(A∗,≼, (w)w∈A∗) belongs to Σ0

i , because the subword relation is recursively enumerable. We
show the converse using induction on i, such that Theorem 2.1 is the base case.

Now suppose that every relation in Σ0
i is definable in the Σi-fragment of (A∗,≼, (w)w∈A∗)

and consider a relation R ⊆ (A∗)k in Σ0
i+1. Then we can write R = π((A∗)k+ℓ \ S) for some

ℓ ≥ 0, where π : (A∗)k+ℓ → (A∗)k is the projection to the first k coordinates, and S ⊆ (A∗)k+ℓ

is a relation in Σ0
i . By induction, S is definable by a Σi-formula φ over (A∗,≼, (w)w∈A∗).

By negating φ and moving all negations inwards, we obtain a Πi-formula ψ that defines
(A∗)k+ℓ \ S. Finally, adding existential quantifiers for the variables corresponding to the last
ℓ coordinates yields a Σi+1-formula for R = π((A∗)k+ℓ \ S). ◀

Proof of Corollary 2.3. Clearly, every relation definable with a Σi-formula over (A∗,≼) must
be automorphism-invariant and must define a relation in Σ0

i .
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Conversely, consider an automorphism-invariant relation R ⊆ (A∗)k in Σ0
i . Then R

is definable using a Σi-formula φ with free variables x1, . . . , xk over (A∗,≼, (w)w∈A∗) by
Corollary 2.2. Let w1, . . . , wℓ be the constants occurring in φ. From φ, we construct the
Σi-formula φ′ over (A∗,≼), by replacing each occurrence of wj by a fresh variable yj .

It was shown in [21, Sections 4.1 and 4.2] that from the tuple (w1, . . . , wℓ) ∈ (A∗)ℓ, one can
construct a Σ2-formula ψ with free variables y1, . . . , yℓ over (A∗,≼) such that ψ(u1, . . . , uℓ)
is true if and only if there exists an automorphism of (A∗,≼) mapping uj to wj for each j.
We claim that the formula χ = ∃y1, . . . , yℓ : ψ ∧ φ′ defines the set R. Since ψ belongs to Σ2
and thus χ belongs to Σi, this implies the corollary.

Clearly, every (v1, . . . , vk) ∈ R satisfies χ. Moreover, if χ(v1, . . . , vk), then there
are u1, . . . , uℓ ∈ A∗ with φ′(v1, . . . , vk, u1, . . . , uℓ) and an automorphism α mapping uj

to wj for each j. Since α is an automorphism, the formula φ′ is also satisfied on the
tuple (α(v1), . . . , α(vk), α(u1), . . . , α(uℓ)) = (α(v1), . . . , α(vk), w1, . . . , wℓ) and thus we have
(α(v1), . . . , α(vk)) ∈ R. Since R is automorphism-invariant, this implies (v1, . . . , vk) ∈ R. ◀

Proof of Observation 2.4. Take a recursively enumerable, but undecidable subset S ⊆ N.
Fix a letter a ∈ A and define the unary language L = {an | n ∈ S}, which is definable
by a Σ1-formula φ over (A∗,≼, (w)w∈A∗) by [17, Theorem III.3]. Let w1, . . . , wℓ be the
constants occurring in φ and consider the formula φ′ in the Σ1-fragment of (A∗,≼) obtained
by replacing each occurrence of wj by a fresh variable yj . Then (u,w1, . . . , wℓ) satisfies φ′ if
and only if u ∈ L. Thus, φ′ defines an undecidable relation.

For the second statement, we claim that every language L ⊆ A∗ that is Σ1-definable in
(A∗,≼) satisfies A∗LA∗ ⊆ L. Hence, many automorphism-invariant regular languages such
as

⋃
a∈A a

∗ are not definable. Note that for a ∈ A and u, v ∈ A∗, we have u ≼ v if and only if
au ≼ av. Thus, every Σ0-definable relation R ⊆ (A∗)k satisfies (w1, . . . , wk) ∈ R if and only
if (aw1, . . . , awk) ∈ R. Symmetrically, (w1, . . . , wk) ∈ R is equivalent to (w1a, . . . , wka) ∈ R.
As a projection of a Σ0-definable relation, L thus satisfies A∗LA∗ ⊆ L. ◀

5 Conclusion

We have shown how to define all recursively enumerable relations in the existential fragment
of the subword order with constants for each alphabet A with |A| ≥ 3. If |A| = 1, then the
relations definable in (A∗,≼, (w)w∈A∗) correspond to relations over N definable in (N,≤)
with constants. Hence, this case is very well understood: This structure admits quantifier
elimination [30, Theorem 2.2(b)], which implies that the Σ1-fragment is expressively complete
and also that a subset of A∗ is only definable if it is finite or co-finite. In particular,
Theorem 2.1 does not hold for |A| = 1.

We leave open whether Theorem 2.1 still holds over a binary alphabet. If this is the
case, then we expect that substantially new techniques are required. In order to express
non-trivial relations over two letters, our proof often uses a third letter as a separator and
marker for “synchronization points” in subword embeddings.
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1 Introduction

In mathematics we study structures of various sorts like rings, fields or linear orders. In
computability theory we investigate the complexity of countable objects. A combination
of the two – computable structure theory – examines the relationship between complexity
and structure in the above sense [1, 14]. One of the main research programs in computable
structure theory consists in the study of how complexity of a relation on a given structure
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8:2 Intrinsic Complexity of Recursive Functions on (ω, <)

behaves under isomorphisms (see, e.g., [17, 9, 11, 7]). Recall that a structure is computable
if its domain and basic relations are uniformly computable. The complexity of a relation can
be captured by a measure such as Turing degrees. This leads to the notion of the degree
spectrum (of a computable relation on a computable structure) – the set of Turing degrees
assumed by the images of that relation in all computable isomorphic copies of that structure.
This notion captures what might otherwise be called the intrinsic complexity of a relation.

A natural motivation for investigating intrinsic complexity comes from treating computable
copies of a structure as notations: we regard the elements of the copy as names for the
members of the structure, with the underlying isomorphism acting as a naming function.
A computable copy of a structure is thus a notation in which all the basic relations are
computable (meaning that their images within the copy are computable). This is essentially
Shapiro’s idea, as studied, though in a very restricted sense, in [18]. But this analogy goes
further. Shapiro insisted, not without reason, that computations are not performed directly
on numbers but rather on their names (using the terminology of computable structure theory:
computations are not performed on the underlying structure but on isomorphic copies). This
intuition transfers to all computation-dependent notions, including complexity. In the end,
the intricate notion of intrinsic complexity boils down to the study of how difficult it is to
compute the relation in notations in which all the basic relations are computable.

Following Downey et al. [5] and Wright [21], we investigate degree spectra on the most
common ordering: non-negative integers with the standard less than relation, denoted by
(ω, <). We study this question in the restricted setting of specific binary relations of general
interest – graphs of unary total computable functions. As an example of how isomorphism
might influence the complexity of a such a function, consider the successor. By a well-known
result (see, e.g., Example 1.3 in [2]), there is an isomorphic copy of (ω, <) in which the
image of the successor computes the halting problem. In general, however, as one can easily
observe, the range of intrinsic complexity of a computable relation on (ω, <) is restricted
to ∆2 degrees and, therefore, each isomorphic image of such a relation is learnable (i.e., it
possesses a recursive approximation) or, equivalently, Turing reducible to the halting problem
[8, 16, 19].

Several results from the literature partially characterize degree spectra of such functions.
Moses [15] provided a syntactical characterization of intrinsically computable (i.e. having
only the computable degree in their spectrum) n-ary relations on (ω, <). These results imply
that a total unary recursive function is intrinsically computable if and only if it is almost
constant or almost identity (see Proposition 6). In [5], Downey, Khoussainov, Miller and
Yu examined degree spectra of unary relations on (ω, <). Their results show, among others,
that the spectrum of any infinite coinfinite computable unary relation on (ω, <) contains all
c.e. degrees (Theorem 1.1 in [5]). Wright extended their results by showing the following.

▶ Theorem 1 (Wright [21]). The spectrum of a computable n-ary relation which is not
intrinsically computable contains all c.e. degrees.

He was also able to show that a computable unary relation which is not intrinsically
computable has ∆2 degrees as a spectrum (see, also, [12]).

Wright asked in [21] whether the computable, the c.e. and the ∆2 degrees exhaust
possible degree spectra for computable n-ary relations on (ω, <). Roughly at about the same
time, Harrison-Trainor posed a related question in [10] where he showed that there exists a
computable relation R on (ω, <) such that its degree spectrum either
(1) contains the c.e. degrees but does not contain all of the ∆2 degrees, or
(2) consists of exactly all ∆2 degrees but R does not have this degree spectrum uniformly.
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Harrison-Trainor conjectured that (1) holds for the relation he constructed. We construct a
unary total computable function (hence, a computable binary relation) witnessing (1). This
also answers Wright’s question.

Results of this paper are heavily based on certain structural characteristics of functions,
which we refer to as the block and (a weaker) quasi-block property. Intuitively, each block
function on (ω, <) is defined by multiple sub-functions where each sub-function applies to a
different finite <-interval of ω (Definition 10). A quasi-block function is one for which there
are increasingly long initial <-segments such that no number from within the segment is
sent outside. The usefulness of these properties is clear in view of the observation that any
computable non-quasi-block function has exactly all c.e. degrees as a spectrum (Theorem 18).
One of the main contributions of the paper consists in the complete characterization of
degree spectra of block functions which have at most finitely many isomorphism types of
their elementary sub-functions (Theorem 14). The second main contribution is Theorem 23
which answers Wright’s and Harrison-Trainor’s questions.

2 Definitions

▶ Definition 2. (ω, ≺) is a computable copy of (ω, <) if ≺ is a computable ordering on ω

and structures (ω, <) and (ω, ≺) are isomorphic.

▶ Definition 3. Let R be a relation on (ω, <), i.e. R ⊆ ωk, for some k ∈ ω, and let A be a
computable copy of (ω, <). If φ is an isomorphism from (ω, <) to A, we write RA for the
image of R under φ.

▶ Definition 4. Let R be a relation on (ω, <). The degree spectrum or spectrum of R on
(ω, <), in symbols DgSp(ω,<)(R), is the set of Turing degrees of RA over all computable
copies A of (ω, <).

Throughout the article, we use abbreviated forms: spectrum of R and DgSp(R).

▶ Definition 5. Let R be a relation on (ω, <). The relation R is intrinsically computable if
DgSp(R) contains only the computable degree.

Let A = (A, <A) be a linear order. If a ≤A b, then [a; b]A and [a; b)A denote the intervals
{x : a ≤A x ≤A b} and {x : a ≤A x <A b}, respectively. If the order A is clear from the
context, then we omit the subscript A. Succ is the successor function on (ω, <). ⟨·, ·⟩ is the
pairing function. Computability-related notation is standard and follows [20]. For example,
≤T denotes the Turing reduction.

If X ⊆ ω is a ∆2 set, then one can choose its computable approximation ξ(k, s), i.e. a
{0, 1}-valued computable function such that lims ξ(k, s) = X(k), for all k. We often use
notation Xs(k) for ξ(k, s).

3 Results

The following two statements will be useful (the proof of the first one is in the full version).

▶ Proposition 6. Let f be a unary total computable function. Then f is intrinsically
computable if and only if either f is almost constant, or f is almost identity.

▶ Proposition 7 (see, e.g., Example 1.3 in [2]). The spectrum of successor is equal to the c.e.
degrees.

STACS 2022
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▶ Theorem 8. Let f be a unary computable function with finite range. If f is not intrinsically
computable then its spectrum is equal to the ∆2 degrees.

Proof. The proof is based on the ideas from Theorem 1.2 of [21]. We provide a detailed
exposition, so that a reader could familiarize themselves with the proof techniques.

We fix c0 ̸= c1 such that f−1(ci) is infinite. Without loss of generality, one may assume
that c0 = 0 and c1 = 1.

Let X ⊆ ω be an arbitrary ∆2 set. We build a computable isomorphic copy A = (ω, <A)
of the order (ω, <) such that fA is Turing equivalent to the set X. Our construction will
ensure that the following two conditions hold:

(i) k ∈ X if and only if fA(2k) = 1, for all k;
(ii) the restriction of fA to the set of odd numbers (i.e., fA ↾ {2k+1 : k ∈ ω}) is computable.

It is clear that these conditions imply fA ≡T X.
Let M be a large enough natural number such that

(∀x > M)[the f -preimage of f(x) is infinite, and x ̸∈ range(f)].

Beforehand, we use odd numbers to copy the initial segment [0; M ] of (ω, <). More formally,
we put 2k + 1 <A 2l + 1 for all k < l ≤ M . In addition, any newly added (to the copy A)
number will be strictly A-greater than 2M + 1.

Our construction satisfies the following requirements:

e ∈ X ⇔ fA(2e) = 1,

e ̸∈ X ⇔ fA(2e) = 0.
(Re)

As usual, this will be achieved by working with a computable approximation Xs(e).
By As we denote the finite structure built at a stage s. At each stage s, there is a natural

isomorphic embedding hs from As into (ω, <). If As consists of a0 <A a1 <A a2 <A . . . <A
an, then we assume that hs(ai) = i, for all i ≤ n.

This convention allows one to talk about values fAs
(x) for elements x ∈ As. We simply

assume that

fAs
(ai) = h−1

s ◦ f ◦ hs(ai).

Our construction will ensure that fA(x) = lims fAs
(x), for all x. Sometimes (when the usage

context is unambiguous), we write just fA(x) in place of fAs
(x).

Strategy Re in isolation. Suppose that (s0 + 1) is the first stage of work for this strategy.
Then we add 2e to the right end of A. Since we want to ensure that fAs0+1(2e) = Xs0+1(e),
we also add (if needed) finitely many fresh odd numbers in-between As and 2e, i.e., we set

a <A 2k + 1 <A 2e,

for a ∈ As0 and newly added numbers 2k + 1.
We say that Re requires attention at a stage s if the current value fAs

(2e) is not equal
to Xs(e). In order to deal with Re, we introduce the following important ingredient of our
proof techniques. For the sake of future convenience, we give a general description of the
module.

Pushing-to-the-right module (PtR-module). We split the (current finite) structure As into
three intervals: B <A C <A D, where, say, we have B = [a; b]A, C = {c0 <A c1 <A
. . . <A cm}, and D = {d0 <A d1 <A . . . <A dn}. Informally speaking, the module aims
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to achieve the following goal: while preserving all values fA(x) for x ∈ B ∪ D, we want
to change the function fA ↾ C in such a way that fA satisfies a particular requirement.
In addition, we require that C remains an interval inside F .
More formally, we extend the structure As to a finite structure F (which is intended to
be an initial segment of As+1) with the following properties:

every element x ∈ F \ As is a fresh odd number, and each such x satisfies either
B <A x <A C or x >A C;
fF (di) = fAs

(di) for all i ≤ n;
the new values fF (cj) satisfy some target condition.

In the future, when we talk about a particular instance of the module, we will always
explicitly specify the desired target condition.
Roughly speaking, our module keeps the interval B fixed, while all elements from C ∪ D

are pushed to the right (with the help of newly added odd numbers). In addition, the
elements of C stick together.

Going back to Re: if Re requires attention at a stage s, then we implement the following
actions.

The PtR-module for the strategy Re. In our Re-setting, we choose the middle interval
C as the singleton {2e}. The desired target condition is a natural one: we aim to satisfy
fA(2e) = Xs(e).

We build a finite structure F extending As as dictated by the PtR-module. Then
we declare that F is the output of our module, and proceed further. This concludes the
description of the Re-strategy.

Construction. At a stage s + 1, we work with strategies Re, for e ≤ s. So, a strategy Re

starts working at the stage e + 1. For each Re (in turn), our actions follow the description
given above. After Ri finished its work, the PtR-module of the next strategy Ri+1 works with
the finite structure produced by Ri. Since the described PtR-module preserves fA ↾ (B ∪ D),
our strategies do not injure each other. We define A =

⋃
s∈ω As, where As+1 is the final

content of our structure produced by the PtR-module of Rs at the end of stage s + 1.

Verification. First, we show that in the construction, every application of a PtR-module is
successful (i.e., one can always build a desired structure F).

In order to prove this, we consider our structures from a different angle: the structure
(ω, <, f) can be treated as an infinite string β over a finite alphabet Σ = range(f), where
the i-th symbol β(i) of the string is equal to f(i), i ∈ ω.

Then the construction of F in the PtR-module can be re-interpreted as follows. We are
given three finite strings, namely σ, τ (of length one), and ρ (of length n+1), for the intervals
B, C = {2e}, and D correspondingly. Our task is to find finite strings τ ′, ρ′

0, ρ′
1, . . . , ρ′

n with
the following property:

σ τ ′ a ρ′
0 ρ(0) ρ′

1 ρ(1) . . . ρ′
n ρ(n),

where a = Xs(e), is an initial segment of β.
This task can be always implemented successfully – this is a consequence of the following

simple combinatorial fact.

STACS 2022
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▶ Remark 9. Let Σ be a finite alphabet, and let α ∈ Σω be an infinite string over Σ. Suppose
that every symbol from Σ occurs infinitely often in α. Then for every finite string σ ∈ Σ<ω

of length m > 0, one can find finite strings τ0, τ1, . . . , τm−1 such that

τ0 σ(0) τ1 σ(1) . . . τm−1 σ(m − 1) is an initial segment of α. ⌟

So, we deduce that all applications of a PtR-module are successful. Hence, if e ≤ s, then
by the end of the stage s + 1 we have fAs+1(2e) = Xs(e). This implies that every requirement
Re is satisfied.

Each element a ∈ A moves (to the right) only finitely often. Indeed, there are only finitely
many even numbers 2e such that 2e ≤A a. Consider a stage s∗ such that the values Xs(e)
(for these 2e) never change after s∗. Clearly, the element a never moves after the stage s∗.

We deduce that the structure A is a computable copy of (ω, <). For every k, after the
value fAs

(2k + 1) is defined for the first time, this value never changes (since the PtR-mo-
dule always preserves the restriction fA ↾ (B ∪ D)). Therefore, our structure A satisfies
Conditions (i) and (ii) defined above. Theorem 8 is proved. ◀

3.1 Block and Quasi-Block Functions
From now on, we study some natural subclasses of unary total recursive functions with
infinite range.

▶ Definition 10. Let f : ω → ω be a total function. An interval I of (ω, <) is f -closed if
for all x ∈ I, f(x) ∈ I and f−1(x) ⊆ I. For a finite non-empty interval I ⊂ ω, the structure
(I, <, f ↾ I) is an f -block if it has the following properties:

I is an f -closed interval and it cannot be written as a disjoint union of several f -closed
intervals;
{x ∈ ω : x < I} is f -closed.

The function f is a block function if for every a ∈ ω, there is an f -block containing a.
If (I, <, f ↾ I) is an f -block, we refer to its isomorphism type as an f -type (or a type).

The second condition of the definition above ensures that for a block function f , every
element is contained in a unique f -block. Observe that in Fig. 1, without this condition, the
element 2 would be an f -block itself, which we would like to avoid.
▶ Remark 11. For any computable block function f there is a 1-1 computable enumeration
of its types. f can be represented by the unique infinite string αf : ω → [0; N), where [0, N)
is the domain of the enumeration, for some N ∈ ω ∪ {+∞}. For example, if I0, I1, . . . , IN

are all (isomorphism types of) f -blocks, then (ω, <, f) can be treated as an infinite string
αf : ω → {n : 0 ≤ n ≤ N}, e.g. a string 012012012 . . . corresponds to a disjoint sum of the
following form: I0 + I1 + I2 + I0 + I1 + I2 + I0 + I1 + I2 + . . .

▶ Example 12. f(n) = 2 · ⌊ n
2 ⌋ is a block function. Its spectrum consists of all ∆2 degrees by

Theorem 14 below.

▶ Example 13. Consider finite structures Jn from Figure 1. Let g be the involution such
that (ω, <, g) ∼= J0 + J1 + J2 + . . . Clearly, g is a block function. In the full version, we show
that its degree spectrum is all of the c.e. degrees.

▶ Theorem 14. Let f be a computable block function such that it has only finitely many
f -types and f is not almost identity. Then the spectrum DgSp(f) consists of all ∆2 degrees.

Due to space constraints, the proof has been moved to the appendix.
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Figure 1 Structures Jn = ([1; 6 + 2n], <, f), for n = 0, 1, 2, where f is the involution such that
f(k) = k iff k = 2 or k = 6 + 2n − 1, and f(k) = k + 3 for odd numbers ≤ 6 + 2n − 3.

The notion of a quasi-block function is a generalization of the notion of a block function.
Unlike blocks which are disjoint and follow each other, quasi-blocks are increasingly larger
and they are initial segments of ω.

▶ Definition 15. We say that f : ω → ω is a quasi-block function if there are arbitrarily long
finite initial segments of ω closed under f . For any such segment I = [0; n], the structure
(I, <, f ↾ I) is an f -quasi-block.

If f is a quasi-block function but not a block function, we call f a proper quasi-block
function.

▶ Example 16. Euler’s function is a function φ such that if n > 0, then φ(n) is the number
of such m ≤ n that m and n are relatively prime. φ is a proper quasi-block function. Since
φ has a computable non-decreasing lower bound ⌊

√
n
2 ⌋ diverging to ∞ (see, e.g., [13, p. 9]),

the spectrum of φ is equal to the c.e. degrees by Theorem 19.

▶ Example 17. The function nd : ω → ω assigning to each n > 0 the number of its divisors
is a proper quasi-block function.

Below we describe a method used to show that the degree spectrum of a certain unary
recursive function f consists exactly of c.e. degrees.

Retrieving the Successor module (RS) on (ω, <, f), for f recursive, is a scheme of al-
gorithms which, for any computable copy A of (ω, <) and an initial segment It of
A satisfying some condition R (to be specified in a concrete implementation) computes,
uniformly in t and relative to fA, a longer initial segment It+1 of A satisfying R, which
enables us to construct an increasing sequence of initial segments I0 ⊂ I1 ⊂ . . ..

Suppose that there exists a concrete implementation of the RS-module for (ω, <, f).
We wish to show that the degree spectrum of f on (ω, <) consists of exactly c.e. degrees.
To this aim, we want to show that SuccA is Turing-reducible to fA. We also observe
that the reduction in the other direction works. We conclude that SuccA ≡T fA, hence
DgSp(Succ) = DgSp(f), i.e. they consist of all c.e. degrees. This conclusion is based on
Proposition 7.

Suppose that an initial segment of ω up to n (according to <) has already been determined,
along with its isomorphic image It in (ω, ≺). Let us adopt a convention that the isomorphic
image of each number i is ki. Observe that for each number i such that ki ≺ kn we know
how to determine its successor in (ω, ≺). In an application of the RS-module, given kn – the
rightmost element of It – we get some km and m such that kn ≺ km and [k0; km]A satisfies
R. We know that in A there are exactly m − n − 1 elements between kn and km. Since the
ordering ≺ is recursive, we can check elements one by one until we determine what elements
(and in what order) are between kn and km. This way we extend the initial segment It of A
to a larger initial segment It+1 satisfying R and we are able to retrieve more values of the
successor in this structure.

STACS 2022
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▶ Theorem 18. The spectrum of any unary total computable non-quasi-block function is
equal to the c.e. degrees.

Proof. We show that the RS module can be used for (ω, <, f). Given a computable copy A
of (ω, <), we set I0 as the image of some initial segment of (ω, <) such that for every position
n outside of I0 there is m ≤ n such that f(m) > n. The condition R states that there is a
position j within It such that f(j) > n. Then if we already know It and want to determine
It+1, we calculate both f(j) and fA(kj) from the condition R, obtaining some values of
these functions m and km, each of them somewhere behind n and kn in their sequences. ◀

▶ Theorem 19. If f is a recursive proper quasi-block function with a computable non-
decreasing lower bound diverging to +∞, then its spectrum consists of exactly c.e. degrees.

Proof. We claim that there exist only finitely many quasi-blocks closed under both f and
f−1. Observe that if there were infinitely many such quasi-blocks, then f would be a block
function. Observe also that if f is as above, then we are able to calculate how many times
each of its values is assumed.

We utilise the RS module. The segment I0 is any initial segment such that none of its
super-quasi-blocks is closed under both f and f−1. Assume we already have a segment It of
A retrieved. It satisfies the condition R stating that it is an initial segment which is not
closed under both f and f−1.

We wish to algorithmically construct It+1, a segment of A, satisfying the same condition
R. If there is n ∈ It such that fA(n) >A It, we set It+1 as the segment consisting of
all elements up to fA(n). If not, then there must be m ∈ It such that for some n >A It,
fA(n) = m. What is more, for every such m there are only finitely many arguments satisfying
this identity and we are able to determine what they are (by looking at their isomorphic
images in the standard copy). If M is the largest of these elements, then we set It+1 as the
segment until M . ◀

▶ Theorem 20. There exists a recursive proper quasi-block function f with a non-decreasing
lower bound diverging to +∞ but with no such computable bound, with all c.e. degrees as a
spectrum.

Proof. Consider a set A ⊆ ω which is ∆2 but not computable. Observe that for each such
set there is a recursive sequence g of natural numbers such that each natural number appears
in g at most finitely many times and for any n ∈ ω, n ∈ A iff the number of occurrences of n

in g is odd.
f is going to be g modified in such a way that we put some fixed points between elements

of g, pushing these elements to the right, to ensure that f is a quasi-block function. We
will be able to easily distinguish (within f) old elements of g from the new filler elements,
because only the new elements are going to be fixed points of f .

We construct f by finite extension, starting from the empty function. Initially, all elements
of sequence g are unused. At any given stage, suppose that g(m) is the least unused element
of sequence g and that n is the least argument such that f(n) is not defined yet. If g(m) ≥ n,
then for each i = n, . . . , g(m) assign f(i) = i. Regardless of whether you performed the
previous instruction, assign value g(m) to the least i such that f(i) has no value set yet. We
declare that g(m) is used and go to the next stage.

This is a quasi-block function because each argument n is either a fixed point or is a
number from sequence g which has been pushed so far to the right that f(n) < n. Hence
every finite initial segment of ω is closed under f . However, this is not a block function. If it



N. Bazhenov, D. Kalociński, and M. Wrocławski 8:9

were, then every m such that f(m) = n would need to be in the same block as n. Then we
would be able to count how many times n is assumed as the value of f and hence A would
be decidable.

The lower bound of f diverges to ∞ because every value can be assumed only finitely often.
However, no such bound is computable because otherwise we would be able to determine
the last occurrence of every number in g and A would be computable. Observe we can
assume that this bound is non-decreasing. We just need to set f(n) = the largest m such
that f(i) ≥ m whenever i ≥ n.

If A is a c.e. set, then we utilise the RS module to show that the degree spectrum of f

consists of exactly the c.e. degrees. We can assume without loss of generality that g assumes
each of its values only once, then so does f if we ignore fixed points.

We take I0 such that behind it there are no quasi-blocks closed under f−1. The condition
R states that there is an element n > It such that f(n) ∈ It. Observe that such element
is determined uniquely. We want to retrieve It+1 ⊇ It satisfying R. We need to look for
n described above and then to fill in all the missing numbers between It and n. Since the
segment thus obtained is not a block, it needs to satisfy R. We call this segment It+1. ◀

3.2 Unusual Degree Spectrum
In this section we answer Wright’s question (Question 6.2 in [21]). The result we prove here
is also relevant for Harrison-Trainor’s question (p. 5 in [10]). Recall a representation of a
block function f as an infinite sequence αf of (the indices of) types (see, Remark 11).

▶ Definition 21. Let f be a computable block function with infinitely many types. The
counting function for f is defined by cf (n) = #{i : αf (i) = n}.

▶ Proposition 22. Let f be a computable block function with all types pairwise non-embed-
dable, each occurring finitely often. Then deg(cf ) is c.e. and fA ≥T cf implies that deg(fA)
is c.e.

Proof. C≤
f := {(k, n) : k ≤ cf (n)} is c.e., C≥

f := {(k, n) : k ≥ cf (n)} is co-c.e., so
deg(C≤

f ⊕ C≥
f ) is c.e. Since C≤

f ⊕ C≥
f ≡T cf , cf is of c.e. degree.

Assume that fA ≥T cf . Then this implies SuccA ≤T fA. Indeed, this fact can be
illustrated by an example: with the oracle fA, one could recover that the structure A has, say,
precisely two cycles of size 7. Since such a cycle is not embeddable into any other f -block,
we could compute the precise positions of the two fA-cycles of size 7 (by looking at the
standard copy of A). Suppose that b is the rightmost element of the rightmost fA-cycle of
size 7. Using this information, we could recover the values SuccA(x) for all x <A b. Since all
f -types are pairwise non-embeddable, we can “iterate” this process and compute SuccA(x)
for all x.

Note that SuccA ≥T fA always (for a computable f). Hence fA ≡T SuccA, and thus, by
Proposition 7, fA is of c.e. degree. ◀

▶ Theorem 23. There exists a total computable function whose degree spectrum strictly
contains all c.e. degrees and is strictly contained in the ∆2 degrees.

We construct a computable block function f with infinitely many types and each cf (n)
finite. We want cf <T 0′ and a computable copy A of (ω, <) with fA of non-c.e. degree.
Combining this with Proposition 22 and a result by Cooper, Lempp and Watson from [4]
(see Theorem 29) finishes the proof.
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0 2i − 11 2 ... 2i − 2

Figure 2 Ci = ([0; 2i − 1], <, fi), where the order < is standard and fi corresponds to the arrows.

As u·
Ct0

·v
Ct1

Figure 3 As+1 after reserving ⟨u, v⟩ and tickets t0, t1, t2 for R⟨e1,e2,n⟩.

For each e, e1, e2, n ∈ ω, we have the following requirements:

Ie : I ̸≃ ΦJ
e , Je : J ̸≃ ΦI

e, and R⟨e1,e2,n⟩ : ΦΓfA
e1 ̸≃ Wn ∨ ΦWn

e2
̸≃ ΓfA ,

where ΓfA is the graph of fA. J is to make I incomplete while I is going to compute cf .
The non-c.e. degree requirements are based on [6, p. 195] (see, also, [3]).

At stage s we have finite sets Is, Js, and a finite structure As = (As, <As
, fAs

) with
fAs : As → As total. Eventually, we set A =

⋃
s∈ω As. We assume some recursive ω-type

ordering of Ie, Je, R⟨e1,e2,n⟩, for all e, e1, e2, n ∈ ω. During construction, requirements
reserve numbers and, in order to be satisfied, they wait until those numbers meet certain
conditions, in which case we say that they need attention.

Ie (or Je) needs attention at stage s + 1, if some x reserved for it at stage s and
Is(x) = ΦJs

e,s (or Js(x) = ΦIs
e,s).

R⟨e1,e2,n⟩ needs attention at stage s + 1 if, at stage s, some ⟨u, v⟩ is reserved for it, along
with certain t0, t1, t2 (called tickets), and, for some z, ⟨u, v⟩ < z < s:

(α) Φ
ΓfAs
e1,s [z] = Wn,s[z] and (β) ΦWn,s[z]

e2,s (⟨u, v⟩) = ΓfAs
(⟨u, v⟩).

We use a variant of PtR (the proof of Theorem 8). In each application of PtR we
distinguish E – the set of fresh numbers – for which we formulate an additional E-condition.

3.2.1 Construction
Let (Ci)i∈ω be a computable sequence of cycles, where Ci is of length 2i (Figure 2). Put
I0 = J0 = ∅, A0 = (∅, ∅, ∅). Requirements have no reserved numbers, no numbers are frozen.
Below we describe stage s + 1, for s ∈ ω.

1. If no requirement needs attention at stage s+1, we choose the highest priority requirement
with no reservation. If this is some Ie (or Je), we reserve for it the least fresh number x.
If the highest priority requirement with no reservation is some R⟨e1,e2,n⟩, we reserve for it
the least number ⟨u, v⟩, fresh for As (i.e. u, v do not occur in As), and three consecutive
fresh numbers t0, t1, t2, called tickets. We apply PtR by setting B = As, C = D = ∅ and
E ⊇ {u, v} such that |E| = 2t0 + 2t1 with every x ∈ E being fresh for As. We build a
structure E = (E, <E , g) where <E is a linear order satisfying the E-condition, depicted
in Figure 3, which is:

Ct0 + Ct1
∼= E ,

u is the <E -last element in the block corresponding to Ct0 , and
v the <E -first element in the block corresponding to Ct1 .

We set As+1 = As + E . We have ⟨u, v⟩ /∈ ΓfAs+1
. We enumerate ticket t0 into I.
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Ar−1
u·

Ct0

·v
Ct1 T (added at stages > r)

Figure 4 As when R⟨e1,e2,n⟩ receives attention for the first time with ⟨u, v⟩ and tickets t0, t1, t2,
assuming that the reservation has been made at stage r.

Ar−1
Ct0 Ct1 T

u· → ·v
Ct1 Ct0 T

Figure 5 The result of reaction to first attention for R⟨e1,e2,n⟩ with reservation ⟨u, v⟩ and tickets
t0, t1, t2. Gray part is occupied by fresh numbers, thick part represents pushed numbers.

2. If a requirement needs attention, pick the highest one. We say it receives attention.
If this is Ie, some x is reserved for Ie at stage s and Is(x) = ΦJs

e,s(x). Put x into I,
freeze the computation ΦJs

e,s(x) and cancel all freezings and reservations for lower priority
requirements. Deal with with Je accordingly.
Suppose the highest priority requirement needing attention is some R⟨e1,e2,n⟩. Some ⟨u, v⟩
is reserved for R⟨e1,e2,n⟩ at stage s with some tickets t0, t1, t2. Below we describe reactions
to first and second attention received by R⟨e1,e2,n⟩ with reservation ⟨u, v⟩, t0, t1, t2.

(i) Suppose the reservation for R⟨e1,e2,n⟩ has been made at stage r. After r and before
s + 1 the structure A might have been extended by some T (thick line in Figure
4). The idea is that we push to the right all numbers that occupy the highlighted
positions in Figure 4 and obtain the structure as in Figure 5.
More formally, divide As into As = B + C + D, where B ∼= Ar−1, C ∼= Ct0 + Ct1 and
D ∼= T , and apply PtR. Take |C ∪ D| numbers, fresh for As, and make F out of
them. Build a structure F = (F, <F ; g), where <F is a linear order, satisfying the
F -condition F ∼= C + D. We rebuild C to get C′ = (C, <C ; h) where C′ satisfies the
C-condition C′ ∼= Ct1 + Ct0 . We set As+1 = B + F + C′ + D (Figure 5).
Observe that pushed numbers from C + D assume in As+1 the same structure as
in As except that the behavior of fAs+1 (on numbers from C) mimics Ct1 + Ct0 .
This makes ΓfAs+1

(⟨u, v⟩) = 1 and thus R⟨e1,e2,n⟩ is satisfied at stage s + 1. We
enumerate t1 into I and invalidate all reservations and freezings for lower priority
requirements.

(ii) Suppose R⟨e1,e2,n⟩ has made the reservation at stage r and received the first attention
at stage p + 1. By the time we got to stage s + 1, the structure A might have been
extended by some U (Figure 6).
The idea is that we push all numbers occupying the highlighted positions in Figure
6 and obtain the structure as in Figure 7.
More formally, we divide As = B + C + D in a way that B ∼= Ar−1 + Ct0 + Ct1 + T ,
C ∼= Ct1 + Ct0 and D ∼= T + U with u, v residing in a copy of Ct1 within C. We
apply PtR with B, C, D defined above. Let F be the set of |C ∪ D| numbers,

Ar−1
Ct0 Ct1 T u· → ·v

Ct1 Ct0 T U added at stages > p + 1

Figure 6 As when R⟨e1,e2,n⟩ receives attention for the second time with ⟨u, v⟩ and tickets t0, t1, t2,
assuming that the reservation has been made at stage r.
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T UAr−1
Ct0 Ct1 T Ct1 Ct0

u·
Ct0

·v
Ct1

T U

Figure 7 The result of reaction to second attention of R⟨e1,e2,n⟩. Gray part is occupied by fresh
numbers, thick part represents pushed numbers.

fresh for As. We build a finite structure F = (F, <F , g), where <F is a linear
order, satisfying the F -condition F ∼= C + D. We rebuild C to get C′ = (C, <C , h)
satisfying the C-condition C′ ∼= Ct0 + Ct1 . We set As+1 = B + F + C′ + D. We have
ΓfAs+1

(⟨u, v⟩) = 0. R⟨e1,e2,n⟩ is satisfied at stage s + 1. We enumerate t2 into I and
invalidate all reservations and freezings for lower priority requirements.

3.2.2 Verification
Due to space constraints, the proof of the following lemma can be found in the full version.

▶ Lemma 24. A is computable.

▶ Lemma 25. Every requirement is eventually satisfied. Hence, I, J are intermediate and
fA is of non-c.e. degree.

Proof. This follows from finite injury. It remains to observe that each requirement can
receive attention only finitely many times with the same numbers reserved for it. This is clear
for Ie, Je (see, e.g. [20, Chap. VII.2]). We show that no R⟨e1,e2,n⟩ needs attention more than
twice with the same ⟨u, v⟩ and tickets t0, t1, t2 reserved for it. The PtR modules that we use to
satisfy each R⟨e1,e2,n⟩ are carefully arranged to make the standard pattern of verification work
(cf. [6, p. 196]). Suppose the reservation was made at stage r, the first attention was at stage
s + 1 and the second at stage t + 1. Since ⟨u, v⟩, t0, t1, t2 are reserved for R⟨e1,e2,n⟩ at stage
t ≥ s + 1, no requirement with lower priority than R⟨e1,e2,n⟩ has received attention at any
stage u, t ≥ u ≥ s + 1. Actions performed at stage t + 1 lead to At+1 ↾ As = As ↾ As (where
As is the domain of As). Therefore, Φ

ΓfAt+1↾As
e1 [z] = Φ

ΓfAs↾As
e1 [z] = Φ

ΓfAs
e1 [z] = Wn,s[z].

At stage s + 1 we had ΦWn,s[z]
e2 (⟨u, v⟩) = ΓfAs

(⟨u, v⟩) ̸= ΓfAt
(⟨u, v⟩). Since at stage t + 1

we had ΦWn,t[z]
e2 (⟨u, v⟩) = ΓfAt

(⟨u, v⟩) we must have Wn,t[z] ̸= Wn,s[z]. Hence, for some x,

Φ
ΓfAt+1↾As
e1 (x) = Wn,s(x) ̸= Wn,t(x). Now, observe that At+1 ↾ As does not change at any

later stage at which ⟨u, v⟩ is reserved for R⟨e1,e2,n⟩. Hence, for all such stages w ≥ t + 1,
Φ

ΓfAw↾As
e1,w (w) ̸= Wn,w(x) and R⟨e1,e2,n⟩ does not need attention at stage w + 1. ◀

▶ Lemma 26. For every n ∈ ω, cf (n) is finite and is never increased due to numbers > n + 2
entering I.

Proof. Suppose the contrary. Then there exists n such that cf (n) is increased because of
some k > n + 2 entering I. Let s + 1 be the stage at which this happens. Since cf (n) is
increased at stage s + 1, Cn is present in As+1. Since cf (n) is increased due to k entering
I, k must be associated at stage s + 1 with some Ri. Hence, k is one of the tickets t0, t1, t2
paired with Ri at this point. There are three cases.
(k = t0) This is when Ri is initialized and receives tickets t0, t1, t2 (see Figure 3). For cf (n)

to increase, we must have n = t0 or n = t1. n = t0 is not possible because then we would
have k = t0 = n which contradicts k > n + 2. n = t1 is also not possible because we
would have k = t0 = t1 − 1 = n − 1 which contradicts k > n + 2.
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(k = t1) This is when Ri receives first attention with tickets t0, t1, t2 (see Figure 4). Cn

must occur somewhere at the highlighted positions in Figure 4 because this fragment
of the structure is copied leading to an increase of cf . Hence, n = t0 or n = t1, or Cn

occurs in T . n ≠ t0 because otherwise n = t0, k = t1 = t0 + 1 = n + 1 which contradicts
k > n + 2. n cannot be t1 because otherwise n = t1 = k which contradicts k > n + 2.
Hence, Cn occurs in T . However, this is also not possible for the following reason. We
know that k = t1 enters I so this is due to Ri acting when receiving the first attention
with tickets t0, t1, t2. This means that no requirement Rj of higher priority than Ri (i.e.,
with j < i) has received attention after Ri got associated with tickets t0, t1, t2 (up to the
current stage) – otherwise Ri’s tickets would have been reassigned to numbers different
than t0, t1, t2. Therefore, Cn entered the construction after Ri was assigned to t0, t1, t2.
Hence, by the construction (i.e. the way we choose and assign tickets to requirements
(re)entering the construction), n is a ticket for some lower priority requirement Rl (l > i).
But when n enters the construction as a ticket of such Rl, n is chosen as a fresh number
so, in particular, n > t1 = k which contradicts k > n + 2.

(k = t2) This is when Ri receives attention for the second time with tickets t0, t1, t2 (see
Figure 6). Cn occurs somewhere at the highlighted positions in Figure 6, i.e. n = t0 or
n = t1, or Cn occurs in T + U . n ̸= t0 because otherwise n = t0, k = t2 = t0 + 2 = n + 2
which contradicts k > n + 2. n ̸= t1 because otherwise n = t1, k = t2 = t1 + 1 = n + 1
which contradicts k > n + 2. Therefore, n occurs in T + U . The rest of the argument is
similar to the analogical place of the previous case (k = t1). ◀

▶ Lemma 27. cf ≤T I.

Proof. To compute cf (n), find s such that Is[n + 2] = I[n + 2]. By Lemma 26 and the fact
that cf (n) is increased only due to numbers entering I, cf (n) is not increased at stages > s

(no additional copies of Cn are added to fA). Return the number of copies of Cn in fAs
. ◀

Due to space constraints, the proof of the following lemma can be found in the full version.

▶ Lemma 28. fA ≤T cf .

By Lemmas 25, 26, 27 and 28: 0 <T fA ≤ cf ≤T I <T 0′. The spectrum of f is not
trivial by Proposition 6. By Theorem 1, DgSp(f) contains all c.e. degrees. Since fA is of
non-c.e. degree, DgSp(f) ̸= the c.e. degrees. To show that DgSp(f) ̸= the ∆2 degrees, we
need the following theorem.

▶ Theorem 29 (Cooper, Lempp and Watson, [4]). Given c.e. sets U <T V there is a proper
d.c.e. set C of properly d.c.e. degree such that U <T C <T V .

Assume, for a contradiction, that DgSp(f) consists of the ∆2 degrees. By Theorem 29,
DgSp(f) ∩ {deg(A) : cf ≤T A ≤T 0′} contains a proper d.c.e. degree. However, by
Proposition 22, DgSp(f) ∩ {deg(A) : cf ≤T A ≤T 0′} contains only c.e. degrees. This is a
contradiction, so the degree spectrum of f is different then the ∆2 degrees. This completes
the proof.

4 Conclusions and Open Questions

We have investigated the problem of intrinsic complexity of computable relations on (ω, <),
as measured by their degree spectra, in the restricted setting of graphs of unary total
computable functions. It has been known that possible candidates for intrinsic complexities
of such functions include three sets consisting of precisely: the computable degree, all c.e.
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degrees, and all ∆2 degrees. Imposing certain structural constraints on such functions has
led us to the notions of block functions (Definition 10) and a broader class of quasi-block
functions (Definition 15). Non-quasi-block functions have intrinsic complexity equal to the c.e.
degrees (Theorem 18) which redirects all focus to quasi-block functions. We have obtained
several results on this class, most prominently the one on block-functions with finitely many
types (Theorem 14) showing that their intrinsic complexity is either trivial or equal to the
∆2 degrees. However, the most surprising result is that on an unusual degree spectrum
(Theorem 23) which proves the existence of a block function having intrinsic complexity
different from the already known three candidates. To the best of our knowledge, this theorem
answers Question 6.2 from [21] formulated by Wright who asked whether there are relations
on (ω, <) with other degree spectra (than the three known candidates). Harrison-Trainor
obtained a related result though for a different relation. However, for his relation it is not
known whether its spectrum is intermediate (see Section 1 for details, as well as [10]).

A few questions arise immediately. Note, for example, that our solution to Wright’s
question invites the hypothesis, possibly to be proven using some kind of permitting, that
there exist infinitely many spectra of computable block functions on (ω, <). A parallel
question is what degrees such nonstandard spectra contain. Observe that even for the
function constructed in Theorem 23 the exact contents of its spectrum are unknown. We
finish the paper with the general open question: what are the possible kinds of nonstandard
spectra of computable block functions on (ω, <)?
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A Proof of Theorem 14

▶ Theorem 14. Let f be a computable block function such that it has only finitely many
f -types and f is not almost identity. Then the spectrum DgSp(f) consists of all ∆2 degrees.

Proof. Let I0, I1, . . . , IN be all (isomorphism types of) f -blocks. We represent the structure
B = (ω, <, f) by αf according to Remark 11. As in Theorem 8, we fix a ∆2 set X. Our goal
is to construct a computable copy A = (ω, <A) of (ω, <) such that fA ≡T X. In general, we
follow the notations of Theorem 8 (e.g., fAs(x) is defined in the same way as in the previous
proof).

Beforehand, we choose a large enough number M such that:
M lies at the right end of its f -block (inside B),
for every x > M , the isomorphism type of its f -block occurs infinitely often in B.

As in the proof of Theorem 8, we copy the interval [0; M ] into our structure A, and all new
elements will be added to the right of this interval.

The proof is split into three cases which depend on the properties of the string αf (each
of the cases requires a separate construction):
(a) There are two different finite strings σ and τ such that:

the lengths of σ and τ are the same;
τ can be obtained via a permutation of σ, i.e., there is a permutation h of the set
{0, 1, . . . , |σ| − 1} such that τ(i) = σ(h(i)), for all i < |σ|;
both σ and τ occur infinitely often in αf .

(b) There is only one block Ik such that k occurs infinitely often in αf .
(c) Neither of the previous two cases holds.

Case (a). For the sake of simplicity, we give a detailed proof for the case when σ = 01 and
τ = 10. After that, we explain how to deal with the general case.
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Our construction satisfies the following requirements:

e ∈ X ⇔ 2e belongs to a block isomorphic to I1,

e ̸∈ X ⇔ 2e belongs to a block isomorphic to I0.
(Re)

Suppose that |I0| + |I1| = q + 1.

Strategy Re in isolation. When Re starts working at a stage s0 + 1, we proceed as follows.
Assume that Xs0(e) = 1 (the other case is treated similarly). We choose q fresh odd numbers
ce

1, ce
2, . . . , ce

q and declare them the companions of 2e. We add the chain

2e <A ce
1 <A ce

2 <A . . . <A ce
q

to the right of As0 . If needed, we add finitely many fresh odd numbers in-between As0 and
2e. This procedure ensures that (at the moment) the finite structure ([2e; ce

q]A, <A, fA) is
isomorphic to the disjoint sum I1 + I0.

The strategy Re requires attention at a stage s if inside the current As, the number 2e

belongs to a copy of I1−Xs(e). When Re requires attention, we apply a PtR-module.

The PtR-module for Re. We choose the middle interval C as the set containing 2e and
all its companions, i.e. C = {2e <A ce

1 <A . . . <A ce
q}. Our target condition is defined as

follows: inside the resulting structure F , the structure (C, <F , fF ↾ C) is isomorphic to the
disjoint sum IXs(e) + I1−Xs(e). As in Theorem 8, the structure F is treated as output of the
module.

The construction is arranged similarly to that of Theorem 8.

Verification. We need to show that every application of a PtR-module is successful. This
follows from two observations:
1. If we want to “transform”, say, I0 + I1 into I1 + I0, then this can be achieved by an

appropriate pushing to the right, since the string τ = 10 occurs infinitely often in αf .
2. Remark 9 guarantees that one can also safely push the interval D (from the PtR-module):

notice that if some block Ir occurs in D, then r occurs infinitely often in αf .
Since pushing to the right is always successful, every requirement Re is satisfied. Note
that given fA as an oracle, one can recover the fA-block of 2e. This fact (together with
Re-requirements) implies that X ≤T fA.

Every element a ∈ A is pushed to the right only finitely often. Therefore, the structure
A is a computable copy of (ω, <).

Given an odd number x = 2k + 1, one can computably determine which of the following
two cases holds:
1. 2k + 1 is a companion ce

t of some even number 2e (in this case, the indices e and t are
also computed effectively), or

2. 2k + 1 is added as a “filler” by some action of an Re-strategy (either by its initial actions,
or by an application of a PtR-module).

In the second case, the value fAs(x) never changes (after being defined for the first time). In
the first case, the oracle X can tell us whether x = ce

t belongs to (a copy of) I0 or I1, and X

can also compute the image fA(x). In a similar way, X computes the images fA(2e), for
e ∈ ω. Hence, we obtain that fA ≡T X. This concludes the case when σ = 01 and τ = 10.

The case of arbitrary σ and τ follows a similar proof outline. We illustrate this by
considering σ = 012301 and τ = 013021. Then our construction will switch between finite
structures

Fσ = I0 + I1 + I2 + I3 + I0 + I1 and Fτ = I0 + I1 + I3 + I0 + I2 + I1.
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Since both σ and τ occur infinitely often in αf , an appropriate PtR-module can always
“transform” Fσ into Fτ , and vice versa.

During the construction, an even number 2e will always belong to the third block from
the left inside F□ (i.e., either I2 in Fσ, or I3 in Fτ ). The third block is chosen because it
corresponds to the first position, where σ and τ differ. The rest of the corresponding copy of
F□ consists of companions of 2e. In the final structure A, we will achieve the following: if
e ∈ X, then 2e lies in a copy of I2; otherwise, 2e belongs to a copy of I3. This concludes the
discussion of Case (a).

Case (b). Without loss of generality, we assume that Ik = I0. We satisfy the following
requirements:

e ∈ X ⇔ 2e lies at the right end of a copy of I0,

e ̸∈ X ⇔ 2e lies at the left end of a copy of I0.
(Re)

Suppose that |I0| = q + 1. Notice that q ≥ 1, since f is not almost identity.

Strategy Re in isolation. 2e will have finitely many odd numbers as its companions. In
contrast to Case (a), these companions could be added stage-by-stage.

When Re starts working at a stage s0 + 1, we proceed as follows. Suppose Xs0(e) = 1
(the other case is similar). Then we choose q fresh odd numbers c1, . . . , cq, and declare that
they are companions of 2e. We set c1 <A . . . <A cq <A 2e (these elements are added to the
right of As0). We ensure that the structure ([c1; 2e]A, <A, fA) is isomorphic to I0 (if needed,
one adds fresh odd numbers in-between As0 and c1).

We also ensure that by the end of each stage s, 2e and its (current) companions form an
interval inside As, and this interval can be treated as a sum of blocks (in As).

The strategy Re requires attention at a stage s if inside the current As, the corresponding
requirement is not satisfied (e.g., if Xs(e) = 0 and 2e lies at the right end of I0). When Re

requires attention, we apply a PtR-module.

The PtR-module for Re. We choose the middle interval C as the set containing 2e and all
its current companions. We consider the following two subcases.

Subcase 1. Assume that right now, Xs(e) = 1 and 2e lies at the left end of a copy of I0.
Then our target condition is defined as follows: inside the resulting output structure F ,
the number 2e should belong to the right end of a copy of I0.
In order to achieve this condition, we add precisely q fresh odd numbers in-between B

and C, and only one fresh odd number in-between C and D. This guarantees that 2e

“moves” to the right end of a block.
Subcase 2. Otherwise, suppose that Xs(e) = 0 and 2e lies at the right end of a copy of I0.

Then we pursue the following condition: inside the output F , 2e should “move” to the
left end of a block I0.
In order to do this, we add one fresh number in-between B and C, and q fresh numbers
in-between C and D.
In both subcases, we declare that the newly added odd numbers belong to the set of
companions of 2e.

The construction is arranged similarly to the previous ones.
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Verification. Since almost every block from αf is isomorphic to I0, every application of a
PtR-module is successful. In addition, the actions of the PtR-module for Re does not injure
other strategies.

We deduce that all requirements Re are satisfied. Given fA as an oracle, one can recover
the position of 2e inside its fA-block. This implies that X ≤T fA. In addition, a standard
argument shows that A is a computable copy of (ω, <).

Notice the following. Since 2e and its companions always stick together as an interval,
there are only two possible variants of the final fA-block of 2e: either it contains q companions
of 2e added at the very beginning of the work of the Re-strategy, or it contains q closest
(inside A) companions of 2e added by the first application of the PtR-module for Re.

As in the previous case, given an odd number x = 2k + 1, one can determine which of
the following two cases holds:
1. x is a companion of some even number 2e (the index e is recovered effectively), or
2. x is added as a “filler” by some action of an Re-strategy.
In the second case, the value fAs(x) never changes. In the first case, the oracle X can tell
us the content of the final fA-block containing x: indeed, if Xs0(e) = Xs1(e), then at the
stages s0 and s1, the blocks of x inside As0 and As1 contain precisely the same elements.
We deduce that fA ≤T X. This concludes the proof of Case (b).

Case (c). Before describing the construction, we provide a combinatorial analysis of the
string αf .

▶ Lemma 30. If the string αf satisfies neither Case (a) nor Case (b), then there are symbols
b, d, e ∈ Σ such that d ̸= b, e ̸= b, and for every natural number n, there exists m > n such
that the finite string dbme occurs in αf .

Proof. Without loss of generality, one may assume that every symbol from Σ occurs infinitely
often in αf .

For a finite string σ over the alphabet Σ, we denote

#(σ) = |{a ∈ Σ : a occurs in σ}|.

We choose a finite string τ such that τ occurs infinitely often in αf and

#(τ) = max{#(σ) : σ occurs infinitely often in αf }. (1)

Let c be the last symbol of the string τ .
There exists a symbol b such that the string τb = τ b occurs infinitely often in αf .

Equation (1) implies that b occurs in τ (indeed, if b does not occur in τ , then #(τb) = #(τ)+1).
We prove that c = b. Towards a contradiction, assume that c ̸= b. Then τ can be

decomposed as τ = ξ b δ ck for some k ≥ 1 and finite strings ξ, δ. The string τb = ξ b δ ck b

occurs infinitely often in αf . In turn, this implies that both b δ ck and δ ck b occur infinitely
often in αf . Therefore, αf satisfies Case (a), which gives a contradiction.

Hence, we have τ = ρ bk for some k ≥ 1 and finite string ρ, and the string τb = ρ bk+1

occurs infinitely often in αf . Note that #(τb) = #(τ). This implies that by applying
induction, one can show that for every l ≥ 1,

ρ bl occurs infinitely often in αf . (2)

Since αf does not satisfy Case (b), there are at least two different symbols occuring
infinitely often in αf . This fact and Equation (2) imply that for every n ∈ ω, there exist
m > n and two symbols d′ and e′ such that d′ ̸= b, e′ ̸= b, and d′bme′ occurs in αf . After
that, we apply the pigeonhole principle to finish the proof of the lemma. ◀
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By Lemma 30, we may assume that for every n ∈ ω, there exists m > n such that, say,
10m2 occurs in αf . We satisfy the same requirements as in Case (b):

e ∈ X ⇔ 2e lies at the right end of a copy of I0,

e ̸∈ X ⇔ 2e lies at the left end of a copy of I0.
(Re)

In general, our notations also follow those of Case (b).

Strategy Re in isolation. When Re starts working at a stage s0 + 1, we proceed as follows.
Suppose Xs0(e) = 0. We find a large enough number m such that 10m2 occurs in αf , and
the corresponding sequence of f -blocks I1 + I0 + I0 + . . . + I0 + I2 does not intersect with
the image of As0 inside (ω, <).

We add 2e and fresh odd numbers into A ensuring that the newly added elements form a
sequence of fA-blocks:

I1 + I0 + . . . + I0︸ ︷︷ ︸
m times

+I2;

if needed, fresh odd numbers are also added in-between As0 and this sequence. The number
2e lies at the left end of the leftmost block I0. The elements forming I1 and I2 are declared
boundary companions of 2e. The odd numbers forming the inner sequence of I0-s are declared
non-boundary companions of 2e.

As usual, Re requires attention at a stage s if inside the current As, the corresponding
requirement is not satisfied. When Re requires attention, we apply a PtR-module.

The PtR-module for Re. We choose the middle interval C as the set containing 2e and all
its companions. Assume that right now, Xs(e) = 0 and 2e lies at the right end of a copy of
I0 (the other subcase is treated in a similar way). Then the target condition is defined as
follows: inside F , the number 2e belongs to the left end of a copy of I0.

Suppose that right now, the companions of 2e form a sequence of fAs -blocks corresponding
to a finite string 10m2.

We always assume the following: if a fresh number x is added between some companions
of some 2j, then it is declared a non-boundary companion of 2j. In addition, every such
x is put between the I1-block and the I2-block containing the boundary companions of 2j.
Moreover, we require that inside the resulting structure F , the element x becomes a part of
a copy of I0.

In order to achieve the target condition, we proceed as follows. First, we find a large
enough m′ > m such that 10m′2 occurs in αf , and this occurrence of 10m′2 lies to the right
of the image of As inside (ω, <). We add fresh odd numbers in such a way that:

The companions of 2e (including newly added companions) form a sequence of fF -blocks
corresponding to 10m′2 (inside αf ). This is achieved by adding numbers in-between B

and C, and by adding fresh I0-blocks between the I1-block and the I2-block containing
the boundary companions of 2e.
Similarly to Case (b), this procedure must ensure that 2e moves to the left end of an
I0-block.

Second, we carefully push the companions of 2j, where e < j < s, to the right. Consider
each such j (in turn). Suppose that the companions of 2j form a sequence of fAs

-blocks
corresponding to a finite string 10mj 2. We choose a large enough m′

j > mj (again, with
10m′

j 2 occuring in αf to the right of the image of the current (preliminary) version of F).
We add fresh numbers in such a way that:
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The companions of 2j (including new ones) form a sequence of fF -blocks corresponding
to 10m′

j 2 inside αf .
If x is a new companion of 2j, then it belongs to a new I0-block which corresponds to
one of the underlined zeros in the following decomposition:

10m′
j 2 = 10mj 00 . . . 02.

This careful pushing allows to ensure that the PtR-module does not injure strategies Rj , for
j ̸= e. Indeed, after the pushing, the value fA(2j) does not change.

The construction is arranged in a similar way as before.

Verification. The fact that αf contains occurrences of 10m2 for arbitrarily large m implies
that every application of a PtR-module is successful. We deduce that all requirements Re

are satisfied. The rest of the verification is similar to that of Case (b). This concludes the
proof of Theorem 14. ◀
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On sparse graphs, Roditty and Williams [2013] proved that no O(n2−ε)-time algorithm achieves
an approximation factor smaller than 3

2 for the diameter problem unless SETH fails. We answer
here an open question formulated in the literature: can we use the structural properties of median
graphs to break this global quadratic barrier?

We propose the first combinatorial algorithm computing exactly all eccentricities of a median
graph in truly subquadratic time. Median graphs constitute the family of graphs which is the most
studied in metric graph theory because their structure represents many other discrete and geometric
concepts, such as CAT(0) cube complexes. Our result generalizes a recent one, stating that there is
a linear-time algorithm for computing all eccentricities in median graphs with bounded dimension d,
i.e. the dimension of the largest induced hypercube (note that 1-dimensional median graphs are
exactly the forests). This prerequisite on d is not necessarily anymore to determine all eccentricities
in subquadratic time. The execution time of our algorithm is O(n1.6456 logO(1) n).
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1 Introduction

Median graphs can be certainly identified as the most important family of graphs in metric
graph theory. They are related to numerous areas: universal algebra [3, 16], CAT(0) cube
complexes [5, 20], abstract models of concurrency [11, 37], and genetics [8, 10]. Let d(a, b) be
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I(x, y) ∩ I(y, z) ∩ I(z, x) is a singleton, containing the median m(x, y, z) of this triplet.

The purpose of this article is to break the quadratic barrier for the computation time
of certain metric parameters on median graphs. In particular, we focus on one of the most
fundamental problems in algorithmic graph theory related to distances: the diameter. Given
an undirected graph G = (V,E), the diameter is the maximum distance d(u, v) for all
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problem consists in determining all eccentricities of the graph. The eccentricity ecc(v) of a
vertex v is the maximum length of a shortest path starting from v: ecc(v) = maxw∈V d(v, w).
The diameter is thus the maximum eccentricity.

1.1 State of the art

Executing a Breadth First Search (BFS) from each vertex of an input graph G suffices
to obtain its eccentricities in O(n |E|), with n = |V |. As median graphs are relatively
sparse, |E| ≤ n log n, these multiple BFSs compute all eccentricities in time O(n2 log n) for
this class of graphs. Very efficient algorithms determining the diameter already exist on
other classes of graphs, for example [2, 18, 24]. Many works have also been devoted to
approximation algorithms for this parameter. Chechik et al. [19] showed that the diameter
can be approximated within a factor 3

2 in time Õ(m 3
2 ) on general graphs. On sparse graphs,

it was shown in [36] that no O(n2−ε)-time algorithm achieves an approximation factor smaller
than 3

2 for the diameter unless the Strong Exponential Time Hypothesis (SETH) fails.
Median graphs are bipartite and can be isometrically embedded into hypercubes. They

are the 1-skeletons of CAT(0) cube complexes [20] and the domains of event structures [11].
They admit structural properties, such as the Mulder’s convex expansion [34, 35]. They are
strongly related to hypercubes retracts [4], Cartesian products and gated amalgams [5], but
also Helly hypergraphs [33]. They do not contain induced K2,3, otherwise a triplet of vertices
would admit at least two medians. The dimension d of a median graph G is the dimension
of its largest induced hypercube. The value of this parameter is at most ⌊log n⌋ and meets
this upper bound when G is a hypercube. Moreover, parameter d takes part in the sparsity
of median graphs: |E| ≤ dn.

An important concept related to median graphs is the equivalence relation Θ. This is the
reflexive and transitive closure of relation Θ0, where two edges are in Θ0 if they are opposite
in a common 4-cycle. A Θ-class is an equivalence class of Θ. Each Θ-class of a median graph
forms a matching cutset, splitting the graph into two convex connected components, called
halfspaces. The number q ≤ n of Θ-classes corresponds to the dimension of the hypercube in
which the median graph G isometrically embeds. Value q satisfies the Euler-type formula
2n−m− q ≤ 2 [29]. A recent LexBFS-based algorithm [13] identifies the Θ-classes in linear
time O(|E|) = O(dn).

There exist efficient algorithms for some metric parameters on median graphs. For
example, the median set and the Wiener index can be determined in O(|E|) [13]. Subfamilies
of median graphs have also been studied. There is an algorithm computing the diameter
and the radius in linear time for squaregraphs [21]. A more recent contribution introduces
a quasilinear time algorithm - running in O(n logO(1) n) - for the diameter on cube-free
median graphs [23], using distance and routing labeling schemes proposed in [22]. Eventually,
a linear-time algorithm [15] for the diameter on constant-dimension median graphs was
proposed, i.e. for median graphs satisfying d = O(1).

The existence of a truly subquadratic-time algorithm for the diameter on all median
graphs is open and was recently formulated in [13, 15, 23]. An even more ambitious question
can be asked. Can this subquadratic barrier be overpassed for the problem of finding all
eccentricities of a median graph ? As the total size of the output is linear and this problem
generalizes the diameter one, this question is legitimate. More generally, the question holds
for all metric parameters (except the median set and the Wiener index for which a linear-time
algorithm was recently designed). We propose here the first subquadratic-time algorithm
computing all eccentricities on median graphs.
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1.2 Contributions
Our first contribution in this paper is the design of a quasilinear, i.e. O((log n)O(1)n), time
algorithm computing the diameter of simplex graphs. A simplex graph K(G) = (VK , EK)
of a graph G is obtained by considering the induced complete graphs (cliques) of G as
vertices VK . Then, two of these cliques are connected by an edge if they differ by only one
element: one is C, the other is C ∪ {v}. These edges form the set EK . All simplex graphs
are median [5, 12]. Moreover, we observe that simplex graphs fulfil an interesting property:
they admit a central vertex - representing the empty clique - and every Θ-class has an edge
incident to that vertex.

First, this algorithm extends the set of median graphs for which a quasilinear time
procedure computing the diameter exists. Indeed, simplex graphs form a sub-class of median
graphs containing instances with unbounded dimension d.

There is a combinatorial algorithm determining the diameter and all eccentricities of
simplex graphs in O((d3 + log n)n): Theorem 3.8, Section 3.

Second, we remark that this method can be integrated to the algorithm already proposed
in [15] to compute all eccentricities of median graphs in time O(2O(d log d)n). This allows us
to decrease this running time. Thanks to this modification, the new algorithm proposed
computes all eccentricities of a median graph in Õ(22dn), where notation Õ neglects poly-
logarithmic factors. Even if the algorithm stays linear for constant-dimension median graphs,
observe that the dependence on d decreases, from a slightly super-exponential function to a
simple exponential one.

There is a combinatorial algorithm determining all eccentricities of median graphs in
Õ(22dn): Theorem 4.16, Section 4.1.

The second and main contribution in this paper is the design of a subquadratic-time
dynamic programming procedure which computes all eccentricities of any median graph.
Here, the linear-time simple-exponential-FPT algorithm for all eccentricities presented above
plays a crucial role: it is the base case. This framework consists in partitioning recursively
the input graph G into the halfspaces of its largest Θ-class. With our construction, the leaves
of this recursive tree are median graphs with dimension at most ⌊ 1

3 log n⌋ and we can apply
the former linear-time FPT algorithm.

There is a combinatorial algorithm determining all eccentricities of median graphs in
Õ(n 5

3 ): Theorem 4.22, Section 4.2.

We terminate by mentioning a possible improvement of this algorithm. Based on a faster
enumeration of sets of pairwise orthogonal Θ-classes, its running time can be decreased to
Õ(nβ), where β = 1.6456. Due to page limit, this extra part is omitted. A long version of
this paper presents this result [14].

All these outcomes put in evidence a relationship between the design of linear-time FPT
algorithms and the design of subquadratic-time algorithms determining metric parameters
on median graphs. We hope that the ideas proposed to establish all these results represent
interesting tools to break the quadratic barrier on other open questions.

1.3 Organization
In Section 2, we remind the definition of median graphs. The well-known properties and
concepts related to them are listed, among them Θ-classes, signature, and POFs. Section 3
summarizes our contribution on simplex graphs. In Section 4, we show how to obtain a linear-
time simple-exponential-FPT algorithm for all eccentricities of a median graph, parameterized
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by the dimension d. Thanks to it, we propose a dynamic programming procedure to reduce
the computation of eccentricities of any median graph to the same problem on a collection of
median subgraphs of sub-logarithmic dimension.

2 Median graphs

In this section, we recall some notions related to distances in graphs, and more particularly
median graphs. Two important tools are presented: the Θ-classes, which are equivalence
classes over the edge set, and the Pairwise Orthogonal Families (POFs) characterizing
Θ-classes belonging to a common hypercube.

2.1 Θ-classes
All graphs G = (V,E) considered in this paper are undirected, unweighted, simple, finite
and connected. We denote by N(u) the open neighborhood of u ∈ V , i.e. the set of vertices
adjacent to u in G. We extend it naturally: for any set A ⊆ V , the neighborhood N(A) of A
is the set of vertices outside A adjacent to some u ∈ A.

Given two vertices u, v ∈ V , let d(u, v) be the distance between u and v, i.e. the length
of the shortest (u, v)-path. The eccentricity ecc(u) of a vertex u ∈ V is the length of the
longest shortest path starting from u. Put formally, ecc(u) is the maximum value d(u, v)
for all v ∈ V : ecc(u) = maxv∈V d(u, v). The diameter of graph G is the maximum distance
between two of its vertices: diam(G) = maxu∈V ecc(u).

We denote by I(u, v) the interval of pair u, v. It contains exactly the vertices which lie
metrically between u and v: I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}. The vertices of
I(u, v) are lying on at least one shortest (u, v)-path.

We say that a set H ⊆ V (or the induced subgraph G [H]) is convex if I(u, v) ⊆ H for
any pair u, v ∈ H. Moreover, we say that H is gated if any vertex v /∈ H admits a gate
gH(v) ∈ H , i.e. a vertex that belongs to all intervals I(v, x), x ∈ H . For any x ∈ H , we have
d(v, gH(v)) + d(gH(v), x) = d(v, x). Gated sets are convex by definition.

Given an integer k ≥ 1, the hypercube of dimension k, Qk, is a graph representing all the
subsets of {1, . . . , k} as the vertex set. An edge connects two subsets if one is included into
the other and they differ by only one element. Hypercube Q2 is a square and Q3 is a 3-cube.

▶ Definition 2.1 (Median graph). A graph is median if, for any triplet x, y, z of distinct
vertices, the set I(x, y) ∩ I(y, z) ∩ I(z, x) contains exactly one vertex m(x, y, z) called the
median of x, y, z.

Observe that certain well-known families of graphs are median: trees, grids, square-
graphs [7], and hypercubes Qk. Median graphs are bipartite and do not contain an induced
K2,3 [5, 26, 34]. They can be obtained by Mulder’s convex expansion [34, 35] starting from
a single vertex.

Now, we define a parameter which has a strong influence on the study of median graphs.
The dimension d = dim(G) of a median graph G is the dimension of the largest hypercube
contained in G as an induced subgraph. In other words, G admits Qd as an induced subgraph,
but not Qd+1. Median graphs with d = 1 are exactly the trees. Median graphs with d ≤ 2
are called cube-free median graphs.

Figure 1 presents three examples of median graphs. (a) is a tree: d = 1. (b) is a cube-free
median graph: it has dimension d = 2. To be more precise, it is a squaregraph [7], which is a
sub-family of cube-free median graphs. The last one (c) is a 4-cube: it has dimension d = 4.
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(a) Tree, d = 1. (b) Squaregraph, d = 2. (c) 4-cube, d = 4.

Figure 1 Examples of median graphs.

We provide a list of properties satisfied by median graphs. In particular, we define the
notion of Θ-classes which is a key ingredient of several existing algorithms [13, 25, 27].

In general graphs, all gated subgraphs are convex. The reverse is true in median graphs.

▶ Lemma 2.2 (Convex⇔Gated [5, 13]). Any convex subgraph of a median graph is gated.

To improve readibility, edges (u, v) ∈ E are sometimes denoted by uv. We remind the
notion of Θ-class, which is well explained in [13], and enumerate some properties related to
it. We say that the edges uv and xy are in relation Θ0 if they form a square uvyx, where uv
and xy are opposite edges. Then, Θ refers to the reflexive and transitive closure of relation
Θ0. Let q be the number of equivalence classes obtained with this relation. The classes of
the equivalence relation Θ are denoted by E1, . . . , Eq. Concretely, two edges uv and u′v′

belong to the same Θ-class if there is a sequence uv = u0v0, u1v1, . . . , urvr = u′v′ such that
uivi and ui+1vi+1 are opposite edges of a square. We denote by E the set of Θ-classes:
E = {E1, . . . , Eq}. To avoid confusions, let us highlight that parameter q is different from
the dimension d: for example, on trees, d = 1 whereas q = n− 1. Moreover, the dimension d

is at most ⌊log n⌋ in general.

▶ Lemma 2.3 (Θ-classes in linear time [13]). There exists an algorithm which computes the
Θ-classes E1, . . . , Eq of a median graph in linear time O(|E|) = O(dn).

In median graphs, each class Ei, 1 ≤ i ≤ q, is a perfect matching cutset and its two sides
H ′

i and H ′′
i verify nice properties, that are presented below.

▶ Lemma 2.4 (Halfspaces of Ei [13, 25, 35]). For any 1 ≤ i ≤ q, the graph G deprived
of edges of Ei, i.e. G\Ei = (V,E\Ei), has two connected components H ′

i and H ′′
i , called

halfspaces. Edges of Ei form a matching: they have no endpoint in common. Halfspaces
satisfy the following properties.

Both H ′
i and H ′′

i are convex/gated.
If uv is an edge of Ei with u ∈ H ′

i and v ∈ H ′′
i , then H ′

i = W (u, v) =
{x ∈ V : d(x, u) < d(x, v)} and H ′′

i = W (v, u) = {x ∈ V : d(x, v) < d(x, u)}.

We denote by ∂H ′
i the subset of H ′

i containing the vertices which are adjacent to a vertex
in H ′′

i : ∂H ′
i = N(H ′′

i ). Put differently, set ∂H ′
i is made up of vertices of H ′

i which are
endpoints of edges in Ei. Symmetrically, set ∂H ′′

i contains the vertices of H ′′
i which are

adjacent to H ′
i. We say these sets are the boundaries of halfspaces H ′

i and H ′′
i respectively.

Figure 2 illustrates the notions of Θ-class, halfspace and boundary on a small example. In
this particular case, an halfspace is equal to its boundary: ∂H ′′

i = H ′′
i . The vertices of ∂H ′

i

are colored in blue.
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H ′
i H ′′

i = ∂H ′′
i

∂H ′
i

Ei

Figure 2 A class Ei with sets H ′
i, H ′′

i , ∂H ′
i, ∂H ′′

i .

▶ Lemma 2.5 (Boundaries [13, 25, 35]). Both ∂H ′
i and ∂H ′′

i are convex/gated. Moreover,
the edges of Ei define an isomorphism between ∂H ′

i and ∂H ′′
i .

As a consequence, suppose uv and u′v′ belong to Ei: if uu′ is an edge and belongs to
class Ej , then vv′ is an edge too and it belongs to Ej . We terminate this list of lemmas with
a last property dealing with the orientation of edges from a canonical basepoint v0 ∈ V . The
v0-orientation of the edges of G according to v0 is such that, for any edge uv, the orientation
is # »uv if d(v0, u) < d(v0, v). Indeed, we cannot have d(v0, u) = d(v0, v) as G is bipartite. The
v0-orientation is acyclic.

▶ Lemma 2.6 (Orientation [13]). All edges can be oriented according to any canonical
basepoint v0.

From now on, we suppose that an arbitrary basepoint v0 ∈ V has been selected and we
refer automatically to the v0-orientation when we mention incoming or outgoing edges.

2.2 Shortest paths and signature
We fix an arbitrary canonical basepoint v0 and for each class Ei, we say that the halfspace
containing v0 is H ′

i. Given two vertices u, v ∈ V , we define the set which contains the
Θ-classes separating u from v.

▶ Definition 2.7 (Signature σu,v). We say that the signature of the pair of vertices u, v,
denoted by σu,v, is the set of classes Ei such that u and v are separated in G\Ei. In other
words, u and v are in different halfspaces of Ei.

The signature of two vertices provide us with the composition of any shortest (u, v)-path.
Indeed, all shortest (u, v)-paths contain exactly one edge for each class in σu,v.

▶ Lemma 2.8 ([15]). For any shortest (u, v)-path P , the edges in P belong to classes in
σu,v and, for any Ei ∈ σu,v, there is exactly one edge of Ei in path P . Conversely, a path
containing at most one edge of each Θ-class is a shortest path between its departure and its
arrival.

This result is a direct consequence of the convexity of halfspaces. By contradiction, a
shortest path that would pass through two edges of some Θ-class Ei would escape temporarily
from an halfspace, say w.l.o.g H ′

i, which is convex (Lemma 2.4).
Definition 2.7 can be generalized: given a set of edges B ⊆ E, its signature is the set of

Θ-classes represented in that set: {Ei : uv ∈ Ei ∩B}. The signature of a path is the set of
classes which have at least one edge in this path. In this way, the signature σu,v is also the
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signature of any shortest (u, v)-path. The signature of a hypercube is the set of Θ-classes
represented in its edges: the cardinality of the signature is thus equal to the dimension of
the hypercube.

2.3 Orthogonal Θ-classes and hypercubes
We present now another important notion on median graphs: orthogonality.

▶ Definition 2.9 (Orthogonal Θ-classes). We say that classes Ei and Ej are orthogonal
(denoted by Ei ⊥ Ej) if there is a square uvyx in G, where uv, xy ∈ Ei and ux, vy ∈ Ej.

We say that Ei and Ej are parallel if they are not orthogonal, that is Hi ⊆ Hj for some
Hi ∈ {H ′

i, H
′′
i }, Hj ∈

{
H ′

j , H
′′
j

}
. We define the sets of pairwise orthogonal Θ-classes.

▶ Definition 2.10 (Pairwise Orthogonal Family). We say that a set of classes X ⊆ E is a
Pairwise Orthogonal Family (POF for short) if for any pair Ej , Eh ∈ X, we have Ej ⊥ Eh.

For any induced hypercube of G, its basis (resp. anti-basis) is the closest vertex (resp.
farthest) to v0 in it. All edges of the hypercube indicent to the basis are outgoing from it in
the v0-orientation. Hypercubes are in bijection with pairs (u, L), where u is a vertex (the
basis of the hypercube) and L is a POF outgoing from u (the signature of the hypercube).

The full version of this subsection is put in Appendix A.

3 Simplex graphs

Due to page limit, the proofs in this Section are omitted. Given any undirected graph G,
the vertices of the simplex graph K(G) associated to G represent the induced cliques (not
necessarily maximal) of G. Two of these cliques are connected by an edge if they differ by
exactly one element.

▶ Definition 3.1 (Simplex graphs [9]). The simplex graph K(G) = (VK , EK) of G = (V,E)
is made up of the vertex set VK = {C ⊆ V : C induced complete graph of G} and the edge
set EK = {(C,C ′) : C,C ′ ∈ VK , C ⊊ C ′, |C ′| − |C| = 1}.

Simplex graphs can be characterized as particular median graphs.

▶ Theorem 3.2. Let G be a median graph. The following statements are equivalent:
(1) G is a simplex graph.
(2) There is a vertex v0 ∈ V (G) such that each Θ-class of G is adjacent to v0, i.e. ∀1 ≤ i ≤

q, ∃vi ∈ V (G), v0vi ∈ Ei.
(3) There is a vertex v0 ∈ V (G) contained in any maximal hypercube of G.

In this section only, on simplex graphs, the canonical basepoint v0 is not selected arbitrarily.
We fix v0 as a vertex adjacent to all Θ-classes, as put in evidence by Theorem 3.2. We call
v0 the central vertex of the simplex graph.

▶ Definition 3.3 (Crossing graphs [9, 28]). Let G be a median graph. Its crossing graph G#

is the graph obtained by considering Θ-classes as its vertices and such that two Θ-classes are
adjacent if they are orthogonal.

Restricted to simplex graphs, this transformation is the reverse of K: indeed, as stated
in [28], G = K(G)#. The clique number of G# is exactly the dimension of median graph
G. For example, the crossing graph of a cube-free median graph contains no triangle. Each
simplex graph admits a central vertex (v0 in Theorem 3.2) which represents the empty clique
of G#.
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Now, we focus on the problem of determining a diametral pair of a simplex graph G and
more generally all eccentricities. Observe that the distance between the central vertex v0 and
any vertex u of G can be deduced directly from the set E−(u) of Θ-classes incoming into u.
We state that σv0,u = E−(u). This is a consequence of Theorem 3.2: all Θ-classes of E−(u)
are adjacent to v0, so v0 is the basis of the hypercube with signature E−(u) and anti-basis u.
A shortest (v0, u)-path is thus made up of edges of this hypercube. The distance d(v0, u) is
equal to its dimension: d(v0, u) = |E−(u)|.

A key result is the fact that the central vertex v0 of the simplex graph belongs to the
interval I(u, v) of any pair u, v satisfying d(u, v) = ecc(u).

▶ Lemma 3.4. Let u, v ∈ V (G) such that d(u, v) = ecc(u). Then, v0 ∈ I(u, v).

Two vertices u, v forming a diametral pair cannot share a common incoming Θ-class
Ei, in other words E−(u) ∩ E−(v) = ∅, otherwise m = m(u, v, v0) ∈ I(u, v) ⊆ H ′′

i and
v0 ∈ H ′

i. Moreover, the distance d(u, v) is exactly |E−(u)|+|E−(v)| because |E−(u)| = d(v0, u)
and |E−(v)| = d(v0, v). So, determining the diameter of a simplex graph G is equivalent
to maximizing the sum |X| + |Y |, where X and Y are two POFs of G that are disjoint.
Computing the diameter is equivalent to find the largest pair of disjoint cliques in the crossing
graph G#. Similarly, the eccentricity of a vertex u is exactly the size |E−(u)| + |E−(v)| of
the largest pair of disjoint POFs (E−(u), E−(v)). Now, we can define the notion of opposite.

▶ Definition 3.5. Let G be a simplex graph and X a POF of G. We denote by op(X) the
opposite of X, i.e. the POF Y disjoint from X with the maximum cardinality.

op(X) = argmax
Y ∩X=∅

|Y | .

With this definition, the eccentricity of a vertex u, if we fix Xu = E−(u), is written
ecc(u) = |Xu| + |op(Xu)|. Hence, the diameter of the simplex graph G can be written as the
size of the largest pair POF-opposite: diam(G) = maxX∈L(|X| + |op(X)|).

We propose now the definition of two problems on simplex graphs. The first one, called
Opposites (OPP) consists in finding all pairs POF-opposite. Its output has thus a linear
size. Given the solution of OPP on graph G, one can deduce both the diameter and all
eccentricities in O(n) time with the formula: ecc(u) = |Xu| + |op(Xu)|.

▶ Definition 3.6 (OPP).
Input: Simplex graph G, central vertex v0.
Output: For each POF X, its opposite op(X).

We define an even larger version of the problem where a positive integer weight is
associated with each POF. We call it Weighted Opposites (WOPP).

▶ Definition 3.7 (WOPP).
Input: Simplex graph G, central vertex v0, weight function ω : L → N+.
Output: For each POF X, its weighted opposite Y maximizing ω(Y ) such that X∩Y = ∅.

Obviously, OPP is a special case of WOPP when ω is the cardinality function. We
show that WOPP can be solved in quasilinear time O((d3 + log n)n), as d ≤ ⌊log n⌋. As a
consequence, all eccentricities of a simplex graph G can also be determined with such time
complexity.

▶ Theorem 3.8. There is a combinatorial algorithm solving WOPP in time O((d3 + log n)n).
Consequently, it determines all eccentricities of a simplex graph with this running time.
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4 Subquadratic-time algorithm for all eccentricities on median graphs

This section introduces the design of algorithms computing all eccentricities for the whole
class of median graphs (not only simplex graphs). We begin in Section 4.1 with the proposal
of a linear-time FPT algorithm, parameterized by the dimension d, running in 2O(d)n. It is
based on some techniques of a paper of the literature [15] which provides a slightly super-
exponential time algorithm - running in 2O(d log d)n - for the same problem. We prove that
replacing one step of this procedure by the partitioning conceived in Section 3 allows us to
decrease the exponential dependence on d.

Thanks to this outcome, in Section 4.2, we are able to design a first subquadratic-time
algorithm for all median graphs running in Õ(n 5

3 ). The proof of the Lemmas which are not
given in this subsection are put in Appendix B.

4.1 Linear FPT algorithm for constant-dimension median graphs
We remind in this subsection the different steps needed to obtain a linear-time algorithm
computing all eccentricities of a median graph with constant dimension, d = O(1). We show
how Theorem 3.8 can be integrated to it in order to improve the dependence on d. Let us
begin with a reminder of the former result.

▶ Lemma 4.1 ([15]). There is a combinatorial algorithm computing all eccentricities in a
median graph G with running time Õ(2d(log d+1)n).

Some parts of this subsection are redundant with [15], however we keep this subsection
self-contained. The new outcomes presented are Theorems 4.10 and 4.16.

The algorithm evoked by Lemma 4.1 consists in the computation of three kinds of labels:
ladder labels φ, opposite labels op and anti-ladder labels ψ. The order in which they are
given correspond to their respective dependence: op-labelings are functions of labels φ and
ψ-labelings are functions of both labels φ and op. The definition of op-labelings on general
median graphs is closely related to the computation of eccentricities on simplex graphs evoked
in Section 3.

4.1.1 Ladder labels
Some preliminary work has to be done before giving the definition of labels φ. We introduce
the notion of ladder set. It is defined only for pairs of vertices u, v satisfying the condition
u ∈ I(v0, v). In this situation, the edges of shortest (u, v)-paths are all oriented towards v
with the v0-orientation.

▶ Definition 4.2 (Ladder set Lu,v). Let u, v ∈ V such that u ∈ I(v0, v). The ladder set Lu,v

is the subset of σu,v which contains the Θ-classes admitting an edge adjacent to u.

Figure 3 shows a small median graph with four vertices v0, u, v, x such that u ∈ I(v0, v)
and u ∈ I(v0, x). It gives the composition of ladder sets Lu,v and Lu,x.

A key characterization on ladder sets states that their Θ-classes are pairwise orthogonal.
In brief, every set Lu,v is a POF. Let us remind that the adjacency of all Θ-classes of a POF
L with the same vertex u implies the existence of a (unique) hypercube not only signed with
this POF L but also containing u (Lemma A.5). If additionnally POF L is outgoing from
u - said differently, the edges adjacent to u belonging to a Θ-class of L leave u -, then u is
the basis of the hypercube. As the Θ-classes of Lu,v are adjacent to u by definition, there is
a natural bijection between (i) hypercubes (ii) pairs made up of a vertex u and a POF L

outgoing from u and (iii) pairs vertex-ladder set (u, Lu,·).
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E1

E2

E3

E4

E5

v0 u

v

x

Figure 3 Examples of ladder sets: Lu,v = {E2, E3}, Lu,x = {E1, E2, E3}.

▶ Lemma 4.3 ([15]). Every ladder set Lu,v is a POF. For any ordering τ of the Θ-classes
in Lu,v, there is a shortest (u, v)-path such that, for any 1 ≤ i ≤ |Lu,v|, the ith first edge of
the path belongs to the ith Θ-class of Lu,v in ordering τ .

The necessary background to introduce labels φ is now known.

▶ Definition 4.4 (Labels φ [15]). Given a vertex u and a POF L outgoing from u, let φ(u, L)
be the maximum distance d(u, v) such that u ∈ I(v0, v) and Lu,v = L.

Intuitively, integer φ(u, L) provides us with the maximum length of a shortest path
starting from u into “direction” L. Observe that the total size of labels φ on a median graph
G does not exceed O(2dn), according to Lemma A.7. We provide another notion related to
orthogonality which will be used in the remainder.

▶ Definition 4.5 (L-parallelism). We say that a POF L′ is L-parallel if, for any Ej ∈ L′,
L ∪ {Ej} is not a POF.

When L′ is a L-parallel POF, we have L ∩ L′ = ∅, otherwise L ∪ {Ej} = L for some
Ej ∈ L′. Presented differently, a L-parallel POF is such that any of its Θ-classes is parallel
to at least one Θ-class of L.

A combinatorial algorithm running in Õ(22dn) which computes all labels φ(u, L) was
identified in [15]: we provide an overview of it. There is a crucial relationship between a label
φ(u, L) and the labels of (i) the anti-basis u+ of the hypercube with basis u and signature L
and (ii) the L-parallel POFs outgoing from u+.

▶ Lemma 4.6 (Inductive formula for labels φ [15]). Let u ∈ V , L be a POF outgoing from u

and Q be the hypercube with basis u and signature L. We denote by u+ the opposite vertex
of u in Q: u is the basis of Q and u+ its anti-basis. A vertex v ̸= u+ verifies u ∈ I(v0, v)
and Lu,v = L if and only if (i) u+ ∈ I(v0, v) and (ii) ladder set Lu+,v is L-parallel.

A consequence of the previous lemma is that we can distinguish two cases for the
computation of φ(u, L). In the first case, φ(u, L) = |L|: it occurs when the farthest-to-u
vertex with ladder set L is u+ (base case). Indeed, u+ is a candidate as σu,u+ = L: shortest
(u, u+)-paths pass through hypercube Q. This situation happens when either no Θ-class is
outgoing from u+ or when all Θ-classes outgoing from u+ are orthogonal to L. In the second
case, there are vertices farther to u than u+ with ladder set L. As announced in Lemma 4.6,
φ(u, L) is a function of labels φ(u+, ·).

φ(u, L) = max
L+ POF outgoing from u+

∀Ej∈L+, L∪{Ej} not POF

(|L| + φ(u+, L+)). (1)
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If there exists such a POF L+, then the label φ(u, L) is given by Equation (1). Otherwise,
it is given by the first case. Briefly, the algorithm consists in listing all pairs vertex-ladder set
((u, L), (u+, L+)) such that u+ is the anti-basis of the hypercube of basis u and signature L.
For each of it, we verify whether L+ is L-parallel. If it is, we update φ(u, L) if |L|+φ(u+, L+)
is greater than the current value. The total number of pairs ((u, L), (u+, L+)) is upper-
bounded by 22dn: there are at most 2dn pairs (u+, L+) (bijection with hypercubes) and, for
each of them, there are at most 2d compatible pair (u, L) such that u+ is the anti-basis of
(u, L). Indeed, the number of edges incoming into u+ is at most d (Lemma A.6). For this
reason, the computation of φ-labelings takes Õ(22dn).

▶ Theorem 4.7 (Computation of labels φ [15]). There is a combinatorial algorithm which
determines all labels φ(u, L) in Õ(22dn). It also stores, for each pair (u, L), a vertex v

satisfying Lu,v = L and d(u, v) = φ(u, L), denoted by µ(u, L).

4.1.2 Opposite labels
The second type of labels needed to compute all eccentricities of a median graph G are
opposite labels. Given a vertex u and a POF L outgoing from u, let opu(L) denote a POF
outgoing from u with maximum label φ which is disjoint from L. As for φ, the total size of
op-labelings is O(2dn).

▶ Definition 4.8 (Labels op [15]). Let u ∈ V and L be a POF outgoing from u. Let opu(L)
be one of the POF L′ outgoing from u, disjoint from L, which maximizes value φ(u, L′).

On simplex graphs, the opposite function provides in fact the op-labelings of vertex v0:
op(X) = opv0(X). As all vertices belong to hypercubes with basis v0, the ladder set Lv0,v for
any vertex v ∈ V is exactly the set E−(v) of Θ-classes incoming into v. So, value φ(v0, X) is
the distance d(v0, v) between v0 and the only vertex v with ladder set Lv0,v = X.

On general median graphs, the opposite label opu(L) allows us to obtain the maximum
distance d(s, t) such that u = m(s, t, v0) and the ladder set Lu,s is L.

▶ Lemma 4.9 (Relationship between medians and disjoint outgoing POFs [15]). Let L,L′ be
two POFs outgoing from a vertex u. Let s (resp. t) be a vertex such that u ∈ I(v0, s) (resp.
u ∈ I(v0, t)) and Lu,s = L (resp. Lu,t = L′). Then, u ∈ I(s, t) if and only if L ∩ L′ = ∅.
Therefore, given a single vertex s such that u ∈ I(v0, s) and Lu,s = L, the maximum distance
d(s, v) we can have with median m(s, v, v0) = u is exactly d(u, s) + φ(u, opu(L)).

Going further, given a vertex u ∈ V , the maximum distance d(s, t) such that u = m(s, t, v0)
is the maximum value φ(u, L) + φ(u, opu(L)), where L is a POF outgoing from u.

An algorithm was initially proposed to compute all labels opu(L) consisting in a brute
force bounded tree search [15]. Its execution time was Õ(2O(d log d)n), leading to the global
same asymptotic running time (Lemma 4.1) for finding all eccentricities.

Fortunately, the quasilinear time algorithm determining the eccentricities on simplex
graphs (Theorem 3.8, Section 3) offers us the opportunity to decrease the exponential term
to a simple exponential function 2d. For any u ∈ V , let Gu = G [Vu] be the star graph of
u, using a definition from [22]. Its vertex set Vu is made up of the vertices belonging to
a hypercube with basis u in G. Graph Gu is the induced subgraph of G on vertex set Vu

(see Figure 8 for an example). Chepoi et al. [22] showed that graph Gu is a gated/convex
subgraph of G. Applying the algorithm of Theorem 3.8 on the simplex graph Gu provides us
with the opposite labels of u.

▶ Theorem 4.10 (B.1, Computation of labels op). There is a combinatorial algorithm which
determines all labels opu(L) in Õ(2dn).
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4.1.3 Anti-ladder labels
We terminate with anti-ladder labels ψ which play the converse role of ladder labels φ.
While φ(u, L) is defined for POFs L outgoing from u, labels ψ(u,R) are defined for POFs R
incoming into u, i.e. every Θ-class of the POF has an edge entering u. As any such pair
(u,R) can be associated with a hypercube of anti-basis u and signature R (Lemma A.6), the
total size of ψ-labelings is at most O(2dn) too.

The notion of milestone intervenes in the definition of labels ψ. We consider two vertices
u, v such that u ∈ I(v0, v). Milestones are defined recursively.

▶ Definition 4.11 (Milestones Π(u, v)). Let Lu,v be the ladder set of u, v and u+ be the
anti-basis of the hypercube with basis u and signature Lu,v. If u+ = v, then pair u, v admits
two milestones: Π(u, v) = {u, v}. Otherwise, the set Π(u, v) is the union of Π(u+, v) with
vertex u: Π(u, v) = {u} ∪ Π(u+, v).

The milestones are the successive anti-bases of the hypercubes formed by the vertices and
ladder sets traversed from u to v. Both vertices u and v are contained in Π(u, v). The first
milestone is u, the second is the anti-basis u+ of the hypercube with basis u and signature
Lu,v. The third one is the anti-basis u++ of the hypercube with basis u+ and signature
Lu+,v, etc. All milestones are metrically between u and v: Π(u, v) ⊆ I(u, v).

▶ Definition 4.12 (Penultimate milestone π(u, v)). We say that the milestone in Π(u, v)
different from v but the closest to it is called the penultimate milestone. We denote it by
π(u, v). Furthermore, we denote by Lu,v the anti-ladder set of u, v, i.e. the Θ-classes of the
hypercube with basis π(u, v) and anti-basis v.

Lu,v

Lu+,v

Lu++,v

v0 u

v

u+ u++

Figure 4 A pair u, v with u ∈ I(v0, v) and its milestones Π(u, v) in red.

Figure 4 shows the milestones Π(u, v) = {u, u+, u++, v}. The hypercubes with the
following pair basis-signature are highlighted with dashed edges: (u, Lu,v), (u+, Lu+,v), and
(u++, Lu++,v). We have π(u, v) = u++ and Lu,v = Lu++,v is drawn in purple.

Let R be a POF incoming to some vertex u and u− be the basis of the hypercube with
anti-basis u and signature R. Label ψ(u,R) intuitively represents the maximum distance of
a shortest path arriving to vertex u from “direction” R.

▶ Definition 4.13 (Labels ψ [15]). The label ψ(u,R) is the maximum distance d(u, v) we can
obtain with a vertex v satisfying the following properties:

m = m(u, v, v0) ̸= u,
the anti-ladder set of m,u is R: Lm,u = R.

Equivalently, vertex u− is the penultimate milestone of pair m,u: u− = π(m,u).

As for the computation of labels φ, there is an induction process to determine all ψ(u,R).
As the base case, suppose that u− = v0. The largest distance d(u, v) we can obtain with a
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vertex v such that v0 ∈ I(u, v) consists in considering the opposite opv0(R) of R which is
outgoing from v0. Hence, ψ(u,R) = |R| + φ(v0, opv0(R)).

For the induction step, we distinguish two cases. In the first one, assume that m(u, v, v0) =
u− - equivalently, Π(m,u) = Π(u−, u) = {u−, u}. A shortest (u, v)-path is the concatenation
of the shortest (u, u−)-path of length |R| with a shortest (u−, v)-path, and u− ∈ I(v0, v). The
largest distance d(u, v) we can have, as for the base case, is ψ(u,R) = |R| + φ(u−, opu−(R)).

In the second case, m ̸= u−, an inductive formula allows us to obtain ψ(u,R). A
consequence of Lemma 4.6 is that, for two consecutive milestones in Π(u, v), say u and u+

w.l.o.g, then Lu+,v is Lu,v-parallel. This observation, applied to the penultimate milestone,
provides us with the following theorem.

▶ Lemma 4.14 (Inductive formula for labels ψ [15]). Let u, v ∈ V and u ∈ I(v0, v). Let L be
a POF outgoing from v and w the anti-basis of hypercube (v, L). The following propositions
are equivalent:

(i) vertex v is the penultimate milestone of (u,w): π(u,w) = v,
(ii) the milestones of (u,w) are the milestones of (u, v) with w: Π(u,w) = Π(u, v) ∪ {w},
(iii) the POF L is Lu,v-parallel.

Set Π(m,u) admits at least three milestones: m, u−, and u. Let R− be the POF incoming
to u− which is the ladder set (but also the signature) of (i) the milestone just before u−

and (ii) u−. According to Lemma 4.14, vertex u− is the penultimate milestone of (m,u) if
and only if R− ∪ {Ej} is not a POF, for each Ej ∈ R. For this reason, value ψ(u,R) can be
expressed as:

ψ(u,R) = max
R− POF incoming to u−

∀Ej∈R,R−∪{Ej} not POF

(|R| + ψ(u−, R−)) (2)

Our algorithm consists in taking the maximum value between the two cases. The number
of pairs ((u,R), (u−, R−)) which satisfy the condition described in Equation (2) is at most
22dn: it is identical to the one presented for φ-labelings.

▶ Theorem 4.15 (Computation of labels ψ [15]). There is a combinatorial algorithm which
determines all labels ψ(u,R) in Õ(22dn).

4.1.4 Better time complexity for all eccentricities
The computation of all labels φ(u, L), opu(L) and ψ(u,R) gives an algorithm which determines
all eccentricities. Indeed, each eccentricity ecc(u) is a function of certain labels φ and ψ. Let
v be a vertex in G such that ecc(u) = d(u, v). If m = m(u, v, v0) = u, then u ∈ I(v0, v) and
value d(u, v) is given by a label φ(u, L). Otherwise, if m ̸= u, let u− be the penultimate
milestone in Π(m,u) and R be the classes of the hypercube with basis u− and anti-basis u.
The eccentricity of u is given by a label ψ(u,R). Conversely, each φ(u, L) and ψ(u,R) is the
distance between u and another vertex by definition. Therefore, we have:

ecc(u) = max

 max
L POF

outgoing from u

φ(u, L), max
R POF

incoming to u

ψ(u,R)

 (3)

In other words, the eccentricity of u is the maximum label φ or ψ centered at u. We
can conclude with the main result of this subsection: the eccentricities of any median graph
can be determined in linear time multiplied by a simple exponential function 2O(d) of the
dimension d.
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▶ Theorem 4.16 (All eccentricities in Õ(22dn)-time for median graphs). There is a combinat-
orial algorithm computing the list of all eccentricities of a median graph G in time Õ(22dn).

4.2 Tackling the general case
Our new FPT algorithm for computing the list of eccentricities in a median graph has
a runtime in 2O(d)n, with d being the dimension (Theorem 4.16). This runtime stays
subquadratic in n as long as d < α log n, for some constant α < 1. In what follows, we
present a simple partitioning scheme for median graphs into convex subgraphs of dimension
at most α log n, for an arbitrary value of α ≤ 1. By doing so, we obtain (in combination with
Theorem 4.16) the first known subquadratic-time algorithm for computing all eccentricities
in a median graph.

We start with a simple relation between the eccentricity function of a median graph and
the respective eccentricity functions of any two complementary halfspaces.

▶ Lemma 4.17 (B.2). Let G be a median graph. For every 1 ≤ i ≤ q, let v ∈ V (H ′
i) be

arbitrary, and let v∗ ∈ ∂H ′′
i be its gate. Then, ecc(v) = max{eccH′

i
(v), d(v, v∗) + eccH′′

i
(v∗)}.

We will use this above Lemma 4.17 later in our proof in order to compute in linear time
the list of eccentricities in a median graph being given the lists of eccentricities in any two
complementary halfspaces.

Next, we give simple properties of Θ-classes, to be used in the analysis of our main
algorithm in this section (see Lemma 4.21).

▶ Lemma 4.18 (B.3). Let H and G be median graphs. If H is an induced subgraph of G
then, every Θ-class of H is contained in a Θ-class of G.

This above Lemma 4.18 can be strenghtened in the special case of isometric subgraphs.

▶ Lemma 4.19 (B.4). Let H and G be median graphs, and let E1, E2, . . . , Eq denote the
Θ-classes of G. If H is an isometric subgraph of G then, the Θ-classes of H are exactly the
nonempty subsets among Ei ∩ E(H), for 1 ≤ i ≤ q.

An important consequence of Lemma 4.18 is the following relation between the dimension
d of a median graph and the cardinality of its Θ-classes.

▶ Lemma 4.20. Let G be a median graph, and let D := max{|Ei| | 1 ≤ i ≤ q} be the
maximum cardinality of a Θ-class of G. Then, d = dim(G) ≤ ⌊logD⌋ + 1.

Proof. Any induced d-dimensional hypercube of G contains exactly 2d−1 edges of its Θ-classes,
so 2d−1 ≤ D. ◀

We are now ready to present our main technical contribution in this section.

▶ Lemma 4.21. If there is an algorithm for computing all eccentricities in an n-vertex
median graph of dimension at most d in Õ(cd · n) time, then in Õ(n2− 1

1+log c ) time we can
compute all eccentricities in any n-vertex median graph.

Proof. Let G be an n-vertex median graph. We compute its Θ-classes E1, E2, . . . , Eq, that
takes linear time (Lemma 2.3). For some parameter D (to be fixed later in the proof),
let us assume without loss of generality E1, E2, . . . , Ep to be the subset of all Θ-classes of
cardinality ≥ D, for some p ≤ q. Note that we have p ≤ |E| /D = Õ(n/D).
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We reduce the problem of computing all eccentricities in G to the same problem on every
connected component of G \ (E1 ∪ E2 ∪ . . . ∪ Ep). More formally, we construct a rooted
binary tree T , whose leaves are labelled with convex subgraphs of G. Initially, T is reduced
to a single node with label equal to G. Then, for i = 1 . . . p, we further refine this tree so
that, at the end of any step i, its leaves are labelled with the connected components of
G\ (E1 ∪ E2 ∪ . . . ∪ Ei). An example of T is shown in Figure 5 with D = 3 and two Θ-classes
reaching this cardinality bound.

For that, we proceed as follows. We consider all leaves of T whose label H satisfies
E(H) ∩ Ei ̸= ∅. By Lemma 4.19, E(H) ∩ Ei is a Θ-class of H. Both halfspaces of Ei

become the left and right children of H in T . Recall that the leaves of T at this step i

are the connected components of G \ (E1 ∪ E2 ∪ . . . ∪ Ei−1), and in particular that they
form a partition of V (G). Therefore, each step takes linear time by reduction to computing
the connected components in vertex-disjoint subgraphs of G. Overall, the total time for
constructing the tree T is in O(pm) = Õ(n2/D).

E1

E2

H ′′
1

H ′
1

Figure 5 An example of tree T associated with a graph G for D = 3: here, p = 2.

Then, we compute the list of eccentricities for all the subgraphs labelling a node, by
dynamic programming on T . In particular, doing so we compute the list of eccentricities for
G because it is the label of the root. There are two cases:

If H labels a leaf (base case) then, we claim that we have dim(H) ≤ ⌊logD⌋ + 1. Indeed,
by Lemma 4.18, every Θ-class of H is contained in a Θ-class of G. Since we removed
all Θ-classes of G with at least D edges, the claim now follows from Lemma 4.20. In
particular, we can compute the list of all eccentricities for H in Õ(c⌊log D⌋+1|V (H)|) =
Õ(Dlog c|V (H)|) time. Recall that the leaves of T partition V (G), and therefore, the
total runtime for computing the list of eccentricities for the leaves is in Õ(Dlog cn).
From now on, let us assume H labels an internal node of T (inductive case). Let H ′

i, H
′′
i

be its children nodes, obtained from the removal of E(H) ∩ Ei for some 1 ≤ i ≤ p. – For
convenience, we will say later in the proof that H is an i-node. – Recall that E(H)∩Ei is a
Θ-class of H. In particular, H ′

i, H
′′
i are gated subgraphs. By Lemma 4.17, we can compute

in O(|V (H ′
i)|) time the eccentricities in H of all vertices in H ′

i if we are given as input:
the list of eccentricities in H ′

i, the list of eccentricities in H ′′
i , and for every v ∈ V (H ′

i) its
gate v∗ ∈ ∂H ′′

i and the distance d(v, v∗). The respective lists of eccentricities for H ′
i and

H ′′
i were pre-computed by dynamic programming on T . Furthermore, we can compute

the gate v∗ and d(v, v∗) for every vertex v ∈ V (H ′
i), in total Õ(|V (H)|) time, by using

a modified BFS rooted at H ′′
i (we refer to [22, Lemma 17] for a detailed description of

this standard procedure). Overall (by proceeding the same way for H ′′
i as for H ′

i) we can
compute the list of eccentricities for H in Õ(|V (H)|) time. This is in total Õ(n) time
for the i-nodes (i.e., because they were leaves of T at step i, and therefore, they are
vertex-disjoint), and so, in total Õ(pn) = Õ(n2/D) time for all the internal nodes.

The total runtime for our algorithm is Õ(n2/D+Dlog cn), and optimized for D = n
1

log c+1 . ◀
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▶ Theorem 4.22. There is an Õ(n5/3)-time algorithm for computing all eccentricities in
median graphs.

Proof. This result directly follows from Theorem 4.16 with Lemma 4.21 (for c = 4). ◀

As a natural extension of this work, the question of designing a linear-time or quasilinear-
time algorithm to compute the diameter and all eccentricities of median graphs is now open.
With the recursive splitting procedure of Lemma 4.21, unfortunately, the best execution time
we could obtain is Õ(n 3

2 ). Reaching this bound could represent a first reasonable objective: it
would “suffice” to propose a FPT combinatorial algorithm which computes all eccentricities
in Õ(2dn) in order to obtain such time complexity.

Eventually, we note two lines of research on which this paper could have some influence:
(i) the study of efficient algorithms for the computation of other metric parameters on median
graphs (perhaps, the betweenness centrality [1]) and (ii) the design of subquadratic-time
algorithms for the diameter and all eccentricities on larger families of graphs (almost-median
or semi-median graphs [17, 30] for example).
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A Orthogonal Θ-classes and hypercubes

We present now another important notion on median graphs: orthogonality. In [31], Kovse
studied a relationship between splits which refer to the halfspaces of Θ-classes. It says
that two splits {H ′

i, H
′′
i } and

{
H ′

j , H
′′
j

}
are incompatible if the four sets H ′

i ∩H ′
j , H ′′

i ∩H ′
j ,

H ′
i ∩H ′′

j , and H ′′
i ∩H ′′

j are nonempty. Another definition was proven equivalent to this one.

▶ Definition A.1 (Orthogonal Θ-classes). We say that classes Ei and Ej are orthogonal
(Ei ⊥ Ej) if there is a square uvyx in G, where uv, xy ∈ Ei and ux, vy ∈ Ej.
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Indeed, classes Ei and Ej are orthogonal if and only if the splits produced by their
halfspaces are incompatible.

▶ Lemma A.2 (Orthogonal⇔Incompatible [15]). Given two Θ-classes Ei and Ej of a median
graph G, the following statements are equivalent:

Classes Ei and Ej are orthogonal,
Splits {H ′

i, H
′′
i } and

{
H ′

j , H
′′
j

}
are incompatible,

The four sets ∂H ′
i ∩ ∂H ′

j, ∂H ′′
i ∩ ∂H ′

j, ∂H ′
i ∩ ∂H ′′

j , and ∂H ′′
i ∩ ∂H ′′

j are nonempty.

The concept of orthogonality is sometimes described with different words in the literature
depending on the context: incompatible, concurrent or crossing. We say that Ei and Ej

are parallel if they are not orthogonal, that is Hi ⊆ Hj for some Hi ∈ {H ′
i, H

′′
i } and

Hj ∈
{
H ′

j , H
′′
j

}
.

We pursue with a property on orthogonal Θ-classes: if two edges of two orthogonal classes
Ei and Ej are incident, they belong to a common square.

▶ Lemma A.3 (Squares [11, 15]). Let xu ∈ Ei and uy ∈ Ej. If Ei and Ej are orthogonal,
then there is a vertex v such that uyvx is a square.

Pairwise orthogonal families. We focus on the set of Θ-classes which are pairwise orthogonal.

▶ Definition A.4 (Pairwise Orthogonal Family). We say that a set of classes X ⊆ E is a
Pairwise Orthogonal Family (POF for short) if for any pair Ej , Eh ∈ X, we have Ej ⊥ Eh.

This notion is not completely new, since it implicitely appears in certain properties
established on median graphs (for instance, the downward cube property in [13]). The empty
set is considered as a POF. We denote by L the set of POFs of the median graph G. The
notion of POF is strongly related to the induced hypercubes in median graphs. First, observe
that all Θ-classes of a median graph form a POF if and only if the graph is a hypercube of
dimension log n [31, 32]. Secondly, the next lemma precises the relationship between POFs
and hypercubes.

▶ Lemma A.5 (POFs adjacent to a vertex [15]). Let X be a POF, v ∈ V , and assume that
for each Ei ∈ X, there is an edge of Ei adjacent to v. There exists a hypercube Q containing
vertex v and all edges of X adjacent to v. Moreover, the Θ-classes of the edges of Q are the
classes of X.

There is a natural bijection between the vertices of a median graph and the POFs. The
next lemma exhibits this relationship.

▶ Lemma A.6 (POFs and hypercubes [6, 8, 31]). Consider an arbitrary canonical basepoint
v0 ∈ V and the v0-orientation for the median graph G. Given a vertex v ∈ V , let N−(v) be
the set of edges going into v according to the v0-orientation. Let E−(v) be the classes of the
edges in N−(v). The following propositions are true:

For any vertex v ∈ V , E−(v) is a POF. Moreover, vertex v and the edges of N−(v) belong
to an induced hypercube formed by the classes E−(v). Hence, |E−(v)| = |N−(v)| ≤ d.
For any POF X, there is a unique vertex vX such that E−(vX) = X. Vertex vX is the
closest-to-v0 vertex v such that X ⊆ E−(v).
The number of POFs in G is equal to the number n of vertices: n = |L|.
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E1

E2

E3

E4

v0

v1

v2

v3

v4

v5

v6

v7

Vertex v0 v1 v2 v3
POF ∅ {E3} {E1} {E1, E3}

Vertex v4 v5 v6 v7
POF {E4} {E2} {E2, E3} {E2, E4}

Figure 6 Illustration of the bijection between V and the set of POFs.

An example is given in Figure 6 with a small median graph of dimension d = 2. v0
is the canonical basepoint and edges are colored according to their Θ-class. For example,
v1v3 ∈ E1. We associate with any POF X of G the vertex vX satisfying E−(vX) = X with
the v0-orientation. Obviously, the empty POF is associated with v0 which has no incoming
edges.

A straightforward consequence of this bijection is that parameter q, the number of Θ-
classes, is less than the number of vertices n. But it can be used less trivially to enumerate
the POFs of a median graph in linear time [8, 31]. Given a basepoint v0, we say that the
basis (resp. anti-basis) of an induced hypercube Q is the single vertex v such that all edges
of the hypercube adjacent to v are outgoing from (resp. incoming into) v. Said differently,
the basis of Q is its closest-to-v0 vertex and its anti-basis is its farthest-to-v0 vertex. What
Lemma A.6 states is also that we can associate with any POF X a hypercube QX which
contains exactly the classes X and admits vX as its anti-basis. This observation implies that
the number of POFs is less than the number of hypercubes in G. Moreover, the hypercube
QX is the closest-to-v0 hypercube formed with the classes in X. Figure 7a shows a vertex v
with its incoming and outgoing edges with the v0-orientation. The dashed edges represent
the hypercube with anti-basis v and POF E−(v).

Ei

Ej Eh

v

(a) The hypercube “induced” by the edges in-
coming into a vertex (its antibasis).

Ei
Eh

Ej

∂H ′′
i ∩ ∂H ′′

j
v′

v
Q′

Q

(b) A POF signing at least two hypercubes Q and
Q′ is not maximal.

Figure 7 Properties of POFs.

Number of hypercubes. We remind a formula establishing a relationship between the
number of POFs and the number of hypercubes in the literature. Let α(G) (resp. β(G))
be the number of hypercubes (resp. POFs) in G. Let βi(G) be the number of POFs of
cardinality i ≤ d in G. According to [8, 31], we have:

α(G) =
d∑

i=0
2iβi(G). (4)
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Equation (4) produces a natural upper bound for the number of hypercubes.

▶ Lemma A.7 (Number of hypercubes). α(G) ≤ 2dn.

Value α(G) consider all hypercubes, in particular those of dimension 0, i.e. vertices.
From now on, the word “hypercube” refers to the hypercubes of dimension at least one.

Each hypercube in the median graph G can be defined with only its anti-basis v and the
edges N̂ of the hypercube that are adjacent and going into v according to the v0-orientation.
These edges are a subset of N−(v): N̂ ⊆ N−(v). Conversely, given a vertex v, each subset
of N−(v) produces a hypercube which admits v as an anti-basis (this hypercube is a sub-
hypercube of the one obtained with v and N−(v), Lemma A.6). Another possible bijection
is to consider a hypercube as a pair composed of its anti-basis v and the Θ-classes Ê of the
edges in N̂ (its signature).

As a consequence, a simple graph search as BFS enables us to enumerate the hypercubes
in G in time O(d2dn).

▶ Lemma A.8 (Enumeration of hypercubes [15]). We can enumerate all triplets (v, u, Ê),
where v is the anti-basis of a hypercube Q, u its basis, and Ê the signature of Q in time
O(d2dn). Moreover, the list obtained fulfils the following partial order: if d(v0, v) < d(v0, v

′),
then any triplet (v, u, Ê) containing v appears before any triplet (v′, u′, Ê ′) containing v′.

The enumeration of hypercubes is thus executed in linear time for median graphs with
constant dimension. In summary, given any median graph, one can compute the set of
Θ-classes and their orthogonality relationship (for each Ei, the set of Θ-classes orthogonal
to Ei) in linear time, and the set of hypercubes with its basis, anti-basis and signature in
Õ(2dn).

B Proofs of Section 4

▶ Theorem B.1 (Computation of labels op). There is a combinatorial algorithm which
determines all labels opu(L) in Õ(2dn).

Proof. Let u ∈ V : we denote by Nu the number of hypercubes of G with basis u. Convex
subgraphs of median graphs are also median by considering the original definition of median
graphs (Definition 2.1). Consequently, star graph Gu is median and all its maximal hypercubes
contain a common vertex u. From Theorem 3.2, Gu is a simplex graph.

v0

u

(a) A v0-oriented median graph G and a vertex u ∈ V .

u

(b) Star graph Gu.

Figure 8 Example of star graph Gu.

Any pair (u, L) of G, where L is a POF outgoing from u in G, can be associated to a
unique hypercube with signature L and basis u. Thus, there is a natural bijection between
(i) the POFs of Gu (ii) the vertices of Gu and (iii) the POFs L of G outgoing from u. Hence,
|Vu| = Nu.
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We associate with any POF L of Gu the weight ωu(L) = φ(u, L). We apply the algorithm
evoked in Theorem 3.8. The opposite computed with that configuration correspond exactly to
the labels opu(L): a POF L′ disjoint from L and maximizing φ(u, L′) among all POFs outgoing
from u. The running time of the algorithm is O((d3 + log |Vu|) |Vu|) = O((d3 + log n)Nu).
Doing it for every vertex u of G, we obtain all opposite labels of G in O(d3 + log n)2dn) as∑

u∈V Nu = 2dn (Lemma A.7). ◀

▶ Lemma B.2. Let G be a median graph. For every 1 ≤ i ≤ q, let v ∈ V (H ′
i) be arbitrary,

and let v∗ be its gate in ∂H ′′
i . Then, ecc(v) = max{eccH′

i
(v), d(v, v∗) + eccH′′

i
(v∗)}.

Proof. We have ecc(v) = eccG(v) = max{d(u, v) | u ∈ V (H ′
i)} ∪ {d(w, v) | w ∈ V (H ′′

i )}.
Since H ′

i is convex, we have max{d(u, v) | u ∈ V (H ′
i)} = eccH′

i
(v). In the same way, since H ′′

i

is gated (and so, convex), we have max{d(w, v) | w ∈ V (H ′′
i )} = d(v, v∗) + max{d(v∗, w) |

w ∈ V (H ′′
i )} = d(v, v∗) + eccH′′

i
(v∗). ◀

▶ Lemma B.3. Let H and G be median graphs. If H is an induced subgraph of G then,
every Θ-class of H is contained in a Θ-class of G.

Proof. Every square of H is also a square of G. In particular, two edges of H are in relation
Θ0 if and only if, as edges of G, they are also in relation Θ0. Since the Θ-classes of H
(resp., of G) are the transitive closure of its relation Θ0, it follows that every Θ-class of H is
contained in a Θ-class of G. ◀

▶ Lemma B.4. Let H and G be median graphs, and let E1, E2, . . . , Eq denote the Θ-classes
of G. If H is an isometric subgraph of G then, the Θ-classes of H are exactly the nonempty
subsets among Ei ∩ E(H), for 1 ≤ i ≤ q.

Proof. It is known [38] that two edges uv, xy of G are in the same Θ-class if and only if
dG(u, x) + dG(v, y) ̸= dG(u, y) + dG(v, x). In particular, since H is isometric in G, two edges
of H are in the same Θ-class of H if and only if they are in the same Θ-class of G. ◀
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In this work, we consider d-Hyperedge Estimation and d-Hyperedge Sample problem in
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The main technical contribution of the paper is an algorithm that estimates m = |F(H)| with m̂

such that

1
Cd logd−1 n

≤ m̂

m
≤ Cd logd−1 n.

by using at most Cd logd+2 n many CID queries, where n denotes the number of vertices in the
hypergraph H and Cd is a constant that depends only on d. Our result coupled with the framework
of Dell et al. [SODA ’21] implies improved bounds for the following fundamental problems:
Edge Estimation using the Bipartite Independent Set (BIS). We improve the bound obtained

by Beame et al. [ITCS ’18, TALG ’20].
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the case of graphs with low co-degree (Co-degree for an edge in the graph is the number of
triangles incident to that edge in the graph) was due to Bhattacharya et al. [ISAAC ’19, TOCS
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improve both of these bounds.
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1 Introduction

Estimating different combinatorial structures like edges, triangles and cliques in an unknown
graph that can be accessed only through query oracles is a fundamental area of research in
sublinear algorithms [13, 14, 11, 12]. Different query oracles provide unique ways of looking
at the same graph. Beame et al. [1] introduced an independent set based subset query
oracle, named Bipartite Independent Set (BIS) query, to estimate the number of edges
in a graph using polylogarithmic queries. The BIS query answers a YES/NO question on
the existence of an edge between two disjoint subsets of vertices of a graph G. The next
natural questions in this line of research were problems of estimation and uniform sampling
of hyperedges in hypergraphs [9, 3, 4]. In this paper, we will be focusing on these two
fundamental questions, and in doing so, we will improve all the previous results [2, 9, 3, 4].

1.1 Our query oracle, results and the context
A hypergraph H is a set system (U(H), F(H)), where U(H) denotes a set of n vertices and
F(H), a set of subsets of U(H), denotes the set of hyperedges. A hypergraph H is said
to be d-uniform if every hyperedge in H consists of exactly d vertices. The cardinality of
the hyperedge set is denoted as m(H) = |F(H)|. We will access the hypergraph using the
following oracle1 [6].

▶ Definition 1.1 (Colorful Independent Set (CID)). Given d pairwise disjoint subsets of
vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H as input, CID query answers Yes if and only
if m(A1, . . . , Ad) ̸= 0, where m(A1, . . . , Ad) denotes the number of hyperedges in H having
exactly one vertex in each Ai, where i ∈ {1, 2, . . . , d}.

Note that the earlier mentioned BIS is a special case of CID when d = 2. With this
query oracle access, we solve the following two problems.

d-Hyperedge-Estimation
Input: Vertex set U(H) of a hypergraph H with n vertices, a CID oracle access to H,
and ε ∈ (0, 1).
Output: A (1 ± ε)-approximation m̂ to m(H) with probability 1 − 1/nΩ(d).

Note that Edge Estimation problem is a special case of d-Hyperedge-Estimation
when d = 2.

d-Hyperedge-Sample
Input: Vertex set U(H) of a hypergraph H with n vertices, a CID oracle access to H,
and ε ∈ (0, 1).
Output: With probability 1−1/nΩ(d), report a sample from a distribution of hyperedges
in H such that the probability that any particular hyperedge is sampled lies in the interval[
(1 − ε) 1

m , (1 + ε) 1
m

]
.

This area started with the investigation of Edge Estimation problem by Dell and
Lapinskas [7, 8] and Beame et al. [1], then Bhattacharya et al. [3, 4] studied d-Hyperedge-
Estimation for d = 3, and more recently Dell et al. [9] gave algorithms for d-Hyperedge-
Estimation and d-Hyperedge-Sample for general d. Beame et al. [1] showed that Edge

1 In [6], the oracle is named as Generalized Partite Independent Set oracle. Here, we follow the
same suit as Dell et al. [9] with respect to the name of the oracle.
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Estimation problem can be solved using O
(

log14 n
ε4

)
BIS queries. Having estimated the

number of edges in a graph using BIS queries, a very natural question was to estimate the
number of hyperedges in a hypergraph using an appropriate query oracle. This extension is
nontrivial as two edges in a graph can intersect in at most one vertex but the intersection
pattern between two hyperedges in a hypergraph is more complicated. As a first step towards
resolving this question, Bhattacharya et al. [3, 4] considered d-Hyperedge-Estimation in
3-uniform hypergraphs using CID queries. They showed that when co-degree of any pair of
vertices in a 3-uniform hypergraph is bounded above by ∆, then one can solve d-Hyperedge-
Estimation using O

(
∆2 log18 n

ε4

)
CID queries. Recall that co-degree of two vertices in a

hypergraph is the number of hyperedges that contain both vertices. Dell et al. [9] generalized
the results of Beame et al. [1] and Bhattacharya et al. [3, 4], and obtained a similar (with
an improved dependency in terms of ε) result for the d-Hyperedge-Estimation problem
for general d. Apart from d-Hyperedge-Estimation problem, they also considered the
problem of d-Hyperedge-Sample. The results of Dell et al. [9] are formally stated in the
following proposition:

▶ Proposition 1.2 (Dell et al. [9]). d-Hyperedge-Estimation and d-Hyperedge-Sample
can be solved by using Od

(
log4d+8 n

ε2

)
and Od

(
log4d+12 n

ε2

)
CID queries, respectively. 2

Currently, the best known bound (prior to this work) for solving d-Hyperedge-Estimation
problem, for general d, is due to Dell et al. [9], but note that for constant ε ∈ (0, 1), Beame
et al. [1, 2] still have the best bound for the Edge Estimation problem.

Our main result is an improved coarse estimation technique, named Rough Estimation,
and is stated in the following theorem. The significance of the coarse estimation technique
will be discussed in Section 1.2.

▶ Theorem 1.3 (Main result). There exists an algorithm Rough Estimation that has
CID query access to a d-uniform hypergraph H(U, F) and returns m̂ as an estimate for
m = |F(H)| such that

1
Cd logd−1 n

≤ m̂

m
≤ Cd logd−1 n

with probability at least 1 − 1/nΩ(d) using at most Cd logd+2 n CID queries, where Cd is a
constant that depends only on d and n denotes the number of vertices in H.

Coarse estimation gives a crude polylogarithmic approximation for m, the number of hy-
peredges in H. This improvement in the coarse estimation algorithm coupled with importance
sampling and the algorithmic framework of Dell et al. [9] gives an improved algorithm for
both d-Hyperedge-Estimation and d-Hyperedge-Sample problems.

▶ Theorem 1.4 (Improved bounds for estimating and sampling). d-Hyperedge-Estimation
and d-Hyperedge-Sample problems can be solved by using Od

(
log3d+5 n

ε2

)
and Od

(
log3d+9 n

ε2

)
CID queries, respectively.

2 Dell et al. [9] studied d-Hyperedge-Estimation and d-Hyperedge-Sample where the probability
of success is 1 − δ for some given δ ∈ (0, 1), and have showed that d-Hyperedge-Estimation and
d-Hyperedge-Sample can be solved by using Od

(
log4d+7 n

ε2 log 1
δ

)
and Od

(
log4d+11 n

ε2 log 1
δ

)
CID

queries, respectively. In Proposition 1.2, we have taken δ = nO(d). But both the results of Beame et
al. [1, 2] and Bhattacharya et al. [3, 4] are in the high probability regime.

In this paper, we work with success probability to be 1 − 1/nΩ(d) for simplicity of presentation and
compare our results with all previous results in a high probability regime.

STACS 2022
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The details regarding how Theorem 1.3 can be used together with the framework of Dell et
al. [9] to prove Theorem 1.4 will be discussed in Section 5.

Using Theorem 1.4, we directly get the following improved bounds for Edge Estimation
and d-Hyperedge-Estimationin 3-uniform hypergraph by substituting d = 2 and d = 3,
respectively.

▶ Corollary 1.5.
(a) Edge Estimation can be solved using O

(
log11 n

ε2

)
queries to Bipartite Independent

Set (BIS) oracle.
(b) d-Hyperedge-Estimation in a 3-uniform hypergraph can be solved using O

(
log14 n

ε2

)
CID queries.

The above corollary gives the best bound (till now) for the Edge Estimation. Recall that
Bhattacharya et al. [3, 4] proved that when the co-degree of a 3-uniform graph is bounded by
∆ then d-Hyperedge-Estimation in that hypergraph can be solved using O

(
∆2 log18 n

ε4

)
CID queries. For fixed ε ∈ (0, 1) and ∆ = o(log n) the bound obtained by Bhattacharya et
al. [3, 4] is asymptotically better than the bound we get from Dell et al. [9], see Proposition 1.2.
Note that Corollary 1.5 (b) improves the bounds obtained by Bhattacharya et al. [3, 4] and
Dell et al. [9] for all values of ∆ and ε ∈ (0, 1).

1.2 Fundamental role of coarse estimation
The framework of Dell et al. [9] is inspired by the following observation. Let us consider
t = O

(
log n

ε2

)
independent subhypergraphs each induced by n/2 uniform random vertices.

The probability, that a particular hyperedge is present in a subhypergraph induced by
n/2 many uniform random vertices, is 1

2d . Denoting X as the sum of the numbers of the
hyperedges present in the t subhypergraphs, observe that 2d

t X is a (1 ± ε)-approximation of
m. If we repeat the procedure recursively O(log n) times, then all the subhypergraphs will
have a bounded number of vertices in terms of d, at which point the number of hyperedges
can be determined exactly by using Od(1) CID queries. However, the number of induced
subhypergraphs in the worst case can become as large as Ω

(
(log n)log n

)
.

To have the number of subhypergraphs bounded at all point of time, they use importance
sampling. It is about maintaining the weighted sum of some variables whose approximate
value is known to us. The output will be a bounded number of variables and some weight
parameters such that the weighted sum of the variables estimates the required sum. The
objective of the importance sampling procedure in Beame et al. [1, 2] and Bhattacharya et
al. [3, 4], are also the same 3. However, Dell et al. improved the importance sampling result
by the use of a particular form of Bernstein inequality and by a very careful analysis.

To apply importance sampling, it is required to have a rough estimate (possibly with a
polylogarithmic approximation factor) of the number of hyperedges in each subhypergraph
that are currently present for processing – this is what exactly coarse estimation does. The
objective of coarse estimation in Beame et al. [1, 2] and Bhattacharya et al. [3, 4] are also the
same 4. But all these frameworks have a commonality. The approximation guarantee and
the query complexity of the coarse estimation has a direct bearing on the query complexity
of the final algorithm.

3 In fact, Bhattacharya et al. [3, 4] directly use the importance sampling developed by Beame et al. [1, 2]
4 Note that the main merit of the framework of Dell et al. [9] over Beame et al. [1, 2] and Bhattacharya

et al. [3, 4] is not only that it generalized to hypergraph, but also the dependence on ε is 1/ε2 in Dell et
al. [9]’s work as opposed to 1

ε4 in Beame et al. [1, 2] and Bhattacharya et al. [3, 4].



A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:5

Therefore, any improvement in the coarse estimation algorithm will directly improve
the query complexities of d-Hyperedge-Estimation and d-Hyperedge-Sample. In this
paper, we focus on improving the coarse estimation algorithm.

1.3 Setup and notations
We denote the sets {1, . . . , n} and {0, . . . , n} by [n] and [n∗], respectively. A hypergraph H
is a set system (U(H), F(H)), where U(H) denotes the set of vertices and F(H) denotes
the set of hyperedges. The set of vertices present in a hyperedge F ∈ F(H) is denoted
by U(F ) or simply F . A hypergraph H is said to be d-uniform if all the hyperedges in H
consist of exactly d vertices. The cardinality of the hyperedge set is m(H) = |F(H)|. For
A1, . . . , Ad ⊆ U(H) (not necessarily pairwise disjoint), F(A1, . . . , Ad) ⊆ F(H) denotes the
set of hyperedges having a vertex in each Ai, and m(A1, . . . , Ad) is the number of hyperedges
in |F(A1, . . . , Ad)|.

Let E[X] and V[X] denote the expectation and variance of the random variable X. For an
event E , the complement of E is denoted by E . The statement “a is a (1 ± ε)-approximation
of b” means |b − a| ≤ ε · b. For x ∈ R, exp(x) denotes the standard exponential function ex.
In this paper, d is a constant, and Od(·) and Ωd(·) denote the standard O(·) and Ω(·), where
the constant depends only on d. We use logk n to denote (log n)k. By polylogarithmic, we
mean Od

(
logO(d) n

εΩ(1)

)
in this paper.

1.4 Paper organization
In Section 2, we describe the notion of an ordered hyperedge, and define three other query
oracles that can be simulated by using Od(log n) CID queries. The role of ordered hyperedges
and these oracles are mostly expository purposes, i.e., they help us to describe our algorithms
and the calculations more neatly. Section 3 gives a brief overview of the proof of our main
technical result. In Section 4 we give the proof of our main result (Theorem 1.3). We describe
in Section 5 implications of our main result and how Theorem 1.3 can be used to prove
Theorem 1.4. The equivalence proofs of the CID oracle and its variants are discussed in
Section 2. Some useful probability results are given in Appendix A. Since we use different
types of oracles in the calculations, we have recalled all their definitions in Appendix B
for the ease of reference. Proofs omitted are marked with ⋆, and can be found in the full
version [5] of this paper.

2 Preliminaries: Ordered hyperedges, CID oracle, and its variants

Ordered hyperedges

We will use the subscript “o” to denote the set of ordered hyperedges. For example, Ho(U, Fo)
denotes the ordered hypergraph corresponding to H(U, F). Here Fo(H) denotes the set of
ordered hyperedges that contains d! ordered d-tuples for each hyperedge in H(U, F). Let
mo(Ho) denotes |Fo(Ho)|. Note that mo(Ho) = d!m(H). Also, let Fo(A1, . . . , Ad) denotes
the set {Fo ∈ Fo(H) : the i-th vertex of Fo is in Ai, ∀i ∈ [d]}. The corresponding number
for ordered hyperedges is mo(A1, . . . , Ad). Note that Fo(U(H), . . . , U(H)) = Fo(H).

CID oracle and its variants

Note that the CID query takes as input d pairwise disjoint subsets of vertices. We now define
two related query oracles CID1 and CID2 that remove the disjointness requirements for the
input. Then we extent CID2 to the ordered setting. We show that both query oracles can be
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10:6 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

simulated, with high probability, by making Od(log n) queries to the CID oracle. The oracles
CID1 and CID2 will be used in the description of the algorithm for ease of exposition.
CID1: Given s pairwise disjoint subsets of vertices A1, . . . , As ⊆ U(H) of a hypergraph H

and a1, . . . , as ∈ [d] such that
∑s

i=1 ai = d, CID1 query on input A
[a1]
1 , A

[a2]
2 , · · · , A

[as]
s

answers Yes if and only if m(A[a1]
1 , . . . , A

[as]
s ) ̸= 0. Here A[a] denotes the set A repeated

a times.
CID2: Given any d subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H, CID2 query

on input A1, . . . , Ad answers Yes if and only if m(A1, . . . , Ad) ̸= 0.
CIDo

2: Given any d subsets of vertices A1, . . . , Ad ⊆ U(Ho) of an ordered hypergraph Ho,
CIDo

2 query on input A1, . . . , Ad answers Yes if and only if mo(A1, . . . , Ad) ̸= 0.

Observe that the CID2 query is the same as the CID query without the requirement
that the input sets are disjoint. For the CID1 query, multiple repetitions of the same set is
allowed in the input. It is obvious that a CID query can be simulated by a CID1 or CID2
query. Also, CIDo

2 is the ordered analogue of CID2 . Using the following observation, we
show how a CIDo

2, CID1 , or a CID2 query can be simulated by a polylogarithmic number
of CID queries.

▶ Observation 2.1 (⋆, Connection between query oracles). Let H(U, F) denote a hypergraph
and Ho(U, Fo) denote the corresponding ordered hypergraph.

(i) A CID1 query to H(U, F) can be simulated using Od(log n) CID queries with probability
1 − 1/nΩ(d).

(ii) A CID2 query H(U, F) can be simulated using Od(1) CID1 queries.
(iii) A CID2 query H(U, F) can be simulated using Od(log n) CID queries with probability

1 − 1/nΩ(d).
(iv) A CIDo

2 query to Ho(U, Fo) can be simulated using a CID2 query to H(U, F).

3 Overview of the main structural result

To prove Theorem 1.3, we first consider Lemma 3.1, which is the central result of the paper
and is the ordered hypergraph analogue of Theorem 1.3. The main theorem (Theorem 1.3)
follows from Lemma 3.1 along with Observation 2.1.

▶ Lemma 3.1 (Main Lemma). There exists an algorithm Rough Estimation that has
CIDo

2 query access to a d-uniform ordered hypergraph Ho(U, Fo) corresponding to hypergraph
H(U, F) and returns m̂o as an estimate for mo = |Fo(Ho)| such that

1
Cd logd−1 n

≤ m̂

m
≤ Cd logd−1 n

with probability at least 1 − 1/nΩ(d) using at most Cd logd+1 n CIDo
2 queries, where Cd is

a constant that depends only on d.

At a high level, the idea for an improved coarse estimation involves a recursive bucketing
technique and careful analysis of the intersection pattern of hypergraphs.

To build up towards the final proof, we need to prove Lemma 3.1. Towards this end, we
first define some quantities and prove Claim 3.2. For that, let us think of partitioning the
vertex set in U1 = U(H) into buckets such that the vertices in each bucket appear as the first
vertex in approximately the same number of hyperedges. So, there will be at most d log n + 1
buckets. It can be shown that that there is a bucket Z1 ⊆ U1 such that the number of
hyperedges, having the vertices in the bucket as the first vertex, is at least mo

d log n+1 . For each
vertex z1 ∈ Z1, let the number of hyperedges in Ho, having z1 as the first vertex, lie between
2q1 and 2q1+1 − 1 for some suitable q1. Then we can argue that
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|Z1| ≥ mo

2q1+1(d log n + 1) .

Similarly, we extend the bucketing idea to tuples as follows. Consider a vertex a1 in a
particular bucket of U1 and consider all the ordered hyperedges in Fo(a1) containing a1 as
the first vertex. We can bucket the vertices in U2 = U(H) such that the vertices in each
bucket of U2 are present in approximately the same number of hyperedges in Fo(a1) as the
second vertex. We generalize the above bucketing strategy with the vertices in Ui’s, which is
formally described below. Notice that this way of bucketing will allow us to use conditionals
on sampling vertices from the desired buckets of Ui’s.

For q1 ∈ [(d log n)∗], let U1(q1) ⊆ U1 be the set of vertices in a1 ∈ U1 such that for each
a1 ∈ U1(q1), the number of hyperedges in Fo(Ho), containing a1 as the first vertex, lies
between 2q1 and 2q1+1 − 1. For 2 ≤ i ≤ d − 1, and qj ∈ [(d log n)∗] for each j ∈ [i − 1],
consider a1 ∈ U1(q1), a2 ∈ U2((q1, a1), q2), . . . , ai−1 ∈ Ui−1((q1, a1), . . . , (qi−2, ai−2), qi−1).
Let Ui((q1, a1), . . . , (qi−1, ai−1), qi) be the set of vertices in Ui such that for each ui ∈
Ui((q1, u1), . . . , (qi−1, ai−1), qi), the number of ordered hyperedges in Fo(Ho), containing uj

as the j-th vertex for all j ∈ [i], lies between 2qi and 2qi+1 −1. We need the following result to
proceed further. For ease of presentation, we use (Qi, Ai) to denote (q1, a1), . . . , (qi−1, ai−1)
for 2 ≤ i ≤ d − 1. Informally, Claim 3.2 says that for each i ∈ [d − 1], there exists a bucket
in Ui having a large number of vertices contributing approximately the same number of
hyperedges..

▷ Claim 3.2 (⋆).
(i) There exists q1 ∈ [(d log n)∗] such that

|U1(q1)| >
mo(Ho)

2q1+1(d log n + 1) .

(ii) Let 2 ≤ i ≤ d − 1 and qj ∈ [(d log n)∗] ∀j ∈ [i − 1]. Let a1 ∈ U1(q1), aj ∈
Uj((Qj−1, Aj−1), qj) ∀j ̸= 1 and j < i. There exists qi ∈ [(d log n)∗] such that

|Ui((Qi, Ai), qi)| >
2qi−1

2qi+1(d log n + 1) .

4 Proof of Lemma 3.1

We now prove Lemma 3.1 formally. The algorithm corresponding to Lemma 3.1 is Algorithm 2
(named Rough Estimation). Algorithm 1 (named Verify-Estimate) is a subroutine of
Algorithm 2. Algorithm 1 determines whether a given estimate R̂ of the number of ordered
hyperedges is correct up to Od(log2d−3 n) factor. Lemma 4.1 and 4.2 are intermediate results
needed to prove Lemma 3.1; they bound the probability from above and below, respectively
of Verify-Estimate accepting the estimate R̂.

▶ Lemma 4.1. If R̂ ≥ 20d2d−34d mo(Ho) log2d−3 n, then

P(Verify-Estimate (Ho, R̂) accepts the estimate R̂) ≤ 1
20 · 2d

.
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Algorithm 1 Verify-Estimate (Ho, R̂).

Input: CID query access to a d-uniform hypergraph Ho(U, F) and a guess R̂ for the
number of hyperedges in Ho.

Output: Accept R̂ or Reject R̂.
Let

U1 = . . . = Ud = U(H) for (j1 = d log n to 0) do
find B1 ⊆ U1 by sampling every element of U1 with probability p1 = min

{
2j1

R̂
, 1
}

independently of other elements.
for (j2 = d log n to 0) do

find B2 ⊆ U2 by sampling every element of U2 with probability
p2 = min

{
2j2−j1 · d log n, 1

}
independently of other elements.

...
...
for (jd−1 = d log n to 0) do

find Bd−1 ⊆ Ud−1 by sampling every element of Ud−1 with probability
pd−1 = min{2jd−1−jd−2 · d log n, 1} independently of other elements.

Let j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1

Let p(i, j) = pi, where 1 ≤ i ≤ d − 1
Let B(i, j) = Bi, where 1 ≤ i ≤ d − 1
find B(d, j) = Bd ⊆ Ud by sampling every element of Ud with probability
pd = min

{
2−jd−1 , 1

}
independently of other elements.

if (mo(B1,j, . . . , Bd,j) ̸= 0) then
Accept /*[Note that CIDo

2 query is called in the above line.]*/
end

end
end

end
Reject

Proof. Consider the set of ordered hyperedges Fo(Ho) in Ho. Algorithm Verify-Estimate
taking parameters Ho, and R̂ and described in Algorithm 1, loops over all possible j =
(j1, . . . , jd−1) ∈ [(d log n)∗]d−1 5. For each j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1, Verify-
Estimate (Ho, R̂) samples vertices in each Ui with suitable probability values p(i, j), de-
pending on j, R̂, d and log n, to generate the sets Bi,j for 1 ≤ i ≤ d. See Algorithm 1
for the exact values of p(i, j)’s. Verify-Estimate (Ho, R̂) reports Accept if there exists
one j ∈ [(d log n)∗]d−1 such that mo (B1,j, . . . , Bd,j) ̸= 0. Otherwise, Reject is reported by
Verify-Estimate (Ho, R̂).

For an ordered hyperedge Fo ∈ Fo(Ho) = Fo(U1, . . . , Ud) and j ∈ [(d log n)∗]d−1. Note
that

U1 = . . . = Ud = U(H).

Let Xj
Fo

denote the indicator random variable such that Xj
Fo

= 1 if and only if Fo ∈
Fo(B1,j, . . . , Bd,j). Let

Xj =
∑

Fo∈Fo(Ho)

Xj
Fo

.

5 Recall that [n]∗ denotes the set {0, . . . , n}.
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Note that mo(B1,j, . . . , Bd,j) = Xj. We have,

P
(

Xj
Fo

= 1
)

=
d∏

i=1
(p(i, j))

≤ 2j1

R̂
· 2j2

2j1
d log n × · · · × 2jd−1

2jd−2
d log n × 1

2jd−1

= dd−2 logd−2 n

R̂
Then,

E [Xj] ≤ mo(Ho)
R̂

dd−2 logd−2 n,

and since Xj ≥ 0, we have

P (Xj ̸= 0) = P(Xj ≥ 1) ≤ E [Xj] ≤ mo(Ho)
R̂

dd−2 logd−2 n.

Now, using the fact that R̂ ≥ 20d2d−3 · 4d · mo(Ho) log2d−3 n, we have

P (Xj ̸= 0) ≤ 1
20dd−1 · 4d · logd−1 n

.

Recall that Verify-Estimate accepts if and only if there exists j such that Xj ̸= 0 6.
Using the union bound, we get

P
(

Verify-Estimate (Ho, R̂) accepts the estimate R̂
)

≤
∑

j∈[(d log n)∗]d−1

P(Xj ̸= 0)

≤ (d log n + 1)d−1

20 · 4d · (d log n)d−1

≤ 1
20 · 2d

. ◀

▶ Lemma 4.2. If R̂ ≤ mo(Ho)
4d log n , P(Verify-Estimate (Ho, R̂) accepts the estimate R̂) ≥ 1

2d .

Proof. We will be done by showing the following. Verify-Estimate accepts with probability
at least 1/5 when the loop variables j1, . . . , jd−1 respectively attain values q1, . . . , qd−1 such
that

|U1(q1)| >
mo(Ho)

2q1+1(d log n + 1)

and

|Ui((Qi, Ai), qi)| >
2qi−1

2qi+1(d log n + 1)

for all i ∈ [d − 1] \ {1}. The existence of such jis is evident from Claim 3.2. Let q =
(q1, . . . , qd−1). Recall that Bi,q ⊆ Ui is the sample obtained when the loop variables
j1, . . . , jd−1 attain values q1, . . . , qd−1, respectively. Let Ei, i ∈ [d − 1], be the events defined
as follows.

6 Note that j is a vector but Xj is a scalar.
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E1 : U1(q1) ∩ B1,q ̸= ∅.
Ei : Uj((Qj−1, Aj−1), qj) ∩ Bj,q ̸= ∅, where 2 ≤ i ≤ d − 1.

As noted earlier, Claim 3.2 says that for each i ∈ [d − 1], there exists a bucket in Ui having
a large number of vertices contributing approximately the same number of hyperedges.
The above events correspond to the nonempty intersection of vertices in heavy buckets
corresponding to Ui and the sampled vertices Bi,j, where i ∈ [d − 1]. Observe that

P(E1) ≤
(

1 − 2q1

R̂

)|U1(q1)|

≤ exp
(

−2q1

R̂
|U1(q1)|

)
≤ exp

(
−2q1

R̂
· mo(Ho)

2q1+1(d log n + 1)

)
≤ exp (−1).

The last inequality uses the fact that R̂ ≤ mo(Ho)
4d log n , from the condition of the lemma. Assume

that E1 occurs and a1 ∈ U1(q1) ∩ B1,q. We will bound the probability that U2(Q1, A1), q2) ∩
B2,q = ∅, that is E2. Note that, by Claim 3.2 (ii),

|U2(Q1, A1), q2)| ≥ 2q1

2q2+1(d log n + 1) .

So,

P
(
E2 | E1

)
≤
(

1 − 2q2

2q1
log n

)|U2(Q1,A1),q2)|

≤ exp (−1)

Assume that E1, . . . , Ei−1 hold, where 3 ≤ i ∈ [d − 1]. Let a1 ∈ U1(q1) and ai−1 ∈
Ai−1((Qi−2, Ui−2), qi−1). We will bound the probability that Ui((Qi−1, Ai−1), qi) ∩ Bi,q = ∅,
that is Ei. Note that

|Ui((Qi−1, Ai−1), qi)| ≥ 2qi−1

2qi+1(d log n + 1) .

So, for 3 ≤ i ∈ [d − 1],

P
(
Ei | E1, . . . , Ei−1

)
≤
(

1 − 2qi

2qi−1
log n

)|Ui(Qi−1,Ai−1),qi)|

≤ exp (−1)

Assume that E1, . . . , Ed−1 hold. Let a1 ∈ U1(q1) and ai−1 ∈ Ai−1((Qi−2, Ai−2), qi−1) for all
i ∈ [d] \ {1}. Let S ⊆ Ud be the set of d-th vertex of the ordered hyperedges in Fo(Ho)
having uj as the j-th vertex for all j ∈ [d − 1]. Note that |S| ≥ 2qd−1 . Let Ed be the event
that represents the fact S ∩ Bd,q ̸= ∅. So,

P(Ed | E1, . . . , Ed−1) ≤
(

1 − 1
2qd−1

)qd−1

≤ exp (−1)

Observe that Verify-Estimate accepts if m(B1,q, . . . , Bd,q) ̸= 0. Also,

mo(B1,q, . . . , Bd,q) ̸= 0 if
d⋂

i=1
Ei occurs.



A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:11

Hence,

P(Verify-Estimate (Ho, R̂) accepts) ≥ P

(
d⋂

i=1
Ei

)

= P(E1)
d∏

i=2
P

(
Ei

∣∣∣ i−1⋂
j=1

Ej

)

>

(
1 − 1

e

)d

>
1
2d

. ◀

Now, we will prove Lemma 3.1 that will be based on Algorithm 2.

Algorithm 2 Rough Estimation(Ho(U, Fo)).

Input: CIDo
2 query access to a d-uniform hypergraph Ho(U, Fo).

Output: An estimate m̂o for mo = mo(Ho).
for ( R̂ = nd, nd/2, . . . , 1) do

Repeat Verify-Estimate (Ho, R̂) for Γ = d · 4d · 2000 log n times. If more than
Γ

10·2d Verify-Estimate accepts, then output m̂o = R̂
dd−2·2d·(log n)d−2 .

end

Proof of Lemma 3.1. Note that an execution of Rough Estimation for a particular R̂
repeats Verify-Estimate for Γ = d · 4d · 2000 log n times and gives output R̂ if more than

Γ
10·2d Verify-Estimate accepts. For a particular R̂, let Xi be the indicator random variable
such that Xi = 1 if and only if the i-th execution of Verify-Estimate accepts. Also take
X =

∑Γ
i=1 Xi. Rough Estimation gives output R̂ if X > Γ

10·2d .
Consider the execution of Rough Estimation for a particular R̂. If R̂ ≥ 20d2d−34d ·

mo(Ho)· log2d−3 n, then we first show that Rough Estimation does not accept with high
probability. Recall Lemma 4.1. If R̂ ≥ 20d2d−34d · mo(Ho) log2d−3 n, P(Xi = 1) ≤ 1

20·2d

and hence E[X] ≤ Γ
20·2d . By using Chernoff-Hoeffding’s inequality (See Lemma A.2 (i) in

Section A),

P
(

X >
Γ

10 · 2d

)
= P

(
X >

Γ
20 · 2d

+ Γ
20 · 2d

)
≤ 1

n10d

Using the union bound for all R̂, the probability that Rough Estimation outputs
some m̂o = R̂

dd−2·2d such that R̂ ≥ 20d2d−34d · mo(Ho) log2d−3 n, is at most d log n
n10 . Now

consider the instance when the for loop in the algorithm Rough Estimation executes for
a R̂ such that R̂ ≤ mo(Ho)

4d log n . In this situation, P(Xi = 1) ≥ 1
2d . So, E[X] ≥ Γ

2d . By using
Chernoff-Hoeffding’s inequality (See Lemma A.2 (ii) in Section A),

P
(

X ≤ Γ
10 · 2d

)
≤ P

(
X <

Γ
2d

− 4
5 · Γ

2d

)
≤ 1

n100d

By using the union bound for all R̂, the probability that Rough Estimation outputs
some m̂o = R̂

dd−2·2d such that R̂ ≤ mo(Ho)
4d log n , is at most d log n

n100d . Observe that, the probability that

Rough Estimation outputs some m̂o = R̂
dd−2·2d such that R̂ ≥ 20d2d−34dmo(Ho) log2d−3 n

or R̂ ≤ mo(Ho)
4d log n , is at most
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d log n

n10d
+ d log n

n100d
≤ 1

n8d
.

Putting everything together, Rough Estimation gives some m̂o = R̂
dd−2·2d·(log n)d−2 as the

output with probability at least 1 − 1
n8d satisfying

mo(Ho)
8dd−12d logd−1 n

≤ m̂o ≤ 20dd−12d · mo(Ho) logd−1 n

From the pseudocode of Verify-Estimate (Algorithm 1), we call for CID2 queries
only at line number 12. In the worst case, Verify-Estimate executes line number 12 for
each j ∈ [(d log n)∗]. That is, the query complexity of Verify-Estimate is O(logd−1 n).
From the description of Rough Estimation, Rough Estimation calls Verify-Estimate
Od(log n) times for each choice of R̂. Hence, Rough Estimation makes Od(logd+1 n) CIDo

2
queries. ◀

5 Proof of Theorem 1.4

Before getting into the reasons why Theorem 1.4 follows from Theorem 1.3, let us first review
the algorithms for d-Hyperedge-Estimation and d-Hyperedge-Sample by Dell et al. [9].

Overview of Dell et al. [9]

Dell et al.’s algorithm for d-Hyperedge-Sample make repeated calls to d-Hyperedge-
Estimation. Their algorithm for d-Hyperedge-Estimation calls mainly three subroutines
over Od(log n) iterations: Coarse, Halving, and Trim. Halving and Trim calls Coarse
repeatedly. So, Coarse is the main building block for their algorithms for d-Hyperedge-
Estimation and d-Hyperedge-Sample.

Coarse algorithm

It estimates the number of hyperedges in the hypergraph up to polylog factors by using
polylog queries. The result is formally stated as follows, see [9, Sec. 4].

▶ Lemma 5.1 (Coarse Algorithm by Dell et al. [9]). There exists an algorithm Coarse,
that has CID query access to a hypergraph H(U, F), makes Od

(
log2d+3 n

)
CID queries, and

finds m̂ satisfying

Ωd

(
1

logd n

)
≤ m̂

m
≤ Od

(
logd n

)
with probability at least 1 − 1/nΩ(d).

▶ Remark. The objective of Coarse algorithm by Dell et al. is essentially same as that our
Rough Estimation algorithm. Both of them can estimate the number of hyperedges in any
induced subhypergrah. However, note that Rough Estimation (as stated in Theorem 1.3)
has better approximation guarantee and better query complexity than that of Coarse
algorithm of Dell et al. (as stated in Lemma 5.1).

The framework of Dell et al. implies that the query complexity of d-Hyperedge-
Estimation and d-Hyperedge-Sample can be expressed by the approximation guarantee
and the query complexity of the Coarse algorithm. This is formally stated as follows:
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▶ Lemma 5.2 (d-Hyperedge-Estimation and d-Hyperedge-Sample in terms of quality
of Coarse algorithm [9]). Let there exists an algorithm Coarse, that has CID query access
to a hypergraph H(U, F), makes q CID queries, and finds m̂ satisfying 1

b ≤ m̂
m ≤ b with

probability at least 1 − 1/nΩ(d). Then
(i) d-Hyperedge-Estimation can be solved by using

Od

(
log2 n

(
log nb + b2 log2 n

ε2

)
q

)
CID queries.

(ii) d-Hyperedge-Sample can be solved by using

Od

(
log6 n

(
log nb + b2 log2 n

ε2

)
q

)
CID queries.

Why Theorem 1.4 follows from Theorem 1.3?

Observe that we get Proposition 1.2 (the result of Dell et al.) from Lemma 5.1 by substituting
b = Od

(
logd n

)
and q = Od

(
log2d+3 n

)
in Lemma 5.2. In Theorem 1.4 we improve on the

Proposition 1.2 by using our main result (Theorem 1.3), and substituting b = Od

(
logd−1 n

)
and q = Od

(
logd+2 n

)
in Lemma 5.2.

The main reason we get an improved query complexity for hyperedge estimation in
Theorem 1.4 as compared to Dell et al. (Proposition 5.2) is our Rough Estimation
algorithm is an improvement over the Coarse algorithm of Dell et al. [9] in terms of
approximation guarantee as well as query complexity.

How our Rough Estimation improves over Coarse of Dell et al. [9]?

At a very high level, the frameworks of our Rough Estimation algorithm and that of Dell
et al.’s Coarse algorithm might look similar, but the main ideas involved are different.
Our Rough Estimation (as stated in Lemma 3.1) directly deals with the hypergraph
(though the ordered one) and makes use of CIDo

2 queries. Note that each CIDo
2 query

can be simulated by using Od(log n) CID queries. However, Coarse algorithm of Dell et
al. considers Od(log n) independent random d-partite hypergraphs by partitioning the vertex
set into d parts uniformly at random, works on the d-partite hypergraphs, and reports the
median, of the Od(log n) outputs corresponding to random d-partite subhypergrahs, as the
final output. So, there is Od(log n) blowup in both our Rough Estimation algorithm and
Dell et al.’s Coarse algorithm, though the reasons behind the blowups are different.

Our Rough Estimation calls repeatedly (Od(log n) times) Verify Estimate for each
guess, where the total number of guesses is Od(log n). In the Coarse algorithm, Dell
et al. uses repeated calls

(
Od

(
logd+1 n

))
times to an analogous routine of our Verify

Estimate, which they name Verify Guess, Od(log n) times. Their Verify Guess has
the following criteria for any guess M :

If M ≥ dd log2d n
23d−1 m, Verify Guess accepts M with probability at most p;

If M ≤ m, Verify Guess accepts M with probability at least 2p;
It makes Od

(
logd n

)
CID queries.
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Recall that the number of CID2 queries made by each call to Verify Estimate is
Od(logd−1 n), that is, Od

(
logd n

)
CID queries. So, in terms of the number of CID queries,

both our Rough Estimation and Coarse of Dell et al. have the same complexity.
The probability p in Verify Guess of Dell et al. [9] satisfies p ≈d

1
logd n

, where ≈d is
used suppress the terms involving d. So, for each guess M , their Coarse algorithm has to
call Od

(
1
p log n

)
= Od

(
logd+1 n

)
times to distinguish decide whether it is the case M ≤ m

or M ≥ dd log2d n
23d−1 m, with a probability at least 1 − 1/nΩ(d). So, the total number of queries

made by the Coarse algorithm of Dell et al. [9] is

Od(log n) · Od(log n) · Od

(
logd+1 n

)
· Od

(
logd n

)
= Od

(
log2d+3 n

)
.

The first Od(log n) term is due to the blow up incurred to convert original hypergraph to
d-partite hypergraph, the second Od(log n) term is due to the number of guesses for m, the
third Od

(
logd+1 n

)
term is the number of times Coarse calls Verify Guess, and the last

term Od

(
logd n

)
is the number of CID queries made by each call to Verify Guess.

As it can be observed from Lemmas 4.1 and 4.2, p in our case (Verify Estimate) is
Ωd(1). So, it is enough for Rough Estimation to call Verify Estimate only Od(log n)
times. Therefore, the number of CID queries made by our Rough Estimation is

Od(log n) · Od(log n) · Od(logd−1 n) · Od(log n) = Od(logd+2 n).

In the above expression, the first Od(log n) term is due to the number of guesses for m, the
second Od (log n) term is the number of times Rough Estimation calls Verify Estimate,
the third O

(
logd−1 n

)
term is the number of CID2 queries made by each call to Verify

Estimate, and the last Od(log n) term is the number of CID queries needed to simulate a
CID2 query with probability at least 1 − 1/nΩ(d).

We do the improvement in approximation guarantee as well as query complexity in Rough
Estimation algorithm (as stated in Theorem 1.3), as compared to Coarse algorithm of
Dell et al. [9] (as stated in Lemma 5.1), by a careful analysis of the intersection pattern
of the hypergraphs and setting the sampling probability parameters in Verify Estimate
(Algorithm 1) algorithm in a nontrivial way, which is evident from the description of
Algorithm 1 and its analysis.
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A Some probability results

▶ Lemma A.1 (Chernoff-Hoeffding bound [10]). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µ = E[X], the followings hold for any

0 ≤ δ ≤ 1.

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
▶ Lemma A.2 (Chernoff-Hoeffding bound [10]). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for

any δ > 0.
(i) P (X > µh + δ) ≤ exp

(
−2δ2/n

)
.

(ii) P (X < µl − δ) ≤ exp
(
−2δ2/n

)
.

B Oracle definitions

▶ Definition B.1 (Independent set query (IS) [1]). Given a subset A of the vertex set V of a
graph G(V, E), IS query answers whether A is an independent set.

▶ Definition B.2 (Bipartite independent set oracle (BIS) [1]). Given two disjoint subsets A, B

of the vertex set V of a graph G(V, E), BIS query reports whether there exists an edge having
endpoints in both A and B.

▶ Definition B.3 (Tripartite independent set oracle (TIS) [3]). Given three disjoint subsets
A, B, C of the vertex set V of a graph G(V, E), the TIS oracle reports whether there exists a
triangle having endpoints in A, B and C.
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▶ Definition B.4 (Generalized d-partite independent set oracle (CID) [6]). Given d pairwise
disjoint subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H as input, CID query
answers whether m(A1, . . . , Ad) ̸= 0, where m(A1, . . . , Ad) denotes the number of hyperedges
in H having exactly one vertex in each Ai, ∀i ∈ {1, 2, . . . , d}.

▶ Definition B.5 (CID1 oracle). Given s pairwise disjoint subsets of vertices A1, . . . , As ⊆
U(H) of a hypergraph H and a1, . . . , as ∈ [d] such that

∑s
i=1 ai = d, CID1 query on input

A
[a1]
1 , A

[a2]
2 , · · · , A

[as]
s answers whether m(A[a1]

1 , . . . , A
[as]
s ) ̸= 0.

▶ Definition B.6 (CID2 oracle). Given any d subsets of vertices A1, . . . , Ad ⊆ U(H) of a
hypergraph H, CID2 query on input A1, . . . , Ad answers whether m(A1, . . . , Ad) ̸= 0.

▶ Definition B.7 (CIDo
2 oracle). Given any d subsets of vertices A1, . . . , Ad ⊆ U(Ho) of

an ordered hypergraph Ho, CIDo
2 query on input A1, . . . , Ad answers Yes if and only if

mo(A1, . . . , Ad) ̸= 0.
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Can a probabilistic gambler get arbitrarily rich when all deterministic gamblers fail? We study this
problem in the context of algorithmic randomness, introducing a new notion – almost everywhere
computable randomness. A binary sequence X is a.e. computably random if there is no probabilistic
computable strategy which is total and succeeds on X for positive measure of oracles. Using
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1 Introduction

What does it mean for an infinite binary sequence X to be random? This may seem like a
strange question at first since in classical probability theory, any infinite binary sequence
drawn at random (with respect to the uniform distribution) has probability 0 to occur.
Yet, the theory of algorithmic randomness gives us a way answer it from a computability
perspective: X is random if it does not possess any property of measure 0 which can
be computably tested. There are many ways to formalize this, and hence many possible
definitions of random sequence. One of the main approaches is the so-called unpredictability
paradigm. We may say that a sequence X is unpredictable if no computable gambling
strategy (or martingale) betting on the values of the bits of X and being rewarded fairly for
its predictions can become arbitrarily rich during the course of the (infinite) game. The main
two notions of randomness derived from this point of view are computable randomness and
partial computable randomness, depending on whether we allow total computable or partial
computable martingales. But in either case, the martingales considered are deterministic.

In this paper, we ask: do we get a stronger notion of randomness if we ask that X defeats
not just all deterministically computable martingales, but also all probabilistically computable
martingales? Usually, in computability theory, allowing probabilistic computations does not
make a difference. This is in large part due to the foundational result that if a set A ⊂ N
(or function f : N → N, etc.) can be obtained by a probabilistic computation with positive
probability, then it can in fact be obtained via a deterministic computation [5]. Yet this
result is not necessarily an obstacle here as for a given X, different runs of the probabilistic
algorithm are allowed to produce different martingales, as long as with positive probability,
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11:2 Probabilistic vs Deterministic Gamblers

the martingale output by the probabilistic algorithm defeats X. And indeed, the main result
of our paper is that probabilistic martingales do in fact perform better than deterministic
ones!

We should note that probabilistic martingales were already considered by Buss and
Minnes [4]. However, the applicability of their results for our purpose is limited. In
particular, they studied two cases: probabilistic martingales which are total almost surely
and probabilistic martingales which may be partial but nevertheless almost surely succeed on
a given sequence. It is fairly easy to show that these cases reduce to computable and partial
computable martingales respectively. The results of this paper are different and require more
involved proofs.

1.1 Notation
The set of all infinite binary sequences is denoted by 2N, while the set of finite binary strings
is 2<N. The truncation of x to the first n bits is x ↾ n, while length of a string σ is written
by |σ|. We write τ ≺ x when τ is a prefix of some x (which might be a sequence or a string).
The empty string is denoted by ϵ, the concatenation of two strings σ and τ by σ⌢τ . We
are working with the product topology on 2N, i.e., the topology generated by cylinder sets
[σ] = {X ∈ 2N : σ ≺ X}. This means that open sets are of the form

⋃
σ∈A[σ] where A is any

set of strings. When A is computably enumerable (c.e.), the set
⋃
σ∈A[σ] is called effectively

open. In this topology, the clopen sets are exactly the finite unions of cylinders.
We further equip 2N with the uniform measure µ, which is the measure where each bit of

the sequence is equal to 1/2 independently of the values of other bits. Formally, µ is the
unique probability measure on the σ-algebra generated by cylinders for which µ([σ]) = 2−|σ|

for all σ.
As is common in computability theory, we sometimes identify sequences and strings

with subsets of N (via characteristic function of the set) or paths in the full infinite binary
tree. In particular, we say that σ is on the left of τ if σ is lesser than τ with respect to the
lexicographical order.

1.2 Algorithmic randomness
Algorithmic randomness’ goal is to assign a meaning to the notion of individual random string
or sequence. While for strings we cannot reasonably hope for a clear separation between
random and non-random (instead we have a quantitative measure of randomness: Kolmogorov
complexity), for infinite binary sequences one can get such a separation. There are in fact
many possible definitions. The most important one is called Martin-Löf randomness and is
defined as follows. A set N ⊂ 2N is called effectively null if for every n one can cover it by
an effectively open set of measure at most ≤ 2−n, uniformly in n.

▶ Definition 1. A sequence X ∈ 2N is called Martin-Löf random if it does not belong to any
effectively null set.

Said otherwise, X is Martin-Löf random if for every sequence (Un) of uniformly effectively
open sets such that µ(Un) ≤ 2−n for all n (such a sequence is known as a Martin-Löf test),
we have X /∈

⋂
n Un.

An effectively null set corresponds to an atypical (= measure 0) property which can
in some sense be effectively tested and therefore, a Martin-Löf random sequence is one
that withstands all computable statistical tests. The reason Martin-Löf’s definition of
randomness is considered to be the central one is that it is both well-behaved (Martin-Löf
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random sequences possess most properties one would expect from “random” sequences,
including computability-theoretic properties) and robust, in that one can naturally get to
the same notion by different approaches. For example, if we denote by K the prefix-free
Kolmogorov complexity function (see for example [11]), then the Levin-Schnorr theorem
states that a sequence X is Martin-Löf random if and only if K(X ↾ n) ≥ n − d for
some d and all n. Informally, this means that Martin-Löf random sequences are exactly the
“incompressible” ones.

As discussed above there is, however, another natural paradigm to define randomness
(seemingly different from atypicality): unpredictability. We want to say that a sequence X is
random if its bits cannot be guessed with better-than-average accuracy. This is formalized
via the notion of martingale.

▶ Definition 2 (martingale). A function d : 2<N → R>0 is called a martingale if for all
σ ∈ 2<N:

d(σ) = d(σ0) + d(σ1)
2 .

A martingale d succeeds on a sequence X if

lim sup
n→∞

d(X ↾ n) = ∞.

A martingale represents the outcome of a gambling strategy in a fair game where the
gambler guesses bits one by one by betting some amount of money at each stage, doubling
the stake if correct, losing the stake otherwise, debts not being allowed. The quantity d(σ)
represents the capital of the gambler after having seen σ. Usually in the literature martingales
are allowed to take value 0 but not allowing it makes no difference for the definitions that
follow and avoids some pathological cases later in the paper.

Armed with the notion of martingale, we can now formulate an important definition of
“randomness”, known as computable randomness.

▶ Definition 3. A sequence X ∈ 2N is called computably random if no computable martingale
succeeds on X.

In the above definition, we consider only martingales that are total computable. We
would also like to allow partial computable martingales, but since they are not total functions
in general, they are not even martingales in the above sense. To remedy this, one can simply
define a partial martingale as a function d taking values in R>0 whose domain is contained in
2<N and closed under the prefix relation (if d(σ) is defined, d(τ) is defined for every prefix τ
of σ) and furthermore for every σ, d(σ0) is defined if and only if d(σ1) is defined and in case
both are defined, the fairness condition d(σ) = (d(σ0) + d(σ1))/2 applies. Finally, success
is defined in the same way as for martingales: we say that d succeeds on X if d(X ↾ n) is
defined for all n and lim supn→∞ d(X ↾ n) = ∞. We can now get the following strengthening
of computable randomness.

▶ Definition 4. A sequence X ∈ 2N is called partial computably random if no partial
computable martingale succeeds on X.

It is well-known that partial computable randomness is strictly stronger than computable
randomness, but nonetheless strictly weaker than Martin-Löf randomness (see [11]).

Computable randomness and partial computable randomness are pretty robust notions.
For example, it makes no difference whether we define success as achieving unbounded capital
or as having a capital that tends to infinity.

STACS 2022
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▶ Lemma 5 (folklore, see [7]). For every total (resp. partial) computable martingale d there
exists a (resp. partial) computable martingale d′ such that d and d′ succeed on exactly the same
sequences and for every A ∈ 2N we have lim supn→∞ d(A ↾ n) = ∞ iff limn→∞ d′(A ↾ n) = ∞.
Moreover, an index for d′ can be found effectively from an index for d.

Another important fact is that instead of considering computable real-valued martingales,
we can restrict ourselves to rational valued martingales that are computable as functions
from 2<N to Q (which we sometimes refer to as exactly computable martingales).

▶ Lemma 6 (Exact Computation lemma, see [14]). For every total (resp. partial) computable
martingale d, there exists a total (resp. partial) exactly computable martingale d′ such that d′

succeeds on every sequence on which d succeeds. Moreover, an index for d′ can be effectively
obtained from an index for d.

1.3 Probabilistic martingales
The above definitions assume computable martingales (partial or total) are deterministic.
Our goal is to understand whether probabilistic martingales (i.e., obtained by a probabilistic
algorithm) can do better. Usually, to capture the idea of probabilistic algorithm, one appeals
to probabilistic models of computation, such as probabilistic Turing machines. However, from
a computability-theoretic perspective, where relativization to an oracle is a bread-and-butter
object of study, it is equivalent to assume that an infinite sequence of random bits is drawn
in advance and given as oracle to a deterministic Turing machine which then uses it as a
source of randomness. Thus, we will consider partial computable oracle martingales, that is,
Turing functionals d where for every oracle Y , dY (the function computed by the functional
with Y given as oracle) is a partial martingale.

▶ Definition 7. A sequence X ∈ 2N is called a.e. computably random if for every partial
computable oracle martingale d the set of oracles Y such that dY is a total martingale and
succeeds on X has measure zero, i.e.

µ

({
Y ∈ 2N : dY is total and lim sup

n→∞
dY (X ↾ n) = ∞

})
= 0.

X is said to be a.e. partial computably random if for every partial computable oracle martingale
d the set of oracles Y such that dY succeeds on X has measure zero.

Note that we could have equivalently defined a.e. (partial) computably randomness directly
from the relativization of (partial) computable randomness: a sequence X is a.e. (partial)
computably random if for almost every Y , X is (partial) computably random relative to Y .

The informal question “do probabilistic gamblers perform better than deterministic ones”
can now be fully formalized by the following two questions:

Is a.e. computable randomness equal to computable randomness?
Is a.e. partial computable randomness equal to partial computable randomness?

In [4], Buss and Minnes studied a restricted version of this problem. They considered a
model of probabilistic martingales where one further requires dY (σ) to be defined for all σ
and almost all Y . This is a strong restriction which allows one to use an averaging technique.
If d is a probabilistic martingale with this property, it is easy to prove that the average D
defined by D(σ) =

∫
Y
dY (σ) is a computable martingale. If X is computably random, D

fails against X, that is, there is a constant c such that D(X ↾ n) < c for all n. Moreover, by
Fatou’s lemma:∫

Y

lim inf
n

dY (X ↾ n) ≤ lim inf
n

D(X ↾ n) < c (⋆)
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which in turn implies that the set {Y : lim infn dY (X ↾ n) = ∞} has measure 0. In other
words, the set of Y such that dY strongly succeeds against X has measure 0. By Lemma 5,
this means that if a sequence X is computably random if and only if for every probabilistic
martingale with the Buss-Minnes condition, d fails on X with probability 1.

Our main result is that, in the general case, we no longer have an equivalence of the two
models: probabilistic martingales are indeed stronger than deterministic ones.

▶ Theorem 8. There exist a sequence X which is partial computably random but not a.e.
partial computably random and indeed not even a.e. computably random.

We will devote the next sections to proving Theorem 8, but let us say a few words on why
we believe it to be an interesting result. First of all, it is in stark contrast with Buss and Minnes’
result that probabilistic martingales do not do any better than deterministic ones when they
are required to be total with probability 1: in the general case, probabilistic martingales
do better! Second, this is to our knowledge the first result of this kind in algorithmic
randomness. If we were to define a.e. Martin-Löf randomness following the same idea (i.e.,
saying that X is a.e. Martin-Löf random if for almost all Y , X is Martin-Löf random relative
to oracle Y ), we would not get anything new, because a.e. Martin-Löf randomness coincides
with Martin-Löf randomness. This is a direct consequence of the famous van Lambalgen
theorem [15], which states that for every A,B ∈ 2N, the join A⊕B = A(0)B(0)A(1)B(1) . . .
is Martin-Löf random if and only if A is Martin-Löf random and B is Martin-Löf relative to
A, if and only if B is Martin-Löf random and A is Martin-Löf random relative to B. Now,
let X be Martin-Löf random. For almost all Y , Y is Martin-Löf random relative to X (this
is simply the fact that the set of Martin-Löf random sequences has measure 1, relativized
to X), thus X ⊕ Y is Martin-Löf random, and thus X is Martin-Löf random relative to Y .
This shows that X is a.e. Martin-Löf random. We see that van Lambalgen’s theorem is key
in this argument (we use it three times!). It was already known that the analogue of van
Lambalgen for computable randomness fails [16], but Theorem 8 shows that it fails in a very
strong sense.

Let us also remark that van Lambalgen’s theorem shows that Martin-Löf randomness
implies a.e. (partial) computable randomness: if X is Martin-Löf random, it is also Martin-Löf
random relative to Y for almost every Y , and thus also (partial) computably random relative
to Y for almost every Y .

2 Turing degrees of a.e.CR sequences

Before moving to the proof of Theorem 8, we give a simple degree-theoretic proof of a
weaker result, namely a separation between computable randomness and a.e. computable
randomness.

Recall that every Martin-Löf random sequence is computably random but a computable
random sequence is not necessarily Martin-Löf random.This separation has some interesting
connections with classical computability theory, as witnessed by the following theorem (recall
that a sequence Y has high Turing degree, or simply is high if it computes some function
F : N → N such that for every total computable function f , f(n) ≤ F (n) for almost all n).

▶ Theorem 9 (Nies, Stephan, Terwijn [12]). Let Y ∈ 2N. If Y computes a sequence X such
that X is computably random but not Martin-Löf random, then Y has high Turing degree.
Conversely, if Y has high Turing degree, then it computes some X which is computably
random but not Martin-Löf random.

STACS 2022
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It turns out that one can get an exact analogue of this theorem for a.e. computable
randomness by replacing highness with a stronger notion: almost everywhere domination. A
sequence Y is said to have almost everywhere dominating Turing degree, or a.e. dominating
Turing degree if it computes an almost everywhere dominating function F , that is, a function F
such that for every Turing functional Γ and almost every Z, if ΓZ is total, then ΓZ(n) ≤ F (n)
for almost all n. See [11] for a more complete presentation of the history of this notion,
originally due to Dobrinen and Simpson [6].

▶ Theorem 10. Let Y ∈ 2N. If Y computes a sequence X such that X is a.e. computably
random but not Martin-Löf random, then Y has a.e. dominating Turing degree. Conversely,
if Y has a.e. dominating Turing degree, then it computes some X which is a.e. computably
random but not Martin-Löf random (in fact, it even computes some X which is a.e. computably
random but not partial computably random).

▶ Remark 11. Nies et al.’s theorem actually states a little more than what we wrote above,
namely that the sequence X in the second part of the theorem can be chosen to be Turing
equivalent to Y . The analogue theorem is also true for a.e. computable randomness and
a.e. domination but the proof becomes substantially more technical (we would need to
introduce techniques to encode information into a computably random sequence) for only a
small gain.

Proof. Let us prove the first part of the theorem by its contrapositive. Let X ∈ 2N whose
degree is not almost everywhere dominating. Suppose also X is not Martin-Löf random,
i.e., X ∈

⋂
n Un for (Un)n∈N a sequence of uniformly effectively open sets with µ(Un) ≤ 2−n.

Consider the function tX defined by tX(n) := min{s | X ∈ Un[s]}. Since X does not have
a.e. dominating degree, there must exist a functional Γ such that

µ{Z | ΓZ is total and ∃∞n ΓZ(n) > tX(n)} > 0.

When ΓZ is total and ΓZ(n) > tX(n) for infinitely many n, we have X ∈ Un[ΓZ(n)] for
infinitely many n. Note that in that case Un[ΓZ(n)] is a clopen set which Z-uniformly
computable in Z. It is well-known that this type of test characterizes Schnorr randomness
(a notion we will no discuss here but suffices to say that Schnorr randomness is weaker
than computable randomness): a sequence X is Schnorr random if and only if for every
computable sequence of clopen sets Dn such that µ(Dn) ≤ 2−n, X belongs to only finitely Dn

(see for example [1, Lemma 1.5.9]). Relativized to Z, this fact shows that X is not Z-Schnorr
random for a positive measure of Z’s, thus not Z-computably random for a positive measure
of Z’s.

The strategy to prove the second part of the theorem is to take the function F computed
by Y and use it as a time bound on oracle martingales in order to “totalize” them, which then
allows us to use the averaging argument presented on page 4. In order for this to work, we
must first prove that F can be assumed to be “simple” (in terms of Kolmogorov complexity).

▶ Lemma 12. If Y has a.e. dominating Turing degree, it computes an a.e. dominating
function F such that K(F (n)) = O(log n).

Proof. Let (Φi)i∈N be an enumeration of all Turing functionals and consider the universal
functional Ψ where Ψ0i1A = ΦA

i . It is easy to see that a function F is almost everywhere
dominating if for almost all Z, either ΨZ is not total or ΦZ(n) ≤ F (n) for almost every n.
For each Z, let tZ(n) be the minimum t, if it exists, such that ΦZ(k) converges in time ≤ t

for all k ≤ n and let fZ(n) = tZ(n) + maxk≤n ΦZ(k).
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Let Y be of a.e. dominating degree and F ≤T Y an almost everywhere dominating
function.

For each n, let

Un = {Z | fZ(n) ↓< ∞}

which is Σ0
1 uniformly in n. We can write

Un =
⋃
k

Un,k

where

Un,k = {Z | fZ(n) ↓< k}

and note that Un,k is a clopen set, computable uniformly in n, k.
Since F is almost everywhere dominating, we have that for almost all Z and almost all n,

either fZ(n) is undefined or fZ(n) ≤ F (n). Said otherwise, the set

N0 = lim sup(Un \ Un,F (n))

is a nullset.

Now, for all n, let an ∈ [0, n2] be the largest integer that µ(Un,F (n)) ≥ an/n
2 and F ′(n)

be the smallest k such that µ(Un,k) ≥ an/n
2. We see that F ′(n) is computable from F and

furthermore,

K(F ′(n)) ≤ K(an) +O(1) ≤ 2 log(n2) +O(1) ≤ 4 logn+O(1).

By definition, we have µ(Un,F (n)) \ Un,F ′(n)) ≤ 1/n2. By the Borel-Cantelli lemma,

N1 = lim sup(Un,F (n) \ Un,F ′(n))

is a nullset. Thus, N0 ∪ N1 is a nullset, which means that

lim sup(Un \ Un,F ′(n))

is also a nullset, which in turn means that for almost all Z, for almost all n, if fZ(n) is
defined, then fZ(n) ≤ F ′(n). By definition of f , a fortiori, for almost all Z, if ΦZ is total,
then ΦZ(n) ≤ F ′(n) for almost all n. Thus the function F ’

is almost everywhere dominating
is computable in F , hence computable in Y

satisfies K(F ′(n)) = O(log n)

which finishes the proof of the lemma. ◀

As alluded to above, the function F is going to be used as a time bound. To see what
we mean by this, consider a total (not necessarily computable) non-decreasing function
ψ : N → N. Let d be a (partial) exactly computable martingale. The time-bounded version
of d with time bound ψ is the martingale dψ which mimics d but only allows it a time ψ(n)
to compute its bets on strings of length n. If d has not made a decision by this stage (either
because it is in fact undefined, or because the time of computation is greater than ψ(n))),
the casino exclaims “End of bets, nothing goes on the table!" and the martingale is assumed
to have placed an empty bet. Formally, dψ(ϵ) = d(ϵ) and for any string σ and b ∈ {0, 1}:

dψ(σb) =
{
dψ(σ) · d(σb)/d(σ) if both d(σ0)[ψ(n+ 1)] ↓ and d(σ1)[ψ(n+ 1)] ↓
dψ(σ) otherwise.

STACS 2022



11:8 Probabilistic vs Deterministic Gamblers

By definition dψ is always total, and when d is total, if the bound ψ dominates the
convergence time of d (that is, for almost all σ, d(σ)[ψ(|σ|)] ↓), then dψ and d are within a
multiplicative constant of one another, which in particular implies that dψ succeeds on the
same sequences as d.

Now, let (di) be the effective enumeration of all (partial) exactly computable martingales
with oracle. Without loss of generality, assume that di has a delay i imposed on it. Let F be
the a.e dominating function as above. Let d̂ be the oracle martingale defined by

d̂Z(σ) =
∑
i

2−idZ,Fi (σ)

(dZ,Fi is the time-bounded version of dZi with time bound F ).
It is a total martingale for every Z as all dZ,Fi are total martingales. Thus, its average D

defined by

D(σ) =
∫
Z

d̂Z(σ)

is also a martingale.
Moreover, D is F - (exactly)computable. Indeed, because of the time bound F , the value

of dZ,Fi (σ) only depends of the first F (|σ|) bits of Z, and because of the delay on the di, only
the martingales (di)i≤|σ| matter in the computation of D(σ). Thus the integral

∫
Z
d̂Z(σ) is

in fact a finite sum, can be computed from F (|σ|), hence the F -computability of D. Even
more precisely, the set of values {D(σ) | |σ| ≤ n} is computable from F (n), and thus the
Kolmogorov complexity of this set is at most K(F (n)) +O(1) = O(log n).

Let then X be the sequence which diagonalizes against D (that is, the sequence X

constructed bit by bit where at each stage the chosen value of the next bit is the one that
makes the martingale D lose money; all this will be detailed in the next section). Computing
the first n bits of X only requires to know the set of values {D(σ) | |σ| ≤ n}. Thus, we have
established:

X ≤T F

K(X ↾ n) ≤ K(F (n)) +O(1) = O(log n).

Since D does not succeed on X, by the exact same calculation as (⋆) (see page 4), for
almost all Z, d̂Z does not succeed on X, and thus dZ,Fi does not succeed on X for any i.

But we also know, since F is a.e. dominating, for all i, for almost every Z, either dZi is
partial, or dZi is total and its computation time is dominated by F , hence dZ is within a
multiplicative constant of dZ,F .

Putting the two together, this entails that for almost all i and almost all Z, either dZi
is partial or it is total and does not succeed on X. In other words, X is a.e. computably
random.

X has therefore all the desired properties:
It is a.e. computably random,
It is computable in F and thus computable in Y ,
K(X ↾ n) = O(log n), ensuring that X is not only not Martin-Löf random, but not even
partial computably random using a result of Merkle [10] (no partial computably random
sequence can be of logarithmic complexity). ◀

An important result of Binns et al. [3] is that a.e. domination is strictly stronger than
highness. This gives us the promised weaker version of Theorem 8.
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▶ Corollary 13. There exists a sequence X which is computably random but not a.e.
computably random.

Proof. Indeed, by Binn et al.’s result, take a high Turing degree a which is not a.e. dominating.
By Theorem 9, there is an X in a which is computably random but not Martin-Löf random.
By Theorem 10, X is not a.e. computably random either. ◀

3 The main construction

We now turn to the full proof of Theorem 8. We first recall the standard method to
build a partial computably random sequence (see for example [11]). Next, we combine this
construction with the so-called “fireworks” technique which can be viewed as a probabilistic
forcing to see how to defeat, with probabilistic martingales, sequences that have been built
using this construction.

3.1 Defeating finitely many martingales
Let us begin by explaining how to construct a partial computably random sequence. Let
us first consider the simple case where we are trying to defeat a single martingale d, which
we assume for the moment to be total computable, by making sure its capital does not go
above a certain threshold. Up to multiplying d by a small rational, we may assume that that
d(ϵ) < 1. By induction, suppose we have already built X ↾ n in a way that d(X ↾ i) < 1 for
all i ≤ n. By the fairness condition, either d((X ↾ n)⌢0) < 1 or d((X ↾ n)⌢1) < 1. If the
former is true, we set X ↾ (n+ 1) = (X ↾ n)⌢0, otherwise we set X ↾ (n+ 1) = (X ↾ n)⌢1.
Continuing in this fashion we ensure that the martingale d does not succeed against X as its
never reaches 2. Observe that when the martingale d is exactly computable, the sequence X
is computable (uniformly in a code for d).

Suppose now that we have a finite family of total martingales d1, . . . dn. If we want to
diagonalize against all of them at the same time, one can simply find positive rationals
q1, . . . , qn such that

∑n
i=1 qi·di(ϵ) < 1 and proceed as before against the martingale

∑n
i=1 qi·di.

Again, the sequence X obtained by diagonalization against this finite family of martingales
is computable uniformly in a code for the family of di’s. But suppose now that some of the
martingales in this family are partial instead of total. This does not cause much difficulty:
having already built X ↾ n, consider only the sub-family F of indices of martingales that
are still defined on (X ↾ n)⌢0 and (X ↾ n)⌢1. The other martingales are undefined and
thus will not succeed by fiat on the sequence X. Now, if

∑
i∈F qi · di((X ↾ n)⌢0) < 1, set

X ↾ (n+1) = (X ↾ n)⌢0, otherwise set X ↾ (n+1) = (X ↾ n)⌢1. Once again the sequence X
defeats all of the di’s, some of them because they become undefined at some stage, some of
them because their capital never exceeds 1/qi. Moreover, X is still a computable sequence.
It is not however computable uniformly in a code for the family of di’s because one needs to
specify which martingales become undefined in the construction and when (this is a finite
amount of information but it cannot be uniformly computed) but this is not an obstacle for
our purposes.

To summarize these preliminary considerations, we can make the following definition.

▶ Definition 14. Let (d1, q1), . . . (dn, qn) be a finite family where each di is a (code for) a
partial computable martingale and qi a positive rational. Let σ ∈ 2<N such that, calling F
the family of indices i such that di(σ) converges, we have

∑
i∈F qi · di(σ) < 1. Consider the

computable sequence X defined inductively by X ↾ |σ| = σ and if X ↾ n is already built, letting
Fn be the family of indices such that di((X ↾ n)⌢0) converges, then X ↾ (n+ 1) = (X ↾ n)⌢0
if

∑
i∈Fn

qi · di(X ↾ n)⌢0) < 1 and X ↾ (n + 1) = (X ↾ n)⌢1 otherwise. This sequence is
called the diagonalization against (d1, q1), . . . , (dn, qn) above σ.

STACS 2022
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3.2 Defeating all partial computable martingales
When we have a countable family of martingales to diagonalize against, the standard way
to proceed is to introduce them one by one during the game so that at any step we only
have to diagonalize against a finite family as above. The delays between the introduction of
martingales is flexible and therefore will be a parameter of the construction.

The diagonalizing sequence ∆((te)e∈N )

Let (di)i∈N be a standard enumeration of partial computable rational valued martingales. Let
(te)e∈N be a family of integers. The sequence ∆((te)e∈N ) is constructed by finite extension as
follows. Start with the empty string σ0 = ϵ and recursively do the following. Having built σn,
let qn+1 be a rational such that

∑
i∈F qi ·di(σn) < 1 where F is the set of indices i ∈ [1, n+1]

such that di(σn) converges. Let A be the diagonalization against (d1, q1), . . . , (dn+1, qn+1)
above σn. The sequence A is an extension of σ and is computable (see above), so let e be a
code for it (say the smallest one). Define σn+1 = A ↾ (|σn| + te). Finally, set

∆((te)e∈N ) =
⋃
n

σn.

It is easy to check that ∆((te)e∈N ) defeats all partial computable martingales. Moreover, the
construction ensures the following important fact, which will be key for the rest of our proof:

Fact 1: For infinitely many e (namely, those codes that show up in the construction),
the sequence ∆((te)e∈N ) coincides with the computable sequence A of index e on a prefix of
length ≥ te.

3.3 Fireworks
Let (P,≤) be a computable order, that is, each element p ∈ P can be encoded by an integer
and for a given pair (n,m) of integers, it is decidable whether n and m are indeed codes for
two elements of p and q in P and whether p ≤ q. We say that a sequence (pi)i∈N of elements
of P is P-generic if p0 ≥ p1 ≥ p2 ≥ . . . and for every c.e. subset W of P:

either there exists an i such that pi ∈ W

or, there exists a j such that for any q ≤ pj , q /∈ W

In particular, if W is dense (that is, for every p ∈ P there exists q ≤ p such that q ∈ W ),
then for every generic sequence (pi)i∈N there must be some i such that pi ∈ W , in which
case we say that P meets W .

For most computable orders of interest, there cannot exist a computable generic sequence.
However, there is a way to probabilistically obtain one, using the so-called fireworks technique.
This was first proven by Kurtz [8] who showed that one can probabilistically obtain a generic
sequence when P is the set of strings and σ ≤ τ when τ is a prefix of σ (Kurtz himself drew
upon an argument of Martin [9] who had shown that one can probabilistically construct a
hyperimmune set). The probabilistic nature of Kurtz’s and Martin’s arguments was somewhat
hidden in their proof (they used a different framework sometimes referred to as “risking
measure"). Rumyantsev and Shen [13] simplified Kurtz’s presentation of this technique
(although they only focused on Martin’s result about hyperimmunity) by giving an explicit
probabilistic algorithm. They illustrated their algorithm by a metaphor about a buyer who
tries to buy fireworks in a shop, hence the name. Shen and Rumyantsev’s presentation
allowed Bienvenu and Patey [2, Section 1.4] to make the following generalization to any
computable order.
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▶ Theorem 15 (Fireworks master theorem [2]). For any computable order P, there exists a
Turing functional Φ with range P such that for a set of Z’s of positive measure, we have that
ΦZ(i) is defined for all i and the sequence (ΦZ(i))i∈N is generic.

For our proof of Theorem 8, we are going to use the order P whose elements are finite
approximations of martingales with positive rational values. Specifically, a member of P
is a total function f whose domain is {0, 1}≤n for some n – which we call length of f and
denote by lh(f) – whose range is Q>0, such that f(ϵ) = 1 and f(σ) = (f(σ0) + f(σ1))/2 for
all σ of length < lh(f). We say that g ≤ f if g is an extension of f (i.e., the domain of f
is contained in the domain of g and the two coincide on the domain of f). It is clear that
(P,≤) is a computable order. It is also clear that if f1 ≥ f2 ≥ . . . is a sequence of elements of
P such that lh(fi) tends to +∞, then D =

⋃
fi is a total rational valued martingale. This is

in particular the case when (fi)i∈N is a P-generic sequence, because for every n, the set of
elements of P of length at least n is dense; in this case, we say that the martingale D =

⋃
fi

is a P-generic martingale.

▶ Lemma 16. Let D be a P-generic martingale. For every computable sequence A and
integer k there exists s such that D reaches capital at least k while playing against the prefix
of A of length s (that is, D(A ↾ l) > k for some l < s).

Proof. Fix a computable A and consider the set

W = {g ∈ P | (∃l) g(A ↾ l) > k}.

We claim that W is a dense c.e. subset of P. That it is c.e. is clear. Now, take any f ∈ P.
Let n = lh(f). By definition of P, f(A ↾ n) is positive, so we can pick an m > n such
that 2m−n · f(A ↾ n) > k. Let g be the martingale of length m which behaves like f up to
length n and after that stage plays the doubling strategy on A (and stops betting outside
of A). Formally:

g(τ) =


f(τ) if |τ | ≤ n

f(τ ↾ n) if |τ | ≥ n and τ ↾ n ̸= A ↾ n
0 if τ ↾ n = A ↾ n but τ is not a prefix of A
f(A ↾ n) · 2|τ |−n if τ is a prefix of A.

It is easy to check that g is a finite approximation of martingale which extends f and by
construction g(A ↾ m) = 2m−n · f(A ↾ n) > k. Thus W is indeed dense. ◀

We can now finish the proof of our main result.

Proof of Theorem 8. By Theorem 15 applied to our partial order (P,≤), there is a Turing
functional Φ and a set G of positive measure such that for every Z ∈ G, ΦZ(n) is a P-generic
sequence. Thus for Z ∈ G, DZ =

⋃
n ΦZ(n) is a P-generic martingale.

Let A be a computable sequence and e be a code for A. By Lemma 16, for every Z ∈ G,
there exists some lZe such that DZ – being a P-generic martingale – reaches capital at least e
at some point while playing against the prefix A ↾ lZe .

Now, for each e which is the code of a computable sequence choose some se large enough
to have

µ{Z ∈ G | lZe ≤ se} ≥ (1 − 2−e−1)µ(G)

(and for e which is not a code for a computable sequence, choose se arbitrarily).
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This guarantees that

µ{Z ∈ G | (∀e code for a computable seq.) lZe ≤ se} ≥ µ(G)/2 > 0.

Let H be the set of the left-hand side of this inequality.
Let us consider the sequence ∆((se)e∈N), which by construction is partial computably

random. For every Z ∈ H, for every computable sequence A of code e, the martingale DZ

reaches capital at least e on A ↾ se. On the other hand, by Fact 1, we know that for infinitely
many e, the sequence ∆((se)e∈N ) coincides with the computable sequence A of index e on a
prefix of length ≥ se. Thus this guarantees that for Z ∈ H, DZ reaches capital at least e
while playing on ∆((se)e∈N). Thus ∆((se)e∈N) is partial computably random but not almost
everywhere computably random since H has positive measure. ◀

4 Conclusion and open questions

In this paper, we have compared the power of deterministic and probabilistic prediction.
To this end, we have introduced two notions – a.e. partial computable randomness and
a.e. computable randomness. In contrast with Buss and Minnes’ results [4], where (due
to the stronger limitations on the class of martingales considered) the authors obtained
equivalent characterizations of partial computable and computable randomness in terms of
probabilistic martingales, our notions do not correspond to their deterministic counterparts,
but are, indeed, strictly stronger. The following diagram summarizes the mutual relationships
between these notions.

a.e.PCR
⊊

⊊

PCR

a.e.CR

⊊

⊊
CR̸⊆

̸⊆

The main results of this paper, in fact, concern the incomparability of the notions of
a.e. computable randomness and partial computable randomness: on the one hand, by
Theorem 8, partial computable randomness does not imply a.e. computable randomness; on
the other hand, Theorem 10 states that every a.e. dominating degree computes (actually,
contains) a sequence which is a.e. computably random but not partial computably random.

We conclude this paper by pointing out interesting further directions to be investigated
on this topic.

The main goal we have achieved is the construction of a partial computable random
sequence X which is not a.e. computably random: from the perspective of algorithmic
randomness, this amounts to say that any sufficiently random sequence Z derandomizes X,
in the sense that X is not computably random relative to Z. But how much randomness is
actually needed to derandomize such a sequence? In particular, is Martin-Löf randomness
enough? In this regard, we ask the following question.

▶ Question 1. Given a partial computably random sequence X which is not a.e. computably
random, can there be a Martin-Löf random sequence Z such that X is still computably random
relative to Z? If so, is there always such a Z?

The second open question is more general, and strongly related with one of the main
theoretical motivations leading to this work, namely the failure of the analogue of van
Lambalgen’s theorem for computable randomness. Theorem 8, in fact, can be regarded
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as a strong failure of this result for computable randomness, because of the existence of
computably random sequences that, nevertheless, can be derandomized by almost every
oracle. It is known that the analogue of van Lambalgen’s theorem fails for other randomness
notions studied in the literature, such as Schnorr randomness, Kurtz randomness and Demuth
randomness (see [7]). However, we do not know if it fails in the strong sense mentioned
above.

▶ Question 2. Are there other randomness notions for which an analogue of Theorem 8
holds (namely, for which there is a random sequence which is not a.e. random)?

In particular, it seems that our constructions may be easily modified to get results about
a.e. Schnorr randomness.
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Abstract
Let G be a directed graph with n vertices, m edges, and non-negative edge costs. Given G, a fixed
source vertex s, and a positive integer p, we consider the problem of computing, for each vertex
t ̸= s, p edge-disjoint paths of minimum total cost from s to t in G. Suurballe and Tarjan [Networks,
1984] solved the above problem for p = 2 by designing a O(m + n log n) time algorithm which also
computes a sparse single-source 2-multipath preserver, i.e., a subgraph containing 2 edge-disjoint
paths of minimum total cost from s to every other vertex of G. The case p ≥ 3 was left as an open
problem.

We study the general problem (p ≥ 2) and prove that any graph admits a sparse single-source
p-multipath preserver with p(n− 1) edges. This size is optimal since the in-degree of each non-root
vertex v must be at least p. Moreover, we design an algorithm that requires O(pn2(p + log n)) time
to compute both p edge-disjoint paths of minimum total cost from the source to all other vertices and
an optimal-size single-source p-multipath preserver. The running time of our algorithm outperforms
that of a natural approach that solves n− 1 single-pair instances using the well-known successive
shortest paths algorithm by a factor of Θ( m

np
) and is asymptotically near optimal if p = O(1) and

m = Θ(n2). Our results extend naturally to the case of p vertex-disjoint paths.
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1 Introduction

Consider a communication network modelled as a directed graph G with n vertices, m edges,
and non-negative edge costs. Whenever a source vertex s needs to send a message to a target
vertex t, we are faced with the problem of finding a good path connecting s and t in G.
Typically, this path is chosen with the aim of minimizing the communication cost, i.e., the
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12:2 Single-Source Shortest p-Disjoint Paths: Fast Computation and Sparse Preservers

sum of the costs of the path’s edges. In a scenario where some edges of the network might be
congested or faulty, it is useful to introduce some degree of redundancy in order to improve
the communication reliability. One of the possible approaches that aims to formalize the
above requirements asks to find p edge-disjoint paths from s to t in G for some integer p ≥ 2.
Quite naturally, similarly to the case of the shortest path, we would like to minimize the
sum of the costs of the edges in the selected paths.

This is equivalent to the problem of computing a minimum-cost flow of value p from s

to t in the unit-capacity network G and can be solved in time O(p(m + n log n)) using the
successive shortest paths (SSP) algorithm [2,14].

In this paper we focus on the single-source case, in which a fixed source vertex s wants
to communicate with every other vertex t using p edge-disjoint paths. We distill the above
discussion into the following two problems:
Single-source p-multipath preserver problem: We want to find a sparse subgraph H of G

such that, for every vertex t ̸= s, H contains p edge-disjoint paths of minimum total
cost from s to t in G. We will refer to such a subgraph H as a single-source p-multipath
preserver. Among all possible feasible solutions, we aim at computing the one of minimum
size, i.e., having the minimum number of edges.

Shortest p edge-disjoint paths problem: For every vertex t ̸= s, we want to compute a
subset St of edges from G that induce p edge-disjoint paths of minimum total cost from
s to t in G.

Observe that if the graph G is not sufficiently connected, the single-source p-multipath
preserver H and some of the sets St defined above might not exist. To avoid this issue, we
assume that G is p-edge-outconnected from s, i.e., given any vertex t ̸= s, G contains p

edge-disjoint paths from s to t.1
The above problems have been addressed by Suurballe and Tarjan for the special case

p = 2 in [25], where they provide an algorithm requiring time O(m + n log n) to compute
both a single-source p-multipath preserver of size 2(n − 1) and (a compact representation
of) all sets St of the shortest p edge-disjoint paths problem.2 In their paper, the authors
mention the case p > 2 as an important open problem.
In this paper we provide the following results:

We prove in Section 3 that any graph G always admits a single-source p-multipath
preserver of size p(n − 1). This size is optimal since the in-degree of each non-source
vertex t in H needs to be at least p, even to preserve the p-edge-outconnectivity from s

to t.
In Section 4 we design an algorithm that requires O(pn2(p + log n)) time to solve the
shortest p edge-disjoint paths problem. This improves over the natural algorithm that
computes the sets St with n−1 independent invocations of the SSP algorithm, which would
require O(pnm + pn2 log n) time. Up to logarithm factors, our algorithm is Θ( m

np ) times
faster than the above algorithm based on SSP. Moreover, for p = O(1) and m = Θ(n2),
the time complexity of our algorithm is optimal up to logarithmic factors. Finally, our
algorithm also computes a single-source p-multipath preserver H of optimal size that
contains all the edges in the sets St.

We point out that a modification of our algorithm allows us to handle graphs G that are
not p-edge-outconnected from s. In this case, our algorithm computes, for each vertex t ≠ s,
a set of edges St that induce σ(t) edge-disjoint paths from s to t of minimum total cost in G,

1 It is possible to check whether a graph is p-edge-outconnected from s in O(pm log n2

m ) time [16].
2 After the execution of their algorithm, it is possible to compute each set St in time O(|St|).
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where σ(t) is the minimum between p and the maximum number of edge-disjoint paths from
s to t. Moreover, the algorithm also returns a subgraph H of G of optimal size where each
vertex t ̸= s has exactly σ(t) incoming edges. As in the previous case, H contains all edges
in the sets St. The running time of our algorithm is asymptotically unaffected.

We also discuss a variant of the problem in which, instead of minimizing the overall cost
of p edge-disjoint paths, we aim at minimizing the cost of the path with maximum cost. We
show that our algorithm provides an optimal p-approximation, unless P = NP.

Finally, our results can be extended to the case of vertex-disjoint paths and to undirected
graphs via standard transformations of the input graph, thus proving an upper bound of
p(n − 1) on the size of p-multipath preservers in undirected graphs, which was posed as an
open problem in [17]. All the above modifications and variants are discussed in Appendix A.

Related work. As already mentioned, the closest related work is the paper by Suurballe
and Tarjan that studies the case p = 2 [25].

The single-source p-multipath preserver problem falls within a broad class of problems
with a long-standing research tradition. Here we are given a graph G and we want to select a
sparse subgraph H of G which maintains, either in an exact or in an approximate sense, some
distance-related property of interest. The goal is that of understanding the best trade-offs
that can be attained between the size of H and the accuracy of the maintained properties.
As a concrete example, if we focus on the cost of a single path (i.e., p = 1) between pairs of
vertices, a well-known notion adopted is that of graph spanners, which has been introduced
by Peleg and Schäffer [24]. A spanning subgraph H is an α-spanner of G if the distance
of each pair of vertices in H is at most α times the corresponding distance in G. If G is
undirected then it is possible to compute, for any integer k ≥ 1, a (2k − 1)-spanner of size
O(n1+ 1

k ) [3] (if we assume the Erdős Girth Conjecture [13], this trade-off is asymptotically
optimal), while there exist directed graphs for which any α-spanner has size Ω(n2).

When α = 1 and hence H retains the exact distances of G, a 1-spanner is usually
called a preserver. While Ω(n2) edges might be necessary to preserve all-to-all distances,
better trade-offs can be obtained if we only care to preserve distances between some pairs of
vertices. For example, a shortest-path tree can be seen as a sparse single-source preserver.
More significant trade-offs can be obtained for different choices of the pairs of interest (see,
e.g., [8, 10]). For more related results on the vast area of spanners and preservers, we refer
the interested reader to the survey in [1].

Concerning the case of multiple paths (p > 1), Gavoille et al. [17] introduced the notion
of p-multipath spanner of a weighted graph G, from which we borrow the term multipath.
A p-multipath α-spanner of G is a spanning subgraph H of G containing, for each pair of
vertices u, v, p edge-disjoint paths from u to v of total cost at most α times the cost of the
cheapest p edge-disjoint paths from u to v in G. Among other results, the authors of [17]
prove the existence, for any choice of p and for any k ≥ 1, of a p-multipath p(2k − 1)-spanner
of size O(pn1+ 1

k ) for undirected graphs. Following [17], there has been further work on
multipath spanners [11, 18]. All of the above papers, however, focus on approximated costs,
in the all-pairs setting on undirected graphs. Since our focus is on p-multipath α-spanners
for directed graphs, in the single-source case, and for α = 1, such results cannot be directly
compared to the one in this work.

As discussed above, edge-disjoint paths can be seen as a strategy to achieve fault-tolerance
through redundancy. In particular, Baswana et al. introduced the problem of computing a
sparse k-fault tolerant reachability subgraph H of a given directed graph G, i.e., a subgraph
that preserves reachability from a distinguished source vertex s following the failure of any
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Figure 1 An execution of the successive shortest paths algorithm on a graph G. Figures (a),
(b), (c), and (d) respectively show the residual networks Gt

0 = G, Gt
1, Gt

2, and Gt
3. The shortest

paths computed by the algorithm are highlighted in red. The edges that appear in the opposite
orientation w.r.t. G are shown in bold. If we orient the bold edges in Gt

i as in G, we obtain the
edges in St

i , i.e., those belonging to i edge-disjoint paths of minimum total cost from s to t in G.

set of at most k edges [5]. The authors show that it is always possible to select a subgraph
H with O(2kn) edges, and that this bound is tight in the sense that there are graphs G with
Ω(2kn) edges that cannot be sparsified.

We remark that the results for the problem in [5] are not directly comparable to ours.
Indeed, when G is not p-edge-outconnected from s, a subgraph containing σ(t) edge-disjoint
paths from s to every other vertex t is not necessarily a (p − 1)-fault tolerant reachability
subgraph. As a consequence, the lower bound of Ω(2kn) does not apply to our problem. On
the other hand, when we restrict ourselves to graphs that are p-edge-outconnected from s,
any single-source p-multipath preserver is also a (p − 1)-fault tolerant reachability subgraph,
yet the converse is not true. Indeed, a (p − 1)-fault tolerant reachability subgraph does not
necessarily guarantee that the cost of the p edge-disjoint paths from s to each t is minimized.

Other approaches to address faults in networks, which aim at (approximately) preserving
the length of the surviving shortest paths from a source vertex s, are captured by the notion
of single-source fault-tolerant spanners and preservers [4, 6, 7, 9, 19–23].

2 Preliminaries

We denote by V (G), E(G), and c : E(G) → R+, the set of vertices, the set of edges, and the
cost function, respectively. With a slight abuse of notation, if S is a set of edges (resp. π is a
path), we denote by c(S) (resp. c(π)) the sum of the costs c(e) for e ∈ S (resp. e ∈ E(π)).

In order to lighten the notation, in the rest of the paper we will assume that the graph is
anti-symmetric, i.e., if (u, v) ∈ E(G), then (v, u) ̸∈ E(G). We make this assumption as we
will define auxiliary graphs on the vertex set V (G) in which some edge (u, v) ∈ E(G) might
appear in the reversed direction (v, u) and therefore, a non anti-symmetric graph G may
cause the presence of two parallel edges in the auxiliary graphs. It is easy to remove this
assumption by distinguishing the two possible parallel edges with unique identifiers.

Relation with the s-t-min-cost flow problem. For a fixed pair of vertices s, t ∈ V (G), the
problem of finding p edge-disjoint paths of minimum total cost from s to t is a special case
of the s-t-min-cost flow problem where edges have unit capacities and the goal is to send
p units of flow from s to t at minimum total cost. Successive shortest path (SSP) [2, 14]
is a well-known algorithm that solves the s-t-min-cost flow problem. We now give a brief
description of SSP for the special case of unit edge capacities.
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The algorithm sends p units of flow from s to t by iteratively pushing one new unit of flow
through a shortest path from s to t in the residual network associated with the current flow.
More precisely, let the initial residual network be Gt

0 = G. In the generic i-th iteration, SSP
finds a shortest path πt from s to t in Gt

i−1, and uses it to compute a residual network Gt
i.

The residual network Gt
i is obtained from Gt

i−1 by reversing all the edges in πt, where
reversing an edge (u, v) of cost c(u, v) means replacing (u, v) with the edge (v, u) of cost
c(v, u) = −c(u, v). See Figure 1 for an example.

At the end of the i-th iteration, the i units of flow are sent through the edges of G that are
reversed in the residual network Gt

i. We denote by St
i the set of such edges, which contains

exactly the edges of i edge-disjoint paths from s to t of minimum total cost. Therefore, once
the p-th iteration is completed, St

p is a solution for the problem of finding p edge-disjoint
paths of minimum total cost from s to t. An interesting observation that we will use later on
is the following.

▶ Remark 1. The set St
i can be computed from St

i−1 and πt in O(|St
i | + n) time by first

setting St
i = St

i−1 and then by (i) deleting from St
i all edges (u, v) ∈ St

i that are reversed in
E(πt), and (ii) adding to St

i all edges (u, v) ∈ E(πt) ∩ E(G).

A straightforward implementation of the above algorithm requires time O(pnm) since
it computes p shortest paths using the Bellman-Ford algorithm (notice, indeed, that the
edge costs in the residual networks might be negative). The above time complexity can be
improved to O(p(m + n log n)) by suitably re-weighting the residual network so that edge
costs are non-negative and shortest paths are preserved, allowing the Dijkstra algorithm to
be used in place of Bellman-Ford [14].

We can solve n − 1 separated instances of s-t-min-cost flow (one for each node t) and
obtain (i) the solution for the shortest p edge-disjoint paths problem, i.e., the sets St

p for
each t ∈ V (G) \ {s}; (ii) a single-source p-multipath preserver by making the union of all
solutions St

p obtained. However, the resulting single-source p-multipath preserver may not
be sparse and the total running time needed to solve both problems is O(pn(m + n log n)).

In Section 3 we show the existence of a single-source p-multipath preserver of optimal
size p(n − 1) and in Section 4 we design an algorithm that solves both our problems in time
O(pn2(p + log n)).

3 An optimal-size single-source p-multipath preserver

In this section we show that it is possible to compute a single-source p-multipath preserver
having size p(n − 1).

We compute such a preserver iteratively: we start with an empty graph H0 = (V (G), ∅)
and, during the i-th iteration, we construct a i-multipath preserver3 Hi of G by adding to
Hi−1 a single new edge et entering in t for each vertex t ∈ V (G) \ {s}.4 This process stops
at the end of the p-th iteration. We will show that Hp is a sparse single-source p-multipath
preserver. Notice that, by construction, vertex s has in-degree 0 in Hi and each other vertex
has in-degree i, therefore Hp has size p(n − 1).

3 In the following we might shorten single-source i-multipath preserver to i-multipath preserver or, when i
is clear from the context, simply preserver.

4 For a fixed vertex t ̸= s, the edge et will be the last edge of a path from s to t in a suitable graph.
Hence, in each iteration, we augment the preserver with the union of all such last edges, in a way that
resembles the techniques used in [23,24].
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Figure 2 An example of the suboptimality property of Lemma 5 for i = 3. (a) The graph G, in
which the edges in H2 are solid and the edges in E(G) \ E(H2) are dashed. Unlabelled edges cost 0.
For graphical convenience, G is 2-edge-outconnected from s and can be made 3-edge-outconnected
by a suitable addition of costly edges. (b) The graph Gt

2 in which the edges that appear in St
2 in

their opposite orientation are highlighted in red. A shortest path πt ∈ Π(s, t; Gt
2) is highlighted in

blue and traverses vertex q = q(πt). (c) The graph Gq
2 where the (reversed versions of) the edges

in Sq
2 are highlighted in red, and a shortest path πq ∈ Π(s, q; Gq

2) is highlighted in green. (d) The
graph Gt

2 where the path πq ◦ πt[q : t] is highlighted in green and blue and belongs to Π(s, t; Gt
2).

We will prove by induction on i that Hi contains i edge-disjoint paths of minimum total
cost (in G) from s to all vertices t ∈ V (G) \ {s}. Since this is trivially true when i = 0, in the
rest of the section we assume that the induction hypothesis is true for Hi−1 with 1 ≤ i < p,
and we focus on proving that it remains true for Hi.

Following the notation of Section 2, we denote by St
i−1 the set of edges belonging to any

i − 1 edge disjoint paths from s to t of minimum total cost in Hi−1 (and hence in G). We let
Gt

i−1 be the residual network obtained from G by reversing the edges in St
i−1.

To prove that Hp is a single-source p-multipath preserver we need to employ a suitable
tie-breaking rule between paths of the same cost. Although randomly perturbing the edge-
weights would be sufficient to prove the main result of this section, we will instead introduce
a different tie-breaking scheme. We use this scheme to provide structural lemmas that will
also be used in Section 4 to prove the correctness of our time-efficient deterministic algorithm
that computes a p-multipath preserver and solves the shortest p edge-disjoint paths problem.

To this aim, we define distances as pairs of elements from R ∪ {+∞}. Given d = (d1, d2)
and d′ = (d′

1, d′
2) we denote by d + d′ the pair (d1 + d′

1, d2 + d′
2). We also compare distances

lexicographically, and write d ≺ d′ to denote that the pair d precedes d′ in the lexicographical
order. Similarly, d ⪯ d′ if d ≺ d′ or d = d′. Given any path π, let η(π) be the number of edges
of π that are in E(G) \ E(Hi−1). We can associate π with a pair |π| = (c(π), η(π)). With a
slight abuse of notation, we can therefore extend the above linear order to paths: for two
paths π and π′, we write π ≺ π′ (resp. π ⪯ π′) as a shorthand for |π| ≺ |π′| (resp. |π| ⪯ |π′|).
Intuitively, when we compare paths w.r.t. ⪯, the values of η(·) serve as tie-breakers between
paths having the same cost. In the following Π(u, v; G′) will denote the set of paths from u

to v in G′ that are shortest w.r.t. the total order relation ⪯. When Π(u, v; G′) contains a
single path we denote by π(u, v; G′) the sole path in Π(u, v; G′). Given a path π1 from v0 to
v1 and a path π2 from v1 to v2, we denote by π1 ◦ π2 the path from v0 to v2 that is obtained
by composing π1 and π2. Given a path π from v0 and v1, and two distinct vertices u and v

of π such that π traverses u and v in this order, we denote by π[u : v] the subpath of π from
u to v.

The edge et entering t selected by the algorithm is the last edge of an arbitrarily chosen
path in Π(s, t; Gt

i−1). For π ∈ Π(s, t; Gt
i−1), we define q(π) as the last internal vertex of π

such that its incoming edge in π belongs to E(G) \ E(Hi−1). If no such vertex exists, we let
q(π) = s (see Figure 2 (b)).
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Figure 3 (a) A graph G with non-negative costs. The edges in St
2 (resp. Sv

2 ) are highlighted in
blue (resp. red) and induce two edge-disjoint paths of minimum total cost from s to t (resp. v) in
G. The edges in Sv

2 are exactly the ones used by the flow f ′ in the proof of Lemma 2. (b) The
graph Gt

2 obtained from G by reversing the edges in St
2. The reversed edges (highlighted in blue)

correspond to those used by the flow f in the proof of Lemma 2. (c) The graph Gv
2 obtained from G

by reversing the edges in Sv
2 . The reversed edges are highlighted in red. (d) The graph Gt

2 in which
the edges in ∆(t, v) are highlighted in green and induce 2 edge-disjoint paths of minimum total cost
from t to v in Gt

2. These edges are the ones used by the flow f ′′ in the proof of Lemma 2. The edge
costs that are missing in (b), (c), or (d) match those of the corresponding edges in (a).

The main technical ingredient of the result in this section is a suboptimality property,
which will be given formally in Lemma 5. Intuitively, if q = q(πt) for some path πt ∈
Π(s, t; Gt

i−1), then this property ensures that the composition πq ◦ πt[q : t] of any shortest
path πq ∈ Π(s, q; Gq

i−1) with the suffix πt[q : t] of πt is also a shortest path in Π(s, t, Gt
i−1).

Since (up to the orientation of its edges) πt[q : t] contains a single edge et not already in
Hi−1 (i.e., the one entering in t), this property allows to reuse the edges in Hi−1 and in
Sq

i \ E(Hi−1) to build St
i \ {et}. See Figure 2 (d) for an example. The rest of this section

formalizes the above intuition.
Given any two nodes t, v ∈ V (G), we denote by ∆(t, v) the set of edges of Gt

i−1 that
appear in the opposite orientation in Gv

i−1 (see Figure 3.). Formally, (x, y) ∈ ∆(t, v) iff
(x, y) ∈ E(Gt

i−1) and (y, x) ∈ E(Gv
i−1). As a consequence, (x, y) ∈ ∆(t, v) iff (y, x) ∈ ∆(v, t).

Moreover, we observe that (x, y) ∈ ∆(t, v) iff exactly one of the following conditions holds:
(i) (y, x) ∈ St

i−1; (ii) (x, y) ∈ Sv
i−1. Finally, we notice that E(G) ∩ ∆(t, v) ⊆ Sv

i−1 ⊆ E(Hi−1).
The next three lemmas will be instrumental to prove Lemma 5.

▶ Lemma 2. The edges in ∆(t, v) are exactly those belonging to i − 1 edge disjoint paths of
minimum total cost from t to v in Gt

i−1.

Proof. Consider Gt
i−1 as an instance of min-cost flow with unit capacity where we want to

send i − 1 units of flow from t to v. We define a first flow assignment f that sends i − 1 units
of flow from t to s in Gt

i−1 using the edges in St
i−1 in the reverse direction (see Figure 3 (b)).

More precisely, ∀(x, y) ∈ E(Gt
i−1), f(x, y) = 1 if (y, x) ∈ St

i−1, and f(x, y) = 0 otherwise.
Notice that f is a flow of value |f | = i − 1 in Gt

i−1 and that the associated residual graph is
G. We now consider a minimum-cost flow f ′ that pushes i − 1 units of flow from s to v in G

using the edges in Sv
i−1 (see Figure 3 (a) where the edges used by f ′ are highlighted in red).

In particular, we define f ′(e) = 1 if e ∈ Sv
i−1, and f(e) = 0 otherwise. The residual graph

associated with f ′ (w.r.t. G) is Gv
i−1 and, since f ′ is a minimum-cost flow, Gv

i−1 does not
contain any negative-cost cycle [14].

We can obtain a flow f ′′ from t to v in Gt
i−1 with |f ′′| = i − 1 by composing f and f ′: we

first push i − 1 units of flow from t to s in Gt
i−1 according to f and then push i − 1 units of

flow from s to t in the residual network G according to f ′ (see Figure 3 (d)). More precisely,
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Figure 4 A qualitative representation of the proof of Lemma 3. We are supposing towards a
contradiction that π[s : q] (highlighted in red) is not entirely contained in Gq

i−1 and hence traverses
an edge (u, v) belonging to the set ∆(t, q) (highlighted in green). The subpath of π (resp. δ) from v

to q is shown in bold (resp. is dashed).

the resulting net flow f ′′ is defined as follows: given (x, y) ∈ E(Gt
i−1), f ′′(x, y) = 1 iff either

(i) f(x, y) = 1 and f ′(y, x) = 0, or (ii) f(x, y) = 0 and f ′(x, y) = 1. The residual network
associated with f ′′ (w.r.t. Gt

i−1) is exactly Gv
i−1 and, since it contains no negative-cost cycles,

f ′′ is also a minimum-cost flow.
To conclude the proof it suffices to notice that the edges (x, y) for which f ′′(x, y) = 1 are

exactly those in ∆(t, v). ◀

▶ Lemma 3. For every t ∈ V (G), let π ∈ Π(s, t; Gt
i−1) and q = q(π). The subpath π[s : q] is

entirely contained in Gq
i−1.

Proof. If s = q the subpath π[s : q] is empty and the claim is trivially true. We therefore
consider s ≠ q and suppose towards a contradiction that π[s : q] is not entirely contained
in Gq

i−1. Then, π[s : q] traverses at least one edge in ∆(t, q). Let (u, v) be the last edge
traversed by π[s : q] that belongs to ∆(t, q). By Lemma 2, the edges in ∆(t, q) induce i − 1
edge disjoints paths of minimum total cost from t to q in the subgraph of Gt

i−1. Let δ one
such such path traversing (u, v).

Since, by definition of q, the edge e of π[s : q] entering in q is in E(G) \ E(Hi−1), we have
e ̸∈ ∆(t, q). Then, the subpath π[v : q] of π[s : q] is not empty and, by our choice of (u, v)
does not traverse any edge in ∆(t, q).

By the suboptimality property of shortest paths, π[v : q] ⪯ δ[v : q] and hence c(π[v :
q]) ≤ c(δ[v : q]). If c(π[v : q]) < c(δ[v : q]), we can replace δ[v : q] with π[v : q] in δ to obtain
a path δ′ from t to q in Gt

i−1 with c(δ′) < c(δ). This contradicts Lemma 2 since it implies
the existence of i − 1 edge-disjoint paths from t to q in Gt

i−1 with a total cost smaller than
c(∆(t, q)) (see Figure 4).

If c(π[v : q]) = c(δ[v : q]), we can replace π[v : q] with δ[v : q] in π[s : q] to obtain a path π′

from s to q in Gt
i−1 satisfying c(π′) = c(π[s : q]). Since all edges of E(G)∩E(δ[v : q]) ⊆ ∆(t, v)

are in Hi−1, π[v : q] contains more edges in E(G) \ E(Hi−1) than δ[v : q], thus π′ ≺ π[s : q].
This is a contradiction since, by the suboptimality property of shortest paths and by our
choice of π ∈ Π(s, t; Gt

i−1), π[s : q] must be a shortest path from s to q in Gt
i−1 w.r.t. ⪯. ◀

▶ Lemma 4. Let t, q ∈ V (G) \ {s}, and let π be a simple path from s to q in Gq
i−1 such that

the edge of π entering in q is in E(G) \ E(Hi−1). If π is not entirely contained in Gt
i−1, then

there exists a path π′ from s to q in Gt
i−1 such that π′ ≺ π.

Proof. If π is not entirely contained in Gt
i−1 then π traverses some edge in ∆(q, t). Consider

the first edge (u, v) ∈ ∆(q, t) traversed by π, and let δ be a simple path, from q to t that
traverses (u, v) in the subgraph of Gq

i−1 induced by ∆(q, t). Since in Gq
i−1 there are no negative



D. Bilò, G. D’Angelo, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 12:9

q t

π

vu

Gq
i−1

∆(q, t)

q t

s
π[s : u]

u

Gt
i−1

∆(t, q)
δ′δ

(a) (b)

s

π′

Figure 5 A qualitative representation of the proof of Lemma 4. We are assuming that π

(highlighted in red) is a path from s to q in Gq
i−1 entering in q with and edge of E(G) \E(Hi−1). (a)

π intersects a path δ among the i− 1 edge-disjoint paths induced by the edges in ∆(q, t) (highlighted
in green). (b) The edges of path δ′ obtained by reversing the edges in δ belong to ∆(t, q) (highlighted
in green). Then, the path π′ = π[s : u] ◦ δ′[u : q] (shown in bold) is entirely contained in Gt

i−1 and
satisfies π′ ≺ π.

cycles [14], we have that c(π[u : q]) + c(δ[q : u]) ≥ 0 and hence c(π[u : q]) ≥ −c(δ[q : u]). By
reversing the edges in the subpath δ[q : u] we obtain a path δ′ from u to q that uses only edges
in ∆(t, q) and has cost c(δ′) = −c(δ(u, q)). We can then select π′ = π[s : u]◦δ′. Notice indeed
that c(π′) = c(π[s : u]) + c(δ′) = c(π[s : u]) − c(δ[q : u]) ≤ c(π[s : u]) + c(π[u : q]) = c(π)
(see Figure 5). Moreover, δ′ does not use any edge in E(G) \ E(Hi−1) while the last edge in
π[u : q] is in E(G) \ E(Hi−1). This shows that π′ ≺ π and concludes the proof. ◀

▶ Lemma 5 (Suboptimality property). Fix t ∈ V (G), let πt ∈ Π(s, t; Gt
i−1), q = q(πt), and

πq ∈ Π(s, q; Gq
i−1). We have that πq ◦ πt[q : t] ∈ Π(s, t; Gt

i−1).

Proof. We start by showing that πq must be entirely contained in Gt
i−1. To this aim suppose

towards a contradiction that πq is not entirely contained in Gt
i−1. By Lemma 4, there exists

a path π′ in Gt
i−1 such that π′ ≺ πq and, by Lemma 3, we know that πt[s : q] is entirely

contained in Gq
i−1. Then, since πq ∈ Π(s, q, Gq

i−1), we must have c(πq) ⪯ c(πt[s : q]). We can
therefore replace πt[s, q] with π′ in πt and obtain a new path π′′ ≺ πt from s to t in Gt

i−1,
contradicting πt ∈ Π(s, t, Gt

i−1).
The path π = πq ◦πt[q : t] obtained by replacing πt[s : q] with πq in πt is entirely contained

in Gt
i−1 and satisfies π ⪯ πt. Since πt is a shortest path in Gt

i−1 w.r.t. ⪯, so is π. ◀

Next lemma uses the suboptimality property to show that, for each t ̸= s, there exists a
shortest path δ from s to t in Gt

i−1 such that, when we orient the edges of δ in the same
direction as in G, the resulting set of edges is entirely contained in Hi.

▶ Lemma 6. For each t ∈ V (G) \ {s}, there exists a path δ ∈ Π(s, t, Gt
i−1) such that

E(δ) ∩ E(G) ⊆ E(Hi).

Proof. Define q0 = t. For j ≥ 0 and qj ≠ s, let πj ∈ Π(s, qj ; G
qj

i−1) be the shortest from s to
qj selected by the algorithm and define qj+1 = q(πj) (see Figure 6).

We now show that all qj are distinct, hence there exists a k for which qk = s. By
contradiction, consider the smallest index j′ > j such that q(πj′) = qj . We will construct
two paths towards qj′ in G

qj′

i−1 that have different lengths, yet they must both be shortest
paths, thus providing the sought contradiction.

By Lemma 5, we know that πj+1 ◦ πj [qj+1 : qj ] ∈ Π(s, qj ; G
qj

i−1). We can repetitively
apply Lemma 5, until we get δj = πj′ ◦ πj′−1[qj′ : qj′−1] ◦ . . . ◦ πj [qj+1 : qj ] ∈ Π(s, qj ; G

qj

i−1).
Since q(πj′) = qj , by Lemma 5 we have that δj′ = δj ◦ πj′ [qj : qj′ ] ∈ Π(s, qj′ ; G

qj′

i−1).
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q0 = t

q1

q2

s = q3

π0

π1

π2

Figure 6 A qualitative representation of the path δ constructed in the proof of Lemma 6 when
k = 3. The path δ is drawn with solid lines and the portions belonging to E(Hi−1) are shown in bold.
The shortest paths π0, π1, and π2 from s to q0, q1, and q2 in Gq0

i−1, Gq1
i−1, and Gq2

i−1 are highlighted
in red, blue, and green, respectively. The last edge of each πj (which belongs to E(G) \E(Hi−1)) is
drawn as a solid thin line.

Observe that both πj′ and δj′ belong to Π(s, qj′ ; G
qj′

i−1), hence must have the same length.
However |δj′ | = |δj | + |πj′ [qj : qj′ ]| = |πj′ | + |δj [qj′ : qj ]| + |πj′ [qj : qj′ ]|. As consequence,
|δj′ | ̸= |πj′ | since η(πj′ [qj : qj′ ]) = 1 and hence η(δj′) > η(πj′).

Define δ = πk−1[qk : qk−1] ◦ πk−2[qk−1 : qk−2] ◦ πk−3[qk−2 : qk−3] ◦ . . . ◦ π0[q1 : q0]. We
prove by reverse induction on j = k, . . . , 0 that (i) δ[s : qj ] is a shortest path from s to qj in
G

qj

i−1, and (ii) all edges in E(δ[s : qj ]) ∩ E(G) belong to Hi−1. The claim is trivially true
for j = k since qk = s and δ[s, qk] is the empty path. For j < k, consider the path πj and
notice that qj+1 = q(πj) by definition. By induction hypothesis, we have that δ[s : qj+1] ∈
Π(s, qj+1, G

qj+1
i−1 ). Then, by Lemma 5, δ[s : qj ] = δ[s : qj+1] ◦ πj [qj+1, qj ] ∈ Π(s, qj , G

qj

i−1),
which proves (i).

As far as (ii) is concerned, we only need to argue about πj [qj+1, qj ] since δ[s : qj ] = δ[s :
qj+1]◦πj [qj+1, qj ] and, by induction hypothesis, we know that all edges in E(δ[s : qj+1])∩E(G)
are in E(Hi). Let (u, qj) be the last edge of πj [qj+1, qj ] and notice that, since (u, qj) is also
the last edge of πj , our algorithm adds (u, qj) to Hi when qj is considered. Moreover, by
the choice of qj+1 = q(πj), the path πj [qj+1 : u] contains no edges in E(G) \ E(Hi−1). This
means that E(πj [qj+1 : u]) ∩ E(G) lies entirely in Hi−1 and hence in Hi. This shows that all
edges of E(πj [qj+1, qj ]) ∩ E(G) belong to E(Hi) and proves (ii). ◀

The above lemma easily implies that Hi is a i-multipath preserver of G.

▶ Lemma 7. Hi contains i edge-disjoint paths of minimum total cost from s to every
t ∈ V (G) \ {s}.

Proof. Fix a vertex t ∈ V (G) \ {s}. By induction hypothesis all edges in St
i−1 belong to

Hi−1. By Lemma 6, there is a path δ ∈ Π(s, t, Gt
i−1) such that E(δ) ∩ E(G) ⊆ E(Hi). We

now use Remark 1 to build St
i from St

i−1 and δ. It is easy to see that St
i must be entirely

contained in Hi. ◀

The combination of Lemma 7 with the discussion on the size of Hp at the beginning of
Section 3, immediately results in the following theorem.

▶ Theorem 8. Hp is a single-source p-multipath preserver of size p(n − 1). More precisely,
s has in-degree 0 in Hp while each other vertex has in-degree p.
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Algorithm 1 Computes a p-multipath preserver of a graph G and p-edge disjoint paths
of minimum total cost from s to t, for every t ∈ V (G) \ {s}.

Input : A graph G = (V (G), E(G)), a source vertex s ∈ V (G), p ∈ N+;
Output : p edge-disjoint paths St

p from s to t of minimum total cost, ∀t ∈ V (G);
Output : a p-multipath preserver Hp of G with source s;

1 H1 ← shortest path tree of G rooted at s; // H1 is a 1-multipath preserver
2 foreach t ∈ V (G) do St

1 ← path from s to t in H1;
3 for i← 2, . . . , p do // Compute Hi and all St

i

4 foreach t ∈ V (G) \ {s} do
5 Ht

i−1 ← Graph obtained from Hi−1 by reversing the edges in St
i−1 and adding the

edges incident to t in E(G) \ St
i−1;

6 T t
i−1 ← reverse SPT towards t in Ht

i−1;
// π(u, t; T t

i−1) is the sole path in Π(u, t; T t
i−1)

// Initialize distances and priority queue
7 d(s)← (0, 0); πs ← Empty path;
8 foreach t ∈ V (G) \ {s} do d(t)← (+∞, +∞);
9 Q← initialize a priority queue with values in V (G) and keys d(·);

10 Hi ← Hi−1;
11 while Q is not empty do
12 q ← Extract the minimum from Q;
13 if q ̸= s then
14 πq ← πρ(q) ◦ π(ρ(q), q; T q

i−1); // πq ∈ Π(s, q; Gq
i−1). ρ(q) was set in Line 20

15 eq ← last edge of πq;
16 E(Hi)← E(Hi) ∪ {eq}; // Update the i-multipath preserver
17 Compute Sq

i from Sq
i−1 and πq as explained in Remark 1

18 foreach t ∈ Q do
// Check whether πq ◦ π(q, t; T t

i−1) is shorter than d(t)
19 if q ∈ V (T t

i−1) and d(q) + |π(q, t; T t
i−1)| ≺ d(t) then

20 ρ(t)← q; // We found a shorter path to t in Gt
i−1 (via q)

21 d(t)← d(q) + |π(q, t; T t
i−1)|; // Relax d(t)

22 Decrease the key of vertex t in Q to d(t);

4 An efficient algorithm for finding p edge-disjoint shortest paths

In this section we describe an algorithm (whose pseudocode is given in Algorithm 1) running
in time O(p2n2 + pn2 log n) that computes: (i) p edge disjoint paths St

p of minimum total
cost from s to t; (ii) a single-source p-multipath preserver Hp of size p(n − 1) (as stated in
Theorem 8). Our algorithm also guarantees that each St

p is contained in Hp.
More precisely, the algorithm will compute along the way all single-source i-multipath

presevers Hi, for i = 1, . . . , p, as defined in the previous section (recall that Hi has size
i(n − 1)). In this sense, the algorithm can be seen as an efficient implementation of the one
described in Section 3.

The algorithm works in phases. The generic i-th phase will compute a i-multipath
preserver Hi from the (i − 1)-th multipath preserver Hi−1 computed by the previous phase.
The algorithm also maintains, for each vertex t, a solution St

i consisting of i edge-disjoint
paths of minimum total cost from s to t. Similarly to Hi, St

i is computed from St
i−1 during

phase i.
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Initially, H1 and all St
1 are simply a shortest-path tree (SPT) of G rooted at s, and the

(unique) path from s to t in H1. In each phase i ≥ 2, the algorithm aims to find a shortest
path πt ∈ Π(s, t; Gt

i−1). Since a direct computation of πt would be too time-consuming,
the idea is that of exploiting the suboptimality property of Lemma 5 to consider πt as the
composition of two subpaths πq and πt[q : t], where q = q(πt) and πq is a shortest path from
s to q in Gq

i−1.
To this aim, we follow a Dijkstra-like approach (see lines 7–22). More precisely, once we

have computed πq, we attempt to extend it towards every other vertex t by concatenating
πq with a shortest path from q to t in Gt

i−1.
As we have discussed in Section 2, once we have πt, we can easily compute St

i from St
i−1

and πt according to Remark 1. Moreover, as seen in Section 3, we compute Hi by adding to
Hi−1 all the last edges of each πt.

There are, however, three caveats that need to be carefully handled. The first two
concerns the algorithm’s correctness:

Whenever a path πq is extended towards a vertex t, the resulting path may not necessarily
exist in Gt

i−1 (since πq lies in Gq
i−1 which differs from Gt

i−1). However, this is not an
issue since, as we will prove in the following (see Lemma 10), when πq does not exist in
Gt

i−1, the length of the resulting path is always an upper bound to the length of πt.
In order for the Dijkstra-like approach to work, the vertices q need to be considered in
non-decreasing order of |πq|, and hence the shortest path from q to t in Gt

i−1 used to
extend πq must have non-negative costs. As we will show, this is indeed the case (see
Lemma 9).

The last critical aspect concerns the complexity of the algorithm: a direct computation
of the needed shortest path from q to t in Gt

i−1 would be too time-consuming.
Instead, we (pre-)compute it in a suitable sparse subgraph of Gt

i−1, referred as Ht
i−1 in

the pseudocode (see lines 4–6).

4.1 Proof of correctness
We prove the correctness of Algorithm 1 by induction on i ≥ 1. In particular we will
show that, at the end of phase i, the following three properties will be satisfied: (i) for
t ∈ V (G) \ {s}, the edges in St

i induce i edge-disjoint paths of minimum total cost from s to
t in G; (ii) Hi is a i-multipath preserver for G with source s; and (iii) for t ∈ V (G) \ {s}, St

i

is entirely contained in E(Hi).
The base case i = 1 is trivially true since H1 is a shortest path-tree from s in G, and St

i

is the (unique) path from s to t in H1. We hence assume (i), (ii), and (iii) for i − 1 and focus
on phase i ≥ 2.

For each t, let Gt
i−1 be the residual network obtained from G by reversing the edges of

St
i−1. The rest of the proof is organized as follows: we first prove that Algorithm 1 correctly

computes a shortest path πt ∈ Π(s, t; Gt
i−1). Then, we will argue that this implies properties

(i), (ii), and (iii).

▶ Lemma 9. Let t ∈ V (G), and consider the i-th phase of Algorithm 1. For every q ∈ V (T t
i−1),

we have c(π(q, t; T t
i−1)) ≥ 0.

Proof. Assume towards a contradiction that for some t, q ∈ V (G), c(π(q, t; T t
i−1)) < 0. The

cost of a shortest path π from q to t in Ht
i−1 is c(π(q, t; T t

i−1)). If c(π) < 0, it contains edges
that are reversed w.r.t. G. The set of reversed edges are those belonging to i − 1 edge disjoint
paths from t to s in Gt

i−1. Let (x, y) the first reversed edge traversed in π. Consider the
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subpath π[x : t]. It holds that c(π[x : t]) ≤ c(π). Consider path π′ from t to x in Gt
i−1, that

consists in only reversed edges. Thus π[x : t] ◦ π′ is a closed walk of negative total cost in
Gt

i−1 that does not contain negative cycles [14]. ◀

▶ Lemma 10. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The path πt computed by line 14 after t is extracted from Q satisfies |π| ⪯ |πt|.

Proof. By contradiction, consider first extracted node t for which π ⪯̸ πt. Let q = ρ(t) be
the last node that relaxed node t during phase i. Then πt = πq ◦ π(q, t; T t

i−1).
Consider π′ ∈ Π(s, q; Gq

i−1), by hypothesis π′ ⪯ πq. There are two cases: (i) π′ exists in
Gt

i−1, (ii) π′ does not exists in Gt
i−1. In the first case, π′ ◦ π(q, t; T t

i−1) exists in Gt
i−1 then,

π ⪯ π′ ◦ π(q, t; T t
i−1) ⪯ πq ◦ π(q, t; T t

i−1) = πt. In the second case by Lemma 4, there exists a
path π′′ from s to q in Gt

i−1 such that π′′ ≺ π′. Observe that π′′ ◦ π(q, t; T t
i−1) is an existing

path in Gt
i−1. Then, π ⪯ π′′ ◦ π(q, t; T t

i−1) ≺ π′ ◦ π(q, t; T t
i−1) ⪯ πq ◦ π(q, t; T t

i−1) = πt. ◀

Since, for each node t, the value of d(t) is initialized to (+∞, +∞) and it is only decreased
during the while loop, the above lemma implies that d(t) is an upper bound on the value |π|,
with π ∈ Π(s, t; Gt

i−1).

▶ Lemma 11. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The subpath π[q(π) : t] is entirely contained in Ht
i−1.

Proof. Recall that Ht
i−1 is defined as the graph obtained from Hi−1 where the edges in St

i−1
are reversed and contains all the edges E(G) \ St

i−1 entering in t.
By definition, π[q(π) : t] consists in a sequence of edges (possibly reversed) in Hi−1 and

one edge in E(G) \ E(Hi−1) entering in t. Since by inductive hypothesis St
i−1 ⊆ E(Hi−1)

and St
i−1 is the set of reversed edges in Gt

i−1, then π[q(π) : t] exists in Ht
i−1. ◀

▶ Lemma 12. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The path πt computed by line 14 after t is extracted from Q satisfies |πt| ⪯ |π|.

Proof. By contradiction, take the first extracted node t for which πt ⪯̸ π. For simplicity let
q = q(π).

By the suboptimality property (Lemma 5), we have that π = π′ ◦ π[q : t], where
π′ ∈ Π(s, q; Gq

i−1). By Lemma 11 π[q : t] exists in Ht
i−1. Notice that since Ht

i−1 ⊆ Gt
i−1,

then |π[q : t]| = |π(q, t; T t
i−1)| and by Lemma 9, c(π[q : t]) ≥ 0. Moreover π[q : t] contains

one edge in E(G) \ E(Hi−1) thus π′ ≺ π. By hypothesis, πq ⪯ π′ and by Lemma 10
π ⪯ πt, hence πq ≺ πt and node q is extracted before t. Line 19 of Algorithm 1 ensures that
πt ⪯ πq ◦ π(q, t; T t

i−1) ⪯ π′ ◦ π(q, t; T t
i−1) = π. ◀

▶ Lemma 13. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The path πt computed by line 14 after t is extracted from Q is entirely contained in Gt
i−1.

Proof. By contradiction, take first extracted node t for which πt does not exists in Gt
i−1.

Let q be the last node that performed a relaxation for t, we have that πt = πq ◦ π(q, t; T t
i−1).

Since π(q, t; T t
i−1) exists in Gt

i−1 then πq does not. By hypothesis πq exists in Gq
i−1 and by

Lemma 4 there exists a path π′ in Gt
i−1 such that π′ ≺ πq. The path π′ ◦ π(q, t; T t

i−1) gives
us an existing path in Gt

i−1, such that π ⪯ π′ ◦ π(q, t; T t
i−1) ≺ πt, where π ∈ Π(s, t; Gt

i−1).
This contradicts Lemma 12 for which πt ⪯ π. ◀

We are now ready to establish the correctness of the algorithm as summarized by the following
lemma.
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▶ Lemma 14. For all i = 1, . . . , p and t ∈ V (G) \ {s}, Algorithm 1 computes a single-source
i-multipath preserver Hi of G and a set St

i , with St
i ⊆ E(H), inducing i edge-disjoint paths

of minimum total cost from s to t in G.

Proof. Consider a vertex t ∈ V (G) \ {s}. By Lemma 12 and Lemma 13, we have that at
the end of phase i, πt ∈ Π(s, t; Gt

i−1). Then, by the inductive hypothesis and by Remark 1,
the set St

i contains i-edge disjoint paths from s to t of minimum total cost in G, as desired.
Moreover, since phase i constructs Hi by augmenting Hi−1 with the last edge of every πt, as
shown in Section 3, we have that Hi is a single-source i-multipath preserver of G.

It remains to prove that, at the end of phase i of Algorithm 1, all edges in St
i are in Hi.

For any vertex t, let πt be the path computed in line 14 of Algorithm 1 during phase i.
Notice that, by construction (see Remark 1), each edge in St

i belongs to at least one of St
i−1

and E(πt) ∩ E(G). Since we already know that St
i−1 ⊆ E(Hi−1) ⊆ E(Hi), we only need to

show that E(πt) ∩ E(G) ⊆ E(Hi).
We consider all paths πt computed by Algorithm 1 during phase i, and we prove the

above property by induction on the number of edges ℓ of πt.
The base case ℓ = 0 is trivially true since any such path contains no edges. Consider

now a path πt with ℓ ≥ 1 edges. Since t ̸= s, πt has been computed in line 14 as the
concatenation of a path πρ(t) with π′ = π(ρ(t), t; T t

i−1). The path π′ is entirely contained
in T t

i−1 ⊆ Ht
i−1. By construction of Ht

i−1, the only edges of G that are in E(Ht
i−1) \ E(Hi)

enter t. Let et = (u, t) be the last edge π′ (this edge always exists since ρ(t) ̸= t). By the
above observation we have that E(π′[s : u]) ∩ E(G) ⊆ E(Hi−1) ⊆ E(Hi), while et is added
to Hi by line 16. Finally, πρ(t) satisfies E(πρ(t)) ∩ E(G) ⊆ E(Hi) by inductive hypothesis,
since πρ(t) has less edges than πt. ◀

4.2 Analysis of the computational complexity
In order to bound the time complexity of our algorithm we first argue about how, during
phase i of Algorithm 1, it is possible to implement Line 6 in time O(in + n log n).

For any fixed phase i of the algorithm, and for any target vertex t, Line 6 computes a
(reverse) shortest path tree towards t in Ht

i−1. As the edge costs in Ht
i−1 can be negative, a

naive implementation using the Bellman-Ford algorithm would require Θ(in2) time (since
Ht

i−1 has size Θ(in)). Consequently, the overall time needed to compute all trees T t
i−1, for

every i and every t, would be Θ(p2n3).
To reduce the time complexity of this step, we use a technique similar to the one employed

in the successive shortest path algorithm: we re-weight the edges of Ht
i−1 so that (i) shortest

paths are preserved, and (ii) all edge costs are non-negative. Then, after such a re-weighting,
a SPT towards t in Ht

i−1 can be found in O(in + n log n) time using Dijkstra’s algorithm.
We will employ a well-known re-weighting scheme in which the edge costs are completely

determined by some function h : V → R (see, e.g., [12, Ch 25.3]). Given h, the new cost
c′(u, v) of an edge (u, v) is defined as c(u, v) + h(u) − h(v). Notice that the cost of any path
π from x to y w.r.t. c′ is exactly c(π) + h(x) − h(y), thus the set of shortest paths w.r.t.
c′ coincides with the corresponding set w.r.t. c. Therefore, the above re-weighting scheme
immediately satisfies (i), and hence we will only need to argue about (ii).

Suppose that, at the beginning of phase i (where i ranges from 2 to p), we already know
a re-weighting function ht

i−2 such that the graph Gt
i−2 re-weighted according to ht

i−2 has no
negative-cost edges.5 We will show how to use ht

i−2 to obtain a new re-weighting function

5 Observe that, in the first phase i = 2, such a function ht
0 is trivially known. Indeed, since the edge costs

of G are already non-negative we can simply choose ht
0(v) = 0 for each v ∈ V (G).
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ht
i−1 such that the graph Gt

i−1 re-weighted according to ht
i−1 has no negative-cost edges.

Since Ht
i−1 is a subgraph of Gt

i−1, ht
i−1 also satisfies (ii). The re-weighting induced by ht

i−1
can then be immediately used to implement Line 6 of the algorithm in time O(in + n log n)
using Dijkstra’s algorithm.

Let H̄ be a graph obtained from Hi−1 by reversing the edges in St
i−2 (i.e., i − 2 edge-

disjoint paths of minimum total cost from s to t), and notice that H̄ is a subgraph of Gt
i−2.

We compute all the distances from s to the vertices in H̄ using Dijkstra algorithm (where
edges are re-weighted w.r.t. ht

i−2) and we let h(v) be the distance from s to v. Finally, for
each v ∈ V (G), we define ht

i−1(v) = ht
i−2(v) + h(v). In the following we prove that all edge

costs are non-negative once Gt
i−1 is re-weighted according to ht

i−1. We start with a technical
lemma showing that the distances from s in H̄ and Gt

i−2 coincide.

▶ Lemma 15. Let T be a shortest path tree rooted at s of H̄ then, T is also a shortest path
tree rooted at s of Gt

i−2.

Proof. By contradiction, if T is not a shortest path tree of Gt
i−2, it is because there exists

some node v in Gt
i−2 for which every path π ∈ Π(s, v; Gt

i−2) contains some edge from
E(G) \ E(H̄). Fix a π ∈ Π(s, v; Gt

i−2) and assume w.l.o.g. that π contains only one edge
from E(G) \ E(H̄) and that this edge enters in v.

We now show that π(s, v; T ) ⪯ π. Consider πv ∈ Π(s, v; Gv
i−2) computed by Algorithm 1

during phase i − 1, and observe that for each (u, v) ∈ πv either (u, v) ∈ E(Hi−1) or
(v, u) ∈ E(Hi−1). By Lemma 4, either πv exists in Gt

i−2 or there exists a path π′
v in Gt

i−2,
obtained from πv by substituting a subpath in πv with a path containing only edges from
∆(t, v) w.r.t. Gt

i−2 and Gv
i−2 and such that π′

v ≺ πv . Let π′ be the existing path in Gt
i−2

between π′
v and πv. By construction, π′ is a path that consists only in edges from H̄, thus

π(s, v; T ) ⪯ π′.
To conclude the proof, we need to show that π exists in Gv

i−2. Similarly to the proof of
Lemma 3, if π does not exists in Gv

i−2, it traverses at least one edge in ∆(t, v) w.r.t. Gt
i−2

and Gv
i−2. Let (x, y) be the last edge traversed by π that belongs in ∆(t, v). Let δ be a path

from t to y that traverses (x, y) in the subgraph of Gt
i−2 induced by the edges in ∆(t, v).

Since, by definition of π, the edge e of π entering in v is not in H̄, we have e ̸∈ ∆(t, v).
Then, the subpath π[y : v] of π is not empty and, by our choice of (x, y) does not traverse
any edge in ∆(t, v).

By the suboptimality property of shortest paths, π[y : v] ⪯ δ[y : v] and hence c(π[y :
v]) ≤ c(δ[y : v]). If c(π[y : v]) < c(δ[y : v]), we can replace δ[y : v] with π[y : v] in δ to obtain
a path δ′ from t to v in Gt

i−2 with c(δ′) < c(δ). This contradicts Lemma 2 since it implies
the existence of i − 2 edge-disjoint paths from t to v in Gt

i−2 with a total cost smaller than
c(∆(t, v)).

If c(π[y : v]) = c(δ[y : v]), we can replace π[y : v] with δ[y : v] in π to obtain a path π′′ from
s to v in Gt

i−2 satisfying c(π′′) = c(π). Since all edges (or their reverse) of E(δ[y : v]) ⊆ ∆(t, v)
are in Hi−2, π[y : v] contains more edges in E(G) \ E(Hi−2) than δ[y : v], thus π′′ ≺ π. This
is a contradiction since, by the suboptimality property of shortest paths and by our choice of
π ∈ Π(s, v; Gt

i−2), π must be a shortest path from s to v in Gt
i−2 w.r.t. ⪯.

Then knowing that π exists also in Gv
i−2, it holds that Π(s, v; T ) ⪯ π′ ⪯ π. ◀

▶ Lemma 16. For any (u, v) ∈ E(Gt
i−1), we have c(u, v) + ht

i−1(u) − ht
i−1(v) ≥ 0.

Proof. Let c′(u, v) denote the cost of edge (u, v) in Gt
i−2, when the graph is re-weighted

according to ht
i−2. Notice that, by hypothesis, c′(u, v) is always non-negative. Recall that

h(v) is the distance from s to v in H̄ w.r.t. c′ and that, by Lemma 15, h(v) is also the
distance from s to v in Gt

i−2 w.r.t. the cost function c′.
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Thus we have that, for each edge (u, v) ∈ E(Gt
i−2), h(u) + c′(u, v) ≥ h(v) implying that

c(u, v) + ht
i−1(u) − ht

i−1(v) = c′(u, v) + h(u) − h(v) ≥ 0. In particular, if (u, v) ∈ E(Gt
i−2)

belongs to a shortest path (w.r.t. c′) from s to v in Gt
i−2 then, h(u) + c′(u, v) = h(v) and

c(u, v) + ht
i−1(u) − ht

i−1(v) = c′(u, v) + h(u) − h(v) = 0.
By definition, Gt

i−1 is obtained from Gt
i−2 by reversing π ∈ Π(s, t; Gt

i−2).
For each (u, v) ∈ E(Gt

i−1) ∩ E(Gt
i−2), c(u, v) + ht

i−1(u) − ht
i−1(v) ≥ 0 and for each

(u, v) ∈ E(Gt
i−1) \ E(Gt

i−2) we have that (v, u) ∈ π then, c(u, v) + ht
i−1(u) − ht

i−1(v) =
−(c(v, u) − ht

i−1(u) + ht
i−1(v)) = 0. ◀

We conclude by observing that H̄ can be computed in O(in) and therefore the overall
running time required to compute T t

i is O(in + n log n), as claimed. The overall running time
of Algorithm 1 is O(p2n2 + pn2 log n). The next theorem follows from Theorem 8, Lemma 14,
and the above discussion.

▶ Theorem 17. Algorithm 1 solves both single-source p-multipath preserver problem and
shortest p edge-disjoint paths problem in O(p2n2 + pn2 log n). Moreover, the size of the
computed preserver is equal to p(n − 1), which is optimal.

Proof. We can ignore lines 1 and 2 since they require time O(n2). We therefore focus on an
iteration i ≥ 2 of the outer loop (i.e., on phase i).

The discussion in Section 4.2 shows that the loop at lines 4–6 requires time O(in2 +
n2 log n) = O(pn2 + n2 log n). Observe that line 14 can be implemented in time proportional
to the number of edges of πq, which is at most n − 1, and that line 17 requires time at
most O(|Sq

i−1| + n) = O(pn). We implement the priority queue Q using a data structure
that supports decrease-key operations in constant-time (e.g., an array). Since we perform
O(n) extract-min operations, and O(n2) decrease-key operations, we have that the loop at
lines 7–22 requires time O(in2) = O(pn2).

Thus, the overall time complexity of the algorithm is O(p2n2 + pn2 log n). ◀
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A Extensions and variants

In this section we show how to extend all our results to more general versions of the two
problems in which the input graph G is not necessarily p-edge-outconnected from s. More
precisely, we denote by λ(t) the maximum number of edge-disjoint paths from s to t in G.
We want to find, for each vertex t ∈ V (G) \ {s}, σ(t) := min{λ(t), p} edge-disjoint paths of
minimum total cost from s to t in G.

Moreover, we show how to use Algorithm 1 to approximate the problem of computing a
set of p edge-disjoint paths where the cost of the path with maximum cost is minimized. We
show that the approximation factor achieved by our algorithm is optimal.

Finally, for the sake of completeness, we also describe the graph transformation already
discussed in [25] if we are interested in finding paths that are vertex-disjoint rather than
edge-disjoint.

Extensions to general versions of our problems. W.l.o.g., we can assume that p < n as G

contains at most n − 1 edge-disjoint paths from s to any vertex t ∈ V (G) \ {s}.
We transform the input graph G into another graph G′ that is p-edge-outconnected

from s. To construct G′, we take a copy of G and augment it by adding a complete directed
graph C on p new “dummy vertices” v1, v2, . . . , vp, all edges in {s} × {v1, v2, . . . , vp}, and all
edges in {v1, v2, . . . , vp} × (V (G) \ {s}), where the cost of all the new edges is some large
value M > c(E(G)). We observe that each edge of cost M is incident to at least one dummy
vertex. Furthermore, there are p edge-disjoint paths from s to any other vertex of the vertex
of the graph, so H ′ is p-edge-outconnected from s. As p < n, the graph G′ still contains
O(n) vertices. We run Algorithm 1 on G′ to compute all the sets St

i , for each t ∈ V (G) \ s

and i ≤ p (Lemma 14) in O(p2n2 + pn log n) time. The solution to our problem for t is given
by St

σ(t), where we can find the value of σ(t) as the largest index i for which c(St
i ) < M .

Concerning the problem of finding a subgraph H of G such that St
σ(t) ⊆ E(H) for

every t ∈ V (G) \ {s}, we first compute a single-source p-multipath preserver H ′ of G′ in
O(p2n2 + pn log n) time using Algorithm 1. The graph H is obtained from H ′ by deleting
all the dummy vertices and, consequently, all the edges (each of cost M) that are incident to
the dummy vertices. We observe that H, being a subgraph of G, does not contain edges of
cost M .

▶ Theorem 18. For every t ∈ V (G) \ {s}, St
σ(t) ⊆ E(H). Moreover, the size of H is equal

to
∑

t∈V (G)\{s} σ(t), which is optimal.

Proof. By the algorithmic construction of the single-source p-multipath preserver, we have
that H ′ = H ′

p contains H ′
i, for every i ≤ p. Since the edges of St

σ(t) are also edges of H ′
σ(t)

(Lemma 14), it follows that St
σ(t) ⊆ E(H ′

p), and thus St
σ(t) ⊆ E(H), as St

σ(t) has no edge of
cost M .

https://doi.org/10.1145/2976741
https://doi.org/10.1145/3022730
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1002/net.3230140209


D. Bilò, G. D’Angelo, L. Gualà, S. Leucci, G. Proietti, and M. Rossi 12:19

The lower bound of
∑

t∈V (G)\{s} σ(t) on the size of any feasible solution to the problem
comes from the fact that the in-degree of each vertex t must be at least σ(t).

We now prove that the size of H matches the lower bound by showing that the in-degree
of each vertex t ∈ V (G) \ {s} equals σ(t). Using the fact that the in-degree of t in H ′ is
exactly equal to p (Theorem 17), it is enough to show that there are p − σ(t) edges of cost
M that are entering t in H ′.

Consider the solution St
p that contains p edge-disjoint paths π1, . . . , πt from s to t in G′

of minimum total cost. W.l.o.g., we assume that c(π1) ≤ · · · ≤ c(πp). We claim that for each
i with σ(t) < i ≤ p, πi enters t with an edge of cost M . To show this it is enough to observe
two things. From the one hand, c(πi) must have a cost of at least M as otherwise we would
have σ(t) + 1 edge-disjoint paths from s to t in G of total cost of at most c(E(G)) < M , thus
contradicting the assumption that there are at most σ(t) = λ(t) edge-disjoint paths from s

to t in G. On the other hand, every path from s to t in G′ of cost of at least M has a cost
that is actually lower bounded by 2M . This is because any such path must pass through a
dummy vertex which has only edges of cost M incident to it. As a consequence, c(πi) ≥ 2M

for every σ(t) < i ≤ p.
To complete the proof, it is enough to notice that each path of cost equal to 2M from s

to t passes through a single dummy vertex and enters in t with an edge of cost M . As there
are p dummy vertices, there are also p edge-disjoint paths from s to t of cost 2M each. This
implies that each path πi from s to t of cost strictly larger than 2M can be replaced by a
path of cost exactly equal to 2M using shortcuts (i.e., the direct edge from the first dummy
vertex traversed in π to t). If we do this simultaneously for all the paths π1, . . . , πp of total
cost strictly larger than 2M , we obtain a new set of paths π′

1, . . . , π′
p that are still pairwise

edge-disjoint and such that
∑p

i=1 c(π′
i) <

∑p
i=1 c(πi). Therefore, by the optimality of St

p,
c(πi) = 2M for every σ(t) < i ≤ p. As a consequence, each πi, with σ(t) < i ≤ p, enters in t

with an edge of cost M . Therefore, p − σ(t) edges out the p edges entering t in H ′ are of
cost M each. Hence, the degree of t in H is equal to σ(t). ◀

Computing edge-disjoint paths with minimum maximum cost. We now consider a variant
of the shortest p edge-disjoint paths problem in which we have a different objective function:
we want to find, for a given source vertex s and every t ∈ V (G) \ {s}, p edge-disjoint paths
from s to t such that the cost of the path with maximum cost is minimized. More formally,
we want to find, for each t ∈ V (G) \ {s}, a set S̄t

p of p edge-disjoint paths from s to t that
minimize maxπ∈S̄t

p
c(π). We call this problem the minimum bottleneck p edge-disjoint paths

problem.
We observe that, for each t, the paths induced by a solution St

p for the shortest p edge-
disjoint path problem guarantees an approximation factor of p. Indeed, c(St

p) ≤
∑

π∈S̄t
p

c(π) ≤
p · maxπ∈S̄t

p
c(π). In the next theorem we show that this approximation factor is optimal,

unless P = NP.

▶ Theorem 19. There is no polynomial-time algorithm that approximates the minimum
bottleneck p edge-disjoint paths problem to within a factor smaller that p, unless P = NP.

Proof. We prove the statement for a given pair of nodes s and t. We reduce from the 2
directed paths problem (2DP): Given a directed graph G = (V (G), E(G)) and four vertices
s1, t1, s2, t2 ∈ V (G), decide if there exist two edge disjoint paths, one from s1 to t1 and one
from s2 to t2. The 2DP problem is NP-Complete [15].
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Figure 7 Reduction used in Theorem 19.

Starting from the input graph G of 2DP, we define a graph G′ which consists in p − 1
copies G1, . . . Gp−1 of G and two new vertices s and t and we set the cost of each edge in every
copy to 0. We denote by si

j and ti
j , the nodes sj and tj in the i-th copy of G, respectively,

for each 1 ≤ i ≤ p − 1 and j = 1, 2. Node s has p − 1 edges of cost 0 toward nodes si
2, for

each 1 ≤ i ≤ p − 1, and one edge of cost 1 toward node s1
1. Node t has p − 1 edges of cost 0

from nodes ti
1, for each 1 ≤ i ≤ p − 1, and one edge of cost 1 from tp−1

2 . Moreover, there is
an edge (ti

2, si+1
1 ) of cost 1, for each 1 ≤ i ≤ p − 2, see Figure 7 for an illustration.

We first show that, if in G there are two edge-disjoint paths, one from s1 to t1 and one
from s2 to t2, then in G′ there are p edge-disjoint paths from s to t each of them with cost 1.
For each 1 ≤ i ≤ p − 1, let us denote by πi

1 and πi
2 the two disjoint paths in Gi from si

1 to
ti
1 and from si

2 to ti
2, respectively. The first of the p edge-disjoint paths from s to t in G′

starts from s, goes to s1
1, follows path π1

1 and then goes from t1
1 to t. The total cost of this

path is 1. A second path starts from s goes to sp−1
2 , follows path πp−1

2 from sp−1
2 to tp−1

2 in
Gp−1 and then goes from tp−1

2 to t. The total cost of this path is 1. The remaining p − 2 are
constructed in this way: Each path i, with 1 ≤ i ≤ p − 2, starts from s goes to si

2, follows
path πi

2 from si
2 to ti

2 in Gi and then crosses edge (ti
2, si+1

1 ). In Gi+1, it follows path πi+1
1

from si+1
1 to ti+1

1 and finally crosses edge (ti+1
1 , t). The cost of each of these paths is 1. By

construction these p paths are edge-disjoint.
Now we show that, if in G there are not two edge disjoint paths, one from s1 to t1 and

one from s2 to t2, then in G′ any p edge disjoint paths from s to t contain a path of cost p.
We can assume w.l.o.g. that there are 2 edge-disjoint paths in G, one from s1 to t2 and one
from s2 to t1. In G′ there is only one possible set of p edge-disjoint paths, which is made of
p − 1 paths of cost 0 and one path of cost p. The first p − 1 paths are composed as follows:
for 1 ≤ i ≤ p − 1, each of these paths starts from s and goes to node si

2 in Gi through edge
(s, si

2), it follows a path πi
1 from si

2 to ti
1 (in Gi) disjoint from a path πi

2 between (si
1, ti

2) (in
Gi), and then reaches t by edge (ti

1, t). The last path starts from s and by crossing edge
(s, s1

1) of cost 1, follows πi
2 to reach node t1

2. At this point, it keeps moving along all copies
Gi of G by using edges (ti

2, si+1
1 ) of cost 1 and by using path πi

2 to reach ti
2 from si

1. Finally,
the last edge crossed is (tp−1

2 , t). The total cost of this path is p.
It follows that an algorithm that approximates the minimum bottleneck p edge-disjoint

paths problem to within a factor smaller that p can be used to solve 2DP. ◀

Vertex-disjoint paths. As also shown by Suurballe and Tarjan [25], all our results can be
extended to the case in which the p paths of minimum total cost from s to t ∈ V (G) \ {s}
must be pairwise vertex-disjoint via the following linear time reduction. We construct a
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graph G′ by replacing each vertex v ∈ V (G) with a pair of vertices v−, v+ that are connected
through an edge (v−, v+) with cost 0, and by adding to E(G′) an edge (u+, v−) of cost c(u, v)
for each edge (u, v) ∈ E(G). We observe that G′ still has O(n) vertices. Although G′ may
not be p-edge-outconnected from s (the in-degree of each vertex v+ is equal to 1), we can
solve the problem in O(p2n2 +pn log n) time using Algorithm 1, via the graph transformation
that adds p dummy vertices, as described in the previous paragraph.

Undirected graphs. Our results extend to the case in which the input graph G in undirected.
We start by transforming G in a directed graph G′: for every edge {u, v} ∈ E(G), G′ contains
a pair of directed edges (u, v), (v, u) of the same cost of {u, v}. We then invoke Algorithm 1,
and transform the computed solutions for G′ into solutions for G in linear time as follows.

For every t ∈ V (G)\{s}, let St be a set of edges from G′ that induce p edge-disjoint paths
of minimum total cost from s to t in G′. We can assume w.l.o.g. that for each (u, v) ∈ St,
(v, u) ̸∈ St. Indeed, if (u, v), (v, u) ∈ St, then the set obtained by removing both (u, v) and
(v, u) from St is still feasible.

Clearly, the solution obtained from St by replacing each directed edge (u, v) with the
undirected edge {u, v} still induces p edge-disjoint paths from s to t in G and has the same
cost as St. Moreover, any set of p edge-disjoint paths from s to t in G, can also be transformed
into a corresponding solution in G′ by suitably orienting the traversed edges. This doesn’t
affect the solution’s cost.

Observe that, by Lemma 14, all sets St are contained in the p-multipath preserver Hp

of G′ computed by Algorithm 1 and, by Theorem 8, the undirected version of Hp is a
p-multipath preserver of G of size at most p(n − 1).
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approximation ratio of 16.
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1 Introduction

Wireless antennas in a wireless network can be modeled by disks in the plane, where the centers
of the disks represent locations of antennas and their radii represent transmission ranges of
antennas. Two antennas can communicate if they are in each other’s transmission range.
In this model antennas are assumed to be omni-directional which can transmit and receive
signals in 360 degrees. Replacing omni-directional antennas with directional antennas has
received considerable attention in recent years, see for example [1, 3, 6, 8, 9, 10, 11, 13, 14, 21].
Directional antennas can transmit and receive signals only in a circular wedge with some
bounded-angle α. As noted in [4, 21, 23] such a bounded-angle communication is more secure,
requires lower transmission range, and causes less interference. In this model two antennas
can communicate if each one is inside the other’s wedge. This model is known as symmetric
communication network [4, 5, 23].

The network connectivity is a common problem in designing networks with directional
antennas. Aschner and Katz [3] formulated this problem in terms of an α-spanning tree
(α-ST). For a point set P in the plane and an angle α, an α-ST of P is a spanning tree of
the complete Euclidean graph on P such that all edges incident to each point p ∈ P lie in a
wedge of angle α centered at p (see Figure 1). It is known that an α-ST always exists when
α ⩾ π

3 (see e.g. [1, 2, 11]) while it may not exists when α < π
3 , for example if P consists of

the three vertices of an equilateral triangle.
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π
2

Figure 1 A π
2 -spanning tree.

The minimum spanning tree (MST) is the shortest connected network for omni-directional
antennas. For directional antennas, the shortest connected network is called the α-minimum
spanning tree (α-MST) which is an α-ST of P with minimum total edge length. Although
one can compute an MST of n points in the plane optimally in O(n log n) time, it is not clear
how to efficiently compute an α-MST. Aschner and Katz [3] proved that the α-MST problem
is NP-hard for α = 2π

3 and α = π. They also presented approximation algorithms with ratios
16, 6, and 2 for angles α = π

2 , α = 2π
3 and α = π, respectively. The approximation ratio 6 for

the 2π
3 -MST has been successively improved to 5.34 [8] and to 4 [6]. Recently Tran et al. [23]

showed that the power assignment problem with directional antennas (described in Section 1.2)
of angle π

2 is NP-hard, by a reduction from the Hamilton path problem on hexagonal grid
graphs. A similar reduction can be employed to show that the π

2 -MST problem is also
NP-hard.

The above approximation ratios are obtained by considering the weight of the MST as
the lower bound (instead of the weight of an optimal α-MST). Of these approximation ratios,
the ratio 16 for π

2 is very interesting because for any α < π
2 there exists a point set for which

the ratio of the weight of any α-MST to the weight of any MST is Ω(n) [5]. In other words,
α = π

2 is the smallest angle for which one can obtain an α-ST of weight within some constant
factor of the MST weight. However, such a factor cannot be better than 2 because for points
uniformly distributed on a line the weight of α-MST could be arbitrary close to 2 times the
weight of MST, for any α < π [3, 8].

1.1 Our contributions
We present an algorithm that finds a π

2 -ST of weight at most 10 times the MST weight
(Theorem 6). Thus we obtain a 10-approximation algorithm for the π

2 -MST problem,
improving upon the previous best known ratio of 16 due to Anscher and Katz [3]. Both our
algorithm and that of [3] take linear time after computing an MST.

Towards obtaining the approximation ratio 10 we extend another interesting result of
Aschner et al. [5] which ensures the connectivity of two sets of oriented four points that are
separated by a straight line. Our extension (which is given in Theorem 3) relaxes the linear
separability constraint. Most of the paper is devoted to proving this theorem.

1.2 Some related problems
There is a relationship between bounded-angle spanning trees and bounded-degree spanning
trees which have received a considerable attention [7, 12, 17, 19, 20, 22]. A degree-k ST is a
spanning tree in which every vertex has degree at most k. It is easily seen that any degree-k
ST is an α-ST with α = 2π(1− 1/k) because in any degree-k ST all edges that are incident
to each vertex lie in some wedge of angle 2π(1− 1/k).

The α-bottleneck spanning tree (α-BST) is a closely related problem in which the goal
is to compute an α-ST whose longest edge length is minimum. This problem has been
studied in the context of designing networks with bounded-range directional antennas, see for
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example the results of Aschner et al. [3, 5] for constructing hop-spanners for unit disk graphs,
Dobrev et al. [14, 15] and Caragiannis et al. [10] for constructing bounded-degree strongly
connected networks, and Carmi et al. [11] for constructing bounded-angle Hamiltonian paths.
Another related problem in this context is “power assignment with directional antennas”
where the objective is to assign each point p ∈ P a wedge of angle α as well as a range rp to
obtain a connected symmetric communication network of minimum total power

∑
p∈P (rp)β

where β ⩾ 1 is the distance-power gradient [3, 5, 23].
Computing bounded-angle Hamiltonian paths and cycles on points in the plane is another

related problem. For paths it is known that any set of points in the plane admits a Hamiltonian
path with turning angles at most π

2 [11, 18] and this bound on the angle is tight [11, 16].
For cycles no tight bound on the angle is known. Dumitrescu et al. [16] proved that any
even-size point set admits a Hamiltonian cycle with angles at most 2π

3 . The most famous
conjecture in this context, due to Fekete and Woeginger [18], states that any even-size point
set of at least 8 elements admits a Hamiltonian cycle with angles at most π

2 .

1.3 Preliminaries for the algorithm
The following notations are adopted from [8]. Let wp be a wedge in the plane having its
apex at a point p. We denote the clockwise (right) boundary ray of wp by −→wp and its
counterclockwise (left) boundary ray by ←−wp. Let wq be another wedge in the plane having
its apex at a point q. If q lies in wp then we say that p sees q (or q is visible from p). We say
that p and q are mutually visible, denoted by p↔q, if p sees q and q sees p. In Figure 2 p

and q are mutually visible. Let P be a set of points in the plane such that some wedge is
placed at each point of P . The induced mutual visibility graph of P , denoted by G(P ), is a
geometric graph with vertex set P that has a straight-line edge between two points p, q ∈ P

if and only if p and q are mutually visible. We use the term “orient” to refer to placement of
wedges at points. We denote the sum of edge lengths of a geometric graph G by w(G).

p

wp

−→wp

←−wp

wq
q

Figure 2 The points p and q are mutually visible.

We define the following notations to facilitate the description of our algorithm and its
analysis. For two points p and q in the plane the slab S(p, q) is defined as the region between
two lines that are perpendicular to the segment pq at points p and q (see Figure 3(a)). We
use quadruple to denote a set of four points in the plane. A quadruple Q is called admissible
if it has two points p and q such that the other two points lie in S(p, q) and both on the same
side of pq. In this case we refer to (p, q) as an admissible pair of Q. Notice that a quadruple
could have more than one admissible pair. For a quadruple Q with a fixed admissible pair
(p, q), we define the admissible slab of Q, denoted by S(Q), to be the same as the slab S(p, q);
see Figure 3(a). The following lemma (though very simple) plays an important role in our
algorithm.

▶ Lemma 1. Any set P of five points in the plane contains an admissible quadruple Q such
that all points of P lie in S(Q).

STACS 2022
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p q

S(Q) = S(p, q)

r
s

p q

r
s

−→wp

−→wr ←−ws

←−wq

p q

V (Q)
r s

(a) (b) (c)

Figure 3 An admissible quadruple Q = {p, q, r, s} with admissible pair (p, q). Illustrations of (a)
the slab S(p, q) which is the same as the admissible slab S(Q), (b) the proof of Theorem 2, and (c)
the visibility region V (Q) which is the region visible to both p and q.

Proof. Let p and q be two points that define a diameter of P , i.e., two with maximum
distance. Of the remaining three points of P at least two of them, say r and s, lie on the
same side of S(p, q). Therefore {p, q, r, s} is an admissible quadruple which we denote by Q.
Since pq is a diameter of P , all points of P lie in S(p, q) and hence in S(Q). ◀

Our orientation of admissible quadruples in the following theorem is similar to that of
Aschner, Katz, and Morgenstern et al. [5] for arbitrary quadruples.

▶ Theorem 2. Given an admissible quadruple Q, one can place at each point of Q a wedge
of angle π/2 such that the wedges cover the plane and the induced mutual visibility graph of
Q is connected.

Proof. Let Q = {p, q, r, s}. After a suitable relabeling, rotation and reflection assume that
(p, q) is an admissible pair of Q, the line segment pq is horizontal, p is to the left of q, the
points r and s lie above pq, and r is to the left of s as in Figure 3(b). We place four wedges
at points of Q as in Figure 3(b). Formally, we place a wedge wp at p such that −→wp passes
through q, place wq at q such that ←−wq passes through p, place wr at r such that q lies in wr

and −→wr is vertical, and place ws at s such that p lies in ws and ←−ws is vertical. These four
wedges cover the entire plane (if we think of the intersection point of −→wp and −→wr as the origin
of the coordinate system, then the four wedges cover the four quadrants). Moreover, the
induced mutual visibility graph is connected because p↔q, r↔q, and p↔s. ◀

Recall the two points p and q in the proof of Theorem 2 that make Q admissible. Notice
that after orientation of Theorem 2 the admissible slab of Q is uniquely defined by p and q.
We define the visibility region of Q, denoted by V (Q), as part of S(Q) that is visible to both
p and q; see Figure 3(c) for an illustration.

The following theorem, which will be proved in Section 3, plays a crucial role in the
correctness of our algorithm. Most of the paper is devoted to proving this theorem.

▶ Theorem 3. Let Q1 and Q2 be two admissible quadruples. Assume that wedges of angle
π/2 are placed at points of each of Q1 and Q2 according to the placement in the proof of
Theorem 2. Then at least one of the following statements holds

(i) The induced mutual-visibility graph of Q1 ∪Q2 is connected.
(ii) At any point p in S(Q1) ∪ S(Q2) one can place a wedge of angle π/2 such that p is

mutually visible from a point q1 ∈ Q1 and from a point q2 ∈ Q2. In other words the
induced mutual-visibility graph of Q1 ∪Q2 ∪ {p} is connected.
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We note that there are admissible quadruples for which statement (i) does not hold, but
(ii) holds for them; see for example Figure 12. Theorem 3 extends the following result of
Aschner et al. [5] which applies only to quadruples that are separated by a line.

▶ Theorem 4 (Aschner, Katz, and Morgenstern [5], 2013). Let Q1 and Q2 be two quadruples.
Assume that wedges of angle π/2 are placed at points of each of Q1 and Q2 according to the
placement in the proof of Theorem 2. If Q1 and Q2 are separated by a straight line, then the
induced mutual-visibility graph of Q1 ∪Q2 is connected.

2 The approximation algorithm

Let P be a set of n points in the plane. In this section we present our algorithm for computing
a π

2 -ST of P of weight at most 10 times the weight of the MST of P . In Section 2.1 we
describe the general framework of the algorithm. In Section 2.2 we provide the details of the
algorithm and its analysis.

2.1 A general framework

Our algorithm follows the same framework as previous algorithms [3, 6, 8] which is described
below. This framework was first introduced by Aschner and Katz [3].

Start by computing an MST of P . From the MST obtain a Hamiltonian path H of weight
at most 2 times the weight of MST. It is well-known that such a path can be obtained by
doubling the MST edges, computing an Euler tour, and then short-cutting repeated vertices.
The constant 2 is tight as Fekete et al. [17] showed that for any fixed ε > 0 there exist point
sets for which the weight of any Hamiltonian path is at least 2− ε times the weight of MST.

The next step is to partition H into n
k groups each consisting of k consecutive vertices of

H for some constant k (assuming n is divisible by k). Then orient each group independently
in such a way that (I) the vertices in each group are connected, and (II) there is an edge
between any pair of consecutive groups. Thus the induced mutual visibility graph on P is
connected. Moreover, as the vertices of the groups are connected locally (to the vertices of
the same group or a neighboring group), the mutual visibility graph contains a spanning tree
whose weight is within some constant factor of the weight of H. This constant depends only
on k.

The original algorithms of Aschner and Katz [3] partition H into groups of size k = 8 for
α = π

2 and k = 3 for α = 2π
3 . The improved algorithms of [8] and [6] (for α = 2π

3 ) partition
H into groups of size k = 3 and k = 2, respectively.

Our algorithm partitions H into groups of size k = 5 for α = π
2 . The most challenging

part in our algorithm (and in previous algorithms) is to maintain property (II); the proof
of this property often involves detailed case analysis. There is a main difference between
our algorithm and previous algorithms [3, 6, 8]. Instead of orienting all five vertices in each
group simultaneously, we first select four of them and orient only these selected vertices. The
four selected vertices form an admissible quadruple. We refer to the non-selected vertex as a
backup. We show that, except for one “special case”, there is always a connection between
two oriented admissible quadruples. For the special case we use the backup vertex to make
the connection between two quadruples.

STACS 2022
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2.2 Details of our algorithm

In this section we provide details of our algorithm and its analysis. Recall that P is a set of
n points in the plane, and that H is a Hamiltonian path on P such that

w(H) ⩽ 2w(MST).

Let h1, . . . , hn−1 be the sequence of edges of H from one end to another. Partition
the edges of H into five sets H1 = {h1, h6, . . . }, H2 = {h2, h7, . . . }, H3 = {h3, h8, . . . },
H4 = {h4, h9, . . . }, and H5 = {h5, h10, . . . }. Let Hk with k ∈ {1, 2, 3, 4, 5} be the edge set
with the largest weight. Then

w(Hk) ⩾ w(H)
5 and w(H \Hk) ⩽ 4w(H)

5 .

h1
h2 h3

∈Hk

g1 g2 g3

Figure 4 Illustration of the groups and sub-paths (dashed edges belong to Hk, where k = 5).

By removing all edges of Hk from H we obtain a sequence of sub-paths each containing
five vertices (except possibly the first and last sub-paths). To simplify our description we
assume for now that all sub-paths have five vertices, later in Remark 5 we will take care of
the case where the first and last sub-paths have less than five vertices. We refer to the five
vertices of each sub-path as a group. Let g1, g2, . . . , gm denote the sequence of the groups
that is corresponding to the sequence of sub-paths along H as in Figure 4.

From each group gi we take an admissible quadruple Qi (consisting of four vertices) as in
the proof of Lemma 1. We denote the remaining vertex of gi by bi; this is a backup vertex.
By Lemma 1, bi lies in S(Qi). We orient each admissible quadruple Qi according to the
orientation in the proof of Theorem 2 which ensures the connectivity of the induced mutual
visibilty graph G(Qi). Consider any two consecutive oriented quadruples Qi and Qi+1. By
Theorem 3 at least one of the following statements holds:

(i) The graph G(Qi ∪Qi+1) is connected, i.e., there is an edge between Qi and Qi+1.
(ii) Any point p in S(Qi)∪S(Qi+1) can be oriented so that G(Qi∪Qi+1∪{p}) is connected.

If statement (i) holds then we orient bi towards a vertex of Qi that sees bi (such a vertex
exists because the orientation of Theorem 2 covers the entire plane). If (i) does not hold but
(ii) holds then we orient bi in such a way that it connects Qi and Qi+1.

To this end all vertices are oriented except the backup vertex bm of gm. We orient bm

towards a vertex of Qm that sees bm. Thus, we obtain a connected induced mutual visibility
graph G(P ).

Now we obtain a spanning tree T of G(P ) as follows: First we take an arbitrary spanning
tree Ti from each G(Qi). Then we connect each pair Ti and Ti+1 either by a direct edge (if
(i) holds) or via a backup vertex (if (ii) holds). Lastly we connect any remaining backup
vertex to its corresponding quadruple by an edge. This gives a spanning tree T that we
report as the output of our algorithm. Notice that the trees Ti are not necessarily minimum
spanning trees of graphs G(Qi); we will use the triangle inequality to bound the length of T .
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Analysis of the approximation ratio. To bound the weight of T , we charge the edges of H

for the edges of T as follows. By the triangle inequality, the weight of every edge (p, q) of T

is at most the weight of the unique path in H between p and q. We charge the weight of the
edges of this path for the edge (p, q). Every edge of Hk is charged only once and that is for
connecting two consecutive trees Ti and Ti+1 (either directly or via a backup vertex). Every
edge of H \Hk (i.e., every edge of each sub-path) is charged at most six times: three times
for the three edges of Ti, two times for the two edges connecting Ti to Ti+1 and to Ti−1, and
once for the edge connecting the backup vertex bi to Ti. Therefore

w(T ) ⩽ w(Hk) + 6w(H \Hk)

= w(H) + 5w(H \Hk) ⩽ w(H) + 5 · 4w(H)
5 = 5w(H) ⩽ 10w(MST).

Running-time analysis. After computing an MST in O(n log n) time, the rest of the
algorithm (computing H, finding Hk, orienting admissible quadruples and backup vertices,
and obtaining T ) takes O(n) time.

▶ Remark 5. Here we handle the case where the first sub-path, denoted by δ, has less than
five vertices (the last sub-path will be treated analogously). This case is essentially a simple
version of Theorem 3 where fewer points are involved. We will use Theorem 3 to handle this
case, however it could also be handled directly but with some case analysis.

We will connect the vertices of δ to g1 (the first 5-vertex group). Let Q be g1’s admissible
quadruple. Since the oriented points in Q cover the entire plane, it might be tempting to
orient each point p of δ towards the point of Q that sees p. This approach may not be
suitable when δ has more than one point because to maintain the ratio 10 we should not
connect Q to its proceeding group (here to δ) by more than one edge. To remedy this, we
use our Theorem 3.

a b
d′ c′

Figure 5 ab is the diameter of δ, and c′, d′ are fake points.

As discussed above, we may assume that δ has 2, 3, or 4 points. Let ab be a diameter of
δ as in Figure 5. Thus, δ has points a, b, and at most two other “real” points. We place a
“fake” point c′ in S(a, b) and very close to b such that both c′ and b lie on the same side of
any line through boundary rays of wedges in Q. In the same fashion we place a fake point d′

very close to a, and on the same side of ab as c′. Let Q′ = {a, b, c′, d′}. Our placement of c′

and d′ – in S(a, b) and on the same side of ab – implies that Q′ is an admissible quadruple
with admissible pair (a, b). We orient Q′ according to Theorem 2. By Theorem 3-part (i), a
point of Q′ and a point of Q are mutually visible (our placement of c′ and d′ together with
Property 1 from the next section imply that part (i) of Theorem 3 holds). If the visibility
is through a real point say b, then we reflect the orientation of a with respect to ab. After
reflection, a and b remain mutually visible, and their wedges cover the entire region S(a, b).
Then we orient every other real vertex of δ towards the one of a and b that sees it. If the
visibility is through a fake point say c′ then the point of Q, say q, that sees c′ also sees b (this
is implied by our placement of c′). In this case we reflect the orientation of b with respect
to ab so that b is mutually visible with q, and a and b together see the entire region S(a, b).
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Then we orient every other real vertex of δ towards the one of a and b that sees it. In either
case we remove fake points. Therefore the mutual visibility graph on points of δ is connected,
and it has a connection to a point in Q via a or b.

The following theorem summarizes our main result.

▶ Theorem 6. For any set of points in the plane and any angle α ⩾ π
2 , there is an α-spanning

tree of length at most 10 times the length of the MST. Furthermore, there is an algorithm
that finds such an α-spanning tree in linear time after construction of the MST.

3 Proof of Theorem 3

In this section we prove Theorem 3 which says: Let Q1 and Q2 be two admissible quadruples.
Assume that wedges of angle π/2 are placed at points of each of Q1 and Q2 according to the
placement in the proof of Theorem 2. Then at least one of the following statements holds

(i) The induced mutual-visibility graph of Q1 ∪Q2 is connected.
(ii) At any point p in S(Q1) ∪ S(Q2) we can place a wedge of angle π/2 such that p is

mutually visible from a point q1 ∈ Q1 and from a point q2 ∈ Q2. In other words the
induced mutual-visibility graph of Q1 ∪Q2 ∪ {p} is connected.

Our proof is involved. For a better understanding we split our proof into smaller pieces
based on the relative position of admissible pairs of Q1 and Q2. Let Q1 = {a, b, c, d} and
Q2 = {a′, b′, c′, d′}. After a suitable relabeling assume that (a, b) and (a′, b′) are the admissible
pairs of Q1 and Q2, respectively, that are considered in the orientation of Theorem 2. Also
assume that – after the orientation of Theorem 2 – c looks towards a while d looks towards
b, and similarly c′ looks towards a′ while d′ looks towards b′ as in Figures 7-13. We use this
notation throughout our proof without further mentioning. Up to symmetry we have the
following four cases:
A. a′b′ intersects ab.
B. The extension of a′b′ intersects the extension of ab.
C. The extension of a′b′ intersects ab.
D. a′b′ is parallel to ab.

After a suitable rotation we assume that ab is horizontal and a is to the left of b. We
denote by ℓ the line through ab and by ℓ′ the line through a′b′ as in Figure 7(a). For a point
x we denote by ℓx the line through x that is perpendicular to ℓ, and denote by ℓ′

x the line
through x that is perpendicular to ℓ. For a line l in the plane we use the terms “above” and
“below” to refer to the two half planes on the two sides of l. If l is vertical then “below” refers
to the left-side half plane and “above” refers to the right-side half plane. Throughout our
proof, we use the following obvious observation about mutual visibility without mentioning
it in all occurrences.

▶ Observation 7. Assume that wedges wp and wq of angles π
2 are placed at two points p and

q. If the clockwise (resp. counterclockwise) boundary ray of wp meets the counterclockwise
(resp. clockwise) boundary ray of wq at an obtuse or a right angle then p and q are mutually
visible. See Figure 6.

p wp qwq

Figure 6 Illustration of Observation 7.
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Some part of our proof (where Q1 and Q2 are separated by a line) could be implied from
Theorem 4. However, for the sake of completeness we provide our own proof. We provide
the proof of the first cases, A and B-1, with more formal details. To simplify our description,
we will refer to the clockwise (resp. counterclockwise) boundary ray of the wedge that is
placed at a point p by “the clockwise (resp. counterclockwise) ray of p”.

α

b′

a′

a b

`′

`

α

`c

`′c′

a b

d

a′

b′

d′

c

`

`′
c′

π-α

π
2
+α

(a) A-1 (b) A-2: c′ below ℓ, c above ℓ′

Figure 7 Illustration of the proof of case A.

A. a′b′ intersects ab

We denote by α the intersection angle of ab and a′b′ that lies in V (Q1)∩V (Q2). We say that
α is defined by the two vertices that lie on this angle. For example in Figure 7(a) the angle
α is defined by a and b′. Depending on the value of α we consider the following two cases.
1. α ⩾ π

2 . After a suitable relabeling we assume that α is defined by a and b′, as in Figure
7(a). In this case the clockwise ray of a and the counterclockwise ray of b′ meet at angle
α, and thus a and b′ are mutually visible by Observation 7.

2. α < π
2 . After a suitable relabeling we assume that α is defined by b and b′, as in Figure

7(b). If c′ is above ℓ then the clockwise ray of a and the counterclockwise ray of c′ meet
at angle π − α, and thus c′ and a are mutually visible by Observation 7. Similarly if
c is below ℓ′ then c and a′ are mutually visible. Assume that c′ is below ℓ and c is
above ℓ′ as in Figure 7(b). If d′ is to the left of ℓc then the clockwise ray of d′ and the
counterclockwise ray of c meet at angle π

2 + α, and thus d′ and c are mutually visible by
Observation 7. Similarly if d is below ℓ′

c′ then d and c′ are mutually visible. Assume that
d′ is to the right of ℓc, and d is above ℓ′

c′ . In this setting which is depicted in Figure 7(b),
d and d′ lie in opposite cones formed by intersection of ℓc and ℓ′

c′ , and thus d and d′ are
mutually visible (observe that the clockwise ray of d and the counterclockwise ray of d′

meet at angle π − α).

B. The extension of a′b′ intersects the extension of ab

Let α be the angle at which the extensions of ab and a′b′ meet each other as in Figures 8 and
9. After a suitable reflection and relabeling we assume that a′b′ lies below ℓ, their extensions
meet at a point m to the right of b, and a′ is farther from m than b′. Depending on the value
of α we consider two cases.

1. α ⩾ π
2 . Depending on visibility regions of Q1 and Q2 we consider three sub-cases (up to

symmetry).
1. V (Q1) lies below ab and V (Q2) lies below a′b′ as in Figure 8(a). In this case the

clockwise ray of a′ and the counterclockwise ray of a meet at angle α, and hence a↔a′

by Observation 7.
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`
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α

α
`a

a′

d
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`′`′

b
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(a) B-1-1 (b) B-1-2: d′ above ℓ, d below ℓ′
d′ (c) B-1-3: d′ below ℓ, d below ℓ′

Figure 8 Illustration of the proof of case B-1.

2. V (Q1) lies below ab and V (Q2) lies above a′b′. See Figure 8(b). If d′ is below ℓ then
the clockwise ray of d′ and the counterclockwise ray of a meet at angle α and hence
a↔d′. Assume that d′ is above ℓ. If d is above ℓ′

d′ then the clockwise ray of d and the
counterclockwise ray of d′ meet at angle 3π

2 − α and thus d↔d′. Assume that d is
below ℓ′

d′ . In this setting which is depicted in Figure 8(b) the clockwise ray of c′ and
the counterclockwise ray of d meet at angle α and thus c′↔d .

3. V (Q1) lies above ab and V (Q2) lies above a′b′. See Figure 8(c). If d′ is above ℓ then
a↔d′. Similarly if d is above ℓ′ then a′↔d. Assume that d′ is below ℓ and d is below
ℓ′. In this setting which is depicted in Figure 8(c) the clockwise ray of d′ and the
counterclockwise ray of d meet at angle α and thus d↔d′ .

α

`d

`′a′

`c

a b

d c

a′

b′

m

a′

α

`′d′

`c

`d

a b

d

c

d′

b′

α

`′a′
`a′

a b

a′

b′

(a) B-2-1: d above ℓ′
a′ , a′ right of ℓd (b) B-2-2: d′ left of ℓd (c) B-2-3: b left of ℓa′

Figure 9 Illustration of the proof of case B-2.

2. α < π
2 . Similar to the previous case here we also consider three sub-cases.

1. V (Q1) lies above ab and V (Q2) lies above a′b′. See Figure 9(a). If d is below ℓ′
a′ then

d and b′ are mutually visible. If a′ is to the left of ℓd then a′ and c are mutually visible.
Assume that d is above ℓ′

a′ and a′ is to the right of ℓd as in Figure 9(a). In this setting
d and a′ are mutually visible.

2. V (Q1) lies above ab and V (Q2) lies below a′b′. If d′ is to the left of ℓd then c↔d′ as
in Figure 9(b). Analogously if d is below ℓ′

d′ then c′↔d. Therefore assume that d′ is
to right of ℓd and d is above ℓ′

d′ . In this setting d↔d′.
3. V (Q1) lies below ab and V (Q2) lies above a′b′. See Figure 9(c). Consider ℓa′ , i.e.,

the line through a′ that is perpendicular to ℓ. If b is to the right of ℓa′ then a′↔ b.
Assume that b is to the left of ℓa′ as in Figure 9(c). Now we look at ℓ′

a′ . If a is above
this line then a↔a′, otherwise a↔b′. (Notice that when a is above ℓ′

a′ then a and b′

may not be mutually visible, for example when b′ is very close to a′.)
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C. The extension of a′b′ intersects ab

We denote by m the intersection point of ℓ′ and ab. After a suitable reflection and relabeling
we assume that a′b′ lies below ℓ, a′ is farther from m than b′, and angle ∠a′ma ⩽ π

2 , as in
Figure 10. Depending on visibility regions of Q1 and Q2 we consider four cases.

m
`′

a b

b′

a′

`a′

b

d

a

c

a′

b′

`′

a b

c

b′

a′

d′ `a′

(a) C-1 (b) C-2: c left of ℓa′ (c) C-2: c below ℓ′

Figure 10 Illustration of the proof of cases C-1 and C-2.

1. V (Q1) lies below ab and V (Q2) lies below a′b′ as in Figure 10(a). In this case a′↔b.
2. V (Q1) lies above ab and V (Q2) lies above a′b′. If c is to the left of ℓa′ then so is d, as in

Figure 10(b). In this case d sees both a′ and b′, and at least one of a′ and b′ sees d, and
thus d↔ a′ or d↔ b′. Assume that c is to the right of ℓa′ . If c is above ℓ′ then c↔ a′.
Thus, assume that c is below ℓ′ as in Figure 10(c). Recall that d′ is in slab S(a′, b′). If d′

is above the horizontal line through c then d′↔b, otherwise d′↔c.

`′

`c

a b

c

d′

a′

b′ `c

`′d′

`′c′

a b

d

c

a′

b′

d′

c′

(a) C-3: d′ left of ℓc (b) C-3: d′ right of ℓc, d below ℓ′
d′

Figure 11 Illustration of the proof of case C-3.

3. V (Q1) lies above ab and V (Q2) lies below a′b′. This case is depicted in Figure 11. If c is
below ℓ′ then c↔a′. Assume that c is above ℓ′. If d′ is to the left of ℓc then c↔d′ as in
Figure 11(a). Assume that d′ is to the right of ℓc (and hence to the right of ℓd). Now we
look at d with respect to ℓ′

d′ . If d is above ℓ′
d′ then d↔d′. If d is below ℓ′

d′ then it is also
below ℓ′

c′ and thus d↔c′ as in Figure 11(b).
4. V (Q1) lies below ab and V (Q2) lies above a′b′. This case is depicted in Figure 12. If d′

is below ℓ then d′↔b. Assume that d′ is above ℓ. If a is below ℓ′
b′ then a↔b′. Assume

that a is above ℓ′
b′ . If c is above ℓ′

d′ then c↔ d′. Assume that c is below ℓ′
d′ (which is

also below ℓ′
c′). Notice that c′ lies in the slab bounded by ℓ′

b′ and ℓ′
d′ . If c′ is to the left
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of ℓc then c′↔c. Assume that c′ is to the right of ℓc. Notice that d lies in the vertical
slab bounded by ℓa and ℓc. Let ℓ1 be the line through c′ parallel to ℓ′. If d is below ℓ1
then d↔c′. Assume that d is above ℓ1. This configuration is depicted in Figure 12 (the
caption of this figure summarizes the constraints). This is the configuration for which
statement (i) of the theorem does not hold; for all other configurations statement (i)
holds. We will show that statement (ii) holds in the current setting.

`′

`
`1

a′

c′

d′

d

b

c

b′

`′b′

`′d′

`c`a

a

Figure 12 Illustration of case C-4: d′ is above ℓ, a is above ℓ′
b′ , c is below ℓ′

d′ , c′ is to the right
of ℓc (and in the slab defined by ℓ′

d′ and ℓ′
b′ ), and d is above ℓ1 (and in the slab defined by ℓa and

ℓc). In this figure, Q1 and Q2 are oriented according to Theorem 2 but there is no mutual visibility
between points of Q1 and points of Q2 (statement (i) in Theorem 3 does not hold here).

First, we extract a property of the current setting which is used in Remark 5. See
Figure 12 for a better understanding of this property, and notice that in the current
setting the points b, c lie on different sides of ℓ′

b′ , and the points a′, d′ lie on different
sides of ℓ.

▶ Property 1. If statement (i) in Theorem 3 does not hold then then the points b, c or
the points a, d of Q1 lie on different sides of a line through boundary rays of wedges of
Q2, and similarly the points b′, c′ or the points a′, d′ of Q2 lie on different sides of a line
through boundary rays of wedges of Q1.

To verify that statement (ii) holds in the current setting, let p be any point in the region
S(Q1) ∪ S(Q2). We show how to place a wedge of angle π

2 at p so that p is mutually
visible from a point in Q1 and a point in Q2. To simplify our description we partition
S(Q1) ∪ S(Q2) into eight regions R1, . . . , R8 as in Figure 13. If p ∈ R1 then we orient
p similar to d′, and thus p↔ b and p↔ b′. If p ∈ R2 then we orient p similar to a, and
thus p↔c and p↔b′. If p ∈ R3 then we orient it similar to c′ so that p↔c and p↔a′. If
p ∈ R4 then we orient it similar to b so that p↔d and p↔a′. If p ∈ R5 then we orient
it similar to b′, and hence p↔ d and p↔ d′. If p ∈ R6 then we orient it similar to c,
and thus p↔a and p↔ d′. If p ∈ R7 then we orient it similar to a′ so that p↔a and
p↔c′. Finally if p ∈ R8 then we orient it similar to d, and hence p↔b and p↔c′. Thus
statement (ii) of the theorem holds.
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Figure 13 Partitioning S(Q1) ∪ S(Q2) into regions R1, . . . , R8.

D. a′b′ is parallel to ab

Assume that ab and a′b′ are horizontal, and ab lies above a′b′. Consider any horizontal line h

between ab and a′b′. One pair of points from Q1 (either (a, b) or (c, d)) covers the half plane
below h. Also, one pair of points from Q2 (either (a′, b′) or (c′, d′)) covers the half plane
above h. One can simply verify that there is an edge between these two pairs in the induced
mutual visibility graph.

This is the end of our proof of Theorem 3.

4 Conclusions

The obvious open problem is to improve our approximation ratio 10 which we think is not
the best possible ratio. The use of a Hamiltonian path is a bottleneck towards our analysis
as it forces a factor of 2 in the ratio. It might be possible to get better ratios by using the
original MST instead of the path. Perhaps the MST may not be the best lower bound either
because one may obtain a better ratio by considering the π

2 -MST as a lower bound.
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Abstract
A directed acyclic graph G = (V, E) is said to be (e, d)-depth robust if for every subset S ⊆ V of
|S| ≤ e nodes the graph G − S still contains a directed path of length d. If the graph is (e, d)-depth-
robust for any e, d such that e + d ≤ (1 − ϵ)|V | then the graph is said to be ϵ-extreme depth-robust.
In the field of cryptography, (extremely) depth-robust graphs with low indegree have found numerous
applications including the design of side-channel resistant Memory-Hard Functions, Proofs of Space
and Replication and in the design of Computationally Relaxed Locally Correctable Codes. In these
applications, it is desirable to ensure the graphs are locally navigable, i.e., there is an efficient
algorithm GetParents running in time polylog |V | which takes as input a node v ∈ V and returns the
set of v’s parents. We give the first explicit construction of locally navigable ϵ-extreme depth-robust
graphs with indegree O(log |V |). Previous constructions of ϵ-extreme depth-robust graphs either
had indegree ω̃(log2 |V |) or were not explicit.
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1 Introduction

A depth-robust graph G = (V, E) is a directed acyclic graph (DAG) which has the property
that for any subset S ⊆ V of at most e nodes the graph G − S contains a directed path of
length d, i.e., there is a directed path P = v0, . . . , vd such that (vi, vi+1) ∈ E for each i < d

and vi ∈ V \ S for each i ≤ d. As an example the complete DAG KN = (V = [N ], E =
{(i, j) : 1 ≤ i < j ≤ n} has the property that it is (e, d)-depth-robust for any integers e, d

such that e + d ≤ N . Depth-robust graphs have found many applications in cryptography
including the design of data-independent Memory-Hard Functions (e.g.,[1, 3]), Proofs of
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Space [9], Proofs of Replication [15, 11] and Computationally Relaxed Locally Correctable
Codes [7]. In many of these applications it is desirable to construct depth-robust graphs with
low-indegree (e.g., indeg(G) = O(1) or indeg(G) = O(log N)) and we also require that the
graphs are locally navigable, i.e., given any node v ∈ V = [N ] there is an efficient algorithm
GetParents(v) which returns the set {u : (u, v) ∈ E} containing all of v’s parent nodes in time
O(polylog N). It is also desirable that the graph is (e, d)-depth robust for e, d as large as
possible, e.g., the cumulative pebbling cost of a graph can be lower bounded by the product
ed and in the context of Memory-Hard Functions we would like to ensure that the cumulative
pebbling cost is as large as possible [5, 3]. Some cryptographic constructions rely on an even
stronger notion called ϵ-extreme depth-robust graphs G = (V, E) which have the property of
being (e, d)-depth-robust for any integers e, d such that e + d ≤ (1 − ϵ)N , e.g., see [15, 14].

Erdös, Graham, and Szemeredi [10] gave a randomized construction of (e, d)-depth-robust
graphs with e, d = Ω(N) and maximum indegree O(log N). Alwen, Blocki, and Harsha [2]
modified this construction to obtain a locally navigable construction of (e, d)-depth-robust
graphs with constant indegree 2 for e = Ω(N/ log N) and d = Ω(N). For any constant
ϵ > 0, Schnitger [17] constructed (e = Ω(N), d = Ω(N1−ϵ))-depth-robust graphs with
constant indegree – the indegree indeg(G) does increase as ϵ gets smaller. These results are
essentially tight as any DAG G which is

(
N ·i·indeg(G)

log N , N
2i

)
-reducible1 for any i ≥ 1 [1, 18].

If indeg(G) = o(log N) then the graph cannot be (e, d)-depth robust with e, d = Ω(N) and
similarly if indeg(G) = Θ(1) plugging in i = O(log log N) demonstrates that G cannot be
(e = ω(N log log N/ log N), d = ω(N))-depth-robust.

Explicit Depth-Robust Graphs

All of the above constructions are randomized and do not yield explicit constructions of
depth-robust graphs. For example, the DRSample construction of [2] actually describes a
randomized distribution over graphs and proves that a graph sampled from the distribution
is (e, d)-depth-robust with high probability. Testing whether a graph is actually (e, d)-depth-
robust is computationally intractable [8, 6] so we cannot say that a particular sampled graph
is depth-robust with 100% certainty. In fact, it might be possible for a dishonest party to
build a graph G = (V, E) which looks like an honestly sampled depth-robust graph but
actually contains a small (secret) depth-reducing set S ⊆ V , i.e., such that G − S does not
contain any long paths. Thus, in many cryptographic applications one must assume that the
underlying depth-robust graphs were generated honestly.

Li [13] recently gave an explicit construction of constant-indegree depth-robust graphs,
i.e., for any ϵ > 0, Li constructs a family of graphs {GN,ϵ} such that each GN,ϵ has N nodes,
constant indegree, and is (Ω(N1−ϵ), Ω(N1−ϵ))-depth-robust. The construction of Li [13] is
also locally navigable, but the graphs are not as depth-robust as we would like. Mahmoody,
Moran, and Vadhan [14] gave an explicit construction of an ϵ-extreme depth-robust graph
for any constant ϵ > 0 using the Zig-Zag Graph Product constructions of [16]. However, the
maximum indegree is as large as indeg(G) ≤ log3 N . Alwen, Blocki, and Pietrzak [4] gave a
tighter analysis of [10] showing that the randomized construction of [10] yields ϵ-extreme
depth-robust graphs with indeg(G) = O(log N) although their randomized construction is
not explicit nor was the graph shown to be locally navigable.

1 If a DAG G is not (e, d)-depth-robust we say that it is (e, d)-reducible, i.e., there exists some set S ⊆ V
of size e such that G − S contains no directed path of length d.
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1.1 Our Contributions
We give explicit constructions of ϵ-extreme depth-robust graphs with maximum indegree
O(log N) for any constant ϵ > 0 and we also give explicit constructions of (e = Ω(N/ log N),
d = Ω(N))-depth-robust graphs with maximum indegree 2. Both constructions are explicit
and locally navigable. In fact, our explicit constructions also satisfy a stronger property
of being δ-local expanders. A δ-local expander is a directed acyclic graph G which has
the following property: for any r, v ≥ 0 and any subsets X ⊆ A = [v, v + r − 1] and
Y ⊆ B = [v + r, v + 2r − 1] of at least |X|, |Y | ≥ δr nodes the graph G contains an edge (x, y)
with x ∈ X and y ∈ Y . We remark that the construction of Computationally Relaxed Locally
Correctable Codes [7] relies on a family of δ-local expanders which is a strictly stronger
property than depth-robustness – for any ϵ > 0, there exists a constant δ > 0 such that any
δ-local expander automatically becomes ϵ-extreme depth-robust [4].

1.2 Our Techniques
We first provide explicit, locally navigable, constructions of δ-bipartite expander graphs
with constant indegree for any constant δ > 0. A bipartite graph G = ((A, B), E) with
|A| = |B| = N is a δ-bipartite expander if for any X ⊆ A and Y ⊆ B of size |X|, |Y | ≥ δN the
bipartite graph G contains at least one edge (x, y) ∈ E with x ∈ X and y ∈ Y . The notion of
a δ-bipartite expander is related to, but distinct from, classical notions of a graph expansion,
e.g., we say that G is an (N, k, d)-expander if indeg(G) ≤ k and for every subset X ⊆ A (resp.
Y ⊆ B) we have |N(X)| ≥ (1 + d − d|X|/N)|X| (resp. |N(Y )| ≥ (1 + d − d|Y |/N)|Y |), where
N(X) is defined to be all of the neighbors of X, i.e., N(X) .= {y ∈ B : ∃x ∈ X s.t. (x, y) ∈ E}.
(Notation: We use N(X) (resp. N) to denote the neighbors of nodes in X (resp. number of
nodes in a graph/bipartition).) Erdös, Graham, and Szemeredi [10] argued that a random
degree kδ bipartite graph will be a δ-bipartite expander with non-zero probability where the
constant kδ depends only on δ. As a building block, we rely on an explicit, locally navigable,
construction of (n = m2, k = 5, d = (2 −

√
3)/4)-expander graphs for any integer m due to

Gabber and Galil [12]. For any constant δ > 0 we show how any (N, k, d)-expander graph
G with d < 0.5 and k = Θ(1) can be converted into a δ-bipartite expander graph G′ with
N nodes and maximum indegree indeg(G′) = Θ(1). Intuitively, the construction works by
“layering” ℓ = Θ(1) copies of the (N, k, d)-expander graphs and then “compressing” the layers
to obtain a bipartite graph G′ with maximum indegree k′ ≤ kℓ – paths from the bottom
layer to the top layer are compressed to individual edges.

The depth-robust graph construction of Erdös et al. [10] uses δ-bipartite expanders as a
building block. By swapping out the randomized (non-explicit) construction of δ-bipartite
expanders with our explicit and locally navigable construction, we obtain a family of explicit
and locally navigable depth-robust graphs. Furthermore, for any ϵ > 0 we can apply the
analysis of Alwen et al. [4] to obtain explicit constructions of ϵ-extreme depth-robust graphs
by selecting the constant δ > 0 accordingly. Finally, we can apply a standard indegree
reduction gadget of Alwen et al. [3] to obtain an (e = N/ log N, d = Ω(N))-depth-robust
graph with indegree 2.

2 Preliminaries

We use [N ] = {1, . . . , N} to denote the set of all integers between 1 and N and we typically
use V = [N ] to denote the set of nodes in our graph. It is often convenient to assume that
N = 2n is a power of 2. Given a graph G = (V = [N ], E) and a subset S ⊆ [N ] we use G−S to
denote the graph obtained by deleting all nodes in S and removing any incident edges. Fixing
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a directed graph G = (V = [N ], E) and a node v ∈ V , we use parents(v) = {u : (u, v) ∈ E}
to denote the parents of node v and we let indeg(G) = maxv∈[N ] |parents(v)| denote the
maximum indegree of any node in G. We say a DAG G is (e, d)-reducible if there exists a
subset S ⊆ [N ] of |S| ≤ e nodes such that G − S contains no directed path of length d. If G

is not (e, d)-reducible we say that G is (e, d)-depth-robust.
We introduce the notion of a δ-bipartite expander graph where the concept was first

introduced by [10] and used as a building block to construct depth-robust graphs. Note
that the specific name “δ-bipartite expander” was not used in [10]. We follow the notation
of [2, 4].

▶ Definition 1. A directed bipartite graph G = ((A, B), E) with |A| = |B| = N is called
a δ-bipartite expander if and only if for any subset X ⊆ A, Y ⊆ B of size |X| ≥ δN and
|Y | ≥ δN there exists an edge between X and Y .

▶ Remark 2. Observe that if G = ((A, B), E) is a δ-bipartite expander then for any subset
X ⊆ A with |X| ≥ δN we must have |N(X)| > (1 − δ)N where N(X) = {y ∈ B : ∃x ∈
X s.t. (x, y) ∈ E} denotes the neighbors of X. If this were not the case then we could take
Y = B \ N(X) and we have |Y | ≥ δN and, by definition of Y , we have no edges between X

and Y contradicting the assumption that G is a δ-bipartite expander.

▶ Definition 3. A directed bipartite graph G = ((A, B), E) with |A| = |B| = N is called
an (N, k, d)-expander if |E| ≤ kN and for every subset X ⊆ A (resp. Y ⊆ B) we have
|N(X)| ≥

[
1 + d

(
1 − |X|

N

)]
|X| (resp. |N(Y )| ≥

[
1 + d

(
1 − |Y |

N

)]
|Y |) where N(X) = {y ∈

B : ∃x ∈ X s.t. (x, y) ∈ E} (resp. N(Y ) = {x ∈ A : ∃y ∈ B s.t. (x, y) ∈ E}).

Gabber and Galil [12] gave explicit constructions of (N = m2, k = 5, d = (2 −
√

3)/5)-
expanders. Lemma 4 highlights the relationship between δ-bipartite expanders and the more
classical notion of (N, k, d)-expanders.

▶ Lemma 4. Let 0 < d < 1 and let δ = (d+2)−
√

d2+4
2d . If a directed bipartite graph

G = ((A, B), E) with |A| = |B| = N is an (N, k, d)-expander for d < 1 then G is a δ-bipartite
expander.

Proof. Consider an arbitrary subset X ⊆ A with |X| ≥ δN and let Y = B \ N(X). We want
to argue that |Y | < δN or equivalently |N(X)| > (1−δ)N . Without loss of generality, we may
assume that |X| < N (otherwise we have N(X) = B since |N(X)| ≥ (1 + d(1 − |X|/N))|X| =
|X| = N). Since G is an (N, k, d)-expander, we have that |N(X)| ≥

[
1 + d

(
1 − |X|

N

)]
|X| =

− d
N |X|2 + (d + 1)|X|. Hence, for N > |X| ≥ δN , we have that

|N(X)| ≥ − d

N
|X|2 + (d + 1)|X|

> − d

N
(δN)2 + (d + 1)δN

≥ (1 − δ)N,

where the middle inequality follows from the observation that when d < 1, the function
f(x) = − d

N x2 + (d + 1)x is an increasing function over the range 0 ≤ x ≤ N and the last
inequality follows from the choice of δ = (d+2)−

√
d2+4

2d since d ≥ 1−2δ
δ−δ2 . Now fixing an arbitrary

subset Y ⊆ B with |Y | ≥ δN and setting X = A \ N(Y ), a symmetric argument shows that
|X| < δN . Thus, G is a δ-bipartite expander. ◀
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3 Explicit Constructions of δ-Bipartite Expanders

In this section, we give an explicit (locally navigable) construction of a δ-bipartite expander
graph for any constant δ > 0. As a building block, we start with an explicit construction
of (N = m2, k = 5, d = (2 −

√
3)/4)-expander due to Gabber and Galil [12]. Applying

Lemma 4 above this gives us a δ-bipartite expander with δ ≈ 0.492 whenever N = m2. To
construct depth-robust graphs we need to construct δ-bipartite expanders for much smaller
values of δ and for arbitrary values of N , i.e., not just when N = m2 is a perfect square.
We overcome the first challenge by layering the (N = m2, k, d)-expanders of [12] to obtain
δ-bipartite expanders for arbitrary constants δ > 0 – the indegree increases as δ approaches
0. We overcome the second issues simply by truncating the graph, i.e., if G is a δ/2-bipartite
expander with 2N nodes then we can discard up to N/2 sources and N/2 sinks and the
remaining graph will still be a δ-expander.

3.1 Truncation
By layering the (N, k, d)-expanders of Gabber and Galil [12] we are able to obtain a family
{Gm,δ}∞

m=1 of δ-bipartite expanders for any constant δ > 0 such that Gm has N = m2

nodes on each side of the bipartition and constant indegree. However, our constructions of
depth-robust graphs will require us to obtain a family {HN,δ}∞

N=1 of δ-bipartite expanders
such that HN,δ has N nodes on each side of the bipartition and constant indegree. In
this section, we show how the family {HN,δ}∞

N=1 can be constructed by truncating graphs
from the family {Gm,δ}∞

m=1. Furthermore, if the construction of Gm,δ is explicit and locally
navigable then so is HN,δ.

For each N we define m(N) := minm:m2≥N to be the smallest positive integer m such
that m2 ≥ N . We first observe that for all integers N ≥ 1 we have m(N)2 ≥ N ≥ m(N)2/2.

▷ Claim 5. For all N ≥ 1 we have m(N)2 ≥ N ≥ m(N)2/2.

Proof. The fact that m(N)2 ≥ N follows immediately from the definition of m(N). For the
second part it is equivalent to show that m(N)2/N ≤ 2 for all N ≥ 1. The ratio m(N)2/N

is maximized when N = (m − 1)2 + 1 for some m ≥ 1. Thus, it suffices to show that
m2

(m−1)2+1 ≤ 2 for all m ≥ 1 or equivalently 1+ 2(m−1)
(m−1)2+1 ≤ 2. The function f(m) = 2(m−1)

(m−1)2+1

is maximized at m = 2 in which case f(2) = 1. For all m ≥ 2 we have 1 + 2(m−1)
(m−1)2+1 ≤ 2 and

when m = 1 we have 1 + 2(m−1)
(m−1)2+1 = 1 ≤ 2 so the claim follows. ◁

Suppose that for any constant δ > 0 we are given an explicit locally navigable fam-
ily {Gm,δ}∞

m=1 of δ-bipartite expanders with Gm,δ = ((Am,δ = {X1, . . . , Xm2}, Bm,δ =
{Y1, . . . , Ym2}), Em,δ) with edge set Em,δ = {(Xi, Yj) : i ∈ GetParents(m, δ, j) ∧
j ≤ m2} defined by an algorithm GetParents(m, δ, j). We now define the algorithm
GetParentsTrunc(N, δ, j) = GetParents(m(N), δ/2, j) ∩ {1, . . . , N} and we define Hm,δ =
((A′

N,δ = {a1, . . . , aN }, B′
N,δ = {b1, . . . , bN }), E′

N,δ) with edge set E′
N,δ = {(ai, bj) : i ∈

GetParentsTrunc(N, δ, j) ∧ j ≤ N}. Intuitively, we start with a δ/2-bipartite expander Gm,δ/2
with N ′ = m(N)2 nodes on each side of the partition and drop N ′ − N ≤ N ′/2 nodes from
each side of the bipartition to obtain Hm,δ. Clearly, if GetParents can be evaluated in time
O(polylog m) then GetParentsTrunc can be evaluated in time O(polylog N). Thus, the family
{HN,δ}∞

N=1 is explicit and locally navigable. Finally, we claim that Hm,δ is a δ-bipartite
expander.

▶ Lemma 6. Assuming that Gm,δ is a δ-bipartite expander for each m ≥ 1 and δ > 0, the
graph Hm,δ is a δ-bipartite expander for each m ≥ 1 and δ > 0.
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Proof. Consider two sets X ⊆ {1, . . . , N} and Y ⊆ {1, . . . , N} and set m = m(N). If
|X| ≥ δN and |Y | ≥ δN then by Claim 5 we have |X| ≥ (δ/2)m2 and |Y | ≥ (δ/2)m2.
Thus, since Gm,δ/2 is a δ/2-bipartite expander and X, Y ⊆ {1, . . . , m2} there must be
some pair (i, j) ∈ X × Y with i ∈ GetParents(m, δ/2, j). Since i ≤ N we also have i ∈
GetParentsTrunc(N, δ, j) = [N ] ∩ GetParents(m, δ/2, j). Thus, the edge (ai, bj) still exists in
the truncated graph Hm,δ. It follows that Hm,δ is a δ-bipartite expander. ◀

In the remainder of this section, we will focus on constructing Gm,δ. In the next subsection,
we first review the construction of (N = m2, k = 5, d = (2 −

√
3)/4)-expanders due to Gabber

and Galil [12].

3.2 Explicit (N, k, d)-Expander Graphs
Let Pm

.= {0, 1, . . . , m − 1} × {0, 1, . . . , m − 1} be the set of pairs of integers (x, y) with
0 ≤ x, y ≤ m − 1. We can now define the family of bipartite graphs Gm = ((Am, Bm), Em)
where Am = {Xi,j = (i, j) : (i, j) ∈ Pm} and B = {Yi,j = (i, j) : (i, j) ∈ Pm}. The edge set
Em is defined using the following 5 permuatations on Pm:

σ0(x, y) = (x, y),
σ1(x, y) = (x, x + y),
σ2(x, y) = (x, x + y + 1),
σ3(x, y) = (x + y, y),
σ4(x, y) = (x + y + 1, y),

where the operation + is modulo m. Now we can define the edge set Em as

Em = {(Xi′,j′ , Yi,j) : ∃ 0 ≤ k ≤ 4 such that σk(i′, j′) = (i, j)}.

Gabber and Galil [12] proved that the graph Gm is a (N, k, d)-expander with N = m2

nodes on each side of the biparition (Am / Bm), k = 5, and d = (2 −
√

3)/4.
It will be convenient to encode nodes using integers between 1 and N = m2 instead

of pairs in Pm. define PairToIntm(x, y) = xm + y + 1, a bijective function mapping
pairs (x, y) ∈ {0, 1, . . . , m − 1} × {0, 1, . . . , m − 1} to integers {1, . . . , m2} along with the
inverse mapping IntToPairm(z) =

(
⌊ z−1

m ⌋, (z − 1) mod m
)
. We can then redefine the

permutations over the set {1, . . . , m2} as follows σ′
j(z) = PairToIntm (σj (IntToPairm(z)))

and we can (equivalently) redefine Gm = ((Am, Bm), Em) where Am = {X1, . . . , Xm2},
Bm = {Y1, . . . , Ym2} and Em = {(Xi, Yj) : 1 ≤ j ≤ m2 ∧ i ∈ GetParentsGG(m, j)}. Here,
GetParentsGG(m, j) = {σ′

0(j), σ′
1(j), σ′

2(j), σ′
3(j), σ′

4(j)}.

3.3 Amplification via Layering
Given that we have constructed explicit δ-bipartite expanders with constant indegree
for a fixed δ > 0, we will construct explicit δ-bipartite expanders with constant in-
degree for any arbitrarily small δ > 0. The construction is recursive. As our base
case we define G0

m = Gm = ((Am, Bm), Em) where Am = {X1, . . . , Xm2}, Bm =
{Y1, . . . , Ym2} and Em = {(Xi, Yj) : 1 ≤ j ≤ m2 ∧ i ∈ GetParentsGG(m, j)}
as the (N = m2, k = 5, d = (2 −

√
3)/4)-expander of Gabber and Galil [12]

and we define GetParentsLayered1(m, j) = GetParentsGG(m, j). We can then define
Gi+1

m = ((Am, Bm), Ei+1
m ) where Am = {X1, . . . , Xm2}, Bm = {Y1, . . . , Ym2} and

Ei+1
m = {(Xi, Yj) : 1 ≤ j ≤ m2 ∧ i ∈ GetParentsLayeredi+1(m, j)} where
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GetParentsLayeredi+1(m, j) =
⋃

j′∈GetParentsGG(m,j) GetParentsLayeredi(m, j′). Intuitively, we
can form the graph Gi

m by stacking i copies of the graph Gm and forming a new bipartite
graph by collapsing all of the intermediate layers. See Figure 1 for an illustration.

· · ·

· · ·

O

I

k edges

(a)

· · ·

· · ·

· · ·

· · ·

· · ·

Oℓ

Oℓ−1 = Iℓ

...

O2 = I3

O1 = I2

I1

(b)

· · ·

· · ·

Oℓ

I1

(c)

Figure 1 (a) One copy of an (N, k, d)-expander. Here, we remark that each input node has
exactly k edges such that the total number of edges is kN . (b) Stack the graph ℓ times to get a
graph with (ℓ + 1) layers. The snaked edges from the third to ℓth layer indicates that there are
connected paths between the nodes. (c) Generate a new bipartite graph by collapsing all of the
intermediate layers. A node u on the bottom layer I1 has an edge to a node v on the top layer Oℓ if
and only if there is a path in the original graph.

We note that
∣∣GetParentsLayeredi+1(m, j)

∣∣ ≤ k ×
∣∣GetParentsLayeredi(m, j)

∣∣ ≤ ki+1. The-
orem 7 tells us that amplification by layering yields a δ-bipartite expander. In particular,
there is a constant Lδ such that Gi

m is a δ-bipartite expander whenever i ≥ Lδ. By our
previous observation this graph has indegree at most kLδ which is a constant since k and Lδ

are both constants.

▶ Theorem 7. For any constant δ > 0, there exists a constant Lδ such that for any i ≥ Lδ

the graph Gi
m is a δ-bipartite expander with N = m2 nodes on each side of the partition.

Proof. Fix any subset Y 0 ⊆ [N ] of size |Y 0| ≥ δN . Let Y 1 .=⋃
j∈Y 0 GetParentsGG(m, j), and recursively define Y i+1 .=

⋃
j∈Y i GetParentsGG(m, j). Since

Y i =
⋃

j∈Y 0 GetParentsLayeredi(m, j), it suffices to argue that |Y i| > (1 − δ)N whenever
i ≥ Lδ

.=
⌈

log((1−δ)/δ)
log(1+dδ)

⌉
+ 1. To see this, we note that for each i ≥ 0, either

(1) |Y i| has already reached the target size (1 − δ)N , or
(2) |Y i+1| ≥

[
1 + d

(
1 − |Y i|

N

)]
|Y i| ≥ (1 + dδ)|Y i| since GetParentsGG defines an (N, k, d)-

expander.
It follows that |Y i+1| ≥ min{(1 − δ)N, (1 + dδ)iδN}. Now we want to find i such that
(1 + dδ)iδN = (1 − δ)N ; solving the equation we have i = log((1−δ)/δ)

log(1+dδ) . Thus, for i = Lδ − 1
we have |Y i| ≥ (1 − δ)N and for i ≥ Lδ we have |Y i| > (1 − δ)N . Thus, for i ≥ Lδ the graph
Gi

m is a δ-bipartite expander, i.e., for any subsets X, Y ⊆ [N ] of size |X| ≥ δN = δm2 we
must have

∣∣∣X ∩
⋃

j∈Y GetParentsLayeredi(m, j)
∣∣∣ > 0 as long as i ≥ Lδ. ◀
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3.4 Final Construction of δ-Bipartite Expanders

Based on the proof of Theorem 7, we can define Lδ
.=

⌈
log((1−δ)/δ)

log(1+dδ)

⌉
+ 1, Gm,δ

.= GLδ
m ,

and obtain HN,δ by truncating the graph Gm(N),δ/2. The edges are defined by the
procedure GetParentsBE(N, δ, j) .= [N ] ∩ GetParentsLayeredLδ/2(m(N), j) – the proced-
ure GetParentsBE is short for “Get Parents Bipartite Expander”. Formally, we have
HN,δ = ((AN = {a1, . . . , aN }, BN = {b1, . . . , bN }), EN,δ) where EN,δ = {(ai, bj) : i ∈
GetParentsBE(N, δ, j)}.

▶ Corollary 8. Fix any constant δ > 0 and define Lδ =
⌈

log((1−δ)/δ)
log(1+dδ)

⌉
+1. The graph GLδ

m is a
δ-bipartite expander and the graph HN,δ is a δ-bipartite expander for any integers m, N ≥ 1.

Proof. By Theorem 7 GLδ
m is a δ-bipartite expander. To see that HN,δ is a δ-bipartite

expander we simply note that Gm(N),δ/2 is a δ/2-bipartite expander and apply Lemma 6. ◀

4 Explicit Constructions of Depth Robust Graphs

We are now ready to present our explicit construction of a depth-robust graph. For any
N = 2n we define the graph G(δ, N) = ([N ], E(δ, N)) with edge set E(δ, N) = {(u, v) : v ∈
[N ] ∧ u ∈ GetParentsEGS(δ, v, N)}. The procedure GetParentsEGS(δ, v, N) to compute the
edges of G(δ, N) relies on the procedure GetParentsBE which computes the edges of our
underlying bipartite expander graphs. We remark that our construction is virtually identical
to the construction of [10] except that the underlying bipartite expanders are replaced with
our explicit constructions from the last section.

Algorithm 1 GetParentsEGS(δ, v, N).

1: procedure GetParentsEGS(δ, v, N)
2: P = {v − 4n, ..., v − 1}
3: for t = 1 to ⌈log2 v⌉ do
4: m = ⌊v/2t⌋
5: x = v mod 2t

6: B = GetParentsBE(2t, Lδ/5, x + 1)
7: for y ∈ B do
8: P = P ∪ {(m − i)2t + y : 1 ≤ i ≤ min{m, 10}}
9: return P ∩ {1, ..., N}

Note that for any constant δ > 0 and any integer n ≥ 1, the graph G(δ, N) defined by
GetParentsEGS(δ, ·, N) has N = 2n nodes and maximum indeg indeg(G(δ, N)) = O(n) =
O(log N).

Erdös, Graham, and Szemeredi [10] showed that the graph G(δ, N) is a δ-local expander
as long as the underlying bipartite graphs are δ/5-bipartite expanders.

▶ Theorem 9 ([10]). For any δ > 0 the graph G(δ, N) is a δ-local expander.

Theorem 10 says that any δ-local expander is also (e, d = N − e 1+γ
1−γ )-depth-robust for

any constant γ > 2δ. The statement of Theorem 10 is implicit in the analysis of Alwen et al.
[4]. We include the proof for completeness.

▶ Theorem 10. Let 0 < δ < 1/4 be a constant and let γ > 2δ. Any δ-local expander on N

nodes is (e, d = N − e 1+γ
1−γ )-depth-robust for any e ≤ N .
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Proof. Let G be a δ-local expander with δ < 1/4 and γ > 2δ and let S ⊆ [N ] denote an
arbitrary subset of size |S| = e. To show that G − S has a path of length d = N − e 1+γ

1−γ we
rely on two lemmas (Lemma 11, Lemma 12) due to Alwen et al. [4]. We first introduce the
notion of a γ-good node. A node x ∈ [N ] is γ-good under a subset S ⊆ [N ] if for all r > 0
we have |Ir(x)\S| ≥ γ|Ir(x)| and |I∗

r (x)\S| ≥ γ|I∗
r (x)|, where Ir(x) = {x − r − 1, ..., x} and

I∗
r (x) = {x + 1, ..., x + r}.

▶ Lemma 11 ([4, 10]). Let G = (V = [N ], E) be a δ-local expander and let x < y ∈ [N ] both
be γ-good under S ⊆ [N ] then if δ < min(γ/2, 1/4) then there is a directed path from node x

to node y in G − S.

▶ Lemma 12 ([4]). For any DAG G = ([N ], E) and any subset S ⊆ [N ] of nodes at least
N − |S| 1+γ

1−γ of the remaining nodes in G are γ-good with respect to S.

Applying Lemma 12 at least d = N − e 1+γ
1−γ nodes v1, . . . , vd are γ-good with respect to S.

Without loss of generality, we can assume that v1 < v2 < . . . < vd. Applying Lemma 11 for
each i ≤ d, there is a directed path from vi to vi+1 in G − S. Concatenating all of these
paths we obtain one long directed path containing all of the nodes v1, . . . , vd. Thus, G − S

contains a directed path of length d = N − e 1+γ
1−γ . ◀

As an immediate corollary of Theorem 9 and Theorem 10 we have

▶ Corollary 13. Let 0 < δ < 1/4 be a constant and let γ > 2δ then the graph G(δ, N) is
(e, d = N − e 1+γ

1−γ )-depth-robust for any e ≤ N .

4.1 Explicit Extreme Depth-Robust Graphs
We also obtain explicit constructions of ϵ-extreme depth-robust graphs which have found
applications in constructing Proofs of Space and Replication [15], Proofs of Sequential
Work [14], and in constructions of Memory-Hard Functions [4].

▶ Definition 14 ([4]). For any constant ϵ > 0, a DAG G with N nodes is ϵ-extreme
depth-robust if and only if G is (e, d)-depth-robust for any e + d ≤ (1 − ϵ)N .

When we set δϵ appropriately the graph G(δϵ, N = 2n) is ϵ-extremely depth robust.

▶ Corollary 15. Given any constant ϵ > 0 we define δϵ to be the unique value such that
1 + ϵ = 1+2.1δϵ

1−2.1δϵ
if ϵ ≤ 1/3 and δϵ = δ1/3 for ϵ > 1/3. For any integer n ≥ 1 the graph

G(δϵ, N = 2n) is ϵ-extreme depth robust.

Proof. Set γ = 2.1δϵ and observe that δ1/3 ≤ 0.07 ≤ 1/4 and for ϵ < 1/3 we have
δϵ ≤ δ1/3 ≤ 1/4 so we can apply Corollary 13 to see that G(δϵ, N = 2n) is (e, d = N−e 1+2.1δϵ

1−2.1δϵ
)-

depth robust for any e ≤ N . Since 1+2.1δϵ

1−2.1δϵ
= (1 + ϵ) it follows that the graph is ϵ-extreme

depth robust. ◀

4.2 Depth-Robust Graphs with Constant Indegree
In some applications it is desirable to ensure that our depth-robust graphs have constant
indegree. We observe that we can apply a result of Alwen et al. [3] to transform the
DAG G(δ, N) = (V = [N ], E(δ, N)) with maximum indegree β = βδ,N into a new DAG
Hδ,N = ([N ] × [β], E′(δ, N)) with N ′ = 2Nβ nodes and maximum indegree 2. Intuitively,
the transformation reduces the indegree by replacing every node v ∈ [N ] from G(δ, N) with a
path of 2β nodes (v, 1), . . . , (v, 2β) and distributing the incoming edges accross this path. In

STACS 2022



14:10 On Explicit Constructions of Extremely Depth Robust Graphs

particular, if v has incoming edges from nodes v1, . . . , vβ in G(δ, N) then for each i ≤ β we
will add an edge from the node (vi, 2β) to the node (v, i). This ensures that each node (v, i)
has at most two incoming edges. Formally, the algorithm GetParentsLowIndeg(δ, v′, N) takes
as input a node v′ = (v, i) and (1) initializes P ′ = {(v, i − 1)} if i > 1, P ′ = {(v − 1, 2β)} if
i = 1 and v > 1 and P ′ = {} otherwise, (2) computes P = GetParentsEGS(δ, v, N), (3) sets
u = P [i] to be the ith node in the set P , and (4) returns P ′ ∪ {(u, 2β)}. It is easy to verify
that the algorithm GetParentsLowIndeg runs in time polylog N .

▶ Corollary 16. Let 0 < δ < 1/4 be a constant and let γ > 2δ then the graph Hδ,N is
(e, d = Nβ − eβ 1+γ

1−γ ) depth-robust for any e ≤ N .

Proof. (Sketch) Alwen et al. [3] showed that applying the indegree reduction procedure above
to any (e, d)-depth-robust graph with maximum indegree β yields a (e, dβ)-depth-robust
graph. The claim now follows directly from Theorem 9 and Theorem 10. ◀

5 Conclusion

We give the first explicit construction of ϵ-extreme depth-robust graphs G = (V = [N ], E)
with indegree O(log N) which are locally navigable. Applying an indegree reduction gadget
of Alwen et al. [3] we also obtain the first explicit and locally navigable construction of
(Ω(N/ log N), Ω(N))-depth-robust graphs with constant indegree. Our current constructions
are primarily of theoretical interest and we stress that we make no claims about the practicality
of the constructions as the constants hidden by the asymptotic notation are large. Finding
explicit and locally navigable constructions of (c1N/ log N, c2N)-depth-robust graphs with
small indegree for reasonably large constants c1, c2 > 0 is an interesting and open research
challenge. Similarly, finding explicit and locally navigable constructions of ϵ-extreme depth-
robust graphs G = (V = [N ], E) with indegree cϵ log N for smaller constants cϵ remains an
important open challenge.
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Abstract
We investigate the complexity of finding a transformation from a given spanning tree in a graph to
another given spanning tree in the same graph via a sequence of edge flips. The exchange property
of the matroid bases immediately yields that such a transformation always exists if we have no
constraints on spanning trees. In this paper, we wish to find a transformation which passes through
only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or
the diameter of spanning trees, and we give the following results. The problem with a lower bound
on maximum degree is solvable in polynomial time, while the problem with an upper bound on
maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard,
while the problem with an upper bound on diameter is solvable in polynomial time.
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15:2 Spanning Tree Reconfiguration

(a) Ts = T0 (b) T1 (c) T2 = Tt

Figure 1 A reconfiguration sequence from Ts to Tt (with no constraint on spanning trees). There
is no reconfiguration sequence from Ts to Tt if we restrict spanning trees either with maximum degree
at least three or with diameter at most two.

1 Introduction

Given an instance of some combinatorial search problem and two of its feasible solutions, a
reconfiguration problem asks whether one solution can be transformed into the other in a
step-by-step fashion, such that each intermediate solution is also feasible. Reconfiguration
problems capture dynamic situations, where some solution is in place and we would like
to move to a desired alternative solution without becoming infeasible. A systematic study
of the complexity of reconfiguration problems was initiated in [14]. Recently the topic has
gained a lot of attention in the context of CSP and graph problems, such as the independent
set problem, the matching problem, and the dominating set problem. For an overview of
recent results on reconfiguration problems, the reader is referred to the surveys of van den
Heuvel [11] and Nishimura [17].

In this paper, our reference problem is the spanning tree problem. Let G = (V, E) be
a connected graph on n vertices. A spanning tree of G is a subgraph of G which is a tree
(connected acyclic subgraph) and includes all the vertices in G. Spanning trees naturally
arise in various situations such as routing or discrete geometry. In order to define a valid
step-by-step transformation, an adjacency relation on the set of feasible solutions is needed.
Let T1 and T2 be two spanning trees of G. We say that T1 and T2 are adjacent by an edge
flip if there exist e1 ∈ E(T1) and e2 ∈ E(T2) such that E(T2) = (E(T1) \ {e1}) ∪ {e2}. For
two spanning trees Ts and Tt of G, a reconfiguration sequence (or simply a transformation)
from Ts to Tt is a sequence of spanning trees ⟨T0 := Ts, T1, . . . , Tℓ := Tt⟩ such that two
consecutive spanning trees are adjacent. Ito et al. [14] remarked that any spanning tree can
be transformed into any other via a sequence of edge flips, which easily follows from the
exchange property of the matroid bases.

In practice, we often need that spanning trees satisfy some additional desirable properties.
Even if finding a spanning tree can be done in polynomial time, the problem becomes often
NP-complete when additional constraints are added. In this paper, we consider spanning tree
reconfiguration with additional constraints. More formally, we study the following questions:
1) does a transformation always exist when we add some constraints on the spanning trees all
along the transformation? 2) If not, is it possible to decide efficiently if such a transformation
exists? This question was already studied for spanning trees with restrictions on the number
of leaves [2] or vertex modification between Steiner trees [16] for instance. If the answer to
the first question is positive, it means that we can sample uniformly at random constrained
spanning trees via a simple Monte Carlo Markov Chain. When the answer is negative, we
might still want to find a transformation if possible between a fixed pair of solutions, for
instance for updating a routing protocol in a network step by step without breaking the
network and not over-requesting nodes during the transformation.

In this paper, we study Reconfiguration of Spanning Trees (RST) with degree
constraints or with diameter constraints (See Figure 1.) We first describe the problem with
degree constraints.
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RST with Small (resp. Large) Maximum Degree
Input: A graph G, a positive integer d, and two spanning trees Ts and Tt in G with

maximum degree at most (resp. at least) d.
Question: Is there a reconfiguration sequence from Ts to Tt such that any spanning tree in

the sequence is of maximum degree at most (resp. at least) d?

Bounding the maximum degree of spanning trees has applications for routing problems when
we send data (i.e., a flow) along a spanning tree in a communication network. In this setting,
the degree of a node is a measure of its load, and hence it is natural to bound the maximum
degree in the spanning tree. In a complex dynamic networks, we want to reconfigure spanning
trees on the fly to keep this property on the dynamic setting, which motivates us to study
the reconfiguration problem.

The problem of finding a spanning tree with degree bounds is studied also from the
theoretical point of view. Notice that spanning trees with bounds on the maximum degree
include Hamiltonian paths that are spanning trees of maximum degree two. This implies
that finding a spanning tree with maximum degree at most d is NP-hard. For restricted
graph classes, this search problem is investigated in [5]. It is shown in [6] that if we relax
the degree bound by one, then the search problem can be solved in polynomial time. Its
optimization variants are also studied in [7, 18].

We also study the problem with diameter constraints, which is formally stated as follows.

RST with Small (resp. Large) Diameter
Input: A graph G, a positive integer d, and two spanning trees Ts and Tt in G with

diameter at most (resp. at least) d.
Question: Is there a reconfiguration sequence from Ts to Tt such that any spanning tree in

the sequence is of diameter at most (resp. at least) d?

Spanning trees with largest possible diameter are Hamiltonian paths which receive a con-
siderable attention. Spanning trees with upper bound on the diameter are for instance
desirable in high-speed networks like optical networks since they minimize the worst-case
propagation delay to all the nodes of the graphs, see e.g. [13]. We can find a spanning tree
with minimum diameter in polynomial time [9], and some related problems have been studied
in the literature [8, 19]

The problem of updating minimum spanning trees to maintain a valid spanning tree in
dynamic networks is an important problem that received a considerable attention in the last
decades, see for instance [1, 12]. In this situation, the graph is dynamic and is dynamically
updated at each time step. The solution at time t, which might not be a solution anymore at
time t + 1 (e.g. if edges of the spanning has been deleted from the graph), has to be modified
with as few modifications as possible into a valid solution as good as possible. Spanning tree
reconfiguration lies between the static situation (since the graph is fixed) and the dynamic
situation (since the solution has to be modified).

Our Results
The contribution of this paper is to study the computational complexity of RST with
Small (or Large) Maximum Degree and RST with Small (or Large) Diameter.

▶ Theorem 1. RST with Large Maximum Degree can be decided in polynomial time.
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Our proof for Theorem 1 is in two steps. First we show that if there exists a vertex that
has degree at least d in both Ts and Tt, then there is a reconfiguration sequence between
them. Then, for two vertices u and v, we prove that we can decide in polynomial time if
there exists a pair of adjacent spanning trees T and T ′ such that u has degree at least d in
T and v has degree at least d in T ′. These results together will imply Theorem 1.

While the existence of a spanning tree with maximum degree at least d can be decided in
polynomial time, it is NP-complete to find a spanning tree of maximum degree at most 2
(that is a Hamiltonian path). A similar behavior holds for RST with degree constraints.

▶ Theorem 2. For every d ≥ 3, RST with Small Maximum Degree is PSPACE-complete.

The proof for Theorem 2 consists of a reduction from NCL (Nondeterministic Constraint
Logic), known to be PSPACE-complete [10]. This result is tight in the following sense: if
at least one of Ts and Tt has maximum degree at most d − 1, then the problem becomes
polynomial-time solvable (shown in Theorem 15). It is worth noting that this behavior
is similar to the result for the search problem shown in [6]; while finding a spanning tree
with maximum degree at most d is NP-hard, if we relax the degree bound by one, then the
problem can be solved in polynomial time.

In the second part of the paper, we study RST with Small or Large Diameter.

▶ Theorem 3. RST with Large Diameter is NP-hard even restricted to planar graphs.

The proof for Theorem 3 consists of a reduction from the Hamiltonian Path problem,
which is not a reconfiguration problem but the original search problem. We note that since
the length of a reconfiguration sequence is not necessarily bounded by a polynomial in the
input size, it is unclear whether RST with Large Diameter belongs to the class NP. In
a similar way to RST with Small Maximum Degree, we conjecture that RST with
Large Diameter is PSPACE-complete.

Finally, the main technical result of the paper is the following positive result.

▶ Theorem 4. RST with Small Diameter is polynomial-time solvable.

The proof for Theorem 4 follows a similar scheme to Theorem 1. First we show that all
the spanning trees with the same “center” can be transformed into any other. Therefore,
it suffices to consider the transformation of the centers. However, for two vertices u and
v, it is hard to determine whether there exists a pair of adjacent spanning trees T and T ′

such that u and v are centers of T and T ′, respectively. Indeed, we do not know whether it
can be done in polynomial time. The core of the proof is to focus on only “good” pairs of
centers for which the existence of a desired pair of spanning trees can be tested in polynomial
time (see Theorem 23). A key ingredient of our proof consists in proving that if there is a
reconfiguration sequence between the spanning trees, then there exists a sequence of centers
from the initial center to the final center in which any consecutive centers form a good pair
(see Theorem 24).

Organization
The rest of this paper is organized as follows. We first give some preliminaries in Section 2.
Next, Sections 3 and 4 are devoted to RST with Large Maximum Degree (Theorem 1)
and RST with Small Maximum Degree (Theorem 2), respectively. Then, Sections 5
and 6 are devoted to RST with Large Diameter (Theorem 3) and RST with Small
Diameter (Theorem 4), respectively. Finally, we conclude this paper by giving some remarks
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in Section 7. Due to the space limitation, the proofs of the statements marked with (⋆)
have been deferred to the appendix, and marked with (⋆⋆) have been deferred to the full
version [3].

2 Preliminaries

Throughout this paper, we consider graphs that are simple and loopless. Let G = (V, E) be
a graph. For a vertex v ∈ V , we denote by dG(v) the degree of v in G, by NG(v) the (open)
neighborhood of v in G, and by δG(v) the set of edges incident to v in G. Since G is simple,
dG(v) = |NG(v)| = |δG(v)|. For a tree T , a vertex v is a leaf if its degree is one, and is an
internal node otherwise. A branching node is a vertex of degree at least three.

For a subgraph H of G and an F ⊆ E, we denote by H − F the graph (V (H), E(H) \ F )
and by H +F the graph (V (H), E(H)∪F ). To avoid cumbersome notation, if e ∈ E, H−{e}
and H + {e} will be denoted by H − e and H + e, respectively.

For u, v ∈ V , the distance ℓ̄G(u, v) between u and v is defined as the minimum number
of edges in a shortest u-v path. For v ∈ V , the eccentricity ϵG (v) of v in G is the max-
imum distance between v and any vertex in G, that is, ϵG (v) := max

{
ℓ̄G(v, u)

∣∣ u ∈ V
}

.
The diameter diam(G) of G is the maximum eccentricity among V . That is, diam(G) :=
max {ϵG (v) | v ∈ V } = max

{
ℓ̄G(u, v)

∣∣ u, v ∈ V
}

.
For two spanning trees T and T ′, we denote T ↔ T ′ if |E(T )\E(T ′)| = |E(T ′)\E(T )| ≤ 1,

that is, either T = T ′ or T and T ′ are adjacent. We say that Ts is reconfigurable to Tt if
there exists a reconfiguration sequence from Ts to Tt such that any spanning tree in the
sequence satisfies a given degree/diameter constraint. When we have no degree/diameter
constraints, since spanning trees form a base family of a matroid, the exchange property of
the matroid bases ensures that there always exists a reconfiguration sequence between any
pair of spanning trees.

▶ Lemma 5 (see Proposition 1 in [14]). Let G be a graph and T and T ′ be two spanning trees
of G. There exists a reconfiguration sequence ⟨T = T0, T1, . . . , Tℓ = T ′⟩ between T and T ′

such that for all i ∈ {0, 1, . . . , ℓ}, the spanning tree Ti contains all the edges in E(T )∩E(T ′).

3 Large Maximum Degree (Proof of Theorem 1)

In this section, we prove Theorem 1, which we restate here.

▶ Theorem 1. RST with Large Maximum Degree can be decided in polynomial time.

Let (G, d, Ts, Tt) be an instance of RST with Large Maximum Degree. For a spanning
tree T in G, let large(T ) ⊆ V be the set of all the vertices of degree at least d in T , that is,
large(T ) := {v ∈ V | dT (v) ≥ d}. Note that T has maximum degree at least d if and only if
large(T ) ̸= ∅. The following lemma is easy but is essential to prove Theorem 1.

▶ Lemma 6 (⋆). Let T1 and T2 be spanning trees in G with maximum degree at least d. If
there exists a vertex u ∈ large(T1) ∩ large(T2), then T1 is reconfigurable to T2.

Our algorithm is based on testing the reachability in an auxiliary graph G, which is defined
as follows. The vertex set of G is defined as V , where each vertex v in V (G) corresponds
to the set of spanning trees T with v ∈ large(T ). For any pair u, v of distinct vertices in
V (G), there is an edge uv ∈ E(G) if and only if there exist spanning trees T and T ′ such
that u ∈ large(T ), v ∈ large(T ′), and T ↔ T ′ (possibly T = T ′). Then, by definition of the
auxiliary graph and Lemma 6, we have the following lemma.
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Algorithm 1 Algorithm for RST with Large Maximum Degree.

Input: A graph G and two spanning trees Ts and Tt in G with max. degree ≥ d.
Output: Is Ts reconfigurable to Tt?

1 Compute large(Ts) and large(Tt), and construct G;
2 if there is a path between large(Ts) and large(Tt) in G then return YES;
3 else return NO;

▶ Lemma 7 (⋆). Let Ts and Tt be spanning trees with maximum degree at least d. Then, Ts
is reconfigurable to Tt if and only if G contains a path from large(Ts) to large(Tt).

By this lemma, we can solve RST with Large Maximum Degree by detecting a path
from large(Ts) to large(Tt) in G (see Algorithm 1 for a pseudocode of our algorithm). Our
remaining task is to construct the auxiliary graph G in polynomial time which is possible by
the following lemma.

▶ Lemma 8 (⋆). For two distinct vertices u, v ∈ V , there exists an edge uv ∈ E(G) if and
only if |NG(u)| ≥ d, |NG(v)| ≥ d, and

|NG(u) ∪NG(v)| ≥
{

2d− 1 if uv ∈ E(G),
2d− 2 otherwise.

(1)

Since we can easily check the inequality (1) for each pair of vertices u and v, Lemma 8
ensures that the auxiliary graph G can be constructed in polynomial time. Therefore,
Algorithm 1 correctly decides RST with Large Maximum Degree in polynomial time,
which completes the proof of Theorem 1. Note that all the proofs are constructive, and hence
we can find a desired reconfiguration sequence from Ts to Tt in polynomial time if it exists.

4 Small Maximum Degree

In this section, we consider RST with Small Maximum Degree. We first show the
PSPACE-completeness in Section 4.1. In contrast, we show in Section 4.2 that if at least
one of Ts and Tt has maximum degree at most d− 1, then an instance (G, d, Ts, Tt) of RST
with Small Maximum Degree is a YES-instance.

4.1 PSPACE-Completeness (Proof of Theorem 2)
In this subsection, we prove Theorem 2, i.e., we show that RST with Small Maxi-
mum Degree is PSPACE-complete. The problem is indeed in PSPACE. We prove the
PSPACE-hardness by giving a polynomial reduction from Reconfiguration of Nondeterministic
Constraint Logic on and/or graphs, which we call NCL Reconfiguration for short.

Suppose that we are given a cubic graph with edge-weights such that each vertex is either
incident to three weight-2 edges (“or vertex”) or one weight-2 edge and two weight-1 edges
(“and vertex”), which we call an and/or graph. An NCL configuration is an orientation of
the edges in the graph such that the total weights of incoming arcs at each vertex is at least
two. Two NCL configurations are adjacent if they differ in a single edge direction. In NCL
Reconfiguration, we are given an and/or graph and its two NCL configurations, and the
objective is to determine whether there exists a sequence of adjacent NCL configurations that
transforms one into the other. It is shown in [10] that NCL Reconfiguration is PSPACE-
complete. In what follows, we give a polynomial reduction from NCL Reconfiguration to
RST with Small Maximum Degree.
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2

2

2

2

3 1 2 1 2 1

2

2

2

2

2

2

3 1 2 1 2 1

2

2

Figure 5 Construction of G from G′.

Construction of the graph. Suppose that we are given an instance of NCL Reconfigura-
tion, that is, an and/or graph H = (V (H), E(H)) and two configurations σs and σt of H.
Fix d ≥ 3. We first construct a graph G′ = (V ′, E′), a vertex subset L ⊆ V ′, and an integer
b(v) ∈ {1, 2, 3} for each v ∈ V ′, and then construct a graph G = (V, E) by using G′, L, and
b. We consider an instance (G, d, Ts, Tt) of RST with Small Maximum Degree, where Ts
and Tt will be defined later. The construction of G′, L, and b is described as follows.

We initialize G′ = (V ′, E′) and L as the empty graph and the empty set, respectively.
For a vertex u ∈ V (H) and an edge e ∈ δH(u), we introduce a vertex vu,e in V ′. Let
b(vu,e) = 2.
For an edge e ∈ E(H) connecting u and u′, we introduce a vertex ve in V ′ and two edges
vevu,e and vevu′,e in E′ (Figure 2). Let b(ve) = 1.
For an or vertex u ∈ V (H) with δH(u) = {e1, e2, e3}, we introduce a vertex ru in V ′

and an edge ruvu,ei
in E′ for i ∈ {1, 2, 3} (Figure 3). Let b(ru) = 1. Add vu,ei

to L for
i ∈ {1, 2, 3}.
For an and vertex u ∈ V (H) with δH(u) = {e0, e1, e2}, where e0 is a weight-2 edge and e1
and e2 are weight-1 edges, we introduce four vertices ru, wu, xu, and yu in V ′, and seven
edges vu,e0ru, ruwu, wuxu, wuyu, xuvu,e1 , yuvu,e2 , and vu,e1vu,e2 in E′ (Figure 4). We
denote by E′

u the set of these seven edges. Let b(ru) = 1, b(wu) = 3, and b(xu) = b(yu) = 2.
Add vu,e0 and wu to L.

We next construct G = (V, E) by adding new vertices and edges to G′ = (V ′, E′) as
follows (see Figure 5 for an illustration).

We construct a tree T ∗ = (V (T ∗), E(T ∗)) of maximum degree at most three such that
V (T ∗)∩V ′ = L, E(T ∗)∩E′ = ∅, and L is the set of all the leaves of T ∗. Then, we attach
T ∗ to G′. We denote the obtained graph by G′ + T ∗.
For each vertex v ∈ V ′, we add d − b(v) new vertices v̄1, . . . , v̄d−b(v) and new edges
vv̄1, . . . , vv̄d−b(v).
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15:8 Spanning Tree Reconfiguration

Correspondence between solutions. In order to see the correspondence between NCL
configurations in H and spanning trees in G with maximum degree at most d, we begin with
the following easy lemma.

▶ Lemma 9. Any spanning tree T in G with maximum degree at most d satisfies the
following properties: (a) vv̄i ∈ E(T ) for v ∈ V ′ and for i ∈ {1, 2, . . . , d − b(v)}; (b)
|δG′+T ∗(v) ∩ E(T )| ≤ b(v) for v ∈ V ′; (c) T contains exactly one of vevu,e and vevu′,e for
e = uu′ ∈ E(H); and (d) E(T ∗) ⊆ E(T ).

Proof. Since T is a spanning tree with maximum degree at most d, (a), (b), and (c) are
obvious. By (b), T − E(T ∗) contains no path connecting two distinct components of
G′ − {v ∈ V ′ | b(v) = 1}. Since each connected component of G′ − {v ∈ V ′ | b(v) = 1}
contains exactly one vertex in L, for any pair of vertices v1, v2 ∈ L, the unique v1-v2 path in
T ∗ must be contained in T . This shows that E(T ∗) ⊆ E(T ), because L is the set of all the
leaves of T ∗. ◀

For a spanning tree T in G with maximum degree at most d, we define an orientation σT

of H as follows: an edge e = uu′ ∈ E(H) is inward for u if vevu′,e ∈ E(T ), and it is outward
for u if vevu,e ∈ E(T ). This defines an orientation of H by Lemma 9 (c). The following two
lemmas show the correspondence between NCL configurations in H and spanning trees in G

with maximum degree at most d.

▶ Lemma 10. For any spanning tree T in G with maximum degree at most d, the orientation
σT is an NCL configuration of H.

Proof. It suffices to show that, for any u ∈ V (H), the total weights of incoming arcs at u is
at least two in σT .

First, let u ∈ V (H) be an or-vertex with δH(u) = {e1, e2, e3}. Since T is a spanning
tree, it holds that ruvu,ei ∈ E(T ) for some i ∈ {1, 2, 3}. Then, since |δG′(vu,ei) ∩ E(T )| ≤
b(vu,ei

)− 1 = 1 by (b) and (d) in Lemma 9, it holds that vei
vu,ei

̸∈ E(T ). This means that
ei is inward for u in σT , and hence the total weights of incoming arcs at u is at least two.

Second, let u ∈ V (H) be an and-vertex with δH(u) = {e0, e1, e2}, where e0 is a weight-2
edge and e1 and e2 are weight-1 edges. Since T is a spanning tree, we have either ruvu,e0 ∈
E(T ) or ruwu ∈ E(T ). If ruvu,e0 ∈ E(T ), then e0 is inward for u in σT , which implies that
the total weights of incoming arcs at u is at least two. Therefore, it suffices to consider
the case when ruwu ∈ E(T ). Since |δG′(v) ∩ E(T )| ≤ 2 for v ∈ {wu, xu, yu, vu,e1 , vu,e2} by
(b) and (d) in Lemma 9, we have either {ruwu, wuxu, xuvu,e1 , vu,e1vu,e2 , vu,e2yu} ⊆ E(T )
or {ruwu, wuyu, yuvu,e2 , vu,e2vu,e1 , vu,e1xu} ⊆ E(T ). In either case, veivu,ei ̸∈ E(T ) for
i ∈ {1, 2}, because |δG′(vu,ei

) ∩ E(T )| ≤ 2. This means that ei is inward for u in σT for
i ∈ {1, 2}, and hence the total weights of incoming arcs at u is at least two.

Therefore, σT is an NCL configuration of H. ◀

▶ Lemma 11. For any NCL configuration σ of H, we can construct a spanning tree T in G

with maximum degree at most d such that σT = σ in polynomial time.

Proof. Given an NCL configuration σ of H, we construct a spanning subgraph T of G such
that

E(T ) := E(T ∗) ∪ {vv̄i | v ∈ V ′, i ∈ {1, 2, . . . , d− b(v)}} ∪ {fe | e ∈ E(H)} ∪
⋃

u∈V (H)

Fu,

where an edge fe for e ∈ E(H) and an edge set Fu for u ∈ V (H) are defined as follows.
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For an edge e = uu′ ∈ E(H), define fe := vevu′,e if e is inward for u in σ and define
fe := vevu,e otherwise.
For an or-vertex u ∈ V (H) with δH(u) = {e1, e2, e3}, choose an arbitrarily edge ei that
is inward for u in σ and define Fu := {ruvu,ei}. Note that such ei exists as σ is an NCL
configuration.
For an and-vertex u ∈ V (H) with δH(u) = {e0, e1, e2}, where e0 is a weight-2 edge and
e1 and e2 are weight-1 edges, define Fu = E′

u \ {ruwu, vu,e1vu,e2} if e0 is inward for u in
σ, and define Fu := E′

u \ {ruvu,e0 , wuyu} otherwise.
Then, T is a spanning tree in G with maximum degree at most d such that σT = σ, which
completes the proof. ◀

For two NCL configurations σs and σt of H, by Lemma 11, we can construct spanning
trees Ts and Tt in G with maximum degree at most d such that σTs = σs and σTt = σt. This
yields an instance (G, d, Ts, Tt) of RST with Small Maximum Degree.

Correctness. In order to show the PSPACE-hardness of RST with Small Maximum
Degree, we show that the original instance (H, σs, σt) of NCL Reconfiguration is
equivalent to the obtained instance (G, d, Ts, Tt) of RST with Small Maximum Degree,
that is, we prove that (H, σs, σt) is a YES-instance if and only if (G, d, Ts, Tt) is a YES-instance.
To this end, we use the following lemma.

▶ Lemma 12. Let T1 and T2 be spanning trees in G with maximum degree at most d. If σT1

and σT2 are adjacent, then there is a reconfiguration sequence from T1 to T2 in which all the
spanning trees have maximum degree at most d.

Proof. Let e∗ ∈ E(H) be the unique edge in H whose direction is different in σ1 and σ2.
We prove the existence of a reconfiguration sequence by induction on |E(T1) \ E(T2)|. If
|E(T1) \ E(T2)| = 1, then T1 and T2 are adjacent, and hence the claim is obvious. Suppose
that |E(T1) \ E(T2)| ≥ 2. Since σT1 and σT2 are adjacent, there exists a vertex u ∈ V (H)
such that T1 and T2 contain different edge sets in the gadget corresponding to u. That is,
(E(T1) \ E(T2)) ∩ δG′(ru) ̸= ∅ for an or-vertex u ∈ V (H) or (E(T1) \ E(T2)) ∩ E′

u ̸= ∅ for
an and-vertex u ∈ V (H). We fix such a vertex u ∈ V (H).

Suppose that u is an or-vertex such that (E(T1) \ E(T2)) ∩ δG′(ru) ̸= ∅. In this case,
E(T1)∩ δG′(ru) = {ruvu,ei

} and E(T2)∩ δG′(ru) = {ruvu,ej
} for some distinct i, j ∈ {1, 2, 3}.

By changing the roles of T1 and T2 if necessary, we may assume that either e∗ ̸∈ δH(u) or e∗ is
inward for u in σ1. Then, T ′

1 := T1−ruvu,ei
+ruvu,ej

is a spanning tree with maximum degree
at most d such that T ′

1 is adjacent to T1, σT ′
1

= σT1 , and |E(T ′
1)\E(T2)| = |E(T1)\E(T2)|−1.

By induction hypothesis, T ′
1 is reconfigurable to T2, and hence T1 is reconfigurable to T2.

Suppose that u is an and-vertex such that |(E(T1) \ E(T2)) ∩ E′
u| = 1. By changing the

roles of T1 and T2 if necessary, we may assume that either e∗ ̸∈ δH(u) or e∗ is inward for u in
σT1 . Then, T ′

1 := T1− (E(T1)∩E′
u) + (E(T2)∩E′

u) is a spanning tree with maximum degree
at most d such that T ′

1 is adjacent to T1, σT ′
1

= σT1 , and |E(T ′
1)\E(T2)| = |E(T1)\E(T2)|−1.

By induction hypothesis, T ′
1 is reconfigurable to T2, and hence T1 is reconfigurable to T2.

The remaining case is that u is an and-vertex such that |(E(T1)\E(T2))∩E′
u| ≥ 2. Since

each of T1 and T2 contains exactly one edge in δG′(ru) and exactly four edges in E′
u \ δG′(ru),

we have that |(E(T1) \E(T2)) ∩ δG′(ru)| = 1 and |(E(T1) \E(T2)) ∩ (E′
u \ δG′(ru))| = 1. By

changing the roles of T1 and T2 if necessary, we may assume that E(T1)∩ δG′(ru) = {ruvu,e0}
and E(T2) ∩ δG′(ru) = {ruwu}. This implies that vu,e0ve0 ̸∈ E(T1), and hence e0 is inward
for u in σT1 . We consider the following two cases separately.
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Suppose that e0 is inward for u in σT2 . In this case, T ′
2 := T2 − ruwu + ruvu,e0 is a

spanning tree with maximum degree at most d such that T ′
2 is adjacent to T2, σT ′

2
= σT2 ,

and |E(T1) \E(T ′
2)| = |E(T1) \E(T2)| − 1. By induction hypothesis, T1 is reconfigurable

to T ′
2, and hence T1 is reconfigurable to T2.

Suppose that e0 is outward for u in σT2 . In this case, e1 and e2 are inward for u in σT2 by
Lemma 10. Furthermore, since e∗ = e0 holds, e1 and e2 are inward for u also in σT1 , that
is, vu,e1ve1 , vu,e2ve2 ̸∈ E(T1). Then, T ′

1 := T1 − (E(T1)∩ (E′
u \ δG′(ru))) + (E(T2)∩ (E′

u \
δG′(ru))) is a spanning tree with maximum degree at most d such that T ′

1 is adjacent to
T1, σT ′

1
= σT1 , and |E(T ′

1) \E(T2)| = |E(T1) \E(T2)| − 1. By induction hypothesis, T ′
1 is

reconfigurable to T2, and hence T1 is reconfigurable to T2.
By the above argument, there is a reconfiguration sequence from T1 to T2. ◀

We are now ready to show the equivalence of (H, σs, σt) and (G, d, Ts, Tt).

▶ Lemma 13. Let (H, σs, σt) be an instance of NCL Reconfiguration and (G, d, Ts, Tt)
be an instance of RST with Small Maximum Degree obtained by the above construction.
Then, (H, σs, σt) is a YES-instance if and only if (G, d, Ts, Tt) is a YES-instance.

Proof. We first show the “if” part. Suppose that there exists a reconfiguration sequence ⟨Ts =
T0, T1, . . . , Tk = Tt⟩ from Ts to Tt, where Ti is a spanning tree in G with maximum degree at
most d for any i ∈ {0, 1, . . . , k} and Ti and Ti+1 are adjacent for any i ∈ {0, 1, . . . , k − 1}.
Then, σTi

is an NCL configuration of H for i ∈ {0, 1, . . . , k} by Lemma 10, and we have either
σTi = σTi+1 or σTi and σTi+1 are adjacent for i ∈ {0, 1, . . . , k − 1} as |E(Ti) \ E(Ti+1)| ≤ 1.
Since σT0 = σTs = σs and σTk

= σTt = σt, there exists a sequence of adjacent NCL
configurations from σs to σt.

To show the “only-if” part, suppose that there exists a reconfiguration sequence ⟨σs =
σ0, σ1, . . . , σk = σt⟩, where σi is an NCL configuration of H for any i ∈ {0, 1, . . . , k} and
σi and σi+1 are adjacent for any i ∈ {0, 1, . . . , k − 1}. For i ∈ {1, 2, . . . , k − 1}, let Ti be a
spanning tree in G with maximum degree at most d such that σTi

= σi, whose existence is
guaranteed by Lemma 11. Let T0 := Ts and Tk := Tt. Since Lemma 12 shows that there
is a reconfiguration sequence from Ti to Ti+1 for i ∈ {0, 1, . . . , k − 1}, Ts is reconfigurable
to Tt. ◀

This lemma shows that the above construction gives a polynomial reduction from NCL
Reconfiguration to RST with Small Maximum Degree. Therefore, RST with
Small Maximum Degree is PSPACE-hard, which completes the proof of Theorem 2.

4.2 A Solvable Special Case

In this subsection, we show a sufficient condition for the reconfigurability of instances. The
condition is as follows; at least one of Ts and Tt has maximum degree at most d− 1. Without
loss of generality, we may assume that Tt satisfies the condition. Under this assumption, we
have the following lemma.

▶ Lemma 14. Suppose that (G, d, Ts, Tt) is an instance of RST with Small Maximum
Degree such that Tt has maximum degree at most d − 1. There exists an edge e = xy ∈
E(Tt) \ E(Ts) such that dTs(x) ≤ d− 1 and dTs(y) ≤ d− 1.
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Proof. To derive a contradiction, assume that Lemma 14 does not hold, that is, for any
e = xy ∈ E(Tt) \ E(Ts), we have dTs(x) = d or dTs(y) = d. Let T ∗

s := Ts − E(Tt) and
T ∗

t := Tt − E(Ts). Note that |E(T ∗
s )| = |E(T ∗

t )|, because both Ts and Tt are spanning trees
in G. Let S := {v ∈ V | dTs(v) = d, dT ∗

t
(v) ≥ 1}. With this notation, the assumption means

that S forms a vertex cover of T ∗
t . In what follows, we compare |E(T ∗

s )| and |E(T ∗
t )|.

Let X1 := {v ∈ V | dT ∗
s

(v) = 1} and X≥2 := {v ∈ V | dT ∗
s

(v) ≥ 2}. Then, we see that

1
2

∑
v∈V

dT ∗
s

(v) = |E(T ∗
s )| < |X1 ∪X≥2|, (2)

because T ∗
s is a forest. We also see that, for any v ∈ S,

dT ∗
s

(v) = d− |δTs(v) ∩ δTt(v)| ≥ dTt(v) + 1− |δTs(v) ∩ δTt(v)| = dT ∗
t

(v) + 1 (3)

holds, and hence S ⊆ X≥2. With these observations, we obtain

|E(T ∗
s )| =

∑
v∈V

dT ∗
s

(v)− 1
2

∑
v∈V

dT ∗
s

(v)

>
∑
v∈V

dT ∗
s

(v)− |X1 ∪X≥2| (by (2))

=
∑

v∈X≥2

(dT ∗
s

(v)− 1)

≥
∑
v∈S

(dT ∗
s

(v)− 1) (by S ⊆ X≥2)

≥
∑
v∈S

dT ∗
t

(v) (by (3))

≥ |E(T ∗
t )|, (because S is a vertex cover of T ∗

t )

which is a contradiction to |E(T ∗
s )| = |E(T ∗

t )|. Therefore, Lemma 14 holds. ◀

Let e ∈ E(Tt) \ E(Ts) be the edge as in the lemma and let e′ ∈ E(Ts) \ E(Tt) be an edge
such that T ′

s := Ts + e − e′ is a spanning tree in G. Note that the maximum degree of T ′
s

is at most d. Since |E(T ′
s ) \ E(Tt)| = |E(Ts) \ E(Tt)| − 1, (G, d, T ′

s , Tt) is a YES-instance by
induction. This implies that Ts is reconfigurable to Tt, and thus the following theorem holds.

▶ Theorem 15. If at least one of Ts and Tt has maximum degree at most d − 1, then an
instance (G, d, Ts, Tt) of RST with Small Maximum Degree is a YES-instance.

Note that the above discussion shows that we can find a reconfiguration sequence
⟨Ts = T0, T1, . . . , Tk = Tt⟩ with k = |E(Ts) \ E(Tt)|, which is a shortest reconfiguration
sequence, in polynomial time. Moreover, Theorem 15 implies the following corollary.

▶ Corollary 16. Let G be a graph and d be a positive integer. If G contains a spanning tree
with maximum degree at most d− 1, then any instance (G, d, Ts, Tt) of RST with Small
Maximum Degree is a YES-instance.

Proof. Let T ∗ be a spanning tree in G with maximum degree at most d−1. Then, Theorem 15
shows that Ts is reconfigurable to T ∗ and T ∗ is reconfigurable to Tt. Hence, Ts is reconfigurable
to Tt, which completes the proof. ◀

We note that it is not easy to determine whether or not G contains a spanning tree with
maximum degree at most d − 1 even when d = 3, because finding a Hamiltonian path in
cubic graphs is NP-hard.
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Figure 6 The graph G in the corresponding instance.

5 Large Diameter (Proof of Theorem 3)

In this section, we prove Theorem 3, which we restate here.

▶ Theorem 3. RST with Large Diameter is NP-hard even restricted to planar graphs.

To prove the theorem, we give a polynomial reduction from Hamiltonian Path problem
to RST with Large Diameter. A Hamiltonian path of a graph G is a path that visits
each vertex of G exactly once. Given a graph G = (V, E) and two vertices s, t ∈ V , the
Hamiltonian Path problem asks to determine whether or not G has a Hamiltonian path
whose endpoints are s and t, which is known to be NP-hard [15].

Reduction. Let (G′, s′, t′) be an instance of Hamiltonian Path. We may assume that G′ is
connected, since otherwise (G′, s′, t′) is trivially a NO-instance. We construct a corresponding
instance (G, d, Ts, Tt) of RST with Large Diameter as follows (see Figure 6).

Let n′ be the number of vertices in G′, that is, n′ = |V (G′)|. We first add three vertices t1,
t2, and t3, and five edges t′t1, t′t2, t1t2, t1t3, and t2t3 to G′. Let D be the subgraph induced
by {t′, t1, t2, t3}, which is isomorphic to the so-called diamond graph. We then add three paths
Px = (x3n′ , x3n′−1, . . . , x1, s′), Py = (s′, y1, y2, . . . , yn′−3, t′), and Pz = (t3, z1, z2, . . . , z3n′),
where all the vertices in Px, Py, and Pz except for s′, t′, and t3 are distinct new vertices.
Note that |E(Px)| = |E(Pz)| = 3n′ and |E(Py)| = n′ − 2. Let G = (V, E) be the obtained
graph and set d = 7n′ + 1.

Let F ′ be an arbitrary spanning forest in G′ such that F ′ consists of two connected
components (trees) of which one contains s′ and the other contains t′. Then, define spanning
trees Ts and Tt in G by

E(Ts) = E(Px) ∪ E(Py) ∪ E(Pz) ∪ E(F ′) ∪ {t′t1, t1t2, t2t3},
E(Tt) = E(Px) ∪ E(Py) ∪ E(Pz) ∪ E(F ′) ∪ {t′t2, t1t2, t1t3}.

We notice that E(Ts)\E(F ′) forms a path in Ts of length d = 7n′ +1, and hence diam(Ts) ≥ d.
Similarly, E(Tt)\E(F ′) forms a path in Tt of length d, and hence diam(Tt) ≥ d. This completes
the construction of the instance (G, d, Ts, Tt) of RST with Large Diameter.

Correctness. In the following, we show that G′ contains a Hamiltonian path from s′ to t′ if
and only if (G, d, Ts, Tt) is a YES-instance. The following lemma shows that the diameter of
a spanning tree is dominated by the distance between x3n′ and z3n′ .

▶ Lemma 17 (⋆). For any spanning tree T in G, diam(T ) = ℓ̄T (x3n′ , z3n′).
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Thus, intuitively speaking, to keep the diameter and modify a spanning tree in D, we need to
replace Py with a slightly longer path in G′. Moreover, such a path must be a Hamiltonian
path of G′. This observation yields the following lemma and completes the proof of Theorem 3.

▶ Lemma 18 (⋆). (G′, s′, t′) is a YES-instance of Hamiltonian Path if and only if
(G, d, Ts, Tt) is a YES-instance of RST with Large Diameter.

6 Small Diameter (Proof of Theorem 4)

In this section, we prove Theorem 4, which we restate here.

▶ Theorem 4. RST with Small Diameter is polynomial-time solvable.

After giving some preliminaries for the proof in Section 6.1, we describe a naive algorithm
for the problem in Section 6.2, which does not necessarily run in polynomial time. Then, by
modifying it, we give a polynomial-time algorithm in Section 6.3.

6.1 Preliminaries for the Proof
Throughout the proof of Theorem 4, we fix a positive integer d. For each edge e ∈ E, we
denote the middle point of e by pe. We denote R(H) := {pe | e ∈ E(H)} for a subgraph H of
G and let R := R(G). Let Ĝ be the graph on V ∪R that is obtained from G by subdividing
each edge. Then, since ℓ̄G(u, v) = 1

2 ℓ̄Ĝ(u, v) for u, v ∈ V , we can naturally extend the domain
of the distance to V ∪ R by setting ℓ̄G(u, v) := 1

2 ℓ̄Ĝ(u, v) for u, v ∈ V ∪ R. We also define
ϵG (v) := max

{
ℓ̄G(v, u)

∣∣ u ∈ V
}

for v ∈ R. If no confusion may arise, for u, v ∈ V ∪ R, a
u-v path in Ĝ is sometimes called a u-v path in G. We can see that spanning trees with
diameter at most d are characterized as follows (see also [9]).

▶ Lemma 19 (⋆). For any spanning tree T in G = (V, E), diam(T ) ≤ d if and only if there
exists r ∈ V ∪R(T ) such that ϵT (r) ≤ d

2 .

We say that a subgraph Q of G is a spanning pseudotree if it is a connected spanning
subgraph containing at most one cycle. In other words, a spanning pseudotree is obtained
from a spanning tree by adding at most one edge. For brevity, a spanning pseudotree is
simply called a pseudotree. For a pseudotree Q, let CQ denote the unique cycle in Q if it
exists. We can easily see that, for two spanning trees T1 and T2 with diameter at most d,
T1 ↔ T2 if and only if T1 ∪ T2 forms a pseudotree. For a pseudotree Q, we refer a point
r ∈ V ∪R(Q) as a center point of Q if ϵQ (r) ≤ d

2 . Note that a center point is not necessarily
unique even if Q is a spanning tree. For a pseudotree Q, let center(Q) ⊆ V ∪R(Q) be the
set of all center points of Q.

6.2 Algorithm Using Center Points: First Attempt
In this subsection, as a first step, we give an algorithm for RST with Small Diameter
whose running time is not necessarily polynomial. In the same say as RST with Large
Maximum Degree (Section 3), the proposed algorithm is based on testing the reachability
in an auxiliary graph G, which is defined as follows. The vertex set of G is defined as V ∪R,
where each vertex v in V (G) corresponds to the set of all the spanning trees containing v as
a center point. For any pair u, v of distinct vertices in V (G), there is an edge uv ∈ E(G) if
and only if there is a pseudotree Q with u, v ∈ center(Q). As we will see in Proposition 22
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Algorithm 2 First algorithm for RST with Small Diameter.

Input: A graph G and two spanning trees Ts and Tt in G with diameter at most d.
Output: Is Ts reconfigurable to Tt?

1 Compute center(Ts) and center(Tt), and construct G;
2 if there is a path between center(Ts) and center(Tt) in G then return YES;
3 else return NO;

later, for two spanning trees Tu and Tv having center points u and v, respectively, G contains
a u-v path if and only if Tu and Tv are reconfigurable to each other. Thus, to solve RST
with Small Diameter, it is enough to find a path from a center point of Ts to a center
point of Tt on G. See Algorithm 2 for a pseudocode of our algorithm.

To show the correctness of Algorithm 2, we begin with easy but important lemmas.

▶ Lemma 20 (⋆). Let T1 and T2 be spanning trees in G with diameter at most d. If there
exists a point r ∈ center(T1) ∩ center(T2), then T1 is reconfigurable to T2.

▶ Lemma 21 (⋆). Let r1, r2 ∈ V ∪ R (possibly r1 = r2). There exists a pseudotree Q

with r1, r2 ∈ center(Q) if and only if there exist two spanning trees T1 and T2 such that
ri ∈ center(Ti) for i = 1, 2 and T1 ↔ T2 (possibly T1 = T2).

By these lemmas, we can show the correctness of Algorithm 2.

▶ Proposition 22. Let Ts and Tt be spanning trees with diameter at most d. Then, Ts is
reconfigurable to Tt if and only if G contains a path from center(Ts) to center(Tt).

Proof. We first show the “only if” part. Suppose that there exists a reconfiguration sequence
⟨Ts = T0, T1, . . . , Tk = Tt⟩ from Ts to Tt, where Ti is a spanning tree of diameter at most d

for any i ∈ {0, 1, . . . , k} and Ti ↔ Ti+1 for any i ∈ {0, 1, . . . , k − 1}. Let ri be a center point
of Ti, where its existence is guaranteed by Lemma 19. For i ∈ {0, 1, . . . , k− 1}, by Lemma 21,
there exists a pseudotree Qi having both ri and ri+1 as center points. This means that either
ri = ri+1 or G contains an edge riri+1. Since r0 ∈ center(Ts) and rk ∈ center(Tt), G contains
a path from center(Ts) to center(Tt).

To show the “if” part, suppose that G contains a path (r0, r1, . . . , rk) from center(Ts) to
center(Tt). For i ∈ {0, 1, . . . , k− 1}, since riri+1 ∈ E(G) implies the existence of a pseudotree
Qi with ri, ri+1 ∈ center(Qi), Lemma 21 shows that there exist two spanning trees T +

i and
T −

i+1 such that ri ∈ center(T +
i ), ri+1 ∈ center(T −

i+1), and T +
i ↔ T −

i+1. Let T −
0 := Ts and

T +
k := Tt. Then, for i ∈ {0, 1, . . . , k}, since T −

i and T +
i share ri as a center point, T −

i

is reconfigurable to T +
i by Lemma 20. This together with T +

i ↔ T −
i+1 shows that Ts is

reconfigurable to Tt. ◀

Although this proposition shows the correctness of Algorithm 2, it does not imply a
polynomial-time algorithm for RST with Small Diameter, because it is not easy to
construct G efficiently. Indeed, for u, v ∈ V (G), we do not know how to decide whether
uv ∈ E(G) or not in polynomial time. To avoid this problem, we efficiently construct a
subgraph G′ of G such that the reachability of G′ is equal to that of G, which is a key
ingredient of our algorithm and discussed in the next subsection.

6.3 Modified Algorithm
In this subsection, we give a polynomial-time algorithm for RST with Small Diameter.
In our algorithm, it is important to uniquely determine a shortest path between two points.
To achieve this, we use a perturbation technique (see e.g., [4]).
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For each edge e in G, we give a unique index i(e) ∈ {1, 2, . . . , |E|} to e. For j ∈
{1, 2, . . . , |E|}, let χj ∈ R|E| be the unit vector such that the jth coordinate is one and the
other coordinates are zero. For e ∈ E, define ℓ(e) := (1, χi(e)) ∈ R× R|E|. For two vectors
x, y ∈ Rk, we denote x < y if x is lexicographically smaller than y. For two paths P1 and P2
in G, we say that P1 is shorter than P2 if ℓ(P1) :=

∑
e∈E(P1) ℓ(e) is lexicographically smaller

than ℓ(P2) :=
∑

e∈E(P2) ℓ(e). Since the first coordinate of ℓ(Pi) is |E(Pi)| for i = 1, 2, if
|E(P1)| < |E(P2)|, then P1 is shorter than P2. When |E(P1)| = |E(P2)|, we use the other
coordinates to break ties. For u, v ∈ V , we define ℓG(u, v) := minP

∑
e∈E(P ) ℓ(e), where

the minimum is taken over all the u-v paths P . Since P1 ̸= P2 implies that ℓ(P1) ̸= ℓ(P2),
the shortest path between two vertices is uniquely determined. We note that the unique
shortest paths between two given vertices can be computed by using a standard shortest
path algorithm. The running time is increased by the perturbation, but it is still polynomial.

For an edge e = uv ∈ E of length ℓ(e) ∈ R× R|E|, we regard e as a curve connecting u

and v. An interior point p on e is represented by a triplet (u, v, α) with α ∈ R× R|E| such
that 0 ≤ α ≤ ℓ(e), where ≤ means the lexicographical order. Here, α represents the length
between u and p, and hence (u, v, α) and (v, u, ℓ(e)− α) represent the same point. For two
points p1 = (u1, v1, α1) and p2 = (u2, v2, α2) in G, consider a curve C connecting p1 and p2
that consists of a u1-u2 path P , a curve in u1v1 between u1 and p1, and a curve in u2v2
between u2 and p2. Such a curve C is called a p1-p2 path in G, and its length is defined as
ℓ(C) :=

∑
e∈E(P ) ℓ(e) + α1 + α2.

For a point r ∈ V ∪R, the shortest path tree from r is the spanning tree in G that contains
the unique shortest r-v path for any v ∈ V . For a pseudotree Q and for two points x and y

on Q, let Q[x, y] denote the shortest x-y path in Q, where we use this notation only when the
shortest x-y path is uniquely determined. For α ∈ R×R|E|, let ᾱ denote the first coordinate
of α, that is, ᾱ is the length before the perturbation.

We denote r1
Q←→ r2 if Q is a pseudotree and r1, r2 ∈ center(Q) with r1 ̸= r2. For any

pseudotree Q and any points r1 and r2 with r1
Q←→ r2, we say that a triplet (r1, r2, Q) is

good if
1. labelr1,r2,Q(v) ≤ labelr1,r2,Q(u) + ℓ(uv) for any uv ∈ E, and
2. CQ contains both r1 and r2 if CQ exists,
where labelr1,r2,Q(v) := max{ℓQ(r1, v), ℓQ(r2, v)}. Roughly speaking, the first condition
means that labelr1,r2,Q(v) can be seen as the distance from a certain point to v in an auxiliary
graph. If r1 and r2 are clear from the context, labelr1,r2,Q(v) is simply denoted by labelQ(v).
We define the graph G′ as follows: V (G′) = V ∪R and G′ contains an edge r1r2 if and only if
there is a pseudotree Q such that r1

Q←→ r2 and (r1, r2, Q) is good. Clearly, G′ is a subgraph
of G.

The following theorem shows that we can determine whether r1r2 ∈ E(G′) or not in
polynomial time, whose proof is given in the full version.

▶ Theorem 23 (⋆⋆). Let r1 and r2 be points in V ∪R with r1 ̸= r2. We can find in polynomial
time a pseudotree Q such that r1

Q←→ r2 and (r1, r2, Q) is good if it exists.

The next theorem shows that the reachability of G′ is equal to that of G, which is a key
property of G′. A proof is given in the full version.

▶ Theorem 24 (⋆⋆). For any r1, r2 ∈ V ∪R with r1r2 ∈ E(G), G′ contains an r1-r2 path.

We are now ready to prove Theorem 4. By Proposition 22 and Theorem 24, two spanning
trees Ts and Tt are reconfigurable to each other if and only if G′ contains a path from
center(Ts) to center(Tt). Since we can construct G′ in polynomial time by Theorem 23, this
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Algorithm 3 Modified algorithm for RST with Small Diameter.

Input: A graph G and two spanning trees Ts and Tt in G with diameter at most d.
Output: Is Ts reconfigurable to Tt?

1 Compute center(Ts) and center(Tt), and construct G′ = (V ∪R, ∅);
2 for r1, r2 ∈ V ∪R with r1 ̸= r2 do
3 if there is a pseudotree Q such that r1

Q←→ r2 and (r1, r2, Q) is good then
4 Add an edge r1r2 to G′;
5 if there is a path between center(Ts) and center(Tt) in G′ then return YES;
6 else return NO;

can be tested in polynomial time. Therefore, RST with Small Diameter can be solved in
polynomial time, which completes the proof of Theorem 4. A pseudocode of our algorithm
is given in Algorithm 3. Note that all the proofs are constructive, and hence we can find a
desired reconfiguration sequence from Ts to Tt in polynomial time if it exists.

7 Concluding Remarks

In this paper, we have investigated the computational complexity of RST with Small (or
Large) Maximum Degree and RST with Small (or Large) Diameter.

We have proved in Theorem 2 that RST with Small Maximum Degree is PSPACE-
complete for d ≥ 3. One can naturally ask what happens for the case of maximum degree
at most 2. In this case, the problem becomes the Hamiltonian Path Reconfiguration
problem, in which a feasible solution is a Hamiltonian path. We were not able to determine
the complexity of this problem and we left it as an open problem. Note that Hamiltonian
Path Reconfiguration problem can be also seen as a special case of RST with Large
Diameter in which the lower bound on the diameter is |V (G)| − 1. Note also that, for the
Hamiltonian cycle case, the Hamiltonian Cycle Reconfiguration problem is known to
be PSPACE-complete [20], in which two edge flips are executed in one step.

We have proved in Theorem 3 that RST with Large Diameter is NP-hard, but it is
unclear whether this problem belongs to the class NP. We conjecture that the problem is
PSPACE-complete, and left this question as another open problem.
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A Proofs for Section 3 (Large Maximum Degree (Proof of
Theorem 1))

▶ Lemma 6 (⋆). Let T1 and T2 be spanning trees in G with maximum degree at least d. If
there exists a vertex u ∈ large(T1) ∩ large(T2), then T1 is reconfigurable to T2.

Proof. We show that T1 is reconfigurable to T2 by induction on d− |δT1(u) ∩ δT2(u)|.
Suppose that d− |δT1(u) ∩ δT2(u)| ≤ 0 holds. By Lemma 5, there exists a reconfiguration

sequence from T1 to T2 in which all the spanning trees contain δT1(u) ∩ δT2(u). This shows
that, for any spanning tree T ′ in the sequence, |δT ′(u)| ≥ |δT1(u) ∩ δT2(u)| ≥ d. Hence, T1 is
reconfigurable to T2.

Suppose that d− |δT1(u) ∩ δT2(u)| ≥ 1 holds. Since |δT2(u)| ≥ d and |δT1(u) ∩ δT2(u)| ≤
d − 1, there exists an edge e ∈ δT2(u) \ δT1(u). Since T1 + e contains a unique cycle
C and T2 contains no cycle, there exists an edge f ∈ E(C) \ E(T2). Then, we have
that f ∈ E(T1) \ E(T2) and T ′

1 := T1 + e − f is a spanning tree in G. Observe that
|δT ′

1
(u)| ≥ |δT1(u) ∪ {e}| − 1 ≥ |δT1(u)| ≥ d, which shows that u ∈ large(T ′

1). We also see
that d− |δT ′

1
(u)∩ δT2(u)| = d− |δT1(u)∩ δT2(u)| − 1. Therefore, by the induction hypothesis,

T ′
1 is reconfigurable to T2. This shows that T1 is reconfigurable to T2 as T1 and T ′

1 are
adjacent. ◀

▶ Lemma 7 (⋆). Let Ts and Tt be spanning trees with maximum degree at least d. Then, Ts
is reconfigurable to Tt if and only if G contains a path from large(Ts) to large(Tt).

Proof. We first show the “only if” part. Suppose that there exists a reconfiguration sequence
⟨Ts = T0, T1, . . . , Tk = Tt⟩ from Ts to Tt, where Ti is a spanning tree of maximum degree at
least d for any i ∈ {0, 1, . . . , k} and Ti and Ti+1 are adjacent for any i ∈ {0, 1, . . . , k − 1}.
For each i, let vi be a vertex in large(Ti). By the definition of G, for i ∈ {0, 1, . . . , k − 1}, we
have either vi = vi+1 or G contains an edge vivi+1. Since v0 ∈ large(Ts) and vk ∈ large(Tt),
G contains a path from large(Ts) to large(Tt).

To show the “if” part, suppose that G contains a path (v0, v1, . . . , vk) from large(Ts) to
large(Tt). For i ∈ {0, 1, . . . , k − 1}, vivi+1 ∈ E(G) means that there exist two spanning trees
T +

i and T −
i+1 such that vi ∈ large(T +

i ), vi+1 ∈ large(T −
i+1), and T +

i ↔ T −
i+1. Let T −

0 := Ts and
T +

k := Tt. Then, for i ∈ {0, 1, . . . , k}, since vi ∈ large(T −
i ) ∩ large(T +

i ), T −
i is reconfigurable

to T +
i by Lemma 6. This together with T +

i ↔ T −
i+1 shows that Ts is reconfigurable to Tt. ◀

▶ Lemma 8 (⋆). For two distinct vertices u, v ∈ V , there exists an edge uv ∈ E(G) if and
only if |NG(u)| ≥ d, |NG(v)| ≥ d, and

|NG(u) ∪NG(v)| ≥
{

2d− 1 if uv ∈ E(G),
2d− 2 otherwise.

(1)

Proof. We first prove the “only-if” direction. Suppose that G contains an edge uv, that
is, there exist spanning trees T and T ′ such that u ∈ large(T ), v ∈ large(T ′), and T ↔ T ′

(possibly T = T ′). Then, |NG(u)| ≥ d and |NG(v)| ≥ d are obvious. Since T contains no
cycle, we know that NT (u) and NT (v) contain at most one common vertex. Then, we obtain

|NG(u) ∪NG(v)| ≥ |NT (u) ∪NT (v)|
≥ |NT (u)|+ |NT (v)| − 1 (by |NT (u) ∩NT (v)| ≤ 1)
≥ |NT (u)|+ (|NT ′(v)| − 1)− 1 (by |E(T ′) \ E(T )| ≤ 1)
≥ 2d− 2. (4)
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u

v

Figure 7 Case when uv ̸∈ E(G).

v
C

e′

e

Figure 8 Cycle C and edge e′.

Similarly, if uv ∈ E(G) \ E(T ), then we obtain

|NG(u) ∪NG(v)| ≥ |NT (u) ∪NT (v) ∪ {u, v}| ≥ |NT (u)|+ |NT (v)|+ 1 ≥ 2d. (5)

If uv ∈ E(T ), then NT (u) ∩NT (v) = ∅ holds, and hence we obtain

|NG(u) ∪NG(v)| ≥ |NT (u) ∪NT (v)| = |NT (u)|+ |NT (v)| ≥ 2d− 1. (6)

By (4), (5), and (6), we obtain (1).
We next prove the “if” direction. Suppose that |NG(u)| ≥ d, |NG(v)| ≥ d, and (1) hold.

For each of the following two cases, we define an edge set F ⊆ E.
Suppose that uv ̸∈ E(G) holds (Figure 7). Let Su ⊆ NG(u) be a vertex set with
|Su| = d that maximizes |Su \ NG(v)|. Then, we have either Su ⊆ NG(u) \ NG(v) or
Su ⊋ NG(u) \NG(v). If Su ⊆ NG(u) \NG(v), then let Sv ⊆ NG(v) be a vertex set with
|Sv| = d − 1. Otherwise, let Sv ⊆ NG(v) be a vertex set such that |Sv| = d − 1 and
|Su∩Sv| = 1, where such Sv exists because |NG(v)\Su| = |(NG(u)∪NG(v))\Su| ≥ d−2
and |NG(v) ∩ Su| ≥ 1. In either case, we obtain Su ⊆ NG(u) and Sv ⊆ NG(v) such that
|Su| = d, |Sv| = d− 1, and |Su ∩ Sv| ≤ 1. Define F := {uw | w ∈ Su} ∪ {vw | w ∈ Sv}.
Suppose that uv ∈ E(G) holds. Since |NG(u) \ {v}| ≥ d − 1, |NG(v) \ {u}| ≥ d − 1,
and |(NG(u) \ {v}) ∪ (NG(v) \ {u})| ≥ 2d− 3, by the same argument as above, we can
take Su ⊆ NG(u) \ {v} and Sv ⊆ NG(v) \ {u} such that |Su| = d− 1, |Sv| = d− 2, and
Su ∩ Sv = ∅. Define F := {uw | w ∈ Su} ∪ {vw | w ∈ Sv} ∪ {uv}.

In both cases, it holds that |F ∩ δG(u)| = d, |F ∩ δG(v)| = d− 1, and F contains no cycle.
Therefore, there exists a spanning tree T with E(T ) ⊇ F such that |δT (u)| ≥ |F ∩ δG(u)| = d

and |δT (v)| ≥ |F ∩ δG(v)| = d− 1. If |δT (v)| ≥ d, then we obtain {u, v} ⊆ large(T ), which
shows that uv ∈ E(G). Therefore, it suffices to consider the case when |δT (v)| = d− 1. Since
|δG(v)| ≥ d, there exists an edge e ∈ δG(v) \ δT (v). Let C be the unique cycle in T + e and e′

be an edge in E(C) \ δT (v) (see Figure 8). Then, T ′ := T + e− e′ is a spanning tree such that
|δT ′(v)| = |δT (v) ∪ {e}| = d, which means that v ∈ large(T ′). Since T and T ′ are adjacent,
we obtain uv ∈ E(G). ◀

B Proofs for Section 5 (Large Diameter (Proof of Theorem 3))

▶ Lemma 17 (⋆). For any spanning tree T in G, diam(T ) = ℓ̄T (x3n′ , z3n′).

Proof. Let T be a spanning tree in G and P ∗ be a longest path in T . For x, y ∈ V and
for a spanning tree T in G, we denote by T [x, y] the unique path between x and y in T .
Since T [x3n′ , z3n′ ] contains all the edges in Px and Pz, the length of T [x3n′ , z3n′ ] is at least
6n′, and hence |E(P ∗)| ≥ |E(T [x3n′ , z3n′ ])| ≥ 6n′. Since each of G − {x1, . . . , x3n′} and
G− {z1, . . . , z3n′} contains at most 5n′ vertices, we obtain V (P ∗) ∩ {x1, . . . , x3n′} ̸= ∅ and
V (P ∗) ∩ {z1, . . . , z3n′} ≠ ∅. This shows that P ∗ = T [xi, zj ] for some i, j ∈ {1, 2, . . . , 3n′}.
Since T [xi, zj ] is a subpath of T [x3n′ , z3n′ ], P ∗ must be equal to T [x3n′ , z3n′ ], that is,
diam(T ) = ℓ̄T (x3n′ , z3n′). ◀
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▶ Lemma 18 (⋆). (G′, s′, t′) is a YES-instance of Hamiltonian Path if and only if
(G, d, Ts, Tt) is a YES-instance of RST with Large Diameter.

Proof. We first prove the “if” direction. Suppose that (G, d, Ts, Tt) is a YES-instance. Then
there is a reconfiguration sequence ⟨Ts = T0, T1, . . . , Tk = Tt⟩ between Ts and Tt in which all
the spanning trees have diameter at least d. Let Ti be the first spanning tree in the sequence
such that Ti is obtained from Ti−1 by exchanging an edge in D, that is, E(Tj) ∩ E(D) =
{t′t1, t1t2, t2t3} for all j ∈ {0, 1, . . . , i− 1} and E(Ti) ∩ E(D) ̸= {t′t1, t1t2, t2t3}. Note that
such i exists, because E(Tk) ∩ E(D) ̸= {t′t1, t1t2, t2t3}. Note also that ℓ̄Ti(t′, t3) = 2 by the
definition of Ti. Then, by Lemma 17, we obtain

7n′ + 1 ≤ diam(Ti)
= ℓ̄Ti

(x3n′ , z3n′)
= ℓ̄Ti

(x3n′ , s′) + ℓ̄Ti
(s′, t′) + ℓ̄Ti

(t′, t3) + ℓ̄Ti
(t3, z3n′)

= 3n′ + ℓ̄Ti(s′, t′) + 2 + 3n′,

and hence ℓ̄Ti
(s′, t′) ≥ n′ − 1. Since Py contains only n′ − 2 edges, all the edges in Ti[s′, t′]

are contained in G′. We thus conclude that Ti[s′, t′] is a Hamiltonian path between s′ and t′

in G′, and hence the “if” direction follows.
We now prove the “only-if” direction. Suppose that (G′, s′, t′) is a YES-instance, that is,

G′ contains a Hamiltonian path P ∗ between s′ and t′. Let e∗ be any edge in P ∗ and ey be
any edge in Py. We define five spanning trees T1, T2, T3, T4, and T5 in G as follows:

E(T1) = E(Px) ∪ E(Py) ∪ E(Pz) ∪ E(P ∗ − e∗) ∪ {t′t1, t1t2, t2t3},
E(T2) = E(Px) ∪ E(Py − ey) ∪ E(Pz) ∪ E(P ∗) ∪ {t′t1, t1t2, t2t3},
E(T3) = E(Px) ∪ E(Py − ey) ∪ E(Pz) ∪ E(P ∗) ∪ {t′t2, t1t2, t2t3},
E(T4) = E(Px) ∪ E(Py − ey) ∪ E(Pz) ∪ E(P ∗) ∪ {t′t2, t1t2, t1t3},
E(T5) = E(Px) ∪ E(Py) ∪ E(Pz) ∪ E(P ∗ − e∗) ∪ {t′t2, t1t2, t1t3}.

We observe that ⟨T1, T2, T3, T4, T5⟩ is a reconfiguration sequence from T1 and T5 in which
all the spanning trees have diameter at least d = 7n′ + 1. Thus, in order to show that Ts is
reconfigurable to Tt, it suffices to show that Ts is reconfigurable to T1 and T5 is reconfigurable
to Tt. Since Ts[x3n′ , z3n′ ] = T1[x3n′ , z3n′ ], Lemma 5 shows that there is a reconfiguration
sequence from Ts to T1 in which all the spanning trees contain E(Ts[x3n′ , z3n′ ]) ⊆ E(Ts) ∩
E(T1). Therefore, every spanning tree in the sequence has diameter at least d, and hence Ts
is reconfigurable to T1. Similarly, T5 is reconfigurable to Tt. By combining them, we have
that Ts is reconfigurable to Tt, which completes the proof of the “only-if” direction. ◀

C Proofs for Section 6 (Small Diameter (Proof of Theorem 4))

▶ Lemma 19 (⋆). For any spanning tree T in G = (V, E), diam(T ) ≤ d if and only if there
exists r ∈ V ∪R(T ) such that ϵT (r) ≤ d

2 .

Proof. To show the “if” part, suppose that there exists r ∈ V ∪R(T ) such that ϵT (r) ≤ d
2 .

Then, for any u, v ∈ V , ℓ̄T (u, v) ≤ ℓ̄T (u, r) + ℓ̄T (r, v) ≤ 2ϵT (r) ≤ d, which shows that
diam(T ) ≤ d.

To show the “only-if” part, suppose that diam(T ) ≤ d. Let d∗ := diam(T ) and let
u, v ∈ V be a pair of vertices such that ℓ̄T (u, v) = d∗. Let r ∈ V ∪ R(T ) be the middle
point of u and v in T , that is, ℓ̄T (u, r) = ℓ̄T (r, v) = d∗

2 . Since T is a spanning tree, for any
x ∈ V , d∗

2 + ℓ̄T (r, x) = max{ℓ̄T (u, x), ℓ̄T (v, x)} ≤ d∗. This shows that ℓ̄T (r, x) ≤ d∗

2 , that is,
ϵT (r) ≤ d

2 . ◀
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▶ Lemma 20 (⋆). Let T1 and T2 be spanning trees in G with diameter at most d. If there
exists a point r ∈ center(T1) ∩ center(T2), then T1 is reconfigurable to T2.

Proof. Let T ∗ be the spanning tree that is obtained by applying the breadth first search from
r in G. Here, if r ∈ R is the middle point of uv ∈ E, then the breadth first search is started
from {u, v}. Since ℓ̄T ∗(r, v) ≤ ℓ̄T1(r, v) ≤ d

2 for any v ∈ V , the diameter of T ∗ is at most d.
For v ∈ V , let PT ∗(v) (resp. PT1(v)) denote the unique path from r to v in T ∗ (resp. T1). In
T ∗, we say that a vertex u ∈ V is the parent of v if uv ∈ E(T ∗) and ℓ̄T ∗(r, v) = ℓ̄T ∗(r, u) + 1.
The parent in T1 is defined in the same way.

In order to show that T1 is reconfigurable to T2, it suffices to show that Ti is reconfigurable
to T ∗ for i ∈ {1, 2}. Suppose that T1 ̸= T ∗ and let xy be an edge in E(T ∗) \ E(T1) that
minimizes min{ℓ̄T ∗(r, x), ℓ̄T ∗(r, y)}. Without loss of generality, we assume that x is the
parent of y in T ∗. Let w ∈ V be the parent of y in T1 and define T ′

1 := T1 + {xy} − {wy},
which is a spanning tree in G. By the choice of xy, we obtain PT1(x) = PT ∗(x), and hence
PT ′

1
(y) = PT ∗(y) and ℓ̄T ′

1
(r, y) = ℓ̄T ∗(r, y) ≤ ℓ̄T1(r, y). Since this shows that ℓ̄T ′

1
(r, v) ≤

ℓ̄T1(r, v) ≤ d
2 for any v ∈ V , the diameter of T ′

1 is at most d by Lemma 19. We observe
that replacing T1 with T ′

1 increases |{v ∈ V | PT1(v) = PT ∗(v)}| by at least one, because
PT1(y) ̸= PT ′

1
(y) = PT ∗(y). Therefore, by applying this procedure at most |V | times, we

obtain a reconfiguration sequence from T1 to T ∗. We can also obtain a reconfiguration
sequence from T2 to T ∗ in the same way. Hence, the statement holds. ◀

▶ Lemma 21 (⋆). Let r1, r2 ∈ V ∪ R (possibly r1 = r2). There exists a pseudotree Q

with r1, r2 ∈ center(Q) if and only if there exist two spanning trees T1 and T2 such that
ri ∈ center(Ti) for i = 1, 2 and T1 ↔ T2 (possibly T1 = T2).

Proof. We first consider the “if” part. Suppose that there exist two spanning trees T1 and T2
such that ri ∈ center(Ti) for i = 1, 2 and T1 ↔ T2. Then Q := T1 ∪T2 is a desired pseudotree
as ϵQ (ri) ≤ ϵTi

(ri) ≤ d
2 for i = 1, 2.

We next consider the “only-if” part. Suppose that Q is a pseudotree with r1, r2 ∈
center(Q). For i = 1, 2, let Ti be the spanning tree that is obtained by applying the breadth
first search from ri in Q. Then, we obtain ϵTi (ri) = ϵQ (ri) ≤ d

2 . Furthermore, since
|E(T1) \ E(T2)| ≤ |E(Q) \ E(T2)| = 1, it holds that T1 ↔ T2. ◀
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Abstract
We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words
over some alphabet of colors. A well-studied class of objectives is the one of ω-regular objectives, due
to its relation to many natural problems in theoretical computer science. We focus on the strategy
complexity question: given an objective, how much memory does each player require to play as
well as possible? A classical result is that finite-memory strategies suffice for both players when
the objective is ω-regular. We show a reciprocal of that statement: when both players can play
optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors)
in all infinite game graphs, then the objective must be ω-regular. This provides a game-theoretic
characterization of ω-regular objectives, and this characterization can help in obtaining memory
bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that
chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs,
it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our
results with the family of discounted-sum objectives, for which ω-regularity depends on the value of
some parameters.
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16:2 Characterizing Omega-Regularity Through Finite-Memory Determinacy

of the arena are labeled with a (possibly infinite) alphabet of colors, and the interaction of
the players in the arena generates an infinite word over this alphabet of colors. These infinite
words can be used to specify the players’ objectives: a winning condition is a set of infinite
words, and P1 wins a game on a graph if the infinite word generated by its interaction with
P2 on the arena belongs to this winning condition – otherwise, P2 wins.

This game-theoretic model has applications to the reactive synthesis problem [4]: a system
(modeled as P1) wants to guarantee some specification (the winning condition) against an
uncontrollable environment (modeled as P2). Finding a winning strategy in the game for P1
corresponds to building a controller for the system that achieves the specification against all
possible behaviors of the environment.

Strategy complexity. We are interested in the strategy complexity question: given a winning
condition, how complex must winning strategies be, and how simple can they be? We are
interested in establishing the sufficient and necessary amount of memory to play optimally.
We consider in this work that an optimal strategy in an arena must be winning from any state
from which winning is possible (a property sometimes called uniformity in the literature).
The amount of memory relates to how much information about the past is needed to play in
an optimal way. With regard to reactive synthesis, this has an impact in practice on the
resources required for an optimal controller.

Three classes of strategies are often distinguished, depending on the number of states of
memory they use: memoryless, finite-memory, and infinite-memory strategies. A notable
subclass of finite-memory strategies is the class of strategies that can be implemented with
finite-memory structures that only observe the sequences of colors (and not the sequences
of states nor edges). Such memory structures are called chromatic [30]. By contrast, finite-
memory structures that have access to the states and edges of arenas are called general.
Chromatic memory structures are syntactically less powerful and may require more states
than general ones [11], but they have the benefit that they can be defined independently of
arenas.

We seek to characterize the winning conditions for which chromatic-finite-memory strate-
gies suffice to play optimally against arbitrarily complex strategies, for both players, in all
finite and infinite arenas. We call this property chromatic-finite-memory determinacy. This
property generalizes memoryless determinacy, which describes winning conditions for which
memoryless strategies suffice to play optimally for both players in all arenas. Our work
follows a line of research [6, 8] giving various characterizations of chromatic-finite-memory
determinacy for games on finite arenas (see Remark 2 for more details).

ω-regular languages. A class of winning conditions commonly arising as natural specifi-
cations for reactive systems (it encompasses, e.g., linear temporal logic specifications [38])
consists of the ω-regular languages. They are, among other characterizations, the languages
of infinite words that can be described by a finite parity automaton [36]. It is known that
all ω-regular languages are chromatic-finite-memory determined, which is due to the facts
that an ω-regular language is expressible with a parity automaton, and that parity con-
ditions admit memoryless optimal strategies [27, 42]. Multiple works study the strategy
complexity of ω-regular languages, giving, e.g., precise general memory requirements for all
Muller conditions [18] or a characterization of the chromatic memory requirements of Muller
conditions [11, Theorem 28].
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A result in the other direction is given by Colcombet and Niwiński [17]: they showed that
if a prefix-independent winning condition is memoryless-determined in infinite arenas, then
this winning condition must be a parity condition. As parity conditions are memoryless-
determined, this provides an elegant characterization of parity conditions from a strategic
perspective, under prefix-independence assumption.

Congruence. A well-known tool to study a language L of finite (resp. infinite) words is
its right congruence relation ∼L: for two finite words w1 and w2, we write w1 ∼L w2 if
for all finite (resp. infinite) words w, w1w ∈ L if and only if w2w ∈ L. There is a natural
deterministic (potentially infinite) automaton recognizing the equivalence classes of the right
congruence, called the minimal-state automaton of ∼L [41, 35].

The relation between a regular language of finite words and its right congruence is given
by the Myhill-Nerode theorem [37], which provides a natural bijection between the states of
the minimal deterministic automaton recognizing a regular language and the equivalence
classes of its right congruence relation. Consequences of this theorem are that a language is
regular if and only if its right congruence has finitely many equivalence classes, and a regular
language can be recognized by the minimal-state automaton of its right congruence.

For the theory of languages of infinite words, the situation is not so simple: ω-regular
languages have a right congruence with finitely many equivalence classes, but having finitely
many equivalence classes does not guarantee ω-regularity (for example, a language is prefix-
independent if and only if its right congruence has exactly one equivalence class, but this does
not imply ω-regularity). Moreover, ω-regular languages cannot necessarily be recognized
by adding a natural acceptance condition (parity, Rabin, Muller. . . ) to the minimal-state
automaton of their right congruence [1]. There has been multiple works about the links
between a language of infinite words and the minimal-state automaton of its right congruence;
one relevant question is to understand when a language can be recognized by this minimal-
state automaton [41, 35, 1].

Contributions. We characterize the ω-regularity of a language of infinite words W through
the strategy complexity of the zero-sum turn-based games on infinite graphs with winning
condition W : the ω-regular languages are exactly the chromatic-finite-memory determined
languages (seen as winning conditions) (Theorem 9). As discussed earlier, it is well-known
that ω-regular languages admit chromatic-finite-memory optimal strategies [36, 42, 11] – our
results yield the other implication. This therefore provides a characterization of ω-regular
languages through a game-theoretic and strategic lens.

Our technical arguments consist in providing a precise connection between the repre-
sentation of W as a parity automaton and a chromatic memory structure sufficient to
play optimally. If strategies based on a chromatic finite-memory structure are sufficient
to play optimally for both players, then W is recognized by a parity automaton built on
top of the direct product of the minimal-state automaton of the right congruence and this
chromatic memory structure (Theorem 8). This result generalizes the work from Colcombet
and Niwiński [17] in two ways: by relaxing the prefix-independence assumption about the
winning condition, and by generalizing the class of strategies considered from memoryless to
chromatic-finite-memory strategies. We recover their result as a special case.

Moreover, we actually show that chromatic-finite-memory determinacy in one-player
games of both players is sufficient to show ω-regularity of a language. As ω-regular languages
are chromatic-finite-memory determined in two-player games, we can reduce the problem
of chromatic-finite-memory determinacy of a winning condition in two-player games to the
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easier chromatic-finite-memory determinacy in one-player games (Theorem 10). Such a
one-to-two-player lift holds in multiple classes of zero-sum games, such as deterministic
games on finite arenas [23, 6, 31] and stochastic games on finite arenas [24, 8]. The proofs
for finite arenas all rely on an edge-induction technique (also used in other works about
strategy complexity in finite arenas [28, 21, 13]) that appears unfit to deal with infinite
arenas. Although not mentioned by Colcombet and Niwiński, it was already noticed [30] that
for prefix-independent winning conditions in games on infinite graphs, a one-to-two-player
lift for memoryless determinacy follows from [17].

Related works. We have already mentioned [18, 42, 17, 29, 11] for fundamental results on
the memory requirements of ω-regular conditions, [23, 24, 6, 8] for characterizations of “low”
memory requirements in finite (deterministic and stochastic) arenas, and [41, 35, 1] for links
between an ω-regular language and the minimal-state automaton of its right congruence.

One stance of our work is that our assumptions about strategy complexity affect both
players. Another intriguing question is to understand when the memory requirements of only
one player are finite. In finite arenas, results in this direction are sufficient conditions for the
existence of memoryless optimal strategies for one player [28, 3], and a procedure to compute
the chromatic memory requirements of prefix-independent ω-regular conditions [29, 30].

Other articles study the strategy complexity of (non-necessarily ω-regular) winning
conditions in infinite arenas; see, e.g., [20, 25, 16]. In such non-ω-regular examples, as can be
expected given our main result, at least one player needs infinite memory to play optimally,
or the arena model is different from ours (e.g., only allowing finite branching – we discuss
such differences in more depth after Theorem 8). A particularly interesting example w.r.t. our
results is considered by Chatterjee and Fijalkow [15]. They study the strategy complexity of
finitary Büchi and parity conditions, and show that P1 has chromatic-finite-memory optimal
strategies for finitary Büchi and finitary parity. However, for these (non-ω-regular) winning
conditions, P2 needs infinite memory. This example illustrates that our main result would
not hold if we just focused on the strategy complexity of one player.

We mention works on finite-memory determinacy in different contexts: finite arenas [34],
non-zero-sum games [33], countable one-player stochastic games [26], concurrent games [32, 7].

Structure. We fix definitions in Section 2. Our main results are discussed in Section 3.
We apply our results to discounted-sum and mean-payoff winning conditions in Section 4.
Due to a lack of space, we only sketch some technical details; the complete proofs as well as
additional examples and remarks are found in the full version of the article [9].

2 Preliminaries

Let C be an arbitrary non-empty set of colors. Given a set A, we write A∗ for the set of
finite sequences of elements of A and Aω for the set of infinite sequences of elements of A.

Arenas. We consider two players P1 and P2. An arena is a tuple A = (S, S1, S2, E) such
that S = S1 ⊎ S2 (disjoint union) is a non-empty set of states (of any cardinality) and
E ⊆ S × C × S is a set of edges. States in S1 are controlled by P1 and states in S2 are
controlled by P2. We allow arenas with infinite branching. Given e ∈ E, we denote by
in, col, and out the projections to its first, second, and third component, respectively (i.e.,
e = (in(e), col(e), out(e))). We assume arenas to be non-blocking: for all s ∈ S, there exists
e ∈ E such that in(e) = s.
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Let A = (S, S1, S2, E) be an arena with s ∈ S. We denote by Plays(A, s) the set of plays
of A from s, that is, infinite sequences of edges ρ = e1e2 . . . ∈ Eω such that in(e1) = s and for
all i ≥ 1, out(ei) = in(ei+1). For ρ = e1e2 . . . ∈ Plays(A, s), we write colω(ρ) for the infinite
sequence col(e1)col(e2) . . . ∈ Cω. We denote by Hists(A, s) the set of histories of A from s,
which are all finite prefixes of plays of A from s. We write Plays(A) and Hists(A) for the
sets of all plays of A and all histories of A (from any state), respectively. If h = e1 . . . ek

is a history of A, we define in(h) = in(e1) and out(h) = out(ek). For convenience, for every
s ∈ S, we also consider the empty history λs from s, and we set in(λs) = out(λs) = s. For
i ∈ {1, 2}, we denote by Histsi(A) the set of histories h such that out(h) ∈ Si. An arena
A = (S, S1, S2, E) is a one-player arena of P1 (resp. of P2) if S2 = ∅ (resp. S1 = ∅).

Skeletons. A skeleton is a tuple M = (M, minit, αupd) such that M is a finite set of states,
minit ∈ M is an initial state, and αupd : M × C → M is an update function. We denote by
α∗

upd the natural extension of αupd to finite sequences of colors. We always assume that all
states of skeletons are reachable from their initial state. We define the trivial skeleton Mtriv
as the only skeleton with a single state. Although we require skeletons to have finitely many
states, we allow them to have infinitely many transitions (which happens when C is infinite).

We say that a non-empty sequence π = (m1, c1) . . . (mk, ck) ∈ (M × C)+ is a path of M
(from m1 to αupd(mk, ck)) if for all i ∈ {1, . . . , k − 1}, αupd(mi, ci) = mi+1. For convenience,
we also consider every element (m, ⊥) for m ∈ M and ⊥ /∈ C to be an empty path of M (from
m to m). A non-empty path of M from m to m′ is a cycle of M (on m) if m = m′. Cycles of
M are usually denoted by letter γ. For π = (m1, c1) . . . (mk, ck) a path of M, we define col∗(π)
to be the sequence c1 . . . ck ∈ C∗. For an infinite sequence (m1, c1)(m2, c2) . . . ∈ (M × C)ω,
we also write colω((m1, c1)(m2, c2) . . .) for the infinite sequence c1c2 . . . ∈ Cω.

For m, m′ ∈ M , we write Πm,m′ for the set of paths of M from m to m′, Γm for the set
of cycles of M on m, and ΓM for the set of all cycles of M (on any skeleton state). When
considering sets of paths or cycles of M, we add a c in front of the set to denote the projections
of the corresponding paths or cycles to colors (e.g., cΓM = {col∗(γ) ∈ C+ | γ ∈ ΓM}).

For w = c1c2 . . . ∈ Cω, we define skel(w) as the infinite sequence (m1, c1)(m2, c2) . . . ∈
(M × C)ω that w induces in the skeleton (m1 = minit and for all i ≥ 1, αupd(mi, ci) = mi+1).

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be two skeletons. Their (direct)
product M1 ⊗ M2 is the skeleton (M, minit, αupd) where M = M1 × M2, minit = (m1

init, m2
init),

and, for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)).

Strategies. Let A = (S, S1, S2, E) be an arena and i ∈ {1, 2}. A strategy of Pi on A is a
function σi : Histsi(A) → E such that for all h ∈ Histsi(A), out(h) = in(σi(h)). We denote
by Σi(A) the set of strategies of Pi on A. Given a strategy σi of Pi, we say that a play ρ is
consistent with σi if for all finite prefixes h = e1 . . . ei of ρ such that out(h) ∈ Si, σi(h) = ei+1.
For s ∈ S, we denote by Plays(A, s, σi) the set of plays from s that are consistent with σi.

For M = (M, minit, αupd) a skeleton, a strategy σi ∈ Σi(A) is based on (memory) M if
there exists a function αnxt : S × M → E such that for all s ∈ Si, σi(λs) = αnxt(s, minit), and
for all non-empty paths h ∈ Histsi(A), σi(h) = αnxt(out(h), α∗

upd(minit, col∗(h))). A strategy
is memoryless if it is based on Mtriv.

▶ Remark 1. Our memory model is chromatic [30], i.e., it observes the sequences of colors
and not the sequences of edges of arenas, since the argument of the update function of a
skeleton is in M × C. It was recently shown that the amount of memory states required
to play optimally for a winning condition using chromatic skeletons may be strictly larger
than using general memory structures (i.e., using memory structures observing edges) [11,

STACS 2022



16:6 Characterizing Omega-Regularity Through Finite-Memory Determinacy

Proposition 32]. The example provided is a Muller condition (hence an ω-regular condition),
in which both kinds of memory requirements are still finite. A result in this direction is also
provided by Le Roux [32] for games on finite arenas: it shows that in many games, a strategy
using general finite memory can be swapped for a (larger) chromatic finite memory.

For games on infinite arenas, which we consider in this article, we do not know whether
there exists a winning condition with finite general memory requirements, but infinite
chromatic memory requirements. Our results focus on chromatic memory requirements. ⌟

Winning conditions. A (winning) condition is a set W ⊆ Cω. When a condition W is clear
in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and losing if not.
For a condition W and a word w ∈ C∗, we write w−1W = {w′ ∈ Cω | ww′ ∈ W} for the set
of winning continuations of w. We write W for the complement Cω \ W of a condition W .

A game is a tuple G = (A, W ) where A is an arena and W is a winning condition.

Optimality and determinacy. Let G = (A = (S, S1, S2, E), W ) be a game, and s ∈ S.
We say that σ1 ∈ Σ1(A) is winning from s if colω(Plays(A, s, σ1)) ⊆ W , and we say that
σ2 ∈ Σ2(A) is winning from s if colω(Plays(A, s, σ2)) ⊆ W .

A strategy of Pi is optimal in (A, W ) if it is winning from all the states from which Pi

has a winning strategy. We often write optimal in A if condition W is clear from the context.
We stress that this notion of optimality requires a single strategy to be winning from all the
winning states (a property sometimes called uniformity).

A winning condition W is determined if for all games G = (A = (S, S1, S2, E), W ), for all
s ∈ S, either P1 or P2 has a winning strategy from s. Let M be a skeleton. We say that
a winning condition W is M-determined if (i) W is determined and (ii) in all arenas A,
both players have an optimal strategy based on M. A winning condition W is one-player
M-determined if in all one-player arenas A of P1, P1 has an optimal strategy based on M
and in all one-player arenas A of P2, P2 has an optimal strategy based on M. A winning
condition W is (one-player) memoryless-determined if it is (one-player) Mtriv-determined. A
winning condition W is (one-player) chromatic-finite-memory determined if there exists a
skeleton M such that it is (one-player) M-determined.
▶ Remark 2. It might seem surprising that for chromatic-finite-memory determinacy, we
require the existence of a single skeleton that suffices to play optimally in all arenas, rather
than the seemingly weaker existence, for each arena, of a finite skeleton (which may depend
on the arena) that suffices to play optimally. In infinite arenas, it turns out that these notions
are equivalent (proof in [9]).

▶ Lemma 3. Let W ⊆ Cω be a winning condition. The following are equivalent:
1. for all arenas A, there exists a skeleton MA such that both players have an optimal

strategy based on MA in A;
2. W is chromatic-finite-memory determined.

When restricted to finite arenas, we do not have an equivalence between these two
notions (hence the distinction between finite-memory determinacy and arena-independent
finite-memory determinacy [6, 8]). Our proof of Lemma 3 exploits that an infinite “union” of
arenas is still an arena, which is not true when restricted to finite arenas. ⌟

ω-regular languages. We define a parity automaton as a pair (M, p) where M is a skeleton
and p : M × C → {0, . . . , n}; function p assigns priorities to every transition of M. This
definition implies that we consider deterministic and complete parity automata (i.e., in every
state, reading a color leads to exactly one state). Following [12], if M is a skeleton, we say
that a parity automaton (M′, p) is defined on top of M if M′ = M.
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A parity automaton (M, p) defines a language L(M,p) of all the infinite words w ∈ Cω such
that, for skel(w) = (m1, c1)(m2, c2) . . ., lim supi≥1 p(mi, ci) is even. We say that W ⊆ Cω

is recognized by (M, p) if W = L(M,p). A language of infinite words is ω-regular if it is
recognized by a parity automaton. We emphasize that we consider transition-based parity
conditions: we assign priorities to transitions (and not states) of M. For more information
on links between state-based and transition-based acceptance conditions, we refer to [11].

Right congruence. For ∼ an equivalence relation, we call the index of ∼ the number of
equivalence classes of ∼. We denote by [a]∼ the equivalence class of an element a for ∼.

Let W be a winning condition. We define the right congruence ∼W ⊆ C∗ × C∗ of W as
w1 ∼W w2 if w−1

1 W = w−1
2 W (meaning that w1 and w2 have the same winning continuations).

Relation ∼W is an equivalence relation. When W is clear from the context, we write ∼
for ∼W . We denote by ε the empty word. When ∼ has finite index, we can associate a
natural skeleton M∼ = (M∼, m∼

init, α∼
upd) to ∼ such that M∼ is the set of equivalence classes

of ∼, m∼
init = [ε]∼, and α∼

upd([w]∼, c) = [wc]∼. This transition function is well-defined since it
follows from the definition of ∼ that if w1 ∼ w2, then for all c ∈ C, w1c ∼ w2c. Hence, the
choice of representatives for the equivalence classes does not have an impact in this definition.
We call skeleton M∼ the minimal-state automaton of ∼ [41, 35].

3 Concepts and characterization

We define two concepts at the core of our characterization, one of them dealing with
prefixes and the other one dealing with cycles. Let W ⊆ Cω be a winning condition and
M = (M, minit, αupd) be a skeleton.

Prefix-independence. Let ∼ be the right congruence of W .

▶ Definition 4. Condition W is M-prefix-independent if for all m ∈ M , for all w1, w2 ∈
cΠminit,m, w1 ∼ w2.

In other words, W is M-prefix-independent if finite words reaching the same state of M
from its initial state have the same winning continuations. The classical notion of prefix-
independence is equivalent to Mtriv-prefix-independence (as all finite words have the exact
same set of winning continuations, which is W ). If ∼ has finite index, W is in particular
M∼-prefix-independent: indeed, two finite words reach the same state of M∼ (if and) only
if they are equivalent for ∼. Any skeleton M such that W is M-prefix-independent must
have at least one state for each equivalence class of ∼, but multiple states may partition the
same equivalence class.

Cycle-consistency. For w ∈ C∗, we define

Γwin,w
M = {γ ∈ Γm | m = α∗

upd(minit, w) and (col∗(γ))ω ∈ w−1W}

as the cycles on the skeleton state reached by w in M that induce winning words when
repeated infinitely many times after w. We define

Γlose,w
M = {γ ∈ Γm | m = α∗

upd(minit, w) and (col∗(γ))ω ∈ w−1W}

as their losing counterparts. We emphasize that cycles are allowed to go through the same
edge multiple times.
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minit m2

b

a, c

a

b, c

Figure 1 Skeleton M such that W = Büchi(a) ∩ Büchi(b) is M-cycle-consistent (Example 6).
In figures, we use rhombuses (resp. circles, squares) to depict skeleton states (resp. arena states
controlled by P1, arena states controlled by P2).

▶ Definition 5. Condition W is M-cycle-consistent if for all w ∈ C∗, (cΓwin,w
M )ω ⊆ w−1W

and (cΓlose,w
M )ω ⊆ w−1W .

What this says is that after any finite word, if we concatenate infinitely many winning (resp.
losing) cycles on the skeleton state reached by that word, then it only produces winning
(resp. losing) infinite words.

▶ Example 6. For c′ ∈ C, let Büchi(c′) be the set of infinite words on C that see color
c′ infinitely often. Let C = {a, b, c}. Condition W = Büchi(a) ∩ Büchi(b) is Mtriv-prefix-
independent, but not Mtriv-cycle-consistent: for any w ∈ C∗, a and b are both in cΓlose,w

Mtriv
(as

waω and wbω are losing), but word w(ab)ω is winning. However, W is M-cycle-consistent for
the skeleton M with two states minit and m2 represented in Figure 1. For finite words reaching
minit, the losing cycles only see a and c, and combining infinitely many of them gives an
infinite word without b, which is a losing continuation of any finite word. The winning cycles
are the ones that go to m2 and then go back to minit, as they must see both a and b; combining
infinitely many of them guarantees a winning continuation after any finite word. A similar
reasoning applies to state m2. Notice that W is also M-prefix-independent. With regard to
memory requirements, condition W is not Mtriv-determined but is M-determined. ⌟

Both M-prefix-independence and M-cycle-consistency hold symmetrically for a winning
condition and its complement, and are stable by product with an arbitrary skeleton (as
products generate even smaller sets of prefixes and cycles to consider).

▶ Lemma 7. Let W ⊆ Cω be a winning condition and M be a skeleton. Then, W is
M-prefix-independent (resp. M-cycle-consistent) if and only if W is M-prefix-independent
(resp. M-cycle-consistent). If W is M-prefix-independent (resp. M-cycle-consistent), then
for all skeletons M′, W is (M ⊗ M′)-prefix-independent (resp. (M ⊗ M′)-cycle-consistent).

Moreover, an ω-regular language recognized by a parity automaton (M, p) is M-prefix-
independent and M-cycle-consistent.

Main results. We state our main technical tool. We recall that one-player M-determinacy
of a winning condition W is both about one-player arenas of P1 (trying to achieve a word in
W ) and of P2 (trying to achieve a word in W ).

▶ Theorem 8. Let W ⊆ Cω be a winning condition and ∼ be its right congruence.
1. If there exists a skeleton M such that W is one-player M-determined, then ∼ has finite

index (in particular, W is M∼-prefix-independent) and W is M-cycle-consistent.
2. If there exists a skeleton M such that W is M-prefix-independent and M-cycle-consistent,

then W is ω-regular and can be recognized by a deterministic parity automaton defined on
top of M.

Technical sketch. We prove the first and second items of this theorem in [9, Sections 4
and 5]. We comment briefly on our proof technique for each item.
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γ

γ1

γ2

γ′

Figure 2 Comparing cycles γ and γ′ using intermediate cycle γ = γ1γ2. Squiggly arrows indicate
a sequence of transitions. Cycles γ and γγ1γ2 are winning, and cycles γ′ and γ′γ2γ1 are losing.

1. For the first item, we assume that W is one-player M-determined for a skeleton M =
(M, minit, αupd). We define a preorder ⪯ on C∗ such that w1 ⪯ w2 if w−1

1 W ⊆ w−1
2 W . Notice

that the right congruence ∼ of W is equal to ⪯ ∩ ⪰. By exhibiting well-chosen one-player
arenas, using the M-determinacy assumption, we can show that for each m ∈ M , in the set
cΠminit,m, relation ⪯ is total and there is no infinite increasing nor decreasing sequence (for ⪯).
This shows that ∼ has finite index on each cΠminit,m; as M is finite and C∗ =

⋃
m∈M cΠminit,m,

relation ∼ has finite index on C∗. The proof of M-cycle-consistency is more direct: if a
player had an interest in mixing multiple losing cycles of M to make them into a winning
play, we could find a (possibly infinite) one-player arena of that player in which strategies
based on M would not suffice to play optimally.

2. For the second item, we assume that W is M-prefix-independent and M-cycle-consistent
for a skeleton M. Our technical lemmas focus on cycles of M, how they relate to each other,
and what happens when we combine them. Our main tool is to define a partial preorder on
cycles, which will help assign priorities to transitions of M – the aim being to define a parity
condition on top of M that recognizes W . As we consider M-prefix-independence along
with M-cycle-consistency, for m a state of M, each cycle in Γm has a well-defined accepting
status: it generates either a winning or a losing infinite word when repeated infinitely often
after any finite word in cΠminit,m.

Intuitively, for some state m of M, for γ a winning cycle on m and γ′ a losing cycle on
m, we can look at which cycle dominates the other, that is, whether the combined cycle γγ′

is winning, in which case γ dominates γ′, or losing, in which case γ′ dominates γ (γγ′ and
γ′γ necessarily have the same accepting status). This shows how to compare cycles with
different accepting statuses that start on the same skeleton state. This notion and some
properties about this notion generalize part of the proof technique of [17], in which colors
rather than cycles are compared.

We can extend this idea to some pairs of a winning cycle γ and a losing cycle γ′ that
have no state in common: our criterion to compare two such cycles is that there is a cycle
γ connecting them such that γ is not “powerful enough” to alter the values of each cycle
separately, that is, such that γγ is winning and γ′γ is losing. To know which cycle dominates
the other, we look at the accepting value of the cycle γγ1γ′γ2, for some adequate break of
γ into two paths γ1 and γ2. We illustrate the situation in Figure 2. If γγ1γ′γ2 is winning,
then γ dominates γ′, and if it is losing, then γ′ dominates γ.

This defines a partial preorder on cycles of M. We show that there is no infinite decreasing
nor increasing sequence for this preorder, and after defining a related equivalence relation,
that there are finitely many equivalence classes of cycles. We can assign finitely many
priorities to these cycles in a way consistent with the partial preorder, and then transfer
these priorities to transitions of M, as a function p : M × C → {0, . . . , n}. We conclude by
showing that W is recognized by parity automaton (M, p). ◀

We state two consequences of Theorem 8: a strategic characterization of ω-regular
languages, and a novel one-to-two-player-lift.
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▶ Theorem 9 (Characterization). Let W ⊆ Cω be a language of infinite words. Language W

is ω-regular if and only if it is chromatic-finite-memory determined (in infinite arenas).

Proof. One implication is well-known [36, 42]: if W is ω-regular, then it can be recognized
by a deterministic parity automaton whose skeleton we can use as a memory that suffices to
play optimally for both players, in arenas of any cardinality. The other direction is given
by Theorem 8: if W is chromatic-finite-memory determined, then there exists in particular
a skeleton M such that W is one-player M-determined, so ∼ has finite index and W is
M-cycle-consistent. In particular, by Lemma 7, W is (M∼ ⊗ M)-prefix-independent and
(M∼ ⊗ M)-cycle-consistent, so W is ω-regular and can be recognized by a deterministic
parity automaton defined on top of M∼ ⊗ M. ◀

▶ Theorem 10 (One-to-two-player lift). Let W ⊆ Cω be a winning condition. Language W is
one-player chromatic-finite-memory determined if and only if it is chromatic-finite-memory
determined.

Proof. The implication from two-player to one-player arenas is trivial. The other implication
is given by Theorem 8: if W is one-player M-determined, then ∼ has finite index and W is
M-cycle-consistent. Again by Lemma 7 and Theorem 8, as W can be recognized by a parity
automaton defined on top of M∼ ⊗ M, W is determined and strategies based on M∼ ⊗ M
suffice to play optimally in all two-player arenas. ◀

We discuss two specific situations in which we can easily derive interesting consequences us-
ing our results: the prefix-independent case, and the case where the minimal-state automaton
suffices to play optimally.

Prefix-independent case. If a condition W is prefix-independent (i.e., ∼ has index 1 and
M∼ = Mtriv), and skeleton M suffices to play optimally in one-player games, then W is
recognized by a parity automaton defined on top of Mtriv ⊗ M, which is isomorphic to M.
This implies that the exact same memory can be used by both players to play optimally in
two-player arenas, with no increase in memory. Note that we do not know in general whether
this product is necessary to go from one-player to two-player arenas, but the question is
automatically solved for prefix-independent conditions.

If, moreover, M = Mtriv (i.e., memoryless strategies suffice to play optimally in one-player
arenas), we recover exactly the result from Colcombet and Niwiński [17]: W can be recognized
by a parity automaton defined on top of Mtriv, so we can directly assign a priority to each
color with a function p : C → {0, . . . , n} such that an infinite word w = c1c2 . . . ∈ Cω is in
W if and only if lim supi≥1 p(ci) is even.

M∼-determined case. An interesting property of some ω-regular languages is that they
can be recognized by defining an acceptance condition on top of the minimal-state automaton
of their right congruence [35], which is a useful property for the learning of languages [1].
Here, Theorem 8 shows that W can be recognized by defining a transition-based parity
acceptance condition on top of the minimal-state automaton M∼ if and only if W is M∼-
determined. The transition-based parity acceptance condition was not considered in the
cited results [35, 1].

▶ Corollary 11. Let W ⊆ Cω be an ω-regular language and M∼ be the minimal-state
automaton of its right congruence. The following are equivalent:
1. W is recognized by defining a transition-based parity acceptance condition on top of M∼;
2. W is M∼-determined;
3. W is M∼-cycle-consistent.
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Proof. Implication 1. =⇒ 2. follows from the memoryless determinacy of parity games [42].
Implication 2. =⇒ 3. follows from the first item of Theorem 8. Implication 3. =⇒ 1. follows
from the second item of Theorem 8: by definition, W is M∼-prefix-independent; if it is also
M∼-cycle-consistent, then W is recognized by a parity automaton defined on top of M∼. ◀

Classes of arenas. We discuss the sensitivity of Theorem 8 w.r.t. our model of arenas.
There are multiple conditions that are chromatic-finite-memory determined if we only

consider finite arenas (finitely many states and edges) and not infinite arenas. A few examples
are discounted-sum games [40], mean-payoff games [19], total-payoff games [22], one-counter
games [10] which are all memoryless-determined in finite arenas but which require infinite
memory to play optimally in some infinite arenas (we discuss some of these in Section 4). In
particular, Theorem 9 tells us that the derived winning conditions are not ω-regular.

Strangely, the fact that our arenas have colors on edges and not on states is crucial for the
result. Indeed, there exists a winning condition (a generalization of a parity condition with
infinitely many priorities [25]) that is memoryless-determined in state-labeled infinite arenas,
but not in edge-labeled infinite arenas (as we consider here). This particularity was already
discussed [17], and it was also shown that the same condition is memoryless-determined in
edge-labeled arenas with finite branching. Therefore, the fact that we allow infinite branching
in our arenas is also necessary for Theorem 9. Another example of a winning condition with
finite memory requirements in finitely branching arenas for one player but infinite memory
requirements in infinitely branching arenas is presented in [16, Section 4].

4 Applications

We provide applications of our results to discounted-sum and mean-payoff conditions.

4.1 Discounted sum
We apply our results to a discounted-sum condition in order to illustrate our notions. A
specificity of this example is that its ω-regularity depends on some parameters – we use our
results to characterize the parameters for which it is ω-regular or, equivalently (Theorem 9),
chromatic-finite-memory determined. The ω-regularity of discounted-sum conditions has also
been studied in [14, 2] with different techniques and goals.

Let C ⊆ Q be non-empty and bounded. For λ ∈ (0, 1) ∩ Q, we define the discounted-sum
function DSλ : Cω → R such that for w = c1c2 . . . ∈ Cω, DSλ(w) =

∑∞
i=1 λi−1 · ci. This

function is always well-defined for a bounded C, and takes values in [ inf C
1−λ , sup C

1−λ ].
We define the winning condition DS≥0

λ = {w ∈ Cω | DSλ(w) ≥ 0} as the set of infinite
words whose discounted sum is non-negative, and let ∼ be its right congruence. We
will analyze cycle-consistency and prefix-independence of DS≥0

λ to conclude under which
conditions (on C and λ) it is chromatic-finite-memory determined (or equivalently, ω-regular
by Theorem 9). First, we discuss a few properties of the discounted-sum function.

Basic properties. We extend function DSλ to finite words in a natural way: for w ∈ C∗,
we define DSλ(w) = DSλ(w0ω). For w ∈ C∗, we define |w| as the length of w (so w ∈ C |w|).
First, we notice that for w ∈ C∗ and w′ ∈ Cω, we have DSλ(ww′) = DSλ(w) + λ|w|DSλ(w′).
Therefore, ww′ ∈ DS≥0

λ if and only if DSλ(w)
λ|w| ≥ −DSλ(w′). This provides a characterization

of the winning continuations of a finite word w ∈ C∗ by comparing their discounted sum to
the value DSλ(w)

λ|w| .
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s1 s2 s3

1
1
2

...

−1
λ

−1
2λ

...
0

Figure 3 Arena with infinitely many edges in which P1 needs infinite memory to win for condition
DS≥0

λ from s1 for any λ ∈ (0, 1) ∩ Q, with C = [−k, k] ∩ Q for k sufficiently large.

This leads us to define the gap of a finite word w ∈ C∗, following ideas in [5], as

gap(w) =


⊤ if DSλ(w)

λ|w| ≥ − inf C
1−λ ,

⊥ if DSλ(w)
λ|w| < − sup C

1−λ ,
DSλ(w)

λ|w| otherwise.

Intuitively, the gap of a finite word w ∈ C∗ represents how far it is from going back to 0:
if w′ ∈ Cω is such that DSλ(w′) = −gap(w), then DSλ(ww′) = 0. We can see that for all
words w ∈ C∗, if gap(w) = ⊤, then all continuations are winning (i.e., w−1W = Cω) as it
is not possible to find an infinite word with a discounted sum less than inf C

1−λ . Similarly, if
gap(w) = ⊥, then all continuations are losing (i.e., w−1W = ∅).

Cycle-consistency. We have that DS≥0
λ is Mtriv-cycle-consistent (proof in [9, Section 6]).

▶ Proposition 12. For all bounded C ⊆ Q, λ ∈ (0, 1) ∩ Q, winning condition DS≥0
λ is

Mtriv-cycle-consistent.

Prefix-independence. If C = [−k, k] ∩ Q for some k ∈ N \ {0}, winning condition DS≥0
λ is

not M-prefix-independent for any M, as ∼ has infinite index. Indeed, we have for instance
that elements in { 1

i ∈ C∗ | i ≥ 1} are all in different equivalence classes of ∼. We can see
how to use this to exhibit an arena in which P1 can win but needs infinite memory to do so
in Figure 3.

For finite C ⊆ Z, the picture is more complicated; for C = [−k, k] ∩ Z for some k ∈ N,
we characterize when DS≥0

λ is M-prefix-independent for some finite skeleton M. We give an
intuition of the two situations in which that happens: (i) if C is too small, then the first
non-zero color seen determines the outcome of the game, as it is not possible to compensate
this color to change the sign of the discounted sum; (ii) if λ = 1

n for some integer n ≥ 1,
then the gap function actually takes only finitely many values, which is not the case for a
different λ.

▶ Proposition 13. Let λ ∈ (0, 1)∩Q, k ∈ N, and C = [−k, k]∩Z. Then, the right congruence
∼ of DS≥0

λ has finite index if and only if k < 1
λ − 1 or λ is equal to 1

n for some integer n ≥ 1.

Proof (sketch). Full proof in [9, Section 6]. The key property is to show that gaps character-
ize equivalence classes of prefixes: for w1, w2 ∈ C∗, w1 ∼ w2 if and only if gap(w1) = gap(w2).
Once this is proven, it is left to determine the number of different gap values in each situation,
which corresponds to the index of ∼. We illustrate one situation in which the index is finite
by depicting the minimal-state automaton of ∼ for λ = 1

2 and k = 2 ≥ 1
λ − 1 in Figure 4. ◀

Connecting Propositions 12 and 13, here is the characterization we obtain using Theorem 8.

▶ Corollary 14. Let λ ∈ (0, 1) ∩ Q, k ∈ N, and C = [−k, k] ∩ Z. Condition DS≥0
λ is

chromatic-finite-memory determined (or equivalently, ω-regular) if and only if k < 1
λ − 1 or

λ is equal to 1
n for some integer n ≥ 1.
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0 2 ⊤−2−4⊥

0

1−1

2−2

−1

0, 1, 2

−2

1

−2, −1

2

0

2

C \ {2}
CC

Figure 4 Minimal-state automaton of ∼ for λ = 1
2 and C = {−2, −1, 0, 1, 2}. The value in a

state is the gap value characterizing the equivalence class of ∼. Here, sup C
1−λ

= 4 and inf C
1−λ

= −4. The
asymmetry around 0 comes from the ≥ 0 in the definition of the condition: when state −4 is reached,
there is exactly one winning continuation (2ω), but a state with gap value 4 would only have winning
continuations (hence, it is part of state ⊤). Notice that we can define a parity condition on top of
this automaton that recognizes DS≥0

λ : an infinite word is winning as long as it does not reach ⊥.

4.2 Mean payoff
Let C ⊆ Q be non-empty. We define the mean-payoff function MP : Cω → R ∪ {−∞, ∞}
such that for w = c1c2 . . . ∈ Cω, MP(w) = lim supn→∞

1
n

∑n
i=1 ci. We define the winning

condition MP≥0 = {w ∈ Cω | MP(w) ≥ 0} as the set of infinite words whose mean payoff is
non-negative. This condition is Mtriv-prefix-independent for any set of colors. However, it is
known that infinite-memory strategies may be required to play optimally in some infinite
arenas [39, Section 8.10]; the example provided uses infinitely many colors. Here, we show
that chromatic-finite-memory strategies do not suffice to play optimally, even for C = {−1, 1}.
Let us analyze cycle-consistency of MP≥0. If we consider, for n ∈ N,

wn = 1 . . . 1︸ ︷︷ ︸
n times

−1 . . . −1︸ ︷︷ ︸
n+1 times

,

we have that (wn)ω is losing for all n ∈ N, but the infinite word w0w1w2 . . . has a mean
payoff of 0 and is thus winning. This shows directly that MP≥0 is not Mtriv-cycle-consistent.
The argument can be adapted to show that MP≥0 is not M-cycle-consistent for any skeleton
M (see [9, Section 6]).

5 Conclusion

We proved an equivalence between chromatic-finite-memory determinacy of a winning condi-
tion in games on infinite graphs and ω-regularity of the corresponding language of infinite
words, generalizing a result by Colcombet and Niwiński [17]. A “strategic” consequence is
that chromatic-finite-memory determinacy in one-player games of both players implies the
seemingly stronger chromatic-finite-memory determinacy in zero-sum games. A “language-
theoretic” consequence is a link between the representation of ω-regular languages by parity
automata and the memory structures used to play optimally in zero-sum games, using as a
tool the minimal-state automata classifying the equivalence classes of the right congruence.

For future work, one possible improvement over our result is to deduce tighter chromatic
memory requirements in two-player games compared to one-player games. Our proof technique
gives as an upper bound on the two-player memory requirements a product between the
minimal-state automaton and a sufficient skeleton for one-player arenas, but smaller skeletons
often suffice. We do not know whether the product with the minimal-state automaton is
necessary in general in order to play optimally in two-player arenas (although it is necessary
in Theorem 8 to describe W using a parity automaton). This behavior contrasts with the
case of finite arenas, in which it is known that a skeleton sufficient for both players in finite
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one-player arenas also suffices in finite two-player arenas [6, 8]. More generally, it would
be interesting to characterize precisely the (chromatic) memory requirements of ω-regular
winning conditions, extending work on the subclass of Muller conditions [18, 11].
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Abstract
In this paper, we study testing decision tree of size and depth that are significantly smaller than the
number of attributes n.

Our main result addresses the problem of poly(n, 1/ϵ) time algorithms with poly(s, 1/ϵ) query
complexity (independent of n) that distinguish between functions that are decision trees of size s

from functions that are ϵ-far from any decision tree of size ϕ(s, 1/ϵ), for some function ϕ > s. The
best known result is the recent one that follows from Blanc, Lange and Tan, [3], that gives ϕ(s, 1/ϵ) =
2O((log3 s)/ϵ3). In this paper, we give a new algorithm that achieves ϕ(s, 1/ϵ) = 2O(log2(s/ϵ)).

Moreover, we study the testability of depth-d decision tree and give a distribution free tester
that distinguishes between depth-d decision tree and functions that are ϵ-far from depth-d2 decision
tree.
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1 Introduction

Decision tree is one of the popular predictive modelling approaches used in many areas
including statistics, data mining and machine learning. Recently, property-testing of sub-
classes of decision trees have attracted much attention [1, 3, 6, 9, 10, 12]. In property testing,
the algorithm is provided by an access to a black box to some Boolean function f and labeled
random examples of f according to some distribution D. Given a subclass of decision trees
C, we need to decide whether f is a decision tree in C or “far” from being in C with respect
to D, [4, 11, 13].

Since finding efficient algorithms for this problem is difficult, the following relaxation is
considered. Let H be a larger class of decision trees H ⊃ C. Then, we are interested in the
question: can we efficiently test C by H? That is, to efficiently decide whether f is a decision
tree in C or “far” from being in H with respect to D, [12]. In this context, the challenge is
to find a small class H ⊃ C such that efficient testing algorithm exists. In this paper, we
address this problem while examining and constructing algorithms that are efficient in the
query complexity and run in polynomial time.

1.1 Models

Let C and H ⊇ C be two classes of Boolean functions f : {0, 1}n → {0, 1}. In the
distribution-free model, the algorithm has an access to a black box query and random
example query. The black box query, for an input x ∈ {0, 1}n returns f(x). The random
example query, when invoked, returns a random example (x, f(x)) such that x is chosen
according to an arbitrary and unknown distribution D. In the uniform distribution model,
D = U is the uniform distribution over {0, 1}n.
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A function g ∈ H is called ϵ-close to f ∈ C with respect to the distribution D if,
PrD[g(x) ̸= f(x)] ≤ ϵ. In the distribution-free property testing C by H, [12], (resp. uniform
distribution property testing), for any Boolean function f , we need to distinguish, with high
probability and via the above queries to f , between the case that f is in C versus the case
that f is ϵ-far (not ϵ-close) from every function in H with respect to D (resp. the uniform
distribution). Such an algorithm is called a tester for C by H. When H = C, the tester is
called a tester for C.

1.2 Decision Tree
A decision tree is a rooted binary tree in which each internal node is labeled with a variable
xi and has two children. Each leaf is labeled with an output from {0, 1}. A decision tree
computes a Boolean function in the following way: given an input x ∈ {0, 1}n, the value of
the function on x is the output in the leaf reached by the path that starts at the root and
goes left or right at each internal node according to whether the variable’s value in x is 0
or 1, respectively.

The size of a decision tree is the number of leaves of the tree. The depth of a node
(resp. leaf) in a decision tree is the number of edges in the path from the root to the node
(resp. leaf). The depth of the tree is the maximum over all the depth values of its leaves. A
depth-d decision tree T is a decision tree of depth at most d. A size-s decision tree T is a
decision tree of size at most s.

1.3 Other Representations of Decision Tree
A monomial is a conjunction of variables, and a term is a conjunction of literals (variable
and negated variable). Two terms t1 and t2 are called disjoint if t1 ∧ t2 = 0 (over the field
F2). A multilinear polynomial (or just a polynomial) is Boolean function that is defined as
a sum of monomials over the field F2. Every Boolean function can be expressed uniquely as
a multilinear polynomial. A disjoint-terms sum is a sum of disjoint terms. Every Boolean
function can be represented as a disjoint-terms sum. The representation is not unique.

A decision tree f can be represented as a disjoint-terms sum according to the following
recurrence. If the decision tree is a leaf, then its disjoint-terms sum representation is the
constant in this leaf. If the root label of f is xi then, f = xif1 + xif0 where f1 and f0 are
the disjoint-terms sum of right and left sub-trees of f respectively. It is easy to see that the
number of terms we get in this recurrence is equal to the number of leaves in the tree labeled
with 1. Therefore, every leaf corresponds to a term and the number of literals in this term is
equal to the depth of the leaf. To represent a disjoint-terms sum as a polynomial, we write
for each appearance of xi as xi + 1 and expand the expressions with the regular arithmetic
rules in the field F2.

2 Main Result and Technique

In this section, we present previous and new results for testing decision trees. In the next
two subsections, we consider two significant results in testing.

2.1 Testing Decision Tree of Size s

Let f be a Boolean function over the variables x1, . . . , xn. For xi1 , . . . , xij
and ξ1, . . . , ξj ∈

{0, 1}, denote by f|xi1←ξ1,...,xij
←ξj

the function that results from substituting xir = ξr,
r = 1, . . . , j in f .
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In [3], Blanc, Lange and Tan give the first tester that runs in poly(n, 1/ϵ) time with
poly(log s, 1/ϵ) log n query complexity and distinguishes between functions that are s-size
decision tree and functions that are ϵ-far from every size-ϕ(s, 1/ϵ) decision tree for some
function ϕ(s, 1/ϵ). When n ≫ s, one can use the reduction from [6] to get a poly(n, 1/ϵ)
time algorithm with poly(s, 1/ϵ) query complexity (independent of n) for the same problem.
The function ϕ achieved in [3] is ϕ(s, 1/ϵ) = 2(log3 s)/ϵ3 . We use a different approach to get
ϕ(s, 1/ϵ) = 2log2(s/ϵ).

In fact, Blanc, Lange and Tan [3] solve a more challenging problem. Their tester is a
tolerant tester. That is, it distinguishes between functions that are ϵ-close to s-size decision
tree and functions that are Ω(ϵ)-far from every size-ϕ(s, 1/ϵ) decision tree.

To achieve their result, Blanc et. al. define for every function f a complete decision tree
T (d, f) of depth d = O(log3 s/ϵ3) as follows. They define the noise sensitivity of f , NS(f),
as the probability that f(x) ̸= f(x + y) where x is uniform random, and for every i, yi = 1
with probability p = O(ϵ/ log s). The score of f with respect to xi, Scorei(f), is defined to
be the expected decrease in the noise sensitivity of f provided that xi is queried. The label
of the root of T (d, f) is selected to be the variable xi that maximizes the score. The left and
right sub-trees of T (d, f) are T (d− 1, f|xi←0) and T (d− 1, f|xi←1), respectively. Then T (0, g)
is defined to be a leaf labeled with 0 if E[g] < 1/2 and 1 otherwise. Here g is the function
that results from f by substituting the partial assignment defined by the path from the root
to the leaf. They prove that, for d = O(log3 s/ϵ3), if f is a size-s decision tree, then f is
ϵ/4-close to T (d, f), and if f is ϵ-far from every size-2O(log3 s/ϵ3) then, since T (d, f) is size-2d(

= 2O(log3 s/ϵ3)
)

decision tree, f is ϵ-far from T (d, f). Moreover, they show that a query to
T (d, f) can be done in poly(n, 1/ϵ) time and poly(log s, 1/ϵ) log n queries. Therefore, T (d, f)
and f can be queried to test if they are ϵ/4-close or ϵ-far. By applying the reduction from [6],
a tester that solves the same problem in poly(n, 1/ϵ) time and poly(s, 1/ϵ) queries to f is
obtained.

In this paper, we use a different approach. Let f be a size-s decision tree. Our algorithm
regards f as a polynomial. Although f may have exponential number of monomials, we are
interested in the influential ones only, that is, the small monomials. The number of small
monomials in the polynomial representation of size-s decision tree may be exponential. To
control the number of small monomials, we shuffle the monomials by choosing a uniform
random a ∈ {0, 1}n and considering T (x) = f(x + a). In disjoint-terms sum representation of
f (see Subsection 1.3), a large term t in f (a term that results from a leaf of depth Ω(log(s/ϵ))
in the tree), with high probability (w.h.p), more than quarter of its variables become positive
in T , and therefore, it only generates large monomials. Therefore, the shuffling process
ensures that the number of significant monomials in T is as small as poly(s/ϵ). This technique
is used in [8] for learning decision tree under the uniform distribution.

Let c be a large constant and let F be the sum of the monomials of size r = c log(s/ϵ)
in T (x). Let G be the sum of monomials of size greater than r and less than 16r in T (x).
First, we run the algorithm of Bshouty and Mansour in [8] to exactly learn F and G in
polynomial time. If the learning algorithm fails, then w.h.p, f is not size-s decision tree and
the algorithm rejects. Then, we define a decision tree T (d, F, G) of depth d = O(log2(s/ϵ))
as follows. Define Frac(F, xi) to be the fraction of the number of monomials in F that
contain xi. Choose a variable xi1 with the minimum index i1 that maximizes Frac(F, xi1)
and use it as the label of the root of T (d, F, G). The left and right sub-trees of T (d, F, G)
are T (d − 1, F (0), G(0)) and T (d − 1, F (1), G(1)), respectively, where F (ξ) is the sum of all
monomials that appear in F|xi1←ξ and not in G|xi1←ξ, and G(ξ) is the sum of all monomials
that appear in G|xi1←ξ and not in F|xi1←ξ.
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We are interested in making a random walk in this tree. Assume we are given the first
m−1 steps in the random walk ξ(m−1) = (ξ1, ξ2, . . . , ξm−1) ∈ {0, 1}m−1, F ξ(m−1) and Gξ(m−1) .
We find the variable with the minimum index im that maximizes Frac(F ξ(m−1)

, xim
). Choose

a random uniform ξm ∈ {0, 1}. Then, for ξ(m) = (ξ1, ξ2, . . . , ξm), F ξ(m) is defined to be the
sum of all the monomials in F ξ(m−1)

|xim←ξm
that are not in Gξ(m−1)

|xim←ξm
, and Gξ(m) is defined to be

the sum of all the monomials in Gξ(m−1)

|xim←ξm
that are not in F ξ(m−1)

|xim←ξm
. If F ξ(m) is a constant

function η ∈ {0, 1}, then we have reached a leaf labeled with η. The way we define F ξ(m) and
Gξ(m) turns to be crucial in the algorithm and is needed for its correctness proof. We note
here that, unlike the tester of Blanc, Lange and Tan, this tree is not the decision tree of T or
F , because every path in the tree treats F and G as sets of monomials rather than functions.

We show that, when f is a size-s decision tree, for a random shuffling and random ξ =
(ξ1, ξ2, . . . , ξm) ∈ {0, 1}m, with high probability, Frac(F ξ(m)

, xim
) is at least 1/O(log(s/ϵ)).

Hence, for a random walk in the tree T (d, F, G), each step decreases the number of monomials
in F ξ(m) by a factor of 1− 1/O(log(s/ϵ)) on average. Therefore, since F contains at most
poly(s/ϵ) monomials, with high probability, a random walk in T (d, F, G) reaches a leaf in
O(log2(s/ϵ)) steps.

Now suppose f is ϵ-far from every size-2O(log2(s/ϵ)) decision tree. It might happen that a
function f that is ϵ-far from size-2O(log2(s/ϵ)) decision tree passes all the above tests, because
the above algorithm relies only on the small monomials of T . Moreover, it might happen that
the small monomials of such function coincide with the monomials of a small size decision
tree. As a result, we add another test at each leaf of the tree that checks if the function T at
the leaf of the tree T|xi1←ξ1,...,xim←ξm

is ϵ/4-close to a constant function.
For a function that is ϵ-far from every size-2O(log2(s/ϵ)) decision tree, if it is not rejected

because its small monomials coincide with the monomial of small size decision tree, then the
random walks will often reach a small depth leaf. On the other hand, if almost all the small
depth leaves give a good approximation of the function, then T is ϵ-close to a small depth
tree. Therefore, the function is rejected with high probability.

We also show that, although the tester treats F and G as sets of monomials and not as
functions, if f is size-s decision tree then the tree gives a good approximation of T .

The above tester runs in poly(n, 1/ϵ) time and queries. Using the reduction in [6], it can
be changed to a tester that runs in poly(s, 1/ϵ)n time and makes poly(s, 1/ϵ) queries.

2.2 Testing Decision Tree of Depth d

The algorithm of Blanc, Lange and Tan [3] also distinguishes between depth-d decision tree
and functions that are ϵ-far from depth-O(d3/ϵ3) decision trees under the uniform distribution.
Again, we can make the query complexity independent of n using the reduction of Bshouty, [6],
and get a 2O(d)n time uniform-distribution tester that asks 2O(d)/ϵ queries and distinguishes
between depth-d decision tree and functions that are ϵ-far from depth-O(d3/ϵ3) decision
trees.

In this paper, we give a new simple distribution-free tester that runs in 2O(d)n time, asks
2O(d)/ϵ queries and distinguishes between depth-d decision tree and functions that are ϵ-far
from depth-d2 decision trees.

Our algorithm relies on the following fact. Let f be a depth-d decision tree. Consider
the polynomial representation of f = M1 + M2 + · · · + Mm. For any maximal monomial
Mi = xi1xi2 · · ·xit (a monomial that is not sub-monomial of any other monomial in f) and
any ξ1, . . . , ξt ∈ {0, 1}, the function f|xi1←ξ1,...,xit←ξt

is depth (d− 1)-decision tree.
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We can define a depth-d2 decision tree Tf that is equivalent to f as follows: Find a
maximal monomial Mi = xi1xi2 · · ·xit

. Then use all its variables in the first t levels of the
decision tree Tf . That is, build a complete tree of depth t that all its nodes at level j are
labeled with xij . This defines a different path for each xi1 = ξ1, . . . , xit = ξt. Then, in the
last node of such path, attach the tree Tg for g = f|xi1←ξ1,...,xit←ξt

. Since depth-d decision
trees are degree-d polynomials, we have t ≤ d, and since the decision trees at level t are
depth-(d− 1) decision trees, the depth of Tf is at most d2 (in fact it is at most d(d− 1)/2).

For the tester, we will not construct Tf , but instead, we show that for any assignment a,
finding the route that a takes in the tree Tf can be done efficiently. For this end, we first
show that if f is a depth-d decision tree then, the relevant variables of f can be found in
Õ(22d) + 2d log n queries. Then, we show that a maximal monomial of f can be found in
Õ(2d) queries. For an assignment a drawn according to a distribution D, if f is a depth-d
decision tree, the route that a takes in Tf ends before depth d2. If f is ϵ-far from depth-d
decision tree, then, either finding the relevant variables of f fails, or finding a maximal
monomial of size at most d fails or, with probability at least ϵ, the route in Tf goes beyond
depth d2. The later happens because if it does not for O(1/ϵ) examples drawn according to
a distribution D, then truncating the tree up to depth d2, results a tree that is w.h.p ϵ-close
of a depth d2-decision tree with respect to D.

Notice that the query complexity of this tester depends on n because finding the relevant
variables of f takes Õ(22d) + 2d log n queries which depends on n. To make the query
complexity independent of n, we use the reduction of Bshouty in [6].

2.3 Non-Polynomial Time Testers
A recent breakthrough result of Blanc et. al. [2] with the reduction of Bshouty [6] gives
a uniform tester for size-s decision tree that runs in n(s/ϵ)O(log((log s)/ϵ)) time and makes
(s/ϵ)O(log((log s)/ϵ)) queries.

3 A Tester for Depth-d Decision Tree

In this section we prove the following result:

▶ Theorem 1. There is a distribution-free tester that makes q = Õ(22d/ϵ) queries to unknown
function f , runs in O(qn) time and
1. Accepts w.h.p if f is a depth-d decision tree.
2. Rejects w.h.p if f is ϵ-far from depth-d2 decision trees.

3.1 The Key Lemma
We start with some notations and definitions, and then prove the key Lemma for the tester.

Recall that monomial is a conjunction of variables. A k-monomial is a monomial with
at most k variables. A polynomial (over the field F2) is a sum (in the binary field F2) of
monomials. An s-sparse polynomial is a sum of at most s monomials. We say that the
polynomial f is of degree-d if its monomials are d-monomials.

We say that xi is relevant variable in f if f|xi←0 ̸= f|xi←1. It is well known that (see for
example Lemma 4 in [7]):

▶ Lemma 2. A depth-d decision tree is a 3d-sparse degree-d polynomial with at most 2d

relevant variables.
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Let f = M1 + M2 + · · ·+ Mt be a polynomial. We say that Mi is a maximal monomial
of f if Mi is not a sub-monomial of any other monomial Mj , i.e., for every other monomial
Mj , there is a variable in Mi that is not in Mj .

We now prove the key Lemma for our tester:

▶ Lemma 3. Let f be a depth-d decision tree and f = M1 + M2 + · · ·+ Mt be its polynomial
representation. Let Mi = xi1 · · ·xid′ , d′ ≤ d be a maximal monomial of f . For any
ξ1, ξ2, . . . , ξd′ ∈ {0, 1}, we have that f|xi1←ξ1,··· ,xi

d′
←ξd′

is depth-(d− 1) decision tree.

Proof. The proof is by induction on the number of variables m of f . The case m = 1 is
trivial. Now assume that the result holds for any m ≤ k.

Let T be any depth-d decision tree with k + 1 variables that represents f . Let Mi =
xi1 · · ·xid′ , d′ ≤ d be a maximal monomial of f . Let X = {xi1 , . . . , xid′}. If the variable of
the root of T is xij ∈ X then, T|xij

←0 and T|xij
←1 are left and right decision sub-trees of T

and are of depth at most d− 1. Then, T|xi1←ξ1,··· ,xi
d′
←ξd′

is of depth at most d− 1 for any
ξ1, . . . , ξd′ ∈ {0, 1}.

If the variable of the root of the tree T is xℓ ̸∈ X, then the left sub-tree T|xℓ←0 is
a depth-(d − 1) decision tree and has at most k variables. We now claim that Mi is a
maximal monomial of T|xℓ←0. This is because of the fact that substituting xℓ = 0 in the
polynomial representation only removes monomials in f . Since xℓ is not in Mi, it does not
remove Mi. Therefore, Mi is maximal monomial in T|xℓ←0, and by the induction hypothesis
T|xℓ←0,xi1←ξ1,··· ,xi

d′
←ξd′

is depth-(d− 2) decision tree.
The right sub-tree T|xℓ←1 is a depth-(d− 1) decision tree that has at most k variables.

We now claim that T|xℓ←1 also has Mi as a monomial and it is maximal. Assume for the
sake of contradiction that Mi is removed or not maximal, then there must be a monomial
Mj = xℓMi in T . Since Mi is sub-monomial of Mj , we get a contradiction to the fact
that Mi is maximal in f . Therefore, by the induction hypothesis T|xℓ←1,xi1←ξ1,··· ,xi

d′
←ξd′

is
depth-(d− 2) decision tree. This implies that

T|xi1←ξ1,··· ,xi
d′
←ξd′

= xℓ · T|xℓ←1,xi1←ξ1,··· ,xi
d′
←ξd′

+ xℓ · T|xℓ←0,xi1←ξ1,··· ,xi
d′
←ξd′

is depth-(d− 1) decision tree. ◀

For every degree-d polynomial f , we define the following decision tree Tf . If f is constant
function, then Tf is a leaf labeled with this constant. Let f = M1 + M2 + · · ·+ Mt. Consider
any maximal monomial Mi of f . Let Mi = xi1 · · ·xid′ where i1 < i2 < · · · < id′ . The tree
Tf has all the variables xi1 , · · · , xid′ at the first d′ levels of the tree. That is, the first d′

levels of the tree is a complete tree where the label of all the nodes at level j is xij
. So every

ξ1, . . . , ξd′ ∈ {0, 1} leads to a different vertex at level d′ in Tf from which we recursively
attach the decision tree Tg where g = f|xi1←ξ1,··· ,xi

d′
←ξd′

.
We now prove:

▶ Lemma 4. Let f be a degree-d polynomial. Then, for h = d(d− 1)/2:
1. If f is a depth-d decision tree, then Tf is depth h-decision tree.
2. If f is ϵ-far from every depth h + 1 decision tree according to a distribution D then, for a

random assignment a drawn according to the distribution D, with probability at least ϵ,
the path that a takes in Tf reaches depth h + 1.

Proof. 1. follows immediately from Lemma 3.
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To prove 2., let T ′f be the tree Tf where every vertex of depth h + 1 is changed to a
leaf labeled with 0. Since f is ϵ-far from every depth h + 1 decision tree according to the
distribution D, it is ϵ far from T ′f . Since the leaves of T ′f of depth at most h correctly compute
f , the probability that a random assignment a chosen according to distribution D ends up
in a leaf of depth at most h is less than 1− ϵ. This completes the proof. ◀

3.2 The Tester
In this section, we prove Theorem 1. To that end, we start by the following Lemma:

▶ Lemma 5. We have
1. There is an algorithm that for a degree-d polynomial f makes q = Õ(22d)+2d log n queries,

runs in time O(qn) and finds the relevant variables of f .
2. There is an algorithm that for a degree-d polynomial over 2d variables X makes q′ = Õ(2d)

queries, runs in time O(q′n) and finds a maximal monomial in f .
The proof of Lemma 5 is given in subsection 3.3. This immediately gives the following result
that we need for our tester.

▶ Lemma 6. Let f be a sparse-3d degree-d polynomial over 2d variables. Let h = d(d− 1)/2.
Given the relevant variables of f , for any a ∈ {0, 1}n, the path that a takes in Tf up to depth
at most h + 1 can be computed in Õ(2d)h time.

The tester’s paradigm is as follows. First, the tester finds the relevant variables of f . If
the number of relevant variables exceeds 2d, then the tester rejects. The tester then, for
t = O(1/ϵ) assignments a(1), . . . , a(t) drawn according to the distribution D, finds the route
of each a(i) in Tf . If no maximal monomial of size at most d can be found then the tester
rejects. If one of the routes exceeds depth h = d(d− 1)/2, the algorithm rejects. Otherwise
it accepts. Each route takes time Õ(2d). So the number of queries is q = Õ(22d)/ϵ + 2d log n

and the time is O(qn). We now use the reduction of Bshouty in [6] to make the query
complexity independent of n and get the result. See Lemma 26 in Appendix A.

3.3 Proof of Lemma 5
In this subsection, we prove Lemma 5. We show how to find the relevant variables and a
maximal monomial of any degree-d polynomial.

The following is a very well known result [8]:

▶ Lemma 7. For any non-constant degree-d polynomial f over F2, we have Pr[f(x) ̸=
f(0)] ≥ 1/2d.

The following is a well known result in learning theory. We prove it for completeness.

▶ Lemma 8. There is an algorithm that given any degree-d polynomial f over v variables
and a set X of some of its relevant variables, asks 2d log(1/δ) + log v queries and, with
probability at least 1− δ, decides if the variables in X are all its relevant variables, and if
not, finds a new relevant variable of f .

Proof. Let X ′ = {xi1 , . . . , xit
} be the set of variables that are not in X. Define g = f+f|X′←0.

Since g is of degree at most d, by Lemma 7, with 2d log(1/δ) queries to g, with probability
at least 1 − δ, we can decide if g is a constant function. If not, we get an assignment a

such that g(a) ̸= g(0). If g is constant function τ ∈ {0, 1}, then f(x) = f|X′←0 + τ and f is
independent of X ′. So, the variables in X are all the relevant variables of f
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If g(a) ̸= g(0), then since g(0) = 0, we have f(a) ̸= f|X′←0(a) = f(a|X′←0). Now
recursively flip half of the entries of a that differ from a|X′←0 and ask a query and keep
the two assignments that have different values in f . Eventually, we get an entry aik+1 that
flipping it changes the value of the function. Then, xik+1 is relevant variable in f . Now
xik+1 ̸∈ X is a new relevant variable because the entries of each xij

∈ X in a agree with the
value of the same entry in a|X′←0. The number of queries in this procedure is at most log v.
This completes the proof. ◀

Therefore, for degree-d polynomial, choosing confidence δ/2d in the above algorithm, with
probability at least 1− δ, we find the first 2d relevant variables of f using Õ(22d) log(1/δ) +
2d log n queries. If f has more than 2d relevant variables, then f is not a depth-d decision
tree and the tester rejects.

We now prove

▶ Lemma 9. Let f be a degree-d polynomial and X be the set of its relevant variables. Let
M = xi1 · · ·xik

be a sub-monomial of some monomial of f (M is not necessarily a monomial
of f). There is an algorithm that asks O(2d log(1/δ)+2k log |X|) queries and, with probability
at least 1 − δ, decides if M is a maximal monomial of f , and if it is not, it finds a new
variable xik+1 such that M ′ = xi1 · · ·xik

xik+1 is a sub-monomial of some monomial of f .

Proof. Define the function G(x) = 1 +
∑

(ξ1,...,ξk)∈{0,1}k f|xi1←ξ1,··· ,xik
←ξk

(x). We prove the
following:
1. A query to G can be simulated by 2k queries to f .
2. G is a polynomial of degree at most d− k.
3. M is maximal monomial of f if and only if G = 0.
4. If G ̸= 0, then for any relevant variable xik+1 of G, M ′ = xi1 · · ·xik

xik+1 is a sub-monomial
of some monomial of f .

The first item is obvious. We prove 2-4. Since M is a sub-monomial of some monomial
of f , we have f = Mg + h, where g is a polynomial of degree at most d− k (independent
of xi1 , . . . , xik

) and h is a polynomial of degree at most d that M is not sub-monomial of
any of its monomials. Notice that M is maximal monomial of f if and only if g = 1. For
a monomial M ′′ in h, we have that some variable in M , say w.l.o.g. xi1 , is not in M ′′ and
therefore,∑

(ξ1,...,ξk)∈{0,1}k

M ′′
|xi1←ξ1,··· ,xik

←ξk
(x) =

∑
ξ1∈{0,1}

∑
(ξ2,...,ξk)∈{0,1}k−1

M ′′
|xi2←ξ2,··· ,xik

←ξk
(x) = 0.

Denote by ξ := (ξ1, · · · , ξk) ∈ {0, 1}k, then we can write:

G(x) + 1 =
∑

ξ∈{0,1}k

f|xi1←ξ1,··· ,xik
←ξk

(x)

= g(x)
∑

ξ∈{0,1}k

M|xi1←ξ1,··· ,xik
←ξk

(x) +
∑

ξ∈{0,1}k

h|xi1←ξ1,··· ,xik
←ξk

(x)

= g(x) +
∑

(M ′′ monomial in h)

∑
(ξ1,...,ξk)∈{0,1}k

M ′′
|xi1←ξ1,··· ,xik

←ξk
(x)

= g(x).

Hence,f = MG + M + h and the results 2-4 follows.
By Lemma 8, there is an algorithm that asks 2d−k log(1/δ) + log |X| queries to G (and

therefore, O(2d log(1/δ) + 2k log |X|) queries to f) and, with probability at least 1− δ, either
decides that G = 0, in which case M is maximal monomial, or finds a new relevant variable
xik+1 of G, in which case M ′ = xi1 · · ·xik

xik+1 is a sub-monomial of some monomial of f . ◀
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For degree-d polynomials with |X| ≤ 2d relevant variables, we choose confidence δ/2d in
the above algorithm and then, with probability at least 1− δ, we find a maximal monomial
of f .

4 A Tester for Size-s Decision Tree

In this section we prove:

▶ Theorem 10. There is a (uniform-distribution) tester that makes q = poly(s, 1/ϵ) queries
to unknown function f , runs in poly(s, 1/ϵ)n time and
1. Accepts w.h.p if f is a size-s decision tree.
2. Rejects w.h.p if f is ϵ-far from size-(s/ϵ)O(log(s/ϵ)) decision trees.

4.1 Preliminary Results
For a Boolean function f , the constant-depth of f , cd(f), is the minimum number ℓ of
variables X = {xj1 , · · · , xjℓ

} such that f|X←0 is a constant function. We define M(f) the
set of all monomials in the minimum size polynomial representation of f . Since minimum
size polynomial representation of a Boolean function is unique, M(f) is well defined. For a
set of monomials S, we denote ΣS =

∑
M∈S M . Notice that ΣM(f) = f and M(ΣS) = S.

For any Boolean function and an interval I (such as [d] = {1, 2, . . . , d}, [d1, d2] = [d2]\[d1− 1]
or (d1, d2] = [d2]\[d1]), we define f I =

∑
M∈M(f) and |M |∈I M where |M | is the number of

variables in M . We first prove:

▶ Lemma 11. For any S′ ⊆M(f), we have cd(ΣS′) ≤ cd(f). In particular, for any interval
I, we have cd(f I) ≤ cd(f).

Proof. Let cd(f) = r. Then, there is a set X = {xj1 , · · · , xjr
} such that f|X←0 is constant.

Therefore, for every non-constant M ∈ M(f), we have M|X←0 = 0. Then, (ΣS′)|X←0 is
constant and cd(ΣS′) ≤ cd(f). ◀

▶ Lemma 12. Let f be any Boolean function. If cd(f) ≤ ℓ, then there is a variable xi that
appears in at least 1/ℓ fraction of the non-constant monomials of f .

Proof. If cd(f) ≤ ℓ, then there is a set X = {xj1 , · · · , xjℓ
} such that f|X←0 is a constant

function. This implies that for every non-constant monomial, there is xi ∈ X that appears
in it. By the pigeonhole principle the result follows. ◀

Let a ∈ {0, 1}n be a random uniform assignment. Consider, T (x) = f(x + a). Then:

▶ Lemma 13. Let f be a size-s decision tree and let T (x) = f(x + a) for a random
uniform assignment a ∈ {0, 1}n. For a random uniform ξ1, . . . , ξj ∈ {0, 1} and any variables
xi1 , . . . , xij where each iℓ may depend on T , a, i1, . . . , iℓ−1 and ξ1, . . . , ξℓ−1 but is independent
of ξℓ, . . . , ξj and q = (xi1 ← ξ1, . . . , xij

← ξj), with probability at least 1−s2−h, cd
(
T|q

)
≤ h.

Proof. We have T|xi1←ξ1,...,xij
←ξj

(0) = T (0|xi1←ξ1,...,xij
←ξj

) = f(a + 0|xi1←ξ1,...,xij
←ξj

).
Since b := a + 0|xi1←ξ1,...,xij

←ξj
is random uniform in {0, 1}n, the path that b takes in the

computation of f(b) is a random uniform path in f . With probability at least 1 − s2−h,
this path reaches a leaf at depth less than or equal to h in f . Therefore, with probability
at least 1 − s2−h, there are h′ ≤ h variables xj1 , . . . , xjh′ (the variables in this path)
such that fxj1←bj1 ,...,xj

h′
←bj

h′
is constant, say τ ∈ {0, 1}. Let J = {j1, j2, . . . , jh′} and

I = {i1, i2, . . . , ij} and suppose, w.l.o.g, J ∩ I = {i1, . . . , ir}. Then,
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τ = f|xj1←bj1 ,...,xj
h′
←bj

h′
(x) = f|xj1←bj1 ,...,xj

h′
←bj

h′
(x + a)

= T|xj1←bj1 +aj1 ,...,xj
h′
←bj

h′
+aj

h′
=

(
T|xi1←ξ1,...,xir←ξr

)
|(J\I)←0

and thus,

(T|q)|(J\I)←0 = (T|xi1←ξ1,...,xij
←ξj

)|(J\I)←0

= (T|xi1←ξ1,...,xir←ξr
)|(J\I)←0,xir+1←ξr+1,...,xij

←ξj
= τ.

Therefore, cd
(
T|q

)
≤ |J\I| ≤ h′ ≤ h. ◀

Let

r = log(s/ϵ). (1)

The tester uses Lemma 13, poly(log(s/ϵ))/ϵ times, therefore we can choose h = 2r which, by
union bound, adds a failure probability of (poly(log(s/ϵ))/ϵ) · s2−h = Õ(ϵ/s) to the tester.
Let E1 be the event

E1 : (∀q) cd(T|q) ≤ 2r, (2)

for all the q that are generated in the tester.
For the rest of this section, we let f be a size-s decision tree. Let f = f1 + f2 + · · ·+ fs

be the disjoint-terms sum representation of f .1 Let Ti = fi(x + a) for i ∈ [s]. It is easy to
see that T = T1 + T2 + · · ·+ Ts is disjoint-terms sum representation of T . We denote by T +

i

the conjunction of the non-negated variables in Ti. We prove:

▶ Lemma 14. Let λ be any constant. For a random uniform a, with probability at least
1− s(ϵ/s)λ the following event E2(λ) holds

E2(λ) : For every i, if |Ti| > 16λr then |T +
i | ≥ 4λr. (3)

Proof. Since Ti(x) = fi(x + a) and a is random uniform, each variable in Ti is positive with
probability 1/2. By Chernoff bound the result follows. ◀

To change the disjoint-terms representation of T to polynomial representation, we take
every term Ti and expand it to sum of monomials2. A monomial that is generated from even
number of different terms will not appear in the polynomial, while, those that are generated
from odd number of different terms will appear in the polynomial.

Let M1 + M2 + · · · + Mℓ be the multivariate polynomial representation of T , where
|M1| ≤ |M2| ≤ · · · ≤ |Mℓ|. Note that ℓ can be exponential in n. We say that Mi is generated
by Tj if j is the smallest integer for which Tj generates Mi. The following is a trivial result:

▶ Lemma 15. If Mi is generated by Tj , then |Tj | ≥ |Mi| ≥ |T +
j | and T +

j is a sub-monomial
of Mi. That is, Mi = T +

j M ′
i for some monomial M ′

i .

1 Every size-s decision tree can be represented as a sum of terms T1 + T2 + · · · + Ts′ , s′ ≤ s, where
Ti ∧ Tj = 0 for every i ≠ j. The number of terms s′ is the number of leaves labeled with 1. See for
example [8]. Here we assume s′ = s because we can always change a term t to txj + txj .

2 For example x1x2x̄3x̄4 = x1x2(x3 + 1)(x4 + 1) = x1x2x3x4 + x1x2x3 + x1x2x4 + x1x2.
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▶ Lemma 16. If E2(λ) in (3) holds, then the number of monomials Mi of size at most 4λr

is at most s(s/ϵ)16λ.

Proof. By Lemma 14, the monomials that has size at most 4λr are generated from terms of
size at most 16λr. We have at most s terms of size at most 16λr and each one generates at
most 216λr monomials. So we have at most s(s/ϵ)16λ such monomials. ◀

▶ Lemma 17. If E2(λ) in (3) holds, then there are s monomials N1, N2, . . . , Ns, each of
size at least 4λr, such that for every monomial Mi (of T ) of size at least 16λr, there is Nj

where Mi = NjM ′
i for some monomial M ′

i .

Proof. Let Ni = T +
i if |T +

i | ≥ 4λrn and Ni = x1x2 · · ·xn otherwise. Let Mi be a monomial
of T of size at least 16λr. By Lemma 15, Mi is generated by a monomial Tj of size at least
16λr. By Lemma 14, |T +

j | ≥ 4λr. By Lemma 15, Nj = T +
j is a sub-monomial of Mi. ◀

We remind the reader that for an interval R, T R is the sum of the monomials M of T

of size |M | ∈ R. For a set of monomials A, we denote ∨A = ∨M∈AM . We also need the
following lemma:

▶ Lemma 18. Suppose E2(λ) holds. Let P = ∨M(T (16λr,s]). For a random uniform
ξ1, . . . , ξj ∈ {0, 1} and any variables xi1 , . . . , xij

where each iℓ may depend on T , i1, . . . , iℓ−1
and ξ1, . . . , ξℓ−1 but independent of ξℓ, . . . , ξj and q = (xi1 ← ξ1, . . . , xij

← ξj), with probab-
ility at least 1− s(ϵ/s)2λ, Pr

[
P|q = 1

]
≤ s

(
ϵ
s

)2λ
.

Proof. By Lemma 17, we have P = N1P1∨N2P2∨· · ·∨NsPs, where Pi is a Boolean function
and Ni is a monomial of size at least 4λr for each i ∈ {1, . . . , s}. The probability that each
(Ni)|q is not zero and is of size at most 2λr is at most 2−2λr = (ϵ/s)2λ. Since, for all i ∈ [s],
(Ni)|q is zero or |(Ni)|q| > 2λr implies Pr[P|q = 1] ≤ s(ϵ/s)2λ, the result follows. ◀

4.2 The Tester
In this subsection, we give the tester and prove its correctness. Recall that r = log(s/ϵ). Let
c ≥ 2 be any constant. The tester first chooses a random uniform a ∈ {0, 1}n and defines
T (x) = f(x + a). Then, it learns all the monomials of size 16r′ where3 r′ = 16cr. This can be
done by the algorithm in [8] in poly(n, s/ϵ) time and queries. We show later how to eliminate
n in the query complexity. Then, the tester splits the monomials of size at most 16r′ to
monomials of size less or equal to r′ (the function F ) and those that have size between r′

and 16r′ (the function G). The tester performs O(1/ϵ) random walks in a decision tree. For
each stage j, the set Hj is defined in a way that (1) it is a subset of the monomials of the
function F|xi1←ξ1,...,xij−1←ξj−1

and (2) it contains a variable that appears in at least 1/(2r)
fraction of the monomials. At each stage j, the tester deterministically chooses a variable
xij with the smallest index ij that appears in at least 1/(2r) fraction of the monomials of
ΣHj and chooses a random ξj ∈ {0, 1} for xij

. See the details in Algorithm 1.
Although this decision tree is not the decision tree of F , we can still show that when f is

size-s decision tree, with probability at least 2/3 the random walk ends after O(log2(s/ϵ))
steps and then the tester accepts. When it is ϵ-far from any size-(s/ϵ)O(log(s/ϵ)) decision tree
then, with probability at least 2/3, something goes wrong (the learning algorithm fails or no
variable appears in at least 1/(2r) fraction of the monomials of Hj) or the random walk does
not end after Ω(log2(s/ϵ)) steps and then it rejects.

3 Here c can be 2. We kept it to show the effect of this constant on the success probability of the tester.
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Algorithm 1 : Test(f) - A tester for size-s decision tree.

Input: Black box access to f

Output: Accept or Reject
1: T ← f(x + a) for random uniform a ∈ {0, 1}n.
2: Learn T [16r′]. If FAIL then Reject.
3: F ← T [r′]; G← T (r′,16r′]; H0 ←M(F ); L0 ←M(G).
4: for i = 1 to 40/ϵ do
5: j ← 0; q0 ← Empty sequence.
6: while ΣHj is not constant and j < 210c(log2(s/ϵ)) do
7: j ← j + 1.
8: Find a variable xij

with the smallest index that appears in at least 1/(2r) fractions
of the monomials in Hj−1.

9: If no such variable exists then Reject.
10: Choose a random uniform ξj ∈ {0, 1}.
11: qj ← (qj−1; xij

← ξj).
12: ▷ I.e., add to the list of substitutions qj−1 the substitution xij

← ξj .
13: Hj ←M((ΣHj−1)|xij

←ξj
)\M((ΣLj−1)|xij

←ξj
)

14: Lj ←M((ΣLj−1)|xij
←ξj

)\M((ΣHj−1)|xij
←ξj

)
15: end while
16: if j = 210c(log2(s/ϵ)) then
17: Reject.
18: end if
19: end for
20: if Pr[T|qj

= 1] is in [ϵ/4, 1− ϵ/4] then
21: Reject
22: end if
23: Accept.

The tester query complexity is poly(n, s/ϵ). We use the reduction from [6] to change the
query complexity to poly(s/ϵ).

▶ Lemma 19. Assume that the event E2(16c) in (3) holds. Let F = T [r′] and G = T (r′,16r′].
Let xi1 , . . . , xij

be variables, ξ1, . . . , ξj be random uniform values in {0, 1}, qj = (xi1 ←
ξ1, . . . , xij

← ξj), qj+1 = (qj , xij+1 ← ξj+1), Hj, Hj+1 and Lj as defined in the procedure
Test(f) in Algorithm 1. Then, with probability at least 1− s(ϵ/s)3c, we have
1.

Hj ⊆M
(

(T|qj
)[r′]

)
. (4)

Let E be the event that (4) holds for all j ≤ 210c log2(s/ϵ) and all the 40/ϵ random walks
of the tester. Then, Pr[E] ≥ 1− (ϵ/s)2c.

Assuming that E holds, then,
2. There is a variable xij+1 that appears in 1/(2r) fraction of the monomials in Hj.
3. If ξj+1 = 0, then |Hj+1| ≤ (1− 1/(2r))|Hj |.
4. If ξj+1 = 1, then |Hj+1| ≤ |Hj |.

Proof. Let T = F + G + W such that W = T (16r′,s]. We first show that with probability
at least 1− s(ϵ/s)3c, we have (W|qj

)[r′] = 0. Consider N1, N2, . . . , Ns in Lemma 17. Every
monomial in W is of the form MNi for some monomial M and i ∈ [s]. We also have
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|Ni| ≥ 4r′ for all i ∈ [s]. The probability that for some i ∈ [s] we have that (Ni)|qj
is not

zero and of size at most r′ is at most s2−3r′ ≤ s(ϵ/s)3c. Therefore, with probability at least
1− s(ϵ/s)3c, we have (W|qj

)[r′] = 0.
By induction, we prove that:

1. Hj ∩ Lj = ∅.

2. Hj contains monomials of size at most r′ and
3.

ΣHj + ΣLj = F|qj
+ G|qj

. (5)

For j = 0 the result follows from the fact that H0 =M(T [r′]) =M(F ), L0 =M(T (r′,16r′]) =
M(G) and q0 = () is the empty sequence. Assume the above hold for j − 1. We now prove it
for j. 1 and 2 follow immediately from steps (13) and (14) in the algorithm. For 3, we have4

Hj + Lj = Hj ∪ Lj =M((ΣHj−1)|xij
←ξj

) +M((ΣLj−1)|xij
←ξj

)

=M((ΣHj−1)|xij
←ξj

+ (ΣLj−1)|xij
←ξj

) =M((ΣHj−1 + ΣLj−1)|xij
←ξj

)

=M((F|qj−1 + G|qj−1)|xij
←ξj

) =M(F|qj
+ G|qj

),

which implies the result. Since Hj contains the monomials of size at most r′, (F|qj
)[r′] = F|qj

and Hj ∩ Lj = ∅, we get Hj ⊆ (Hj + Lj)[r′] = S
(

F|qj
+ (G|qj

)[r′]
)

. Then, with probability
at least 1− s(ϵ/s)3c, we have

(T|qj
)[r′] = (F|qj

)[r′] + (G|qj
)[r′] + (W|qj

)[r′] = F|qj
+ (G|qj

)[r′] + (W|qj
)[r′]

= F|qj
+ (G|qj

)[r′],

and then, Hj ⊆ S
(

F|qj
+ (G|qj

)[r′]
)

= S
(

(T|qj
)[r′]

)
. This completes the proof of 1.

By Lemma 11, Equation (2) and case 1 of this Lemma, we have: cd(ΣHj) ≤ cd(T [r′]
|qj

) ≤
cd(T|qj

) ≤ 2r. Therefore, by Lemma 12 the result 2 follows.
We now prove (3-4). Since Hj+1 = M((ΣHj)|xij+1←ξj+1)\M((ΣLj)|xij+1←ξj+1) ⊆

M((ΣHj)|xij+1←ξj+1), we get 4. Since xij+1 appears in more than 1/(2r) fraction of the
monomials in Hj , we get 3. ◀

Before we prove the next result, we give some more notations. For a set of monomials A and
q = (xi1 ← ξ1, . . . , xij ← ξj), we denote A|q = {Mq|M ∈ A}. Recall that ∨A = ∨M∈AM .
The following properties are easy to prove: Let g be a Boolean function, A, B sets of
monomials, q = (xi1 ← ξ1, . . . , xij

← ξj) and q′ = (xi′1
← ξ′1, . . . , xi′

j
← ξ′j). Then:(I)

(A|q)|q′ = A|q,q′ , (II) M(g|q) ⊆M(g)|q, (III) (∨A)|q = ∨A|q, (IV) if A ⊆ B then5 ∨A⇒ ∨B

and (V) ΣA⇒ ∨A and g ⇒ ∨M(g).
Using the above notations and results we prove:

▶ Lemma 20. Suppose events E2(c) and E2(16c) in (3) hold. If ΣHj = η is a constant
function, η ∈ {0, 1}, then with probability at least 1− (ϵ/s)2c−1, Pr[T|qj

̸= η] ≤ s
(

ϵ
s

)2c−1
.

4 The operation + for sets is the symmetric difference of sets.
5 f ⇒ g means if f(x) = 1 then g(x) = 1. In particular, Pr[f = 1] ≤ Pr[g = 1].
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Proof. Let T = F + G + W , where F = T [r′], G = T (r′,16r′] and W = T (16r′,s]. We have,

Pr[T|qj
̸= η] = Pr[F|qj

+ G|qj
+ W|qj

̸= η] = Pr[ΣHj + ΣLj + W|qj
̸= η] By (5)

= Pr[ΣLj + W|qj
̸= 0] ≤ Pr[ΣLj = 1] + Pr[W|qj

= 1].

Since W = T (16r′,s] ⇒ ∨M(T (16r′,s]), by Lemma 18, we have, with probability at least
1− s(ϵ/s)32c, Pr[W|qj

= 1] ≤ s
(

ϵ
s

)32c
. Since

Lj =M((ΣLj−1)|xij
←ξj

)\M((ΣHj−1)|xij
←ξj

) ⊆M((ΣLj−1)|xij
←ξj

)

⊆M(ΣLj−1)|xij
←ξj

= (Lj−1)|xij
←ξj

,

we can conclude that, Lj ⊆ (L0)|q =M(G)|q ⊆M(T (r′,s])|q =M(T (16cr,s])|q, which implies
that ΣLj ⇒ ∨Lj ⇒ ∨M(T (16cr,s])|q = (∨M(T (16cr,s]))|q. Therefore, by Lemma 18, with
probability at least 1− s(ϵ/s)2c, Pr[ΣLj = 1] ≤ Pr[(∨M(T (16cr,s]))|q] ≤ s

(
ϵ
s

)2c
. ◀

▶ Lemma 21. Suppose the events E2(4c), E2(16c) and E hold. If f is a size-s decision tree
then, with probability at least 1− (ϵ/s)O(s/ϵ), ΣHk is constant for k ≤ 210 log2(s/ϵ).

Proof. By Lemma 16, we have |H0| = |M(F )| = |M(T [r′])| ≤ s(s/ϵ)64c. By Lemma 19,
we have that with probability 1/2, ξj = 1 and then |Hj+1| ≤ |Hj |. And, with probability
1/2, ξj = 0 and then |Hj+1| ≤ (1 − 1/(2r))|Hj |. Therefore, when ξ1, . . . , ξt contains
2r ln(s(s/ϵ)64c) ≤ 28c log2(s/ϵ) zeros, then ΣHk will be constant for k ≤ t. The probability
of ξi = 0 is 1/2, and thus, by Chernoff bound the result follows. ◀

▶ Lemma 22. If f is a size-s decision tree, then with probability at least 1− poly(ϵ/s), the
tester accepts.

Proof. By Lemma 21, with probability at least 1 − poly(ϵ/s), the tester does not reject
inside the Repeat loop. By Lemma 20, with probability at least 1− poly(ϵ/s), Pr[T|qj

̸=
η] ≤ poly(ϵ/s), hence, with probability at least 1 − poly(ϵ/s), the tester will not reject in
line 20. ◀

▶ Lemma 23. Let R = 210c log2(s/ϵ). If f is ϵ-far from every size-2R decision tree, then
with probability at least 2/3, the tester rejects.

Proof. If f is ϵ-far from every size-2R decision tree, then T = f(x + a) is ϵ-far from every
size-2R decision tree.

Consider the tree T ∗ that is generated in the tester for all possible random walks, where
each node in the tree is labeled with the variable xij that appears in at least 1/(2r) of the
monomials in Hj−1 if such variable exists, and is labeled with Reject when the algorithm
reaches Reject. In the tree, we will have three types of nodes that are labeled with Reject.
Type I are nodes where there is no variable that appears in at least 1/(2r) fractions of the
monomials of Hj−1. Type II are the nodes that are of depth R + 1, and Type III are the
nodes of depth less than R where ΣHj is constant η and Pr[T|qj

= η] ≥ ϵ/4.
If, with probability at least ϵ/4, a random walk in the tree T ∗ reaches a Reject node,

then the probability that the tester rejects is 1−
(
1− ϵ

4
)40/ϵ ≥ 2

3 , and we are done.
Suppose, for the contrary, this is not true. Then, define a decision tree T ′ that is equal to

T ∗, where each Reject node is replaced with a leaf labelled with 0, and each other other leaf
is labeled with 0 if Pr[T|qj

] ≤ ϵ/4 and 1 if Pr[T|qj
] ≥ 1− ϵ/4. Then, T ′ is a depth-R tree

(and therefore size-2R tree). The probability that T ′(x) is not equal to T (x) is less than the
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probability that a random walk arrives to a Reject leaf, or if it arrives to a non-Reject leaf,
then T|qj

(x) is not equal to the label in the leaf. Therefore, Pr[T ′(x) ̸= T (x)] ≤ ϵ
4 + ϵ

4 < ϵ,

a contradiction. ◀

As we said earlier, the above tester runs in poly(n, 1/ϵ) time and queries. We now use
the reduction of Bshouty in [6] and get a tester that runs in time poly(s, 1/ϵ)n and makes
poly(s, 1/ϵ) queries. See Lemma 26 in Appendix A.
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A Reductions in Testing

The following reductions are deduced immediately from [5, 6].
We say that a class C is closed under zero-one projection if for every f ∈ C, every i ∈ [n]

and every ξ ∈ {0, 1} we have f|xi←ξ ∈ C. We say that C is symmetric if for every permutation
π : [n] → [n] and every f ∈ C we have fπ ∈ C where fπ(x) := f(xπ(1), · · · , xπ(n)). All the
classes in this paper are closed under zero-one projection and symmetric.

The following results are proved in [6] (Theorem 2) when H = C. The same proof works
for any C ⊆ H.

▶ Lemma 24 ([6]). Let C ⊆ H be classes of Boolean functions (over n variables) that
are symmetric sub-classes of k-JUNTA and are closed under zero-one projection. Suppose
C is distribution-free learnable from H in time T (n, ϵ, δ) using Q(n, ϵ, δ) random example
queries and M(n, ϵ, δ) black-box queries. Then, there is a distribution-free two-sided adaptive
algorithm for ϵ-testing C by H that runs in time T (k, ϵ/12, 1/24) + O(mn) and makes
m = Õ

(
M(k, ϵ/12, 1/24) + k ·Q(k, ϵ/12, 1/24) + k

ϵ

)
queries.

▶ Lemma 25 ([6]). Let C ⊆ H be classes of Boolean functions (over n variables) that are
symmetric sub-classes of k-JUNTA and are closed under zero-one projection. Suppose C is
learnable from H under the uniform distribution in time T (n, ϵ, δ) using Q(n, ϵ, δ) random
example queries and M(n, ϵ, δ) black-box queries. Then, there is a (uniform distribution)
two-sided adaptive algorithm for ϵ-testing C by H runs in time T (k, ϵ/12, 1/24) + O(mn)
and that makes m = Õ

(
M(k, ϵ/12, 1/24) + Q(k, ϵ/12, 1/24) + k

ϵ

)
queries.

The following is proved in [6] when H = C. The same proof gives the following result:

▶ Lemma 26 ([6]). Let C and C ⊆ H be classes of Boolean functions that are symmetric
sub-classes of k-JUNTA and are closed under zero-one projection. Suppose there is a tester
T for Ck = {f ∈ C|f is independent on xk+1, . . . , xn} such that
1. T is a two-sided adaptive ϵ-tester (resp. distribution-free ϵ-tester) that runs in time

T (k, ϵ, δ).
2. If f ∈ Ck then, with probability at least 1− δ, T accepts.
3. If f is ϵ-far from every function in Hk (resp., with respect to D) then, with probability at

least 1− δ, T rejects.
4. T makes Q(k, ϵ, δ) random example queries and M(k, ϵ, δ) black-box queries.

Then, there is a two-sided adaptive algorithm for ϵ-testing (resp., distribution-free al-
gorithm for ϵ-testing) C by H that makes m = Õ

(
M(k, ϵ/12, 1/24) + Q(k, ϵ/12, 1/24) + k

ϵ

)
(resp., makes m = Õ

(
M(k, ϵ/12, 1/24) + k ·Q(k, ϵ/12, 1/24) + k

ϵ

)
) queries and runs in time

T (k, ϵ/12, 1/24) + O(mn).
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Abstract
Given polynomials f0, f1, . . . , fk the Ideal Membership Problem, IMP for short, asks if f0 belongs to
the ideal generated by f1, . . . , fk. In the search version of this problem the task is to find a proof of
this fact. The IMP is a well-known fundamental problem with numerous applications, for instance,
it underlies many proof systems based on polynomials such as Nullstellensatz, Polynomial Calculus,
and Sum-of-Squares. Although the IMP is in general intractable, in many important cases it can be
efficiently solved.

Mastrolilli [SODA’19] initiated a systematic study of IMPs for ideals arising from Constraint
Satisfaction Problems (CSPs), parameterized by constraint languages, denoted IMP(Γ). The ultimate
goal of this line of research is to classify all such IMPs accordingly to their complexity. Mastrolilli
achieved this goal for IMPs arising from CSP(Γ) where Γ is a Boolean constraint language, while
Bulatov and Rafiey [arXiv’21] advanced these results to several cases of CSPs over finite domains.
In this paper we consider IMPs arising from CSPs over “affine” constraint languages, in which
constraints are subgroups (or their cosets) of direct products of Abelian groups. This kind of CSPs
include systems of linear equations and are considered one of the most important types of tractable
CSPs. Some special cases of the problem have been considered before by Bharathi and Mastrolilli
[MFCS’21] for linear equation modulo 2, and by Bulatov and Rafiey [arXiv’21] to systems of linear
equations over GF(p), p prime. Here we prove that if Γ is an affine constraint language then IMP(Γ)
is solvable in polynomial time assuming the input polynomial has bounded degree.
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1 Introduction

The Ideal Membership Problem. Representing combinatorial problems by polynomials
and then using algebraic techniques to approach them is one of the standard methods in
algorithms and complexity. The Ideal Membership Problem (IMP for short) is an important
algebraic framework that has been instrumental in such an approach. The IMP underlies
many proof systems based on polynomials such as Nullstellensatz, Polynomial Calculus, and
Sum-of-Squares, and therefore plays an important role in such areas as proof complexity and
approximation.

Let F be a field and F[x1, . . . , xn] the ring of polynomials over F. Given polynomials f0,
f1, . . . , fk ∈ F[x1, . . . , xn] the IMP asks if f0 belongs to the ideal ⟨f1, . . . , fk⟩ generated by
f1, . . . , fk. This fact is usually demonstrated by presenting a proof, that is, a collection of
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Figure 1 Graph 2-colorability.

polynomials h1, . . . , hk such that the following polynomial identity holds f0 = h1f1+· · ·+hkfk.
Many applications require the ability to produce such a proof. We refer to the problem of
finding a proof of membership as the search IMP. Note that by the Hilbert Basis Theorem
any ideal of F[x1, . . . , xn] can be represented by a finite set of generators meaning that the
above formulation of the problem covers all possible ideals of F[x1, . . . , xn].

The general IMP is a difficult problem and it is not even obvious whether or not it is
decidable. The decidability was established in [23, 32, 33]. Then Mayr and Meyer [29] were
the first to study the complexity of the IMP. They proved an exponential space lower bound
for the membership problem for ideals generated by polynomials with integer and rational
coefficients. Mayer [28] went on establishing an exponential space upper bound for the IMP
for ideals over Q, thus proving that such IMPs are EXPSPACE-complete. The source of
hardness here is that a proof that f0 ∈ ⟨f1, . . . , fk⟩ may require polynomials of exponential
degree. In the cases when the degree of a proof has a linear bound in the degree of f0, the
IMP can be solved more efficiently. (There is also the issue of exponentially long coefficients
that we will mention later.)

Combinatorial Ideals. To illustrate the connection of the IMP to combinatorial problems we
consider the following simple example. We claim that the graph in Fig. 1 is 2-colorable if and
only if polynomials x(1− x), y(1− y), z(1− z), x + y− 1, x + z − 1, y + z − 1 have a common
zero. Indeed, denoting the two possible colors 0 and 1, the first three polynomials guarantee
that the only zeroes this collection of polynomials can have are such that x, y, z ∈ {0, 1}.
Then the last three polynomials make sure that in every common zero the values of x, y, z

are pairwise different, and so correspond to a proper coloring of the graph. Of course, the
graph in the picture is not 2-colorable, and by the Weak Nullstellensatz this is so if and only
if the constant polynomial 1 belongs to the ideal generated by the polynomials above. A
proof of that can be easily found

1 = (−4) [x(x− 1)] + (2x− 1) ([x + y − 1]− [y + z − 1] + [x + z − 1]) .

The example above exploits the connection between polynomial ideals and sets of zeroes
of polynomials, also known as affine varieties. While this connection does not necessarily
holds in the general case, as Hilbert’s Nullstellensatz requires certain additional properties of
ideals, it works for so called combinatorial ideals that arise from the majority of combinatorial
problems similar to the example above. The varieties corresponding to combinatorial ideals
are finite, and the ideals themselves are zero-dimensional and radical. These properties make
the IMP significantly easier, in particular, it can be solved in single exponential time [20].
Also, Hilbert’s Strong Nullstellensatz holds in this case, which means that if the IMP is
restricted to radical ideals, it is equivalent to (negation of) the question: given f0, f1, . . . , fk

does there exist a zero of f1, . . . , fk that is not a zero of f0.
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The special case of the IMP with f0 = 1 has been studied for combinatorial problems
in the context of lower bounds on Polynomial Calculus and Nullstellensatz proofs, see e.g.
[4, 17, 22]. A broader approach of using polynomials to represent finite-domain constraints
has been explored in [18, 26]. Clegg et al., [18], discuss a propositional proof system based on
a bounded degree version of Buchberger’s algorithm [9] for finding proofs of unsatisfiability.
Jefferson et al., [26] use a modified form of Buchberger’s algorithm that can be used to achieve
the same benefits as the local-consistency algorithms which are widely used in constraint
processing.

Applications in other proof systems. The bit complexity of various (semi)algebraic proof
systems is another link that connects approximation algorithms and the IMP. As is easily
seen, if the degree of polynomials h1, . . . , hk in a proof f0 = h1f1 +· · ·+hkfk is bounded, their
coefficients can be found by representing this identity through a system of linear equations.
A similar approach is used in other (semi)algebraic proof systems such as Sum-of-Squares
(SOS), in which bounded degree proofs can be expressed through an SDP program. Thus, if
in addition to low degree the system of linear equations or the SDP program has a solution
that can be represented with a polynomial number of bits (thus having low bit complexity),
a proof can be efficiently found.

However, O’Donnell [30] proved that low degree of proofs does not necessarily imply its
low bit complexity. He presented a collection of polynomials that admit bounded degree SOS
proofs of nonnegativity, all such proofs involve polynomials with coefficients of exponential
length. This means that the standard methods of solving SDPs such as the Ellipsoid Method
would take exponential time to complete. Raghavendra and Weitz [31] suggested some
sufficient conditions on combinatorial ideals that guarantee a low bit complexity SOS proof
exists whenever a low degree one does. Two of these conditions hold for the majority of
combinatorial problems, and the third one is so called k-effectiveness of the IMP part of the
proof. In [15], we showed that for problems where the IMP part is of the form IMP(Γ) (to
be introduced shortly) only one of the first two conditions remains somewhat nontrivial and
k-effectiveness can be replaced with the requirement that a variation of IMP(Γ) is solvable
in polynomial time.

The IMP and the CSP. In this paper we consider IMPs that arise from a specific class
of combinatorial problems, the Constraint Satisfaction Problem or the CSP for short. In
a CSP we are given a set of variables, and a collection of constraints on the values that
variables are allowed to be assigned simultaneously. The question in a CSP is whether there
is an assignment to variables that satisfies all the constraints. The CSP provides a general
framework for a wide variety of combinatorial problems, and it is therefore very natural to
study the IMPs that arise from constraint satisfaction problems.

One of the major directions in the CSP research is the study of CSPs in which the allowed
types of constraints are restricted. Such restrictions are usually represented by a constraint
language that is a set of relations or predicates on a fixed set. The CSP parametrized by a
constraint language Γ is denoted CSP(Γ).

Mastrolilli in [27] initiated a systematic study of IMPs that arise from problems of the
form CSP(Γ), denoted IMP(Γ). More precisely, for a constraint language Γ over domain
D = {0, . . . , d − 1} ⊆ F, in an instance of IMP(Γ) we are given an instance P of CSP(Γ)
with set of variables X = {x1, . . . , xn}, and a polynomial f0 ∈ F[x1, . . . , xn]. The question is
whether or not f0 belongs to the ideal I(P) of F[x1, . . . , xn], where the corresponding variety
of I(P) equals the set of solutions of P . Observe, that using Hilbert’s Strong Nullstellensatz
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the problem can also be reformulated as, whether there exists a solution to P that is not a
zero of f0. Sometimes we need to restrict the degree of the input polynomial, the IMP in
which the degree of f0 is bounded by d is denoted by IMPd(Γ).

The complexity of the IMP. The main research question considered in [27] is to classify
the problems IMP(Γ) according to their complexity. We [15] showed that in all known cases
IMPd(Γ) can be solved in polynomial time (for any fixed d) if and only if a Gröbner Basis
can be efficiently constructed.

Mastrolilli [27] along with Mastrolilli and Bharathi [6] succeeded in characterizing the
complexity of IMPd(Γ) for constraint languages Γ over a 2-element domain. Their results
are best presented using the language of polymorphisms. Recall that a polymorphism of
a constraint language Γ over a set D is a multi-ary operation on D that can be viewed
as a multi-dimensional symmetry of relations from Γ. By Pol(Γ) we denote the set of all
polymorphisms of Γ. As for the CSP, polymorphisms of Γ is what determines the complexity
of IMP(Γ), see [15].

According to [27, 6], let Γ be a constraint language over D = {0, 1} such that the constant
relations R0, R1 ∈ Γ, where Ri = {(i)}. Then IMPd(Γ) is polynomial time solvable if Γ is
invariant under a semilattice or affine operation (of Z2), the problem IMP(Γ) is polynomial
time solvable if Γ is invariant under a majority polymorphism. Otherwise IMP0(Γ) is
coNP-complete. This result has been improved in [15] (see also [5, 7]) by showing that
IMPd(Γ) remains polynomial time when Γ has an arbitrary semilattice polymorphism,
not only on a 2-element set, an arbitrary dual-discriminator polymorphism, or an affine
polymorphism of Zp, p prime.

Solving the IMP. The IMP is mostly solved using one of the two methods. The first one
is the method of finding an IMP or SOS proofs of bounded degree using systems of linear
equations or SDP programs. The other approach uses Gröbner bases and the standard
polynomial division to verify whether a given polynomial has zero remainder when divided
by generators of an ideal: if this is the case, the polynomial belongs to the ideal. However,
constructing a Gröbner basis is not always feasible, as even though the original generating
set is small, the corresponding Gröbner basis may be huge. Note however that to solve the
IMPd it suffices to construct a degree d Gröbner Basis, a.k.a d-truncated Gröbner Basis.

A more sophisticated approach was suggested in [15]. It involves reductions between
problems of the form IMP(Γ) before arriving to one for which a Gröbner basis can be
constructed in a relatively simple way. Moreover, [15] also introduces a slightly different form
of the IMP, called the χIMP, in which the input polynomial has indeterminates as some of
its coefficients, and the problem is to find values for those indeterminates (if they exist) such
that the resulting polynomial belongs to the given ideal. We showed that χIMP is solvable
in polynomial time for every known case of polynomial time solvable IMP, and that χIMP
helps to solve the search version of the IMP.

▶ Theorem 1 ([15]).
(1) If Γ has a semilattice, dual-discriminator, or the affine polymorphism of Zp, p prime,

then χIMPd(Γ) is solvable in polynomial time for every d.
(2) If χIMPd(Γ) is polynomial time solvable then for every instance P of CSP(Γ) a d-

truncated Gröbner basis of I(P) can be found in polynomial time.
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Our contribution
Affine operations. In this paper we consider IMPs over languages invariant under affine
operations of arbitrary finite Abelian groups. This type of constraint languages played an
important role in the study of the CSP for three reasons. First, it captures a very natural
class of problems. Problems CSP(Γ) where Γ is invariant under an affine operation of a
finite field F can be expressed by systems of linear equations over F and therefore admit a
classic solution algorithm such as Gaussian elimination or coset generation. In the case of a
general Abelian group A the connection with systems of linear equations is more complicated,
although it is still true that every instance of CSP(Γ) in this case can be thought of as a
system of linear equations with coefficients from some ring – the ring of endomorphisms of A.

Second, it has been observed that there are two main algorithmic approaches to solving
the CSP. The first one is based on the local consistency of the problem. CSPs that can
be solved solely by establishing some kind of local consistency are said to have bounded
width [14, 2]. The property to have bounded width is related to a rather surprising number
of other seemingly unrelated properties, see e.g. [1, 34]. CSP algorithms of the second type
are based on the few subalgebras property and achieve results similar to those of Gaussian
elimination: they construct a concise representation of the set of all solutions of a CSP [11, 24].
Problems CSP(Γ) where Γ has an affine polymorphism were pivotal in the development of few
subpowers algorithms, and, in a sense, constitute the main nontrivial case of them. Among
the existing results on the IMP, IMP(Γ) for Γ invariant under a semilattice or majority
polymorphism belong to the local consistency part of the algorithmic spectrum, while those
for Γ invariant with respect to an affine operation are on the “few subalgebras” part of it. It
is therefore important to observe differences in approaches to the IMP in these two cases.

Third, the few subalgebras algorithms [11, 24] when applied to systems of linear equations
serve as an alternative to Gaussian elimination that also work in a more general situation
and are less sensitive to the algebraic structure behind the problem. There is, therefore, a
hope that studying IMPs with an affine polymorphism may teach us about proof systems
that use the IMP and do not quite work in the affine case.

The main result of this paper is

▶ Theorem 2. Let A be an Abelian group and Γ a constraint language such that the affine
operation x− y + z of A is a polymorphism of Γ. Then IMPd(Γ) can be solved in polynomial
time for any d. Moreover, given an instance (f0,P) of IMPd(Γ) a (d-truncated) Gröbner
basis of I(P) can be constructed in polynomial time.

The tractability of affine IMPs. In [6, 7, 15, 27] IMPs invariant under an affine poly-
morphism are represented as systems of linear equations that are first transformed to a
reduced row-echelon form using Gaussian elimination, and then further converted into a
Gröbner basis of the corresponding ideal. If Γ is a constraint language invariant under the
affine operation of a general Abelian group A, none of these three steps work: an instance
generally cannot be represented as a system of linear equations, Gaussian elimination does
not work on systems of linear equations over an arbitrary Abelian group, and a reduced
row-echelon form cannot be converted into a Gröbner basis. We therefore need to use a
completely different approach, see Section 4. Given an instance (f0,P) of IMP(Γ) we use the
Fundamental Theorem of Abelian groups and a generalized version of pp-interpretations for
the IMP [15] to reduce (f0,P) to an instance (f ′

0,P ′) of multi-sorted IMP(∆) (see below), in
which every variable takes values from a set of the form Zpℓ , p prime. Then we replace the
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domains Zpℓ of (f ′
0,P ′) by sets of roots of unity that allows for a more concise representation

of polynomials. Finally, we show that a (truncated) Gröbner Basis for the resulting problem
can be efficiently constructed.

Multi-sorted IMPs. In order to prove Theorem 2 we introduce two techniques new to
the IMP research, although the first one has been extensively used for the CSP. The first
technique is multi-sorted problems mentioned above, where every variable has its own domain
of values. This framework is standard for the CSP, and also works very well for the IMP, as
long as the domain of each variable can be embedded into the field of real or complex numbers.
However, many concepts used in proofs and solution algorithms such as pp-definitions, pp-
interpretations, polymorphisms have to be significantly adjusted, and several existing results
have to be reproved in this more general setting. However, in spite of this extra work, the
multi-sorted IMP may become the standard framework in this line of research.

A general approach to χIMP. In [15] we introduced χIMP, a variation of the IMP, in
which given a CSP instance P and a polynomial f0 some of whose coefficients are unknown,
the goal is to find values of the unknown coefficients such that the resulting polynomial f ′

0
belongs to I(P); or report such values do not exist. This framework has been instrumental
in finding a Gröbner basis and therefore solving the search version of the IMPs mentioned
earlier, as well as in establishing connections between the IMP and other proof systems such
as SOS. We again use χIMP to prove the second part of Theorem 2. In order to do that we
improve the approach in two ways. First, we adapt it for multi-sorted problems. Second,
while in [15] reductions for χIMP are proved in an ad hoc manner, here we develop a unifying
construction based on substitution reductions that covers all the useful cases so far.

2 Preliminaries

Ideals and varieties. We follow the same notation and terminology as [15, 19, 27]. Let F
denote an arbitrary field and F[x1, . . . , xn] be the ring of polynomials over the field F and
indeterminates x1, . . . , xn. Sometimes it will be convenient not to assume any specific ordering
or names of the indeterminates. In such cases we use F[X], where X is a set of indeterminates,
and treat points in FX as mappings φ : X → F. The value of a polynomial f ∈ F[X] is
then written as f(φ). The ideal of F[x1, . . . , xn] generated by a finite set of polynomials
{f1, . . . , fm} in F[x1, . . . , xn] is defined as ⟨f1, . . . , fm⟩

def=
{ m∑

i=1
tifi | ti ∈ F[x1, . . . , xn]

}
. For

a set of points S ⊆ Fn its vanishing ideal is the set of polynomials defined as

I(S) def= {f ∈ F[x1, . . . , xn] | f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ S}.

For an ideal I ⊆ F[x1, . . . , xn] its affine variety is the set of common zeros of all the
polynomials in I. This is denoted by V (I) and is formally defined as

V (I) = {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0 ∀f ∈ I}.

The (multi-sorted) CSP. In the majority of theoretical studies of the CSP all variables
are assumed to have the same domain, this type of CSPs are known as one-sorted CSPs.
However, for various purposes, mainly for more involved algorithms such as in [10, 35] one
might consider CSPs where different variables of a CSP have different domains, this type of
CSPs are known as multi-sorted CSPs [12]. Definitions below are from [12].
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▶ Definition 3. For any finite collection of finite domains D = {Dt | t ∈ T}, and any
list of indices (t1, t2, . . . , tm) ∈ T m, a subset R of Dt1 × Dt2 × · · · × Dtm

, together with
the list (t1, t2, . . . , tm), is called a multi-sorted relation over D with arity m and signature
(t1, t2, . . . , tm). For any such relation R, the signature of R is denoted σ(R).

As an example consider D = {D1, D2} with D1 = {0, 1}, D2 = {0, 1, 2}. Then Z6, which
is the direct sum of Z2 and Z3, Z2 ⊕ Z3, can be viewed as a multi-sorted relation over D of
arity 2 with signature (1, 2).

Given any set of multi-sorted relations, we can define a corresponding class of multi-sorted
CSPs. Let Γ be a set of multi-sorted relations over a collection of sets D = {Dt | t ∈ T}.
The multi-sorted constraint satisfaction problem over Γ, denoted MCSP(Γ), is defined to
be the decision problem with instance P = (X,D, δ, C), where X is a finite set of variables,
δ : X → T , and C is a set of constraints where each constraint C ∈ C is a pair ⟨s, R⟩, so that

s = (x1, . . . , xmC
) is a tuple of variables of length mC , called the constraint scope;

R is from Γ with arity mC and signature (δ(x1), . . . , δ(xmc
)), called the constraint relation.

The goal is to decide whether or not there exists a solution, i.e. a mapping φ : X → ∪D∈DD,
with φ(x) ∈ Dδ(x), satisfying all of the constraints. We will use Sol(P) to denote the (possibly
empty) set of solutions of the instance P.

The ideal-CSP correspondence. For an instance P = (X,D, δ, C) of MCSP(Γ) we wish
to map Sol(P) to an ideal I(P) ⊆ F[X] (F is supposed to contain ∪D∈DD, and therefore
usually is considered to be a numerical field) such that Sol(P) = V (I(P)). The (radical)
ideal I(P) of F[x1, . . . , xn] whose corresponding variety equals the set of solutions of P is
constructed as follows. First, for every xi the ideal I(P) contains a domain polynomial
fD(xi) =

∏
a∈Dδ(xi)

(xi − a) whose zeroes are precisely the elements of Dδ(xi) (this ensures
that I(P) is radical). Then for every constraint R(xi1 , . . . , xik

), where R is a predicate on
D, the ideal I(P) contains a polynomial fR(xi1 , . . . , xik

) that interpolates R, that is, for
(xi1 , . . . , xik

) it holds fR(xi1 , . . . , xik
) = 0 if and only if R(xi1 , . . . , xik

) is true. This model
generalizes a number of constructions used in the literature to apply Nullstellensatz or SOS
proof systems to combinatorial problems, see, e.g., [4, 17, 22, 31]. If D = {D} in the above
definitions then we obtain the definitions for the one-sorted CSP and IMP. Moreover, as
observed for the one-sorted case [27, 15], due to the presence of domain polynomials we have
V (I(P)) = ∅ ⇔ 1 ∈ I(P)⇔ I(P) = F[X].

In the general Ideal Membership Problem we are given an ideal I ⊆ F[x1, . . . , xn], usually
by some finite generating set, and a polynomial f0. The question then is to decide whether
or not f0 ∈ I. If I is given through a CSP instance, we can be more specific.

▶ Definition 4. The Ideal Membership Problem associated with a constraint language Γ
over a set D is the problem IMP(Γ) in which the input is a pair (f0,P) where P = (X,D, δ, C)
is a MCSP(Γ) instance and f0 is a polynomial from F[X]. The goal is to decide whether f0
lies in the ideal I(P). We use IMPd(Γ) to denote IMP(Γ) when the input polynomial f0 has
degree at most d.

We say that IMP(Γ) is tractable if it can be solved in polynomial time, and IMP(Γ) is
d-tractable if IMPd(Γ) can be solved in polynomial time for every d.

IMP and Gröbner Bases. The Gröbner Basis G of an ideal is a set of generators with
some particular properties that allow for efficient solving of the IMP. If we restrict ourselves
to the polynomials of degree at most d then we obtain a d-truncated Gröbner Basis. The
d-truncated Gröbner Basis Gd of G is defined as Gd = G∩F[x1, . . . , xn]d where F[x1, . . . , xn]d

STACS 2022



18:8 The Ideal Membership Problem and Abelian Groups

denotes the subset of polynomials of degree at most d. To solve IMPd it suffices to compute
a d-truncated Gröbner Basis. This is because, for the input polynomial f0 of degree d, the
only polynomials from G that can possibly divide f0 are those from Gd. Moreover, the
remainders of such divisions have degree at most d.

3 Multi-sorted CSPs and IMP

We study multi-sorted CSPs in the context of the IMP and provide a reduction for multi-
sorted languages that are pp-interpretable. This in particular is useful in this paper as it
provides a reduction between languages that are invariant under an affine polymorphism
over an arbitrary Abelian group and languages over several cyclic p-groups.

3.1 Primitive-positive definability and interpretability
Primitive-positive (pp-) definitions have proved to be instrumental in the study of the CSP
[25, 13] and of the IMP as well [15]. Here we introduce the definition of pp-definitions and
the more powerful construction, pp-interpretations, in the multi-sorted case, and prove that,
similar to the one-sorted case [15], they give rise to reductions between IMPs.

▶ Definition 5 (pp-definability). Let Γ be a multi-sorted constraint language on a collection
of sets D = {Dt | t ∈ T}. A primitive-positive (pp-) formula in the language Γ is a first
order formula L over variables X that uses predicates from Γ, equality relations, existential
quantifier, and conjunctions, and satisfies the condition:

if R1(x1, . . . , xk), R2(y1, . . . , yℓ) are atomic formulas in L with signatures σ1, σ2 and such
that xi, yj is the same variable, then σ1(i) = σ2(j).

The condition above determines the signature σ : X → T of L.
Let ∆ be another multi-sorted language over D. We say that Γ pp-defines ∆ (or ∆ is

pp-definable from Γ) if for each (k-ary) relation (predicate) R ∈ ∆ there exists a pp-formula
L over variables {x1, . . . , xm, xm+1, . . . , xm+k} such that

R(xm+1, . . . , xm+k) = ∃x1 . . . ∃xmL,

and if σ, σ′ are the signatures of L and R, respectively, then σ′ = σ|{m+1,...,m+k} .

Multi-sorted primitive-positive (pp-) interpretations are also similar to the one-sorted
case [15], but require a bit more care.

▶ Definition 6 (pp-interpretability). Let Γ, ∆ be multi-sorted constraint languages over finite
collections of sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively, and ∆ is finite.
We say that Γ pp-interprets ∆ if for every s ∈ S there exist is,1, . . . , is,ℓs

∈ T , a set
Fs ⊆ Dis,1 × · · · × Dis,ℓs

, and an onto mapping πs : Fs → Es such that Γ pp-defines the
following relations
1. the relations Fs, s ∈ S,
2. the πs-preimage of the equality relations on Es, s ∈ S, and
3. the π-preimage of every relation in ∆,
where by the π-preimage of a k-ary relation Q ⊆ Es1 × · · · × Esk

over E we mean the m-ary
relation π−1(Q) over D, with m =

∑k
i=1 ℓsi

, defined by

π−1(Q)(x1,1, . . . , x1,ℓs1
, x2,1, . . . , x2,ℓs2

, . . . , xk,1, . . . , xk,ℓsk
) is true

if and only if
Q(πs1(x1,1, . . . , x1,ℓs1

), . . . , πsk
(xk,1, . . . , xk,ℓsk

)) is true.



A. A. Bulatov and A. Rafiey 18:9

▶ Example 7. Suppose D = {Z2,Z3} and E = {Z6}. Now, any relation on E is pp-
interpretable in a language in D via F = Z2 × Z3 and π : F → Z6 as π(0, 0) = 0, π(1, 2) =
1, π(0, 1) = 2, π(1, 0) = 3, π(0, 2) = 4, π(1, 1) = 5.

As in the one-sorted case, pp-definitions and pp-interpretations give rise to reductions
between IMPs. The proof of the following theorem is similar to that of Theorems 3.11 and
3.15 in [15].

▶ Theorem 8. Let Γ, ∆ be multi-sorted constraint languages over collections of sets D =
{Dt | t ∈ T}, E = {Es | s ∈ S}, respectively.
(1) If Γ pp-defines ∆, then IMP(∆) [IMPd(∆)] is polynomial time reducible to IMP(Γ)

[respectively, to IMPd(Γ)]
(2) If Γ pp-interprets ∆, then IMPd(∆) is polynomial time reducible to IMPO(d)(Γ).

3.2 Polymorphisms and multi-sorted polymorphisms
One of the standard methods to reason about constraint satisfaction problems is to use
polymorphisms. Here we only give the necessary basic definitions. For more details the
reader is referred to [3, 13]. Let R be an (n-ary) relation on a set D and f a (k-ary) operation
on the same set, that is, f : Dk → D. Operation f is said to be a polymorphism of R, or R

is invariant under f , if for any a1, . . . , ak ∈ R the tuple f(a1, . . . , ak) belongs to R, where f

is applied component-wise, that is,

f(a1, . . . , ak) = (f(a1,1, . . . , a1,k), . . . , f(an,1, . . . , an,k)),

and ai = (a1,i, . . . , an,i). The set of all polymorphisms of R is denoted Pol(R). For a
constraint language Γ by Pol(Γ) we denote the set of all operations that are polymorphisms
of every relation from Γ.

Polymorphisms provide a link between constraint languages and relations pp-definable in
those languages. That is for a constraint language Γ and relation R on set A, the relation R

is pp-definable in Γ if and only if Pol(Γ) ⊆ Pol(R) [8, 21].

▶ Corollary 9 ([25, 15]). Let Γ, ∆ be constraint languages on a set D, ∆ finite, and Pol(Γ) ⊆
Pol(∆). Then CSP(∆) is polynomial time reducible to CSP(Γ), and IMP(∆) is polynomial
time reducible to IMP(Γ).

We will need a version of polymorphisms adapted to multi-sorted relations. Let D = {Dt |
t ∈ T} be a collection of sets. A multi-sorted operation on D is a functional symbol f with
associated arity k along with an interpretation fDt of f on every set Dt ∈ D, which is a k-ary
operation on Dt. A multi-sorted operation f is said to be a (multi-sorted) polymorphism of a
multi-sorted relation R ⊆ Dt1 × · · · ×Dtn

, t1, . . . , tn ∈ T , if for any a1, . . . , ak ∈ R the tuple

f(a1, . . . , ak) = (fDt1 (a1,1, . . . , a1,k), . . . , fDtn (an,1, . . . , an,k)) ∈ R.

▶ Example 10. Note that for the sake of defining a multi-sorted operation, the collection D
does not have to be finite. Let A be the class of all finite Abelian groups and f a ternary
functional symbol that is interpreted as the affine operation fA(x, y, z) = x − y + z on
every A ∈ A, where +,− are operations of A. Consider the multi-sorted binary relation
R ⊆ Z2×Z4 over D = {Z2,Z4} given by R = {(0, 1), (0, 3), (1, 0), (1, 2)}. It is straightforward
to verify that f is a polymorphism of R. For instance,

f

((
0
1

)
,

(
1
0

)
,

(
1
2

))
=

(
0− 1 + 1
1− 0 + 2

)
=

(
0
3

)
∈ R.

To make sure f is a polymorphism of R we of course have to check every combination of
pairs from R.
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The connection between multi-sorted polymorphisms and pp-definitions is more complic-
ated than that in the one-sorted case [12], and we do not need it here.

4 CSPs and IMPs over Abelian groups

In this section we outline a proof of our main result, Theorem 11.

▶ Theorem 11. Let A be an Abelian group. Then IMPd(∆) is polynomial time decidable for
any d and any finite constraint language ∆ which is invariant under the affine operation of
A. Moreover, a proof of membership for IMPd(∆) can also be found in polynomial time.

Let A be an Abelian group and ∆ a constraint language invariant with respect to the
operation x−y+z of A. We first show how a given instance P of CSP(∆) can be transformed
in such a way that a Gröbner Basis of the resulting instance can be constructed. Then we
use substitution reductions to extend this reduction to instances of IMPd(∆).

Step 1: Reduction to a multisorted language over cyclic groups. As was mentioned in
the introduction, the standard way to solve CSP(∆) and IMPd(∆) for languages over Zp is
to represent instances as a system of linear equations. However, it is not always possible
for general Abelian groups. For example, the relation R below over Z2 × Z2 cannot be
represented by a system of linear equations with coefficients from Z2. This is because there
are only 8 linear equations over Z2 with two variables, and the pairs from R only satisfy the
trivial one 0x + 0y = 0, however, R is nontrivial.

R =
(

(0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) (0, 1) (1, 0) (1, 1)

)
← x

← y
(1)

By the Fundamental Theorem of Abelian groups, A is a direct sum Zt1 ⊕ · · · ⊕ Zts where
each ti is a prime power and Zti

is a cyclic group of order ti. Using this fact we construct
a multisorted constraint language Γ over Zt1 , . . . ,Zts such that Γ pp-interprets ∆ and Γ
is invariant under the (multisorted) operation x − y + z of Zt1 , . . . ,Zts

. Moreover, the
construction can be amended in such a way that we may assume that ti, tj are relatively
prime for any i ̸= j. (However, in this case the direct sum of Zt1 , . . . ,Zts

is no longer A.)
The following example illustrates the construction.

▶ Example 12. Applying such a transformation to the relation R from equation
(1) above, every element of Z2 × Z2 is replaced with a pair of elements of Z2
in the straightforward way, and R itself is replaced with the 4-ary relation R′ =
{(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 1, 1)}.

By Theorem 8 we have

▶ Lemma 13. For any d the problem IMPd(∆) is polynomial time reducible to IMPO(d)(Γ).

Step 2: Decomposition of multisorted constraints. Fix an instance P of CSP(Γ). By the
following result we may assume that every constraint of Γ is over variables of the same sort.

▶ Proposition 14. Let P be an instance of CSP(Γ), where Γ is a multi-sorted constraint
language over D = {Zt1 , . . . ,Zts

} invariant with respect to the affine polymorphism of
Zt1 , . . . ,Zts

, where t1, . . . , ts are relatively prime. Then P is equivalent to P ′ such that for
every constraint ⟨s, R⟩ of P ′, the variables in s are of the same sort. Moreover, the set of
variables X of P ′ is the same as that of P and for any x ∈ X its sort is the same in both P
and P ′.
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Step 3: Constructing a system of linear equations. Step 2 allows us to consider only
constraints over Zpm , p prime. Generally, such relations cannot be represented by a system
of linear equations of the form we need, i.e., reduced to a row-echelon form. However, it is
possible if new variables are allowed.

▶ Lemma 15. Let R be an n-ary relation invariant under the affine operation of Zpm . Then
there are k and αij ∈ Zpm , i ∈ [n], j ∈ [k], such that

R = {(x1, . . . , xn) | xi = αi1y1 + · · ·+ αikyk, for i ∈ [n], y1, . . . , yk ∈ Zpm}.

Lemma 15 allows us to represent an instance of IMP(Γ) as a system of linear equations
as follows.

▶ Proposition 16. Every instance (f0,P) of IMPd(∆) can be transformed to an instance
(f ′

0,P ′) of IMPO(d)(Γ) satisfying the following conditions and such that f0 ∈ I(P) if and
only if f ′

0 ∈ I(P ′).
(1) For every i ∈ [s] there is a set Yi = {yi,1, . . . , yi,ri

} of variables of P ′ and Yi ∩ Yj = ∅
for i ̸= j.

(2) For every constraint ⟨s, R⟩ of P ′ the following conditions hold:
(a) there is i ∈ [s] such that Zp

mi
i

is the domain of every variable from s;
(b) R is represented by a system of linear equations of the form xj = α1yi,1+· · ·+αriyi,ri ,

xj ∈ s, over Zp
mi
i

.

Let Li denote the collection of all equations constructed in Proposition 16 for constraints
over Zp

mi
i

.

▶ Example 17. The relation R′ from Example 12 can be represented by the following system
of linear equations that uses two extra parameters y1, y2:

x1 = y1, x2 = y2, x3 = y2, x4 = y1.

Step 4: Reduction to roots of unity. Using Proposition 16 we can construct a Gröbner Basis
of instance P of CSP(Γ) as follows. Note first of all that a system of linear equations over Zp

mi
i

can be solved in polynomial time. This immediately tells us if 1 ∈ I(P) or not, and we proceed
only if 1 ̸∈ I(P). Let x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks

and y1,1, . . . , y1,r1 , . . . , ys,1, . . . , ys,rs

be the variables of P and assume the lexicographic order ≻lex with

x1,1 ≻lex · · · ≻lex x1,k1 ≻lex · · · ≻lex xs,1 ≻lex · · · ≻lex xs,ks (2)
≻lex y1,1 ≻lex · · · ≻lex y1,r1 ≻lex y2,1 ≻lex · · · ≻lex y2,r2 ≻lex · · · ≻lex ys,rs .

Since the systems Li of linear equations do not share any variables we construct a Gröbner
Basis for each of them independently. Then we show that the union of all these Gröbner
Bases is indeed a Gröbner Basis for I(P). For each Li we denote the corresponding ideal by
I(Li).

Each linear system Li is already in its reduced row-echelon form with xi,j as the leading
monomial of the j-th equation, 1 ≤ j ≤ ki. Each linear equation can be written as
xi,j + fi,j = 0 (mod pmi

i ) where fi,j is a linear polynomial over Zp
mi
i

. Hence, a generating
set for I(Li) in an implicit form is as follows where the addition is modulo Zp

mi
i

,

Gi =
{

xi,1 + fi,1, . . . , xi,ki
+ fi,ki

,
∏

j∈Z
p

mi
i

(yi,1 − j), . . . ,
∏

j∈Z
p

mi
i

(yi,ri
− j)

}
(3)
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Unfortunately, a polynomial representation of xi,j + fi,j is exponentially large, and so we
need an extra step.

Let Up
mi
i

= {ωi, ω2
i , . . . , ω

(p
mi
i

)
i = ω0

i = 1} be the set of pmi
i -th roots of unity where ωi is

a primitive pmi
i -th root of unity. For a primitive pmi

i -th root of unity ωi we have ωa
i = ωb

i if
and only if a ≡ b (mod pmi

i ). From Li we construct a new CSP instance L′
i = (V, Up

mi
i

, C̃)
as follows. For each equation xi,t + fi,t = 0 (mod pmi

i ), where

fi,t = αi,t,1yi,1 + · · ·+ αi,t,ri
yi,ri

+ αi,t,

we add the constraint xi,t − f ′
i,t = 0 (here subtraction is in C) with

f ′
i,t = ω

αi,t

i ·
(
y

αi,t,1
i,1 · . . . · yαi,t,ri

i,ri

)
.

Moreover, the domain constraints are different. For each variable xi,j , j ∈ [ki], or yi,j , j ∈ [ri]
the domain polynomial is (xi,j)(p

mi
i

)− 1, (yi,j)(p
mi
i

)− 1. However, we do not need the domain
polynomials for variables xi,j .

▶ Lemma 18. The set of polynomials G′ = ∪1≤i≤sG′
i, where

G′
i =

{
xi,1 − f ′

i,1, . . . , xi,ki − f ′
i,ki

, (yi,1)(p
mi
i

) − 1, . . . , (yi,ri)(p
mi
i

) − 1
}

forms a Gröbner Basis for I(P ′) = I(Sol(P ′)) with respect to the lex order (2).

Step 5: Transforming the input polynomial. Given an instance (f0,P) of IMPd(∆)
Steps 1–4 transform P to an ideal over the set of roots of unity, for which a Gröbner Basis
can be efficiently constructed. To complete a solution algorithm for IMPd(∆) we need to
demonstrate how to convert the input polynomial f0.

To this end note that the reduction in Step 1 converted f0 into a polynomial f ′
0 over

x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks
, see Theorem 8 and Lemma 13. Then for each i ∈ [s]

we define a univariate polynomial ϕi ∈ C[X] that interpolates points (ω0
i , 0), (ωi, 1), . . . ,

(ω(p
mi
i

−1)
i , pmi

i − 1), that is, ϕi(a) = ωa
i for a ∈ Zp

mi
i

.

▶ Lemma 19. Define polynomial f ′′
0 ∈ C[X] to be

f ′′
0 (x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks

)
= f ′

0
(
ϕ−1

1 (x1,1), . . . , ϕ−1
1 (x1,k1), . . . , ϕ−1

s (xs,1), . . . , ϕ−1
s (xs,ks

)
)

.

Then f0 ∈ I(P) if and only if f ′′
0 ∈ I(P ′).

If f0 has degree at most d, the polynomial f ′′
0 has degree O(d), and thus can be constructed

in polynomial time. Therefore, Lemma 19 completes the proof of the first part of Theorem 11.
The search version of IMPd(∆) is discussed in the next section.

5 Search version and the substitution technique

In [15] we introduced a framework to bridge the gap between the decision and the search
versions of the IMP. Indeed, this framework gives a polynomial time algorithm to construct
a truncated Gröbner Basis provided that the search version of a variation of the IMP is
polynomial time solvable. This variation is called χIMP and is defined as follows.
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▶ Definition 20 (χIMP). Given an ideal I ⊆ F[x1, . . . , xn] and a vector of ℓ polynomials
M = (g1, . . . , gℓ), the χIMP asks if there exist coefficients c = (c1, . . . , cℓ) ∈ Fℓ such that
cM =

∑ℓ
i=1 cigi belongs to the ideal I. In the search version of the problem the goal is to

find coefficients c.

The χIMP associated with a (multi-sorted) constraint language Γ over a set D is the
problem χIMP(Γ) in which the input is a pair (M,P) where P is a CSP(Γ) instance
and M is a vector of ℓ polynomials. The goal is to decide whether there are coefficients
c = (c1, . . . , cℓ) ∈ Fℓ such that cM lies in the combinatorial ideal I(P). We use χIMPd(Γ)
to denote χIMP(Γ) when the vector M contains polynomials of degree at most d.

▶ Theorem 21 (Theorem 1 part (2) paraphrased). Let H be a class of ideals for which the
search version of χIMPd is polynomial time solvable. Then there exists a polynomial time
algorithm that constructs a d-truncated Gröbner Basis of an ideal I ∈ H, I ⊆ F[x1, . . . , xn],
in time O(nd).

The above theorem suggests that, in order to prove the second part of Theorem 11, it is
sufficient to show that χIMP is polynomial time solvable for instances of CSP arising from
constraint languages that are closed under the affine operation of an Abelian group.

It was shown in [15] that having a Gröbner Basis yields a polynomial time algorithm for
solving the search version of χIMP (by using the division algorithm and solving a system of
linear equations).

▶ Theorem 22 ([15]). Let I be an ideal, and let {g1, . . . , gs} be a Gröbner Basis for I with
respect to some monomial ordering. Then the (search version of) χIMP is polynomial time
solvable.

Given the above theorem, to solve the χIMP one might reduce the problem at hand to
a problem for which a Gröbner Basis can be constructed in a relatively simple way. This
approach has been proven to be extremely useful in various cases studied in [15]. In that
paper the reductions for χIMP are proved in an ad hoc manner. However, the core idea in
all of them is a substitution technique. Here we provide a unifying construction based on
substitution reductions that covers all the useful cases so far.

5.1 Reduction by substitution
We call a class of χIMPs CSP-based if its instances are of the form (M,P), where P
is a CSP instance over a fixed set D. Let X ,Y be restricted CSP-based classes of the
χIMP. The classes X ,Y can be defined by various kinds of restrictions, for example, as
χIMP(Γ), χIMP(∆), but not necessarily. Let the domain of X be D and the domain of Y
be E. Let also µ1, . . . , µk be a collection of surjective functions µi : Eℓi → D, i ∈ [k]. Each
mapping µi can be interpolated by a polynomial hi. We call the collection {h1, . . . , hk} a
substitution collection.

The problem X is said to be substitution reducible to Y if there exists a substitution
collection {h1, . . . , hk} and a polynomial time algorithm A such that for every instance
(M,P) of X an instance constructed as follows belongs to Y.
(1) Let X be the set of variables of (M,P). For every x ∈ X the algorithm A selects a

polynomial hix
and a set of variables Yx such that

(a) |Yx| = ℓix ;
(b) for any x, y ∈ X either Yx = Yy or Yx ∩ Yy = ∅;
(c) if x1, . . . , xr ∈ X are such that Yx1 = · · · = Yxr

= {y1, . . . , yℓj
} then for any solution

φ of P there are values a1, . . . , aℓj
∈ E such that φ(xi) = hixi

(a1, . . . , aℓj
).
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(2) If M = (g1, . . . , gℓ) then M ′ = (g′
1, . . . , g′

ℓ), where for gi(x1, . . . , xt)

g′
i = gi(hix1

(Yx1), . . . , hixy
(Yxt)).

(3) Let Y =
⋃

x∈X Yx. The instance P ′ is given by (Y, E, C′), where for every constraint
⟨s, R⟩, s = (x1, . . . , xt), P ′ contains the constraint ⟨s′, R′⟩ such that
– s′ = (x1,1, . . . , x1,ℓx1

, x2,1, . . . , xt,ℓxt
), where Yxj

= {xj,1, . . . , xj,ℓj
};

– R′ is an ℓ-ary relation, ℓ = ℓx1+, . . . , +ℓxt , such that (a1,1, . . . , a1,ℓx1
, a2,1, . . . , at,ℓxt

) ∈
R′ if and only if (hix1

(a1,1, . . . , a1,ℓx1
), . . . , hixt

(at,1, . . . , at,ℓxt
)) ∈ R.

▶ Lemma 23. Let X ,Y be restricted CSP-based classes of the χIMPd and χIMPrd, respect-
ively, r ≥ 1. If X is substitution reducible to Y with a substitution collection {h1, . . . , hk},
and r ≥ ℓi for each i ∈ [k], then there is a polynomial time reduction from X to Y.

Since the search χIMP can be solved whenever a Gröbner Basis can be efficiently found,
the above lemma provide a powerful tool for solving the χIMP. That is, if X is substitution
reducible to Y and furthermore Y is such that it admits a polynomial time algorithm to
construct a Gröbner Basis, then instances of X are solvable in polynomial time too.

▶ Theorem 24. Let X ,Y be restricted CSP-based classes of the χIMPd and χIMPrd,
r ≥ 1 respectively, such that X is substitution reducible to Y with a substitution collection
{h1, . . . , hk} and r ≥ ℓi for i ∈ [k]. Suppose there exists a polynomial time algorithm that
for any instance (M ′,P ′) of Y constructs a (truncated) Gröbner Basis, then
1. there is a polynomial time algorithm that solves every instance (M,P) of X ; and
2. there is a polynomial time algorithm that for any instance (M,P) of X constructs a

d-truncated Gröbner Basis for I(P).

We point out that the second part of Theorem 24 follows from Theorem 21, that is, since
every instance (M,P) of X is polynomial time solvable, by Theorem 21, we can construct a
d-truncated Gröbner Basis for I(P) in polynomial time.

If X ,Y are of the form χIMP(Γ), Theorem 24 implies the following corollary, which
covers virtually all the reductions suggested in [15].

▶ Corollary 25. Let ∆ and Γ be multi-sorted constraint languages over finite collection of
sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively. Suppose Γ pp-interprets ∆ and there
exists a polynomial time algorithm that for any instance (M ′,P ′) of χIMPO(d)(Γ) constructs
a (truncated) Gröbner Basis, then
1. there is a polynomial time algorithm that solves every instance (M,P) of χIMPd(∆); and
2. there is a polynomial time algorithm that for any instance (M,P) of χIMPd(∆) constructs

a d-truncated Gröbner Basis for I(P).

Given Corollary 25, we can prove the reductions in Steps 1–5 are reductions by substitution
(see the full version [16]), thus by Theorem 24 we can construct a d-truncated Gröbner Basis
which yields the search version of Theorem 11.
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Abstract
The classical Domino problem asks whether there exists a tiling in which none of the forbidden
patterns given as input appear. In this paper, we consider the aperiodic version of the Domino
problem: given as input a family of forbidden patterns, does it allow an aperiodic tiling? The input
may correspond to a subshift of finite type, a sofic subshift or an effective subshift.

[8] proved that this problem is co-recursively enumerable (Π1
0-complete) in dimension 2 for

geometrical reasons. We show that it is much harder, namely analytic (Σ1
1-complete), in higher

dimension: d ≥ 4 in the finite type case, d ≥ 3 for sofic and effective subshifts. The reduction uses a
subshift embedding universal computation and two additional dimensions to control periodicity.

This complexity jump is surprising for two reasons: first, it separates 2- and 3-dimensional
subshifts, whereas most subshift properties are the same in dimension 2 and higher; second, it is
unexpectedly large.
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1 Introduction

Subshifts are sets of colorings (or configurations) defined by a family of forbidden patterns.
The seminal computational problem on multidimensional subshifts is the Domino Problem:
given a subshift of finite type (SFT), does it contain a configuration? It was proved undecidable
on Z2 in [2, 19] from the construction of aperiodic SFTs (SFTs which contain only (strongly)
aperiodic colorings, i.e. colorings with no non-zero period) in which universal computation
is embedded. Many similar undecidability results used different SFTs and embeddings to
control the structure and properties of their configurations [10, 5, 1, 21, 5] or to characterise
the set of possible values of some parameters by computability conditions [12, 15, 4]. These
results all rely on the existence of purely aperiodic SFTs on Zd for d ≥ 2 (see [14, Section 1.2]
for more details), and show that multidimensional SFTs can be considered as geometrical
computational models.
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In contrast, topological or geometrical restrictions may lower the “natural” complexity of
a problem (compare e.g. [12] with [6] or [18]) by breaking our ability to embed computation.
In particular, finding the border where the difficulty jump occurs gives a fine understanding
of the effect of the restriction [7].

Given the importance of aperiodicity for computation embedding, it is natural to ask the
aperiodic version of the Domino problem (AD): given as input a subshift X, does it contain
an aperiodic coloring? It is not difficult to see that this problem is harder than the Domino
problem, i.e. co-r.e.(Π0

1)-hard in dimension 2 and higher; however, the natural upper bound
is much higher, outside the arithmetical hierarchy.

This question was (to the best of our knowledge) first explored in [8]: the authors proved
that AD is Π0

1-complete for Z2 subshifts2. It is an example of problem whose computational
complexity is low because of geometrical reasons specific to the two-dimensional case: starting
from an aperiodic configuration, we can regroup breaks of periods into concentric balls whose
size is controlled by a computable function ([8, Theorem 1]).

In this paper, we study the computational complexity of this problem in higher dimension,
where this geometrical property no longer holds (see [8, Section 4] for a counter example).
We build an embedding for universal computation that proves that this problem is in a much
higher undecidability class – Σ1

1-complete, its natural upper bound – in sofic subshifts for
d ≥ 3 and in subshifts of finite type for d ≥ 4.

Our paper is structured as follows.
In Section 2, we provide definitions for subshifts and the relevant complexity classes;
In Section 3, we prove that AD is Σ1

1-complete on Zd (d ≥ 3) sofic subshifts;
In Section 4, we adapt the previous proof to Zd (d ≥ 4) subshifts of finite type;
In Section 5, we make a side remark relating the existence of an aperiodic configuration
in SFTs with their complexity.

We summarize the complexity of AD in the following table (new results are highlighted):

Dimension / type finite type sofic effective
2D Π0

1-complete Π0
1-complete Π0

1-complete
3D open Σ1

1-complete Σ1
1-complete

4D+ Σ1
1-complete Σ1

1-complete Σ1
1-complete

Considering the effect of the dimension on the difficulty of AD, we find a border between
the dimensions where the complexity of the problem is lowered by geometric properties and
the dimensions where computability considerations dominate.

For sofic and effective subshifts, this border lies between dimensions 2 and 3. For SFTs
on Z3, we conjecture that AD is in the arithmetical hierarchy for reasons that are specific to
SFTs, and provide a few pointers in conclusion. This would be a candidate for a dimension-
separating property between 3 and 4 dimensional SFTs. In both cases, we do not know of
any other natural problem with a complexity jump in such high dimensions.

2 Definitions and notations

2.1 Subshifts
For a more detailed introduction, we refer the reader to [3, Chapter 9].

2 on SFTs, but as [8, Theorem 1] applies to any Z2 subshift, the result also holds for Z2 effective subshifts.
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Let Σ be a finite alphabet of colors and d a dimension. A configuration is a coloring
c : Zd 7→ Σ, and the value of c at position i is denoted ci. A pattern is a coloring w : D 7→ Σ
of a finite domain D = dom(w) ⊆ Z2. We say that a pattern w appears in a configuration x

and write w ⊑ x if wj = xi+j for some i ∈ Zd and all j ∈ D. Given a configuration x and a
vector t ∈ Zd, denote σt(x) the shift of x by t: for any i ∈ Zd, σt(x)i = xi−t.

▶ Definition 1 (Periodicity).
1. In a configuration x ∈ ΣZd , a vector p ∈ Zd is broken at position i if xi+p ̸= xi.
2. A configuration x ∈ ΣZd is (strongly) aperiodic if every vector p ∈ Zd is broken in x.

In the following definition, Σ is equipped with the discrete topology and ΣZd with the
product topology. ΣZd is then a Cantor space.

▶ Definition 2 (Subshifts). A subshift is a closed and σ-invariant subset of Zd. Equivalently,
there is a family of forbidden patterns F such that

X = XF :=
{

x ∈ ΣZd

: ∀w ∈ F , w ̸⊑ x
}

Two distinct families of forbidden patterns may define the same subshift.

▶ Definition 3 (Classes of subshifts). A subshift Y ⊆ ΣZd is:
1. of finite type (SFT) if it can be defined by a finite family of forbidden patterns.
2. sofic if there exists an SFT X ⊆ Σ′Zd

and a projection π : Σ′ 7→ Σ such that Y = π(X).
3. effective if it can be defined by a recursively enumerable family of forbidden patterns.

SFTs are of course sofic and sofic subshifts are effective. On the other direction, effective
subshifts are projections of higher-dimensional sofic subshifts; this is a consequence of [10],
later improved in the subshift case in [5, 1]. More precisely, X↑ ⊆ ΣZd+k is a (d + k)-
dimensional lift of a subshift X ⊆ ΣZd if its configurations are configurations of X repeated
along the k additional dimensions. Then:

▶ Theorem 4 ([5, 1]). For any Zd effective subshift X, its (d + 1)-dimensional lifts are sofic.

2.2 Hierarchy of undecidability
Many-one reductions define a preorder on decision problems (“P1 is easier than P2”), so we
can define hierarchies according to “how far” a problem is from being computable.

Arithmetical hierarchy

Starting from recursively enumerable (Σ0
1) and co-recursively enumerable (Π0

1) problems, the
arithmetical hierarchy progressively defines higher levels of undecidability.

▶ Definition 5 (Arithmetical hierarchy). For a decision problem P : N 7→ {0, 1} and m ≥ 1,
1. P ∈ Σ0

m if there is a computable relation R(n, k1, ..., km) such that

P (n) = 1⇔ ∃k1, ∀k2, ∃k3, . . . R(n, k1, . . . , km).

2. P ∈ Π0
m if this definition holds when swapping ∀ and ∃ quantifiers.

P is arithmetical if it belongs to a level of this hierarchy.

As Σ0
m ∪ Π0

m ⊆ Σ0
m+1 ∩ Π0

m+1, this indeed defines a hierarchy. For more details, we refer
the reader to [20, Chapter 4].
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Analytical hierarchy

Above the arithmetical hierarchy, the analytical hierarchy allows for second-order quantifica-
tions on sets. Here we need only the first level.

▶ Definition 6 (Class Σ1
1). A decision problem P : N 7→ {0, 1} is Σ1

1 if there exists an
arithmetical relation R such that

P (n) = 1⇔ ∃f ∈ 2N, Rf (n)

in which Rf denotes the relation R with f given as an oracle.

All arithmetical sets are Σ1
1. In terms of computational power, Σ1

1 sets are (a lot) harder
than arithmetical sets: to make an analogy between computability and topology, if Σ0

1 sets
correspond to the open sets, then Σ1

1 sets are not even Borel. For more details, see [17,
Chapter IV.2]. A typical example of a Σ1

1-complete problem is the following:

▶ Theorem 7 (State Recurrence [9, Corollary 6.2]). The problem of State Recurrence (SR):
Input: A nondeterministic Turing machine (NTM) M, and one of its states q0.
Output: Is there a run of M on the empty input ε in which q0 is visited infinitely often?
is a Σ1

1-complete problem.

2.3 The aperiodic Domino (AD) problem and its complexity

▶ Definition 8 (Aperiodic Domino problem (AD)).
Input: An effective family of d-dimensional patterns.
Output: Is there an aperiodic configuration in the effective subshift XF ?
We consider variations of AD depending on the type of input subshift (SFT, sofic, effective).
There are natural lower and upper bounds on the complexity of AD that do not depend on
the input type:

▶ Proposition 9. AD is Π0
1-hard for Zd subshifts (d ≥ 2).

Proof. We reduce the Domino problem to AD. Let Y be a Zd-SFT with only aperiodic
configurations (see e.g. [19]). For any Zd subshift X, the cartesian product X × Y has the
same type (SFT, sofic, effective), has only aperiodic configurations, and is non-empty if and
only if X is non-empty. ◀

▶ Proposition 10. AD is a Σ1
1 problem for Zd subshifts.

Proof. Let F be the effective family of forbidden patterns given as input. The existence of
an aperiodic configuration can be written as:

∃x ∈ ΣZd

, x ∈ XF and x is aperiodic.

Taking any computable encoding between ΣZd and 2N, we can see that the first (existential)
quantifier is of second order and can be written as a quantifier on 2N. The rest of the
expression is a Π0

2 relation, and in particular arithmetical (x being given as oracle):
x ∈ XF ⇔ ∀w ∈ F , ∀i ∈ Zd, x|i+dom(w) ̸= w;
x is aperiodic ⇔ ∀p ∈ Zd, ∃i ∈ Zd, xi ̸= xi+p. ◀
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3 Σ1
1-completeness for Zd sofic and effective subshifts, d ≥ 3

▶ Theorem 11. AD for Zd sofic subshifts, d ≥ 3, is a Σ1
1-complete problem.

By Proposition 10, AD ∈ Σ1
1. We prove Σ1

1-hardness for d = 3 and the higher-dimensional
cases will follow.

To prove Σ1
1-hardness, we reduce (many-one reduction) the problem SR. Let M be some

nondeterministic Turing machine (NTM) and q0 one of its states. We create a sofic subshift
Y3 which contains an aperiodic configuration if and only if M admits a run from the empty
word which visits q0 infinitely often. The proof is divided in three parts:
1. Section 3.1: creation of an auxiliary Z Toeplitz subshift TM;
2. Section 3.2: creation of Y3 and proof that it is sofic;
3. Section 3.3: proof that Y3 ∈ AD iff (M, q0) ∈ SR.

3.1 TM: Z Toeplitz corresponding to state sequences of M
In this section, we transform the set of sequences of states in all the runs of M into a Z
subshift with a convenient structure called Toeplitz.

Z Binary Toeplitz subshift XT

Consider the substitution σ on the alphabet {→,←,___, ^̂̂}:

σ(→) = ___← σ(←) = ^̂̂← σ(___) = ___→ σ(^̂̂) = ^̂̂→

Define the Z-subshift Xσ by forbidding every pattern that does not appear in σω(___) (any
other seed symbol would yield the same subshift).

σω(___) = ___→___←___→^̂̂←___→___←^̂̂→^̂̂← . . .

▶ Definition 12 (Binary Toeplitz subshift). The binary Toeplitz subshift XT is the image of
Xσ under the projection that maps {→,___} to ___ and {←, ^̂̂} to ^̂̂.

XT is a Toeplitz subshift [13]. It corresponds to the “period-doubling” or “ruler” (mod-
ulo 2) sequences (resp. A001511 and A096268 in the OEIS). In a configuration of XT ,
Level 1 One position out of two has an alternating sequence of ___ and ^̂̂;
Level 2 One position out of two in the remaining positions (i.e. one out of four) has an

alternating sequence of ___ and ^̂̂, etc.

More generally, a position i is of level ℓ if it has minimal period 2ℓ+1 (cells at positions
i + k2ℓ+1 all have the same value). In a configuration of XT , there may exist at most one
position i which does not have a level (i.e. it is not 2ℓ+1 periodic for any ℓ): we say that
levelz(i) =∞. Given as input a finite pattern of size between 2n and 2n+1, one can compute
all levels ℓ ≤ n− 1.

TM : Z-Toeplitzification of sequences of states of M

▶ Definition 13 (Toeplitzification of a set of sequences). Given a set of sequences A ⊆ ΣN,
we define the corresponding Toeplitzified subshift TA on the alphabet Σ× {___, ^̂̂} as:

TA =
{

(x, z) ∈ (Σ× {___, ^̂̂})Z : z ∈ XT , ∃(an)n∈N ∈ A,

∀i ∈ Z, levelz(i) = ℓ ∈ N =⇒ xi = aℓ

}
.
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Note that a position of infinite level may be marked with any symbol of Σ. We cannot
force this symbol without breaking the next lemma.

Now take Σ = Q, the set of states of M, and define SM as the set of sequences (st)t∈N
on the alphabet Σ such that there exists a non-terminating run of M from the empty input
whose state at time t is st. Let TM := TSM be its Toeplitzification.

▶ Lemma 14. TM is a Z effective subshift.

Proof. This stems from the fact that the set of prefixes of SM is computable: for any n ≥ 0,
we can enumerate all oracles of non-determinism of M of size ≤ n and compute Sn, the set
of finite prefixes of length n in SM.

Consider the following algorithm that defines a family of forbidden patterns. For all n:
Compute the globally admissible patterns of XT of size 2n + 1; (Note that the language
of patterns of XT is computable: it is both recursively and co-recursively enumerable.)
Compute Sn ;
Forbid all patterns (u, v) ∈ (Σ× {___, ^̂̂})2n+1, except if v is a pattern in XT and there
exists a prefix (st)0≤t≤n ∈ Sn such that:

∀i, j ∈ Z, (levelv(i) = levelv(j) ≤ n) =⇒ ui = uj = slevelv(i).

This procedure defines an effective subshift E. We prove E = TM. Indeed:
E ⊆ TM Take (u, v) ∈ E and (un, vn) = (x, z)[−2n, 2n]. By definition of E, there exists a

finite prefix sn ∈ Sn such that for any positions i, j with levelvn(i) = levelvn(j) = ℓ, we
have un

i = un
j = sℓ. This sequence of prefixes is increasing, so it converges towards some

sequence s ∈ SM. Then for any i, j ∈ Z such that levelv(i) = levelv(j) = ℓ < +∞, we
have xi = xj = sℓ. So (x, z) ∈ TM.

TM ⊆ E No pattern forbidden in the algorithm appears in any configuration of TM. ◀

3.2 Y3: the desired Z3 subshift

We create a subshift Y3 which contains an aperiodic configuration if and only if there exists
a run of M on the empty word which visits q0 infinitely often. As one might expect, each
configuration of Y3 contains the lift of a configuration of TM corresponding to a run of M.
We then add lines to make it aperiodic if and only if q0 appears infinitely often.

However, every decision of breaking periods must occur locally at every level, without
the ability to know whether the future number of visits of q0 is finite or infinite. Otherwise
compactness would create issues: as visits of q0 can occur arbitrarily late, a position of finite
level could be tricked to “believe” that q0 is visited infinitely often in the future. That is
why we will break periods whose size depend on the level of the positions in the Toeplitz
structure.

Effective 2D subshifts: Y ___
2 and Y ^̂̂

2

A configuration of Y ___
2 is composed of three layers:

Layer 1 & 2 : it contains a Z2 lift of a configuration x′ ∈ TM. That is, ∀i, j : xi,j = x′
i.

Layer 3: on the alphabet {■,□}. For every ℓ and in every column of level ℓ containing
(q0,___) on Layers 1 and 2, Layer 3 contains regularly placed ■ cells separated by 2ℓ − 1
□ cells. Every other cell contains □ on Layer 3.
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Formally, Y ___
2 can be written as:

x ∈ (Σ × {___, ^̂̂} × {■,□})Z
2

: ∃x′ ∈ TM, π1,2(x) is a Z2 lift of x′,

∃z ∈ XT , π2(x) is a Z2 lift of z,

∀i, j ∈ Z,

xi,j = (·, ·,■) =⇒ ∀j′, xi,j′ = (q0,___, ·)
xi,j = (q0,___, ·) and levelz(i) = ℓ ∈ N =⇒ ∃j′, ∀j′′, xi,j′′ = (·, ·,■) ⇐⇒ 2ℓ | (j′′ − j′)
xi,j = (q0,___, ·) and levelz(i) = ∞ =⇒ |{j′ : xi,j′ = (·, ·,■)}| ≤ 1


.

Its counterpart Y ^̂̂
2 is defined similarly by replacing ___ by ^̂̂ in the previous definition.

It is clear that both Y ___
2 and Y ^̂̂

2 are effective Z2 subshifts.

Issues with the position of infinite level

Note that ■ symbols break increasingly large periods as levels in the Toeplitz structure
increase: by compactness, a position of infinite level can break periods of every size by itself.

This explains why this construction requires two additional dimensions to TM instead of
one: each position in Y3 will be periodic in one dimension, and breaks periods in the other.
This way, the single position of infinite level may break horizontal or vertical periods, but
not both.

Sofic 3D subshifts: Y ___
3 and Y ^̂̂

3

By Theorem 4, every d-dimensional effective subshift can be lifted into a d + 1-dimensional
sofic subshift. Using this result, we lift Y ___

2 and Y ^̂̂
2 into 3D sofic subshifts Y ___

3 and Y ^̂̂
3 :

Y ___
3 = {x ∈ (Σ× {___, ^̂̂} × {■,□})Z

3
: ∃x′ ∈ Y ___

2 , ∀i, k ∈ Z, ∀j′ ∈ Z, xi,j′,k = x′
i,k}

Y ^̂̂
3 = {x ∈ (Σ× {___, ^̂̂} × {■,□})Z

3
: ∃x′ ∈ Y ^̂̂

2 , ∀i, j ∈ Z, ∀k′ ∈ Z, xi,j,k′ = x′
i,j}.

Note that the lifts are not made along the same coordinates: a position with ■ in Y ___
2 lifts

into a line directed by (0, 1, 0) in Y ___
3 , and a position with ■ in Y ^̂̂

2 lifts into a line directed
by (0, 0, 1) in Y ^̂̂

3 .

Sofic 3D subshift: Y3

We obtain Y3 by “fusing” the two previous subshifts. Formally,

Y3 = {x ∈ (Σ× {___, ^̂̂} × {■,□} × {■,□})Z
3

: π1,2,3(x) ∈ Y ___
3 and π1,2,4(x) ∈ Y ^̂̂

3 }.

Since Y ___
3 and Y ^̂̂

3 are sofic, their cartesian product Y ___
3 × Y ^̂̂

3 is also sofic. Y3 is the
projection on Layers 1, 2, 3, 6 of Y ___

3 × Y ^̂̂
3 with the additional local condition that the first

two layers coincide (i.e. π1,2(x) = π4,5(x)), so it is sofic as well.

▷ Claim 15. A configuration of Y3:
1. breaks every periodicity vector (n, ·, ·) for n ≥ 1.
2. every slice (i, ·, ·) containing (q0,___) on the first two layers and corresponding to the

lift of a single position of level ℓ ∈ [0, +∞] in TM, is periodic with periods (0, 1, 0) and
(0, 0, 2ℓ) but breaks every period (·, ·, n) for 1 ≤ n < 2ℓ. The same is true with (q0, ^̂̂)
with vectors (0, 2ℓ, 0) and (0, 0, 1).

Proof.
1. the Toeplitzification of alternating ___ and ^̂̂ is aperiodic, so Layer 2 breaks all vectors

(n, ·, ·) for n ≥ 1.
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2ℓ 2ℓ

2ℓ

ℓ = 1 (·,___)
ℓ = 2 (q0,___)

ℓ = 1 (·, ^̂̂)
ℓ = 3 (·,___)

ℓ = 1 (·,___)
ℓ = 2 (q0, ^̂̂)

ℓ = 1 (·, ^̂̂)
ℓ = 4 (·,___)

j

i

k

Figure 1 A configuration of Y3. To the left of each slice (i, ·, ·) is its level ℓ and the values on
Layers 1 and 2. We highlight two slices of level 2: at the front, marked by (q0, ^̂̂) with horizontal
lines; at the back, marked by (q0,___) with vertical lines.

2. Layer 1 and 2 are lifted along the last two dimensions, so they cannot break any such
vectors. Layer 3 is lifted along the second dimension so it is (0, 1, 0)-periodic, and breaks
the required vectors from the last condition in the definition of Y ___

2 . Layer 4 is □
everywhere since it is not marked by (q0, ^̂̂). ◁

3.3 Proof of the reduction RS ≤ AD
▶ Lemma 16. A configuration in Y3 is aperiodic if, and only if, it corresponds to a run of
M in which q0 occurs infinitely often.

Proof. Using Claim 15,
Let y ∈ Y3 be a configuration corresponding to a run of M that visit q0 infinitely often.

If (q0,___) appears at a level ℓ, all vectors (0, ·, n) for 1 ≤ n < 2ℓ are broken on Layer 3;
Similarly for (q0, ^̂̂) and vectors (0, n, ·) on Layer 4.

Therefore all vectors (0, ·, ·) are broken at some level, and vectors (n, ·, ·) are always
broken for n ≥ 1, so y is an aperiodic configuration.
Let y ∈ Y3 be a configuration corresponding to a run of M that does not visit q0 after
some time N ∈ N. Let a∞ ∈ Σ× {___, ^̂̂} be the value on Layers 1 and 2 of the single
position of infinite level in z, if it exists.

If a∞ ≠ (q0, ^̂̂), positions marked by (q0, ^̂̂) must be of level ≤ N , so y is periodic of
period (0, 2N , 0).
Similarly, if a∞ ̸= (q0,___), then y is periodic of period (0, 0, 2N ).

All in all, y is not aperiodic. ◀

Case d > 3. We lift the previous construction and fill the additional dimensions with
aperiodicity. More precisely, in the construction of Y3, one of the dimension is always
aperiodic, and the two others may or may not be periodic. Let A be the Zd lift of any Zd−2

aperiodic sofic subshift (d− 2 ≥ 2), and Yd the Zd lift of Y3. The cartesian product A× Yd

is aperiodic if and only if Y3 is. ◀
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4 Σ1
1-completeness for Zd SFTs, d ≥ 4

▶ Theorem 17. If d ≥ 4, AD for Zd SFTs is a Σ1
1-complete problem.

As above, we prove Σ1
1-hardness for d = 4, and the result extends to d > 4.

4.1 Outline of the proof
This proof has the same structure as Theorem 11 with some adaptations for Z4 SFTs. We
reduce to the problem SR: givenM and q0, we create an SFT X4 that contains an aperiodic
configuration if and only if M admits a run from the empty word which visits q0 infinitely
often. To do this, we use repeated lines along two dimensions (3 and 4) to break all periods
up to a length controlled by a computation embedded in the configuration.

1. In Section 4.2, we build X2
T , a Z2 version of the Toeplitz structure XT ;

2. In Section 4.3, we build auxiliary SFTs X___
3 and X^̂̂

3 (counterparts to Y ___
2 and Y ^̂̂

2 );
3. In Section 4.4, we build X4 and prove the reduction.

The main difference is that the finite type case requires an additional dimension to embed
computations and some construction lines (dimensions 1 and 2). Remember that the subshift
TM of Z Toeplitzified sequences of states of runs of M is effective ; instead, we define
an aperiodic Z2 version T 2

M that is sofic and aperiodic. Since T 2
M is the projection of an

aperiodic Z2 SFT, we then add, as in the previous case, two additional dimensions in which
this SFT can be periodic or aperiodic, since the position of infinite level can break periods
uncontrollably along at most one dimension.

Furthermore, to control the length of the vectors being broken, we need to measure
distances between lines (as in Y3). With SFTs, copying a distance from one dimension to
another can only be done with diagonals. Therefore, instead of lines to break periods, we
use a more complex diagonal SFT D that we embed in slices (i, ·, ·, ·) only on dimensions 2
and 3 (on symbols ___) or 2 and 4 (on symbols ^̂̂). This way, the computation embedded in
the first two dimensions can control the length of the broken periodicity vectors.

4.2 T 2
M: Z2 Toeplitz corresponding to state sequences of M

Binary Toeplitz structure

In this section, we use a Z2 subshift X2
T on the alphabet {⌜, ⌝, ⌞, ⌟, | , —} whose structure is

a two-dimensional analog of XT .
It is defined by the substitution σ2 on the alphabet {⌜, ⌝, ⌞, ⌟, | , —,⌜⌜⌜,⌝⌝⌝,⌞⌞⌞,⌟⌟⌟, ||| ,———}:

σ2 =


— 7→

——— |
— ⌞

| 7→ ||| |
— ⌝

lll ∈ {||| ,———} 7→ lll |
— ⌜

c ∈ {⌜, ⌝, ⌟, ⌞} 7→ ccc |
— ⌟

ccc ∈ {⌜⌜⌜,⌝⌝⌝,⌞⌞⌞,⌟⌟⌟} 7→ ccc |
— ⌜

As before, Xσ2 is the subshift whose forbidden patterns are all the patterns which do not
appear in the configuration σω

2 (⌜⌜⌜) (any other seed symbol would do).

▶ Definition 18 (binary bi-Toeplitz structure). X2
T is the color-forgetting projection of Xσ2

on the alphabet {⌜, ⌝, ⌞, ⌟, | , —}.
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⌜ | ||| | ||| | ||| | ||| | ||| | ||| | ||| | ||| | ||| | ||| | ||| | ||| |
— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜
——— | ⌜⌜⌜ |——— | ⌝⌝⌝ |——— | ⌜⌜⌜ |——— | ⌝⌝⌝ |——— | ⌜⌜⌜ |——— | ⌝⌝⌝ |——— |
— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞
——— | ||| | ⌜⌜⌜ | ||| |——— | ||| | ⌝⌝⌝ | ||| |——— | ||| | ⌜⌜⌜ | ||| |——— |
— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜
——— | ⌞⌞⌞ |——— | ⌟⌟⌟ |——— | ⌞⌞⌞ |——— | ⌟⌟⌟ |——— | ⌞⌞⌞ |——— | ⌟⌟⌟ |——— |
— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞
——— | ||| | ||| | ||| | ⌜⌜⌜ | ||| | ||| | ||| |——— | ||| | ||| | ||| | ⌝⌝⌝ |
— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜
——— | ⌜⌜⌜ |——— | ⌝⌝⌝ |——— | ⌜⌜⌜ |——— | ⌝⌝⌝ |——— | ⌜⌜⌜ |——— | ⌝⌝⌝ |——— |
— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞
——— | ||| | ⌞⌞⌞ | ||| |——— | ||| | ⌟⌟⌟ | ||| |——— | ||| | ⌞⌞⌞ | ||| |——— |
— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜— ⌝— ⌜
——— | ⌞⌞⌞ |——— | ⌟⌟⌟ |——— | ⌞⌞⌞ |——— | ⌟⌟⌟ |——— | ⌞⌞⌞ |——— | ⌟⌟⌟ |——— |
— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞— ⌟— ⌞

Figure 2 A configuration of Xσ2 .

As the substitution σ2 is deterministic, X2
T is a sofic subshift by [16, Theorem 4.1].

In a configuration of X2
T , ignoring symbols | and —:

1. corner symbols {⌜, ⌝, ⌞, ⌟} can be grouped together to form squares. A square is of level ℓ

if its edges have length 2ℓ. There may exist a single corner in an otherwise blank line or
column: we say it is part of a square of infinite level;

2. each line only contains symbols in either {⌜, ⌝} or {⌞, ⌟}, all of the same level. If a line
does not contain any corner, its level is said to be infinite;

3. the vertical distance between two consecutive lines of the same level ℓ is 2ℓ, and those
lines contain the same symbols.

The corresponding statements hold for columns.

T 2
M: Z2 Toeplitzification of sequences of states of M

▶ Definition 19 (Z2 Toeplitzification of a set of sequences). Given a set of sequences A ⊆ ΣN,
we define the corresponding Z2 Toeplitzified subshift T 2

A on the alphabet ΣT = Σ× {___, ^̂̂} ×
{⌜, ⌞, ⌝, ⌟, | , —} as:

T 2
A =

x ∈ (ΣT )Z
2

:
π1,2(x) ∈ (TA)↑, π3(x) ∈ X2

T

∀i, j ∈ Z,
π3(xi,j) ∈ {⌜, ⌞} =⇒ π2(xi,j) = ___
π3(xi,j) ∈ {⌝, ⌟} =⇒ π2(xi,j) = ^̂̂


In other words, T 2

A superimposes the structure of a Z Toeplitzification with the Z2

structure X2
T we define above. As before, we denote T 2

M := T 2
SM

where SM of the set of
sequences of states corresponding to runs of M.

▶ Lemma 20. T 2
M is a non-empty sofic subshift.

Proof. T 2
M is non-empty as arrows in TM can be aligned with corners in X2

T : arrows of level
ℓ as well as columns of level ℓ have period 2ℓ. For soficness:

Layers 1 and 2 are Z2 lifts of configurations of TM, which is an effective subshift
(Lemma 14). By Theorem 4, Layers 1 and 2 form a sofic subshift;
Layer 3 is composed of configurations of X2

T , which is a sofic subshift;
the additional condition defining T 2

M (synchronizing Layers 2 and 3) is of finite type. ◀
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Figure 3 A configuration of D.

4.3 Auxiliary Z2 and Z3 SFTs
The diagonal SFT D

The diagonal SFT D is defined by adjacent matching patterns on the alphabet ΣD:

A configuration of D containing two parallel black lines is in fact periodic and consists of
repeated squares. D also contains configurations with 0 or 1 black line.

Z3 SFTs X___
3 and X^̂̂

3

This section is written for X___
3 ; it applies to X^̂̂

3 by flipping the arrows and corners. As T 2
M

is a 3-layer sofic subshift, it is the projection of some 4-layer Z2 SFT X2. To create X___
3 , we

lift X2 then add an additional layer for D:
Layers 1 to 4: Z3 lift of X2. In other words, π1,2,3(X2) is a Z3 lift of T 2

M;
Layer 5 : each slice (i, ·, ·) contains a configuration di ∈ D. If the slice has (q0,___)
on its first two layers, then the configuration di is “synchronized” with the underlying
configuration of T 2

M on Layer 3, that is: vertical lines in di only appear on Layer 5 at
positions marked by corners ⌜, ⌞ on Layer 3. Otherwise, the slice on Layer 5 is left blank.

See Figure 4 for a visual help. Formally, if ΣX and ΣD are the alphabets of X2 and D:

X___
3 =

x ∈ (ΣX × ΣD)Z
3

:

∃y ∈ X2, ∀i, j, k ∈ Z, π1,2,3,4(xi,j,k) = yi,j

∀i ∈ Z, ∃di ∈ D, ∀j, k ∈ Z, π5(xi,j,k) = di
j,k

∀i, j, k ∈ Z,
π1,2(xi,j,k) ̸= (q0,___) =⇒ π5(xi,j,k) = □

π5(xi,j,k) ∈ { , } ⇐⇒ π3(xi,j,k) ∈ {⌜, ⌞}


As there exists at most a single square of infinite level in X2

T , there exists at most a single
slice (i, ·, ·) of infinite level in X___

3 .
On every slice marked by ___, the configuration of D breaks all periods smaller than its

squares, and the size of the squares is controlled by the level of the slice in TM. Therefore:

▷ Claim 21. A configuration of X___
3 :

1. breaks every periodicity vector (n, ·, ·) and (·, n, ·) for n ≥ 1.
2. for every slice (i, ·, ·) containing (q0,___) on the first two layers and corresponding to a

column of level ℓ in X2
T , Layer 5 breaks every vector (·, ·, n) for 1 ≤ n < 2ℓ.
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⌜ ⌜
⌞

⌜
⌞

⌝

⌜

⌝

⌜

⌝

⌟

⌞

⌟

⌜
⌝

⌜

⌝

⌞

⌟

⌟

⌞

⌟

ℓ = 1 (·,___)
ℓ = 2 (q0,___)

ℓ = 1 (·, ^̂̂)
ℓ = 3 (·,___)

ℓ = 1 (·,___)

k

i

j

Figure 4 A configuration of X___
3 . The horizontal plane contains a configuration x ∈ X2

T , and the
slice of level 2 marked by (q0,___) contains a configuration of D “synchronised” with the squares of x.

Proof.
1. X2 is aperiodic because X2

T is also aperiodic, so all vectors (n, ·, ·) and (·, n, ·) are broken
for n ≥ 1.

2. For a slice (i, ·, ·) of level ℓ, the distance along (0, 1, 0) between two consecutive lines in
Layer 3 (ie. in X2

T ) is exactly 2ℓ (see. Section 4.2, point 3 in the list of properties of
configurations in X2

T ). So, Layer 5 breaks every smaller period in this direction. ◁

4.4 Z4 SFT X4 and proof of the reduction
Creation of X4

Similarly to Y3 (Section 3.2), we build X4 by “fusing together” X___
3 and X^̂̂

3 . Formally:

X4 = {x ∈ (ΣX × ΣD × ΣD)Z
4

: ∃x___ ∈ X___
3 , ∃x^̂̂ ∈ X^̂̂

3 ,

∀i, j, k, l ∈ Z, π1,2,3,4,5(xi,j,k,l) = x___
i,j,l and π1,2,3,4,6(xi,j,k,l) = x^̂̂

i,j,k}

▷ Claim 22. X4 is an SFT.

Proof. Both X___
3 and X^̂̂

3 are SFTs, since X2 is an SFT. ◁

Reduction RS ≤ AD

▶ Lemma 23. There exists an aperiodic configuration in X4 if and only if there exists a run
of M in which q0 occurs infinitely often.

Proof. This is the same proof as for Lemma 16, except that vectors along the first two
dimensions are broken by the Toeplitz structure on layer 3. Otherwise, Layers 5 and 6 break
every vector (0, 0, ·, ·) if and only if the run visits q0 infinitely often. ◀

This concludes the proof of Theorem 17.
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5 Complexity and aperiodic configurations

The complexity function of a Zd subshift X is NX(n) = #{w ∈ ΣJ0,n−1Kd : ∃x ∈ X, w ⊑ x}.
In this section, we see that subshifts of high complexity are expected to have aperiodic
configurations.

▶ Definition 24 (Dimensional entropy). Define hk(X), the entropy of dimension k, as:

hk(X) = lim sup
n→+∞

log NX(n)
nk

∈ [0, +∞]

[8, Theorem 10] proves that a Z2 subshift X with no aperiodic configurations is almost
topologically conjugated to (i.e. “nearly behaves as”) a Z subshift of the same type. In
particular, h1(X) = +∞ is only possible when X contains an aperiodic configuration.

[11, Corollary 13] entails that hd(X) > 0 for a Zd SFT implies the existence of aperiodic
configurations in any dimension. We improve this result as follows:

▶ Proposition 25. Let X be a Zd SFT or sofic subshift. If hd−1(X) = +∞, then there exists
an aperiodic configuration in X.

Proof. Let X ′ ⊆ Σ′Zd

be a SFT cover of X: π(X ′) = X for π a letter-to-letter projection.
W.l.o.g., assume X ′ is defined by adjacency constraints. Consider all patterns on J0, n− 1Kd

admissible in X ′ : they have exactly NX(n) different projections by π, but the number N b
X′(n)

of different patterns on the boundary of J0, n− 1Kd is at most Σ′2dnd−1
. As log NX(n)/nd−1

is unbounded, there exists some n such that:

2d(log Σ′) <
log NX(n)

nd−1 ⇐⇒ Σ′2dnd−1
< NX(n) =⇒ N b

X′(n) < NX(n)

By the pigeonhole principle, there exists a pattern b on the boundary admissible in X ′

that can be extended on the cube in two different admissible patterns b+, b− such that
π(b+) ̸= π(b−). Consider a configuration x′ ∈ X ′ in which b+ appears. If π(x′) is not already
aperiodic, swapping b+ for b− in x′ at a some arbitrary position leads to a configuration
π(x′′) ∈ X which is aperiodic. ◀

Proposition 25 is tight: the Zd-lift of a Zd−1 SFT (d ≥ 3) is periodic by definition, and
can have arbitrarily high entropy of dimension (d− 1). We conjecture that Proposition 25
holds for all subshifts even in dimension d > 2.

Proposition 25 shows that AD is a problem that is only relevant for low complexity
subshifts, which is where its full computational complexity “lies”. Indeed, the problem of
deciding whether hd−1(X) = +∞ is Π0

3 (it is equivalent to ∀k ∃n NX(n) > k, and NX(n) is
a Π0

1 integer), which is much easier than the Σ1
1-completeness of AD on Z3 sofic subshifts.

6 Open problems

The main remaining question is, of course, the case of Z3 SFTs. The method we developed
above to prove Σ1

1-completeness in the case of Z3 sofic subshifts cannot be applied. Indeed,
embedding computations in an SFT requires at least two aperiodic dimensions; and we need
two other dimensions (because of the positions of level ∞) which can be periodic or aperiodic.

We conjecture that aperiodic configurations in Z3 SFTs behave similarly as in Z2 subshifts:
each Z3 SFT containing aperiodic configurations seems to have “centers” of aperiodicity, i.e.
concentric zones in which periods are broken. The distance from the center might depend on
the length of the vector, |Σ| and the size of the largest forbidden pattern.
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However, there seem to be important differences. First, for Z3-SFT, not all aperiodic
configurations have a center of aperiodicity in their orbit closure: this center may be in an
unrelated aperiodic configuration. Second, results of [8] are valid for all Z2 subshifts, but our
conjecture must be specific to Z3 SFTs, and a proof requires SFT-specific techniques.

Considering subshifts on more general groups (other than Zd), there is an active research
theme looking for conditions on groups which make the Domino problem undecidable. In
this context, we would like to obtain conditions that make AD Π0

1- or Σ1
1-complete.
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Abstract
Buhrman, Cleve and Wigderson (STOC’98) showed that for every Boolean function f : {−1, 1}n →
{−1, 1} and G ∈ {AND2,XOR2}, the bounded-error quantum communication complexity of the
composed function f ◦ G equals O(Q(f) log n), where Q(f) denotes the bounded-error quantum
query complexity of f . This is achieved by Alice running the optimal quantum query algorithm for f ,
using a round of O(log n) qubits of communication to implement each query. This is in contrast
with the classical setting, where it is easy to show that Rcc(f ◦G) ≤ 2R(f), where Rcc and R denote
bounded-error communication and query complexity, respectively. Chakraborty et al. (CCC’20)
exhibited a total function for which the log n overhead in the BCW simulation is required. This
established the somewhat surprising fact that quantum reductions are in some cases inherently more
expensive than classical reductions. We improve upon their result in several ways.

We show that the log n overhead is not required when f is symmetric (i.e., depends only on
the Hamming weight of its input), generalizing a result of Aaronson and Ambainis for the Set-
Disjointness function (Theory of Computing’05). Our upper bound assumes a shared entangled
state, though for most symmetric functions the assumed number of entangled qubits is less than
the communication and hence could be part of the communication.
In order to prove the above, we design an efficient distributed version of noisy amplitude
amplification that allows us to prove the result when f is the OR function. This also provides a
different, and arguably simpler, proof of Aaronson and Ambainis’s O(

√
n) communication upper

bound for Set-Disjointness.
In view of our first result above, one may ask whether the log n overhead in the BCW simulation
can be avoided even when f is transitive, which is a weaker notion of symmetry. We give a
strong negative answer by showing that the log n overhead is still necessary for some transitive
functions even when we allow the quantum communication protocol an error probability that can
be arbitrarily close to 1/2 (this corresponds to the unbounded-error model of communication).
We also give, among other things, a general recipe to construct functions for which the log n
overhead is required in the BCW simulation in the bounded-error communication model, even if
the parties are allowed to share an arbitrary prior entangled state for free.

1 Part of this work was done while the author was a postdoc at Georgetown University.
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1 Introduction

1.1 Motivation and main results
The classical model of communication complexity was introduced by Yao [24], who also
subsequently introduced its quantum analogue [25]. Communication complexity has important
applications in several disciplines, in particular for lower bounds on circuits, data structures,
streaming algorithms, and many other complexity measures (see, for example, [16] and the
references therein).

A natural way to derive a communication problem from a Boolean function f : {−1, 1}n →
{−1, 1} is via composition. Let f : {−1, 1}n → {−1, 1} be a function and let G : {−1, 1}j ×
{−1, 1}k → {−1, 1} be a “two-party function”. Then F = f ◦G : {−1, 1}nj × {−1, 1}nk →
{−1, 1} denotes the function corresponding to the communication problem in which Alice
is given input X = (X1, . . . , Xn) ∈ {−1, 1}nj , Bob is given Y = (Y1, . . . , Yn) ∈ {−1, 1}nk,
and their task is to compute F (X,Y ) = f(G(X1, Y1), . . . , G(Xn, Yn)). Many well-known
functions in communication complexity are derived in this way, such as Set-Disjointness
(DISJn := NORn ◦ AND2), Inner Product (IPn := PARITYn ◦ AND2) and Equality (EQn :=
NORn ◦ XOR2). A natural approach to obtain efficient quantum communication protocols for
f ◦G is to “simulate” a quantum query algorithm for f , where a query to the ith input bit
of f is simulated by a communication protocol that computes G(Xi, Yi). Buhrman, Cleve
and Wigderson [7] observed that such a simulation is indeed possible if G is bitwise AND or
XOR.
▶ Theorem 1 ([7]). For every Boolean function f : {−1, 1}n → {−1, 1} and □ ∈
{AND2,XOR2}, we have

Qcc (f ◦ □) = O (Q(f) log n) .

Here Q(f) denotes the bounded-error quantum query complexity of f , and Qcc(f ◦
□) denotes the bounded-error quantum communication complexity for computing f ◦ □.
Throughout this paper, we refer to Theorem 1 as the BCW simulation. [7] used this, for
instance, to show that the bounded-error quantum communication complexity of the Set-
Disjointness function is O(

√
n log n), using Grover’s O(

√
n)-query search algorithm [11] for

the NORn function.

https://doi.org/10.4230/LIPIcs.STACS.2022.20
https://arxiv.org/abs/2012.05233
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It is folklore in the classical world that the analogous simulation does not incur a log n
factor overhead. That is,

Rcc (f ◦ □) ≤ 2R(f), (1)

where R(f) denotes the bounded-error randomized query complexity of f and Rcc(f ◦ □)
denotes the bounded-error randomized communication complexity for computing f ◦□. Thus,
a natural question is whether the multiplicative log n blow-up in the communication cost
in the BCW simulation is necessary. Chakraborty et al. [9] answered this question and
exhibited a total function for which the log n blow-up is indeed necessary when XOR2 is the
inner function.

▶ Theorem 2 ([9, Theorem 2]). There exists a function f : {−1, 1}n → {−1, 1} such that

Qcc,∗(f ◦ XOR2) = Ω(Q(f) log n).

Here Qcc,∗(F ) denotes the bounded-error quantum communication complexity of two-
party function F when Alice and Bob shared an entangled state at the start of the protocol
for free. Comparing Theorem 2 with Equation 1 we see the somewhat surprising fact that
quantum reductions can in some cases be more expensive than classical reductions.

This gives rise to the following basic question: is there a natural class of functions for
which the log n overhead in the BCW simulation is not required? Improving upon Høyer
and de Wolf [13], Aaronson and Ambainis [1] showed that for the canonical problem of
Set-Disjointness, the log n overhead in the BCW simulation can be avoided. Since the outer
function NORn is symmetric (i.e., it only depends on the Hamming weight of its input, its
number of −1s), a natural question is whether the log n overhead can be avoided whenever
the outer function is symmetric. Our first result gives a positive answer to this question.

▶ Theorem 3. For every symmetric Boolean function f : {−1, 1}n → {−1, 1} and two-party
function G : {−1, 1}j × {−1, 1}k → {0, 1}, we have

Qcc,∗(f ◦G) = O(Q(f)Qcc
E (G)).

Here Qcc
E (G) denotes the exact quantum communication complexity of G, where the

error probability is 0. In particular, if G ∈ {AND2,XOR2} then Qcc
E (G) = 1 and hence

Qcc,∗(f ◦G) = O(Q(f)).
▶ Remark 4. If Q(f) = Θ(

√
tn), then our protocol in the proof of Theorem 3 starts from

a shared entangled state of O(t log n) EPR-pairs. Note that if t ≤ nQcc
E (G)2/(log n)2 (this

condition holds for instance if QccE (G) ≥ log n) then this number of EPR-pairs is no more than
the amount of communication and hence might as well be established in the first message,
giving asymptotically the same upper bound Qcc(f ◦ G) = O(Q(f)Qcc

E (G)) for the model
without prior entanglement.

The next question one might ask is whether one can weaken the notion of symmetry
required in Theorem 3. A natural generalization of the class of symmetric functions is
the class of transitive-symmetric functions. A function f : {−1, 1}n → {−1, 1} is said to
be transitive-symmetric if for all i, j ∈ [n], there exists σ ∈ Sn such that σ(i) = j, and
f(x) = f(σ(x)) for all x ∈ {−1, 1}n. Here, and in the rest of the paper, by σ(x) we mean the
n-bit string xσ(1), . . . , xσ(n). Henceforth we refer to transitive-symmetric functions as simply
transitive functions. Can the log n overhead in the BCW simulation be avoided whenever the
outer function is transitive? We give a negative answer to this question in a strong sense: the
log n overhead is still necessary even when we allow the quantum communication protocol
an error probability that can be arbitrarily close to 1/2.

STACS 2022
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▶ Theorem 5. There exists a transitive and total function f : {−1, 1}n → {−1, 1}, such that

UPPcc(f ◦ □) = Ω(Q(f) log n)

for every □ ∈ {AND2,XOR2}.

Here UPPcc(f ◦ □) denotes the unbounded-error quantum communication complexity of
f ◦ □ (adding “quantum” here only changes the communication complexity by a constant
factor). The unbounded-error model of communication was introduced by Paturi and
Simon [21] and is the strongest communication complexity model against which we know
how to prove explicit lower bounds. This model is known to be strictly stronger than the
bounded-error quantum model. For instance, the Set-Disjointness function on n inputs
requires Ω(n) bits or Ω(

√
n) qubits of communication in the bounded-error model, but

only requires O(log n) bits of communication in the unbounded-error model. In fact, it
follows from a recent result of Hatami, Hosseini and Lovett [12] that there exists a function
F : {−1, 1}n × {−1, 1}n → {−1, 1} with Qcc,∗(F ) = Ω(n) while UPPcc(F ) = O(1).

Theorem 3 and Theorem 5 clearly demonstrate the role of symmetry in determining the
presence of the log n overhead in the BCW query-to-communication simulation: this overhead
is absent for symmetric functions (Theorem 3), but present for a transitive function even
when the model of communication under consideration is as strong as the unbounded-error
model (Theorem 5). We also give a general recipe to construct functions for which the log n
overhead is required in the BCW simulation in the bounded-error communication model (see
Theorem 6).

1.2 Overview of our approach and techniques
In this section we discuss the ideas that go into the proofs of Theorem 3 and Theorem 5.

1.2.1 Communication complexity upper bound for symmetric functions
To prove Theorem 3 we use the well-known fact that every symmetric function f has an
interval around Hamming weight n/2 where the function is constant; for NORn the length
of this interval would be essentially n, while for PARITYn it would be 1. To compute f ,
it suffices to either determine that the Hamming weight of the input lies in that interval
(because the function value is the same throughout that interval) or to count the Hamming
weight exactly.

For two-party functions of the form f ◦G, we want to do this type of counting on the
n-bit string z = (G(X1, Y1), . . . , G(Xn, Yn)) ∈ {−1, 1}n. We show how this can be done with
O(Q(f) Qcc

E (G)) qubits of communication if we had a quantum protocol that can find −1s
in the string z at a cost of O(

√
nQcc

E (G)) qubits. Such a protocol was already given by
Aaronson and Ambainis for the special case where G = AND2 for their optimal quantum
protocol for Set-Disjointness, as a corollary of their quantum walk algorithm for search on a
grid [1]. In this paper we give an alternative O(

√
nQccE (G))-qubit protocol. This implies the

result of Aaronson and Ambainis as a special case, but it is arguably simpler and may be of
independent interest.

Our protocol can be viewed as an efficient distributed implementation of amplitude
amplification with faulty components. In particular, we replace the usual reflection about
the uniform superposition by an imperfect reflection about the n-dimensional maximally
entangled state (= log n EPR-pairs if n is a power of 2). Such a reflection would require
O(log n) qubits of communication to implement perfectly, but can be implemented with small
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f =

PARITY

hIPlog n
hIPlog n

n

2n

·· ·

x11 · · · x1n y11 · · · y1n ynn· · ·yn1xnn· · ·xn1

Figure 1 If for all j ∈ [n] and some sj , tj ∈ {−1, 1}log n, the inputs to the j-th hIPlog n are
Hadamard codewords in ±H(sj) and ±H(tj), then f = PARITY(IPlog n(s1, t1), . . . , IPlog n(sn, tn)).
If there exists at least one j ∈ [n] for which either xj1, . . . , xjn or yj1, . . . , yjn is not a Hadamard
codeword, then f outputs −1. This function f equals PARITYn ◦̃ hIPlog n (see Definition 26 and
Definition 28).

error using only O(1) qubits of communication, by invoking the efficient protocol of Aharonov
et al. [2, Theorem 1] that tests whether a given bipartite state equals the n-dimensional
maximally entangled state. Still, at the start of this protocol we need to assume (or establish
by means of quantum communication) a shared state of log n EPR-pairs. If Q(f) = Θ(

√
tn)

then our protocol for f ◦G will run the −1-finding protocol O(t) times, which accounts for
our assumption that we share O(t log n) EPR-pairs at the start of the protocol.

1.2.2 Communication complexity lower bound for transitive functions

For proving Theorem 5, we exhibit a transitive function f : {−1, 1}2n2
→ {−1, 1} whose

bounded-error quantum query complexity is O(n) and the unbounded-error communication
complexity of f ◦ □ is Ω(n log n) for □ ∈ {AND2,XOR2}.

Function construction and transitivity. For the construction of f we first require the
definition of Hadamard codewords. The Hadamard codeword of s ∈ {−1, 1}logn, denoted
by H(s) ∈ {−1, 1}n, is a list of all parities of s. That is, (H(s))t =

∏
i:si=−1 ti for all t ∈

{−1, 1}logn. See Figure 1 for a graphical visualization of f .
Using properties of IP and Hadamard codewords, and the symmetry of PARITYn, we are

able to show that f is transitive (see Claim 32).

Query upper bound. The query upper bound of O(n) follows along the lines of [9], using the
Bernstein-Vazirani algorithm to decode the Hadamard codewords, and Grover’s algorithm to
check that they actually are Hadamard codewords. This approach was in turn inspired by a
query upper bound due to Ambainis and de Wolf [3]. See the proof of Theorem 29 for the
query algorithm and its analysis.

Communication lower bound. Towards the unbounded-error communication lower bound,
we first recall that each input block of f equals IPlogn if the inputs to each block are
promised to be Hadamard codewords. Hence f equals IPn logn under this promise, since
PARITYn ◦ IPlogn = IPn logn. Thus by setting certain inputs to Alice and Bob suitably, f ◦□

STACS 2022
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f =

r

hG hG

n

2n

·· ·

x11 · · · x1n y11 · · · y1n ynn· · ·yn1xnn· · ·xn1

Figure 2 In this figure, G : {−1, 1}log × {−1, 1}log n → {−1, 1}. If for all j ∈ [n] and some
sj , tj ∈ {−1, 1}log n, the inputs to the j-th hG are Hadamard codewords in ±H(sj) and ±H(tj),
then f = r(G(s1, t1), . . . , G(sn, tn)). If there exists at least one j ∈ [n] for which either xj1, . . . , xjn

or yj1, . . . , yjn is not a Hadamard codeword, then f outputs −1. This function f equals r ◦̃ hG (see
Definition 26 and Definition 28).

is at least as hard as IPn logn for □ ∈ {AND2,XOR2} (for a formal statement, see Lemma 31
with r = PARITYn and g = IPlogn). It is known from a seminal result of Forster [10] that
the unbounded-error communication complexity of IPn logn equals Ω(n log n), completing
the proof of the lower bound. This proof is more general than and arguably simpler than
the proof of the lower bound for bounded-error quantum communication complexity in [9,
Theorem 2].

1.3 Other results
We give a general recipe for constructing a class of functions that witness tightness of the BCW
simulation where the inner gadget is either AND2 or XOR2. However, the communication
lower bound we obtain here is in the bounded-error model in contrast to Theorem 5, where
the communication lower bound is proven in the unbounded-error model.

The functions f constructed for this purpose are composed functions similar to the
construction in Figure 1, except that we are able to use a more general class of functions
in place of the outer PARITY function, and also a more general class of functions in place
of the inner IPlogn functions. See Figure 2 and its caption for an illustration and a more
precise definition.

We require some additional constraints on the outer and inner functions. First, the
approximate degree of r should be Ω(n). Second, the discrepancy of G should be small with
respect to some “balanced” probability distribution (see Definition 17 and Definition 16 for
formal definitions of these notions).

▶ Theorem 6. Let r : {−1, 1}n → {−1, 1} be such that d̃eg(r) = Ω(n) and let G :
{−1, 1}logn × {−1, 1}logn → {−1, 1} be a total function. Define f : {−1, 1}2n2

→ {−1, 1} as
in Figure 2. If there exists µ : {−1, 1}logn × {−1, 1}logn → R that is a balanced probability
distribution with respect to G and discµ(G) = n−Ω(1), then for every □ ∈ {AND2,XOR2},

Q(f) = O(n), and Qcc,∗(f ◦ □) = Ω(n log n).

The query upper bound follows along similar lines as that of Theorem 5. For the
lower bound, we first show via a reduction that for f as described in Figure 2 and □ ∈
{AND2,XOR2}, the communication problem f ◦□ is at least as hard as r ◦G (see Lemma 31).
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This part of the lower bound proof is the same as in the proof of Theorem 5. For the
hardness of r ◦ G (which in the case of Theorem 5 turned out to be IPn logn, for which
Forster’s theorem yields an unbounded-error communication lower bound), we are able to
use a theorem implicit in a work of Lee and Zhang [17]. This theorem gives a lower bound
on the bounded-error communication complexity of r ◦G in terms of the approximate degree
of r and the discrepancy of G under a balanced distribution. Due to space constraints we
defer the proof of Theorem 6 to the full version of our paper [8].

We recover the result of Chakraborty et al. (Theorem 2) using a more general technique,
and additionally show that Qcc,∗(f ◦ AND2) = Ω(Q(f) log n), where f is as in Theorem 2.
We refer the reader to the full version [8] for details.

1.4 Organization
Section 2 gives notations and preliminaries. In Section 3 we prove Theorem 3, which shows
that the log n overhead in the BCW simulation can be avoided when the outer function is
symmetric. This proof relies on our new one-sided error protocol for finding solutions in the
string z = (G(X1, Y1), . . . , G(Xn, Yn)) ∈ {−1, 1}n, as a corollary of our distributed version
of amplitude amplification. We give this protocol in Appendix A.

We prove Theorem 5 in Section 4. This is our result regarding necessity of the log n
overhead in the BCW simulation in the unbounded-error model of communication.

2 Notation and preliminaries

Without loss of generality, we assume n to be a power of 2 in this paper, unless explicitly
stated otherwise. All logarithms in this paper are base 2. Let Sn denote the symmetric group
over the set [n] = {1, . . . , n}. For a string x ∈ {−1, 1}n and σ ∈ Sn, let σ(x) denote the
string xσ(1), . . . , xσ(n) ∈ {−1, 1}n. Consider an arbitrary but fixed bijection between subsets
of [log n] and elements of [n]. For a string s ∈ {−1, 1}logn, we abuse notation and also use s
to denote the equivalent element of [n]. The view we take will be clear from context. For
a string x ∈ {−1, 1}n and set S ⊆ [n], define the string xS ∈ {−1, 1}S to be the restriction
of x to the coordinates in S. Let 1n and (−1)n denote the n-bit string (1, 1, . . . , 1) and
(−1,−1, . . . ,−1), respectively.

2.1 Boolean functions
For two bits b1, b2 ∈ {−1, 1}, let b1 ∧ b2 be defined to be −1 if b1 = b2 = −1, and 1 otherwise.
For strings x, y ∈ {−1, 1}n, let ⟨x, y⟩ denote the inner product (mod 2) of x and y. That is,
⟨x, y⟩ =

∏n
i=1(xi ∧ yi). For every positive integer n, let PARITYn : {−1, 1}n → {−1, 1} be

defined as:

PARITYn(x1, . . . , xn) =
∏
i∈[n]

xi.

▶ Definition 7 (Symmetric functions). A function f : {−1, 1}n → {−1, 1} is symmetric if for
all σ ∈ Sn and for all x ∈ {−1, 1}n we have f(x) = f(σ(x)).

▶ Definition 8 (Transitive functions). A function f : {−1, 1}n → {−1, 1} is transitive if for
all i, j ∈ [n] there exists a permutation σ ∈ Sn such that

σ(i) = j, and
f(x) = f(σ(x)) for all x ∈ {−1, 1}n.
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▶ Definition 9 (Approximate degree). For every ε ≥ 0, the ε-approximate degree of a
function f : {−1, 1}n → {−1, 1} is defined to be the minimum degree of a real polynomial
p : {−1, 1}n → R that uniformly approximates f to error ε. That is,

d̃egε(f) = min {deg(p) : |p(x) − f(x)| ≤ ε for all x ∈ {−1, 1}n} .

Unless specified otherwise, we drop ε from the subscript and assume ε = 1/3.

We assume familiarity with quantum computing [19], and use Qε(f) to denote the ε-error
query complexity of f . Unless specified otherwise, we drop ε from the subscript and assume
ε = 1/3.

▶ Theorem 10 ([4]). Let f : {−1, 1}n → {−1, 1} be a function. Then Q(f) ≥ d̃eg(f)/2.

2.2 Communication complexity
We assume familiarity with communication complexity [16].

▶ Definition 11 (Two-party function). We call a function G : {−1, 1}j × {−1, 1}k → {−1, 1}
a two-party function to indicate that it corresponds to a communication problem in which
Alice is given input x ∈ {−1, 1}j, Bob is given input y ∈ {−1, 1}k, and their task is to
compute G(x, y).

▶ Remark 12. Throughout this paper, we use uppercase letters to denote two-party functions,
and lowercase letters to denote functions which are not two-party functions.

▶ Definition 13 (Composition with two-party functions). Let f : {−1, 1}n → {−1, 1} be
a function and let G : {−1, 1}j × {−1, 1}k → {−1, 1} be a two-party function. Then
F = f ◦G : {−1, 1}nj × {−1, 1}nk → {−1, 1} denotes the two-party function corresponding
to the communication problem in which Alice is given input X = (X1, . . . , Xn) ∈ {−1, 1}nj,
Bob is given Y = (Y1, . . . , Yn) ∈ {−1, 1}nk, and their task is compute F (X,Y ) =
f(G(X1, Y1), . . . , G(Xn, Yn)).

▶ Definition 14 (Inner Product function). For every positive integer n, define the function IPn :
{−1, 1}n×{−1, 1}n → {−1, 1} by IPn(x, y) = ⟨x, y⟩. In other words, IPn = PARITYn◦AND2.

▶ Observation 15. For all positive integers k, t, PARITYk ◦ IPt = IPkt.

We also assume familiarity with quantum communication complexity [23]. We use Qccε (G)
and Qcc,∗

ε (G) to represent the ε-error quantum communication complexity of a two-party
function G in the models without and with unlimited shared entanglement, respectively.
Unless specified otherwise, we drop ε from the subscript and assume ε = 1/3.

▶ Definition 16 (Balanced probability distribution). We call a probability distribution µ :
{−1, 1}n → R balanced w.r.t. a function f : {−1, 1}n → {−1, 1} if

∑
x∈{−1,1}n f(x)µ(x) = 0.

▶ Definition 17 (Discrepancy). Let G : {−1, 1}j × {−1, 1}k → {−1, 1} be a function and λ
be a distribution on {−1, 1}j × {−1, 1}k. For every S ⊆ {−1, 1}j and T ⊆ {−1, 1}k, define

discλ(S × T,G) =

∣∣∣∣∣∣
∑

x,y∈S×T
G(x, y)λ(x, y)

∣∣∣∣∣∣ .
The discrepancy of G under the distribution λ is defined to be

discλ(G) = max
S⊆{−1,1}j ,T⊆{−1,1}k

discλ(S × T,G),

and the discrepancy of f is defined to be disc(G) = minλ discλ(G).
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2.3 Additional concepts from quantum computing
The Bernstein-Vazirani algorithm [5] is a quantum query algorithm that takes an n-bit string
as input and outputs a (log n)-bit string. The algorithm has the following properties:

the algorithm makes one quantum query to the input and
if the input x ∈ {−1, 1}n satisfies x ∈ ±H(s) for some s ∈ {−1, 1}logn, then the algorithm
returns s with probability 1.

Consider a symmetric Boolean function f : {−1, 1}n → {−1, 1}. Define the quantity

Γ(f) = min{|2k − n+ 1| : f(x) ̸= f(y) if |x| = k and |y| = k + 1}

from [20]. One can think of Γ(f) as essentially the length of the interval of Hamming weights
around n/2 where f is constant (for example, for the majority and parity functions this
would be 1, and for ORn this would be n− 1).

▶ Theorem 18 ([4, Theorem 4.10]). For every symmetric function f : {−1, 1}n → {−1, 1},
we have Q(f) = Θ(

√
(n− Γ(f))n).

The upper bound follows from a quantum algorithm that exactly counts the Hamming weight
|x| of the input if |x| ≤ t or |x| ≥ n− t for t = ⌈(n− Γ(f))/2⌉, and that otherwise learns |x|
is in the interval [t+ 1, n− t− 1] (which is an interval around n/2 where f(x) is constant).
By the definition of Γ(f), this information about |x| suffices to compute f(x). In Section 3
we use this observation to give an efficient quantum communication protocol for a two-party
function f ◦G.

We will need a unitary protocol that allows Alice and Bob to implement an approximate
reflection about the n-dimensional maximally entangled state

|ψ⟩ = 1√
n

∑
i∈{0,1}log n

|i⟩|i⟩.

Ideally, such a reflection would map |ψ⟩ to itself, and put a minus sign in front of all states
orthogonal to |ψ⟩. Doing this perfectly would requires O(log n) qubits of communication.
Fortunately we can derive a cheaper protocol from a test that Aharonov et al. [2, Theorem 1]
designed, which uses O(log(1/ε)) qubits of communication and checks whether a given
bipartite state equals |ψ⟩, with one-sided error probability ε. By the usual trick of running
this protocol, applying a Z-gate to the answer qubit, and then reversing the protocol, we
can implement the desired reflection approximately.2 A bit more precisely:

▶ Theorem 19. Let Rψ = 2|ψ⟩⟨ψ| − I be the reflection about the maximally entangled
state shared between Alice and Bob. There exists a protocol that uses O(log(1/ε)) qubits of
communication and that implements a unitary Rεψ such that

∥∥∥Rεψ −Rψ

∥∥∥ ≤ ε and Rεψ|ψ⟩ = |ψ⟩.

We use UPPcc(F ) to denote unbounded-error quantum communication complexity of
two-party function F . It is folklore (see for example [15]) that the unbounded-error quantum
communication complexity3 of F equals its classical counterpart up to a factor of at most 2

2 Possibly with some auxiliary qubits on Alice and Bob’s side which start in |0⟩ and end in |0⟩, except in
a part of the final state that has norm at most ε.

3 The unbounded-error model does not allow shared randomness or prior shared entanglement (which
yields shared randomness by measuring) between Alice and Bob, since any two-party function F would
have constant communication complexity in that setting.
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so it does not really matter much whether we use UPPcc for classical unbounded-error com-
munication complexity (as it is commonly used) or for quantum unbounded-error complexity.
Crucially, for both the complexity of IPn is linear in n:

▶ Theorem 20 ([10]). Let n be a positive integer. Then UPPcc(IPn) = Ω(n).

3 No log-factor needed for symmetric functions

We present a version of quantum amplitude amplification that still works if the reflections
involved are not perfectly implemented. In particular, the usual reflection about the uniform
superposition will be replaced in the communication setting by an imperfect reflection about
the n-dimensional maximally entangled state, based on the communication-efficient protocol
of Aharonov et al. [2, Theorem 1] for testing whether Alice and Bob share that state. This
allows us to avoid the log n factor that would be incurred if we instead used a BCW-style
distributed implementation of standard amplitude amplification, with O(log n) qubits of
communication to implement each query. Our main technical contribution for proving
Theorem 3 is the following general theorem, which allows us to search among a sequence
of two-party instances (X1, Y1), . . . , (Xn, Yn) for an index i ∈ [n] where G(Xi, Yi) = −1, for
any two-party function G.

▶ Theorem 21. Let G : {−1, 1}j × {−1, 1}k → {−1, 1} be a two-party function,
X = (X1, . . . , Xn) ∈ {−1, 1}nj and Y = (Y1, . . . , Yn) ∈ {−1, 1}nk. Define z =
(G(X1, Y1), . . . , G(Xn, Yn)) ∈ {−1, 1}n. Assume Alice and Bob start with ⌈log n⌉ shared
EPR-pairs.

There exists a quantum protocol using O(
√
nQcc

E (G)) qubits of communication that finds
(with success probability ≥ 0.99) an i ∈ [n] such that zi = −1 if such an i exists, and says
“no” with probability 1 if no such i exists.
If the number of −1s in z is within a factor of 2 from a known integer t, then the
communication can be reduced to O(

√
n/tQcc

E (G)) qubits.

We prove Theorem 21 in Appendix A. Consider a symmetric Boolean function f :
{−1, 1}n → {−1, 1}. As we explained in Section 2.3, there is an integer t = ⌈(n− Γ(f))/2⌉
such that we can compute f if we learn the Hamming weight |z| of the input z ∈ {−1, 1}n

or learn that |z| ∈ [t + 1, n − t − 1]. The bounded-error quantum query complexity is
Q(f) = Θ(

√
tn) (Theorem 18). We now prove Theorem 3 assuming Theorem 21.

For a given two-party function G : {−1, 1}j×{−1, 1}k → {−1, 1}, we have an induced two-
party function F : {−1, 1}nj × {−1, 1}nk → {−1, 1} defined as F (X1, . . . , Xn, Y1, . . . , Yn) =
f(G(X1, Y1), . . . , G(Xn, Yn)). Define

z = (G(X1, Y1), . . . , G(Xn, Yn)) ∈ {−1, 1}n .

Then F (X,Y ) = f(z) only depends on the number of −1s in z. The following theorem allows
us to count this number using O(Q(f) Qcc

E (G)) qubits of communication.

▶ Theorem 22. For every t between 1 and n/2, there exists a quantum protocol that starts
from O(t log n) EPR-pairs, communicates O(

√
tnQcc

E (G)) qubits, and tells us |z| or tells us
that |z| > t, with error probability ≤ 1/8.

Proof. Abbreviate q = Qcc
E (G). Our protocol has two parts: the first filters out the case

|z| ≥ 2t, while the second finds all solutions if |z| < 2t.
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Part 1. First Alice and Bob decide between the case (1) |z| ≥ 2t and (2) |z| ≤ t (even
though |z| might also lie in {t + 1, . . . , 2t − 1}) using O(

√
nq) qubits of communication,

as follows. They use shared randomness to choose a uniformly random subset S ⊆ [n] of
⌈n/(2t)⌉ elements. Let E be the event that zi = −1 for at least one i ∈ S. By standard
calculations there exist p1, p2 ∈ [0, 1] with p1 = p2 + Ω(1) such that Pr[E] ≥ p1 in case (1)
and Pr[E] ≤ p2 in case (2). Alice and Bob use the distributed-search protocol from the
first bullet of Theorem 21 to decide E, with O(

√
|S| q) = O(

√
n q) qubits of communication

(plus a negligible O(log n) EPR-pairs) and error probability much smaller than p1 − p2. By
repeating this a sufficiently large constant number of times and seeing whether the fraction
of successes was larger or smaller than (p1 + p2)/2, they can distinguish between cases (1)
and (2) with success probability ≥ 15/16. If they conclude they’re in case (1) then they
output “|z| > t” and otherwise they proceed to the second part of the protocol.

Note that if |z| ∈ {t+ 1, . . . , 2t− 1} (the “grey zone” in between cases (1) and (2)), then
we can’t give high-probability guarantees for one output or the other, but concluding (1)
leads to the correct output “|z| > t” in this case, while concluding (2) means the protocol
proceeds to Part 2. So either course of action is fine if |z| ∈ {t+ 1, . . . , 2t− 1}.

By Newman’s theorem [18] the shared randomness used for choosing S can be replaced
by O(log n) bits of private randomness on Alice’s part, which she can send to Bob in her
first message, so Part 1 communicates O(

√
n q) qubits in total.

Part 2. We condition on Part 1 successfully filtering out case (1), so from now on assume
|z| < 2t. Our goal in this second part of the protocol is to find all indices i such that
zi = −1 (we call such i “solutions”), with probability ≥ 15/16, using O(

√
tn q) qubits

of communication. This will imply that the overall protocol is correct with probability
1 − 1/16 − 1/16 = 7/8, and uses O(

√
tn q) qubits of communication in total. For an integer

k ≥ 1, consider the following protocol Pk.

Algorithm 1 Protocol Pk.

Input: An integer k ≥ 1
repeat

1. Run the protocol from the last bullet of Theorem 21 with t = 2k−1.
(suppressing some constant factors, assume for simplicity that this uses√
n/2k q qubits of communication, log n shared EPR-pairs at the start, and has

probability ≥ 1/100 to find a solution if the actual number of solutions is in
[t/2, 2t]).

2. Alice measures and gets outcome i ∈ [n] and Bob measures and gets outcome
j ∈ [n], respectively.

3. Alice sends i to Bob, Bob sends j to Alice.
4. If i = j then they verify that G(Xi, Yi) = −1 by one run of the protocol for G,

and if so then they replace Xi, Yi by some pre-agreed inputs X ′
i, Y

′
i ,

respectively, such that G(X ′
i, Y

′
i ) = 1 (this reduces the number of −1s in z by 1)

until 200
√

2kn q qubits have been sent;

▷ Claim 23. Suppose |z| ∈ [2k−1, 2k). Then protocol Pk uses O(
√

2kn q) qubits of com-
munication, assumes O(2k log n) EPR-pairs at the start of the protocol, and finds at least
|z| − 2k−1 + 1 solutions, except with probability ≤ 1/2.
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Proof. The upper bound on the communication is obvious from the stopping criterion of Pk.
As long as the remaining number of solutions is ≥ 2k−1, each run of the protocol has

probability ≥ 1/100 to find another solution. Hence the expected number of runs of the
protocol of Theorem 21 to find at least |z| − 2k−1 + 1 solutions, is ≤ 100(|z| − 2k−1 + 1).
By Markov’s inequality, the probability that we haven’t yet found |z| − 2k−1 + 1 solutions
after ≤ 200(|z| − 2k−1 + 1) ≤ 100 · 2k runs, is ≤ 1/2. The communication cost of so many
runs is 100 · 2k(

√
n/2k q + log n) ≤ 200

√
2kn q qubits. Hence by the time that the number

of qubits of the stopping criterion have been communicated, we have probability ≥ 1/2 of
having found at least |z| − 2k−1 + 1 solutions. The assumed number of EPR-pairs at the
start is log n per run, so O(2k log n) in total. ◁

Note that if we start with a number of solutions |z| ∈ [2k−1, 2k), and Pk succeeds in
finding at least |z| − 2k−1 + 1 new solutions, then afterwards we have < 2k−1 solutions left.
The following protocol runs these Pk in sequence, pushing down the remaining number of
solutions to 0.

Algorithm 2 Protocol P .

for k = ⌈log2(2t)⌉ downto 1 do
1. Run Pk a total of rk = ⌈log2(2t)⌉ − k + 5 times (replacing all −1s found by

+1s in z).
2. Output the total number of solutions found.

end

▷ Claim 24. If |z| < 2t then protocol P uses O(
√
tn q) qubits of communication, assumes

O(t log n) EPR-pairs at the start of the protocol, and outputs |z|, except with probability
≤ 1/16.

Proof. First, by Claim 23, the total number of qubits communicated is
⌈log2(2t)⌉∑
k=1

rk ·O(
√

2kn q) = O(
√
tn q) ·

⌈log2(2t)⌉−1∑
ℓ=0

(ℓ+ 5)/
√

2ℓ = O(
√
tn q),

where we used a variable substitution k = ⌈log2(2t)⌉ − ℓ. Second, the number of EPR-pairs
we’re starting from is

⌈log2(2t)⌉∑
k=1

rk ·O(2k log n) = O(t log n) ·
⌈log2(2t)⌉−1∑

ℓ=0
(ℓ+ 5)/2ℓ = O(t log n).

Third, by Claim 23 and the fact that we are performing rk repetitions of Pk, if the kth round
of P starts with a remaining number of solutions that is in the interval [2k−1, 2k) then that
round ends with < 2k−1 remaining solutions, except with probability at most 1/2rk . By the
union bound, the probability that any one of the ⌈log2(2t)⌉ rounds does not succeed at this,
is at most

⌈log2(2t)⌉∑
k=1

1
2rk

=
⌈log2(2t)⌉−1∑

ℓ=0

1
2ℓ+5 ≤ 1

16 .

Since 2⌈log2(2t)⌉ ≥ 2t and we start with |z| < 2t, if each round succeeds, then by the end of
P there are no remaining solutions left. Thus, the protocol P finds all solutions and learns
|z| with probability at least 15/16. ◁
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Part 1 and Part 2 each have error probability ≤ 1/16, so by the union bound the protocol
succeeds except with probability 1/8. If |z| ≥ 2t then Part 1 outputs the correct answer
“|z| > t”; if |z| ≤ t then all solutions (and hence |z|) are found by Part 2; and if |z| ∈
{t + 1, . . . , 2t − 1} then either Part 1 already outputs the correct answer “|z| > t” or the
protocol proceeds to Part 2 which then finds all solutions. ◀

We can use the above theorem twice: once to count the number of −1s in z (up to t) and
once to count the number of 1s in z (up to t). This uses O(

√
tnQcc

E (G)) = O(Q(f) Qcc
E (G))

qubits of communication, assumes O(t log n) shared EPR-pairs at the start of the protocol,
and gives us enough information about |z| to compute f(z) = F (X,Y ). This concludes the
proof of Theorem 3 from the introduction, restated below.

▶ Theorem 25 (Restatement of Theorem 3). For every symmetric Boolean function f :
{−1, 1}n → {−1, 1} and two-party function G : {−1, 1}j × {−1, 1}k → {0, 1}, we have
Qcc,∗(f ◦G) = O(Q(f)Qcc

E (G)).

If Q(f) = Θ(
√
tn), then our protocol in the proof of Theorem 3 assumes a shared state

of O(t log n) EPR-pairs at the start. We remark that for the special case where G = AND2,
our upper bound matches the lower bound proved by Razborov [22], except for symmetric
functions f where the first switch of function value happens at Hamming weights very close
to n. In particular, if f = ANDn and G = AND2, then Qcc(f ◦G) = 1 but Q(f) = Θ(

√
n).

4 Necessity of the log-factor overhead in the BCW simulation

In this section we prove Theorem 5. We exhibit a function f : {−1, 1}2n2
→ {−1, 1} for

which Q(f) = O(n) and UPP(f ◦ □) = Ω(n log n) for □ ∈ {AND2,XOR2}.
The proofs of Theorem 5 and Theorem 6 each involve proving a query complexity upper

bound and a communication complexity lower bound. The proofs of the query complexity
upper bounds are along similar lines and follow from Theorem 29 and Corollary 30 (see
Section 4.1). The proofs of the communication complexity lower bounds each involve a
reduction from a problem whose communication complexity is easier to analyze (see Lemma 31
in Section 4.2). We complete the proof of Theorem 5 in Section 4.2.1. See the full version of
our paper [8] for a proof of Theorem 6.

4.1 Quantum query complexity upper bound
For total functions f, g, let f ◦ g denote the standard composition of the functions f and
g. We also require the following notion of composition of a total function f with a partial
function g.

▶ Definition 26 (Composition with partial functions). Let f : {−1, 1}n → {−1, 1} be a total
function and let g : {−1, 1}m → {−1, 1, ⋆} be a partial function. Let f ◦̃ g : {−1, 1}nm →
{−1, 1} denote the total function that is defined as follows on input (X1, . . . , Xn) ∈ {−1, 1}nm,
where Xi ∈ {−1, 1}m for all i ∈ [n].

f ◦̃ g(X1, . . . , Xn) =
{
f(g(X1), . . . , g(Xn)) if g(Xi) ∈ {−1, 1} for all i ∈ [n],
−1 otherwise.

That is, we use f ◦̃ g to denote the total function that equals f ◦ g on inputs when each copy
of g outputs a value in {−1, 1}, and equals −1 otherwise.
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Recall that we index coordinates of n-bit strings by integers in [n], and also interchangeably
by strings in {−1, 1}logn via the natural correspondence. For x ∈ {−1, 1}n, let −x ∈ {−1, 1}n

be defined as (−x)i = −xi for all i ∈ [n]. We use the notation ±x to denote the set {x,−x}.

▶ Definition 27 (Hadamard Codewords). For every positive integer n and s ∈ {−1, 1}logn,
let H(s) ∈ {−1, 1}n be defined as (H(s))t =

∏
i:si=−1 ti for all t ∈ {−1, 1}logn. If x ∈

{−1, 1}n is such that x = H(s) for some s ∈ {−1, 1}logn, we say x is a Hadamard codeword
corresponding to s.

That is, for every s ∈ {−1, 1}logn, there is an n-bit Hadamard codeword corresponding to s.
This represents the enumeration of all parities of s.

We now define how to encode a two-party total function G on (log j + log k) input bits
to a partial function hG on (j + k) input bits, using Hadamard encoding.

▶ Definition 28 (Hadamardization of functions). Let j, k ≥ 1 be powers of 2, and
let G : {−1, 1}log j × {−1, 1}log k → {−1, 1} be a function. Define a partial function
hG : {−1, 1}j+k → {−1, 1, ⋆} by

hG(x, y) =
{
G(s, t) if x ∈ ±H(s), y ∈ ±H(t) for some s ∈ {−1, 1}log j

, t∈{−1, 1}log k

⋆ otherwise.

We next prove the following theorem. (See Figure 2 for a visual description of hG.)

▶ Theorem 29. Let G : {−1, 1}log j × {−1, 1}log k → {−1, 1} and r : {−1, 1}n → {−1, 1}.
Then the quantum query complexity of the function r ◦̃ hG : {−1, 1}n(j+k) → {−1, 1} is given
by Q(r ◦̃ hG) = O(n+

√
n(j + k)).

Proof. Recall from Definition 26 that the function r ◦̃ hG : {−1, 1}n(j+k) → {−1, 1} is defined
as r ◦̃ hG((X1, Y1), . . . , (Xn, Yn)) = r ◦ hG((X1, Y1), . . . , (Xn, Yn)) if hG((Xi, Yi)) ∈ {−1, 1}
for all i ∈ [n], and −1 otherwise.

Quantum query algorithm

View inputs to r ◦̃ hG as (X1, Y1, . . . , Xn, Yn), where Xi ∈ {−1, 1}j for all i ∈ [n] and
Yi ∈ {−1, 1}k for all i ∈ [n]. We give a quantum algorithm and its analysis below.
1. Run 2n instances of the Bernstein-Vazirani algorithm: 1 instance on each Xi and 1 instance

on each Yi, to obtain 2n strings x1, . . . , xn, y1, . . . , yn, where each xi is a (log j)-bit string
and each yi is a (log k)-bit string.

2. For each Xi and Yi, query (Xi)1log j and (Yi)1log k to obtain bits bi, ci ∈ {−1, 1} for all
i ∈ [n].

3. Run Grover’s search [11, 6] to check equality of the following two (nj + nk)-bit strings:
(b1H(x1), . . . , bnH(xn), c1H(y1), . . . , cnH(yn)) and (X1, . . . , Xn, Y1, . . . , Yn).

4. If the step above outputs that the strings are equal, then output
r(G(x1, y1), . . . , G(xn, yn)). Else, output −1.

Analysis of the algorithm

If the input is indeed of the form (X1, Y1), . . . , (Xn, Yn) where each Xi ∈ ±H(xi) and
Yi ∈ ±H(yi) for some xi ∈ {−1, 1}log j and yi ∈ {−1, 1}log k, then Step 1 outputs the
correct strings x1, . . . , xn, y1, . . . , yn with probability 1 by the properties of the Bernstein-
Vazirani algorithm. Step 2 then implies that Xi = biH(xi) and Yi = ciH(yi) for all i ∈ [n].
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Next, Step 3 outputs that the strings are equal with probability 1 (since the strings whose
equality are to be checked are equal). Hence the algorithm is correct with probability 1
in this case, since (r ◦̃ hG)(X1, Y1, . . . , Xn, Yn) = r(G(x1, y1), . . . , G(xn, yn)).
If the input is such that there exists an index i ∈ [n] for which Xi /∈ ±H(xi) for every
xi ∈ {−1, 1}log j or Yi /∈ ±H(yi) for every yi ∈ {−1, 1}log k, then the two strings for
which equality is to be checked in the Step 3 are not equal. Grover’s search catches a
discrepancy with probability at least 2/3. Hence, the algorithm outputs −1 (as does
r ◦̃ hG), and is correct with probability at least 2/3 in this case.

Cost of the algorithm

Step 1 accounts for 2n quantum queries. Step 2 accounts for 2n quantum queries. Step 3
accounts for O(

√
n(j + k)) quantum queries. Thus, Q(r ◦̃ hG) = O(n+

√
n(j + k)). ◀

As a corollary to Theorem 29, we obtain the following on instantiating j = k = n and r

as a Boolean function with quantum query complexity Θ(n).

▶ Corollary 30. Let G : {−1, 1}logn × {−1, 1}logn → {−1, 1} be a non-constant function and
let r : {−1, 1}n → {−1, 1} be a total function with Q(r) = Θ(n). Then the quantum query
complexity of the total function r ◦̃ hG : {−1, 1}2n2

→ {−1, 1} is Q(r ◦̃ hG) = Θ(n).

Proof. The upper bound Q(r ◦̃ hG) = O(n) follows by plugging in parameters in Theorem 29.
For the lower bound, we show that Q(r ◦̃ hG) ≥ Q(r). Since G is non-constant, there

exist x1, y1, x2, y2 ∈ {−1, 1}logn such that G(x1, y1) = −1 and G(x2, y2) = 1. Let X1 =
H(x1), Y1 = H(y1), X2 = H(x2) and X2 = H(y2). Consider r ◦̃ hG only restricted to
inputs where the inputs to each copy of hG are either (X1, Y1) or (X2, Y2). Under this
restriction, r ◦̃ hG : {−1, 1}2n2

→ {−1, 1} is the same as r : {−1, 1}n → {−1, 1}. Thus
Q(r ◦̃ hG) ≥ Q(r) = Ω(n). ◀

4.2 On the tightness of the BCW simulation
In this section we first state a communication lower bound (under some model) on (r ◦̃ hG)◦□
in terms of the communication complexity of r ◦G (in the same model of communication).
We state the lemma below (Lemma 31) for the case where the models under consideration
are the bounded-error and unbounded-error quantum models, since these are the models of
interest to us.

▶ Lemma 31. Let r : {−1, 1}n → {−1, 1}, G : {−1, 1}log j × {−1, 1}log k → {−1, 1},
□ ∈ {AND2,XOR2} and CC ∈ {Qcc,∗,UPPcc}. Then CC((r ◦̃ hG) ◦ □) ≥ CC(r ◦G).

The proof of this lemma follows by a simple reduction. We refer the reader to the full
version [8] for a formal proof.

4.2.1 Proof of Theorem 5
The total function f : {−1, 1}2n2

→ {−1, 1} that we use to prove Theorem 5 is f = r ◦̃ hG,
where r = PARITYn and G = IPlogn. The following claim shows that f is transitive.

▷ Claim 32. Let n > 0 be a power of 2. Let r = PARITYn : {−1, 1}n → {−1, 1} and
G = IPlogn : {−1, 1}logn × {−1, 1}logn → {−1, 1}. The function f = r ◦̃ hG : {−1, 1}2n2

→
{−1, 1} is transitive.

STACS 2022
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Proof. We first show that hG : {−1, 1}2n → {−1, 1} is transitive. We next observe that s ◦̃ t
is transitive whenever s is symmetric and t is transitive. The theorem then follows since
PARITYn is symmetric.

Towards showing transitivity of hG, let π ∈ S2n, and (σℓ, σℓ) ∈ S2n for ℓ ∈ {−1, 1}logn

be defined as follows. (Here σℓ ∈ Sn; the first copy acts on the first n coordinates, and the
second copy acts on the next n coordinates.)

π(k) =
{
k + n k ≤ n

k − n k > n.

That is, on every string (x, y) ∈ {−1, 1}2n, the permutation π maps (x, y) to (y, x).
For every ℓ ∈ {−1, 1}logn, the permutation σℓ ∈ Sn is defined as

σℓ(i) = i⊕ ℓ, (2)

where i ⊕ ℓ denotes the bitwise XOR of the strings i and ℓ. That is, for every input
(x, y) ∈ {−1, 1}2n and every k ∈ {−1, 1}logn, the input bit xk is mapped to xk⊕ℓ and yk is
mapped to yk⊕ℓ.

For every (x, y) ∈ {−1, 1}2n and i, j ∈ {−1, 1}logn, the permutation σi⊕j(x, y) swaps xi
and xj , and also swaps yi and yj . If for i, j ∈ {−1, 1}logn, our task was to swap the i’th index
of the first n variables with the j’th index of the second n variables, then the permutation
σi⊕j ◦ π does the job. That is, for every (x, y) ∈ {−1, 1}2n and i, j ∈ {−1, 1}logn, the
permutation σi⊕j ◦π maps xi to yj . Thus the set of permutations {π, {σℓ : ℓ ∈ {−1, 1}logn}}
acts transitively on S2n.

Now we show that for all x, y ∈ {−1, 1}2n and all ℓ ∈ {−1, 1}logn, we have
hG(σℓ(x), σℓ(y)) = hG(x, y). Fix ℓ ∈ {−1, 1}logn.

If x ∈ ±H(s) and y ∈ ±H(t) are Hadamard codewords, then xk = ⟨k, s⟩ and yk = ⟨k, t⟩
for all k ∈ {−1, 1}logn, and G(x, y) = ⟨s, t⟩. Thus, for every k ∈ {−1, 1}logn we have
σℓ(xk) = xk⊕ℓ = ⟨k ⊕ ℓ, s⟩ = ⟨ℓ, s⟩ · ⟨k, s⟩. Hence σℓ(x) ∈ ±H(s) (since ⟨ℓ, s⟩ does
not depend on k, and takes value either 1 or −1). Similarly, σℓ(y) ∈ ±H(t). Thus
hG(σℓ(x, y)) = hG(x, y).
If x (y, respectively) is not a Hadamard codeword, then a similar argument shows that
for all ℓ ∈ [n], σℓ(x) (σℓ(y), respectively) is also not a Hadamard codeword.

Using the fact that ⟨s, t⟩ = ⟨t, s⟩ for every s, t ∈ {−1, 1}logn, one may verify that
hG(π(x, y)) = hG(x, y) for all x, y ∈ {−1, 1}2n.

Along with the observation that PARITYn is a symmetric function, we have that f =
r ◦̃ hG : {−1, 1}2n2

→ {−1, 1} is transitive under the following permutations:
Sn acting on the inputs of PARITYn, and
The group generated by {π} ∪ {(σℓ, σℓ) : ℓ ∈ [n]} acting independently on the inputs of
each copy of hG, where σℓ is as in Equation (2). ◁

Proof of Theorem 5. Let n > 0 be a power of 2. Let r = PARITYn : {−1, 1}n → {−1, 1} and
G = IPlogn : {−1, 1}logn × {−1, 1}logn → {−1, 1}. Let f = r ◦̃ hG : {−1, 1}2n2

→ {−1, 1}.
By Claim 32, f is transitive. By Corollary 30 we have Q(f) = Θ(n). For the communication
lower bound we have

UPPcc(f ◦ □) = UPPcc((r ◦̃ hG) ◦ □)
≥ UPPcc(PARITYn ◦ IPlogn) by Lemma 31
= UPPcc(IPn logn) Observation 15
= Ω(n log n). by Theorem 20

◀
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A Noisy amplitude amplification and a new distributed-search protocol

In this section we prove Theorem 21, restated below.

▶ Theorem 33 (Restatement of Theorem 21). Let G : {−1, 1}j × {−1, 1}k → {−1, 1} be
a two-party function, X = (X1, . . . , Xn) ∈ {−1, 1}nj and Y = (Y1, . . . , Yn) ∈ {−1, 1}nk.
Define z = (G(X1, Y1), . . . , G(Xn, Yn)) ∈ {−1, 1}n. Assume Alice and Bob start with ⌈log n⌉
shared EPR-pairs.

There exists a quantum protocol using O(
√
nQcc

E (G)) qubits of communication that finds
(with success probability ≥ 0.99) an i ∈ [n] such that zi = −1 if such an i exists, and says
“no” with probability 1 if no such i exists.
If the number of −1s in z is within a factor of 2 from a known integer t, then the
communication can be reduced to O(

√
n/tQcc

E (G)) qubits.

▶ Remark 34. The log n shared EPR-pairs that we assume Alice and Bob share at the start
could also be established by means of log n qubits of communication at the start of the
protocol. For the result in the first bullet, this additional communication does not change
the asymptotic bound. For the result of the second bullet, if t ≤ nQcc

E (G)2/(log n)2, then
this additional communication does not change the asymptotic bound either. However, if
t = ω(n/(log n)2) and QccE (G) = O(1) then the quantum communication O(

√
n/tQccE (G)) is

o(log n) and establishing the log n EPR-pairs by means of a first message makes a difference.
As a corollary, we obtain a new O(

√
n)-qubit protocol for the distributed search problem

composed with G = AND2 (whose decision version is the Set-Disjointness problem).

A.1 Amplitude amplification with perfect reflections
We first describe basic amplitude amplification in a slightly unusual recursive manner, similar
to [14]. We are dealing with a search problem where some set G of basis states are deemed
“good” and the other basis states are deemed “bad.” Let PG =

∑
g∈G |g⟩⟨g| be the projector

https://doi.org/10.1007/978-3-642-14165-2_41
https://doi.org/10.1145/129712.129758
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onto the span of the good basis states, and OG = I − 2PG be the reflection that puts a “−”
in front of the good basis states: OG |g⟩ = −|g⟩ for all basis states g ∈ G, and OG |b⟩ = |b⟩ for
all basis states b ̸∈ G.

Suppose we have an initial state |ψ⟩ which is a superposition of a good state and a bad
state:

|ψ⟩ = sin(θ)|G⟩ + cos(θ)|B⟩,

where |G⟩ = PG |ψ⟩/ ∥PG |ψ⟩∥ and |B⟩ = (I−PG)|ψ⟩/ ∥(I − PG)|ψ⟩∥. For example in Grover’s
algorithm, with a search space of size n containing t solutions, the initial state |ψ⟩ would be
the uniform superposition, and its overlap (inner product) with the good subspace spanned
by the t “good” (sometimes called “marked”) basis states would be sin(θ) =

√
t/n.

We’d like to increase the weight of the good state, i.e., move the angle θ closer to π/2.
Let Rψ denote the reflection about the state |ψ⟩, i.e., Rψ|ψ⟩ = |ψ⟩ and Rψ|ϕ⟩ = −|ϕ⟩ for
every |ϕ⟩ that is orthogonal to |ψ⟩. Then the algorithm A1 = Rψ ·OG is the product of two
reflections, which (in the 2-dimensional space spanned by |G⟩ and |B⟩) corresponds to a
rotation by an angle 2θ, thus increasing our angle from θ to 3θ. This is the basic amplitude
amplification step. It maps

|ψ⟩ 7→ A1|ψ⟩ = sin(3θ)|G⟩ + cos(3θ)|B⟩.

We can now repeat this step recursively, defining

A2 = A1RψA
∗
1 ·OG ·A1.

Note that A1RψA
∗
1 is a reflection about the state A1|ψ⟩. Thus A2 triples the angle between

A1|ψ⟩ and |B⟩, mapping

|ψ⟩ 7→ A2|ψ⟩ = sin(9θ)|G⟩ + cos(9θ)|B⟩.

Continuing recursively in this fashion, define the algorithm

Aj+1 = AjRψA
∗
j ·OG ·Aj . (3)

The last algorithm Ak will map

|ψ⟩ 7→ Ak|ψ⟩ = sin(3kθ)|G⟩ + cos(3kθ)|B⟩.

Hence after k recursive amplitude amplification steps, we have angle 3kθ. Since we want to
end up with angle ≈ π/2, if we know θ then we can choose

k = ⌊log3(π/(2θ))⌋ . (4)

This gives us an angle 3kθ ∈ (π/6, π/2], so the final state Ak|ψ⟩ has overlap sin(θk) > 1/2
with the good state |G⟩.

Let Ck denote the “cost” (in whatever measure, for example query complexity, or
communication complexity, or circuit size) of algorithm Ak. Looking at its recursive definition
(Equation (3)), Ck is 3 times Ck−1, plus the cost of Rψ plus the cost of OG . If we just
count applications of OG (“queries”), considering Rψ to be free, then Ck+1 = 3Ck + 1. This
recursion has the closed form Ck =

∑k−1
i=0 3i < 3k. With the above choice of k we get

Ck = O(1/θ). In the case of Grover’s algorithm, where θ = arcsin(
√
t/n) ≈

√
t/n, the cost

is Ck = O(
√
n/t).

STACS 2022
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A.2 Amplitude amplification with imperfect reflections
Now we consider the situation where we do not implement the reflections Rψ perfectly, but
instead implement another unitary Rεψ at operator-norm distance

∥∥∥Rεψ −Rψ

∥∥∥ ≤ ε from
Rψ, with the additional property that Rεψ|ψ⟩ = |ψ⟩ (this one-sided error property will be
important for the proof). We can control this error ε, but smaller ε will typically correspond
to higher cost of Rεψ. The reflection OG will still be implemented perfectly below.

We again start with the initial state

|ψ⟩ = sin(θ)|G⟩ + cos(θ)|B⟩.

For errors ε1, . . . , εk that we will specify later, recursively define the following algorithms.

A1 = Rε1
ψ ·OG and Aj+1 = AjR

εj+1
ψ A∗

j ·OG ·Aj .

These algorithms will map the initial state as follows:

|ψ⟩ 7→ |ψj⟩ = Aj |ψ⟩ = sin(3jθ)|G⟩ + cos(3jθ)|B⟩ + |Ej⟩, (5)

where |Ej⟩ is some unnormalized error state defined by the above equation; its norm ηj
quantifies the extent to which we deviate from perfect amplitude amplification. Our goal here
is to upper bound this ηj . In order to see how ηj can grow, let us see how AjR

εj+1
ψ A∗

j ·OG
acts on sin(3jθ)|G⟩ + cos(3jθ)|B⟩ (we’ll take into account the effects of the error term |Ej⟩
later). If Rεj+1

ψ were equal to Rψ, then we would have one perfect round of amplitude
amplification and obtain sin(3j+1θ)|G⟩ + cos(3j+1θ)|B⟩; but since Rεj+1

ψ is only εj+1-close
to Rψ, additional errors can appear. First we apply OG , which flips the phase of |G⟩ and
hence changes the state to

− sin(3jθ)|G⟩ + cos(3jθ)|B⟩ = |ψj⟩ − |Ej⟩ − 2 sin(3jθ)|G⟩.

Second we apply V = AjR
εj+1
ψ A∗

j . Let V ′ = AjRψA
∗
j , and note that V |ψj⟩ = V ′|ψj⟩ = |ψj⟩

and ∥V ′ − V ∥ =
∥∥∥Rψ −R

εj+1
ψ

∥∥∥ ≤ εj+1. The new state is

V (|ψj⟩−|Ej⟩−2 sin(3jθ)|G⟩) = V ′(|ψj⟩ − |Ej⟩ − 2 sin(3jθ)|G⟩)+(V ′−V )(|Ej⟩ + 2 sin(3jθ)|G⟩)

= V ′(− sin(3jθ)|G⟩+cos(3jθ)|B⟩)+(V ′−V )(|Ej⟩ + 2 sin(3jθ)|G⟩)

= sin(3j+1θ)|G⟩ + cos(3j+1θ)|B⟩+(V ′−V )(|Ej⟩ + 2 sin(3jθ)|G⟩).

Putting back also the earlier error term |Ej⟩ from Equation (5) (to which the unitary V OG
is applied as well), it follows that the new error state is

|Ej+1⟩ = |ψj+1⟩ − (sin(3j+1θ)|G⟩ + cos(3j+1θ)|B⟩)
= V OG |Ej⟩ + (V ′ − V )(|Ej⟩ + 2 sin(3jθ)|G⟩).

Its norm is

ηj+1 ≤ ∥V OG |Ej⟩∥ +
∥∥(V ′ − V )(|Ej⟩ + 2 sin(3jθ)|G⟩)

∥∥
≤ ηj + εj+1(ηj + 2 sin(3jθ)) = (1 + εj+1)ηj + 2εj+1 sin(3jθ).

Since η0 = 0, we can “unfold” the above recursive upper bound to the following, which is
easy to verify by induction on k:

ηk ≤
k∑
j=1

k∏
ℓ=j+1

(1 + εℓ)2εj sin(3j−1θ). (6)
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For each 1 ≤ j ≤ k, choose

εj = 1
100 · 4j . (7)

Note that σ =
∑k
j=1 εk ≤ 1/300. With this choice of εj ’s, and the inequalities 1 + x ≤ ex,

eσ ≤ 1.5 and sin(x) ≤ x for x ≤ π/2 (which is the case here), we can upper bound the norm
of the error term |Ek⟩ after k iterations (see Equation (5)) as

ηk ≤
k∑
j=1

eσ2εj3j−1θ ≤ 3θ
400

k∑
j=1

(3/4)j−1 ≤ 3θ
100 . (8)

Accordingly, up to very small error we have done perfect amplitude amplification.

A.3 Distributed amplitude amplification with imperfect reflection
We will now instantiate the above scheme to the case of distributed search, where our
measure of cost is communication, that is, the number of qubits sent between Alice and Bob.
Specifically, consider the intersection problem where Alice and Bob have inputs x ∈ {−1, 1}n

and y ∈ {−1, 1}n, respectively. Assume for simplicity that n is a power of 2, so log n is an
integer. Alice and Bob want to find an i ∈ {0, . . . , n−1} = {0, 1}logn such that xi = yi = −1,
if such an i exists.

The basis states in this distributed problem are |i⟩|j⟩, and we define the set of “good”
basis states as

G = {|i⟩|j⟩ | xi = yj = −1},

even though we are only looking for i, j where i = j (it’s easier to implement OG with this
more liberal definition of G). Our protocol will start with the maximally entangled initial
state |ψ⟩ in n dimensions, which corresponds to log n EPR-pairs:

|ψ⟩ = 1√
n

∑
i∈{0,1}log n

|i⟩|i⟩ = sin(θ)|G⟩ + cos(θ)|B⟩,

where we assume there are t i’s where xi = yi = −1, i.e., t solutions to the intersection
problem, so

θ = arcsin(
√
t/n). (9)

and

|G⟩ = 1√
t

∑
(i,i)∈G

|i⟩|i⟩.

It costs ⌈log n⌉ qubits of communication between Alice and Bob to establish this initial
shared state, or it costs nothing if we assume pre-shared entanglement. Our goal is to end
up with a state that has large inner product with |G⟩.

In order to be able to use amplitude amplification, we would like to be able to reflect
about the above state |ψ⟩. However, in general this perfect reflection Rψ costs a lot of
communication: Alice would send her log n qubits to Bob, who would unitarily put a −1
in front of all states orthogonal to |ψ⟩, and then sends back Alice’s qubits. This has a
communication cost of O(log n) qubits, which is too much for our purposes. Fortunately,
Theorem 19 gives us a way to implement a one-sided ε-error reflection protocol Rεψ that only
costs O(log(1/ε)) qubits of communication.
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The reflection OG puts a “−” in front of the basis states |i⟩|j⟩ in G. This can be
implemented perfectly using only 2 qubits of communication, as follows. For the variables
xi ∈ {−1, 1}, let x̂i denote their {0, 1}-valued counterparts. That is, x̂i = 1 if xi = −1 and
x̂i = 0 if xi = 1. To implement the reflection OG on her basis state |i⟩, Alice XORs |x̂i⟩ into
a fresh auxiliary |0⟩-qubit and sends this qubit to Bob. Bob receives this qubit and applies
the following unitary map:

|b⟩|j⟩ 7→ ybj |b⟩|j⟩, b ∈ {0, 1}, j ∈ [n].

He sends back the auxiliary qubit. Alice sets the auxiliary qubit back to |0⟩ by XOR-ing
x̂i into it. Ignoring the auxiliary qubit (which starts and ends in state |0⟩), this maps
|i⟩|j⟩ 7→ (−1)[xi=yj=−1]|i⟩|j⟩. Hence we have implemented OG correctly: a minus sign is
applied exactly for the good basis states, the ones where xi = yj = −1.

Now consider the algorithms (more precisely, communication protocols):

A1 = Rε1
ψ ·OG and Aj+1 = AjR

εj+1
ψ A∗

j ·OG ·Aj

with the choice of εj ’s from Equation (7). If we pick k = ⌊log3(π/(2θ))⌋, like in Equation (4),
then 3kθ ∈ (π/6, π/2]. Hence by Equation (5) and Equation (8), the inner product of our
final state with |G⟩ will be between sin(3kθ) − 3θ/100 ≥ 0.4 and 1.

At this point Alice and Bob can measure, and with probability ≥ 0.42 they will each see
the same i, with the property that xi = yi = −1.

From Equation (3) and Theorem 19, the recursion for the communication costs of these
algorithms is

Cj+1 = 3Cj +O(log(1/εj+1)) + 2.

Solving this recurrence with our εj ’s from Equation (7) and the value of θ from Equation (9)
we obtain

Ck =
k∑
j=1

3k−j(O(log(1/εj)) + 2) =
k∑
j=1

3k−jO(j) = O(3k) = O(
√
n/t).

Thus, using O(
√
n/t) qubits of communication we can find (with constant success probability)

an intersection point i. This also allows us to solve the Set-Disjointness problem (the decision
problem whose output is 1 if there is no intersection between x and y). Note that if the t
we used equals the actual number of solutions only up to a factor of 2, the above protocol
still has Ω(1) probability to find a solution, and O(1) repetitions will boost this success
probability to 0.99. In case we do not even know t approximately, we can use the standard
technique of trying exponentially decreasing guesses for t to find an intersection point with
communication O(

√
n).

Note that there is no log-factor in the communication complexity, in contrast to the
original O(

√
n log n)-qubit Grover-based quantum protocol for the intersection problem of

Buhrman et al. [7]. Aaronson and Ambainis [1] earlier already managed to remove the
log-factor, giving an O(

√
n)-qubit protocol for Set-Disjointness as a consequence of their local

version of quantum search on a grid graph (which is optimal [22]). We have just reproved
this result of [1] in a different and arguably simpler way.

The above description is geared towards the intersection problem, where the “inner”
function is G = AND2: we called a basis state |i⟩|j⟩ “good” if xi = yj = −1. However,
this can easily be generalized to the situation where Alice and Bob’s respective inputs are
X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) and we want to find an i ∈ [n] where G(Xi, Yi) = −1
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for some two-party function G, and define the set of “good” basis states as G = {|i⟩|j⟩ |
G(Xi, Yj) = −1}.4 The only thing that changes in the above is the implementation of the
reflection OG , which would now be computed by means of an exact quantum communication
protocol for G(Xi, Yj), at a cost of 2QccE (G) qubits of communication.5 Note that because we
can check (at the expense of another Qcc

E (G) qubits of communication) whether the output
index i actually satisfies G(Xi, Yi) = −1, we may assume the protocol has one-sided error: it
always outputs “no” if there is no such i. This concludes the proof of Theorem 21.

4 We intentionally use the letter “G” to mean “good” in G and and to refer to the two-party function G,
since G determines which basis states |i⟩|j⟩ are “good.”

5 The factor of 2 is to reverse the protocol after the phase G(Xi, Yj) has been added to basis state |i⟩|j⟩,
in order to set any workspace qubits back to |0⟩.
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Abstract
We study fundamental point-line covering problems in computational geometry, in which the input
is a set S of points in the plane. The first is the Rich Lines problem, which asks for the set of all
lines that each covers at least λ points from S, for a given integer parameter λ ≥ 2; this problem
subsumes the 3-Points-on-Line problem and the Exact Fitting problem, which – the latter –
asks for a line containing the maximum number of points. The second is the NP-hard problem Line
Cover, which asks for a set of k lines that cover the points of S, for a given parameter k ∈ N. Both
problems have been extensively studied. In particular, the Rich Lines problem is a fundamental
problem whose solution serves as a building block for several algorithms in computational geometry.

For Rich Lines and Exact Fitting, we present a randomized Monte Carlo algorithm that
achieves a lower running time than that of Guibas et al.’s algorithm [Computational Geometry 1996],
for a wide range of the parameter λ. We derive lower-bound results showing that, for λ = Ω(

√
n log n),

the upper bound on the running time of this randomized algorithm matches the lower bound that
we derive on the time complexity of Rich Lines in the algebraic computation trees model.

For Line Cover, we present two kernelization algorithms: a randomized Monte Carlo algorithm
and a deterministic algorithm. Both algorithms improve the running time of existing kernelization
algorithms for Line Cover. We derive lower-bound results showing that the running time of the
randomized algorithm we present comes close to the lower bound we derive on the time complexity
of kernelization algorithms for Line Cover in the algebraic computation trees model.
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1 Introduction

We study fundamental problems in computational geometry pertaining to covering a set S of
n points in the plane with lines. The first problem, referred to as Rich Lines, is defined as:

Rich Lines: Given a set S of n points and an integer parameter λ ≥ 2, compute the
set of lines that each covers at least λ points.

A special case of Rich Lines that has received attention is the Exact Fitting prob-
lem [25], which asks for computing a line that covers the maximum number of points in S.
Exact Fitting subsumes the well-known 3-Points-on-Line problem in an obvious way.
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The Rich Lines problem is a fundamental problem whose solution serves as a building
block for several algorithms in computational geometry [17, 16, 21, 23, 24, 31], including
algorithms for the fundamental Line Cover problem, which is our other focal problem:

Line Cover: Given a set S of n points and a parameter k ∈ N, decide if there exist
at most k lines that cover all points in S.

See Figure 1 for an illustration of Rich Lines, Exact Fitting, and Line Cover.

Figure 1 Illustration of an instance of Line Cover with k = 4, an instance of Rich Lines with
λ = 5, and an instance of Exact Fitting. The set of all lines is the solution to the Line Cover
instance; the set of solid orange lines is the solution to the Rich Lines instance; and the bold orange
line is a solution to the Exact Fitting instance.

The Line Cover problem is NP-hard [33], and has been extensively studied in paramet-
erized complexity [1, 7, 16, 23, 29, 31, 41], especially with respect to kernelization. Guibas
et al.’s algorithm [25] for Rich Lines was used to give a simple kernelization algorithm that
computes a kernel of at most k2 points, and this upper bound on the kernel size was proved
to be essentially tight by Kratsch et al. [29].

The current paper derives both upper and lower bounds on the time complexity of Rich
Lines, and the time complexity of the kernelization of Line Cover. Most of the algorithmic
upper-bound results we present are randomized Monte Carlo algorithms, providing guarantees
on the running time of the algorithms, but may make one-sided errors with a small probability.
Our work is motivated by the applications of both problems to on-line data analytics [35],
where massive data processing within a guaranteed time upper bound is required (e.g.,
dynamic or streaming environments [3, 8, 35]). In such settings, where the data set has an
enormous size, classical algorithmic techniques become infeasible, and timely pre-processing
the very large input in order to reduce its size becomes essential. Therefore, we seek
algorithms whose running time is nearly linear and whose space complexity is low, trading
off the optimality/correctness of the algorithm with a small probability.

1.1 Related Work
Both Rich Lines and Exact Fitting were studied by Guibas et al. [25], motivated by their
applications in statistical analysis (e.g., linear regressions), computer vision, pattern recogni-
tion, and computer graphics [26, 27]. Guibas et al. [25] developed an O(min{ n2

λ log n
λ , n2})-

time deterministic algorithm for Rich Lines, and used it to solve Exact Fitting within
the same time upper bound. Guibas et al.’s algorithm [25] was subsequently used in many
algorithmic results [17, 16, 21, 23, 24, 31] pertaining to geometric covering problems and
their applications.
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The Line Cover problem has been extensively studied with respect to several computa-
tional frameworks, including approximation [7, 23] and parameterized complexity [1, 7, 16,
29, 31, 41]. The problem is known to be APX-hard [30] and is approximable within ratio
log n, being a special case of the set cover problem [28].

From the parameterized complexity perspective, several fixed-parameter tractable al-
gorithms for Line Cover were developed [1, 23, 31, 41], leading to the current-best al-
gorithm that runs in time (c · k/ log k)knO(1) [1], for some constant c > 0. Guibas et al.’s
algorithm [25] was used in several works to give a kernel of size k2 that is computable in time
O(min{ n2

k log( n
k ), n2}) [16, 29, 31]. This quadratic kernel size was shown to be essentially

tight by Kratsch et al. [29], who showed that: For any ϵ > 0, unless the polynomial-time
hierarchy collapses to the third level, Line Cover has no kernel of size O(k2−ϵ).

Kernelization algorithms for Line Cover have drawn attention in recent research in
massive-data processing; Mnich [35] discusses how the Line Cover problem is used in such
settings, where the point set represents a very large collection of observed (accurate) data,
and the solution sought is a model consisting of at most k linear predictors [20].

Chitnis et al. [8] studied Line Cover in the streaming model, and Alman et al. [3]
studied the problem in the dynamic model. We mention that Chitnis et al.’s streaming
algorithm [8] may be used to give a Monte Carlo kernelization algorithm for Line Cover
running in time O(n(log n)O(1)), and the dynamic algorithm of Alman et al. [3] may be used
to give a deterministic kernelization algorithm for Line Cover running in time O(nk2).

We finally note that there has been considerable work on randomized algorithms for
geometric problems (see [2, 9, 10, 12], to name a few). The most relevant of which to our
work is the randomized algorithm for approximating geometric set covering problems [5, 11]
(see also [2]), which implies an O(log k)-factor approximation algorithm for the optimization
version of Line Cover whose expected running time is O(nk(log n)(log k)).

1.2 Results and Techniques
In this paper, we develop new tools to derive upper and lower bounds on the time complexity
of Rich Lines and the kernelization time complexity of Line Cover. Our results and
techniques are summarized as follows.

1.2.1 Results for Rich Lines
We present a randomized one-sided errors Monte Carlo algorithm for Rich Lines that,
with probability at least 1 − 3

n2 , returns the correct solution set, where n is the number
of points. The algorithm achieves a lower running time upper bound than Guibas et al.’s
algorithm [25] for a wide range of the parameter λ, namely for λ = Ω(log n), and matches
its running time otherwise. For instance, when λ = Θ(

√
n log n), the running time of our

algorithm is O(n log n), whereas that of Guibas et al.’s algorithm is O(n3/2√
log n), yielding

a (
√

n/ log n)-factor improvement. We show that, for λ = Ω(
√

n log n), the upper bound
of O(n log( n

λ )) on the running time of our randomized algorithm matches the lower bound
that we derive on the time complexity of the problem in the algebraic computation trees
model. The algorithm for Rich Lines implies an algorithm for Exact Fitting with the
same performance guarantees – as shown by Guibas et al. [25], obtained by binary-searching
for the value of λ that corresponds to the line(s) containing the maximum number of points.

The crux of the technical contributions leading to the randomized algorithm we present
is a set of new tools we develop pertaining to point-line incidences and sampling. The
aforementioned tools allow us to show that, by sampling a smaller subset of the original set
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of points, with high probability, we can reduce the problem of computing the set of λ-rich
lines in the original set to that of computing the set of λ′-rich lines in the smaller subset,
where λ′ is a smaller parameter than λ.

The time lower-bound result we present is obtained via a 2-step reduction. The first
employs Ben-Or’s framework [4] to show a time lower bound of Ω(n log( n

λ )) in the algebraic
computation trees model on a problem that we define, referred to as the Multiset Subset
Distinctness problem. We then compose this reduction with a reduction from Multiset
Subset Distinctness to Rich Lines, thus establishing the Ω(n log( n

λ )) lower-bound result
for Rich Lines. We note that these reductions are very “sensitive”, and hence need to be
crafted carefully, as the lower-bound results apply for every value of n and λ.

1.2.2 Results for Line Cover
We derive a lower bound on the time complexity of kernelization algorithms for Line
Cover in the algebraic computation trees model and show that the running time of any
such algorithm must be at least cn log k for some constant c > 0; more specifically, one
cannot asymptotically improve either of the two factors n or log k in this term. This result
particularly rules out the possibility of a kernelization algorithm that runs in O(n) time
(i.e., in linear time). We derive this lower bound by combining a lower-bound result by
Grantson and Levcopoulos [23] on the time complexity of Line Cover with a result that
we prove in this paper connecting the time complexity of Line Cover to its kernelization
time complexity. In fact, it is not difficult to develop a kernelization algorithm for Line
Cover that runs in time O(n log k + g(k)) for some computable function g(k), and computes
a kernel of size k2. This can be done by processing the input in “batches” of size roughly k2

each; this is implied by the algorithm in [23], which runs in time Ω(n log k + k4 log k), and
approximates the optimization version of Line Cover. Therefore, we focus on developing
kernelization algorithms where the function g(k) in their running time is as small as possible.
Since we can assume that n ≥ k2 (otherwise, the instance is already kernelized), we may
assume that g(k) = Ω(k2 log k). Therefore, we endeavor to develop a kernelization algorithm
for which the function g(k) – in its running time – is as close as possible to O(k2 log k), and
hence, a kernelization algorithm whose running time is as close as possible to O(n log k). In
addition, reducing the function g(k) serves well our purpose of obtaining near-linear-time
kernelization algorithms for Line Cover due to their potential applications [20, 35].

We present two kernelization algorithms for Line Cover. The first is a randomized
one-sided errors Monte Carlo algorithm that runs in time O(n log k + k2(log2 k)(log log k)2)
and space O(k2 log2 k) and, with probability at least 1 − 2

k3 , computes a kernel of size at
most k2. The second is a deterministic algorithm that computes a kernel of size at most
k2 in time O(n log k + k3(log3 k)(

√
log log k)). Both algorithms improve the running time

of existing kernelization algorithms for Line Cover [3, 8, 16, 23, 29, 31]. Moreover, the
running time of the randomized algorithm comes very close to the derived lower bound on
the time complexity of kernelization algorithms for Line Cover, as it only differs from it by
a factor of log k(log log k)2 in the term that depends only on k.

The key tool leading to the improved kernelization algorithms is partitioning the “satur-
ation range” of the saturated lines (i.e., the lines that each contains at least k + 1 points
and must be in the solution) in the batch of points under consideration into intervals, thus
defining a spectrum of saturation levels. Then the algorithm for Rich Lines (either the
randomized or Guibas et al.’s algorithm [25]) is invoked starting with the highest saturation
threshold, and iteratively decreasing the threshold until either: the saturated lines computed
cover “enough” points of the batch under consideration, or the total number of saturated
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lines computed is “large enough” thus making “enough progress” towards computing the line
cover. This scheme enables us to amortize the running time of the algorithm that computes
the saturated lines, creating a win/win situation and improving the overall running time.

2 Preliminaries

We assume familiarity with basic geometry, probability, and parameterized complexity and
refer to the following standard textbooks on some of these subjects [13, 14, 18, 34, 36]. For
a positive integer i, we write [i] for {1, 2, . . . , i}. We write “w.h.p.” as an abbreviation for
“with high probability”, and we write “u.a.r.” as an abbreviation for “uniformly at random”.

Probability. The union bound states that, for any probabilistic events E1, E2, . . . , Ej , we
have: Pr

(⋃j
i=1 Ei

)
≤

∑j
i=1 Pr(Ei). For any discrete random variables X1, . . . , Xn with

finite expectations, it is well known that: E[
∑n

i=1 Xi] =
∑n

i=1 E[Xi], where E[X] denotes
the expectation of X.

The following lemma, for the sum of a random sample without replacement from a finite
set, can be viewed as an application of Chernoff’s bounds – customized to our needs – to
negatively correlated random variables:

▶ Lemma 1. Let C = {x1, . . . , xN }, where xi ∈ {0, 1} for i ∈ [N ]. Let X1, X2, . . . , Xj denote
a random sample without replacement from C. Let X =

∑j
i=1 Xi, µ = E[X], and µ1, µ2 be

any two values such that µ1 ≤ µ ≤ µ2. Then, (A) for any δ > 0, we have Pr(X ≥ (1+δ)µ2) ≤(
eδ

(1+δ)(1+δ)

)µ2
; and (B) for any 0 < δ < 1, we have Pr(X ≤ (1 − δ)µ1) ≤

(
e−δ

(1−δ)(1−δ)

)µ1
.

Point-Line Incidences. Let S be a set of points. A line l covers a point p ∈ S if l passes
through p (i.e., contains p). A set L of lines covers S if every point in S is covered by at
least one line in L. A line l is induced by S if l covers at least 2 points of S, and a set L of
lines is induced by S if every line in L is induced by S. For a set L of lines, we define I(L, S)
as I(L, S) = |{(q, l) | q ∈ S ∩ l, l ∈ L}|; that is, I(L, S) is the number of incidences between
L and S. For a line l, let I(l, S) = |{(q, l) | q ∈ S ∩ l}|.

The following theorems upper bound I(L, S) and the complexity of computing it:

▶ Theorem 2 ([37]). I(L, S) ≤ 5
2 (mn)2/3 + m + n, where n = |S| and m = |L|.

The theorem below follows from Theorem 3.1 in [32] after a slight modification, as was
also observed by [15]:

▶ Theorem 3 ([15, 32]). Let S be a set of n points and L a set of m lines in the plane. The
set of incidences between S and L, and hence I(L, S), can be computed in (deterministic)
time O(n log m + m log n + (mn)2/32O(log∗(n+m))). Moreover, within the same running time,
we can compute for each line l ∈ L the set of points in S that are contained in l.

Let P be a subset of S, and let x ∈ N. We say that a line l is x-rich for P if l covers at
least x points from P ; when P is clear from the context, we will simply say that l is x-rich.

The following extends Theorem 2 in [40], which applies only when the constant c < 1:

▶ Theorem 4. Let S be a set of n points, let c > 0 be a constant, and let k be an integer such
that 2 ≤ k ≤ c

√
n. Let L be the set of k-rich lines for S. Then |L| < max{ 40n2

k3 , 40c2n2

k3 }.
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Parameterized Complexity. A parameterized problem Q is a subset of Ω∗ × N, where Ω is a
fixed alphabet. Each instance of Q is a pair (I, κ), where κ ∈ N is called the parameter. A
parameterized problem Q is fixed-parameter tractable (FPT), if there is an algorithm, called
an FPT-algorithm, that decides whether an input (I, κ) is a member of Q in time f(κ) · |I|O(1),
where f is a computable function and |I| is the input instance size. The class FPT denotes
the class of all fixed-parameter tractable parameterized problems. A parameterized problem
is kernelizable if there exists a polynomial-time reduction that maps an instance (I, κ) of the
problem to another instance (I ′, κ′) such that (1) |I ′| ≤ f(κ) and κ′ ≤ f(κ), where f is a
computable function, and (2) (I, κ) is a yes-instance of the problem if and only if (I ′, κ′) is.
The instance (I ′, κ′) is called the kernel of I.

3 A Randomized Algorithm for Rich Lines

In this section, we present a randomized algorithm for Rich Lines that achieves a better
running time than Guibas et al.’s algorithm [25] for a wide range of the parameter λ (in the
problem definition). We will show in Section 5 that for λ = Ω(

√
n log n), the upper bound of

O(n log( n
λ )) on the running time of our randomized algorithm for Rich Lines matches the

lower bound on its time complexity that we derive in the algebraic computation trees model.
We first present an intuitive low-rigor explanation of the randomized algorithm and the

techniques entailed. The crux of the technical results in this section lies in Lemma 6. This
lemma shows that, by sampling a smaller subset S′ of S whose size depends on λ, w.h.p. we
can reduce the problem of computing the set of λ-rich lines for S to that of computing the
set of λ′-rich lines for S′, where λ′ < λ.

The algorithm exploits the above technical results as follows. Given an instance (S, λ) of
Rich Lines, the algorithm samples a subset S′ ⊆ S whose size depends on λ. Depending on
the value of λ, the algorithm defines a threshold value λ′, and computes the set L′ of λ′-rich
lines for S′. As we show in this section, w.h.p. L′ contains all the λ-rich lines for S, and
hence, by sifting through the lines in L′, the algorithm computes the solution to (S, λ).

▶ Lemma 5. Let λ ≥ 2
√

n. The number of λ-rich lines for S is at most 2n
λ .

Proof. Let L = {l1, l2, ..., lm} be the set of λ-rich lines for P . Denote by zi, for i = 1, 2, . . . , m,
the number of points covered by li. The set L covers at least

∑m
i=1 z′

i points, where
z′

i = max{zi − i + 1, 0}. This is true since l1 covers at least z1 points, l2 covers at least z2 − 1
new points (excluding at most 1 point on l1), and in general, li covers at least zi − i + 1
new points (excluding at most i − 1 points covered by {l1, ..., li−1}) if i ≤ zi or 0 otherwise.
Suppose, to get a contradiction, that m > 2n

λ , and consider the first m′ = ⌈ 2n
λ ⌉ lines. Then∑m

i=1 z′
i ≥

∑m′

i=1 z′
i =

∑m′

i=1(zi − i + 1) since i ≤ m′ < zi. Hence,
∑m′

i=1 z′
i ≥ λ · m′ − (m′−1)m′

2

≥ 2n − ( 2n
λ +1) 2n

λ

2 = 2n − n
λ − 2n2

λ2 . Since λ ≥ 2
√

n,
∑m′

i=1 z′
i ≥ 2n −

√
n

2 − n
2 > n (assuming

w.l.o.g. that n > 1), which is a contradiction. Therefore, we have m ≤ 2n
λ . ◀

Throughout this section, S denotes a set of n ≥ 3 points. Let S′(m) be a set formed by
sampling without replacement m ≤ n points from S uniformly and independently at random.

▶ Lemma 6. Let λ be an integer satisfying 140 ln3/2 n ≤ λ ≤ n. Let S′(m) be as defined
above where m = ⌈ 140n ln n

λ ⌉. Let L1 be the set of λ-rich lines for S, and let L3 be the set of
(98 ln n)-rich lines for S′(m). Then, with probability at least 1 − 2

n2 , we have: (1) L1 ⊆ L3,
and (2) if λ ≥ 5

√
n, then |L3| ≤ 5n

λ ; if λ < 5
√

n, then |L3| < 2500n2

λ3 .
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Proof. Let L2 be the set of lines induced by S containing less than 2λ
5 points each. Without

loss of generality, suppose that L1 = {l1, . . . , ld} and L2 = {ld+1, . . . , ld′}, and note that
d ≤ d′ ≤

(
n
2
)
. For i ∈ [d′], let xi be the number of points in S covered by li, and let X ′

i be
the random variable, where X ′

i is the number of the points in S′(m) on li.
For i ∈ [d], we have E[X ′

i] = xi

n · m ≥ 140 ln n since xi ≥ λ. Applying part (B) of the
Chernoff bounds in Lemma 1 with µ1 = 140 ln n, we have Pr(X ′

i ≤ (1 − 3/10) · 140 ln n) ≤(
e−3/10

(1−3/10)1−3/10

)140 ln n

≤ 1
n4 , where the last inequality can be easily verified by a simple

analysis. Let Ei, for i ∈ [d], denote the event that X ′
i ≤ (1 − 3/10) · 140 ln n. Applying the

union bound, we have Pr(
⋂d

i=1 Ei) = 1−Pr(
⋃d

i=1 Ei) ≥ 1−d · 1
n4 ≥ 1− 1

n2 . Let E =
⋂d

i=1 Ei.
The probability that every line li ∈ L1 contains at least 98 ln n points of S′(m) is at least
1 − 1

n2 . That is to say, with probability at least 1 − 1
n2 , we have L1 ⊆ L3.

For i = d + 1, . . . , d′, E[X ′
i] = xi

n · m < xi

n ( 140n ln n
λ + 1) ≤ 56 ln n + 2λ

5n < 57 ln n, since
xi ≤ 2λ

5 and 140 ln3/2 n ≤ λ ≤ n. Applying part (A) of the Chernoff bounds in Lemma 1

with µ2 = 57 ln n, we get Pr(X ′
i ≥ (1 + 13

19 ) · 57 ln n) ≤
(

e13/19

(1+13/19)1+13/19

)57 ln n

≤ 1
n4 , where

the last inequality can be easily verified by a simple analysis. Consequently, via the union
bound, the probability that every line li ∈ L2 contains less than 96 ln n sampled points is at
least 1 − (d′ − d) · 1

n4 ≥ 1 − 1
n2 . It follows that, with probability at least 1 − 1

n2 , we have
L3 ∩ L2 = ∅.

Altogether, with probability at least 1 − 2
n2 , L1 ⊆ L3 and L2 ∩ L3 = ∅. Recall that

each line in L3 covers at least 2λ
5 points of S. If 2λ

5 ≥ 2
√

n, i.e., λ ≥ 5
√

n, we have
|L3| ≤ 2n

2λ/5 = 5n
λ by Lemma 5. If 2λ

5 < 2
√

n, i.e. λ < 5
√

n, by Theorem 4 (with c ≤ 2), we
have |L3| < 40·22n2

(2λ/5)3 = 2500n2

λ3 . It follows that, with probability at least 1 − 2
n2 , parts (1) and

(2) of the lemma hold. ◀

Algorithm 1 : Alg-RichLines(S, λ) – A randomized algorithm for computing all λ-rich lines.
Input: a set of points S and λ ∈ N.
Output: The set L of λ-rich lines for S.

1: if λ < ln n then apply Guibas et al.’s algorithm [25] to compute L and return L;
2: sample x = ⌈ 10n2 ln n

λ2 ⌉ pairs of points (p1, q1), . . . , (px, qx) u.a.r. from
(

S
2
)
;

3: let li be the line formed by (pi, qi), for i ∈ [x]; let Q1 be the multi-set {l1, l2, . . . , lx}, and
let Q2 be the set of distinct lines in Q1;

4: if λ ≤ 140 ln3/2 n then let L = {l ∈ Q2 | I(l, S) ≥ λ}; return L;
5: let m = ⌈ 140n ln n

λ ⌉, y = 98 ln n;
6: sample m points u.a.r. from S without replacement to obtain S′(m);
7: if λ < 5

√
n then

8: let z = 2500n2

λ3 ;
9: else let z = 5n

λ ;
10: let L′ = {l ∈ Q2 | I(l, S′(m)) ≥ y};
11: if |L′| ≤ z then let L = {l ∈ L′|I(l, S) ≥ λ}; return L;
12: else return ∅;

Refer to Alg-RichLines for the terminologies used in the subsequent discussions.

▶ Lemma 7. Let λ ∈ N. Let L1 be the set of λ-rich for S. Then, with probability at least
1 − 3

n2 , Alg-RichLines(S, λ) returns a set L = L1.

Proof. If λ < ln n then L = L1 with probability 1 by Step 1, as Guibas et al.’s algorithm [25]
computes L1 deterministically.
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Now consider the case that λ ≥ ln n. Let l be an arbitrary line in L1. Step 2 samples x

pairs of points that determine x lines. In a single sampling, the probability ρ that l is sampled
is

(
λ
2
)
/
(

n
2
)

≥ λ2

2n2 because l covers at least λ points of S. Thus, Pr(l /∈ Q1) = (1 − ρ)x ≤
e−ρx ≤ 1

n5 . Since |L1| < n2, applying the union bound, we get Pr(L1 ⊆ Q1) ≥ 1 − 1
n3 .

Hence, we have Pr(L1 ⊆ Q2) ≥ 1 − 1
n3 since Q2 is obtained from Q1 by removing repeated

lines. Let L3 be the set of y-rich lines for S′(m). If λ < 140 ln3/2 n, then since L1 ⊆ Q2 with
probability at least 1 − 1

n3 , the algorithm returns in Step 4 a set L that, with probability at
least 1 − 1

n3 , is equal to L1 .
Finally, if 140 ln3/2 n ≤ λ, then by Lemma 6, L1 ⊆ L3 and |L3| ≤ z with probability at

least 1 − 2
n2 . Since L′ = L3 ∩ Q2, |L′| ≤ z holds with probability at least 1 − 2

n2 . Since
Pr(L1 ⊆ Q2) ≥ 1 − 1

n3 , we have L1 ⊆ (L3 ∩ Q2) and |L′| ≤ z with probability at least 1 − 3
n2 .

Thus, Pr(L1 ⊆ L′) ≥ 1 − 3
n2 . Therefore, the algorithm returns in Step 11 a set L equal to L1

with probability at least 1 − 3
n2 . ◀

The correctness of Alg-RichLines, stated in the following theorem, follows from Lemma 7.
▶ Theorem 8. Let S be a set of n points and λ ∈ N. With probability at least 1 − 3

n2 ,
Alg-RichLines(S, λ) solves the Rich Lines problem in time:

(1) O(n2) if λ < ln n; and
(2) O(n log n

λ + n2 log n log n
λ

λ2 ) otherwise.
Proof. By Lemma 7, with probability at least 1− 3

n2 , Alg-RichLines(P, λ) correctly returns
the set of λ-rich lines for P . We discuss next the running time of the algorithm.

Case 1: λ < ln n. In this case the running time of the algorithm is that of Guibas et al.’s
algorithm [25], which is O(n2).

It is easy to see that Step 2 takes O(x) = O( n2 ln n
λ2 ) time. Step 3 can be implemented

by sorting the slopes of the x lines, which takes O(x ln x) = O( n2 ln n
λ2 · (ln n

λ + ln ln n)) time.
Step 6 takes time O(m) = O( 140n ln n

λ ) = O(n) since n ≥ λ ≥ 140 ln3/2 n. Steps 5, 7, 8, 9
and 12 take constant time. Note that all the above running times (for Steps 2, 3, 5, 6, 7, 8,
9, 12) are dominated by the running time listed in item (2) of the theorem.

We discuss the running time of Step 4 in Case 2 below, and that of Step 10 and Step 11
in both Cases 3 and 4. Note that, to determine the set of rich lines for S in Steps 4, 10 and
11, we apply Theorem 3 to compute the number of points in S (or S′(m)) on each of the
lines in question, thus determining the set of rich lines for S (or S′(m)).

Case 2: ln n ≤ λ ≤ 140 ln3/2 n. In this case, Step 4 takes time T1 = O(x log n +
n log x + (nx)2/32O(log∗(x+n))) by Theorem 3. Substituting x = ⌈ 10n2 ln n

λ2 ⌉, we obtain T1 =
O( n2 ln2 n

λ2 + n ln n + n2 ln2/3 n
λ4/3 2O(log∗ n)) = O( n2 ln2 n

λ2 ), which is dominated by the running
time listed in item (2) of the theorem.

We discuss the running time of Step 10 in both Case 3 and 4. Note that |S′(m)| = m =
⌈ 140n ln n

λ ⌉ and |Q2| ≤ x = O( n2 ln n
λ2 ). By Theorem 3, Step 10 takes time:

T2 = O(m log x + x log m + (xm)2/32O(log∗(x+m)))

= O(n2 ln n

λ2 (ln(n

λ
) + ln ln n) + n2

λ2 ln4/3(n)2O(log∗ n)).

If λ ≤ n2/3, we have n2

λ2 ln4/3(n)2O(log∗ n) = O( n2 log n log n
λ

λ2 ), and if n2/3 < λ ≤ n, we
have n2

λ2 ln4/3(n)2O(log∗ n) = O(n log n
λ ). Altogether, n2

λ2 ln4/3(n)2O(log∗ n) = O(n log n
λ +

n2 log n log n
λ

λ2 ). Therefore, T2 = O(n log n
λ + n2 log n log n

λ

λ2 ), which is dominated by the running
time listed in item (2) of the theorem.
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Case 3: 140 ln3/2 n < λ < 5
√

n. Step 11 takes time T3 = O(n log |L′| + |L′| log n +
(n|L′|)2/32O(log∗(n+|L′|))) by Theorem 3. Since |L′| ≤ z = 2500n2

λ3 , we have T3 = O(n ln n +
n2 log n

λ3 + n2

λ2 2O(log∗ n)) = O(n log n
λ + n2 log n log n

λ

λ2 ). Thus, the total running time in this case
is O(n log n

λ + n2 log n log n
λ

λ2 ).

Case 4: λ ≥ 5
√

n. Step 11 takes time T4 = O(n log |L′| + |L′| log n + (n|L′|)2/3·
2O(log∗(n+|L′|))) by Theorem 3. Since |L′| ≤ z = O( n

λ ), T4 = O(n log n
λ + n

λ log n +
n4/3

λ2/3 2O(log∗ n)) = O(n log n
λ + n4/3

λ2/3 2O(log∗ n)) = O(n log n
λ ). The last equality holds because

λ ≥ 5
√

n. Consequently, the total running time in this case is O(n log n
λ + n2 log n log n

λ

λ2 ). ◀

Guibas et al.’s algorithm [25] solves the Rich Lines and the Exact Fitting problems
in the plane in time O(min{ n2

λ log n
λ , n2}). Theorem 8 is an improvement over Guibas et al.’s

algorithm [25] for both problems for all values of λ ≥ ln n, and for λ < ln n it obviously has
a matching running time. In particular, for ln n ≤ λ ≤ 140 ln3/2 n, the improvement could
be in the order of 1√

log n
(i.e., the running time of Alg-RichLines is a 1√

log n
-fraction of

that in [25]); for 140 ln3/2 n < λ < 5
√

n, the improvement could be in the order of log n√
n

; and

for λ ≥ 5
√

n, the improvement could be in the order of
√

log n
n .

4 Kernelization Algorithms for Line Cover

In this section, we present a randomized Monte Carlo kernelization algorithm for Line
Cover that employs Alg-RichLines developed in the previous section. We also show
how the tools developed in this section can be used to obtain a deterministic kernelization
algorithm for Line Cover that employs Guibas et al.’s algorithm [25]. Both algorithms
improve the running time of existing kernelization algorithms for Line Cover. Moreover,
we will show in Section 5 that the running time of our randomized algorithm comes close to
the lower bound that we derive on the time complexity of kernelization algorithms for Line
Cover in the algebraic computation trees model. The majority of this section is dedicated
to proving the following theorem:

▶ Theorem 9. There is a Monte Carlo randomized algorithm, Alg-Kernel, that given
an instance (S, k) of Line Cover, in time O(n log k + k2(log2 k)(log log k)2), returns an
instance (S′, k′) such that |S′| ≤ k2, and such that with probability at least 1 − 2

k3 , (S′, k′)
is a kernel of (S, k). More specifically: (1) if (S, k) is a yes-instance of Line Cover, then
with probability at least 1 − 2

k3 , (S′, k′) is a yes-instance of Line Cover; and (2) if (S, k)
is a no-instance of Line Cover then (S′, k′) is a no-instance of Line Cover. The space
complexity of this algorithm is O(k2 log2 k).

Let (S, k) be an instance of Line Cover. We say that a line l is saturated w.r.t. S if
it is (k + 1)-rich for S; denote by the saturation of a saturated line l the number of points
on l. A line l is unsaturated w.r.t. S if it is not saturated. We start by giving an intuitive
explanation of the results leading to the kernelization algorithm Alg-Kernel.

The kernelization algorithm processes the set S of points in “batches” of roughly 2k2

uncovered points each, and for each batch S′, computes the saturated lines induced by S′ and
adds them to the (partial) solution. Since processing each batch should result in computing
at least one saturated line – assuming a yes-instance, the above process iterates at most k

times. The main task becomes to compute the saturated lines induced by a batch efficiently.
One straightforward idea is to invoke Alg-RichLines directly with λ = k + 1, which, w.h.p.,
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computes all the saturated lines in S′. The drawback is that Alg-RichLines takes time
O(k2 log2 k) per batch, and may result in a single saturated line, and hence in an overall
running time of O(n log k + k3 log2 k) for the kernelization algorithm.

The main technical contributions of this section lie in devising a more efficient implement-
ation of the above kernelization scheme. The improved scheme rests on two key observations:
(1) the running time of Alg-RichLines decreases as the saturation threshold (i.e., λ) of the
saturated lines sought increases; and (2) assuming that a subset of the batch S′ needs to be
covered only by saturated lines, then for any λ < λ′, it requires more (saturated) lines of
saturation λ to cover S′ than lines of saturation λ′.

Based on the above observations, we design an algorithm Alg-SaturatedLines that
intuitively works as follows. We first partition the saturation range into intervals, thus
defining a spectrum of saturation levels. Then Alg-SaturatedLines calls Alg-RichLines
starting with the highest saturation threshold (i.e., starting with a value of λ defining
the highest saturation interval in the spectrum), and iteratively decreasing the saturation
threshold until either: (1) the saturated lines computed cover “enough” points of the batch
S′, or (2) the total number of saturated lines computed for the batch S′ is “large enough”,
thus making enough progress towards computing the k lines in the line cover of (S, k).

The above scheme enables us to amortize the running time of Alg-SaturatedLines over
the number of saturated lines it computes. The main kernelization algorithm, Alg-Kernel,
then calls Alg-SaturatedLines on each batch of 2k2 uncovered points. As we show in the
analysis, the above scheme enables a win/win situation, yielding an overall running time of
O(n log k + k2(log2 k)(log log k)2).

We also show that, if instead of using the randomized Monte Carlo algorithm Alg-
RichLines to compute the saturated lines we use the deterministic algorithm of Guibas et
al. [25], the above scheme yields a deterministic kernelization algorithm for Line Cover
that runs in time O(n log k + k3(log3 k)

√
log log k) and computes a kernel of size at most k2.

Ir+1 =
[

k(k+1)
σ(σ−1) , 1

k1+yr

)
Ir =

[
1

k1+yr , 1
k1+yr−1

)

I1 =
[ 1

k1+y1 , 1
k1+y0

)
I0 =

[ 1
k1+y0 , 1

)

Figure 2 Illustration for the definition of the intervals I0, . . . , Ir+1.

We now give an intuitive low-rigor description of the technical results leading to the
kernelization algorithm. Lemma 10 is a combinatorial result showing that either the saturated
lines belonging to the highest interval in the saturation spectrum cover enough points of
the batch S′, or there is a saturation interval in the spectrum containing a “large enough”
number of lines. Lemma 10 is then employed by Lemma 11 to show that, w.h.p., Alg-
SaturatedLines returns a set of saturated lines that either covers enough points of the
batch S′, or contains a “large enough” number of saturated lines. We employ Lemma 10 and
use amortized analysis to upper bound the running time of Alg-SaturatedLines w.r.t. the
number of saturated lines computed by this algorithm, which we subsequently use to upper
bound the running time of Alg-SaturatedLines in Lemma 13. Finally, Theorem 9 employs
the above results to prove the correctness of Alg-Kernel and upper bounds its time and
space complexity. We now proceed to the details.



J. Chen, Q. Huang, I. Kanj, and G. Xia 21:11

In what follows let σ = 2k2, and let S′ ⊆ S be a subset of points such that |S′| = σ. We
want to identify a subset of saturated lines w.r.t. S′. We define the following notations. Let
ϵ = ln ln ln k

ln k . For i ∈ N, let yi = 1 − ln ln k
ln k − ln ln ln k

ln k + iϵ. Let r be the minimum integer such
that kyr ≥ k

(ln ln k)2 , and note that r = O(ln ln k). Note that we have y0 < y1 < · · · < yr.

We define a sequence of intervals I0, . . . , Ir+1 as follows: I0 = [ 1
k1+y0 , 1] = [ ln k(ln ln k)

k2 , 1],
Ii = [ 1

k1+yi
, 1

k1+yi−1 ), for i = 1, 2, . . . , r, and Ir+1 = [ (k+1)k
σ(σ−1) , 1

k1+yr ). Observe that the
intervals I0, . . . , Ir+1 are mutually disjoint, and partition the interval [ (k+1)k

σ(σ−1) , 1]. It is easy to
verify that the lengths of the intervals I1, . . . , Ir are decreasing. See Figure 2 for illustration.

Suppose that there are h saturated lines l1, . . . , lh w.r.t. S′. Denote by si the number
of points in S′ covered by li, for i ∈ [h]. Let ρi = si(si−1)

σ(σ−1) , and note that ρi belongs to one
of the intervals I0, . . . , Ir+1. We partition the h saturated lines into at most r + 2 groups,
H ′

0, . . . , H ′
r+1, where H ′

i, for i = 0, . . . , r + 1, consists of every saturated line lj , j ∈ [h], such
that ρj ∈ Ii. Clearly, it follows that H ′

0, . . . , H ′
r+1 is indeed a partitioning of {l1, . . . , lh}.

Consider Alg-SaturatedLines for computing the saturated lines w.r.t. S′:

Algorithm 2 : Alg-SaturatedLines(S′, k, r) – A randomized algorithm for computing saturated
lines w.r.t. S′.

Input: S′, where |S′| = σ = 2k2; k ∈ N; and integer r as defined before
Output: A set of points S′′ and a set of saturated lines L′

1: for (i = 0; i ≤ r + 1; i + +) do
2: if i ≤ r then let L′ = Alg-RichLines(S′, σk−(1+yi)/2);
3: else let L′ = Alg-RichLines(S′, k + 1);
4: compute the set S′′ ⊆ S′ not covered by L′;
5: if i = 0 and L′ covers at least k2/3 points then return (S′′, L′);
6: else if i ≤ r and |L′| ≥ 1

12r k(1+yi−1)/2 then return (S′′, L′);
7: else if i = r + 1 and |L′| ≥ 1

12 k(1+yr)/2 then return (S′′, L′);
8: return (S′, ∅);

Now we are ready to present the kernelization algorithm, Alg-Kernel, for Line Cover.
The kernelization algorithm works by computing w.h.p. the set H of saturated lines in S

and removing all points covered by these lines. Observe that, any set of more than k2 points
that can be covered by at most k lines must contain at least one saturated line. During the
execution of the algorithm, the set S′, which will eventually contain the kernel, contains a
subset of points in S. We start by initializing S′ to the empty set, and order the points in S

arbitrarily. We repeatedly add the next point in S (w.r.t. the defined order) to S′ until either
|S′| = 2k2, or no points are left in S. Afterwards, the algorithm distinguishes two cases.

If |S′| = 2k2, the algorithm calls Alg-SaturatedLines to compute a subset of the
saturated lines w.r.t. S′. Alg-SaturatedLines may not compute all the saturated lines in
S′, and rather acts as a “filtering algorithm”. This algorithm either computes a subset of
saturated lines that cover at least k2/3 many points in S′ “efficiently”, that is more efficiently
than Alg-RichLines, which w.h.p. computes all the saturated lines in S′; or computes a
“large” set of saturated lines (a little bit less efficiently than Alg-RichLines), thus decreasing
the parameter k significantly (and hence the overall execution of the algorithm).

If k2 < |S′| < 2k2, no more points are left in S to consider. Alg-RichLines is called at
most once to compute w.h.p. all the remaining saturated lines w.r.t. S′ to return the kernel.

We now proceed to prove the correctness and analyzing the complexity of Alg-Kernel.
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▶ Lemma 10. Given a set S′ of σ points and a parameter k, if S′ can be covered by at most
k lines then one of the following conditions must hold:
(1) H ′

0 covers at least σ−k2

3 points;
(2) |H ′

i| ≥ ( σ−k2

6rσ ) · k(1+yi−1)/2 for some i ∈ [r]; or
(3) |H ′

r+1| ≥ ( σ−k2

6σ ) · k(1+yr)/2.

Algorithm 3 : Alg-Kernel(S, k)–A randomized kernelization algorithm for Line Cover.
Input: S = {q1, . . . , qn}; k ∈ N.
Output: an instance (S′, k′) of Line Cover.

1: if k ≤ 15 then return the instance (S′, k′) described in Lemma 12;
2: H = ∅; S′ = ∅; i = 1;
3: construct a search structure ΓH for the lines in H and set ΓH = ∅;
4: while |H| ≤ k do
5: while |S′| < 2k2 and i ≤ n do
6: if qi is not covered by H then add qi to S′ and set i = i + 1;
7: if |S′| = 2k2 then
8: let (S′, L′) = Alg-SaturatedLines(S′, k, r);
9: if L′ = ∅ then return a (trivial) no-instance (S′, k′);

10: H = H ∪ L′; update ΓH for H;
11: else
12: if |S′| > k2 then
13: L′ = Alg-RichLines(S′, k + 1); H = H ∪ L′;
14: update ΓH for H; remove the points from S′ covered by L′;
15: if |H| > k or |S′| > k2 then return a (trivial) no-instance (S′, k′);
16: return (S′, k − |H|);
17: return a (trivial) no-instance (S′, k′);

▶ Lemma 11. Given a set S′ of points and a parameter k ≥ 16, let L′ be the set of lines
returned by Alg-SaturatedLines(S′, k, r). If S′ can be covered with at most k lines, then
with probability at least 1 − 1

k4 one of the following holds:
(1) L′ covers at least k2

3 points;
(2) |L′| ≥ 1

12r k(1+yi−1)/2 for some i ∈ [r]; or
(3) |L′| ≥ 1

12 k(1+yr)/2.

One technicality ensues from the definition of the saturation intervals. Since this definition
entails using the term ln ln ln k, ln ln ln k must be positive, and hence k ≥ 16 > ee. This
forces a separate treatment of instances in which k ≤ 15. Since k = O(1), we could opt to
use a brute-force algorithm in this case, or an FPT-algorithm, but those would result in a
polynomial running time of a higher degree than what is desired for our purpose. Instead,
we provide an efficient linear-time algorithm for this special case in the following lemma:

▶ Lemma 12. Given an instance (S, k) of Line Cover, where |S| = n and k ≤ 15, there
is an algorithm that computes in O(n) time and O(1) space a kernel (S′, k′) for (S, k) such
that |S′| ≤ k2.

▶ Lemma 13. Given an instance (S, k) of Line Cover, where |S| = n, Alg-Kernel runs
in time O(n log k + k2(log2 k)(log log k)2) and space O(k2 log2 k).
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Proof of Theorem 9 (stated at the beginning of this section). The time and space com-
plexity of the algorithm follow from Lemmas 12 and 13. We prove its correctness next. The
correctness of Step 1 was proved separately in Lemma 12, so we may assume that k ≥ 16.

Suppose that (S, k) is a no-instance of Line Cover. Observe that whenever the algorithm
includes a subset L′ of lines into the solution H (in Steps 10 and 13) (and updates S′),
then the lines in L′ are saturated lines, and hence, must be part of every solution to the
instance (S, k). Therefore, either the algorithm returns an instance in Step 16 that must be
a no-instance by the above observation, or returns a (trivial) no-instance in Step 9, 15, or
17. It follows from above that if (S, k) is a no-instance of Line Cover, then Alg-Kernel
returns a no-instance (S′, k′). This proves part (2) of the theorem.

Suppose now that (S, k) is a yes-instance of Line Cover, and hence, that S can be
covered by at most k lines. By Step 9, if L′ = ∅, then the algorithm will stop. Thus,
Steps 7–10 will be executed at most k + 1 times. Consider a single execution of Steps 7–10.
By Lemma 11, if S′ can be covered with at most k saturated lines, then, with probability
at least 1 − 1

k4 , Alg-SaturatedLines(S′, k, r) returns a non-empty set L′. That is to
say, Alg-SaturatedLines(S′, k, r) fails with probability at most 1

k4 . By the union bound,
Alg-Kernel(S, k) fails during the execution of Steps 7–10 with probability at most k+1

k4 . At
Step 13, by Theorem 8, with probability at least 1 − 3

|S′|2 > 1 − 3
k4 , Alg-RichLines(S′, k)

finds all the saturated lines in S′. After that, we have |S′| ≤ k2. By the union bound, with
probability at least 1 − k+1

k4 − 3
k4 > 1 − 2

k3 (since k ≥ 16), Alg-Kernel(S, k) returns a kernel
(S′, k′) of (S, k) satisfying |S′| ≤ k2. This proves part (1) of the theorem. ◀

We conclude this section by giving a deterministic kernelization algorithm for Line
Cover. Recall that Alg-RichLines is a randomized algorithm for computing all λ-rich
lines and that Guibas et al.’s algorithm [25] is a deterministic algorithm for the same purpose.
We can replace Alg-RichLines with Guibas et al.’s algorithm [25] in the algorithms Alg-
SaturatedLines and Alg-Kernel to obtain a deterministic kernelization algorithm from
Alg-Kernel after this replacement. We can optimize the running time of this deterministic
algorithm by fine-tuning the lengths of the defined intervals I0, . . . , Ir+1.

▶ Theorem 14. There is a deterministic kernelization algorithm for Line Cover that, given
an instance (S, k) of Line Cover, where |S| = n, the algorithm runs in time O(n log k +
k3(log3 k)

√
log log k) and computes a kernel (S′, k′) such that |S′| ≤ k2.

5 Lower Bounds

In this section, we establish time-complexity lower-bound results for Line Cover and Rich
Lines in the algebraic computation trees model [6]. The algebraic computation trees model
is a more powerful model than the real-RAM model [19], which is the model of computation
that is most commonly used to analyze geometric algorithms [38]. The lower-bound results
we derive in the algebraic computation trees model apply to the real RAM model as well; for
more details see [19].

5.1 Line Cover
In order to derive lower bounds on the time complexity of kernelization algorithms for Line
Cover, we combine a lower-bound result by Grantson and Levcopoulos [23] on the time
complexity of Line Cover with a result that we prove below connecting the time complexity
for solving Line Cover to its kernelization time complexity. We remark that, since Line
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Cover is NP-hard [33] when the parameter k is unbounded, Grantson and Levcopoulos’ [23]
time complexity lower-bound result for Line Cover is interesting only when k is “small”
relative to the input size, and should be read this way.

▶ Theorem 15 (Grantson and Levcopoulos [23]). There exists a constant c > 0 such that, for
every positive n, k ∈ N satisfying k = O(

√
n), Line Cover requires time at least c · n log k

in the algebraic computation trees model.

We now exploit a folklore connection between kernelization and FPT [13, 14] to translate
the above time-complexity lower-bound result into a kernelization time-complexity lower-
bound result.

▶ Theorem 16. Let Q be a parameterized problem in NP. For any proper complexity function
h, Q has a kernelization algorithm of running time O(h(|x|, k)), where (x, k) is the input
instance to Q, if and only if Q can be solved in time O(h(|x|, k) + g(k)) for some proper
complexity function g(k).

The corollary below follows from Theorem 15 and Theorem 16 above:

▶ Corollary 17. There exists a constant c > 0 such that the running time of any kernelization
algorithm for Line Cover in the algebraic computation trees model is at least cn log k.

▶ Remark 18. The above corollary implies that one cannot asymptotically improve on either
of the two factors n or log k in the term n log k. This rules out, for instance, the possibility
of a kernelization algorithm that runs in (linear) O(n) time or in O(n log log k) time.

5.2 Rich Lines
In this subsection, we derive lower-bound results on the time complexity of Rich Lines in
the algebraic computation trees model using Ben-Or’s framework [4]. Consider the variant
of the Element Distinctness problem [4]:

Multiset Subset Distinctness
Given a multi-set A = {a1, a2, . . . , an} and a positive integer λ, decide whether A

can be partitioned into n/λ multi-subsets A1, A2, . . . , An/λ, such that each subset
Ai, where i ∈ [n/λ], contains exactly λ identical elements, and no two (distinct)
multi-subsets contain identical elements.

▶ Theorem 19. There exists a constant c > 0 such that, for every positive n, λ ∈ N such
that λ divides n, Multiset Subset Distinctness requires time at least c · n log( n

λ ) in the
algebraic computation trees model.

Proof. For any fixed n and λ, the instance (A, λ), where A = (a1, . . . , an), is represented as
the point (a1, . . . , an, λ) in the (n + 1)-dimensional Euclidean space Rn+1. Denote by W n+1

λ

the set of points in Rn+1 that corresponds to the set of yes-instances of Multiset Subset
Distinctness. By Ben-Or’s results [4, §4], it suffices to show that the number of connected
components of W n+1

λ is at least
(

n
λ,λ,...,λ

)
= Θ(

√
2πn(n/e)n

(
√

2πλ(λ/e)λ)n/λ
) [22, §9.6], as this would show

that the depth of any algebraic computation tree for Multiset Subset Distinctness is at
least Ω(log

(
n

λ,λ,...,λ

)
) = Ω(n log( n

λ )).
Each yes-instance (A, λ) of Multiset Subset Distinctness corresponds to a mapping

f from [n] → [n/λ] such that f(i) < f(j) if and only if ai < aj , and such that f(i) = f(j) if
and only if ai = aj , and such that for each j ∈ [n/λ]: |{i ∈ [n] | f(i) = j}| = λ. It is easy to



J. Chen, Q. Huang, I. Kanj, and G. Xia 21:15

see that the number of such functions f is
(

n
λ,λ,...,λ

)
. For each such function f , let Wf be the

set of yes-instances corresponding to f , and let W be the set of all subsets Wf . It is easy to
verify that the sets Wf in W partition W n+1

λ , and that Wf is a connected region/subset in
Rn+1, as it is the intersection of hyperplanes with a convex set/region.

We prove that, for any two different functions f and f ′, Wf and Wf ′ belong to two
different connected component of W n+1

λ . Assume to the contrary that a point p ∈ Wf and a
point p′ ∈ Wf ′ are in the same connected component of the set W n+1

λ . Then there is a path
Π in W n+1

λ from p to p′. This path Π can be given in the parametric form as:

Π : π(t) = (a1(t), a2(t), . . . , an(t), λ), 0 ≤ t ≤ 1,

where π(0) = p, π(1) = p′, and each ai(t), i ∈ [n] is a continuous function of t. For an
interval I ⊆ [0, 1], denote by π(I) = {π(t) | t ∈ I}.

Suppose first that, for each t ∈ [0, 1], there is an open interval It containing t such that
all points in π(It) are in the same subset of W. Then by the Heine-Borel Theorem [39], we
can find a finite set of open intervals covering [0, 1] such that for each such open interval It,
all points in π(It) are in the same subset of W. This implies that all points on the path Π
are in the same subset of W , contradicting the fact that the subsets Wf and Wf ′ are disjoint.

Suppose now that there exists a t0 ∈ [0, 1], where π(t0) is in some Wf1 , such that for
every open interval I containing t0, π(I) contains a point not in Wf1 . Since W is finite,
we can construct a sequence (t)i in [0, 1] converging to t0, and such that, for each i, π(ti)
belongs to the same set Wf2 ∈ W, where f1 ̸= f2. Since f1 ̸= f2, there exist indices z1 and
z2 such that z1 ̸= z2, f1(z1) < f1(z2) and f2(z1) > f2(z2). Consider the sequence of points

π(tr) = (a1(tr), a2(tr), . . . , an(tr), λ), for r ≥ 1.

Since π(tr) approaches π(t0) as tr → t0, we must have

|az1(tr) − az1(t0)| + |az2(tr) − az2(t0)| → 0, (1)

as tr → t0. Recall that f1(z1) < f1(z2) and f2(z1) > f2(z2), and hence, az1(t0) < az2(t0)
and az1(tr) > az2(tr). It follows that:

|az1(tr) − az1(t0)| + |az2(tr) − az2(t0)| (2)
≥ |(az1(tr) − az1(t0)) − (az2(tr) − az2(t0))| (3)
≥ |(az2(t0) − az1(t0)) + (az1(tr) − az2(tr))| (4)
≥ |(az2(t0) − az1(t0))|. (5)

Observing that az1(t0) and az2(t0) are fixed, inequality (5) contradicts (1). This completes
the proof. ◀

Now, we can prove a time lower bound Ω(n log n
λ ) for the Rich Lines problem via a

reduction from Multiset Subset Distinctness problem.

▶ Theorem 20. There exists a constant c0 > 0 such that, for every positive n, λ ∈ N, Rich
Lines requires time at least c0 · n log( n

λ ) in the algebraic computation trees model.

Proof. We prove the theorem via a Turing-reduction T from the Multiset Subset Dis-
tinctness problem. The theorem would then follow from Theorem 19. We first present the
reduction.

Given an instance (A, λ) = (a1, a2, . . . , an, λ) of Multiset Subset Distinctness, we
construct the instance (P, λ) of Rich Lines, where P = {(ai, i) | ai ∈ A}. Note that (P, λ)
can be constructed in O(n) time. Observe that (A, λ) is a yes-instance of Multiset Subset
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Distinctness if and only if there are n/λ vertical lines that each covers exactly λ points of
P . We can solve (P, λ) to find the set L of lines induced by P that each covers at least λ

points. Then, we compute the subset V of vertical lines in L and accept (A, λ) if and only if
|V | = n/λ. Let t(n, λ) be the time needed to perform this reduction T .

Now to prove the theorem, we proceed by contradiction. Suppose that no such constant
c0 exists, and let c be the universal constant in Theorem 19. Then, for every constant c′ > 0,
there exist n, λ ∈ N such that, for all input instances of size n and parameter λ, Rich Lines
can be solved in time less than c′ · n log( n

λ ). We observe that, under this assumption, the
number of lines in the solution to each of these instances must be less than c′ · n log( n

λ ),
otherwise, the running time for solving the instance would necessarily exceed c′ · n log( n

λ ). It
is not difficult to see that we can choose a constant c′ > 0 and n, λ ∈ N such that for the
specific function t(n, λ), where t(n, λ) is running time of the reduction T given above, we
have t(n, λ) + c′ · n log( n

λ ) < c · n log( n
λ ). Let n, λ be the values chosen accordingly.

Assume first that λ divides n, and we explain below how the proof can be modified to
lift this assumption. Given an instance (A, λ) = (a1, a2, . . . , an, λ) of Multiset Subset
Distinctness, where A has n elements, we reduce (A, λ) via reduction T to an instance
(P, λ) of Rich Lines and solve (P, λ) to obtain a solution to (A, λ) in time less than cn log( n

λ ),
contradicting Theorem 19.

In the case where λ does not divide n, let n = r · λ + s, where s < λ, and let n′ = r · λ.
Observe that the lower bound for Multiset Subset Distinctness established in Theorem 19
holds for the values n′, λ (since λ divides n′). Given an instance (A′, λ) = (a1, a2, . . . , an′ , λ)
of Multiset Subset Distinctness, we construct the instance (P, λ) of Rich Lines, where
P = P ′ ∪ S, and P ′ = {(ai, i) | ai ∈ A′}. The set S contains precisely s < λ points and
is constructed as follows. We find the smallest element amin ∈ A′, and choose a number
x < amin. Define S = {(x, j) | j ∈ [s]}. It is easy to verify that (A′, λ) is a yes-instance of
Multiset Subset Distinctness if and only if the number of vertical lines, each containing
at least λ points of P , is n′/λ. Hence, we can decide (A′, λ) as explained in the first case above.
Note that all the steps involved in the construction of (P, λ), including the computation of
the number x, can be carried out in linear time. Since the constant c′ can be chosen to be
arbitrary small, it is not difficult to see that we can choose c′ and the values n, λ such that the
running time of the above reduction is less than c ·n′ log( n′

λ ), again contradicting Theorem 19.
Note also that all the operations involved in the above reduction can be equivalently modeled
in the algebraic computation trees model [19]. This completes the proof. ◀

6 Conclusion

Several interesting questions ensue from our work. First, many of the previous algorithms
for Rich Lines and Line Cover can be lifted to higher dimensions (e.g., see [25, 31, 41]).
We believe that it is possible to lift the results in this paper to higher dimensions as well
(where the covering objects are hyperplanes). Second, most of the algorithms we presented
are randomized Monte Carlo algorithms. It is interesting to investigate if these algorithms
can be derandomized without trading off their performance guarantees by much. Finally,
it is interesting to see if the sampling and optimization techniques developed in this paper
can be applied to other related problems in computational geometry. We leave all the above
questions as directions for future research.
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Abstract
We pioneer a new technique that allows us to prove a multitude of previously open simulations in
QBF proof complexity. In particular, we show that extended QBF Frege p-simulates clausal proof
systems such as IR-Calculus, IRM-Calculus, Long-Distance Q-Resolution, and Merge Resolution.
These results are obtained by taking a technique of Beyersdorff et al. (JACM 2020) that turns
strategy extraction into simulation and combining it with new local strategy extraction arguments.

This approach leads to simulations that are carried out mainly in propositional logic, with minimal
use of the QBF rules. Our proofs therefore provide a new, largely propositional interpretation of the
simulated systems. We argue that these results strengthen the case for uniform certification in QBF
solving, since many QBF proof systems now fall into place underneath extended QBF Frege.
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1 Introduction

The problem of evaluating Quantified Boolean Formulas (QBF), an extension of propositional
satisfiability (SAT), is a canonical PSPACE-complete problem [36, 1]. Many tasks in verifica-
tion, synthesis and reasoning have succinct QBF encodings [35], making QBF a natural target
logic for automated reasoning. As such, QBF has seen considerable interest from the SAT
community, leading to the development of a variety of QBF solvers (e.g., [29, 19, 32, 20, 30]).
The underlying algorithms are often highly nontrivial, and their implementation can lead
to subtle bugs [9]. While formal verification of solvers is typically impractical, trust in a
solver’s output can be established by having it generate a proof trace that can be externally
validated. This is already standard in SAT solving with the DRAT proof system [39], for
which even formally verified checkers are available [15]. A key requirement for standard proof
formats like DRAT is that they simulate all current and emerging proof techniques.

Currently, there is no decided-upon checking format for QBF proofs (although there have
been some suggestions [22, 18]). The main challenge of finding such an universal format,
is that QBF solvers are so radically different in their proof techniques, that each solver
basically works in its own proof system. For instance, solvers based on CDCL and (some)
clausal abstraction solvers can generate proofs in Q-resolution (Q-Res) [25] or long-distance
Q-resolution (LD-Q-Res) [2], while the proof system underlying expansion based solvers
combines instantiation of universally quantified variables with resolution (∀Exp+Res) [21].
Variants of the latter system have been considered: IR-calc (Instantiation Resolution) admits
instantiation with partial assignments, and IRM-calc (Instantiation Resolution Merge)
additionally incorporates elements of long-distance Q-resolution [7].
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A universal checking format for QBF ought to simulate all of these systems. A good
candidate for such a proof system has been identified in extended QBF Frege (eFrege + ∀red):
Beyersdorff et al. showed [6] that a lower bound for eFrege + ∀red would not be possible
without a major breakthrough.

In this work, we show that eFrege + ∀red does indeed p-simulate IR-calc, IRM-calc, Merge
Resolution (M-Res) and LQU+-Res (a generalisation of LD-Q-Res), thereby establishing
eFrege + ∀red and any stronger system (e.g., QRAT [18] or G [28]) as potential universal
checking formats in QBF. As corollaries, we obtain (known) simulations of ∀Exp+Res [23]
and LD-Q-Res [24] by QRAT, as well as a (new) simulation of IR-calc by QRAT, answering a
question recently posed by Chede and Shukla [10]. A simulation structure with many of the
known QBF proof systems and our new results is given in Figure 1.

IRM-calc

IR-calc

∀Exp+Res

M-Res

LD-Q-Res

Q-Res

Ext. Q-Res

eFrege + ∀red

QRAT

𝖦

QU-Res

LQU-Res

LQU+-Res

Frege + ∀red

known lower bound

known strategy extraction

new simulation
known simulation

Figure 1 Hasse diagram for polynomial simulation order of QBF calculi [7, 3, 6, 18, 12, 2, 38, 13, 5].
In this diagram all proof systems below the first line are known to have strategy extraction, and all
below the second line have an exponential lower bound. G and QRAT have strategy extraction if
and only if P = PSPACE.

Our proofs crucially rely on a property of QBF proof systems known as strategy extraction.
Here, “strategy” refers to winning strategies of a set of PSPACE two-player games (see
Section 2 for more details) each of which corresponds exactly to some QBF. A proof system
is said to have strategy extraction if a strategy for the two-player game associated with a
QBF can be computed from a proof of the formula in polynomial time. Balabanov and
Jiang discovered [2] that Q-Resolution admitted a form of strategy extraction where a
circuit computing a winning strategy could be extracted in linear time from the proofs.
Strategy extraction was subsequently proven for many QBF proof systems (cf. Figure 1):
the expansion based systems ∀Exp+Res [7], IR-calc [7] and IRM-calc [7], Long-Distance
Q-Resolution [16], including with dependency schemes [16], Merge Resolution [5], Relaxing
Stratex [11] and C-Frege + ∀red systems including eFrege + ∀red [6]. Strategy extraction
also gained notoriety because it became a method to show Q-resolution lower bounds [7].
Beyersdorff et al. [6, 8] generalised this approach to more powerful proof systems, allowing
them to establish a tight correspondence between lower bounds for eFrege + ∀red and two
major open problems in circuit complexity and propositional proof complexity: they showed
that proving a lower bound for eFrege + ∀red is equivalent to either proving a lower bound
for P/poly or a lower bound for propositional eFrege. Chew conjectured [12] that this meant
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that all the aforementioned proof systems that had strategy extraction were very likely to
be simulated by eFrege + ∀red and showed an outline of how to use strategy extraction to
obtain the corresponding simulations.

We follow this outline in proving simulations for multiple systems by eFrege + ∀red. While
the strategy extraction for expansion based systems [7] has been known for a while using
the technique from Goultiaeva et. al [17], there currently is no intuitive way to formalise
this strategy extraction into a simulation proof. Here we specifically studied a new strategy
extraction technique given by Schlaipfer et al. [34], that creates local strategies for each
∀Exp+Res line. Inductively, we can affirm each of these local strategies and prove the full
strategy extraction this way. This local strategy extraction technique is based on arguments
of Suda and Gleiss [37], which allow it to be generalised to the expansion based system
IRM-calc. We thus manage to prove a simulation for ∀Exp+Res and generalise it to IR-calc
and then to IRM-calc. We also show a much more straight-forward simulation of M-Res and
an adaptation of the IRM-calc argument to LQU+-Res.

The remainder of the paper is structured as follows. In Section 2 we go over general
preliminaries and the definition of eFrege + ∀red. The remaining sections are each dedicated
to simulations of different calculi by eFrege + ∀red. In Section 3 we begin with a simulation
of M-Res as a relatively easy example. In Section 4 we show for expansion based systems,
how both an interpretation by in propositional logic and a local strategy is possible and
why that leads to a simulation by eFrege + ∀red. For IR-calc we state the essential lemmas of
the proof and for IRM-calc we detail which modifications are needed. In Section 5 we study
the strongest CDCL proof system LQU+-Res and explain why it is also simulated by eFrege
+ ∀red, using a similar argument to IRM-calc.

2 Preliminaries

2.1 Quantified Boolean Formulas

A Quantified Boolean Formula (QBF) is a propositional formula augmented with Boolean
quantifiers ∀, ∃ that range over the Boolean values ⊥, ⊤ (the same as 0, 1). Every propositional
formula is already a QBF. Let ϕ be a QBF. The semantics of the quantifiers are that:
∀xϕ(x) ≡ ϕ(⊥) ∧ ϕ(⊤) and ∃xϕ(x) ≡ ϕ(⊥) ∨ ϕ(⊤).

When investigating QBF in computer science we want to standardise the input formula.
In a prenex QBF, all quantifiers appear outermost in a (quantifier) prefix, and are followed
by a propositional formula, called the matrix. If every propositional variable of the matrix is
bound by some quantifier in the prefix we say the QBF is a closed prenex QBF. We often
want to standardise the propositional matrix, and so we can take the same approach as seen
often in propositional logic. A literal is a propositional variable (x) or its negation (¬x or
x̄). A clause is a disjunction of literals. Since disjunction is idempotent, associative and
commutative we can think of a clause simultaneously as a set of literals. The empty clause
is just false. A conjunctive normal form (CNF) is a conjunction of clauses. Again, since
conjunction is idempotent, associative and commutative a CNF can be seen as set of clauses.
The empty CNF is true, and a CNF containing an empty clause is false. Every propositional
formula has an equivalent formula in CNF, we therefore restrict our focus to closed PCNF
QBFs, that is closed prenex QBFs with CNF matrices.
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2.2 QBF Proof Systems

2.2.1 Proof Complexity

A proof system [14] is a polynomial-time checking function that checks that every proof maps
to a valid theorem. Different proof systems have varying strengths, in one system a theorem
may require very long proofs, in another the proofs could be considerably shorter. We use
proof complexity to analyse the strength of proof systems [26]. A proof system is said to have
an Ω(f(n))-lower bound, if there is a family of theorems such that shortest proof (in number
of symbols) of the family are bounded below by Ω(f(n)) where n is the size (in number of
symbols) of the theorem. Proof system p is said to simulate proof system q if there is a fixed
polynomial P (x) such that for every q-proof π of every theorem y there is a p-proof of y no
bigger than P (|π|) where |π| denotes the size of π. A stricter condition, proof system p is
said to p-simulate proof system q if there is a polynomial-time algorithm that takes q-proofs
to p-proofs preserving the theorem.

2.2.2 Extended Frege+∀-Red

Frege systems are “text-book” style proof systems for propositional logic. They consist of a
finite set of axioms and rules where any variable can be replaced by any formula (so each
rule and axiom is actually a schema). A Frege system needs also to be sound and complete.
Frege systems are incredibly powerful and can handle simple tautologies with ease. No lower
bounds are known for Frege systems and all Frege systems are p-equivalent [14, 33]. For
these reasons we can assume all Frege-systems can handle simple tautologies and syllogisms
without going into details.

Extended Frege (eFrege) takes a Frege system and allows the introduction of new variables
that do not appear in any previous line of the proof. These variables abbreviate formulas.
The rule works by introducing the axiom of v ↔ f for new variable v (not appearing in
the formula f). Alternatively one can consider eFrege as the system where lines are circuits
instead of formulas.

Extended Frege is a very powerful system, it was shown [27, 4] that any propositional
proof system f can be simulated by eFrege + ||ϕ|| where ϕ is a polynomially recognisable
axiom scheme. The QBF analogue is eFrege + ∀red, which adds the reduction rule to all
existing eFrege rules [6]. eFrege + ∀red is refutationally sound and complete for closed prenex
QBFs. The reduction rules allows one to substitute a universal variable in a formula with 0
or with 1 as long as no other variable appearing in that formula is right of it in the prefix.
Extension variables now must appear in the prefix and must be quantified right of the
variables used to define it, we can consider them to be defined immediately right of these
variables as there is no disadvantage to this.

2.3 QBF Strategies

With a closed prenex QBF Πϕ, the semantics of a QBF has an alternative definition in games.
The two-player QBF game has an ∃-player and a ∀-player. The game is played in order of
the prefix Π left-to-right, whoever’s quantifier appears must assign the quantified variable to
⊥ or ⊤. The existential player is trying to make the matrix ϕ become true. The universal
player is trying to make the matrix become false. Πϕ is true if and only if there winning
strategy for the ∃ player. Πϕ is false if and only if there winning strategy for the ∀ player.
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A strategy for a false QBF is a set of functions fu for each universal variable u on variables
left of u in the prefix. In a winning strategy the propositional matrix must evaluate to false
when every u is replaced by fu. A QBF proof system has strategy extraction if there is a
polynomial time program that takes in a refutation π of some QBF Ψ and outputs circuits
that represent the functions of a winning strategy.

A policy is similarly defined as a strategy but with partial functions for each universal
variables instead of a fully defined function.

3 Extended Frege+∀-Red p-simulates M-Res

In this section we show a first example of how the eFrege + ∀red simulation argument
works in practice for systems that have strategy extraction. Merge resolution provides a
straightforward example because the strategies themselves are very suitable to be managed
in propositional logic. In later theorems where we simulate calculi like IR-calc and IRM-calc,
representing strategies is much more of a challenge.

3.1 Merge Resolution
Merge resolution (M-Res) was first defined by Beyersdorff, Blinkhorn and Mahajan [5]. Its
lines combines clausal information with a merge map, for each universal variable. Merge
maps give a “local” strategy which when followed forces the clause to be true or the original
CNF to be false.

3.1.1 Definition of Merge Resolution
Each line of an M-Res proof consists of a clause on existential variables and partial universal
strategy functions for universal variables. These functions are represented by merge maps,
which are defined as follows. For universal variable u, let Eu be the set of existential variables
left of u in the prefix. A non-trivial merge map Mu

i is a collection of nodes in [i], where the
construction function Mu

i (j) is either in {⊥, ⊤} for leaf nodes or Eu × [j] × [j] for internal
nodes. The root r(u, i) is the highest value of all the nodes Mu

i . The strategy function
hu

i,j : {0, 1}Eu → {0, 1} maps assignments of existential variables Eu in the dependency set
of u to a value for u. The function hu

i,t for leaf nodes t is simply the truth value Mu
i (t). For

internal nodes a with Mu
i (a) = (y, b, c), we should interpret hu

i,a as “If y then hu
i,b, else hu

i,c”
or hu

i,a = (y ∧ hu
i,b) ∨ (¬y ∧ hu

i,c). In summary the merge map Mu
i (j) is a representation of

the strategy given by function hu
i,r(u,i).

The merge resolution proof system inevitably has merge maps for the same universal
variable interact, and we have two kinds of relations on pairs of merge maps.

▶ Definition 1. Merge maps Mu
j and Mu

k are said to be consistent if Mu
j (i) = Mu

k (i) for
each node i appearing in both Mu

j and Mu
k .

▶ Definition 2. Merge maps Mu
j and Mu

k are said to be isomorphic if is there exists a
bijection f from the nodes of Mu

j to the nodes of Mu
k such that if Mu

j (a) = (y, b, c) then
Mu

k (f(a)) = (y, f(b), f(c)) and if Mu
j (t) = p ∈ {⊥, ⊤} then Mu

k (f(t)) = p.

With two merge maps Mu
j and Mu

k , we define two operations as follows:
Select(Mu

j , Mu
k ) returns Mu

j if Mu
k is trivial (representing a “don’t care”), or Mu

j and
Mu

k are isomorphic and returns Mu
k if Mu

j is trivial and not isomorphic to Mu
j . If neither

Mu
j or Mu

k is trivial and the two are not isomorphic then the operation fails.
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Merge(x, Mu
j , Mu

k ) returns the map Mu
i with i > j, i > k when Mu

j , Mu
k are consistent

where if a is a node in Mu
j then Mu

i (a) = Mu
j (a) and if a is a node in Mu

k then
Mu

i (a) = Mu
k (a). Merge map Mu

i has a new node r(u, i) as a root node (which is greater
than the maximum node in each of Mu

i (a) or Mu
j (a)), and is defined as Mu

i (r(u, i)) =
(x, r(u, j), r(u, k)).

Proofs in M-Res consist of lines, where every line is a pair (Ci, {Mu
i | u ∈ U}). Here, Ci

is a purely existential clause (it contains only literals that are from existentially quantified
variables). The other part is a set containing merge maps for each universal variable (some
of the merge maps can be trivial, meaning they do not represent any function). Each line is
derived by one of two rules:
Axiom: Ci = {l | l ∈ C, var(l) ∈ E} is the existential subset of some clause C where C is

a clause in the matrix. If universal literals u, ū do not appear in C, let Mu
i be trivial.

If universal variable u appears in C then let i be the sole node of Mu
i with Mu

i (i) = ⊥.
Likewise if ¬u appears in C then let i be the sole node of Mu

i with Mu
i (i) = ⊤.

Resolution: Two lines (Cj , {Mu
j | u ∈ U}) and (Ck, {Mu

k | u ∈ U}) can be resolved to
obtain a line (Ci, | {Mu

i | u ∈ U}) if there is literal ¬x ∈ Cj and x ∈ Ck such that
Ci = Cj ∪ Ck \ {x, ¬x}, and every Mu

i can either be defined as Select(Mu
j , Mu

k ), when
Mu

j and Mu
k are isomorphic or one is trivial, or as Merge(x, Mu

j , Mu
k ) when x < u and

Mu
j and Mu

k are consistent.

3.2 Simulation of Merge Resolution
We now state the main result of this section.

▶ Theorem 3. eFrege + ∀red simulates M-Res.

For a false QBF Πϕ refuted by M-Res, the final set of merge maps represent a falsifying
strategy for the universal player, the strategy can be asserted by a proposition S that states
that all universal variables are equivalent to their strategy circuits. It then should be the
case that if ϕ is true, S must be false, a fact that can be proved propositionally, formally
ϕ ⊢ ¬S.

To build up to this proof we can inductively find a local strategy Si for each clause Ci

that appears in an M-Res line (Ci, {Mu
i }) such that ϕ ⊢ Si → Ci. Elegantly, Si is really

just a circuit expressing that each u ∈ U takes its value in Mu
i (if non-trivial). Extension

variables are used to represent these local strategy circuits and so the proof ends up as a
propositional extended Frege proof.

The final part of the proof is the technique suggested by Chew [12] which was originally
used by Beyersdorff et al. [6]. That is, to use universal reduction starting from the negation
of a universal strategy and arrive at the empty clause.

Proof.
Definition of extension variables. We create new extension variables for each node in every

non-trivial merge map appearing in a proof. su
i,j is created for the node j in merge map

Mu
i . su

i,t is defined as a constant when t is leaf node in Mu
i . Otherwise su

i,a is defined as
su

i,a := (y ∧ su
i,b) ∨ (¬y ∧ su

i,c), when Mu
i (j) = (y, b, c). Because y has to be before u in

the prefix, su
i,j is always defined before universal variable u.

Induction Hypothesis. It is easy for eFrege to prove
∧

u∈Ui
(u ↔ su

i,r(u,i)) → Ci, where r(u, i)
is the index of the root node of Merge map Mu

i . Ui is the subset of U for which Mu
i is

non-trivial.
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Base Case: Axiom. Suppose Ci is derived by axiom download of clause C. If u has a
strategy, it is because it appears in a clause and so u ↔ su

i,i, where su
i,i ↔ cu for cu ∈ ⊤, ⊥,

cu is correctly chosen to oppose the literal in C so that Ci is just the simplified clause of
C replacing all universal u with their cu. This is easy for eFrege to prove.

Inductive Step: Resolution. If Cj is resolved with Ck to get Ci with pivots ¬x ∈ Cj and
x ∈ Ck, we first show

∧
u∈Ui

(u ↔ su
i,r(u,i)) → Cj and

∧
u∈Ui

(u ↔ su
i,r(u,i)) → Ck, where

r(u, i) is the root index of the Merge map for u on line i. We resolve these together.
To argue that

∧
u∈Ui

(u ↔ su
i,r(u,i)) → Cj we prove by induction that we can replace

u ↔ su
j,r(u,j) with u ↔ su

i,r(u,i) one by one.
Induction Hypothesis. Ui is partitioned into W the set of adjusted variables and V the set

of variables yet to be adjusted.
(
∧

v∈V ∩Uj
(v ↔ sv

j,r(v,j))) ∧ (
∧

v∈W (v ↔ sv
i,r(v,i))) → Cj

Base Case. (
∧

v∈Ui∩Uj
(v ↔ sv

j,r(v,j)) → Cj is the premise of the (outer) induction hypothesis,
since Uj ⊆ Ui.

Inductive Step. Starting with (
∧

v∈V ∩Uj
(v ↔ sv

j,r(v,j))) ∧ (
∧

w∈W (w ↔ sw
i,r(w,i))) → Cj We

pick a u ∈ V to show (u ↔ sw
i,r(u,i))∧(

∧v ̸=u
v∈V ∩Uj

(v ↔ sv
j,r(v,j)))∧(

∧
w∈W (w ↔ sw

i,r(w,i))) →
Cj We have four cases:
1. Select chooses Mu

i = Mu
j

2. Select chooses Mu
i = Mu

k because Mu
j is trivial

3. Select chooses Mu
i = Mu

k because there is an isomorphism f that maps Mu
j to Mu

k .
4. Merge so that Mu

i is the merge of Mu
j and Mu

k over pivot x

In (1) we prove inductively from the leaves to the root that su
i,t ↔ su

j,t. Eventually, we
end up with su

i,r(u,i) ↔ su
j,r(u,j). Then (u ↔ su

j,r(u,j)) can be replaced by (u ↔ su
i,r(u,i)).

In (2) we are simply weakening the implication as (u ↔ su
j,r(u,j)) never appeared before.

In (3) we prove inductively from the leaves to the root that su
i,f(t) = su

k,f(t) = su
j,t.

Eventually, we end up with su
i,f(r(u,i)) = su

k,f(r(u,i)) = su
j,r(u,i). Then (u ↔ su

j,r(u,j)) can
be replaced by (u ↔ su

i,f(r(u,j))). As f is an isomorphism f(r(u, j)) = r(u, k) and because
Select is used r(u, k) = r(u, i). Therefore we have (u ↔ su

i,r(u,i)).
In (4) we prove inductively that for each node t in Mu

j we have (su
i,t ↔ su

j,t). This is true
in all leaf nodes as su

i,t and su
j,t have the same constant value. For intermediate nodes a,

su
j,a := (y ∧ su

j,b) ∨ (¬y ∧ su
j,c) where b and c are other nodes. Since Mu

i is consistent with
Mu

j then su
i,a := (y ∧ su

i,b) ∨ (¬y ∧ su
i,c) and since su

i,b ↔ su
j,b and su

i,c ↔ su
j,c by induction

hypothesis, we have su
i,a ↔ su

j,a. eventually we have su
i,r(u,j) ↔ su

j,r(u,j). However we need
to replace su

j,r(u,j) with su
i,r(u,i), not su

i,r(u,j). For this we use the definition of merging that
x → (su

i,r(u,i) ↔ su
i,r(u,j)) and so we have (su

i,r(u,i) ↔ su
j,r(u,j)) ∨ ¬x but the ¬x is absorbed

by the Cj in right hand side of the implication.
Finalise Inner Induction. At the end of this inner induction, we have

∧
u∈Ui

(u ↔ su
i,r(u,i)) →

Cj and symmetrically
∧

u∈Ui
(u ↔ su

i,r(u,i)) → Ck. We can then prove
∧

u∈Ui
(u ↔

su
i,r(u,i)) → Ci.

Finalise Outer Induction. Note that we have done three nested inductions on the nodes in
a merge maps, on the the universal variables, and then on the lines of an M-Res proof.
Nonetheless, this gives a linear size eFrege proof in the number of nodes appearing in
the proof. In M-Res the final line will be the empty clause and its merge maps. The
induction gives us

∧
u∈Ul

(u ↔ su
l,r(u,l)) → ⊥. In other words, if Ul = {y1, . . . yn}, where

yi appears before yi+1 in the prefix,
∨n

i=1(yi ⊕ syi

l,r(yi,l)).
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We derive (0⊕s
yn−k+1
l,r(yn−k+1,l))∨

∨n−k
i=1 (yi⊕syi

l,r(yi,l)) and (1⊕s
yn−k+1
l,r(yn−k+1,l))∨

∨n−k
i=1 (yi⊕syi

l,r(yi,l))
from reduction of

∨n−k+1
i=1 (yi ⊕syi

l,r(yi,l)). We can resolve both with the easily proved tautology∨n−k
i=1 (yi ⊕ syi

l,r(yi,l)). We continue this until we reach the empty disjunction. ◀

4 Extended Frege+∀-Red p-simulates Expansion Based Systems

4.1 Expansion-Based Resolution Systems
The idea of an expansion based QBF proof system is to utilise the semantic identity:
∀uϕ(u) = ϕ(0) ∧ ϕ(1), to replace universal quantifiers and their variables with propositional
formulas. With ∀u∃xϕ(u) = ∃xϕ(0)∧∃xϕ(1) the x from ∃xϕ(0) and from ∃xϕ(1) are actually
different variables. The way to deal with this while maintaining prenex normal form is to
introduce annotations that distinguish one x from another.

▶ Definition 4.
1. An extended assignment is a partial mapping from the universal variables to {0, 1, ∗}.

We denote an extended assignment by a set or list of individual replacements i.e. 0/u, ∗/v

is an extended assignment.
2. An annotated clause is a clause where each literal is annotated by an extended assignment

to universal variables.
3. For an extended assignment σ to universal variables we write lrestrictl(σ) to denote an

annotated literal where restrictl(σ) = {c/u ∈ σ | lv(u) < lv(l)}.
4. Two (extended) assignments τ and µ are called contradictory if there exists a variable

x ∈ dom(τ) ∩ dom(µ) with τ(x) ̸= µ(x).

4.1.1 Definitions
The most simple way to use expansion would be to expand all universal quantifiers and list
every annotated clause. The first expansion based system we consider, ∀Exp+Res, has a
mechanism to avoid a this potential exponential explosion in some (but not all) cases. An
annotated clause is created and then checked to see if it could be obtained from expansion.
This way a refutation can just use an unsatisfiable core rather than all clauses from a fully
expanded matrix.

(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
∪ {τ(l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is an assignment to all universal variables.

C1 ∪ {xτ } C2 ∪ {¬xτ }
(Res)

C1 ∪ C2

Figure 2 The rules of ∀Exp+Res (adapted from [21]).

The drawback of ∀Exp+Res is that one might end up repeating almost the same derivations
over and over again if they vary only in changes in the annotation which make little difference
in that part of the proof. This was used to find a lower bound to ∀Exp+Res for a family of
formulas easy in system Q-Res [21]. To rectify this, IR-calc improved on ∀Exp+Res to allow a
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delay to the annotations in certain circumstances. Annotated clauses now have annotations
with “gaps” where the value of the universal variable is yet to be set. When they are set there
is the possibility of choosing both assignments without the need to rederive the annotated
clauses with different annotations.

▶ Definition 5. Given two partial assignments (or partial annotations) α and β. The
completion α ◦ β, is a new partial assignment, where

α ◦ β(u) =


α(u) if u ∈ dom(α)
β(u) if u ∈ dom(β) \ dom(α)
unassigned otherwise

For α an assignment of the universal variables and C an annotated clause we define
inst(α, C) :=

∨
lτ ∈C lrestrictl(τ ◦ α). Annotation α here gives values to unset annotations where

one is not already defined. Because the same α is used throughout the clause, the previously
unset values gain consistent annotations, but mixed annotations can occur due to already
existing annotations.

(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where the
notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪ C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Figure 3 The rules of IR-calc [7].

The definition of IR-calc is given in Figure 3. Resolved variables have to match exactly,
including that missing values are missing in both pivots. However, non-contradictory but
different annotations may still be used for a later resolution step after the instantiation rule
is used to make the annotations match the annotations of the pivot.

4.1.2 Local Strategies and Policies
The work from Schlaipfer et al. [34] creates a conversion of each annotated clause C into
a propositional formula con(C) defined in the original variables of ϕ (so without creating
new annotated variables). C appearing in a proof asserts that there is some (not necessarily
winning) strategy for the universal player to force con(C) to be true under ϕ. The idea is
that for each line C in an ∀Exp+Res refutation of Πϕ there is some local strategy S such
that S ∧ ϕ → con(C).

The construction of the strategy is formed from the structure of the proof and follows the
semantic ideas of Suda and Gleiss [37], in particular the Combine operation for resolution.
The extra work by Schlaipfer et al. is that the strategy circuits (for each u) can be constructed
in polynomial time, and can be defined in variables left of ui in the prefix.

Let u1 . . . un be all universal variables in order. For each line in an ∀Exp+Res proof we
have a strategy which we will here call S. For each ui there is an extension variable ValiS ,
before ui, that represents the value assigned to ui by S (under an assignment of existential
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variables). Using these variables, we obtain a propositional formula representing the strategy
as S =

∧n
i=1 ui ↔ ValiS . Additionally, we define a conversion of annotated logic in ∀Exp+Res

to propositional logic as follows. For annotations τ let anno(τ) =
∧

1/ui∈τ ui ∧
∧

0/ui∈τ ūi.
We convert annotated literals as con(lτ ) = l ∧ anno(τ) and clauses as con(C) =

∨
l∈C con(l).

4.2 Simulating IR-calc
The conversion needs to be revised for IR-calc. In particular the variables not set in the
annotations need to be understood. The solution is to basically treat unset as a third value,
although in practice this requires new Seti

S variables (left of ui) which state that the ith
universal variable is set by policy S. We include these variables in our encoding of policy S

and let S =
∧n

i=1 Seti
S → (ui ↔ ValiS). The conversion of annotations, literals and clauses

also has to be changed. For annotations τ let

annox,S(τ) =
∧

1/ui∈τ (Seti
S ∧ui) ∧

∧
0/ui∈τ (Seti

S ∧ūi) ∧
∧ui /∈dom(τ)

ui<Πx ¬ Seti
S .

Let conS(lτ ) = l ∧ annox,S(τ) and conS(C) =
∨

l∈C conS(l) similarly to before, we just
reference a particular policy S. This means that we again want S ∧ ϕ → conS(C) for each
line, note that Seti

S variables are defined in their own way.
The most crucial part of simulating IR-calc is that after each application of the resolution

rule we can obtain a working policy.

▶ Lemma 6. Suppose, there are policies L and R such that L → conL(C1 ∨ ¬xτ ) and
R → conR(C1 ∨ xτ ) then there is a policy B such that B → conB(C1 ∨ C2) can be obtained
in a short eFrege proof.

The proof of the simulation of IR-calc relies on Lemma 6. To prove this we have to first
give the precise definitions of the policy B based on policies L and R. Schlaipfer et al.’s
work [34] is used to crucially make sure the strategy B, respects the prefix ordering.

4.2.1 Building the Strategy
We start to define ValiB and Seti

B on lower i values first. In particular we will always start
with 1 ≤ i ≤ m where um is the rightmost universal variable still before x in the prefix.
Starting from i = 0, the initial segments of conx,L(τ) and conx,R(τ) may eventually reach
such a point j where one is contradicted. Before this point L and R are detailing the same
strategy (they may differ on Vali but only when Seti is false) so B can be played as both
simultaneously as L and R. Without loss of generality, as soon as L contradicts annox,L(τ),
we know that conL(xτ ) is not satisfied by L and thus it makes sense for B to copy L, at this
point and the rest of the strategy as it will satisfy conB(C1). It is entirely possible that we
reach i = m and not contradict either conx,L(τ) or conx,R(τ). Fortunately after this point in
the game we now know the value the existential player has chosen for x. We can use the x

value to decide whether to play B as L (if x is true) or R (if x is false).
To build the circuitry for ValiB and Seti

B we will introduce other circuits that will act
as intermediate. First we will use constants Seti

τ and Valiτ that make annox,S(τ) equivalent
to

∧
ui<Πx(Seti

S ↔ Seti
τ ) ∧ Seti

τ → (ui ↔ Valiτ ). This mainly makes our notation easier.
Next we will define circuits that represent two strategies being equivalent up to the ith
universal variable. This is a generalisation of what was seen in the local strategy extraction
for ∀Exp+Res [34].
Eq0

f=g := 1, Eqi
f=g := Eqi−1

f=g ∧(Seti
f ↔ Seti

g) ∧ (Seti
f → (Valif ↔ Valig)).
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We specifically use this for a trigger variable that tells you which one of L and R differed
from τ first.
Dif0

L := 0 and Difi
L := Difi−1

L ∨(Eqi−1
R=τ ∧((Seti

L ⊕ Seti
τ ) ∨ (Seti

τ ∧(ValiL ⊕ Valiτ ))))
Dif0

R := 0 and Difi
R := Difi−1

R ∨(Eqi−1
L=τ ∧((Seti

R ⊕ Seti
τ ) ∨ (Seti

τ ∧(ValiR ⊕ Valiτ ))))
Note that Difi

L and Difi
R can both be true but only if they start to differ at the same

point.
Suda and Gleiss’s Combine operation allows one to construct a bottom policy B that

chooses between the left and right policies.

▶ Definition 7 (Definition of resolvent policy for IR-calc). For 0 ≤ i ≤ m, define ValiB and
Seti

B such ValiB = ValiR and Seti
B = Seti

R if

¬
i−1
Dif

L
∧(

i−1
Dif

R
∨(¬

i

Set
τ

∧¬
i

Set
L

∧
i

Set
R

) ∨ (
i

Set
τ

∧
i

Set
L

∧(
i

Val
τ

↔
i

Val
L

)))

and ValiB = ValiL and Seti
B = Seti

L, otherwise.
For i > m, define ValiB and Seti

B such ValiB = ValiR and Seti
B = Seti

R if

¬
m

Dif
L

∧(
m

Dif
R

∨x̄)

and ValiB = ValiL and Seti
B = Seti

L, otherwise.

We will now define variables BL and BR. These say that B is choosing L or R, respectively.
These variables can appear rightmost in the prefix, as they will be removed before reduction
takes place. The purpose of BL (resp. BR) is that conB becomes the same as conL (resp.
conR).

BL :=
∧n

i=1(Seti
B ↔ Seti

L) ∧ (Seti
B → (ValiB ↔ ValiL))

BR :=
∧n

i=1(Seti
B ↔ Seti

R) ∧ (Seti
B → (ValiB ↔ ValiR))

We have not fully defined B here. The important points are that B is set up so that it
either takes values in L or R , i.e. B → BL ∨ BR, specifically we need that whenever the
propositional formula annox,B(τ) is satisfied, B = BL when x, and B = BR when ¬x. The
variables Seti

B and ValiB that comprise the policy are carefully constructed to come before ui.
A number of technical lemmas involving all these definitions is necessary for the simulation.

▶ Lemma 8. For 0 < j ≤ m the following propositions have short derivations in Extended
Frege:

Difj
L →

∨j
i=1 Difi

L ∧¬ Difi−1
L

Difj
R →

∨j
i=1 Difi

R ∧¬ Difi−1
R

¬ Eqj
f=g →

∨j
i=1 ¬ Eqi

f=g ∧ Eqi−1
f=g. For f, g ∈ {L, R, τ}.

▶ Lemma 9. For 0 ≤ i ≤ j ≤ m the following propositions that describe the monotonicity of
Dif have short derivations in Extended Frege:

Difi
L → Difj

L

Difi
R → Difj

R

¬ Eqi
f=g → ¬ Eqj

f=g

▶ Lemma 10. For 0 ≤ i ≤ j ≤ m the following propositions describe the relationships
between the different extension variables and have short derivations in Extended Frege:

Eqi
L=τ → ¬ Difi

L

Difi
L ∧¬ Difi−1

L → Eqi−1
R=τ

Difi
L ∧¬ Difi−1

L → ¬ Difi−1
R
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Eqi
R=τ → ¬ Difi

R

Difi
R ∧¬ Difi−1

R → Eqi−1
L=τ

Difi
R ∧¬ Difi−1

R → ¬ Difi−1
L

▶ Lemma 11. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

L ∧ Difi
L → ¬ annox,L(τ)

R ∧ Difi
R → ¬ annox,R(τ)

▶ Lemma 12. For any 1 ≤ j ≤ m the following propositions are true and have a short
Extended Frege proof.

¬ Difj
L ∧¬ Difj

R → Eqj
L

¬ Difj
L ∧¬ Difj

R → Eqj
R

¬ Difj
L ∧¬ Difj

R → (Setj
B ↔ Setj

L)
¬ Difj

L ∧¬ Difj
R → Seti

B → (ValiB ↔ ValiL)
¬ Difj

L ∧¬ Difj
R → (Setj

B ↔ Setj
R)

¬ Difj
L ∧¬ Difj

R → Seti
B → (ValjB ↔ ValjR)

▶ Lemma 13. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

Difi
L → (ValiB ↔ ValiL) ∧ (Seti

B ↔ Seti
L)

¬ Difi
L ∧ Difi

R → (ValiB ↔ ValiR) ∧ (Seti
B ↔ Seti

R)

▶ Lemma 14. The following propositions are true and have short Extended Frege proofs.
B ∧ Difm

L → BL

B ∧ ¬ Difm
L ∧ Difm

R → BR

▶ Lemma 15. The following propositions are true and have short Extended Frege proofs.
B ∧ ¬ Difm

L ∧¬ Difm
R → BL ∨ ¬x

B ∧ ¬ Difm
L ∧¬ Difm

R → BR ∨ x

▶ Lemma 16. The following proposition is true and has a short Extended Frege proof.
B → BL ∨ BR

Proof. This roughly says that B either is played entirely as L or is played as R. We can prove
this by combining Lemmas 14 and 15, it essentially is a case analysis in formal form. ◀

▶ Lemma 17. The following propositions are true and have short Extended Frege proofs.
B ∧ anno(τ) ∧ x → BL,
B ∧ anno(τ) ∧ ¬x → BR

Proof. We start with B ∧¬ Difm
L ∧¬ Difm

R → BL ∨¬x and B ∧¬ Difm
L ∧¬ Difm

R → BR ∨x. It
remains to remove ¬ Difm

L ∧¬ Difm
R from the left hand side. This is where we use L ∧ Difi

L →
¬ annoL(τ) and R ∧ Difi

R → ¬ annoR(τ) from Lemma 11. These can be simplified to
B ∧ BL ∧ Difm

L → ¬ annoB(τ) and B ∧ BR ∧ Difm
R → ¬ annoB(τ). The BL and BR can be

removed by using B ∧ Difm
L → BL and B ∧ ¬ Difm

L ∧ Difm
R → BR and we can end up with

B → ¬ annoB(τ) ∨ (¬ Difm
R ∧¬ Difm

L ) we can use this to resolve out (¬ Difm
R ∧¬ Difm

L ) and
get B ∧ anno(τ) ∧ x → BL and B ∧ anno(τ) ∧ ¬x → BR. ◀

Proof of Lemma 6. Since B ∧ BL → L and B ∧ BR → R, L → conL(C1 ∨ ¬xτ ) and
R → conL(C2 ∨ xτ ) imply B ∧ BL → conB(C1 ∨ C2) ∨ annox,B(τ), B ∧ BR → conB(C1 ∨
C2) ∨ annox,B(τ), B ∧ BL → conB(C1 ∨ C2) ∨ ¬x and B ∧ BR → conB(C1 ∨ C2) ∨ x.
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We combine B → BL ∨ BR with B ∧ BL → conB(C1 ∨ C2) ∨ annox,B(τ) (removing
BL) and B ∧ BR → conB(C1 ∨ C2) ∨ annox,B(τ) (removing BR) to gain B → conB(C1 ∨
C2) ∨ annox,B(τ). Next, we derive B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ). Policy B is set
up so that B ∧ annox,B(τ) ∧ x → BL and B ∧ annox,B(τ) ∧ ¬x → BR have short proofs.
We resolve these, respectively, with B ∧ BR → conB(C1 ∨ C2) ∨ x (on x) to obtain B ∧
annox,B(τ) ∧ BR → BL ∨ conB(C1 ∨ C2), and with B ∧ BL → conB(C1 ∨ C2) ∨ ¬x (on ¬x)
to obtain B ∧ annox,B(τ) ∧ BL → BR ∨ conB(C1 ∨ C2). Putting these together allows us to
remove BL and BR, deriving B ∧ annox,B(τ) → conB(C1 ∨ C2), which can be rewritten as
B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ).

We now have two formulas B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ) and B → conB(C1 ∨ C2) ∨
annox,B(τ), which resolve to get B → conB(C1 ∨ C2). ◀

▶ Theorem 18. eFrege + ∀red p-simulates IR-calc.

Proof. We prove by induction that every annotated clause C appearing in an IR-calc proof has
a local policy S such that ϕ ⊢eFrege S → conS(C) and this can be done in a polynomial-size
proof.

Axiom. Suppose C ∈ ϕ and D = inst(C, τ) for partial annotation τ . We construct policy B

such that B → conB(D).

j

Set
B

=
{

1 if uj ∈ dom(τ)
0 uj /∈ dom(τ)

, ValjB =
{

1 if 1/uj ∈ τ

0 if 0/uj ∈ τ

Instantiation. Suppose we have an instantiation step for C on a single universal variable
ui using instantiation 0/ui, so the new annotated clause is D = inst(C, 0/ui). From the
induction hypothesis T → conT (C) we will develop B such that B → conB(D).

j

Set
B

=
{

1 if j = i

Setj
T if j ̸= i

, ValjB =
{

ValjT ∧ Setj
T if j = i

ValjT if j ̸= i

ValjT ∧ Setj
T becomes ValjT ∨¬ Setj

T for instantiation by 1/uj . Either case means B satisfies
the same annotations anno as T appearing in our converted clauses conB(C) and conB(D),
proving the rule as an inductive step.

Resolution. See Lemma 6.
Contradiction. At the end of the proof we have T → conT (⊥). T is a policy, so we turn

it into a full strategy B by having for each i: ValiB ↔ (ValiT ∧ Seti
T ) and Seti

B = 1.
Effectively this instantiates ⊥ by the assignment that sets everything to 0 and we can
argue that B → conB(⊥) although conB(⊥) is just the empty clause. So we have ¬B.
But ¬B is just

∨n
i=1(ui ⊕ ValiB). Furthermore, just as in Schlaipfer et al.’s work , we have

been careful with the definitions of the extension variables ValiB so that they are left of
ui in the prefix. In eFrege + ∀red we can use the reduction rule (this is the first time we
use the reduction rule). We show an inductive proof of

∨n−k
i=1 (ui ⊕ ValiB) for increasing k

eventually leaving us with the empty clause. This essentially is where we use the ∀-Red
rule. Since we already have

∨n
i=1(ui ⊕ ValiB) we have the base case and we only need to

show the inductive step.

We derive from
∨n+1−k

i=1 (ui ⊕ ValiB) both (0 ⊕ Valn−k+1
B ) ∨

∨n−k
i=1 (ui ⊕ ValiB) and (1 ⊕

Valn−k+1
B ) ∨

∨n−k
i=1 (ui ⊕ ValiB) from reduction. We can resolve both with the easily proved

tautology (0 ↔ Valn−k+1
B ) ∨ (1 ↔ Valn−k+1

B ) which allows us to derive
∨n−k

i=1 (ui ⊕ ValiB).
We continue this until we reach the empty disjunction. ◀
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▶ Corollary 19. eFrege + ∀red p-simulates ∀Exp+Res.

While this can be proven as a corollary of the simulation of IR-calc, a more direct
simulation can be achieved by defining the resolvent strategy by removing the Seti variables
(i.e. by considering them as always true).

4.3 Simulating IRM-calc

4.3.1 Definition

IRM-calc was designed to compress annotated literals in clauses in order simulate LD-Q-Res.
Like that system it uses the ∗ symbol, but since universal literals do not appear in an
annotated clause, the ∗ value is added to the annotations, 0/u, 1/u, ∗/u being the first three
possibilities in an extended annotation (the fourth being when u does not appear in the
annotation).

Axiom and instantiation rules as in IR-calc in Figure 3.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ, C1) ∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ
(Merging)

C ∨ bξ

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ} ∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c ̸= d}

Figure 4 The rules of IRM-calc.

The rules of IRM-calc as given in Figure 4, become more complicated as a result of the
∗/u. In particular resolution is no longer done between matching pivots but matching is
done internally in the resolution steps. This is to prevent variables resolving with matching
∗ annotations. Allowing such resolution steps would be unsound in general, as these ∗
annotations show that the universal variables are set according to some function, but when
appearing in two different literals the functions could be completely different. Resolutions
where one pivot literal has a ∗/u annotation means that the other pivot literal must not have
u in its annotation’s domain. The intuition is that the unset u is given a ∗ value during the
resolution but it can be controlled to be exactly the same ∗ as in the other pivot. A 0/u, 1/u

or ∗/u value cannot be given a new ∗ value so cannot match the other ∗/u annotation.
It is in IRM-calc where the positive Set literals introduced in the simulation of IR-calc

become useful. In most ways Seti
S asserts the same things as ∗/ui, that ui is given a value,

but this value does not have to be specified.

4.3.2 Conversion, Policies and Simulation

The first major change from IR-calc is that while conS worked on three values in IR-calc, in
IRM-calc we effectively run in four values Seti

S , ¬ Seti
S , Seti

S ∧ui and Seti
S ∧¬ui. Seti

S is the
new addition deliberately ambiguous as to whether ui is true or false. Readers familiar with
the ∗ used in IRM-calc may notice why Seti

S works as a conversion of ∗/ui, as Seti
S is just

saying our policy has given a value but it may be different values in different circumstances.
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Like in the case of IR-calc, most work needs to be done in the IRM-calc resolution steps,
although here it is even more complicated. A resolution step in IRM-calc is in two parts.
Firstly C1 ∨ ¬xτ⊔σ, C2 ∨ xτ⊔ξ are both instantiated (but by ∗ in some cases), secondly they
are resolved on a matching pivot. We simplify the resolution steps so that σ and ξ only
contain ∗ annotations, for the other constant annotations that would normally be found in
these steps suppose we have already instantiated them in the other side so that they now
appear in τ (this does not affect the resolvent).

Again we assume that there are policies L and R such that L → conL(C1 ∨ ¬xτ⊔σ) and
R → conR(C2 ∨xτ⊔ξ). We know that if L falsifies annox,L(τ ⊔ σ) then conL(C1) and likewise
if R falsifies annox,R(τ ⊔ ξ) then conR(C2) is satisfied. These are the safest options, however
this leaves cases when L satisfies annox,L(τ ⊔ σ) and R satisfies annox,R(τ ⊔ ξ) but L and R

are not equal. This happens either when Seti
L and ¬ Seti

R both occur for ∗/ui ∈ σ or when
¬ Seti

L and Seti
R both occur for ∗/ui ∈ ξ.

This would cause issues if B had to choose between L and R to satisfy conB(C1 ∨ C2).
Fortunately, we are not trying to satisfy conB(C1 ∨ C2) but conB(inst(ξ, C1) ∨ inst(σ, C2)), so
we have to choose between a policy that will satisfy conB(inst(ξ, C1)) and a policy that will
satisfy conB(inst(σ, C2)). By borrowing values from the opposite policy we obtain a working
new policy that does not have to choose between left and right any earlier than we would
have for IR-calc.

▶ Theorem 20. eFrege + ∀red simulates IRM-calc.

▶ Corollary 21. eFrege + ∀red simulates LD-Q-Res.

5 Extended Frege+∀-Red p-simulates LQU+-Res

5.1 QCDCL Resolution Systems
The most basic and important CDCL system is Q-resolution (Q-Res) by Kleine Bün-
ing et al. [25]. Long-distance resolution (LD-Q-Res) appears originally in the work of
Zhang and Malik [40] and was formalized into a calculus by Balabanov and Jiang [2]. It
merges complementary literals of a universal variable u into the special literal u∗. These
special literals prohibit certain resolution steps. QU-resolution (QU-Res) [38] removes the
restriction from Q-Res that the resolved variable must be an existential variable and allows
resolution of universal variables. LQU+-Res [3] extends LD-Q-Res by allowing short and long
distance resolution pivots to be universal, however, the pivot is never a merged literal z∗.
LQU+-Res encapsulates Q-Res, LD-Q-Res and QU-Res.

5.2 Conversion to Propositional Logic and Simulation
LQU+-Res and IRM-calc are mutually incomparable in terms of proof strength, however both
share enough similarities to get the simulation working. Once again we can use Seti variables
to represent an u∗

i , and a ¬ Seti
S to represent that policy S chooses not to issue a value to ui.

For any set of universal variables U , let annox,S(U) =
∧uj /∈U

uj<x ¬ Setj
S ∧

∧uj∈U
uj<x Setj

S . Note
that we do not really need to add polarities to the annotations, these are taken into account
by the clause literals. Literals u and ū do not need to be assigned by the policy, they
are now treated as a consequence of the the CNF. Because they can be resolved we treat
them like existential variables in the conversion. For universal variable ui, conS,C(ui) =
ui∧¬ Seti

S ∧ annoui,S({u | u∗ ∈ C}) and conS,C(¬ui) = ¬ui∧¬ Seti
S ∧ annoui,S({v | v∗ ∈ C}).

We reserve Setj
S for starred literals as they cannot be removed. For existential literal x,
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conS,C(x) = x ∧ annox,S({u | u∗ ∈ C}). Finally, conS,C(u∗) = ⊥, because we do not treat u∗

as a literal but part of the “annotation” to literals right of it. Also, u∗ cannot be resolved but
it automatically reduced when no more literals are to the right of it. For clauses in LQU+-Res,
we let conS(C) =

∨
l∈C conS,C(l). In summary, in comparison to IRM-calc the conversion

now includes universal variables and gives them annotations, but removes polarities from the
annotations. Policies still remain structured as they were for IR-calc, with extension variables
ValiS and Seti

S , where S =
∧n

i=1 Seti
S → (ui ↔ ValiS).

▶ Theorem 22. eFrege + ∀red simulates LQU+-Res.

6 Conclusion

Our work reconciles many different QBF proof techniques under the single system eFrege
+ ∀red. Although eFrege + ∀red itself is likely not a good system for efficient proof checking,
our results have implications for other systems that are more promising in this regard, such
as QRAT, which inherits these simulations. In particular, QRAT’s simulation of ∀Exp+Res is
upgraded to a simulation of IRM-calc, and we do not even require the extended universal
reduction rule. Existing QRAT checkers can be used to verify converted eFrege + ∀red
proofs. Further, extended QU-resolution is polynomially equivalent to eFrege + ∀red [12],
and has previously been proposed as a system for unified QBF proof checking [22]. Since
our simulations split off propositional inference from a standardised reduction part at the
end, another option is to use (highly efficient) propositional proof checkers instead. Our
simulations use many extension variables that are known to negatively impact the checking
time of existing tools such as DRAT-trim, but one may hope that they can be refined to
become more efficient in this regard.

There are other proof systems, particularly ones using dependency schemes, such as
Q(Drrs)-Res and LD-Q(Drrs)-Res that have strategy extraction [31]. Local strategy extraction
and ultimately a simulation by eFrege + ∀red seem likely for these systems, whether it can be
proved directly or by generalising the simulation results from this paper.
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A Appendix

A.1 Proof of Simulation of IR-calc
▶ Lemma 8. For 0 < j ≤ m the following propositions have short derivations in Extended
Frege:

Difj
L →

∨j
i=1 Difi

L ∧¬ Difi−1
L

Difj
R →

∨j
i=1 Difi

R ∧¬ Difi−1
R

¬ Eqj
f=g →

∨j
i=1 ¬ Eqi

f=g ∧ Eqi−1
f=g. For f, g ∈ {L, R, τ}.

Proof.
Induction Hypothesis on j. Difj

L →
∨j

i=1 Difi
L ∧¬ Difi−1

L has an O(j)-size proof.
Base Case j = 1. Dif1

L → Dif1
L is a basic tautology that Frege can handle, Dif0

L is false by
definition so Frege can assemble Dif1

L → Dif1
L ∧¬ Dif0

L.
Inductive Step j + 1. ¬ Difj

L ∨ Difj
L and Difj+1

L → Difj+1
L are tautologies that Frege

can handle. Putting them together we get Difj+1
L → Difj+1

L ∧(¬ Difj
L ∨ Difj

L) and
weaken to Difj+1

L → (Difj+1
L ∧¬ Difj

L) ∨ Difj
L. Using the induction hypothesis, Difj

L →∨j
i=1 Difi

L ∧¬ Difi−1
L , we can change this tautology to

Difj+1
L → (Difj+1

L ∧¬ Difj
L) ∨

∨j
i=1 Difi

L ∧¬ Difi−1
L

Note that since ¬ Dif0
R, Eq0

L=τ⊔ξ, Eq0
L=τ⊔σ are all true . The proofs for Difj

R, ¬ Eqj
L=τ⊔σ

and ¬ Eqj
R=τ⊔ξ are identical modulo the variable names. ◀
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▶ Lemma 9. For 0 ≤ i ≤ j ≤ m the following propositions that describe the monotonicity of
Dif have short derivations in Extended Frege:

Difi
L → Difj

L

Difi
R → Difj

R

¬ Eqi
f=g → ¬ Eqj

f=g

Proof. For DifL and DifR,
Induction Hypothesis on j. Difi

L → Difj
L has an O(j) proof.

Base Case j = i. Difi
L → Difi

L is a tautology that Frege can handle.
Inductive Step j + 1. Difj+1

L := Difj
L ∨A where expression A depends on the domain of

uj+1. Therefore in all cases Difj
L → Difj+1

L is a straightforward corollary in Frege. Using
the induction hypothesis Difi

L → Difj
L we can get Difi

L → Difj+1
L . The proof is symmetric

for R.
For ¬ Eqf=g,

Induction Hypothesis on j. ¬ Eqi
f=g → ¬ Eqj

f=g has an O(j) proof.
Base Case j = i. ¬ Eqi

f=g → ¬ Eqi
f=g is a tautology that Frege can handle.

Inductive Step j + 1. Eqj+1
f=g := Eqj

f=g ∧A where expression A depends on the domain of
uj+1. Therefore in all cases ¬ Eqj

f=g → ¬ Eqj+1
f=g is a straightforward corollary in Frege.

Using the induction hypothesis ¬ Eqi
f=g → ¬ Eqj

f=g we can get ¬ Eqi
f=g → ¬ Eqj+1

f=g. ◀

▶ Lemma 10. For 0 ≤ i ≤ j ≤ m the following propositions describe the relationships
between the different extension variables.

Eqi
L=τ → ¬ Difi

L

Difi
L ∧¬ Difi−1

L → Eqi−1
R=τ

Difi
L ∧¬ Difi−1

L → ¬ Difi−1
R

Eqi
R=τ → ¬ Difi

R

Difi
R ∧¬ Difi−1

R → Eqi−1
L=τ

Difi
R ∧¬ Difi−1

R → ¬ Difi−1
L

Proof.
Induction Hypothesis on i. Eqi

L=τ → ¬ Difi
L in an O(i)-size eFrege proof.

Base Case i = 0. Difi
L is defined as 0 so ¬ Difi

L is true and trivially implied by Eqi
L=τ .

Frege can manage this.
Inductive Step i + 1. If Seti+1

τ is false then Eqi+1
L=τ is equivalent to Eqi

L=τ ∧¬ Seti+1
L and

¬ Difi+1
L is equivalent to ¬ Difi

L ∧¬ Seti+1
L ∨¬ Eqi

L=τ . If Seti+1
τ is true then Eqi+1

L=τ

is equivalent to Eqi
L=τ ∧ Seti+1

L ∧(Vali+1
L ↔ Vali+1

τ ) and ¬ Difi+1
L is equivalent to

¬ Difi
L ∧ Seti+1

L ∧(Vali+1
L ↔ Vali+1

τ ) ∨ ¬ Eqi
L=τ . Therefore using the induction hypothesis

Eqi
L=τ → ¬ Difi

L. Similarly for R.

The formulas Difi
L ∧¬ Difi−1

L → Eqi−1
R=τ are simple corollaries of the inductive definition

of Difi
L, and combined with Eqi−1

R=τ → ¬ Difi−1
R we get Difi

L ∧¬ Difi−1
L → ¬ Difi−1

R . Similarly
if we swap L and R. ◀

▶ Lemma 11. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

L ∧ Difi
L → ¬ annox,L(τ)

R ∧ Difi
R → ¬ annox,R(τ)
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Proof. We primarily use the disjunction in Lemma 8 Difi
L →

∨j
i=1 Difi

L ∧¬ Difi−1
L .

In each disjunct Difi
L ∧¬ Difi−1

L we can say that the difference triggers at that point.
We can represent that in a proposition that can be proven in eFrege: Difi

L ∧¬ Difi−1
L →

((Seti
L ⊕ Seti

τ ) ∨ (Seti
τ ∧(ValiL ⊕ Valiτ ))) If L differs from τ on a Seti

L value we contradict
annox,L(τ) in one of two ways: L ∧ (Seti

L ⊕ Seti
τ ) ∧ Seti

L → ¬ Seti
τ or L ∧ (Seti

L ⊕ Seti
τ ) ∧

¬ Seti
L → Seti

τ .
If L differs from τ on a ValiL value when Seti

L = Seti
τ = 1 we contradict annox,L(τ) in

one of two ways:
L ∧ Seti

L ∧ Seti
τ ∧(Seti

τ → (ValiL ⊕ Valiτ )) ∧ ValiL → ¬ Valiτ ∧ui

L ∧ Seti
L ∧ Seti

τ ∧(Seti
τ → (ValiL ⊕ Valiτ )) ∧ ¬ ValiL → Valiτ ∧¬ui.

When put together with the big disjunction this lends itself to a short eFrege proof which is
also symmetric for R. ◀

▶ Lemma 12. For any 1 ≤ j ≤ m the following propositions are true and have a short
Extended Frege proof.

¬ Difj
L ∧¬ Difj

R → Eqj
L

¬ Difj
L ∧¬ Difj

R → Eqj
R

¬ Difj
L ∧¬ Difj

R → (Setj
B ↔ Setj

L)
¬ Difj

L ∧¬ Difj
R → Seti

B → (ValiB ↔ ValiL)
¬ Difj

L ∧¬ Difj
R → (Setj

B ↔ Setj
R)

¬ Difj
L ∧¬ Difj

R → Seti
B → (ValjB ↔ ValjR)

Proof. We first show ¬ Eqj
L=τ → ¬ Eqj−1

R=τ ∨ Difj
L ∨ Difj

R and ¬ Eqj
R=τ →

¬ Eqj−1
L ∨ Difj

R ∨ Difj
R. ¬ Eqj−1

R=τ and ¬ Eqj−1
L=τ are the problems here respectively,

but they can be removed via induction to eventually get ¬ Difj
L ∧¬ Difj

R → Eqj
L and

¬ Difj
L ∧¬ Difj

R → Eqj
R=τ . The remaining implications are corollaries of these and rely on

the definition of Eq, SetB and ValB .

Induction Hypothesis on j. ¬ Difj
L ∧¬ Difj

R → Eqj
L and ¬ Difj

L ∧¬ Difj
R → Eqj

R.
Base Case j = 0. Eqj

L=τ and Eqj
R=τ are both true by definition so the implications auto-

matically hold.
Inductive Step j. ¬ Eqj+1

L=τ → ¬ Eqj−1
L=τ ∨(Setj

L ⊕ Setj
τ ) ∨ (Setj

L ∧(ValjL ⊕ Valjτ )),
(Setj

L ⊕ Setj
τ )∨(Setj

L ∧(ValjL ⊕ Valjτ )) → Difj
L ∨¬ Eqj−1

R=τ so we get ¬ Eqj
L=τ → ¬ Eqj−1

L=τ ∨
Difj

L ∨¬ Eqj−1
R=τ , which using the induction hypothesis can be generalised to

¬ Eqj
L=τ → Difj

R ∨ Difj
L which is equivalent to ¬ Difj

L ∧¬ Difj
R → Eqj

L. Similarly
when swapping L and R.

We can obtain the remaining propositions as corollaries by using the definition of Eq. ◀

Nonetheless, Difi
L and Difi

R still end up being relevant to the choice of ValjB .

▶ Lemma 13. For any 0 ≤ i ≤ m the following propositions are true and have short Extended
Frege proofs.

Difi
L → (ValiB ↔ ValiL) ∧ (Seti

B ↔ Seti
L)

¬ Difi
L ∧ Difi

R → (ValiB ↔ ValiR) ∧ (Seti
B ↔ Seti

R)

Proof. Suppose we want to prove Difi
L → (ValiB ↔ ValiL) ∧ (Seti

B ↔ Seti
L). We will assume

the definition

Difi
L := Difi−1

L ∨(Eqi−1
R ∧((Seti

L ⊕ Seti
τ ) ∨ (Seti

τ ∧(ValiL ⊕ Valiτ ))))
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and show that following proposition is falsified

¬ Difi−1
L ∧(Difi−1

R ∨(¬ Seti
τ ∧¬ Seti

L ∧ Seti
R) ∨ (Seti

τ ∧ Seti
L ∧(Valiτ ↔ ValiL)))

The first thing is that we only need to consider Difi
L ∧¬ Difi−1

L as Difi−1
L already falsifies

our proposition. Next we show ¬ Difi−1
R is forced to be true in this situation. To do this we

need Lemma 10 for Difi
L ∧¬ Difi−1

L → ¬ Difi−1
R .

Now we use Difi
L ∧¬ Difi−1

L → ((Seti
L ⊕ Seti

τ ) ∨ (Seti
τ ∧(ValiL ⊕ Valiτ ))), we break this

down into three cases
1. Difi

L ∧¬ Difi−1
L ∧¬ Seti

L ∧ Seti
τ

2. Difi
L ∧¬ Difi−1

L ∧ Seti
L ∧¬ Seti

τ

3. Difi
L ∧¬ Difi−1

L ∧(Seti
τ ∧(ValiL ⊕ Valiτ ))

1. Difi
L ∧¬ Difi−1

L contradicts Difi−1
R , Seti

τ contradicts (¬ Seti
τ ∧¬ Seti

L ∧ Seti
R), and ¬ Seti

L

contradicts (Seti
τ ∧ Seti

L ∧(Valiτ ↔ ValiL)).
2. Difi

L ∧¬ Difi−1
L contradicts Difi−1

R , Seti
L contradicts (¬ Seti

τ ∧¬ Seti
L ∧ Seti

R), and ¬ Seti
τ

contradicts (Seti
τ ∧ Seti

L ∧(Valiτ ↔ ValiL)).
3. Difi

L ∧¬ Difi−1
L contradicts Difi−1

R , Seti
τ contradicts (¬ Seti

τ ∧¬ Seti
L ∧ Seti

R),
(ValiL ⊕ Valiτ ) contradicts (Seti

τ ∧ Seti
L ∧(Valiτ ↔ ValiL))

Since in all cases we contradict¬ Difi−1
L ∧(Difi−1

R ∨(¬ Seti
τ ∧¬ Seti

L ∧ Seti
R) ∨

(Seti
τ ∧ Seti

L ∧(Valiτ ↔ ValiL))) then as per definition (ValB , SetB)=(ValL, SetL). Us-
ing Difi

L → (Difi
L ∧¬ Difi−1

L ) ∨ Difi−1
L we get Difi

L → (ValiB ↔ ValiL) ∧ (Seti
B ↔ Seti

L), in a
polynomial number of Frege lines.

Now we suppose we want to prove the second proposition ¬ Difi
L ∧ Difi

R →
(ValiB ↔ ValiR) ∧ (Seti

B ↔ Seti
R). We need ¬ Difi

L ∧ Difi
R to satisfy

¬ Difi−1
L ∧(Difi−1

R ∨(¬ Seti
τ ∧¬ Seti

L ∧ Seti
R) ∨ (Seti

τ ∧ Seti
L ∧(Valiτ ↔ ValiL)))

Lemma gives us that ¬ Difi
L → ¬ Difi−1

L . We can show that ¬ Difi−1
L ∧¬ Difi−1

R → Eqi−1
L=τ

using Lemma 15. This allows us to examine just the part where the difference is being
triggered ¬ Difi

L ∧¬ Difi−1
R → (Seti

τ ↔ Seti
L) ∧ (Seti

τ → (Valiτ ↔ ValiL)).
Suppose the term (¬ Seti

τ ∧¬ Seti
L ∧ Seti

R) is false, assuming Difi−1
R is also false, we have

to show that (Seti
τ ∧ Seti

L ∧(Valiτ ↔ ValiL) will be satisfied. We look at the three ways the
term (¬ Seti

τ ∧¬ Seti
L ∧ Seti

R) can be falsified and show that all the parts of the remaining
term must be satisfied when assuming ¬ Difi

L ∧ Difi
R ∧¬ Difi−1

R

1. Seti
τ , in this case (Valiτ ↔ ValiL) is active and Seti

L is implied by (Seti
τ ↔ Seti

L).
2. Seti

L, Seti
τ is implied by (Seti

τ ↔ Seti
L), then (Valiτ ↔ ValiL) is active.

3. ¬ Seti
R, then using Difi

R and ¬ Difi−1
R we must Seti

τ (as this is the only allowed way Dif
can trigger). Once again, (Valiτ ↔ ValiL) is active and Seti

L is implied by (Seti
τ ↔ Seti

L)

Since our trigger formula is always satisfied when ¬ Difi
L ∧ Difi

R ∧¬ Difi−1
R . It means

that (ValB , SetB) = (ValR, SetR). Using Difi
R → (Difi

R ∧¬ Difi−1
R ) ∨ Difi−1

R we get
¬ Difi

L ∧ Difi
R → (ValiB ↔ ValiR)∧(Seti

B ↔ Seti
R), in a polynomial number of Frege lines. ◀

▶ Lemma 14. The following propositions are true and have short Extended Frege proofs.
B ∧ Difm

L → BL

B ∧ ¬ Difm
L ∧ Difm

R → BR

Proof. We use the disjunction Difm
L →

∨m
j=1 Difj

L ∨¬ Difj−1
L So there is some j where this is

the case.
For 1 ≤ i < j observe that Difj

L ∨¬ Difj−1
L → ¬ Difj−1

R . Now these negative liter-
als propagate downwards. ¬ Difj−1

L ∧¬ Difj−1
R → ¬ Difi

L ∧¬ Difi
R for 0 ≤ i < j and

¬ Difi
L ∧¬ Difi

R means that B and L are consistent for those i as proven in Lemma 12.
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For j ≤ k ≤ m, Difj
L → Difk

L and Difk
L means B and L are consistent on those k as

proven in Lemma 13.
For indices greater than m, B∧Difm

L falsifies ¬ Difm
L ∧(Difm

R ∨x̄), so B and L are consistent
on those indices.

With the second proposition Difm
R →

∨m
j=1 Difj

R ∨¬ Difj−1
R once again. So there is some j

where this is the case. Note that ¬ Difm
L → ¬ Difk

L for k ≤ m.
For 1 ≤ i < j, both ¬ Difi

L and ¬ Difi
R occur so then B and R are consistent for these

values.
For j ≤ k ≤ m, Difj

R → Difk
R and Difk

R ∧¬ Difk
L means B and R are consistent on those

k as proven in Lemma 13.
For indices greater than m, B ∧ Difm

R ∧¬ Difm
L satisfies ¬ Difm

L ∧(Difm
R ∨x̄), so B and R

are consistent on those indices. ◀

▶ Lemma 15. The following propositions are true and have short Extended Frege proofs.
B ∧ ¬ Difm

L ∧¬ Difm
R → BL ∨ ¬x

B ∧ ¬ Difm
L ∧¬ Difm

R → BR ∨ x

Proof. For indices 1 ≤ i ≤ m, but since ¬ Difm
L → ¬ Difi

L and ¬ Difm
R → ¬ Difi

R, Lemma 12
can be used to show that B ∧ Difm

L ∧ Difm
R leads to Seti

B = Seti
L = Seti

R and ValiB =
ValiL = ValiR whenever Seti

B is also true. Extended Frege can prove O(m) many propositions
expressing as such.

For i > m, by definition B ∧ ¬ Difm
L ∧¬ Difm

R ∧x gives Seti
B = Seti

L and ValiB = ValiL.
And B ∧ ¬ Difm

L ∧¬ Difm
R ∧¬x gives Seti

B = Seti
R and ValiB = ValiR. The sum of this is that

B ∧ Difm
L ∧ Difm

R ∧x → BL and B ∧ Difm
L ∧ Difm

R ∧¬x → BR. ◀

A.2 Local Strategy Extraction for Simulation of IRM-calc

A.2.1 Conversion
annox,S(τ) =

∧
1/ui∈τ (Seti

S ∧ui) ∧
∧

0/ui∈τ (Seti
S ∧ūi) ∧

∧
∗/ui∈τ (Seti

S) ∧
∧

ui /∈dom(τ)(¬ Seti
S).

conS(xτ ) = x ∧ annox,S(τ), conS(C1) =
∨

xτ ∈C1
con(xτ )

A.2.2 Equivalence
Eq0

f=g := 1, Eqi
f=g := Eqi−1

f=g ∧(Seti
f ) when ∗/ui ∈ g

Eqi
f=g := Eqi−1

f=g ∧(Seti
f ↔ Seti

g) ∧ (Seti
f → (Valif ↔ Valig)) when ∗/ui /∈ g

A.2.3 Difference
Dif0

L := 0 and Dif0
R := 0

For ui /∈ dom(τ ⊔ σ ⊔ ξ), Difi
L := Difi−1

L ∨(Eqi−1
R=τ⊔ξ ∧(Seti

L),
For ui ∈ dom(τ), Difi

L := Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧(¬ Seti
L ∨(Seti

τ ∧(ValiL ⊕ Valiτ ))))
For ui ∈ dom(σ), Difi

L := Difi−1
L ∨(Eqi−1

R=τ⊔ξ ∧(¬ Seti
L)

For ui ∈ dom(ξ), Difi
L := Difi−1

L ∨(Eqi−1
R=τ⊔ξ ∧(Seti

L)

A.2.4 Policy Variables
We define the policy variables ValiB and Seti

B based on a number of cases, in all cases ValiB
and Seti

B are defined on variables left of ui.
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For ui /∈ dom(τ ⊔ σ ⊔ ξ), ui < x,

(ValiB , Seti
B) =

{
(ValiR, Seti

R) if ¬ Difi−1
L ∧(Difi−1

R ∨¬ Seti
L)

(ValiL, Seti
L) otherwise.

For ui ∈ dom(τ),

(ValiB , Seti
B) =

{
(ValiR, Seti

R) if ¬ Difi−1
L ∧(Difi−1

R ∨(Seti
L ∧(ValiL ↔ Valiτ )))

(ValiL, Seti
L) otherwise.

For ∗/ui ∈ σ,

(ValiB , Seti
B) =


(0, 1) if ¬ Difi−1

L ∧ Difi−1
R ∧¬ Seti

R

(ValiR, Seti
R) if ¬ Difi−1

L ∧ Seti
R ∧(Difi−1

R ∨ Seti
L)

(ValiL, Seti
L) otherwise.

For ∗/ui ∈ ξ,

(ValiB , Seti
B) =


(0, 1) if Difi−1

L ∧¬ Seti
L

(ValiR, Seti
R) if ¬ Difi−1

L ∧(Difi−1
R ∨¬ Seti

L)
(ValiL, Seti

L) otherwise.
For ui > x,

(ValiB , Seti
B) =

{
(ValiR, Seti

R) if ¬ Difm
L ∧(Difm

R ∨¬x)
(ValiL, Seti

L) otherwise.
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Abstract
For vertices u and v of an n-vertex graph G, a uv-trail of G is an induced uv-path of G that is not a
shortest uv-path of G. Berger, Seymour, and Spirkl [Discrete Mathematics 2021] gave the previously
only known polynomial-time algorithm, running in O(n18) time, to either output a uv-trail of G

or ensure that G admits no uv-trail. We reduce the complexity to the time required to perform
a poly-logarithmic number of multiplications of n2 × n2 Boolean matrices, leading to a largely
improved O(n4.75)-time algorithm.
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1 Introduction

Let G be an n-vertex undirected and unweighted graph. Let V (G) consist of the vertices
of G. For any subgraph H of G, let G[H] be the subgraph of G induced by V (H). A
subgraph H of G is induced if G[H] = H. That is, an induced subgraph of G is a subgraph
of G that can be obtained by deleting a set of vertices together with its incident edges from
G. Various kinds of induced subgraphs are involved in the deepest results of graph theory
and graph algorithms. One of the most prominent examples concerns the perfection of G

that the chromatic number of each induced subgraph H of G equals the clique number of H .
A graph is odd (respectively, even) if it has an odd (respectively, even) number of edges. A
hole of G is an induced cycle of G having at least four edges. The seminal Strong Perfect
Graph Theorem of Chudnovsky, Robertson, Seymour, and Thomas [16, 21], conjectured
by Berge in 1960 [4, 5, 6], ensures that the perfection of a graph G can be determined by
detecting an odd hole in G or its complement Ḡ. Based on the theorem, the first known
polynomial-time algorithms for recognizing perfect graphs take O(n18) [30] and O(n9) [13]
time. The O(n9)-time version can be implemented to run in O(n8.373) time via Boolean
matrix multiplications [52, §6.2].

Detecting a class of induced subgraphs can be much more difficult than detecting its
counterpart that need not be induced. For instance, detecting a path spanning three
prespecified vertices is tractable (via, e. g., [50, 58]), but the three-in-a-path problem that
detects an induced path spanning three prespecified vertices is NP-hard (see, e. g., [43, 52]).
Cycle detection has a similar situation. Detecting a cycle of length three, which has to be
induced, is the classical triangle detection problem that can also be solved efficiently by
Boolean matrix multiplications. Although it is tractable to detect a cycle of length at least
four spanning two prespecified vertices (also via, e. g., [50, 58]), the two-in-a-cycle problem
that detects a hole spanning two prespecified vertices is NP-hard (and so are the corresponding
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23:2 Blazing a Trail via Matrix Multiplications

one-in-an-even-cycle and one-in-an-odd-cycle problems) [8, 9]. See, e. g., [57, §3.1] for graph
classes on which the two-in-a-cycle problem is tractable. Detecting a tree spanning an
arbitrary set of prespecified vertices is easy via computing the connected components of G.
Detecting an induced tree spanning an arbitrary set of prespecified vertices is NP-hard [42].
The three-in-a-tree problem that detects an induced tree spanning three prespecified vertices
was first shown to be solvable in O(n4) time [20] and then in O(n2 log2 n) time [52]. The
tractability of the corresponding k-in-a-tree problem for any fix k ≥ 4 is unknown. See [54]
for an O(n4)-time algorithm for the k-in-a-tree problem in a graph of girth at least k.

As for subgraph detection without the requirement of spanning prespecified vertices,
detecting a cycle is straightforward. Even and odd cycles are also long known to be
efficiently detectable (see, e. g., [3, 32, 63]). While detecting a hole (i. e., recognizing chordal
graphs) is solvable in O(n2) time [59, 60, 61], detecting an odd (respectively, even) hole is
more difficult. There are early O(n3)-time algorithms for detecting odd and even holes in
planar graphs [46, 56], but the tractability of detecting an odd hole was open for decades
(see, e. g., [22, 24, 27]) until the recent major breakthrough of Chudnovsky, Scott, Seymour,
and Spirkl [19]. Their O(n9)-time algorithm is later implemented to run in O(n8) time [52],
immediately implying the currently best known algorithm for recognizing perfect graphs based
on the Strong Perfect Graph Theorem. It is also recently known that a shortest odd hole, if
any, can be found in O(n14) time [18]. As for detecting even holes, the first polynomial-time
algorithm, running in about O(n40) time, appeared in 1997 [23, 25, 26]. It takes a line of
intensive efforts to bring down the complexity to O(n31) [14], O(n19) [31], O(n11) [10], and
finally O(n9) [52]. The tractability of finding a shortest even hole, open for 16 years [14, 48],
is resolved by a newly announced O(n31)-time algorithm [12]. See [17] (respectively, [29]) for
detecting an odd (respectively, even) hole with a prespecified length lower bound. See [1, 15]
for the first polynomial-time algorithm for finding an independent set of maximum weight in
a graph having no hole of length at least five. See [33] for upper and lower bounds on the
complexity of detecting an O(1)-vertex induced subgraph.

The two-in-a-path problem that detects an induced path spanning two prespecified vertices
is equivalent to determining whether the two vertices are connected. On the other hand,
the corresponding two-in-an-odd-path and two-in-an-even-path problems are NP-hard [8, 9],
although each of them admits an O(n7)-time algorithm when G is planar [49]. See [35, 37, 55]
for how an induced even uv-path of G affects the perfection of G. See [51] for a conjecture
by Erdős on how an induced uv-path of G affects the connectivity between u and v in G.
Finding a longest uv-path in G that has to (respectively, need not) be induced is NP-hard [39,
GT23] (respectively, [39, ND29]). See [41, 47] for longest or long induced paths in special
graphs. The presence of long induced paths in G affects the tractability of coloring G [40]. See
also [1] for the first polynomial-time algorithm for finding a minimum feedback vertex set of
a graph having no induced path of length at least five. Detecting a non-shortest uv-path in G

is easy. A k-th shortest uv-path in G can also be found in near linear time [34]. See [44] for
listing induced paths and holes. See [11, §4] for the parameterized complexity of detecting an
induced path with a prespecified length. Detecting an induced uv-path in a directed graph G

is NP-complete (even if G is planar) [36] and W [1]-complete [43]. However, the tractability
of detecting a non-shortest induced uv-path in an undirected graph G was unknown until
the recent result of Berger, Seymour, and Spirkl [7].

Let ∥G∥ denote the number of edges in G. A path with end-vertices u and v is a uv-path.
If P is a path with {u, v} ⊆ V (P ), then let P [u, v] denote the uv-path of P . A uv-path P

of G is shortest if G admits no uv-path Q with ∥Q∥ < ∥P∥, so each shortest uv-path of G is
induced. We call an induced uv-path of G that is not a shortest uv-path of G a uv-trail of G.
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Figure 1 The red uv-path P is the only uv-trail of the uv-straight graph G. The twist pair of P

is (c, b). The twist of P is 6. P [a∗, c] and P [b, d∗] form a pair of wings for the quadruple (a, b, c, d)
of V (G) in G.

See Figure 1 for an example. A graph admitting no uv-trail is uv-trailless. Berger, Seymour,
and Spirkl [7] gave the formerly only known polynomial-time algorithm, running in O(n18)
time, to either output a uv-trail of G or ensure that G is uv-trailless. Their result leads to
an O(n21)-time algorithm [28] to determine whether all holes of G have the same length. We
improve the time of finding a uv-trail to O(n4.75) as summarized in the following theorem,
where the Õ notation hides poly-logarithmic factors and M(m) = O(m2.373) [2, 53, 62]
denotes the time of multiplying two m × m Boolean matrices.

▶ Theorem 1. For any two vertices u and v of an n-vertex graph G, it takes Õ(M(n2)) time
to either obtain a uv-trail of G or ensure that G is uv-trailless.

Theorem 1 immediately reduces the time of recognizing a graph with all holes the same
length from O(n21) to O(n7.75).

Technical overview

Berger et al.’s and our algorithms are based on the following “guess-and-verify” approach.
A subroutine B taking an ℓ-tuple of V (G) as the only argument is a uv-trailblazer of
degree ℓ for G if running B on all ℓ-tuples of V (G) always reports a uv-trail of G unless G

is uv-trailless. We call an ℓ-tuple of V (G) on which B reports a uv-trail of G a trail
marker for B. An O(f(n))-time uv-trailblazer of degree ℓ for G immediately implies the
following O(nℓ · f(n))-time trailblazing algorithm for G: Run B on each ℓ-tuple (a1, . . . , aℓ)
of V (G) to either obtain a uv-trail of G or ensure that (a1, . . . , aℓ) is not a trail marker for B.
If none of the O(nℓ) iterations produces a uv-trail of G, then report that G is uv-trailless.

A graph H is uv-straight [7] if {u, v} ⊆ V (H) and each vertex of H belongs to at least
one shortest uv-path of H. For instance, the graph in Figure 1 is uv-straight. Berger et al.’s
algorithm starts with an O(n3)-time preprocessing step (see Lemma 2) that either reports
a uv-trail of G or obtains a uv-straight graph H with V (H) ⊆ V (G) such that (a) a uv-trail
of G can be obtained from a uv-trail of H in O(n2) time and (b) if H is uv-trailless, then
so is G. If no uv-trail is reported by the preprocessing, then the main procedure runs
an O(n18)-time trailblazing algorithm on the uv-straight graph H based on an O(n4)-time
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23:4 Blazing a Trail via Matrix Multiplications

degree-14 uv-trailblazer for H. As for postprocessing, if a uv-trail of H is obtained by the
main procedure, then report a uv-trail of G obtainable in O(n2) time as ensured by the
preprocessing. Otherwise, report that G is uv-trailless.

Our O(n4.75)-time algorithm adopts the preprocessing and postprocessing steps of Berger
et al., while reducing the preprocessing time from O(n3) to O(M(n)) (see Lemma 6). For
the benefit of the main procedure, we run a second preprocessing step, taking O(n4.75) time,
to compute a static data structure from which a pair of “wings” that are some disjoint paths
in H, if any, for each quadruple of V (H) can be obtained in O(n) time (see Lemma 7). Our
main procedure is also a trailblazing algorithm, based on a faster uv-trailblazer of a much
lower degree for H: We reduce the time from O(n4) to O(n2 log2 n) and largely bring down
the degree from 14 to 2. Thus, the main procedure runs in O(n4 · log2 n) time, even faster
than the second preprocessing step.

The key to our improved uv-trailblazer is a new observation, described by Lemma 5, on
any shortest uv-trail P of a uv-straight graph G. Specifically, Berger et al.’s algorithm looks
for a uv-trail in G that consists of (1) a shortest us-path S of G containing 7 guessed vertices
and a shortest tv-path T of G containing another 7 guessed vertices such that S and T are
anticomplete in G and (2) a shortest st-path Q of GS,T = G − (NG[S ∪ T ] \ NG[{s, t}]).
Lemma 5 ensures that much fewer guessed vertices on S and T suffice to guarantee that Q

stays intact in GS,T . To illustrate the usefulness of Lemma 5, we show in §2 that three lemmas
of Berger et al. [7] (i. e., Lemmas 2, 3, and 4) together with Lemma 5 already yield an O(n2)-
time uv-trailblazer of degree 4 for G, leading to a simple O(n6)-time trailblazing algorithm
on G. More precisely, if a and b (respectively, c and d) are the vertices that are farthest
apart from each other in P having the minimum identical distance to u (respectively, v) in G,
then (a, b, c, d) is a trail marker for an O(n2)-time uv-trailblazer for G: Due to the symmetry
between u and v in G, Lemma 5 guarantees an O(n2)-time obtainable uv-trail of G that
contains the precomputed pair of “wings” for this (a, b, c, d).

Our proof of Theorem 1 in §3 further displays the usefulness of Lemma 5. We show that
the aforementioned vertices a and b in P actually form a trail marker (a, b) for an O(n2 log2 n)-
time uv-trailblazer for G. Dropping both c and d from the trail marker (a, b, c, d) of §2
inevitably increases the time of the uv-trailblazer for G. We manage to keep the time of
a degree-two uv-trailblazer as low as O(n2 log2 n) via the dynamic data structure of Holm,
de Lichtenberg, and Thorup [45] supporting efficient edge updates and connectivity queries
for G (see Lemma 8). To make our proof of Theorem 1 in §3 self-contained, a simplified
proof of Lemma 4 is included in §2. Since Lemmas 2 and 3 are implied by Lemmas 6 and 7,
which are proved in §3, our proof for the O(n6)-time algorithm in §2 is also self-contained.

2 A simple O(n6)-time algorithm

Let G be a connected graph containing vertices u and v. For any vertices x and y of G,
let dG(x, y) = ∥P∥ for a shortest xy-path P of G. Let h(x) = dG(u, x) be the height of a
vertex x in G. If xy is an edge of G, then |h(x) − h(y)| ≤ 1. For any subgraph H of G, (i)
let G − H = G[V (G) \ V (H)], (ii) let NG(H) consist of the vertices y ∈ V (G − H) adjacent
to at least one vertex of H in G, and (iii) let NG[H] = NG(H) ∪ V (H). For any x ∈ V (G),
let G − x = G − {x}, let NG(x) = NG({x}), and let NG[x] = NG[{x}]. X and Y are adjacent
(respectively, anticomplete) in G if NG(X) ∩ V (Y ) ̸= ∅ (respectively, NG[X] ∩ V (Y ) = ∅).

▶ Lemma 2 (Berger et al. [7, Lemma 2.2]). For any vertices u and v of an n-vertex connected
graph G, it takes O(n3) time to obtain (1) a uv-trail of G or (2) a uv-straight graph H

with V (H) ⊆ V (G) such that (a) a uv-trail of G is O(n2)-time obtainable from that of H

and (b) if H is uv-trailless, then so is G.
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A path of G is monotone [7] if all of its vertices have distinct heights in G. A monotone xy-
path of G is a shortest xy-path of G. The converse may not hold. A shortest xy-path of G

with {x, y} ∩ {u, v} ≠ ∅ is monotone. A monotone a∗c-path W1 of G containing a vertex a

and a monotone bd∗-path W2 of G containing a vertex d with

h(a∗) + 1 = h(a) = h(b) ≤ h(c) = h(d) = h(d∗) − 1

form a pair (W1, W2) of wings for the quadruple (a, b, c, d) of V (G) in G if

dG[W1∪W2](a∗, d∗) > ∥W1∥ + ∥W2∥,

that is, W1 − c (respectively, W1) and W2 (respectively, W2 − b) are anticomplete in G.
An (a, b, c, d) is winged in G if G admits a pair of wings for (a, b, c, d). See also Figure 1 for
an example.

▶ Lemma 3 (Berger et al. [7, Lemma 2.1]). It takes O(n6) time to compute a data structure
from which the following statements hold for any quadruple (a, b, c, d) of V (G) for an n-vertex
graph G:
1. It takes O(1) time to determine whether (a, b, c, d) is winged in G.
2. If (a, b, c, d) is winged in G, then it takes O(n) time to obtain a pair of wings for (a, b, c, d)

in G.
We comment that Lemma 2.1 of Berger et al. [7] is slightly different from Lemma 3, but their
proof is easily adjustable into one for Lemma 3. See also §3 for a proof of Lemma 7, which
implies and improves upon Lemma 3.

Let G be a uv-straight graph. If h(s) − h(t) is maximized by the vertices s and t of
a uv-path P of G such that P [u, s] is a shortest us-path of G and P [t, v] is a shortest tv-path
of G, then the twist [7] of P is h(s) − h(t) and we call (s, t) the twist pair of P . See also
Figure 1 for an example. If (s, t) is the twist pair of a uv-path P of G, then P [u, s] and P [t, v]
are disjoint if and only if P is a non-shortest uv-path of G. The next lemma is also needed
in §3. To make our proof of Theorem 1 in §3 self-contained, we include a proof of Lemma 4
simplified from that of Berger et al. [7, Lemma 2.3].

▶ Lemma 4 (Berger et al. [7, Lemma 2.3]). If (s, t) is the twist pair of a shortest uv-trail P

of a uv-straight graph G, then h(s) ≥ h(x) ≥ h(t) holds for each vertex x of P [s, t].

Proof. Let I = V (P [s, t])\{s, t}. Let s∗ (respectively, t∗) be the neighbor of s (respectively, t)
in P [s, t]. By definition of (s, t), we have h(s∗) ≤ h(s) and h(t∗) ≥ h(t). If I = ∅,
then (s∗, t∗) = (t, s) implies the lemma. Otherwise, it suffices to prove h(s) ≥ h(x) ≥ h(t)
for each x ∈ I. If h(x) > h(s) were true for the x ∈ I maximizing the lexicographical order
of (h(x), dP [s,t](x, t)), then the concatenation of P [u, x] and a shortest xv-path of G is a uv-
trail (containing s∗) of G shorter than P . If h(x) < h(t) were true for the x ∈ I minimizing
the lexicographical order of (h(x), dP [s,t](x, t)), then the concatenation of a shortest ux-path
of G and P [x, v] is a uv-trail (containing t∗) of G shorter than P . ◀

A monotone uc-path S of G with h(c) = h(s) is a sidetrack for a uv-trail P of G with
twist pair (s, t) if satisfying the following Conditions S.
S1: dG[S∪T ](u, v) > ∥S∥ + ∥T∥ holds for a monotone tv-path T of G.
S2: The vertex a of S with h(a) = h(t) is on the monotone subpath P [u, s].
The inequality of Condition S1 is equivalent to the statement that S − c (respectively, S)
and T (respectively, T − t) are anticomplete in G. Thus, S[a∗, c] and T [t, d∗] form a pair of
wings for (a, t, c, d) in G, where a∗ is the vertex of S with h(a∗) = h(a) − 1 and dd∗ is the
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Figure 2 The blue uc-path is a sidetrack S for the red uv-trail P of the uv-straight graph G.
Each of P [t, v] and the green tv-path can be a monotone tv-path T satisfying Condition S1.

edge of T with h(s) = h(d) = h(d∗) − 1. See Figure 2 for an example. The key to our largely
improved uv-trailblazers in §2 and §3 is the following lemma, whose proof is illustrated in
Figure 3.

▶ Lemma 5. If S is a sidetrack for a shortest uv-trail P of a uv-straight graph G with twist
pair (s, t), then

dG[S∪P [s,t]](u, t) ≥ dP (u, t).

Proof. Condition S1 implies a monotone tv-path T of G with dG[S∪T ](u, v) > ∥S∥ + ∥T∥.
Assume for contradiction a shortest ut-path Q of G[S ∪ P [s, t]] with ∥Q∥ < dP (u, t),
implying dG[Q∪T ](u, v) < ∥P∥. By t /∈ V (S), Q contains an edge xy with x ∈ V (S)
and y ∈ V (P [s, t]) that minimizes dP [s,t](y, t). Let R be a shortest uv-path of G[Q ∪ T ].
If x were not in V (R), then NG(S[u, x] − x) ∩ V (T ) ̸= ∅, violating Condition S1. Hence,
R contains x and, thus, y. Since R is an induced uv-path of G with ∥R∥ < ∥P∥, we
have ∥R∥ = h(v), implying that R is monotone. By dR(u, x) < dR(u, y),

h(x) + 1 = h(y). (1)

By ∥Q∥ + ∥P [t, v]∥ < ∥P∥, the concatenation of Q and P [t, v] is a non-induced uv-path of G,
implying that G[Q ∪ P [t, v]] contains a monotone uv-path R′. Let x′y′ be the edge of R′

with x′ ∈ V (S) ∩ V (Q) and y′ ∈ V (P [t, v]) that maximizes h(y′). By dR′(u, x′) < dR′(u, y′),

h(x′) + 1 = h(y′). (2)

We know h(x′) ̸= h(t) − 1 or else y′ = t violates Condition S1. We know h(x′) ̸= h(t) or else
Condition S2 violates that P is induced. By h(x′) ≥ h(t) + 1 and Equation (2), y′ and t are
anticomplete in G. Let t′ be the vertex closest to y in P [y, t] with h(t′) = h(t), implying that y′

and t′ are anticomplete in G no matter whether t′ = t or not. By h(x) ≥ h(x′) ≥ h(t) + 1
and Lemma 4, the concatenation P ′ of a shortest ut′-path of G, P [t′, y], the edge yx, and
a shortest xv-path of G[S[x′, x] ∪ P [y′, v]] is an induced uv-path of G shorter than P . By
Equation (1) and dP ′(u, x′) < dP ′(u, y′), we have that P ′ is a uv-trail of G, contradicting
the definition of P . ◀
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Figure 3 An illustration for the proof of Lemma 5. The red path denotes a shortest uv-trail P

of the uv-straight graph G. The blue monotone path denotes a sidetrack S for P . The green path
denotes a monotone path T satisfying Condition S1.

We are ready to describe and justify an O(n6)-time algorithm that either reports a uv-trail
of G or ensures that G is uv-trailless. Let G be connected without loss of generality.

Our O(n6)-time algorithm

Apply Lemma 2 in O(n3) time to either report a uv-trail of G as stated in Lemma 2(1) or
make G a uv-straight graph satisfying Conditions (a) and (b) of Lemma 2(2) with respect
to the original G. If no uv-trail is reported in the previous step, then apply Lemma 3
to obtain the data structure D for the winged quadruples of G in O(n6) time. With
the standard O(n2)-time postprocessing readied by the preprocessing, it remains to show
an O(n2)-time degree-4 uv-trailblazer for the uv-straight graph G, which immediately leads
to an O(n6)-time trailblazing algorithm that either reports a uv-trail of G or ensures that G

is uv-trailless.
Let B be the following O(n2)-time subroutine, taking a quadruple (a, b, c, d) of V (G)

as the argument: Determine in O(1) time from the data structure D whether (a, b, c, d) is
winged in G. If not, then exit. Otherwise, obtain in O(n) time from D a pair (W1, W2) of
wings for (a, b, c, d) in G. Since G is uv-straight, it takes O(n2) time to obtain a monotone uc-
path S of G containing W1 and a monotone bv-path T of G containing W2. Obtain in O(n2)
time the subgraph Gc,b of G induced by

{x ∈ V (G) : h(b) ≤ h(x) ≤ h(c)} \ ((NG[S − c] ∪ NG[T − b]) \ {c, b}).

If c and b are not connected in Gc,b, then exit. Otherwise, report the concatenation Pc,b

of (i) the uc-path S, (ii) a shortest cb-path of Gc,b, and (iii) the bv-path T .
By definition of S, T , and Gc,b, the uv-path Pc,b of G reported by B(a, b, c, d) is induced

in G, which is not monotone by h(b) ≤ h(c). Thus, Pc,b is a uv-trail of G.
Let P be an arbitrary unknown shortest uv-trail of G with twist pair (s, t). Let a

(respectively, d) be the vertex of the monotone P [u, s] (respectively, P [t, v]) with h(a) = h(t)
(respectively, h(d) = h(s)). See Figure 4 for an illustration. The rest of the section shows
that (a, t, s, d) is a trail marker for B.
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Figure 4 An illustration for the proof that B is a uv-trailblazer of degree four. The red
path denotes a shortest uv-trail of the uv-straight graph G. The blue and green paths denote a
monotone us-path and a monotone tv-path of G containing a precomputed pair of wings for (a, t, s, d)
that need not coincide with P except at a, t, s, and d.

Observe that P [a∗, s] and P [t, d∗] with the neighbor a∗ of a in P [u, a] and the neighbor d∗

of d in P [d, v] form a pair of wings for (a, t, s, d) in G. Thus, the quadruple (a, t, s, d) is
winged in G. The monotone us-path S of G containing W1 is a sidetrack for P , since the
monotone tv-path T of G containing W2 satisfies Conditions S1 and S2 for S. Due to the
symmetry between u and v in G, the monotone vt-path T of the vu-straight graph G is also a
sidetrack for the shortest vu-trail P of G with twist pair (t, s), since the monotone su-path S

of G satisfies Conditions S1 and S2 for T . Lemma 4 guarantees h(t) ≤ h(x) ≤ h(s) for each
vertex x of P [s, t]. By Lemma 5, P [s, t] − {s, t} is anticomplete to both S − s and T − t,
implying that P [s, t] is a path of Gs,t. Since s and t are connected in Gs,t, the subroutine
call B(a, t, s, d) outputs a uv-trail Ps,t of G in O(n2) time. Hence, (a, t, s, d) is indeed a trail
marker of B.

As a matter of fact, Ps,t is a shortest uv-trail of G due to ∥Ps,t∥ = ∥P∥. Since the
preprocessing and postprocessing may ruin the shortestness of the reported uv-trail, we have
an O(n6)-time algorithm on an n-vertex general (respectively, uv-straight) graph G that
either reports a general (respectively, shortest) uv-trail of G or ensures that G is uv-trailless.

3 An O(n4.75)-time algorithm

This section gives a self-contained proof of Theorem 1. The product of m × m Boolean
matrices A and B is the m × m Boolean matrix C such that C(i, k) = true if and only
if A(i, j) = B(j, k) = true holds for an index j. The following lemma implies and improves
upon Lemma 2, which takes O(n3) time to obtain a uv-trail of G from a uv-trail of H.

▶ Lemma 6. For any vertices u and v of an n-vertex connected graph G, it takes O(M(n))
time to obtain (1) a uv-trail of G or (2) a uv-straight graph H with V (H) ⊆ V (G) such
that (a) a uv-trail of G can be obtained from a uv-trail of H in O(n2) time and (b) if H

is uv-trailless, then so is G.

Proof. We adopt the proof of Berger et al. [7, Lemma 2.2] with slight simplification and
improvement. It takes O(n2) time to obtain the maximal set F ⊆ V (G) such that G[F ]
is uv-straight. If F = V (G), then the lemma is proved by returning H = G. The rest of
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the proof assumes F ⊊ V (G). It takes O(M(n)) time to determine whether some connected
component K of G−F admits nonadjacent vertices x and y of NG(K) ⊆ F with h(x) < h(y).
If there is such a (K, x, y), then a shortest uv-path of G[Px ∪ K ∪ Py] for any shortest ux-
path Px and yv-path Py of G is a uv-trail of G obtainable in O(n2) time, proving the lemma.
Otherwise, let H be the union of the uv-straight G[F ] and the O(M(n))-time obtainable
graph H ′ with V (H ′) = F (via contracting each connected component of G − F into a
single vertex and then squaring the adjacency matrix) such that distinct vertices x and y are
adjacent in H ′ if and only if {x, y} ⊆ NG(K) holds for a connected component K of G − F .
Observe that each edge xy of H ′ with h(x) ̸= h(y) is also an edge of G[F ]. By |h(x)−h(y)| ≤ 1
for all edges xy of H ′, H remains uv-straight and dH(u, x) = h(x) holds for each x ∈ F .
To see Condition (a), for any given uv-trail Q of H, let P be an O(n2)-time obtainable
non-monotone uv-path of G obtained from Q by replacing each edge xy of Q not in G[F ] with
a shortest xy-path Pxy of G − (F \ {x, y}). If P were not induced, then there is an edge zz′

of G[P ] not in P with z ∈ V (Pxy) and z′ ∈ V (Px′y′) for distinct edges xy and x′y′ of Q

that are not in G[F ]. Thus, {x, y, x′, y′} ⊆ NG(K) holds for some connected component K

of G−F . By definition of H ′, H [{x, y, x′, y′}] is complete, contradicting that Q is an induced
path of H. Thus, P is a uv-trail of G, proving Condition (a). As for Condition (b), let P

be a uv-trail of G. For any distinct vertices x and y of P such that P [x, y] is a maximal
subpath of P contained by G[{x, y} ∪ K] for some connected component K of G − F , P [x, y]
is an induced xy-path of G[{x, y} ∪ K]. The path Q obtained from P by replacing each
such P [x, y] by the edge xy of H ′ is an induced uv-path of H. If Q were a shortest uv-path
of H , then |h(x) − h(y)| = 1 holds for each edge xy of Q, implying that each edge xy of Q is
an edge of P , contradicting that P is a uv-trail of G. ◀

The bottleneck of our algorithm for Theorem 1 comes from the following lemma, which
implies and improves upon Lemma 3 that takes O(n6) time.

▶ Lemma 7. It takes Õ(M(n2)) time to compute a data structure from which the following
statements hold for any quadruple (a, b, c, d) of V (G) for an n-vertex graph G:
1. It takes O(1) time to determine whether (a, b, c, d) is winged in G.
2. If (a, b, c, d) is winged in G, then it takes O(n) time to obtain a pair of wings for (a, b, c, d)

in G.

Proof. The lemma holds clearly for the quadruples (a, b, c, d) of V (G) with h(c) ≤ h(a) + 1.
The rest of the proof handles those with h(a)+2 ≤ h(c). A pair of wings for such an (a, b, c, d)
must be anticomplete in G. It takes O(n4) time to obtain the n2 × n2 Boolean matrix A

such that A((a, b), (c, d)) = true if and only if (i) h(a) = h(b) ≤ h(c) = h(d) ≤ h(a) + 1
and (ii) G admits a pair of anticomplete wings for (a, b, c, d). The transitive closure C = An

of A can be obtained in O(M(n2) · log n) time via obtaining A2i in the i-th iteration. That
is, C((a, b), (c, d)) = true if and only if (i) h(a) = h(b) ≤ h(c) = h(d) and (ii) G admits a pair of
anticomplete wings for (a, b, c, d) in G. Statement 1 is proved. Statement 2 is immediate from
the Õ(M(n2))-time obtainable n2×n2 witness matrix W for C by, e. g., Galil and Margalit [38].
That is, if C((a, b), (c, d)) = true and h(a) + 2 ≤ h(c) hold, then W ((a, b), (c, d)) is a vertex
pair (x, y) that satisfies h(a) < h(x) < h(c) and C((a, b), (x, y)) = C((x, y), (c, d)) = true. ◀

The following dynamic data structure for a graph supports efficient edge updates and
connectivity queries.

▶ Lemma 8 (Holm, de Lichtenberg, and Thorup [45]). There is a data structure for an
initially empty n-vertex graph that supports each edge insertion and edge deletion in amor-
tized O(log2 n) time and answers whether two vertices are connected in O(log n/ log log n)
time.
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We are ready to prove Theorem 1. Assume without loss of generality that G is connected.

Our O(n4.75)-time algorithm

Apply Lemma 6 in O(M(n)) time to either report a uv-trail of G as in Lemma 6(1) or make G

a uv-straight graph satisfying Conditions (a) and (b) of Lemma 6(2) with respect to the
original G. If no uv-trail is reported in the previous step, then apply Lemma 7 in Õ(M(n2))
time to obtain the data structure D for the winged quadruples of V (G) in G. It remains to
show an O(n2 log2 n)-time degree-two uv-trailblazer for the uv-straight graph G based on
the precomputed D which already spends O(n4.75) time. We proceed in two phases. Phase 1
shows that we already have an O(n3)-time degree-two uv-trailblazer for G. Phase 2 then
reduces the time to O(n2 log2 n) via Lemma 8.

Phase 1. Let B1 be the O(n3)-time subroutine, taking a pair (a, b) of V (G) as the only
argument, that runs the following O(n2)-time procedure for each vertex c of G: Determine
from D in O(n) time whether G admits a winged quadruple (a, b, c, dc) of V (G) for some dc.
If not, then exit. Otherwise, obtain from D in O(n) time a pair (W1, W2) of wings for
an arbitrary winged (a, b, c, dc). Since G is uv-straight, it takes O(n2) time to obtain a
monotone uc-path Sc of G containing W1 and a monotone bv-path Tc of G containing W2.
Obtain in O(n2) time the subgraph Gc of G induced by

({x ∈ V (G) : h(b) ≤ h(x) ≤ h(c)} \ (NG[Sc − c] \ {c})) ∪ V (Tc).

If the vertices c and b are not connected in Gc, then exit. Otherwise, report the O(n2)-time
obtainable concatenation Pc of the uc-path Sc of G and a shortest cv-path of Gc.

By definition of Sc, Tc, and Gc, the uv-path Pc of G reported by B1(a, b) for any c

is induced in G. Since the height of each neighbor of c in Gc is at most h(c), Pc is not
monotone. Thus, Pc is a uv-trail of G. Let P be an arbitrary unknown shortest uv-trail
of G with twist pair (s, t). Let a (respectively, e) be the vertex of the monotone P [u, s]
(respectively, P [t, v]) with h(a) = h(t) (respectively, h(e) = h(s)). See Figure 5 for an
illustration. To ensure that B1 is an O(n3)-time uv-trailblazer of degree 2 for G, the rest of
the phase proves that (a, t) is a trail marker for B1 by showing that the iteration with c = s

reports a uv-trail Ps of G.
Let a∗ be the neighbor of a in the monotone P [u, a], implying h(a∗) = h(t) − 1. Let e∗

be the neighbor of e in the monotone P [e, v], implying h(e∗) = h(s) + 1. Since P [a∗, s]
and P [t, e∗] form a pair of wings for (a, t, s, e) in G, there is a ds such that (a, t, s, ds) is
winged in G. Let (W1, W2) be the pair of wings for (a, t, s, ds) in G obtained from D. The
monotone us-path Ss of G containing W1 is a sidetrack for P , since the monotone tv-path Ts

of G containing W2 satisfies Conditions S1 and S2 for Ss. By Lemma 4, each vertex x

of P [s, t] satisfies h(t) ≤ h(x) ≤ h(s). By Lemma 5, Ss − s and P [s, t] − s are anticomplete
in G, implying that P [s, t] is a path of Gs. Since s and t are connected in Gs, the subroutine
call B1(a, t) outputs a uv-trail Ps of G in the iteration with c = s. Hence, (a, t) is indeed
a trail marker of B. One can verify that Ps is also a shortest uv-trail of the uv-straight G,
although ds need not be e. Thus, we have an O(n5)-time algorithm on an n-vertex general
(respectively, uv-straight) graph G that either reports a general (respectively, shortest) uv-trail
of G or ensures that G is uv-trailless.

Phase 2. Since many prefixes of a long sidetrack for a shortest uv-trail P of G remain
sidetracks for P , an edge can be deleted and then inserted back Ω(n) times in Phase 1.
Phase 2 avoids the redundancy by processing the sidetracks in the decreasing order of their
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Figure 5 An illustration for the proof that B1 is a uv-trailblazer of degree two. The red path
denotes a shortest uv-trail P of the uv-straight graph G. The blue and green paths denote a
monotone uc-path Sc and a monotone tv-path Tc of G containing a precomputed pair of wings
for (a, t, c, dc) that need not coincide with P except at a and t.

lengths. Let B2 be the following subroutine that takes a pair (a, b) of V (G) as the only
argument. Obtain in overall O(n2) time from D each set Ci with 0 ≤ i ≤ h(v) that consists
of the vertices c of G with h(c) = i such that G admits a winged quadruple (a, b, c, dc) for
some vertex dc. Let C be the union of all Ci with 0 ≤ i ≤ h(v). Obtain in overall O(n2)
time from D for each vertex c ∈ C (i) a monotone uc-path Sc of G containing a and (ii) a
monotone bv-path Tc with

dG[Sc∪Tc](u, v) > ∥Sc∥ + ∥Tc∥.

Obtain the subgraph H of G induced by the vertices with heights at least h(a) in O(n2 log2 n)
time by the dynamic data structure of Lemma 8. Iteratively perform the following steps in
the decreasing order of the indices i with h(a) ≤ i < h(v):
1. Delete from H the incident edges of NG[Sc − c] in G for all c ∈ Ci.
2. Insert to H the incident edges of Ci in G.
3. Delete from H all edges xy of G with h(x) = i and h(y) = i + 1.
4. If b is not connected to any c ∈ Ci in H, then proceed to the next iteration. Otherwise,

let c be an arbitrary vertex of Ci that is connected to b in H. Exit the loop and report
the O(n2)-time obtainable concatenation Pc of Sc and a shortest cv-path of G[H ∪ Tc].

Since Sc − c and Tc − b are anticomplete in G and the height of each neighbor of c in H is at
most h(c), any arbitrary reported uv-path Pc of G is a uv-trail of G.

Throughout all iterations, the incident edges of each vertex of G is deleted O(1) times by
Step 1, each edge of G is updated O(1) times by Steps 2 and 3, and each vertex c ∈ C is
queried O(1) times by Step 4. Thus, each subroutine call B2(a, b) runs in O(n2 log2 n) time.

Let P be an arbitrary unknown shortest uv-trail of G with twist pair (s, t). As in
Phase 1, let a (respectively, e) be the vertex of the monotone P [u, s] (respectively, P [t, v])
with h(a) = h(t) (respectively, h(e) = h(s)). The rest of the phase proves that (a, t) is a
trail marker for B2 by showing that an iteration with i ≥ h(s) in the loop of the subroutine
call B2(a, t) reports a uv-trail Pc of G. See Figure 6 for an illustration.

If an iteration of B2(a, t) with i ≥ h(s) + 1 reports a uv-trail of G (that need not be
shortest), then we are done. Otherwise, we show that the iteration with i = h(s) has to
report a uv-trail of G. For each c ∈ C with h(c) ≥ i, let sc be the unknown vertex of Sc
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Figure 6 An illustration for the proof that B2 is a uv-trailblazer of degree two. The red path
denotes a shortest uv-trail P of the uv-straight graph G. The blue and green paths denote a
monotone uc-path Sc and a monotone tv-path Tc of G containing a precomputed pair of wings
for (a, t, c, dc) that need not coincide with P except at a and t. Sc[u, sc] remains a sidetrack for P .

with h(sc) = i. Sc[u, sc] remains a sidetrack for P , since Tc still satisfies Conditions S1 and S2
for Sc[u, sc]. Thus, sc ∈ Ci. By Lemma 5, Sc[u, sc] − sc and P [s, t] − s are anticomplete
in G even if Sc[u, sc] need not be Ssc . As a result, P [s, t] − s is a path of the H at the
completion of Step 1 in the i-th iteration. By s ∈ Ci and Lemma 4, P [s, t] is a path of the
graph H at the completion of Step 3 in the i-th iteration. Therefore, s is a c ∈ Ci that
is connected to t in H. Step 4 in the i-th iteration has to output a (shortest) uv-trail Pc

of G for some c ∈ Ci that need not be s. Thus, we have an O(n4.75)-time algorithm that
either obtains a uv-trail of G or ensures that G is uv-trailless. A reported uv-trail of G by
this O(n4.75)-time algorithm need not be a shortest uv-trail of G, since we cannot afford to
spend O(n2) time, as in Phase 1, for each c ∈ C that is connected to t in the H at the h(c)-th
iteration to obtain a shortest cv-path of G[H ∪ Tc].

4 Concluding remarks

We show an O(n4.75)-time algorithm for computing a uv-trail of an n-vertex undirected
unweighted graph G with {u, v} ⊆ V (G). The key to our improved algorithm is the
observation regarding an arbitrary shortest uv-trail of a uv-straight graph G described by
Lemma 5. The inequality of Lemma 5 is stronger than the condition that S − c and P [s, t]−s

are anticomplete in G. As a matter of fact, the latter suffices for our uv-trailblazers in §2
and §3. Thus, a further improved uv-trailblazer might be possible if the wings for a winged
quadruple can be obtained more efficiently. As mentioned in Phase 1 of §3, a shortest uv-trail,
if any, of a uv-straight G can be obtained by our B1-based trailblazing algorithm in O(n5)
time. Detecting a uv-trail with length at least 2dG(u, v) is NP-complete [7, Theorem 1.6]. It
would be of interest to see if a shortest uv-trail or a uv-trail having length at least dG(u, v)+k

for a positive k = O(1) in a general G can be obtained in polynomial time. It is also of
interest to see whether the one-to-all (respectively, all-pairs) version of the problem can be
solved in time much lower than O(n5.75) (respectively, O(n6.75)).
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Abstract
Stabbing Planes is a proof system introduced very recently which, informally speaking, extends the
DPLL method by branching on integer linear inequalities instead of single variables. The techniques
known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those
used for the Cutting Planes proof system established via communication complexity arguments.
Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection
lemmas.

In this work we introduce two new geometric approaches to prove size/depth lower bounds in
Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner’s Theorem
and (2) the covering method which uses results on essential coverings of the boolean cube by linear
polynomials, which in turn relies on Alon’s combinatorial Nullenstellensatz.

We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle,
the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost
linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle
and analogous lower bounds for the Tseitin contradictions over the complete graph and for the
Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a
logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.
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1 Introduction

Finding a satisfying assignment for a propositional formula (SAT) is a central component for
many computationally hard problems. Despite being older than 50 years and exponential
time in the worst-case, the DPLL algorithm [10, 11, 26] is the core of essentially all high
performance modern SAT-solvers. DPLL is a recursive boolean method: at each call one
variable x of the formula F is chosen and the search recursively branches into the two cases

© Stefan Dantchev, Nicola Galesi, Abdul Ghani, and Barnaby Martin;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).
Editors: Petra Berenbrink and Benjamin Monmege; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.s.dantchev@durham.ac.uk
mailto:nicola.galesi@uniroma1.it
mailto:abdul.ghani@durham.ac.uk
mailto:barnaby.d.martin@durham.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2022.24
https://arxiv.org/abs/2102.07622
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Depth Lower Bounds in Stabbing Planes for Combinatorial Principles

obtained by setting x respectively to 1 and 0 in F . It is well-known that the execution trace
of the DPLL algorithm running on an unsatisfiable formula F is nothing more than a treelike
refutation of F in the proof system of Resolution [26] (Res).

Since SAT can be viewed as an optimization problem the question whether Integer Linear
Programming (ILP) can be made feasible for satisfiability testing received a lot of attention and
is considered among the most challenging problems in local search [27, 17]. One proof system
capturing ILP approaches to SAT is Cutting Planes, a system whose main rule implements
the rounding (or Chvátal cut) approach to ILP. Cutting planes works with integer linear
inequalities of the form ax ≤ b, with a, b integers, and, like resolution, is a sound and complete
refutational proof system for CNF formulas: indeed a clause C = (x1 ∨. . .∨xr ∨¬y1 ∨. . .∨¬ys)
can be written as the integer inequality y1 + · · · + ys − x1 − · · · − xr ≤ s − 1.

Beame et al. [2], extended the idea of DPLL to a more general proof strategy based on
ILP. Instead of branching only on a variable as in DPLL, in this method one considers a
pair (a, b), with a ∈ Zn and b ∈ Z, and branches limiting the search to the two half-planes:
ax ≤ b − 1 and ax ≥ b. A path terminates when the LP defined by the inequalities in F and
those forming the path is infeasible. This method can be made into a refutational treelike
proof system for UNSAT CNF’s called Stabbing Planes (SP) ([2]) and it turned out that it
is polynomially equivalent to the treelike version of Res(CP), a proof system introduced by
Krajíček [19] where clauses are disjunction of linear inequalities.

In this work we consider the complexity of proofs in SP focusing on the length, i.e. the
number of queries in the proof; the depth (called also rank in [2]), i.e. the length of the
longest path in the proof tree; and the size, i.e. the bit size of all the coefficients appearing
in the proof.

1.1 Previous works and motivations
After its introduction as a proof system in the work [2] by Beame, Fleming, Impagliazzo,
Kolokolova, Pankratov, Pitassi and Robere, Stabbing Planes received great attention. The
quasipolynomial upper bound for the size of refuting Tseitin contradictions in SP given
in [2] was surprisingly extended to CP in the work of [9] of Dadush and Tiwari refuting a
long-standing conjecture. Recently in [12], Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan
and Wigderson were further developing the initial results proved in [2] making important
progress on the question whether all Stabbing Planes proofs can be somehow efficiently
simulated by Cutting Planes showing quasipolynomial simulation of bounded weight SP
by CP.

Significant lower bounds for size can be obtained in SP, but in a limited way, using
modern developments of a technique for CP based on communication complexity of search
problems introduced by Impagliazzo, Pitassi, Urquhart in [16]: in [2] it is proven that size
S and depth D SP refutations imply treelike Res(CP) proofs of size O(S) and width O(D);
Kojevnikov [18], improving the interpolation method introduced for Res(CP) by Krajíček [19],
gave exponential lower bounds for treelike Res(CP) when the width of the clauses (i.e. the
number of linear inequalities in a clause) is bounded by o(n/ log n). Hence these lower bounds
are applicable only to very specific classes of formulas (whose hardness comes from boolean
circuit hardness) and only to SP refutations of low depth.

Nevertheless SP appears to be a strong proof system. Firstly notice that the condition
terminating a path in a proof is not a trivial contradiction like in resolution, but is the
infeasibility of an LP, which is only a polynomial time verifiable condition. Hence linear size
SP proofs might be already a strong class of SP proofs, since they can hide a polynomial
growth into one final node whence to run the verification of the terminating condition.
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Rank and depth in CP and SP
It is known that, contrary to the case of other proof systems like Frege, neither CP nor SP
proofs can be balanced (see [2]), in the sense that a size 2O(d) proof can always be converted
into a depth O(d) proof. The depth of CP-proofs of a set of linear inequalities L is measured
in two ways: (1) as the depth of the dag representing to the proof, and (2) by the Chvátal rank
of the associated polytope P .1 It is known that rank in CP and depth in SP are separated,
in the sense that Tseitin formulas can be proved in depth O(log n) in SP [2], but are known
to require rank Θ(n) to be refuted in CP [6]. In this paper we further develop the study of
proof depth for SP.

Rank lower bound techniques for Cutting Planes are essentially of two types. The main
method is by reducing to the real communication complexity of certain search problem [16].
As such this method mainly works for classes of formulas lifted by certain gadgets capturing
specific boolean functions. A second class of methods have been developed for Cutting
Planes, which lower bound the rank measures of a polytope. In this setting, lower bounds
are typically proven using a geometric method called protection lemmas [6]. These methods
were recently extended in [12] also to the case of Semantic Cutting Planes. In principle this
geometric method can be applied to any formula and not only to the lifted ones, furthermore
for many formulas (such as the Tseitin formulas) it is known how to achieve Ω(n) rank lower
bounds in CP via protection lemmas, while proving even ω(log n) lower bounds via real
communication complexity is impossible, due to a known folklore upper bound.

Lower bounds for depth in Stabbing Planes, proved in [2], are instead obtained only as a
consequence of the real communication complexity approach extended to Stabbing Planes.
In this paper we introduce two geometric approaches to prove depth lower bounds in SP.

Specifically the results we know at present relating SP and CP are:
1. SP polynomially simulates CP (Theorem 4.5 in [2]) and CP polynomially simulates SP

with bounded coefficients [12]. Hence in particular the PHPm
n can be refuted in SP by a

proof of size O(n2) ([8]). Furthermore it can be refuted by a O(log n) depth proof since
polynomial size CP proofs, by Theorem 4.4 in [2], can be balanced in SP.2

2. Beame et al. in [2] proved the surprising result that the class of Tseitin contradictions
Ts(G, ω) over any graph G of maximum degree D, with an odd charging ω, can be refuted
in SP in size quasipolynomial in |G| and depth O(log2 |G| + D).

Depth lower bounds for SP are proved in [2]:
1. A Ω(n/ log2 n) lower bound for the formula Ts(G, w) ◦ VERn, composing Ts(G, ω) (over

an expander graph G) with the gadget function VERn (see Theorem 5.7 in [2] for details).
2. A Ω(

√
n log n) lower bound for the formula Peb(G) ◦ INDn

l over n5 + n log n variables
obtained by lifting a pebbling formula Peb(G) over a graph with high pebbling number,
with a pointer function gadget INDn

l (see Theorem 5.5. in [2] for details).
3. There are also sub-linear lower bounds on SP depth when the coefficients in the SP proof

are of magnitude at most 2nδ for some constant δ for random O(log n)-CNF formulas over
n variables. This lower bound is hence obtained (by communication complexity arguments)
for an unlifted class of formulas by combining the Cutting Planes size lower bounds for

1 This is the minimal d such that P (d) is empty, where P (0) is the polytope associated to L and P (i+1) is
the polytope defined by all inequalities which can be inferred from those in P (i) using one Chvátal cut.

2 Another way of proving this result is using Theorem 4.8 in [2] stating that if there are length L and space
S CP refutations of a set of linear integral inequalities, then there are depth O(S log L) SP refutations
of the same set of linear integral inequalities; and then use the result in [14] (Theorem 5.1) that PHPm

n

has polynomial length and constant space CP refutations.
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random O(log n)-CNF formulas of [15, 13] with the quasipolynomial transformation of
Stabbing Planes proofs into Cutting Planes for bounded coefficients (2nδ , see [12]). This
gives a exp(nδ/ polylog(n)) size lower bound, and thus a Ω(nδ/ polylog(n)) depth lower
bound for SP proofs.

Similar to size, these depth lower bounds are applicable only to very specific classes of
formulas. In fact they are obtained by extending to SP the technique introduced in [16, 20]
for CP of reducing shallow proofs of a formula F to efficient real communication protocols
computing a related search problem and then proving that such efficient protocols cannot
exist.

Despite the fact that SP is at least as strong as CP, in SP the known lower bound
techniques are derived from those of CP. Hence finding other techniques to prove depth and
size lower bounds for SP is important to understand its proof strength. For instance, unlike
CP where we know tight Θ(log n) rank bounds for the PHPm

n [6, 25] and Ω(n) rank bounds
for Tseitin contradictions [6], for SP no depth lower bound is at present known for purely
combinatorial statements.

In this work we address such problems.

1.2 Contributions and techniques

The main motivation of this work was to study size and depth lower bounds in SP through
new methods, possibly geometric. Differently from weaker systems like Resolution, except
for the technique highlighted above and based on reducing to the communication complexity
of search problems, we do not know of other methods to prove size and depth lower bounds
in SP. In CP and Semantic CP instead geometrical methods based on protection lemmas
were used to prove rank lower bounds in [6, 12].

Our first steps in this direction were to set up methods working for truly combinatorial
statements, like Ts(G, w) or PHPm

n , which we know to be efficiently provable in SP, but on
which we cannot use methods reducing to the complexity of boolean functions, like the ones
based on communication complexity.

We present two new methods for proving depth lower bounds in SP which in fact are
the consequence of proving length lower bounds that do not depend on the bit-size of the
coefficients.

As applications of our two methods we respectively prove:
1. An exponential separation between the rank in CP and the depth in SP, using a new

counting principle which we introduce and that we call the Simple Pigeonhole Principle
SPHPn. We prove that SPHPn has O(1) rank in CP and requires Ω(log n) depth in
SP. Together with the results proving that Tseitin formulas requires Ω(n) rank lower
bounds in CP ([6]) and O(log2 n) upper bounds for the depth in SP ([2]), this proves an
incomparability between the two measures.

2. An almost linear lower bound for the size of SP proofs of the PHPm
n and for Tseitin

contradictions Ts(G, ω) over the complete graph. These lower bounds immediately give an
optimal Ω(log n) lower bound for the depth of SP proofs of the corresponding principles.

3. A superlinear lower bound for the size of SP proofs of Ts(G, ω), when G is a n × n grid
graph Hn. In turn this implies an Ω(log n) lower bound for the depth of SP proofs of
Ts(Hn, ω). Proofs of depth O(log2 n) for Ts(Hn, ω) are given in [2].

4. Finally we prove a linear lower bound for the size and a Ω(log n) lower bound for the
depth for the the Linear Ordering Principle LOPn.
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Our results are derived from the following initial geometrical observation: let S be a
space of admissible points in {0, 1, 1/2}n satisfying a given unsatisfiable system of integer
linear inequalities F(x1, . . . , xn). In a SP proof for F , at each branch Q = (a, b) the set of
points in the slab(Q) = {s ∈ S : b − 1 < ax < b} does not survive in S. At the end of the
proof on the leaves, where we have infeasible LP’s, no point in S can survive the proof. So it
is sufficient to find conditions such that, under the assumption that a proof of F is “small”,
even one point of S survives the proof. In pursuing this approach we use two methods.

The antichain method. Here we use a well-known bound based on Sperner’s Theorem [7, 29]
to upper bound the number of points in the slabs where the set of non-zero coefficients is
sufficiently large. Trading between the number of such slabs and the number of points ruled
out from the space S of admissible points, we obtain the lower bound.

We initially present the method and the Ω(log n) lower bound on a set of unsatisfiable
integer linear inequalities – the Simple Pigeonhole Principle (SPHP) – capturing the core of
the counting argument used to prove the PHP efficiently in CP. Since SPHPn has rank 1 CP
proofs, it entails a strong separation between CP rank and SP depth. We then apply the
method to PHPm

n and to Ts(Kn, ω).
The covering method. The antichain method appears too weak to prove size and depth

lower bounds on Ts(G, w), when G is for example a grid or a pyramid. To solve this case,
we consider another approach that we call the covering method: we reduce the problem
of proving that one point in S survives from all the slab(Q) in a small proof of F , to the
problem that a set of polynomials which essentially covers the boolean cube {0, 1}n requires
at least

√
n polynomials, which is a well-known problem faced by Alon and Füredi in [1]

and by Linial and Radhakrishnan in [21]. For this reduction to work we have to find a high
dimensional projection of S covering the boolean cube and defined on variables effectively
appearing in the proof. We prove that cycles of distance at least 2 in G work properly to this
aim on Ts(G, ω). Since the grid Hn has many such cycles, we can obtain the lower bound on
Ts(Hn, ω). The use of Linial and Radhakrishnan’s result is not new in proof complexity. Part
and Tzameret in [23], independently of us, were using this result in a completely different
way from us in the proof system Res(⊕) handling clauses over parity equations, and not
relying on integer linear inequalities and geometrical reasoning.

We remark that while we were writing this version of the paper, Yehuda and Yehudayoff
in [30] slightly improved the results of [21] with the consequence, noticed in their paper too,
that our size lower bounds for Ts(G, ω) over a grid graph is in fact superlinear.

The paper is organized as follows: We give the preliminary definitions in the next section
and then we move to other sections: one on the lower bounds by the antichain method and
the other on lower bounds by the covering method. The antichain method is presented on
the formulas SPHPn, PHPm

n , Tseitin formulas for the complete graph and the LOPn. The
covering method is used for the Tseitin formulas for the grid graph. The lower bound for the
Linear Ordering Principle, LOPn, is deferred to the appendix.

2 Preliminaries

We use [n] for the set {1, 2, . . . , n}, Z/2 for Z ∪ (Z + 1
2 ) and Z+ for {1, 2, . . .}.

2.1 Proof systems

Here we recall the definition of the Stabbing Planes proof system from [2].
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▶ Definition 1. A linear integer inequality in the variables x1, . . . , xn is an expression of the
form

∑n
i=1 aixi ≥ b, where each ai and b are integral. A set of such inequalities is said to

be unsatisfiable if there are no 0/1 assignments to the x variables satisfying each inequality
simultaneously.

Note that we reserve the term infeasible, in contrast to unsatisfiable, for (real or rational)
linear programs.

▶ Definition 2. Fix some variables x1, . . . , xn. A Stabbing Planes (SP) proof of a set of
integer linear inequalities F is a binary tree T , with each node labeled with a query (a, b)
with a ∈ Zn, b ∈ Z. Out of each node we have an edge labeled with ax ≥ b and the other
labeled with its integer negation ax ≤ b − 1. Each leaf ℓ is labeled with a LP system Pℓ made
by a nonnegative linear combination of inequalities from F and the inequalities labelling the
edges on the path from the root of T to the leaf ℓ.

If F is an unsatisfiable set of integer linear inequalities, T is a Stabbing Planes (SP)
refutation of F if all the LP’s Pℓ on the leaves of T are infeasible.

▶ Definition 3. The slab corresponding to a query Q = (a, b) is the set slab(Q) = {x ∈ Rn :
b − 1 < ax < b} satisfying neither of the associated inequalities.

Since each leaf in a SP refutation is labelled by an infeasible LP, throughout this paper
we will actually use the following geometric observation on SP proofs T : the set of points in
Rn must all be ruled out by a query somewhere in T . In particular this will be true for those
points in Rn which satisfy a set of integer linear inequalities F and which we call feasible
points for F .

▶ Fact 4. The slabs associated with a SP refutation must cover the feasible points of F .
That is,

{y ∈ Rn : cy ≥ r for all (c, r) ∈ F} ⊆
⋃

(a,b)∈T

{x ∈ Rn : b − 1 < ax < b}

The length of a SP refutation is the number of queries in the proof tree. The depth of
a SP refutation T is the longest root-to-leaf path in T . The size (respectively depth) of
refuting F in SP is the minimum size (respectively depth) over all SP refutations of F . We
call bit-size of a SP refutation T the total number of bits needed to represent every inequality
in the refutation.

▶ Definition 5 ([8]). The Cutting Planes (CP) proof system is equipped with boolean axioms
and two inference rules:

Boolean Axioms Linear Combination Rounding
x≥0 −x≥−1

ax≥c bx≥d
αax+βbx≥αc+βd

αax≥b
ax≥⌈b/α⌉

where α, β, b ∈ Z+ and a, b ∈ Zn. A CP refutation of some unsatisfiable set of integer linear
inequalities is a derivation of 0 ≥ 1 by the aforementioned inference rules from the inequalities
in F .

A CP refutation is treelike if the directed acyclic graph underlying the proof is a tree.
The length of a CP refutation is the number of inequalities in the sequence. The depth is
the length of the longest path from the root to a leaf (sink) in the graph. The rank of a CP
proof is the maximal number of rounding rules used in a path of the proof graph. The size
of a CP refutation is the bit-size to represent all the inequalities in the proof.
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2.2 Restrictions
Let V = {x1, . . . , xn} be a set of n variables and let ax ≤ b be a linear integer inequality.
We say that a variable xi appears in, or is mentioned by a query Q = (a, b) if ai ̸= 0 and
does not appear otherwise.

A restriction ρ is a function ρ : D → {0, 1}, D ⊆ V . A restriction acts on a half-plane
ax ≤ b setting the xi’s according to ρ. Notice that the variables xi ∈ D do not appear in the
restricted half-plane.

By T ↾ρ we mean to apply the restriction ρ to all the queries in a SP proof T . The tree
T ↾ρ defines a new SP proof: if some Q↾ρ reduces to 0 ≤ −b, for some b ≥ 1, then that node
becomes a leaf in T ↾ρ. Otherwise in T ↾ρ we simply branch on Q↾ρ. Of course the solution
space defined by the linear inequalities labelling a path in T ↾ρ is a subset of the solution
space defined by the corresponding path in T . Hence the leaves of T ↾ρ define an infeasible
LP.

We work with linear integer inequalities which are a translation of families of CNFs F .
Hence when we write F↾ρ we mean the applications of the restriction ρ to the set of linear
integer inequalities defining F .

3 The antichain method

This method is based on Sperner’s theorem. Using it we can prove depth lower bounds in
SP for PHPm

n and for Tseitin contradictions Ts(Kn, ω) over the complete graph. To motivate
and explain the main definitions, we use as an example a simplification of the PHPm

n , the
Simplified Pigeonhole principle SPHPn, which has some interest since (as we will show) it
exponentially separates CP rank from SP depth.

3.1 Simplified Pigeonhole Principle
As mentioned in the Introduction, the SPHPn intends to capture the core of the counting
argument used to efficiently refute the PHP in CP.

▶ Definition 6. The SPHPn is the following unsatisfiable family of inequalities:∑n
i=1 xi ≥ 2

xi + xj ≤ 1 for all i ̸= j ∈ [n]
0 ≤ xi ≤ 1 for all i ∈ [n].

▶ Lemma 7. SPHPn has a rank 1 CP refutation, for n ≥ 3.

Proof. Let S :=
∑n

i=1 xi (so we have S ≥ 2). We fix some i ∈ [n] and sum xi + xj ≤ 1 over
all j ∈ [n] \ {i} to find S + (n − 2)xi ≤ n − 1. We add this to −S ≤ −2 to get

xi ≤ n − 3
n − 2

which becomes xi ≤ 0 after a single cut. We do this for every i and find S ≤ 0 - a contradiction
when combined with the axiom S ≥ 2. ◀

It is easy to see that SPHPn has depth O(log n), length O(n) proofs in SP, either by a
direct proof or appealing to the polynomial size proofs in CP of the PHPm

n ([8]) and then
using the Theorem 4.4 in [2] informally stating that “CP proofs can be balanced in SP”.

▶ Theorem 8. The SPHPn has a SP refutation of size O(n) and depth O(log(n)).
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Proof. Note that no admissible point for the SPHPn has any xi set to 1. The SP refutation
just performs a binary search looking for an xi set to 1 – if it cannot find such an xi, we
contradict the axiom

∑n
i=1 xi ≥ 2,

In more detail, the root asks if
∑n

i=1 xi is at least 1 or at most 0. The at most 0 branch
directly contradicts the axiom

∑n
i=1 xi ≥ 2 (and so terminates). The at least 1 branch

asks if
∑⌊n/2⌋

i=1 xi is again at least 1 or at most 0. If this is at most 0, we must have that∑n
i=⌊n/2⌋+1 xi ≥ 1 - in either case we have halved the range of the index of summation. ◀

We will prove that this depth bound is tight.

3.2 Sperner’s Theorem
Let a ∈ Rn. The width w(a) of a is the number of non-zero coordinates in a. The width of a
query (a, b) is w(a), and the width of a SP refutation is the minimum width of its queries.

Let n ∈ N. Fix W ⊆ [0, 1] ∩ Q+ of finite size k ≥ 2 and insist that 0 ∈ W . The W ’s we
work with in this paper are {0, 1/2} and {0, 1/2, 1}.

▶ Definition 9. A (n, W )-word is an element in W n.

For two vectors x, y ∈ Rd, say that x ≤ y in the pointwise ordering if xi ≤ yi for all
1 ≤ i ≤ d. We consider the following extension of Sperner’s theorem.

▶ Theorem 10 ([22, 7]). Fix any t ≥ 2, t ∈ N. For all f ∈ N, with the pointwise ordering of
[t]f , any antichain has size at most tf

√
6

π(t2−1)f (1 + o(1)).

We will use the simplified bound that any antichain A has size |A| ≤ tf√
f

.

▶ Lemma 11. Let a ∈ Zn and |W | = k ≥ 2. The number of (n, W )-words s such that as = b,
where b ∈ Q, is at most kn√

w(a)
.

Proof. Define Ia = {i ∈ [n] : ai ≠ 0}. Let ⪯ be the partial order over W Ia where x ⪯ y
if xi ≤ yi for all i with ai > 0 and xi ≥ yi for the remaining i with ai < 0. Clearly the
set of solutions (restricted to indices in Ia) to as = b forms an antichain under ⪯. Noting
that ⪯ is isomorphic to the typical pointwise ordering on W Ia , we appeal to Theorem 10
to upper bound the number of solutions in W Ia by kw(a)√

w(a)
, each of which corresponds to at

most kn−w(a) vectors in W n. ◀

3.3 Large admissibility
A (n, W )-word s is admissible for an unsatisfiable set of integer linear inequalities F over n

variables if s satisfies all constraints of F . A set of (n, W )-words is admissible for F if all its
elements are admissible. A(F , W ) is the set of all admissible (n, W )-words for F .

The interesting sets W for an unsatisfiable set of integer linear inequalities F are those
such that almost all (n, W )-words are admissible for F . We will apply our method on sets of
integer linear inequalities which are a translation of unsatisfiable CNF’s generated over a
given domain. Typically these formulas on a size n domain have a number of variables which
is not exactly n but a function of n, ν(n) ≥ n. (For example, the PHPn+1

n has ν(n) = n2 + n

variables.) Hence for the rest of this section we consider F := {Fn}n∈N as a family of sets
of unsatisfiable integer linear inequalities, where Fn has ν(n) ≥ n variables. We call F an
unsatisfiable family.

Consider then the following definition (recalling that we denote k = |W |):
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▶ Definition 12. F is almost full if |A(Fn, W )| ≥ kν(n) − o(kν(n)).

Notice that, because of the o notation, Definition 12 might be not necessarily true for all
n ∈ N, but only starting from some nF . Note also that being almost full is defined relative
to some W .

▶ Definition 13. Given some almost full family F (over ν(n) variables) we let nF be the
natural number with

kν(n)

|A(Fn, W )| ≤ 2 for all n ≥ nF .

As an example we prove SPHP is almost full (notice that in the case of SPHPn, ν(n) = n).

▶ Lemma 14. SPHPn is almost full when W = {0, 1/2}.

Proof. Let U be the set of all (n, W )-words with at least four coordinates set to 1/2. U

is admissible for SPHPn since inequalities xi + xj ≤ 1 are always satisfied for any value in
W and inequalities x1 + . . . + xn ≥ 2 are satisfied by all points in U which contain at least
four 1/2s. By a simple counting argument, in U there are at least 2n − 4n3 = 2n − o(2n)
admissible (n, W )-words. Hence the claim. ◀

▶ Lemma 15. Let F = {Fn}n∈N be an almost full unsatisfiable family, where Fn has ν(n)
variables. Further let T be a SP refutation of F of width w. If n ≥ nF then |T | = Ω(

√
w).

Proof. We estimate at what rate the slab of the queries in T rule out admissible points in U .
Let ℓ be the least common multiple of the denominators in W . Every (n, W )-word x falling
in the slab of some query (a, b) satisfies one of ℓ equations ax = b + i/ℓ, 1 ≤ i < ℓ (as a is
integral). Note that as |W | is a constant independent of n, so is ℓ.

Since all the queries in T have width at least w, according to Lemma 11, each query in
T rules out at most ℓ · kν(n)

√
w

admissible points. By Fact 4 no point survives at the leaves, in
particular the admissible points. Then it must be that

|T |ℓ · kν(n)
√

w
≥ |A(Fn, W )| which means |T |ℓ · kν(n)

|A(Fn, W )| ≥
√

w

We finish by noting that, by the assumption n ≥ nF , and then by Definition 13, we have
2 ≥ kν(n)

|A(Fn,W )| , so |T | ≥
√

w/(2ℓ) ∈ Ω(
√

w). ◀

3.4 Main theorem
We focus on restrictions ρ that after applied to an unsatisfiable family F = {Fn}n∈N, reduce
the set F to another set in the same family.

▶ Definition 16. Let F = {Fn}n∈N be an unsatisfiable family and c a positive constant. F

is c-self-reducible if for any set V of variables, with |V | = v < n/c, there is a restriction ρ

with domain V ′ ⊇ V , such that Fn↾ρ= Fn−cv (up to renaming of variables).

Let us motivate the definition with an example.

▶ Lemma 17. SPHPn is 1-self-reducible.

Proof. Whatever set of variables xi, i ∈ I ⊂ [n] we consider, it is sufficient to set xi to 0 to
fulfill Definition 16. ◀
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▶ Theorem 18. Let F := {Fn}n∈N be a unsatisfiable set of integer linear inequalities which
is almost full and c-self-reducible, for some constant c. If Fn defines a feasible LP whenever
n > nF , then for n large enough, the shortest SP proof of Fn is of length Ω( 4

√
n).

Proof. Take any SP proof T refuting Fn and fix t = 4
√

n.
The proof proceeds by stages i ≥ 0 where T0 = T . The stages will go on while the

invariant property (which at stage 0 is true since n > nF and c a positive constant)

n − ict3 > max{nF , n(1 − 1/c)}

holds.
At the stage i we let Σi = {(a, b) ∈ Ti : w(a) ≤ t2} and si = |Σi|. If si ≥ t the claim is

trivially proven. If si = 0, then all queries in Ti have width at least t2 and by Lemma 15
(which can be applied since n − ict3 > nF ) the claim is proven (for n large enough).

So assume that 0 < si < t. Each of the queries in Σi involves at most t2 nonzero
coefficients, hence in total they mention at most sit

2 ≤ t3 variables. Extend this set of
variables to some V ′ in accordance with Definition 16 (which can be done since, by the
invariant, ict3 < n/c). Set all these variables according to self-reducibility of F in a restriction
ρi and define Ti+1 = Ti↾ρi

. Note that by Definition 16 and by that of restriction, Ti+1 is a
SP refutation of Fn−ict3 and we can go on with the next stage. (Also note that we do not
hit an empty refutation this way, due to the assumption that Fn defines a feasible LP.)

Assume that the invariant does not hold. If this is because n − ict3 < nF then, as each
iteration destroys at least one node,

|T | ≥ i >
n − nF

ct3 ∈ Ω(n1/4).

If this is because n − ict3 < n − n/c, then again for the same reason it holds that

|T | ≥ i >
n

c2n3/4 ∈ Ω(n1/4). ◀

Using Lemmas 14 and 17 and the previous Theorem we get:

▶ Corollary 19. The length of any SP refutation of SPHPn is Ω( 4
√

n). Hence the minimal
depth is Ω(log n).

3.5 Lower bounds for the Pigeonhole principle
▶ Definition 20. The Pigeonhole principle PHPm

n , m(n) > n, is the family of unsatisfiable
integer linear inequalities defined over the variables {Pi,j : i ∈ [m], j ∈ [n]} consisting of the
following inequalities:∑n

j=1 Pi,j ≥ 1 ∀i ∈ [m] (every pigeon goes into some hole)
Pi,k + Pj,k ≤ 1 ∀k ∈ [n], i ̸= j ∈ [m] (at most one pigeon enters any given hole)

We present a lower bound for PHPm
n closely following that for SPHPn, in which we largely

ignore the diversity of different pigeons (which makes the principle rather like SPHPn).
In this subsection we fix W = {0, 1/2}, and for the sake of brevity refer to (n, W )-words

as biwords.
In this section we fix m to be n + d, for any fixed d ∈ N at least one.

▶ Lemma 21. The PHPn+d
n is almost full.
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Proof. We show that there are at least 2mn−1 admissible biwords (for sufficiently large
n). For each pigeon i, there are admissible valuations to holes so that, so long as at least
two of these are set to 1/2, the others may be set to anything in {0, 1/2}. This gives
at least 2n − (n + 1) possibilities. Since the pigeons are independent, we obtain at least
(2n − (n + 1))m biwords. Now this is 2mn

(
1 − n+1

2n

)m where
(
1 − n+1

2n

)m ∼ e
−(n+1)m

2n whence,(
1 − n+1

2n

)m ≥ e
−(n+2)m

2n for sufficiently large n. It follows there is a constant c so that:

2mn

(
1 − n + 1

2n

)m

≥ 2mn− c(n+2)m
2n ≥ 2mn−1

for sufficiently large n. ◀

▶ Lemma 22. The PHPn+d
n is 1-self-reducible.

Proof. We are given some set I of variables from PHPn+d
n . These variables will mention

some set of holes H := {j : Pi,j ∈ I for some i} and similarly a set of pigeons P . Each of
P , H have size at most |I| and we extend them both arbitrarily to have size exactly |I|.
Our restriction matches P and H in any way and then sets any other variable mentioning a
pigeon in P or a hole in H to 0. ◀

▶ Theorem 23. The length of any SP refutation of PHPn+d
n is Ω( 4

√
n).

Proof. Note that the all 1/2 point is feasible for PHPn+d
n . Then with Lemma 21 and

Lemma 22 in hand we meet all the prerequisites for Theorem 18. ◀

By simply noting that a SP refutation is a binary tree, we get the following corollary.

▶ Corollary 24. The SP depth of the PHPn+d
n is Ω(log n).

3.6 Lower bounds for Tseitin contradictions over the complete graph
▶ Definition 25. For a graph G = (V, E) along with a charging function ω : V → {0, 1}
satisfying

∑
v∈V ω(v) = 1 mod 2. The Tseitin contradiction Ts(G, ω) is the set of linear

inequalities which translate the CNF encoding of∑
e∈E
e∋v

xe = ω(v) mod 2.

for every v ∈ V , where the variables xe range over the edges e ∈ E.

In this subsection we consider Ts(Kn, ω) and ω will always be an odd charging for Kn.
We let N :=

(
n
2
)

and we fix W = {0, 1/2, 1}, k = 3 and for the sake of brevity refer to
(n, W )-words as triwords. We will abuse slightly the notation of Section 3.3 and consider the
family {Ts(Kn, ω)}n∈N, ω odd as a single parameter family in n. The reason we can do this is
because the following proofs of almost fullness and self reducibility do not depend on ω at
all (so long as it is odd, which we will always ensure).

▶ Lemma 26. Ts(Kn, ω) is almost full.

Proof. We show that Ts(Kn, ω) has at least c3N admissible triwords, for any constant
0 < c < 1 and n large enough. We define the assignment ρ setting all edges (i.e. xe) to
a value in W = {0, 1, 1/2} independently and uniformly at random, and inspecting the
probability that some fixed constraint for a node v is violated by ρ.
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Clearly if at least 2 edges incident to v are set to 1/2 its constraint is satisfied. If none of
its incident edges are set to 1/2 then it is satisfied with probability 1/2. Let A(v) be the
event “no edge incident to v is set to 1/2 by ρ” and let B(v) be the event that “exactly one
edge incident to v is set to 1/2 by ρ”. Then:

Pr[v is violated] ≤ 1
2 Pr[A(v)] + Pr[B(v)] = 1

2
2n−1

3n−1 + (n − 1)2n−2

3n−1 = n
2n−2

3n−1 .

Therefore, by a union bound, the probability that there exists a node with violated parity
is bounded above by n2 2n−2

3n−1 , which approaches 0 as n goes to infinity. ◀

▶ Lemma 27. Ts(Kn, ω) is 2-self-reducible.

Proof. We are given some set of variables I. Each variable mentions 2 nodes, so extend
these mentioned nodes arbitrarily to a set S of size exactly 2|I|, which we then hit with the
following restriction: if S is evenly charged, pick any matching on the set {s ∈ S : w(s) = 1},
set those edges to 1, and set any other edges involving some vertex in S to 0. Otherwise
(if S is oddly charged) pick any l ∈ {s ∈ S : w(s) = 1} and r ∈ [n] \ S and set xlr to 1.
{s ∈ S : w(s) = 1} \ l is now even so we can pick a matching as before. And as before we set
all other edges involving some vertex in S to 0. In the first case the graph induced by [n] \ S

must be oddly charged (as the original graph was). In the second case this induced graph
was originally evenly charged, but we changed this when we set xlr to 1. ◀

▶ Lemma 28. For any oddly charged ω and n large enough, all SP refutations of Ts(Kn, ω)
have length Ω( 4

√
n).

Proof. We have that the all 1/2 point is feasible for Ts(Kn, ω). Then we can simply apply
Theorem 18. ◀

▶ Corollary 29. The depth of any SP refutation of Ts(Kn, ω) is Ω(log n).

4 The covering method

▶ Definition 30. A set L of linear polynomials with real coefficients is said to be a cover of
the cube {0, 1}n if for each v ∈ {0, 1}n, there is a p ∈ L such that p(v) = 0.

In [21] Linial and Radhakrishnan considered the problem of the minimal number of
hyperplanes needed to cover the cube {0, 1}n. Clearly every such cube can be covered by
the zero polynomial, so to make the problem more meaningful they defined the notion of an
essential covering of {0, 1}n.

▶ Definition 31 ([21]). A set L of linear polynomials with real coefficients is said to be an
essential cover of the cube {0, 1}n if
(E1) L is a cover of {0, 1}n,
(E2) no proper subset of L satisfies (E1), that is, for every p ∈ L, there is a v ∈ {0, 1}n such

that p alone takes the value 0 on v, and
(E3) every variable appears (in some monomial with non-zero coefficient) in some polynomial

of L.

They then proved that any essential cover E of the hypercube {0, 1}n must satisfy
|E| ≥

√
n. We will use the slightly strengthened lower bound given in [31]:

▶ Theorem 32. Any essential cover L of the cube with n coordinates satisfies |L| ∈ Ω(n0.52).
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We will need an auxillary definition and lemma.

▶ Definition 33. Let L be a cover of {0, 1}I for some index set I. Some subset L′ of L is
an essentialisation of L if L′ also covers {0, 1}I but no proper subset of it does.

▶ Lemma 34. Let L be a cover of the cube {0, 1}n and L′ be any essentialisation of L. Let
M ′ be the set of variables appearing with nonzero coefficient in L′. Then L′ is an essential
cover of {0, 1}M ′ .

Proof.
(E1) Given any point x ∈ {0, 1}M ′ , we can extend it arbitrarily to a point x′ ∈ {0, 1}M .

Then there is some p ∈ L′ with p(x′) = 0 – but p(x′) = p(x), as p doesn’t mention any
variable outside of M ′.

(E2) Similarly to the previous point, this will follow from the fact that if some set T covers
a hypercube {0, 1}I , it also covers {0, 1}I′ for any I ′ ⊇ I.
Suppose some proper subset L′′ ⊂ L′ covers {0, 1}M ′ , then it covers {0, 1}n – but we
picked L′ to be a minimal set with this property.

(E3) We defined M ′ to be the set of variables appearing with nonzero coefficient in L′. ◀

4.1 The covering method and Tseitin
Let Hn denote the n × n grid graph. Fix some ω with odd charge and a SP refutation T
of Ts(Hn, ω). Fact 4 tells us that for every point x admissible for Ts(Hn, ω), there exists a
query (a, b) ∈ T such that b < ax < b + 1. In this section we will only consider admissible
points with entries in {0, 1/2, 1}, turning the slab of a query (a, b) into the solution set of
the single linear equation a · x = b + 1/2. So we consider T as a set of such equations.

We say that an edge of Hn is mentioned in T if the variable xe appears with non-zero
coefficient in some query in T . We can see Hn as a set of (n − 1)2 squares (4-cycles), and
we can index them as if they were a Cartesian grid, starting from 1. Let S be the set of
⌊(n/3)2⌋ squares in Hn gotten by picking squares with indices that become 2 (mod 3). This
ensures that every two squares in S in the same row or column have at least two other
squares between them, and that no selected square is on the perimeter.

We will assume WLOG that n is a multiple of 3, so |S| = (n/3)2. Let K =
⋃

t∈S t be the
set of edges mentioned by S, and for some s ∈ S, let Ks :=

⋃
t∈S,t ̸=s t be the set of edges

mentioned in S by squares other than s.

▶ Lemma 35. For every s ∈ S we can find an admissible point bs ∈ {0, 1/2, 1}E(Hn) such
that
1. bs(xe) = 0 for all e ∈ Ks, and
2. bs is fractional only on the edges in s.

Proof. We use the following fact due to A. Urquhart in [28]

▶ Fact 36. For each vertex v in Hn there is a totally binary assignment, called v-critical in
[28], satisfying all parity axioms in Ts(Hn, ω) except the parity axiom of node v.

Pick any corner c of s. Let bs be the result of taking any c-critical assignment of the
variables of Ts(Hn, ω) and setting the edges in s to 1/2. bs is admissible, as c is now adjacent
to two variables set to 1/2 (so its originally falsified parity axiom becomes satisfied) and
every other vertex is either unaffected or also adjacent to two 1/2s. While bs sets some edge
e ∈ Ks to 1, flip all of the edges in the unique other square containing e. This other square
always exists (as no square touches the perimeter) and also contains no other edge in Ks (as
there are at least two squares between any two squares in S). Flipping the edges in a cycle
preserves admissibility, as every vertex is adjacent to 0 or 2 flipped edges. ◀
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▶ Definition 37. Let VS := {vs : s ∈ S} be a set of new variables. For s ∈ S define the
substitution hs, taking the variables of Ts(Hn, ω) to VS ∪ {0, 1/2, 1}, as

hs(xe) :=
{

bs(e) if e is not mentioned in S, or if e is mentioned by s,
vt if e is mentioned by some square t ̸= s ∈ S.

(where bs is from Lemma 35).

▶ Definition 38. Say that a linear polynomial p = c+
∑

e∈E(Hn) µexe with coefficients µe ∈ Z
and some constant part c ∈ R has odd coefficient in X ⊆ E(Hn) if

∑
e∈X µe is an odd integer.

Given some polynomial p in the variables xe of Tseitin, and some square s ∈ S, let ps be the
polynomial in variables VS gotten by applying the substitution xe → hs(xe). Also, for any set
of polynomials T in the variables xe let Ts := {ps : p ∈ T , p has odd coefficient in s}.

Given some assignment α ∈ {0, 1}VS\{vs}, and some hs as in Definition 37, we let α(hs)
be the assignment to the variables of Ts(Hn, ω) gotten by replacing the vt in the definition
of hs by α(vt).

▶ Lemma 39. Let s ∈ S. For all 2|S|−1 settings α of the variables in VS \ {vs}, α(hs) is
admissible.

Proof. When α(vt) is all 0, hs = bs is admissible (by Lemma 35). Toggling some vt only has
the effect of flipping every edge in a cycle, which preserves admissibility. ◀

▶ Lemma 40. Ts covers {0, 1}VS\{vs}.

Proof. For every setting of α ∈ {0, 1}VS\{vs}, α(hs) as defined above is admissible and
therefore covered by some p ∈ T , which has constant part 1/2+b for some b ∈ Z. Furthermore,
as α(hs) sets every edge in s to 1/2, every such p must have odd coefficient in front of s -
otherwise

p(α(hs)) = 1/2 + b + (1/2)
(∑

e∈s

µe

)
+
∑
e̸∈s

µeα(hs)(xe)

can never be zero, as the 1/2 is the only non integral term in the summation. ◀

▶ Theorem 41. Any SP refutation T of Ts(Hn, ω) must have |T | ∈ Ω(n1.04).

Proof. We are going to find a set of pairs (L1, M1), (L2, M2), . . . , (Lq, Mq), where the Li are
pairwise disjoint nonempty subsets of T , the Mi are subsets of VS , and for every i there is
some si ∈ S \

⋃q
i=1 Mi such that |(Li)si

| ≥ |Mi|0.52. These pairs will also satisfy the property
that

{si : 1 ≤ i ≤ q} ∪
q⋃

i=1
Mi = S. (1)

As |S| = (n/3)2 this would imply that
∑q

i=1 |Mi| ≥ (n/3)2 − q. If q ≥ (n/3)2/2, then (as
the Li are nonempty and pairwise disjoint) we have |T | ≥ (n/3)2/2 ∈ Ω(n1.04). Otherwise∑q

i=1 |Mi| ≥ (n/3)2/2, and as (by Theorem 32) each |Li| ≥ |Mi|0.52,

|T | ≥
q∑

i=1
|Li| ≥

q∑
i=1

|Mi|0.52 ≥

(
q∑

i=1
|Mi|

)0.52

≥
(
(n/3)2/2

)0.52 ∈ Ω(n1.04). (2)
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We create the pairs by stages. Let S1 = S and start by picking any s1 ∈ S1. By Lemma 40
Ts1 covers {0, 1}VS1 \{vs1 } and has as an essentialisation E, which will be an essential cover
of {0, 1}V ′ for some V ′ ⊆ VS1 \ {vs1}. We create the pair (L1, M1) = ({p : ps1 ∈ E}, V ′)
and update S2 = S1 \ ({s : vs ∈ V ′} ∪ {s1}). (Note that V ′ could possibly be empty - for
example, if the polynomial xe = 1/2 appears in T , where e ∈ s1. In this case however we
still have |L1| ≥ |M1|0.52. If V ′ is not empty we have the same bound due to Theorem 32.)
If S2 is nonempty we repeat with any s2 ∈ S2, and so on.

We now show that as promised the left hand sides of these pairs partition a subset of T ,
which will give us the first inequality in Equation (2). Every polynomial p with p ∈ Li has
every vt mentioned by psi

removed from Sj for all j ≥ i, so the only way p could reappear
in some later Lj is if psj ∈ Tsj , where vsj does not appear in psi . Let µe, e ∈ sj be the
coefficients of p in front of the four edges of sj . The coefficient in front of vsj

in psi
is just∑

e∈sj
µe. As vsj

failed to appear this sum is 0 and p does not have the odd coefficient sum
it would need to appear in Tsj

. ◀

5 Conclusions

The Ω(log n) depth lower bound for Ts(Hn, ω) is not optimal since [2] proved an O(log2 n)
upper bound for Ts(G, ω), for any bounded-degree G. Even to apply the covering method to
prove a depth Ω(log2 n) lower bound on Ts(Kn, ω) (notice that it would imply a superpolyno-
mial length lower bound), the polynomial covering of the boolean cube should be improved
to work on general cubes. To this end the algebraic method used in [21] should be improved
to work with generalizations of multilinear polynomials.

One weakness of the lower bound techniques presented in this work is that we consider
coverings of polytopes with slabs, rather than recursive coverings. That is, if we branch on
ax ≥ b then any further query that we do on the branch ax ≤ b − 1 will not affect the points
on the branch ax ≥ b. Thus our method is overstating the number of points ruled out by
each slab. In treelike proof systems where proofs can be balanced and depth lower bounds
give size lower bounds [24, 3, 4, 23] such a recursive method can be approached through
the Prover-Delayer game-theoretic tool [24] or generalizations of this game [4, 5]. Proving
stronger direct lower bounds on Stabbing Planes by recursive methods is a direction for
further research left open in this work.
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A Lower bound for the Least Ordering Principle

▶ Definition 42. Let n ∈ N. The Least Ordering Principle, LOPn, is the following set of
unsatisfiable linear inequalities over the variables Pi,j (i ̸= j ∈ [n]):

Pi,j + Pj,i = 1 for all i ̸= j ∈ [n]
Pi,k − Pi,j − Pj,k ≥ 1 for all i ̸= j ̸= k ∈ [n]

n∑
i=1,i̸=j

Pi,j ≥ 1 for all j ∈ [n]

▶ Lemma 43. For any X ⊆ [n] of size at most n − 3, there is an admissible point for LOPn

integer on any edge mentioning an element in X.

Proof. Let ⪯ be any total order on the elements in X. Our admissible point x will be

x(Pi,j) =


1 if i, j ∈ X and i ⪯ j, or if i ̸∈ X, j ∈ X

0 if i, j ∈ X and j ⪯ i, or if i ∈ X, j ̸∈ X

1/2 otherwise (if i, j ̸∈ X).

The existential axioms
∑n

i=1,i̸=j Pi,j are always satisfied - if j ∈ X then there is some
i ̸∈ X with Pi,j = 1, and otherwise there are at least two distinct i, k ̸= j ∈ X with
Pi,j , Pk,j = 1/2. For the transitivity axioms Pi,k − Pi,j − Pj,k ≥ 1, note that if 2 or more of
i, j, k are not in X there are at least 2 variables set to 1/2, and otherwise it is set in a binary
fashion to something consistent with a total order. ◀

We will assume that a SP refutation T of LOPn only involves variables Pi,j where i < j -
this is without loss of generality as we can safely set Pj,i to 1 − Pi,j whenever i > j, and will
often write P{i,j} for such a variable. We consider the underlying graph of the support of a
query, i.e. an undirected graph with edges {i, j} for every variable P{i,j} that appears with
non-zero coefficient in the query.
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For some function f(n), we say the query is f(n)-wide if the smallest edge cover of its
graph has at least f(n) nodes . A query that is not f(n)-wide is f(n)-narrow. The next
lemma works much the same as Theorem 18.

▶ Lemma 44. Fix ϵ > 0 and suppose we have some SP refutation T of LOPn, where
|T | ≤ n

1−ϵ
4 . Then, if n is large enough, we can find some SP refutation T ′ of LOPcn, where

c is a positive universal constant that may be taken arbitrarily close to 1, T ′ contains only
n3/4-wide queries, and |T ′| ≤ |T |.

Proof. We iteratively build up an initially empty restriction ρ. At every stage ρ imposes
a total order on some subset X ⊆ [n] and places the elements in X above the elements
not in X. So ρ sets every edge not contained entirely in [n] \ X to something binary, and
LOPn↾ρ= LOPn−|X| (up to a renaming of variables).

While there exists a n3/4-narrow query q ∈ T ↾ρ we simply take its smallest edge cover,
which has size at most n3/4 by definition, and add its nodes in any fashion to the total order
in ρ. Now all of the variables mentioned by q ∈ T ↾ρ are fully evaluated and q is redundant.
We repeat this at most n

1−ϵ
4 times (as |T | ≤ n

1−ϵ
4 and each iteration renders at least one

query in T redundant). At each stage we grow the domain of the restriction by at most n3/4,
so the domain of ρ is always bounded by n1−ϵ/4. We also cannot exhaust the tree T in this
way, as otherwise T mentioned at most n1−ϵ/4 < n − 3 elements and by Lemma 43 there is
an admissible point not falling in any slab of T , violating Fact 4.

When this process finishes we are left with a n3/4-wide refutation T ′ of LOPn−n1−ϵ/4 . As
ϵ was fixed we find that as n goes to infinity n − n1−ϵ/4 tends to n. ◀

▶ Lemma 45. Let d ≤ (n − 3)/2. Given any disjoint set of pairs D = {{l1, r1}, . . . , {ld, rd}}
(where WLOG li < ri in [n] as natural numbers) and any binary assignment b ∈ {0, 1}D, the
assignment xb with

xb(P{i,j}) =
{

b({lk, rk}) if {i, j} = {lk, rk} ∈ X for some k

1/2 otherwise

is admissible.

Proof. The existential axioms
∑n

i=1,i̸=j Pi,j are always satisfied, as for any j there are at least
n−2 i ∈ [n] different from j with Pi,j = 1/2. For the transitivity axioms Pi,k −Pi,j −Pj,k ≥ 1,
note that due to the disjointness of D at least two variables on the left hand side are set to
1/2. ◀

▶ Theorem 46. Fix some ϵ > 0 and let T any SP refutation of LOPn. Then, for n large
enough, |T | ∈ Ω(n 1−ϵ

4 ).

Proof. Suppose otherwise - then, by Lemma 44, we can find some T ′ refuting LOPcn, with
|T ′| ≤ |T |, every query n3/4-wide, and c independent of n. We greedily create a set of
pairs D by processing the queries in T ′ one by one and choosing in each a matching of size
n1/2 disjoint from the elements appearing in D - this always succeeds, as at every stage
|D| ∈ O(n 1−ϵ

4 · n1/2) and involves at most O(2n
3−ϵ

4 ) < n3/4 − n1/2 elements.

So by Lemma 45, after setting every edge not in D to 1/2, we have some set of linear
polynomials R = {a(x) = ax − b − 1/2 : (a, b) ∈ T ′} covering the hypercube {0, 1}D, where
every polynomial p ∈ R mentions at least n1/2 edges. By Lemma 11 each such polynomial
in R rules out at most 2|D|

/n1/4 points, and so we must have |T | ≥ |T ′| ≥ |R| ≥ n1/4. ◀
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A finite group of order n can be represented by its Cayley table. In the word-RAM model the
Cayley table of a group of order n can be stored using O(n2) words and can be used to answer a
multiplication query in constant time. It is interesting to ask if we can design a data structure to
store a group of order n that uses o(n2) space but can still answer a multiplication query in constant
time.

We design a constant query-time data structure that can store any finite group using O(n) words
where n is the order of the group.

Farzan and Munro (ISSAC 2006) gave an information theoretic lower bound of Ω(n) on the
number of words to store a group of order n. Since our data structure achieves this lower bound
and answers queries in constant time, it is optimal in both space usage and query-time.

A crucial step in the process is essentially to design linear space and constant query-time data
structures for nonabelian simple groups. The data structures for nonableian simple groups are
designed using a lemma that we prove using the Classification Theorem for Finite Simple Groups
(CFSG).
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1 Introduction

The Cayley table of a group of order n is a two dimensional table whose (i, j)th entry is the
product of the ith and jth element of the group. In the word-RAM model while it takes
O(n2) words to store the Cayley table of a group of order n, a multiplication query can be
answered in constant time by accessing the appropriate location of the table.

For many computational problems in group theory the input group is given by its
Cayley table. Some of these problems include the minimum generating set problem, various
problems in property testing, the group factoring problem, and the group isomorphism
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problem [18, 1, 15, 19]. Among these, the group isomorphism problem is probably the most
prominent one because of its unresolved complexity status despite years of extensive research
[4, 13, 2, 5, 20, 14].

The Cayley table is very fast in terms of query processing but it takes quadratic space
to store a group. It is interesting to ask if we can design a data structure for finite groups
using o(n2) space2 which can still answer multiplication query in constant time. We note
that while quasigroups, and semigroups can also be stored using their Cayley tables, it is not
possible to store quasigroups, and semigroups using o(n2) space. This is simply because the
numbers of quasigroups, and semigroups are too large [26, 17] and the information theoretic
lower bound is Ω(n2 log n) bits or Ω(n2) words.

Das et al. [9] showed that for any finite group G of order n and for any δ ∈ [1/ log n, 1],
a data structure can be constructed for G that uses O(n1+δ/δ) space and answers a multi-
plication query in time O(1/δ). Their result implies that there exist constant query-time
data structures for finite groups of order n that use O(n1.01) space. However, the result
cannot be used to design a constant query-time data structure even if we are allowed to use
Θ(n.polylog(n)) space.

In this paper we design constant query-time data structures for finite groups that can
be stored using O(n) words where n is the order of the group. An information theoretic
argument by Farzan and Munro shows that a lower bound to store a group of order n is
Ω(n log n) bits or Ω(n) words [11]. Our data structure is optimal in the sense that it achieves
the lower bound. A data structure that achieves the optimum information theoretic lower
bound asymptotically is known as a compact data structure. Therefore our data structure
is a constant query-time compact data structure for finite groups. We note that compact
query-time data structures were designed for some restricted classes of groups such as abelian
groups and Dedekind groups [8].

In the process of designing the data structure we first prove two results, which we call
extension theorems, on the construction of data structures for a group when we already have
a data structure for a subgroup of the given group. The extra space used by the newly
constructed data structure depends on the index of the subgroup in one of the results and the
structure3 of the subgroup in the other result. This indicates that finding suitable subgroups
of a group might be useful.

The Jordan-Hölder theorem provides us with a supply of subgroups in the form of
composition series. In our process we try to pick some suitable subgroups that are elements
of the composition series of the given group. However, picking suitable groups is not always
possible. This happens, as we will see in Section 4, when there is a “large” composition
factor sitting in a certain position of the composition series. The composition factors are
simple groups. In a sense the hard cases for constructing the data structure are for the simple
groups.

Simple groups are sometimes considered as the building blocks for finite groups. The
Classification Theorem for Finite Simple Groups (CFSG) is one of the most important
theorems in group theory. Informally, this theorem classifies the finite simple groups into
cyclic groups, alternating groups, certain groups of Lie-type and into 26 sporadic simple
groups. The precise statement of the theorem could be found in Section 5. Except for the 26
sporadic simple groups the other group classes are infinite. We use CFSG to prove a key
lemma that allows us to handle the case for the nonabelian simple groups.

2 In this paper we use the word-RAM model. The space used by a data structure or an algorithm refers
to the number of words used by them.

3 The subgroup needs to be normal and quotient needs to be cyclic.
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We note that for solvable groups the design of the data structure is independent of CFSG.
The composition factors of a solvable group are cyclic of prime order. Such cases are handled
using one of the extension theorems proved in Section 3.

Related work. Farzan and Munro [11] gave a succinct representations for finite abelian
groups in a specific model of computation. In their model a compression algorithm first
produces labels of each group element. The queries are processed by a query processing unit
which is similar to the word-RAM model. However, along with the common arithmetic,
logical and comparison operations the query processing unit can also perform bit-reversal in
constant time. A user issuing a query, supplies the labels of two group elements that were
generated by the compression algorithm to the query processing unit which then returns the
label of the product of the two elements.

Das et al. [9] and Das and Sharma [8] have used Erdös-Réyni cube generating sequences,
Remak-Krull-Schmidt decomposition and the structure of indecomposable groups to design
their space and query-time efficient data structures. Our approach is quite different in the
sense that we use the extension theorems (Section 3) and the Classification Theorem for
Finite Simple groups to design the data structures.

Remark. There are several ways to represent a finite group apart from the Cayley table
representation. The permutation group representation, the polycyclic presentations and
the generator-relator presentations are some of the common group representations. These
representations are often incomparable. For example in the generator-relator presentation
we can represent infinite groups. However, many problems such as the membership testing,
testing if a group is finite becomes undecidable in the generator-relator presentation (c.f. [25]).
In the permutation group representation the membership testing takes superlinear time in
terms of the degree of the representation and polylogarithmic in the order of the group [24,
23, 12]. We contrast this with the Cayley table representation where membership testing
can be done in constant time since the elements are known and are already used as row and
column indices of the Cayley table. In the Cayley representation the user knows the labels
or the names of each group element explicitly and has a direct access to each element. The
labels of the elements are often taken to be 1, 2, . . . , n where n is the order of the group. The
situation is quite different for permutation group representation, polycyclic presentation or
generator-relator presentation. In these cases the user does not have an explicit representation
for each element.

2 Preliminary

In this section we recall some definitions and notations which we use in this paper. In this
paper we only consider finite groups. The number of elements in a group G is called the
order of G and is denoted by |G|. A group G is abelian if g1g2 = g2g1 for all g1, g2 ∈ G. For a
subgroup H of G and g ∈ G, the set gH = {gh | h ∈ H} is called a left coset. Similarly, we can
define right coset of G. The number of the left (or right) cosets of H in G is called the index
of H in G and is denoted by [G : H]. A left traversal of H in G is a set containing exactly
one element from each left coset and similarly we can define right traversals. The size of left
(right) traversal is the same as the index [G : H ]. For g ∈ G, the set gHg−1 = {gag−1 | a ∈ H}
is called a conjugate of the subgroup H. A subgroup H of G is said to be normal in G

(denoted H ⊴ G) if gHg−1 = H for all g ∈ G. We define the normalizer of H in G to be
the set NG(H) = {g ∈ G | gHg−1 = H}. Note that, NG(H) is the largest subgroup in G in
which H is normal.
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A group G is called simple if G has no nontrivial normal subgroup. The Classification
Theorem of Finite Simple Groups states that all the finite simple groups can be classified
into the following five classes: (1) cyclic groups of prime order, (2) alternating groups, (3)
classical groups, (4) exceptional groups of Lie type and (5) 26 sporadic simple groups.

We list all the classes of the finite simple groups later in the Classification Theorem for
Simple Groups in Section 5. If G is a finite simple group of Lie-type over Fq where q is a
power of some prime p, the Borel subgroup B of G is defined as the semidirect product of
the Sylow p-subgroup of G with the maximal split torus T . The Borel subgroup is also the
normalizer of the Sylow p-subgroup of the finite simple group (see [6], [27]).

For the purpose of this paper it might be sufficient to know some results on the orders
of certain subgroups of simple groups. The reader may choose to skip the details of the
structure of these groups. We indicate what kind of subgroups we are interested in and the
results regarding the order of those subgroups as and when required. An interested reader
may refer to the books by Carter [6], Wilson [27], or Aschbacher [3] for more details.

▶ Definition 1 (see e.g., [10]). A subnormal series of a group G is chain of subgroups

1 = Gk ≤ Gk−1 ≤ · · · ≤ G1 ≤ G0 = G

such that Gi ⊴ Gi−1, for all i.

▶ Definition 2 (see e.g., [10]). In a group G a sequence of subgroups

1 = Gk ≤ Gk−1 ≤ · · · ≤ G1 ≤ G0 = G

is called a composition series if Gi ⊴ Gi−1 and Gi−1/Gi is simple for all i ∈ [k]. Here, k is
the composition length of G.

▶ Theorem 3 (Jordan-Hölder Theorem see e.g., [10]). Let G be a finite group with G ̸= 1.
Then

(i) G has a composition series.
(ii) The composition factors in a composition series are unique, namely, if 1 = Nr ≤

Nr−1 ≤ · · · ≤ N1 ≤ N0 = G and 1 = Ms ≤ Ms−1 ≤ · · · ≤ M1 ≤ M0 = G are two
composition series for G, then r = s and there is some permutation π of {1, 2, . . . , r}
such that,

Mπ(i)

Mπ(i)+1
∼=

Ni

Ni+1
, for 1 ≤ i ≤ r.

▶ Theorem 4 (Correspondence Theorem see e.g., [21]). Let K ⊴ G and let v : G −→ G/K be
the canonical map i.e. v(g) = Kg for all g. Then S 7→ v(S) = S/K is a bijection from the
family of all those subgroups S of G which contain K to the family of all the subgroups of
G/K.

Model of computation. In this paper, we use an abstract model of computation known as
the word-RAM model. In this model, data is stored in resisters and memory units. Each
memory unit and resister can store O(log n) bits where n is the size of the input. The unit
of storage is called word. The machine in the word-RAM model can access a word and do
the usual arithmetic, logical, and comparison operations in constant time. The input size for
our purpose is the order of the group. Without loss of generality, we can assume that the
elements of groups are 1, 2, 3, ..., n. Thus, every group element can be stored in a word and
can be accessed in constant time.
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There are two phases in the construction of a data structure: the preprocessing phase
and the query phase. In the preprocessing phase, we assume that we have been given a
finite group by its Cayley table. Using the Cayley table, we construct a data structure that
consists of some arrays and tables. In the query phase, we process multiplication queries.
In a multiplication query, two group elements g1 and g2 are given by the user. The task
is to find the product of g1 and g2. In this phase, the data structure constructed in the
preprocessing phase is accessed to answer the query. The time taken to answer a single query
is called the query-time.

The time and space used in preprocessing stage are not considered. We only consider the
space used by the data structure and the time it takes to answer a query to multiply the
group elements.

▶ Definition 5. Let G be a group and s and t be two positive real numbers. We say that G

has an (s, t)-data structure, if G can be stored in a data-structure that uses at most s space
and can answer a multiplication query in time at most t.

▶ Definition 6. Let G be a class of group and let s, t : N → R≥0 be two functions. If for
every group G ∈ G of order n there is a data structure that uses O(s(n)) space to store G

and can answer a multiplication query in time at most O(t(n)) then we say that G has an
(O(s(n)), O(t(n)))-data structure.

3 Extension Theorems

In this section, we discuss how to use data structures for subgroups to build new data
structures for groups containing the subgroups.

▶ Theorem 7. There exist positive constants c and d such that for any group G and
a subgroup H of G if H has an (s, t)-data structure for some s and t then G has an
(s + c([G : H]2 + |G|), 2t + d)-data structure.

Proof. First we fix a left traversal L and a right traversal R of H in G. Each g ∈ G can
be uniquely written as g = hr where h ∈ H and r ∈ R. Thus we can define functions
sR : G −→ H and cR : G −→ R such that g = sR(g)cR(g). Similarly we can define
cL : G −→ L and sL : G −→ H such that g = cL(g)sL(g). We can store these four functions
in four arrays each of length |G|.

Suppose we need to find the product of g1 and g2. Note that,

g1g2 = cL(g1)sL(g1)sR(g2)cR(g2).

Since sL(g1), sR(g2) ∈ H , we can use the data structure for H to find sL(g1)sR(g2) within
time t. Let h1 = sL(g1)sR(g2). Therefore, we can write g1g2 = cL(g1)h1cR(g2).

Given l ∈ L and h ∈ H, we know that there exist unique elements h′ ∈ H and r ∈ R

such that lh = h′r. Thus, we can define two functions FlipH : L × H −→ H and FlipR :
L × H −→ R such that lh = FlipH(l, h)FlipR(l, h). We can store FlipH and FlipR in two
2-dimensional arrays using space linear in |H × L| = |G|. With the help of these functions,
we can write

g1g2 = FlipH(cL(g1), h1)FlipR(cL(g1), h1)cR(g2) = h2r1r2

where h2 = FlipH(cL(g1), h1), r1 = FlipR(cL(g1), h1) and r2 = cR(g2).
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Again we use the fact that any element g of G can be uniquely written as g = hr where
h ∈ H and r ∈ R to define the functions CrossH : R × R −→ H and CrossR : R × R −→ R

such that for all r, r′ ∈ R we have rr′ = CrossH(r, r′)CrossR(r, r′). Note that we can store
these functions in two 2-dimensional arrays each requiring size linear in |R × R| = (|G|/|H|)2.
With the help of these functions we can write

g1g2 = h2CrossH(r1, r2)CrossR(r1, r2) = h2h3r3

where CrossH(r1, r2) = h3 and r3 = CrossR(r1, r2).
Again we can use the data structure for H to compute the product h4 = h2h3 within

time t. Thus g1g2 = h4r3. Finally, we define a function Fuse : H × R −→ G simply as
Fuse(h, r) = hr for all h ∈ H and r ∈ R. Clearly, a 2-dimensional array to store Fuse

would take space linear in |H × R| = |G|. Thus, to produce the final result we just return
g1g2 = Fuse(h4, r3).

All the functions except for CrossR and CrossH take space linear in |G|, while CrossR

and CrossH take space linear in (|G|/|H|)2. The data structure for H takes space at most s.
Therefore, the total space required is linear in |G| + (|G|/|H|)2. We note that each function
defined in this proof is queried exactly once. Thus, the time to query all the nine functions
is bounded by some constant d. Additionally, the time taken to query the data structure for
H is at most 2t. Therefore, we have the required data structure for G. ◀

An immediate corollary of the above theorem is the following.

▶ Corollary 8. Let 0 < c1 ≤ c2 be two constants. Let Gc1,c2 be the class of groups G that has
a subgroup H with c1

√
|G| ≤ |H| ≤ c2

√
|G|. Then Gc1,c2 has (O(n), O(1)) data-structures.

Proof. The Cayley table for H takes size at most c2
2|G| and answers queries in constant time.

Since |G|/|H| ≤ (1/c1)
√

|G|, we have (|G|/|H|)2 ≤ (1/c1)2|G|. Hence the result follows from
Theorem 7. ◀

In the next theorem we show how to use the data-structure for a normal subgroup of a
group to build a data structure for the group when the quotient group is cyclic.

▶ Theorem 9. There are positive constants c and d such that for every group G and any
normal subgroup N of G, if G/N is cyclic and N has an (s, t)-data structure for some s and
t, then G has an (s + c|G|, 2t + d)-data structure.

Proof. Since G/N is cyclic it is generated by an element g0N where g0 ∈ G. The cosets of
N in G are N, g0N, g2

0N, . . . , gk−1
0 N where k is the order of the group G/N , i.e., k = [G : N ].

Clearly, k ≤ |G|. Let S = {0, 1, . . . , k − 1}.
The set {g0

0 , g1
0 , . . . , gk−1

0 } is a left as well as a right traversal of N in G. Hence any
element g could be uniquely written as g = gr

0n = n′gr
0 for some r ∈ S and n, n′ ∈ N . This

enables us to define functions e : G −→ S, sR : G −→ N and sL : G −→ N such that for all
g ∈ G

g = g
e(g)
0 sR(g) = sL(g)ge(g)

0 .

These three functions could be stored in arrays each having size |G|. To multiply g1 and g2
we first observe that g1g2 = g

e(g1)
0 sR(g1)sL(g2)ge(g2)

0 . These expression could be obtained by
querying each of the functions once. The product n1 = sR(g1)sL(g2) can be obtained using
the data structure for N within query-time t. Thus g1g2 = gα

0 n1gβ
0 , where α = e(g1) and

β = e(g2).
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Next we define a function Flip : N × S −→ N with the property that for all n ∈ N and
i ∈ S, ngi

0 = gi
0Flip(n, i). In other words, Flip(n, i) is just g−i

0 ngi
0. This function can be

stored in space linear in |N × S| = |G|. Now we can write g1g2 = gα
0 gβ

0 Flip(n1, β) = gα+β
0 n2

where n2 = Flip(n1, β).
Next we compute gα

0 gβ
0 = gα+β

0 . Observe that α + β ∈ {0, 1, . . . , 2k − 2}. We define
two functions rede : {0, 1, . . . , 2k − 2} −→ S and redN : {0, 1, . . . , 2k − 2} −→ N such
that gℓ

0 = g
rede(ℓ)
0 redN (ℓ) for all ℓ ∈ {0, . . . , 2k − 2}. Note that for ℓ < k, rede(ℓ) = ℓ and

redN (ℓ) = id. These two functions can be stored using space linear in k. Since k ≤ |G|, the
space required is at most linear in G.

Therefore,

g1g2 = gα+β
0 n2 = g

rede(α+β)
0 redN (α + β)n2.

As before the product n3 of redN (α + β) and n2 can be found using the data structure for
N . Let rede(α + β) = γ. Hence, g1g2 = gγ

0 n3.
We finally define a function Fuse : S × N −→ G as Fuse(i, n) = gi

0n for all i ∈ S and
n ∈ N . Clearly, the function Fuse can be stored using space linear in |G|.

The product g1g2 is just Fuse(γ, n3).
Each function defined in this proof takes space linear in |G| and the data structure for N

takes space at most s. Each function is queried exactly once and the data structure for N is
queried twice. This proves the theorem. ◀

4 Compact Data Structures for Finite Groups

Let G be a group of order n. Our goal is to design a constant query-time data structure for
G of size linear in n. We first consider a composition series 1 = Gk ◁ . . . G1 ◁ G0 = G of G.
In case there is a subgroup Gi in the composition series with size within a constant factor of√

n, we can apply Corollary 8 to obtain a (O(n), O(1)) data structure for G. Otherwise we
consider the smallest subgroup Gi of order more than

√
n. Note that here |Gi+1| is at most√

n and therefore Gi+1 will have its Cayley table of size at most n. This Cayley table can be
used to answer a multiplication query involving elements in Gi+1 in constant time.

Now we consider the composition factor Gi/Gi+1. This quotient is a simple group. If
this is an abelian group it must be cyclic (of prime order) and we can use Theorem 9 to get
a data structure for Gi. Then an application of Theorem 7 with G and its subgroup Gi will
give us the required data structure for G.

The nontrivial case is when Gi/Gi+1 is nonabelian. This is where we use the Classification
Theorem of Finite Simple Groups. The classification theorem allows us to split the nonabelian
case into various subcases. In each of the subcases we show that we can insert two subgroups
Gi2 and Gi1 such that Gi+1 < Gi2 < Gi1 < Gi in such a manner that the indices [Gi2 : Gi+1],
[Gi1 : Gi2 ] and [Gi : Gi1 ] are all “small”. Since Gi+1 already has a constant query-time
data structure (namely its Cayley table) of size linear in n, this allows us to use Theorem 7
successively to the group and subgroup pairs (Gi2 , Gi+1), (Gi1 , Gi2), and (Gi, Gi1) to obtain
a constant query-time data structure for Gi of size linear in n. Finally, another application
of Theorem 7 with G and its subgroup Gi will give us the required data structure for G.

4.1 Solvable Finite Groups
In this subsection we consider the class Gsolv of finite solvable groups. We do this case first
before going to the general case for the class of all finite groups because it is independent of
the Classification Theorem for Finite Simple Groups.
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▶ Theorem 10. The class Gsolv has (O(n), O(1)) data-structures.

Proof. Let G be a group and 1 = Gk ◁ . . . G1 ◁ G0 = G be a composition series of G. Let
n = |G|.

Case 1 : There is i such that
√

n/2 ≤ |Gi| ≤
√

n. We simply apply Corollary 8 to get the
desired data structure.

Case 2: There is no i such that
√

n/2 ≤ |Gi| ≤
√

n. Let i be the largest index such that√
n < |Gi|. We will have |Gi+1| <

√
n/2. The Cayley table for Gi+1 has at most n/4 entries.

Since G is solvable Gi/Gi+1 is cyclic of prime order. This allows us to use Theorem 9 to
obtain a constant query-time data structure for Gi which is linear in n. Next we observe
that [G : Gi] is at most

√
n. If we apply Theorem 7 on G and its subgroup Gi we get the

required data structure for G. ◀

4.2 The General Case
Before considering the case for general finite groups we need the following result for nonabelian
simple groups.

▶ Lemma 11. There are positive constants b1 and b2 such that for any nonabelian simple
group H there exist subgroups H1 and H2 such that 1 ≤ H2 ≤ H1 ≤ H and |H2| ≤

√
|H|,

[H : H1] ≤ b1
√

|H|, and [H1 : H2] ≤ b2
√

|H|.

Proof. The proof uses the Classification Theorem of Finite Simple Group (CFSG). The
proof idea is given in Section 5 and the details are given in the Appendix. ◀

Next we prove the main theorem of the paper. We note that Case 2 in the proof of the
following theorem can be viewed as a generalized version of the problem of designing linear
space and constant query-time data structure for nonableian simple groups.

▶ Theorem 12. The class Gfin of all finite groups has (O(n), O(1)) data structures.

Proof. Let G be a group of order n. We start by considering a composition series 1 =
Gk ◁ . . . G1 ◁ G0 = G be a composition series of G.

Case 1: This is the case when there is i such that
√

n/2 ≤ |Gi| ≤
√

n. This case is
exactly similar to the case for solvable groups.

Case 2: As before in this case we assume that there is no composition series element Gi

with order more that
√

n/2 but less than
√

n. Let i be the largest index such
√

n < |Gi|.
We will then have |Gi+1| <

√
n/2. Clearly, the Cayley table of Gi+1 will have at most n/4

entries. Since [G : Gi] <
√

n, by Theorem 7 it is enough to design constant query-time data
structure for Gi of size linear in n. In the rest of the proof we therefore concentrate on
designing a constant query-time data structure for Gi that uses O(n) space.

If the composition factor Gi/Gi+1 is abelian then we are again in the same situation as
in the second case of solvable groups. Therefore we assume that Gi/Gi+1 is nonabelian.

We apply Lemma 11 to H = Gi/Gi+1 to obtain subgroups H1 and H2 such that
1 ≤ H2 ≤ H1 ≤ H = Gi/Gi+1. By the correspondence theorem of groups, H1 and H2 will
be of the form Gi1/Gi+1 and Gi2/Gi+1 respectively for some subgroups Gi1 and Gi2 such
that Gi+1 ≤ Gi2 ≤ Gi1 ≤ Gi. From Lemma 11 we have [H1 : H2] ≤ b2

√
|H|. Since, H1 =

Gi1/Gi+1 and H2 = Gi2/Gi+1, we have [Gi1/Gi+1 : Gi2/Gi+1] ≤ b2
√

|Gi/Gi+1| ≤ b2
√

n.
Therefore, [Gi1 : Gi2 ] ≤ b2

√
n. Similarly, [Gi : Gi1 ] ≤ b1

√
n. Again from Lemma 11, we

have H2 ≤
√

|H|. This implies, [Gi2 : Gi+1] ≤
√

|Gi/Gi+1| ≤
√

n.
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Since Gi+1 has a Cayley table of size at most n and [Gi2 : Gi+1] ≤
√

n, we will have a
constant query-time data structure for the subgroup Gi2 of size at most n by Theorem 7.
Since [Gi1 : Gi2 ] ≤ b2

√
n and [Gi : Gi1 ] ≤ b1

√
n, another two applications of Theorem 7 with

the group and subgroup pairs (Gi1 , Gi2) and (Gi, Gi1) will give a data structure for Gi of
size linear in n which can answer a multiplication query in constant time. ◀

We note that there exist polynomial time algorithms for finding a composition series [22]
and checking if a composition factor is abelian [14]. First, we note that Gi1 and Gi2 can
be found simply by a brute force approach. Therefore, we can actually construct the data
structure for G in the above theorem. While obtaining a polynomial time algorithm to
construct the data structure is not our main goal, we note that we can also construct the
data structure in polynomial time. The proof of this involves careful use of existing results
from group theory and algorithms for group theoretic problems.

5 Proof Sketch for Lemma 11

In this section we sketch the proof idea behind Lemma 11. We first state the Classification
Theorem of Finite Simple Groups.

▶ Theorem 13 ([27]). (The Classification Theorem of Finite Simple Group)
Every finite simple group is isomorphic to one of the following:

(i) a cyclic group Cp of prime order p;
(ii) an alternating group Am, for m ≥ 5;
(iii) a classical group;

a. linear: Am(q)(or PSLm+1(q)), m ≥ 1, except PSL2(2) and PSL2(3);
b. unitary: 2Am(q2)(or PSUm+1(q)) , m ≥ 2, except PSU3(2);
c. symplectic: Cm(q))(or PSp2m(q)), m ≥ 2 except PSp4(2);
d. orthogonal: Bm(q)(or PΩ2m+1(q)), m ≥ 3, q odd;

Dm(q)(or PΩ+
2m(q)), m ≥ 4;

2Dm(q2)(or PΩ−
2m(q)) , m ≥ 4

where q is a power pa of some prime;
(iv) an exceptional group of Lie type:

G2(q), q ≥ 3; F4(q); E6(q);2 E6(q);3 D4(q); E7(q); E8(q) or

where q is a power pa of some prime;

2B2(22m+1), m ≥ 1;2 G2(32m+1), m ≥ 1;2 F4(22m+1), m ≥ 1

or the Tits group 2F4(2)′ ;
(v) one of 26 sporadic simple groups:

a. the five Mathieu groups M11, M12, M22, M23, M24;
b. the seven Leech Lattice groups Co1, Co2, Co3, McL, HS, Suz, J2;
c. the three Fischer groups Fi22, Fi23, Fi′

24;
d. the Monstrous groups M,B, Th, HN, He;
e. the six pariahs J1, J2, J4, O′N, Ly, Ru.

The definition of each of the group classes mentioned in the above theorem can be found in
the standard texts on CFSG (see e.g., [6], [27], [3]).

Since Lemma 11 is about nonabelian simple groups we need to consider cases (ii) to (v)
in Theorem 13. We take each subcases under these cases and show that there are subgroups
H1 and H2 satisfying the conditions of the lemma.
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We note that the 26 sporadic simple groups listed in the case (v) are of constant sizes.
Therefore, we can ignore these groups for the purpose of the proof by simply taking H2 to
be the identity subgroup and H1 to be H. Of course if we do so we need to pick extremely
large constant b2 as some the sporadic simple groups are of huge sizes. Fortunately, there
are known results on the groups listed under case (v) that helps us to keep the constants b1
and b2 under 5.

We handle the Alternating group (case (ii) of Theorem 13) case as follows. Notice that one
can find k ∈ Z such that k!

2 ≤
√

m!
2 < (k+1)!

2 , and H2 ∼= Ak and H1 ∼= Ak+1. Then clearly,

|H2|2 =
(

k!
2

)2 ≤ m!
2 . The inequality m!

2 <
( (k+1)!

2
)2 implies that k > m

2 . The value of k can
be computed easily. One can also check that,

( |H1|
|H2|

)2 = (k + 1)2 ≤ m!
2 and

( |H|
|H1|

)2
< m!

2 .

For the remaining groups we use the following two methods for the choices of H1 and H2.
The methods are as follows:

1. Method 1: In this method, we first choose H2 to be a certain Sylow subgroup of the
given simple group H. Next we pick H1 to be the normalizer of H2 in H or the Borel
subgroup containing H2..

Example: Let us take H to be a simple group Am(q) for some q > 2 which appears in
case (iii) of Theorem 13. Here q is power of some prime p. It is known that Am(q) has
order qm(m+1)/2 ∏m

i=1(qi+1 − 1)/(q − 1, m + 1) where (q − 1, m + 1) denotes the gcd of
q − 1 and m + 1 (see [3], p. 252). Clearly, H will have a Sylow p-subgroup of order
qm(m+1)/2. We set H2 to be this subgroup. Next we pick H1 to be the normailzer of H2
in H. It is also known that the order of H1 is qm(m+1)/2(q − 1)m (see [27], p. 46). One
can check that with b1 = 2 and b2 = 1, these choices satisfy the conditions of Lemma 11
(see Appendix for the details).

2. Method 2: In this method, we choose H1 to be a maximal subgroup of the simple group
H and H2 to certain Sylow subgroup of H1.

Example: In the example under Method 1 we consider the case for Am(q) when q > 2.
In this example we take the case when q = 2. Here H = Am(q) will have order
2m(m+1)/2 ∏m

i=1(2i+1 − 1) (see [3], p. 252). It is known that the maximal subgroup of
H is of order |H|/(2m − 1) (see [16], p. 175). We take this subgroup as H1. Next we
take H2 as a Sylow 2-subgroup of H1 which has order 2m(m+1)/2. It is easy to verify that
these choices of H1 and H2 along with b1 = b2 = 1 satisfy the conditions of Lemma 11
(see Appendix for the details).

Table 1 lists the methods that we have used for choosing the suitable subgroups in the
corresponding nonabelian simple group. The last two columns represent the constant factors
b1 and b2 for the corresponding simple group (see Table 1).

For case (v), we use Method 2 to get the suitable subgroups.

Appendix A.3 contains two comprehensive tables listing the orders of subgroups used in
the proof of Lemma 11 for different cases of CFSG.
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Table 1 Table representing the constant factor and method used for choosing suitable subgroups.

Case H Condition on q Method b1 b2

(iii)

Am(q) q > 2 Method 1 2 1
q = 2 Method 2 1 1

2Am(q2); m > 1
q > 2 Method 1 2 1
q = 2; 6 ∤ (m − 1) Method 2 1 1
q = 2; 6 | (m − 1) Method 2 1 1

Cm(q); m > 2 q > 2 Method 1 2 1
q = 2 Method 2 1 1

Bm(q); m > 1 q odd Method 1 2 1

Dm(q); m > 3 q > 2 Method 1 2 1
q = 2 Method 2 1 1

2Dm(q2); m > 3 q > 2 Method 1 3 1
q = 2 Method 2 1 1

(iv)

G2(q) q ≥ 3 Method 1 1 1
F4(q) All q Method 2 1 1

E6(q) q > 2 Method 1 1 1
q = 2 Method 2 1 1

2E6(q) All q Method 1 1 1
3D4(q) All q Method 1 1 1

E7(q) q > 2 Method 1 1 1
q = 2 Method 2 1 1

E8(q) q > 2 Method 1 1 1
q = 2 Method 2 1 1

2B2(q) q = 22t+1, t ≥ 1 Method 1 1 1
2G2(q) q = 32t+1, t ≥ 1 Method 1 1 1
2F4(q) q = 22t+1, t ≥ 1 Method 1 1 1
2F4(2)′ q = 2 Method 2 1 1
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A Proof of Lemma 11

In this section we indicate how to prove Lemma 11 in more detail. We do this in the ordering
mentioned in the Classification Theorem of Finite Simple Group, i.e., Theorem 13. As we
mentioned in Section 2, we just need to use some known results on the order of certain
subgroups of simple groups. The detailed description of these groups may be skipped for the
purpose of the proof. The results that are used in the proof are on the orders of the finite
simple groups, on the orders of maximal subgroups of simple groups and the normalizers of
certain types of Sylow subgroups of simple groups. The information about the order of these
simple groups can be obtained from [3]

In case (ii) of Theorem 13, H is an alternating group. We have already seen that the
subgroups H2 and H1 are certain suitably picked stabilizer subgroups of the given alternating
group H.

For the cases (iii) and (iv) of Theorem 13, we use Method 1 and Method 2 to get the
desired subgroups as required in Lemma 11. In this cases the finite simple group H is of
Lie-type and is defined over a finite field Fq where q is a power of some prime p. In Method
1, we take H2 to be certain Sylow p-subgroup of H. The existence of such H2 follows from
the well-known Sylow theorem. For the existence of H1, we take the normalizer of H2 or the
Borel subgroup. The information about the order of normalizer has been obtained from (see
[6], p. 76, [27], p. 46).

For the groups in which we use Method 2, we consider a maximal subgroup of H as H1
and H2 to be some Sylow p-subgroup of H1. The index of a maximal subgroup (and hence
its order) can be obtained from [16], p. 175 and [27], p. 156.

For the simple groups in case (v), we use Method 2 and the information about order of
maximal subgroup (H1) can be obtained from [28]. Also, for the choice of H2, we choose
certain Sylow subgroup of H1.

The inequalities in the following two remarks are used in the calculation multiple times.

▶ Remark 14. For all integer q > 2, we have q
(q−1)2 < 1.

▶ Remark 15.
∏i=m

i=1 (qi+1 − (−1)i+1) < q
∑i=m

i=1
(i+1).

▶ Remark 16. The gcd of two natural numbers m and n is denoted by (m, n).

A.1 The Classical Groups
We have seen the case(ii) of Theorem 13 in Section 5. In this section, we consider H to be a
classical simple group described in case (iii) of Theorem 13. In particular, we consider the
case when H is 2Am(q2) where q is a power of some prime p. All the other cases can be
handle similarly. As described earlier, we use Method 1 and Method 2 to show the existence
of subgroups H2 and H1 of the simple group H.

1.1 H = 2Am(q2); m ≥ 2, q > 2 (Method 1)
The finite simple group 2Am(q2) is isomorphic to the projective special unitary group
PSUm+1(q). The group PSUm+1(q) is the group obtain by taking special unitary group
SUm+1(q) and quotienting it by its center, i.e. 2Am(q2) ∼= SUm+1(q)

Z(SUm+1(q)) (see [27], p. 66).
It is known that (see [3], p. 252) the order of 2Am(q2) is,

|H| = q
m(m+1)

2

(q + 1, m + 1)

m∏
i=1

(qi+1 − (−1)i+1).

STACS 2022
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Let H2 be the Sylow p-subgroup of 2Am(q2), then |H2| = q
m(m+1)

2 and |H2|2 ≤ |H|. Let
H1 be the Borel subgroup of H of order (see [27], [6]),

|H1| = q
m(m+1)

2

(q+1,m+1) (q − 1)⌊m/2⌋(q + 1)⌈ m−1
2 ⌉.

One can check that
( |H1|

|H2|
)2 ≤ |H1| < |H| and |H|

|H1| ≤ 2
√

|H|.
1.2 H = 2Am(q2); m ≥ 2, q = 2 (Method 2)

The finite simple group 2Am(22) is of order 2
m(m+1)

2
∏m

i=1(2i+1 − (−1)i+1)/(3, m + 1) and
is isomorphic to projective special unitary group PSUm+1(2) or Um+1(q). The group
Um+1(q) has a maximal subgroup of index (2m+1−(−1)m+1)(2m−(−1)m)

3 when 6 ∤ (m − 1)
and of index 2m(2m+1−1)

3 , when 6 | (m − 1) (see [16], p. 175) .

(Case 1) 6 ∤ (m − 1)
Let H1 be corresponding maximal subgroup of 2Am(22) whose index is

(2m+1 − (−1)m+1)(2m − (−1)m)
3

in 2Am(22). Then, the order of H1 is,

|H1| = 3
(3, m + 1)

2
m(m+1)

2
∏m

i=1(2i+1 − (−1)i+1)
(2m+1 − (−1)m+1)(2m − (−1)m) .

Let H2 be the Sylow 2-subgroup of H1. Then, |H2| = 2
m(m+1)

2 and |H2|2 < | 2Am(22)|.

It is easy to see that
(

|H1|
|H2|

)2

| 2Am(22)| < 1 and
( | 2Am(22)|

|H1|
)2

< | 2Am(22)|.
(Case 2) 6|(m − 1) (i.e. m ≥ 7)

In this case, as we know that the group 2Am(q2) has a maximal subgroup of index
2m(2m+1−1)

3 . Let H1 be one such maximal subgroup. Then,

|H1| = 3
(3, m + 1)2

m(m−1)
2

m−1∏
i=1

(2i+1 − (−1)i+1).

Let H2 be the Sylow 2-subgroup of H1, then H2 has order 2
m(m−1)

2 and |H2|2 <

| 2Am(22)|.
Clearly we can check that

( |H1|
|H2|

)2
< | 2Am(22)| and

( | 2Am(22)|
|H1|

)2
< | 2Am(22)|.

A.2 Exceptional Group of Lie Type
In this section, we consider H to be an exceptional simple group of Lie Type described in
case (iv) of Theorem 13. In particular, we consider the case when H is F4(q), E6(q) and
2F4(2)′ where q is a power of some prime p. The similar arguments can be used to prove the
remaining cases.

(1) H = F4(q) (Method 2)
The finite simple group F4(q) has order (see [3], p. 252),

|F4(q)| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

It is known that (see [27], p. 156) the group F4(q) has a maximal subgroup q1+14 :
Sp6(q).Cq−1 of order q24(q6 −1)(q4 −1)(q2 −1)(q −1) say H1. This subgroup has a Sylow
p-subgroup say H2 of order q24 and |H2|2 ≤ |F4(q)|. Therefore,

( |H1|
|H2|

)2
< |H1| < |H|

and
( |H|

|H1|
)2

< |H|.
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(2) H = E6(q); q > 2 (Method 1)
The group E6(q) is a finite simple group. The order of H = E6(q) is (see [3], p. 252),

|E6(q)| = q36

(3, q − 1)(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1).

Clearly, it has a Sylow p-subgroup H2 of order q36 and |H2|2 ≤ |E6(q)|. Let H1 be
the Borel subgroup of H then the order of H1 is q36(q − 1)6 (see [27], [6]). Clearly,( |H1|

|H2|
)2

< |H1| < |H| and
( |H|

|H1|
)2 ≤ |H|.

Notice that, the group E6(2) is of constant order. However, we can use Method 2 to
reduce the constants b1, b2 to 1. By taking H1 to be maximal subgroup of order (see [7])
236 · 33 · 5 · 7 · 31 and H2 to be its Sylow 2-subgroup of order 236.

(3) H = 2F4(2)′; (Method 2)
The simple group H = 2F4(2)′; has order 17971200. It is known that H has a maximal
subgroup of order 11232. We take H1 to be this maximal subgroup and H2 to be the
Sylow 2-subgroup of H1 which has order 32. Thus, we get b1 = b2 = 1.

A.3 Tables
In this section we cover the details of Sporadic simple groups (Table 2), and the order of all
the simple groups that we define in cases (ii)-(iv) of Theorem 13 in Table 3 and 4. These
tables also contain the order of the subgroups H2 and H1.
Table 2 represents the information about the subgroups H2 and H1 of the Sporadic simple
groups. In Table 2 we consider the values of ti, i = 1, 2, 3, 4 as follows.

t1 = 808017424794512875886459904961710757005754368000000000
t2 = 242 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47
t3 = 4154781481226426191177580544000000
t4 = 238 · (212 − 1) · (29 + 1) · (28 − 1) · (26 − 1) · (25 + 1) · (22 − 1)

In the Table 3, the values of cmi, i = 1, 2, 3, 4, 5 are as follows.

cm1 = q
m(m+1)

2

(q+1,m+1) (q − 1)⌊m/2⌋(q + 1)⌈ m−1
2 ⌉.

cm2 = 3
(3,m+1)

2
m(m+1)

2
∏m

i=1
(2i+1−(−1)i+1)

(2m+1−(−1)m+1)(2m−(−1)m)

cm3 = 3
(3,m+1) 2

m(m−1)
2

∏m−1
i=1 (2i+1 − (−1)i+1)

cm4 = 2m2−m+1(2m + 1)
∏m−1

i=1 (22i − 1)
cm5 = 2m(m−1)(2m−1 + 1)

∏m−2
i=1 (22i − 1).
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Table 2 Table representing the constant factor and Method used for choosing suitable subgroups.

H Order of H
Order of
H2

Order of H1 b1 b2

M11 7920 24 720 1 1
M12 95040 22 660 1 1
M22 443520 26 20160 1 1
M23 10200960 27 443520 1 1
M24 244823040 28 887040 1 1
Co1 4157776806543360000 262144 42305400000000 1 1
Co2 42305400000000 262144 908328960 1 1
Co3 495767000000 27 10200960 1 1
McL 898128000 36 36 · 27 · 7 · 5 1 1
HS 44352000 27 27 · 32 · 5 · 7 · 11 1 1
Suz 448345497600 212 251596800 1 1
J2 604800 25 6048 1 1

Fi22 64561751654400 216 216(26 − 1)(25 + 1)(24 −
1)(23 + 1) 1 1

Fi23 4089470473293004800 218 218 · 39 · 52 · 7 · 11 · 13 1 1
Fi‘24 1255205709190661721292800 219 219 ·313 ·52 ·7·11·13·17·23 1 1
M t1 242 t2 1 1
B t3 238 t4 1 1
Th 90745943887872000 215 319979520 1 1
HN 273030912000000 29 239500800 1 1
He 4030387200 28 28 · 255 · 15 1 1
J1 175560 22 660 1 1
J3 50232960 25 8160 1 1
J4 86775571046077562880 2097152 57161637225 1 1
O′N 460815505920 26 3753792 1 1
Ly 51765179004000000 15625 5859000000 1 5
Ru 145926144000 212 35942400 1 1
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Table 3 Order of the simple groups (case (iii) of Theorem 13) and order of its subgroups H2, H1.

H |H| |H2| |H1|

Am(q); q > 2 q
m(m+1)

2
∏m

i=1
(qi+1−1)

(q−1,m+1)
q

m(m+1)
2 q

m(m+1)
2

(q−1,m+1) (q − 1)m

Am(2); q = 2 2
m(m+1)

2
∏m

i=1(2i+1 − 1) 2
m(m+1)

2 2
m(m+1)

2
∏m

i=1
(2i+1−1)

(2m+1−1)
2Am(q2); q >

2, m > 1
q

m(m+1)
2

(q+1,m+1)
∏m

i=1(qi+1 − (−1)i+1) q
m(m+1)

2 cm1

2Am(22); q =
2, m > 1, 6 ∤
(m − 1)

2
m(m+1)

2
(3,m+1)

∏m

i=1(2i+1 − (−1)i+1) 2
m(m+1)

2 cm2

2Am(22); q =
2, m > 1, 6 |
(m − 1)

2
m(m+1)

2
(3,m+1)

∏m

i=1(2i+1 − (−1)i+1) 2
m(m−1)

2 cm3

Cm(q); q > 2,
m > 2

qm2 ∏m

i=1
(q2i−1)

(2,q−1)
qm2

qm2

(2,q−1) (q − 1)m

Cm(2); q = 2,
m > 2 2m2 ∏m

i=1(22i − 1) 2m2−m+1 cm4

Bm(q); q odd,
m > 1

qm2 ∏m

i=1
(q2i−1)

(2,q−1)
qm2

qm2

(2,q−1) (q − 1)m

Dm(q); q > 2,
m > 3

qm(m−1)(qm−1)
∏m−1

i=1
(q2i−1)

(4,qm−1)
qm(m−1) qm(m−1)

(4,qm−1) (q − 1)m

Dm(2); q = 2,
m > 3 2m(m−1)(2m − 1)

∏m−1
i=1 (22i − 1) 2m2−2m+1 2m2−2m+1 ∏m−1

i=1 (22i −1)
2Dm(q2);
q > 2, m > 3

qm(m−1)(qm+1)
(4,qm+1)

∏m−1
i=1 (q2i − 1) qm(m−1) qm(m−1)

(4,qn+1) (q − 1)m

2Dm(22); q =
2, m > 3

2m(m−1)(2m+1)
(4,2m+1)

∏m−1
i=1 (22i − 1) 2m(m−1) cm5

Table 4 Order of the simple groups (case (iv) of Theorem 13) and order of its subgroups H2, H1.

G2(q) q6(q6 − 1)(q2 − 1) q6 q6(q − 1)2

F4(q) q24 ∏
i∈{2,6,8,12}(qi − 1) q24 q24 ∏

i∈{1,2,4,6}(qi − 1)
E6(q), q > 2 q36

(3,q−1)
∏

i∈{2,5,6,8,9,12}(qi − 1) q36 q36(q − 1)6

E6(2) 236 ∏
i∈{2,5,6,8,9,12}(2i − 1) 236 236 · 33 · 5 · 7 · 31

2E6(q) q36(q9+1)
(3,q+1)

∏
i∈{2,5,6,8,12}(qi − 1) q36 q36(q − 1)4(q + 1)2

3D4(q) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) q12 q12 (q3 − 1)(q − 1)
E7(q), q > 2 q63

(2,q−1)
∏

i∈{2,6,8,10,12,14,18}(qi − 1) q63 q63(q − 1)7

E7(2) 263 ∏
i∈{2,6,8,10,12,14,18}(2i − 1) 263 263 · 34 · 72 · 5

E8(q), q > 2 q120 ∏
i∈{2,8,12,14,18,20,24,30}(qi − 1) q120 q120(q − 1)8

E8(2) 2120 ∏
i∈{2,8,12,14,18,20,24,30}(2i − 1) 2119 2119 · 34 · 5 · 72 · 31

2B2(q);
q = 22t+1, t ≥ 1 q2(q2 + 1)(q − 1) q2 q2(q − 1)
2G2(q);
q = 32t+1, t ≥ 1 q3(q3 + 1)(q − 1) q3 q3(q − 1)
2F4(q);
q = 22t+1, t ≥ 1 q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) q12 q12(q − 1)2
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1 Introduction

The classical core of combinatorial group theory centres on Dehn’s three algorithmic problems
concerning finitely presented groups [7]: given a finite presentation for a group, describe
an algorithm that decides whether or not an arbitrary word in the generators and their
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inverses spells the identity element (the word problem); given a finite presentation for a group,
describe an algorithm that decides whether or not two arbitrary words in the generators and
their inverses spell conjugate elements (the conjugacy problem); describe an algorithm that,
given two finite presentations, decides whether or not the groups presented are isomorphic
(the isomorphism problem). For arbitrary finite presentations, these problems are undecidable
and so upper bounds on complexity are impossible. Obtaining bounds on complexity requires
working with presentations that come with a promise that they determine groups in a
particular class, or presentations that provide (intrinsic or extrinsic) additional structure.
From Dehn’s work, finite length-reducing rewriting systems that satisfy various convergence
properties emerged as finite group presentations that simultaneously specify interesting
infinite groups and provide natural solutions to the corresponding word problems.

A research program, active since the 1980s, seeks to classify the groups that may be
presented by finite length-reducing rewriting systems satisfying various convergence properties.
The hyperbolic groups [15], the virtually-free groups [14] (groups with a free subgroup of
finite index – by Muller and Schupp’s theorem [23] they are also known as context-free
groups), and the plain groups [10] are important classes of groups, each a proper subclass of
the class before, that arise within this program. A group is plain if it is isomorphic to a free
product of finitely many finite groups and a free group of finite rank. The plain groups may
be characterised as the fundamental groups of finite graphs of finite groups with trivial edge
groups [18], and as the groups admitting a finite group presentation with a simple reduced
word problem [16]. Moreover, the plain groups are conjectured to be exactly the groups that
may be presented by finite convergent length-reducing rewriting systems [21].

The isomorphism problem is, of course, the most difficult of Dehn’s problems and
complexity results concerning this problem are rare. However, progress has been made on the
isomorphism problem for the very classes of groups that arise in the study of length-reducing
rewriting systems. Krstić solved the isomorphism problem for virtually-free groups described
by arbitrary finite group presentations [19]. Building on the pioneering work of Rips and
Sela [26], Sela [27], and Dahmani and Groves [5], Dahmani and Guirardel [6] provided an
explicit algorithm that solves the isomorphism problem in all hyperbolic groups when the
groups are given by finite presentations. In light of this result, attention can now shift to
complexity bounds for the isomorphism problem. Notice that, in order to obtain complexity
bounds, we cannot allow arbitrary presentations as inputs (otherwise we could decide within
that complexity bound whether a given presentation is for the trivial group – a problem
which is undecidable). In [28, 29], Sénizergues showed that the isomorphism problem for
virtually-free groups is primitive recursive when the input is given in the form of two virtually-
free presentations, or as two context free grammars. A virtually-free presentation of a group
G specifies a free subgroup F plus a set of representatives S for the cosets F \G together
with relations describing pairwise multiplications of elements from F and S; a context-free
grammar can specify a virtually-free group by generating the language of words that spell
the identity element. Then in 2018, Sénizergues and the fifth author [30] showed that the
isomorphism problem for virtually-free groups can be solved in doubly-exponential space
when the groups are specified by context-free grammars, and in PSPACE when the groups
are given by virtually-free presentations.

In the present article, we prove that the complexity bounds for the isomorphism problem
in virtually-free groups can be improved significantly when one restricts attention to the
class of plain groups.

▶ Theorem 1 (Isomorphism of plain groups). The isomorphism problem for plain groups
presented by inverse-closed finite convergent length-reducing rewriting systems is in ΣP

3 .
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We recall that the complexity class ΣP
3 lies in the polynomial hierarchy, see for example

[1, Chapter 5]:

NP = ΣP
1 ⊆ ΣP

2 ⊆ ΣP
3 · · · ⊆ PSPACE.

Here we use the following specific definition.

▶ Definition 2 ([32]). Let S be a finite set and L ⊆ S∗. Then L ∈ ΣP
3 if and only if there is

a polynomial p and a predicate P that can be evaluated in PTIME such that

∀w ∈ S∗
(
w ∈ L ⇐⇒ ∃x ∈ {0, 1}p(|w|) ∀y ∈ {0, 1}p(|w|) ∃z ∈ {0, 1}p(|w|)P (w, x, y, z) = 1

)
.

Rather than specifying the variables as polynomial length binary strings, we will describe
data for x, y, z which has polynomial size over a finite alphabet.
▶ Remark 3. We will abbreviate inverse-closed finite convergent length-reducing rewriting
system to icfclrrs for the rest of this article, and refer to a group admitting a presentation by
an icfclrrs as an icfclrrs group.
▶ Remark 4. In [11] it is shown that the problem of deciding if an icfclrrs presents a plain
group is in NP. Note that if the conjecture that inverse-closed finite convergent rewriting
systems can only present plain groups is proved, the word “plain” may be omitted from the
statement of Theorem 1.

Note that given an icfclrrs for a group, one can compute a context-free grammar for
the word problem in polynomial time using the method from [8]. Hence, the results from
[30] imply a doubly-exponential-space algorithm for our situation. Therefore, Theorem 1
represents a significant improvement for this special case. In [11] the second and third
authors gave a bound of PSPACE for isomorphism of plain groups given as icfclrrss. This
PSPACE algorithm builds upon new geometric and algebraic characterisations of icfclrrs
groups developed in the same paper. Theorem 1 is again a significant improvement on
this, lowering the complexity to the third level of the polynomial hierarchy. The proof of
Theorem 1 combines the new characterisations of icfclrrs groups from [11], which enable us
to understand maximal finite subgroup structure and conjugacy of finite order elements in
these groups, with work of Babai and Szemerédi [3] to test isomorphism of finite groups
efficiently using straight-line programs.

Let us briefly give a high-level intuition of the proof of Theorem 1. Verifying the ranks of
the free factors of each group are the same is straightforward, so for this brief description let
us assume the two plain groups are simply free products of n finite groups. We existentially
guess generating sets A1, . . . ,An and B1, . . . ,Bn for the finite factors in each group such
that |Ai| = |Bi| and mapping each Ai to Bi defines an isomorphism (in other words, we
guess an isomorphism defined on generating sets), then, using straight-line programs (and
methods from [3]), we universally verify that our guess indeed defines an isomorphism (that
ϕ(g)ϕ(h) = ϕ(gh) for all g, h). Technically this is an infinite universal branching – still, the
results of [11] ensure that considering polynomial-length straight-line programs suffice to
verify that we guessed an isomorphism correctly.

However, be aware that we also need to verify that the sets we guessed, indeed, generate
each group – and this is actually the more difficult part. In order to do so, we check that
every element of finite order (universal branching) is conjugate to an element in the subgroup
generated by some Ai (existential branching). Again by results in [11] we can restrict to
polynomial-length straight-line programs in both the universal and existential branching.
Moreover, testing whether an element has finite order can be done in polynomial time. This
leads to a ΣP

3 algorithm.
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Outline. The article is organised as follows. In Section 2, we provide background information
on rewriting systems, and state the key algebraic results from [11] we need for the present
work. In Section 3, we review the necessary background on straight-line programs for groups.
In Section 4, we formulate a result which allows us to verify when two finite subgroups of
two (potentially infinite) groups are related by an isomorphism, based on a result of Babai
and Szemerédi [3]. Section 5 is devoted to a proof of our main result, Theorem 1.

Notation. Throughout this article we write log to mean log2. For n ∈ N+ we write [1, n] for
the interval {1, . . . , n} ⊆ N. If S is an alphabet (a non-empty finite set), we write S∗ for the
set of finite-length words over S, and |u| for the length of the word u ∈ S∗; the empty word,
λ, is the unique word of length 0. For a group G, we write eG for the identity element of G.

2 Finite convergent length-reducing rewriting systems

2.1 Rewriting systems and groups

Let S be a generating set for a group G. If v, w ∈ (S ∪ S−1)∗ and g, h ∈ G, then we write
v =G g if the product of letters in v equals g; we write v = w if v and w are identical as
words, and g = h if g and h represent the same element of G. If v =G g we say that v spells
g. For example, the identity element eG is spelled by the empty word λ, by aa−1 for any
a ∈ S, and so on. For an integer r ⩾ 0, we define the ball of radius r in G with respect to
the generating set S, denoted as BeG

(r), to be the set of all elements g ∈ G for which there
exists a word in (S ∪ S−1)∗ of length at most r that spells g. For example, if G is the free
abelian group ⟨a, b | ab = ba⟩ generated by S = {a, b, a−1, b−1} then the ball of radius 2 is
the set of thirteen elements

{eG, a, b, a
−1, b−1, a2, ab, b2, a−1b, a−2, a−1b−1, b−2, ab−1}.

We briefly recall some basic facts concerning finite convergent length-reducing rewriting
systems necessary for our discussion. We refer the reader to [4] for a broader introduction.
A length-reducing rewriting system is a pair (S, T ), where S is a non-empty alphabet, and
T is a subset of S∗ × S∗, called a set of rewriting rules, such that for all (ℓ, r) ∈ T we have
that |ℓ| > |r|. We write rT = max(ℓ,r)∈T {|r|}.

The set of rewriting rules determines a relation → on the set S∗ as follows: a → b if
a = uℓv, b = urv, and (ℓ, r) ∈ T . The reflexive and transitive closure of → is denoted ∗→. A
word u ∈ S∗ is irreducible if no factor is the left-hand side of any rewriting rule, and hence
u

∗→ v implies that u = v.
The reflexive, transitive and symmetric closure of → is an equivalence denoted ∗↔. The

operation of concatenation of representatives is well defined on the set of ∗↔-classes, and
hence makes a monoid M = M(S, T ). We say that M is the monoid presented by (S, T ).
When the equivalence class of every letter (and hence also the equivalence class of every
word) has an inverse, the monoid M is a group and we say it is the group presented by (S, T ).
We note that if a rewriting system (S, T ) presents a group G, then ⟨S | ℓ = r for (ℓ, r) ∈ T ⟩
is a group presentation for G. We say that (S, T ) (or just S) is inverse-closed if for every
a ∈ S, there exists b ∈ S such that ab ∗→ λ. Clearly, M is a group when S is inverse-closed.

A rewriting system (S, T ) is finite if S and T are finite sets, and terminating (or
noetherian) if there are no infinite sequences of allowable factor replacements. It is clear
that length-reducing rewriting systems are terminating. A rewriting system is confluent if
whenever w ∗→ x and w

∗→ y, there exists z ∈ S∗ such that x and y both reduce to z. A
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rewriting system is called convergent if it is terminating and confluent. In some literature,
finite convergent length-reducing rewriting systems are called finite Church-Rosser Thue
systems.

We define the size of a rewriting system (S, T ) to be nT = |S| +
∑

(ℓ,r)∈T |ℓr|, and we
note that rT ⩽ nT .

2.2 Plain groups represented as rewriting systems

If G1, . . . , Gn are groups with each Gi presented by ⟨Si | Ri⟩ for pairwise disjoint S1, . . . ,Sn,
the free product G1 ∗ · · · ∗ Gn is the group presented by ⟨S1 ∪ · · · ∪ Sn | R1 ∪ · · · ∪ Rn⟩. A
group is plain if it is isomorphic to the free product

A1 ∗A2 ∗ · · · ∗Ap ∗ Fr

where p, r are non-negative integers, each Ai is a finite group and Fr is the free group of
rank r.

We first observe that every plain group admits a presentation by an icfclrrs (see for
example [12, Corollary 2]).

▶ Lemma 5. If G is a plain group, then G admits a presentation by a finite convergent
length-reducing rewriting system (S, T ) such that S = S−1 and the left-hand side of every
rule has length 2.

The following fact follows easily from the normal form theory of free products (see for
example [20]).

▶ Lemma 6. Two plain groups given as

A1 ∗A2 ∗ · · · ∗Ap ∗ Fr and B1 ∗B2 ∗ · · · ∗Bq ∗ Fs

are isomorphic if and only if p = q, r = s and there is a permutation σ such that Ai
∼= Bσ(i)

for every i ∈ [1, p].

The following proposition collects key results about icfclrrs groups proved in [11]. Recall
the definitions of rT ,nT above.

▶ Proposition 7 ([11, Proposition 15, Lemmas 12, 8, 18]). If G is a plain group presented by
an icfclrrs (S, T ), then
1. every finite subgroup H of G is conjugate to a subgroup in BeG

(rT + 2);
2. the number of conjugacy classes of maximal finite subgroups in G is bounded above by n2

T ;
3. if g, h ∈ BeG

(rT + 2) \ {eG} are conjugate elements of finite order and t ∈ G is such that
tgt−1 = h, then t ∈ BeG(5rT + 4);

4. log(|BeG
(rT + 2)|) ⩽ n2

T .

We also make use of the following facts about finite subgroup membership.

▶ Lemma 8 ([11, Lemma 11]). Let G be a plain group. For g, h ∈ G define g ∼ h if gh has
finite order. Then
1. the relation ∼ is transitive on the set of non-trivial finite-order elements in G;
2. a set A = {a1, . . . , am} ⊆ G \ {eG} generates a finite subgroup if and only if for all

i ∈ [1,m] both ai and a1ai have finite order;
3. if A is a finite subgroup of G and g, h ∈ G with g ∈ A \ {eG}, then h ∈ A if and only if h

and gh have finite order.
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2.3 Algorithms for groups in rewriting systems

Next we observe that deciding if elements have finite order can be done in polynomial time.

▶ Lemma 9 (Narendran and Otto [24, Theorem 4.8]). There is a deterministic polynomial-time
algorithm for the following problem: given an icfclrrs (S, T ) presenting a group G and a
word u ∈ S∗, decide whether or not u spells an element of finite order in G. The running
time is polynomial in |T | + |u| +

∑
(r,ℓ)∈T |ℓ|, so polynomial in |u| + nT .

By computing the Smith normal form of a matrix associated to (S, T ), we have an efficient
way to compute the number of infinite cyclic factors of a plain group given by an icfclrrs.

▶ Lemma 10. There is a deterministic polynomial-time algorithm for the following problem:
given an icfclrrs (S, T ) presenting a group G, compute the torsion-free rank of the abelian
group G/[G,G]. The running time is polynomial in nT , and the torsion-free rank is bounded
above by nT .

Proof. Let Gab denote G/[G,G], the abelianization of G. Let r denote the torsion-free
rank of Gab, which is the number of factors Z in the free product decomposition of G. We
may compute the torsion-free rank of the abelianization Gab from (S, T ) in time that is
polynomial in nT as follows. Let S′ ⊆ S be a subset comprising exactly one generator from
each pair of inverses. The information in (S, T ) may be recorded in the form of a group
presentation ⟨S′ | R⟩, where R interprets each rewriting rule in T as a relation over the
alphabet S′ ∪ (S′)−1. The information in the presentation ⟨S′ | R ∪ {[a, b] | a, b ∈ S′}⟩ for
Gab may be encoded in an |R|×|S′| matrix of integers M . These integers record the exponent
sums of generators in each relation. The Smith normal form matrix S corresponding to M
may be computed in time that is polynomial in the size of the |R| × |S′| matrix and its
entries (see, for example, [17, 33]), so polynomial in nT . The torsion-free rank of Gab is the
number of zero entries along the diagonal of S (see, for example, [25, pp. 376-377]). Note
that this means r ⩽ nT . ◀

3 Straight-line programs

We use straight-line programs (or more precisely straight-line sequences) to represent the
elements of a group A with finite generating set A = {a1, . . . , am}, see [31, Section 1.2.3] or
[3, Section 3] for more details; we briefly recall this concept here. Let X = {x1, . . . , xm} be a
set of abstract symbols of size m. A straight-line program Y of rank m and length d on X is a
sequence Y = (s1, . . . , sd) where for each i ∈ [1, d] either si ∈ X ∪ {λ}, or si = sjsk for some
j, k < i, or si = s−1

j for some j < i. One says the straight-line program Y yields the word
w = sd ∈ (X ∪X−1)∗, which we also denote by Y (x1, . . . , xm) = w(x1, . . . , xm). We write
Y (a1, . . . , am) ∈ (A ∪ A−1)∗ for the word that is constructed by replacing every occurrence
of x±1

i in Y (x1, . . . , xm) by a±1
i . We call the element g ∈ A such that Y (a1, . . . , am) =G g

the evaluation of Y in A (with respect to A).
An efficient way to store the straight-line program is to write instead the operations that

define the elements s1, . . . , sm of the sequence (cf. [31, p. 10]): for example, a generator
si = x is stored as the pair (x,+), si = λ is stored as (λ,+), an inverse si = s−1

j is stored
as (j,−), and a product si = sjsk is stored as (j, k). We call this sequence of operations
a straight-line sequence. The word Y (a1, . . . , am) can then be computed by following the
construction described in this straight-line sequence and replacing every generator xj by aj .
To store this sequence we simply store the address (an integer in [1, d] in binary) and the
instruction (an integer in [1,m] or at most two integers in [1, d] in binary); thus a straight-line
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sequence of rank m and length d requires O (d(log(d) + log(m))) bits. In what follows, a
straight-line program will always be represented by a straight-line sequence, and we write Y
both for a straight-line program and the straight-line sequence representing it.

▶ Example 11. Consider the infinite cyclic group G generated by A = {a}. The straight-line
sequence Y = (y0 = (x,+), y1 = (0, 0), y2 = (1, 1), y3 = (2, 2), y4 = (3, 3), y5 = (4, 2), y6 =
(5, 0), y7 = (6,−)) yields the word Y (x) = x−21 in (X ∪ X−1)∗ with X = {x}, and Y (a)
yields the element a−21 of G. The straight-line sequence Y = ((λ,+)) yields Y (x) = λ, so
Y (a) =G eG.

Every element of a finitely generated group with finite generating set A can be described by
a straight-line sequence: one could first list A∪A−1 using y2i−1 = (xi,+) and y2i = (2i−1,−)
for i ∈ [1, |A|], then choose a word that spells the desired element, and finally construct it
letter-by-letter using yk = (k − 1, j) (where j = 2i− 1 if the next letter is xi, and j = 2i if
the next letter is x−1

i ). However, Example 11 demonstrates that we can sometimes be more
efficient than that. In fact, the following result shows that elements of a finite group always
have short straight-line sequences, with respect to any given generating set.

▶ Lemma 12 (Babai and Szemerédi [3, Lemma 7], Babai [2]). Let A be a finite group with
generating set A = {a1, . . . , am}. For each g ∈ A, there exists a straight-line sequence Y of
rank m and of length at most (log |A| + 1)2 such that Y (a1, . . . , am) =G g.

If P = (p1, . . . , pc), Q = (q1, . . . , qd) are two straight-line sequences of rank m and length
c, d respectively, then we use the notation [PQ] to denote the straight-line sequence of rank
m and length c+ d+ 1 defined as

[PQ] = (p1, . . . , pc, q1 . . . , qd, (c, c+ d)).

We call this the product of P and Q, since by construction if P (x1, . . . , xm) = u and
Q(x1, . . . , xm) = v then [PQ](x1, . . . , xm) = uv. We denote by [PQR] the straight-line
sequence [[PQ]R] of rank m and length c+ d+ e+ 2 where R has rank m and length e.

3.1 Compressed word problem

We note that in the setting of groups presented by icfclrrss, we can efficiently solve the word
problem when the input is a straight-line sequence representing a group element.

▶ Lemma 13 (Compressed word problem). There is a deterministic algorithm for the following
problem: given an icfclrrs (S, T ) presenting a group G, a set A = {a1, . . . , am} ⊆ S∗

generating a subgroup A ⩽ G such that A ⊆ BeG
(K) for some K ∈ N, a word u ∈ S∗ such

that u =G g ∈ G, and a straight-line sequence Y of rank m and length d, decide whether or
not Y (a1, . . . , am) =A g.

The running time is polynomial in K + nT + |u| + d+m+ maxi |ai|. In particular, if K
is bounded by a polynomial in the input size, the algorithm runs in polynomial time.

Proof. For each v ∈ S∗, let v−1 denote the formal inverse of v obtained by reversing and
replacing each letter x ∈ S by x−1 ∈ S.

Assume Y = (y1, . . . , yd) where each yi = (xj ,+), (j,−) or (j, k). For i ∈ [1, d] we
compute and store a word si ∈ S∗ of length at most K as follows:

if yi = (xj ,+), set si = aj ;
if yi = (j,−) with j < i, set si = s−1

j ;
if yi = (j, k) for j, k < i, set si to be the reduced word obtained from sjsk by applying
rewriting rules.
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Finally, return true if sdu
−1 reduces to λ, and false otherwise.

Notice that that no si becomes longer than K. Therefore, each si can be computed in
time polynomial in K plus the size of the rewriting system and the other data. ◀

4 Isomorphism testing for finite subgroups

In this section we describe an argument based on Babai and Szemerédi’s work [3] which
we require for proving Theorem 1. For now our setting is that we are given two groups
(later these will be presented by rewriting systems) which come with efficient (polynomial
time) algorithms to solve the word problem. Each group will contain some specified finite
subgroup, say A in the first group and B in the second. We aim to verify in polynomial time
the existence of an isomorphism from A to B. We start with the following well-known facts.

▶ Lemma 14. Every finite group A has a generating set of size at most log |A|.

Proof. If {g1, . . . , gm} is a minimal generating set and An is the group generated by
{g1, . . . , gn} for n ∈ [1,m], then |A1| ⩾ 2 and |An+1| ⩾ 2|An| for n ∈ [1,m − 1], so
|A| ⩾ 2m by induction. ◀

▶ Lemma 15. Let A and B be groups. A map f : A → B is a group homomorphism if and
only if f(eA) = eB and f(g)f(h)f((gh)−1) = eB for all g, h ∈ A

Proof. If f is a homomorphism, then these conditions hold. Conversely, the second condition
with g = eA yields f(h)f(h−1) = eB, so f(h−1) = f(h)−1 and eB = f(g)f(h)f((gh)−1) =
f(g)f(h)f(gh)−1. Thus, f(g)f(h) = f(gh) for all g, h ∈ G. ◀

We now state the key technical result, which is the essence of [3, Proposition 4.8] where the
isomorphism problem for finite groups in the so-called black-box model is shown to be in ΣP

3 .

▶ Proposition 16 (Isomorphism between finite subgroups). Let A,B be finite groups and
K ∈ N+. Let A = {a1, . . . , am},B = {b1, . . . , bm} be generating sets for A,B respectively,
with m ⩽ K.

Assume that for each g ∈ A there is a straight-line program Yg of rank m and length
at most K such that Yg(a1, . . . , am) =A g, and likewise for g ∈ B there is a straight-line
program Zg of rank m and length at most K such that Zg(b1, . . . , bm) =B g.

Then the map ψ : A → B with ai 7→ bi induces an isomorphism A → B if and only if

Y (a1, . . . , am) =A eA ⇐⇒ Y (b1, . . . , bm) =B eB (1)

for every straight-line program Y of rank m and length at most 3K + 2.

Proof. If ψ induces an isomorphism, clearly (1) holds for all straight-line programs.
For the converse, assume that (1) holds on all rank-m straight-line programs up to length

3K + 2.
Without loss of generality, assume YeA

= ZeB
= ((λ,+)) and

Yai
(x1, . . . , xm) = Zbi

(x1, . . . , xm) = ((xi,+))

for each i ∈ [1,m]. So YeA
(a1, . . . , am) =A eA, ZeB

(b1, . . . , bm) =B eB , Yai
(a1, . . . , am) =A ai

and Zbi
(b1, . . . , bm) =B bi for i ∈ [1,m].

Define a map ϕ : A → B as follows: for g ∈ A, evaluate Yg(b1, . . . , bm) to get an element
h ∈ B, then set ϕ(g) = h. Thus, ϕ maps each ai to bi.
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First, by way of contradiction suppose ϕ is not a homomorphism. Since ϕ(eA) = eB by
definition, Lemma 15 shows that there must exist g, h ∈ A such that ϕ(g)ϕ(h)ϕ((gh)−1) ̸= eB .
This means that in A we have

Yg(a1, . . . , am)Yh(a1, . . . , am)Y(gh)−1(a1, . . . , am) =A gh(gh)−1 =A eA,

whereas in B we have

Yg(b1, . . . , bn)Yh(b1, . . . , bn)Y(gh)−1(b1, . . . , bn) =B ϕ(g)ϕ(h)ϕ((gh)−1) ̸=B eB .

Let Y = [YgYhY(gh)−1 ] be the straight-line program of rank m and length at most 3K + 2.
Then Y contradicts our assumption that (1) holds on all rank-m straight-line programs up
to length 3K + 2. Thus ϕ is a homomorphism.

Next we show that ϕ is injective. If g ∈ kerϕ, then Yg(b1, . . . , bm) evaluates to eB; by
assumption, (1) holds on input Yg, so g =A Yg(a1, . . . , am) =A eA and ϕ is injective. So we
have shown that ϕ is a monomorphism which satisfies ϕ : ai 7→ bi.

Repeating the preceding argument for ϕ′ : B → A defined as: for g ∈ B, evaluate
Zg(a1, . . . , am) to get an element h ∈ A, then set ϕ′(g) = h; we obtain a monomorphism ϕ′

with ϕ′ : bi 7→ ai. Since A,B are finite this implies that |A| = |B| hence the monomorphism
ϕ is an isomorphism, and since ϕ(ai) = bi for i ∈ [1,m] we have that ϕ is the (unique)
isomorphism induced by ψ. ◀

▶ Remark 17. Using Lemma 13, we can check condition (1) in Proposition 16 in polynomial
time in groups presented by icfclrrss.

5 Proof of the main theorem

The algorithm for the proof of our main theorem checks the conditions of the following
proposition. We remark that verifying that some collection of finite subgroups are maximal
and that every finite order element is conjugate to an element in one of these maximal finite
subgroups turns out to be the main bottleneck for the complexity of our algorithm. These
are items (2) and (3) in the following proposition.

▶ Proposition 18. Let G,H be plain groups presented by icfclrrs (S, T ), (S′, T ′) respectively.
Then G ∼= H if and only if there are subgroups Ai ⩽ G,Bi ⩽ H for i ∈ [1, p] such that the
following conditions (1)–(5) are satisfied:
(1) for each i ∈ [1, p] we have Ai ⊆ BeG

(rT + 2) and Bi ⊆ BeH
(r′

T + 2) (in particular, they
are finite subgroups).

(2) each Ai (resp. Bi) is a maximal finite subgroup of G (resp. H).
(3) every g ∈ G \ {eG} (resp. h ∈ H \ {eH}) of finite order can be conjugated into exactly

one Ai (resp Bi).
(4) for each i ∈ [1, p] we have Ai

∼= Bi.
(5) the torsion-free rank of G/[G,G] is equal to the torsion-free rank of H/[H,H].

Moreover, we may choose minimal generating sets Ai ⊆ BeG
(rT + 2), Bi ⊆ BeH

(r′
T + 2) for

Ai, Bi respectively, i ∈ [1, p] so that for all i ∈ [1, p]:
(6) |Ai| = |Bi| = mi ⩽ log |Ai|.
(7) if Ai = {ai,j | j ∈ [1,mi]}, Bi = {bi,j | j ∈ [1,mi]}, the map ai,j 7→ bi,j for j ∈ [1,mi]

induces an isomorphism Ai → Bi.
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Finally, we may replace conditions (1)–(3) by:
(8) for every g ∈ BeG

(rT + 2) \ {eG} (resp. h ∈ BeH
(r′

T + 2) \ {eH}) and every i ∈ [1, p], if
g (resp. h) and gai,1 (resp. hbi,1) have finite order, then g ∈ Ai (resp. h ∈ Bi).

(9) every g ∈ BeG
(rT + 2) \ {eG} (resp. h ∈ BeH

(r′
T + 2) \ {eH}) of finite order can be

conjugated into exactly one Ai (resp Bi); moreover, g can be conjugated into that Ai

(resp Bi) by a conjugating element of length at most 5rT + 4 (resp. 5r′
T + 4).

(10) for every g ∈ BeG
(rT +2)\{eG} (resp. h ∈ BeH

(r′
T +2)\{eH}), if g (resp. h) and gai,1

(resp. hbi,1) have finite order, then gaϵ
i,j ∈ BeG

(rT + 2) (resp. hbϵ
i,j ∈ BeH

(r′
T + 2)) for

every j ∈ [1,mi] and ϵ ∈ {±1}.

Proof. First, assume that G ∼= H. We will show that conditions (1)–(7) are satisfied. By
Lemma 6 there exists an isomorphism ψ : G → H and free product decompositions

G ∼= A1 ∗A2 ∗ · · · ∗Ap ∗ Fr and H ∼= B1 ∗B2 ∗ · · · ∗Bp ∗ Fr

such that Ai
∼= Bi = ψ(Ai) for each i ∈ [1, p]. Moreover, by Proposition 7 (item 1) we may

assume Ai, Bi each lie within the balls of radius rT + 2,r′
T + 2 in the Cayley graphs of

(G,S), (H,S′) respectively. By Lemma 14 there exist minimal generating sets Ai and Bi for
Ai, Bi for i ∈ [1, p] with |Ai| = |Bi| ⩽ log |Ai| (we may assume without loss of generality that
we choose minimal generating sets to be of the same size). Since ψ(Ai) = Bi we may without
loss of generality choose generators so that condition (7) holds. The normal form theory for
free products ([20]) gives that: for any i ̸= j, Ai ∩ Aj = {eG} (resp. Bi ∩ Bj = {eH}); if
p = 0 then G and H are free groups, and if p ≠ 0, there are exactly p conjugacy classes of
non-trivial maximal finite subgroups in G (resp. H) and they are represented by A1, . . . , Ap

(resp. B1, . . . , Bp). Condition (3) follows immediately. Condition (5) follows immediately
from the fact that G/[G,G] ∼= H/[H,H].

Conversely, suppose there are subgroups Ai ⩽ G,Bi ⩽ H for i ∈ [1, p] such that
conditions (1)–(5) are satisfied. Conditions (2) and (3) give that every maximal finite
subgroup in G (resp. H) is conjugate to exactly one of the subgroups A1, . . . , Ap (resp.
B1, . . . , Bp). Since G (resp. H) is a plain group, it follows that G ∼= A1 ∗ · · · ∗Ap ∗ Fr (resp.
H = B1 ∗ · · · ∗ Bp ∗ Fs) for some free group of rank r (resp. s). Condition (4) gives that
A1 ∼= B1, . . . , Ap

∼= Bp. Condition (5) gives that r = s and Fr
∼= Fs. Thus we have that

G ∼= H.
Now let us show that conditions (1)–(3) may be replaced by conditions (8)–(10). First

suppose that conditions (1)–(7) are satisfied. Lemma 8 (item 3) implies condition (8). Condi-
tion (3) and Proposition (7) (item 3) imply condition (9). Condition (1) and Lemma 8(item 3)
imply condition (10).

Now suppose that conditions (4)–(10) are satisfied. To establish that condition (10)
implies condition (1), suppose Ai contains an element p which lies outside BeG

(rT + 2).
Let u ∈ A∗ be a word spelling p. Then there exists a word u1, an element ai,j ∈ A and
ϵ ∈ {±1} so that u1a

ϵ
i,j is a prefix of u such that u1 spells an element that lies in BeG

(rT + 2)
and u1a

ϵ
i,j spells an element that lies outside BeG

(rT + 2). It follows that u1 ̸=G eG (since
|ai,j | ⩽ rT + 2). This contradicts condition (10). Conditions (1) and (8) together imply
condition (2). Condition (9) and Proposition 7 (item 1) together imply condition (3). ◀

We are now ready to prove the main result.

Proof of Theorem 1. We describe a ΣP
3 algorithm which on input a pair (S, T ), (S′, T ′) of

icfclrrss which are promised to present plain groups, accepts if and only if the groups are
isomorphic. Let N = max{nT ,n

′
T } be the input size, G the plain group presented by (S, T )

and H the plain group presented by (S′, T ′).
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The algorithm needs to demonstrate the existence of some p ∈ N and subgroups Ai ⩽ G

and Bi ⩽ H for i ∈ [1, p] which satisfy conditions (4)–(10) of Proposition 18. We first observe
the following. By Proposition 7 (item 2) there are at most n2

T (resp. (n′
T )2) conjugacy

classes of maximal finite subgroups in G (resp. H), so we have p ⩽ N2. By Lemma 14
and Proposition 7 (item 4), if A (resp. B) is a minimal generating set for a maximal finite
subgroup A of G (resp. B of H), then

|A| ⩽ log |A| ⩽ log(|BeG
(rT + 2)|) ⩽ n2

T ⩽ N2

(resp. |B| ⩽ (n′
T )2 ⩽ N2). By Lemma 12, for each g ∈ A (resp. g ∈ B), there exists a

straight-line sequence Y of length at most (log |A| + 1)2 ⩽ N4 (resp. (log |B| + 1)2 ⩽ N4)
such that Y yields g. Moreover, if A ∼= B, we may assume they have minimal generating
sets of the same size.

We now start with the following quantified statements:

∃ sets Ai = {ai,j ∈ S∗ | j ∈ [1,mi], |ai,j | ⩽ rT + 2},
Bi = {bi,j ∈ (S′)∗, | j ∈ [1,mi], |bi,j | ⩽ r′

T + 2}
for i ∈ [1, p] where p ⩽ N2,mi ⩽ N2,

∀ (u, v) ∈ S∗ × (S′)∗, |u| ⩽ rT + 2, |v| ⩽ r′
T + 2,

(s, s′) ∈ S∗ × (S′)∗, |s| ⩽ 5rT + 4, |s′| ⩽ 5r′
T + 4,

straight-line sequences Yi of rank mi and length at most 3N4 + 2 for each i ∈ [1, p],

∃ (t, t′) ∈ S∗ × (S′)∗, |t| ⩽ 5rT + 4, |t′| ⩽ 5r′
T + 4,

straight-line sequences Z1, Z2 of rank mi for some i ∈ [1, p] and length at most N4.

Then the following procedure (predicate) verifies conditions (4)–(10) in Proposition 18 using
this data.

First, apply Lemma 10 to compute the torsion-free rank of G/[G,G] and H/[H,H] and
verify that the rank is the same for both. This establishes condition (5) of Proposition 18.

Next, run this subroutine:

for i ∈ [1, p]
for j ∈ [1,mi]

verify that ai,j and bi,j have finite order using Lemma 9;
for j ∈ [2,mi]

verify that (ai,1ai,j) and (bi,1bi,j) have finite order using Lemma 9.

This verifies that Ai,Bi generate finite subgroups by Lemma 8 (item 2). Let Ai, Bi be the
names of the subgroups generated by Ai,Bi respectively. We can assume that the algorithm
guesses the Ai,Bi to be minimal generating sets of the same size, so we can assume that
condition (6) is satisfied.

Next, we show that the finite subgroups Ai, Bi actually lie inside the ball of radius rT + 2
(resp. r′

T + 2) by verifying condition (10) of Proposition 18. Run the following subroutine.

if u has finite order (using Lemma 9) and u ̸=G eG (reduced word for u is not λ)
for i ∈ [1, p]

if (uai,1) has finite order (using Lemma 9; if so then u ∈ Ai by Lemma 8 (item 3))
for j ∈ [1,mi]

compute the reduced word u1 for uai,j and u2 for ua−1
i,j ,

verify that |u1|, |u2| ⩽ rT + 2.
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Repeat for the word v using the analogous procedure. This establishes condition (10).
Next, to verify condition (9) of Proposition 18, we first run this pre-step.

for i ∈ [1, p]
for k ∈ [1, p] \ {i}

verify that (ai,1sak,1s
−1) and (bi,1s

′bk,1(s′)−1) have infinite order using
Lemma 9.

This shows that no conjugate of ak,1 lies in Ai (resp. no conjugate of bk,1 lies in Bi) for i ≠ k

by Lemma 8 (item 3) (note that we are running over all s, s′ of length at most 5rT +4, 5r′
T +4,

so all elements in BeG
(5rT + 4), BeH

(5r′
T + 4)).

Now suppose that for some g ∈ G \ {eG} we have g =G α−1cα and g =G βdβ−1 for
some α, β, c, d ∈ S∗ with c =G gc ∈ Ai, d =G gd ∈ Ak and i ̸= k. Recall that as in
Lemma 8, g ∼ h means gh has finite order. Then c = (αβ)c(αβ)−1 so ai,1 ∼ (αβ)d(αβ)−1

and (αβ)d(αβ)−1 ∼ (αβ)ak,1(αβ)−1, so by Lemma 8 (item 1) ai,1 ∼ (αβ)ak,1(αβ)−1 which
contradicts the result of the pre-step. It follows that every g ∈ G \ {eG} lies in a conjugate
of at most one subgroup Ai. Thus to show condition (9) it suffices to show that every
u ∈ BeG

(rT + 2) \ {eG} lies in a conjugate of some Ai (and analogously for v).
We show this with the following subroutine.

if u has finite order (using Lemma 9) and u ̸=G eG (reduced word for u is not λ)
verify that (utai,1t

−1) has finite order for some i ∈ [1, p]
(using Lemma 9 with a loop over all i ∈ [1, p]).

Repeat all of the above for the word v using the analogous procedure (using the word t′).
This establishes condition (9) of Proposition 18.

Next, we verify condition (8) of Proposition 18. Run this subroutine.

if u has finite order (using Lemma 9) and u ̸=G eG (reduced word for u is not λ)
for i ∈ [1, p]

if (uai,1) has finite order (using Lemma 9)
verify that Z1(ai,1 . . . , ai,mi) =G u using Lemma 13.

This shows that if u ∼ ai,1 then g can be spelled by a word in (Ai∪A−1
i )∗, and so u =G g ∈ Ai.

Repeat for v using the analogous procedure (using the straight-line sequence Z2). This
establishes condition (8) of Proposition 18.

Lastly, to verify condition (7) and hence (4) of Proposition 18, we check that

Yi(ai,1, . . . , ai,mi
) = eG ⇐⇒ Yi(bi,1, . . . , bi,mi

) = eH

holds where the Yi are straight-line sequences of rank mi and length at most 3N4 + 2 for
i ∈ [1, p] which we run through in the universal statement. This can be done in polynomial
time using Lemma 13. Then by Proposition 16 (with K = N4), since we are running over
all straight-line sequences Yi of length 3N4 + 2 and rank mi for all i ∈ [1, p] we establish
condition (4). ◀

6 Conclusion

We have shown that the isomorphism problem for plain groups given as icfclrrss is decidable
in ΣP

3 . To the best of our knowledge this presents the smallest complexity bound for the
isomorphism problem apart from some very special cases like abelian and free groups (in
polynomial time using [17, 25, 33]) and finite groups given as Cayley tables (in quasipolynomial
time [13, 22] and also in NP, and nearly linear time for almost all orders [9]).
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There is one obvious open question: can the complexity actually be reduced to ΣP
2 or

even to some smaller class? Note that the obstacle to reach ΣP
2 is to verify condition (2) and

(3) of Proposition 18 via conditions (8) and (9).
Another topic for future research is to investigate the maximal size of a finite subgroup

presented by an icfclrrs. If one could show a polynomial bound on this size, rather than the
exponential bound used here, this could lead to a lower complexity. However, this question is
wide open – and, probably, related to the long-standing conjecture that all groups presented
by icfclrrss are plain.

References
1 Sanjeev Arora and Boaz Barak. Computational complexity. Cambridge University Press,

Cambridge, 2009. A modern approach. doi:10.1017/CBO9780511804090.
2 László Babai. Local expansion of vertex-transitive graphs and random generation in finite

groups. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,
STOC ’91, pages 164–174, New York, NY, USA, 1991. Association for Computing Machinery.
doi:10.1145/103418.103440.

3 László Babai and Endre Szemeredi. On the complexity of matrix group problems I. In
25th Annual Symposium on Foundations of Computer Science, 1984., pages 229–240, 1984.
doi:10.1109/SFCS.1984.715919.

4 Ronald V. Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in
Computer Science. Springer-Verlag, New York, 1993. doi:10.1007/978-1-4613-9771-7.

5 François Dahmani and Daniel Groves. The isomorphism problem for toral relatively hy-
perbolic groups. Publ. Math. Inst. Hautes Études Sci., 107:211–290, 2008. doi:10.1007/
s10240-008-0014-3.

6 François Dahmani and Vincent Guirardel. The isomorphism problem for all hyperbolic groups.
Geom. Funct. Anal., 21(2):223–300, 2011. doi:10.1007/s00039-011-0120-0.

7 Max Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987. Translated
from the German and with introductions and an appendix by John Stillwell, With an appendix
by Otto Schreier. doi:10.1007/978-1-4612-4668-8.

8 Volker Diekert. Some remarks on presentations by finite Church-Rosser Thue systems. In
STACS 87 (Passau, 1987), volume 247 of Lecture Notes in Comput. Sci., pages 272–285.
Springer, Berlin, 1987. doi:10.1007/BFb0039612.

9 Heiko Dietrich and James B. Wilson. Group isomorphism is nearly-linear time for most orders,
2021. Accepted for FOCS 2021. arXiv:2011.03133.

10 Andy Eisenberg and Adam Piggott. Gilman’s conjecture. J. Algebra, 517:167–185, 2019.
doi:10.1016/j.jalgebra.2018.09.022.

11 Murray Elder and Adam Piggott. On groups presented by inverse-closed finite convergent
length-reducing rewriting systems, 2021. arXiv:2106.03445.

12 Murray Elder and Adam Piggott. Rewriting systems, plain groups, and geodetic graphs.
Theoretical Computer Science, 903:134–144, 2022. doi:10.1016/j.tcs.2021.12.022.

13 V. Felsch and J. Neubüser. On a programme for the determination of the automorphism group
of a finite group. In Pergamon J. Leech, editor, Computational Problems in Abstract Algebra
(Proceedings of a Conference on Computational Problems in Algebra, Oxford, 1967), pages
59–60, Oxford, 1970.

14 Robert H. Gilman, Susan Hermiller, Derek F. Holt, and Sarah Rees. A characterisation of virtu-
ally free groups. Arch. Math. (Basel), 89(4):289–295, 2007. doi:10.1007/s00013-007-2206-3.

15 Mikhail Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res.
Inst. Publ., pages 75–263. Springer, New York, 1987. doi:10.1007/978-1-4613-9586-7_3.

16 Robert H. Haring-Smith. Groups and simple languages. Trans. Amer. Math. Soc., 279(1):337–
356, 1983. doi:10.2307/1999388.

STACS 2022

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1145/103418.103440
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1007/s10240-008-0014-3
https://doi.org/10.1007/s10240-008-0014-3
https://doi.org/10.1007/s00039-011-0120-0
https://doi.org/10.1007/978-1-4612-4668-8
https://doi.org/10.1007/BFb0039612
http://arxiv.org/abs/2011.03133
https://doi.org/10.1016/j.jalgebra.2018.09.022
http://arxiv.org/abs/2106.03445
https://doi.org/10.1016/j.tcs.2021.12.022
https://doi.org/10.1007/s00013-007-2206-3
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.2307/1999388


26:14 The Isomorphism Problem for Plain Groups Is in ΣP
3

17 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.
doi:10.1137/0208040.

18 Abraham Karrass, Alfred Pietrowski, and Donald Solitar. Finite and infinite cyclic extensions
of free groups. Journal of the Australian Mathematical Society, 16(4):458–466, 1973. doi:
10.1017/S1446788700015445.

19 Sava Krstić. Actions of finite groups on graphs and related automorphisms of free groups. J.
Algebra, 124(1):119–138, 1989. doi:10.1016/0021-8693(89)90154-3.

20 Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Classics in Mathematics.
Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. doi:10.1007/978-3-642-61896-3.

21 Klaus Madlener and Friedrich Otto. Groups presented by certain classes of finite length-
reducing string-rewriting systems. In Rewriting techniques and applications (Bordeaux, 1987),
volume 256 of Lecture Notes in Comput. Sci., pages 133–144. Springer, Berlin, 1987. doi:
10.5555/30432.30444.

22 Gary L. Miller. On the nlog n isomorphism technique (a preliminary report). In STOC, pages
51–58, New York, NY, USA, 1978. ACM. doi:10.1145/800133.804331.

23 David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata, and second-
order logic. Theoret. Comput. Sci., 37(1):51–75, 1985. doi:10.1016/0304-3975(85)90087-8.

24 Paliath Narendran and Friedrich Otto. Elements of finite order for finite weight-reducing and
confluent Thue systems. Acta Inform., 25(5):573–591, 1988.

25 Morris Newman. The Smith normal form. In Proceedings of the Fifth Conference of the
International Linear Algebra Society (Atlanta, GA, 1995), volume 254, pages 367–381, 1997.
doi:10.1016/S0024-3795(96)00163-2.

26 Eliyahu Rips and Zlil Sela. Canonical representatives and equations in hyperbolic groups.
Invent. Math., 120(3):489–512, 1995. doi:10.1007/BF01241140.

27 Zlil Sela. The isomorphism problem for hyperbolic groups. I. Ann. of Math. (2), 141(2):217–283,
1995. doi:10.2307/2118520.

28 Géraud Sénizergues. An effective version of Stallings’ theorem in the case of context-free
groups. In Automata, languages and programming (Lund, 1993), volume 700 of Lecture Notes
in Comput. Sci., pages 478–495. Springer, Berlin, 1993. doi:10.1007/3-540-56939-1_96.

29 Géraud Sénizergues. On the finite subgroups of a context-free group. In Geometric and
computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ,
1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 201–212. Amer.
Math. Soc., Providence, RI, 1996. doi:10.1007/s002360050045.

30 Géraud Sénizergues and Armin Weiß. The isomorphism problem for finite extensions of
free groups is in PSPACE. In 45th International Colloquium on Automata, Languages, and
Programming, volume 107 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 139, 14. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

31 Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546549.

32 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci., 3(1):1–22 (1977),
1976. doi:10.1016/0304-3975(76)90061-X.

33 Arne Storjohann. Near optimal algorithms for computing smith normal forms of integer
matrices. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’96, pages 267–274, New York, NY, USA, 1996. Association for Computing
Machinery. doi:10.1145/236869.237084.

https://doi.org/10.1137/0208040
https://doi.org/10.1017/S1446788700015445
https://doi.org/10.1017/S1446788700015445
https://doi.org/10.1016/0021-8693(89)90154-3
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.5555/30432.30444
https://doi.org/10.5555/30432.30444
https://doi.org/10.1145/800133.804331
https://doi.org/10.1016/0304-3975(85)90087-8
https://doi.org/10.1016/S0024-3795(96)00163-2
https://doi.org/10.1007/BF01241140
https://doi.org/10.2307/2118520
https://doi.org/10.1007/3-540-56939-1_96
https://doi.org/10.1007/s002360050045
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1145/236869.237084


Centralized, Parallel, and Distributed Multi-Source
Shortest Paths via Hopsets and Rectangular
Matrix Multiplication
Michael Elkin #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Ofer Neiman #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
Consider an undirected weighted graph G = (V, E, w). We study the problem of computing (1 + ϵ)-
approximate shortest paths for S × V , for a subset S ⊆ V of |S| = nr sources, for some 0 < r ≤ 1.
We devise a significantly improved algorithm for this problem in the entire range of parameter r, in
both the classical centralized and the parallel (PRAM) models of computation, and in a wide range
of r in the distributed (Congested Clique) model. Specifically, our centralized algorithm for this
problem requires time Õ(|E| · no(1) + nω(r)), where nω(r) is the time required to multiply an nr × n

matrix by an n × n one. Our PRAM algorithm has polylogarithmic time (log n)O(1/ρ), and its work
complexity is Õ(|E| · nρ + nω(r)), for any arbitrarily small constant ρ > 0.
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1 Introduction

We consider the problem of computing (1 + ϵ)-approximate shortest paths (henceforth, (1 + ϵ)-
ASP) in undirected weighted graphs G = (V, E, w), |V | = n, for an arbitrarily small ϵ > 0.
We study this problem in the centralized, parallel (PRAM) and distributed (Congested
Clique) models of computation. Our focus is on computing (1 + ϵ)-ASP for S × V , for a set
S ⊆ V of sources, |S| = nr, for a constant parameter 0 < r ≤ 1.

This is one of the most central, fundamental and intensively studied problems in Graph
Algorithms. Most of the previous research concentrated on one of the two following scenarios:
the single-source ASP (henceforth, approximate SSSP), i.e., the case |S| = 1, and the all-pairs
ASP (henceforth, APASP), i.e., the case S = V .
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We next overview most relevant previous results and our contribution in the centralized
model of computation, and then turn to the PRAM and distributed models.

1.1 Centralized Model
The classical algorithm of Dijkstra solves exact SSSP problem in time O(|E| + n log n)
[22]. Thorup [36] refined this bound to O(|E| + n log log n) when weights are integers.
Employing these algorithms for the ASP problem for S × V results in running time of
O(|S|(|E| + n log log n)). In the opposite end of the spectrum, Galil and Margalit [24], Alon
et al. [2] and Zwick [40] showed that one can use fast matrix multiplication (henceforth,
FMM) to solve (1 + ϵ)-APASP in time Õ(nω), where ω is the matrix multiplication exponent.
(nω is the time required to multiply two n × n matrices. The currently best-known estimate
on ω is ω < 2.372 . . . [38, 25, 14, 1].)

By allowing larger approximation factors, one can achieve a running time of Õ(n2) for
APASP.1 Specifically, Cohen and Zwick [12] devised an algorithm for 3-APASP with this
running time, and Baswana and Kavitha [5] refined the approximation ratio to (2, w). The
notation (2, w) means that for a vertex pair (u, v), their algorithm provides an estimate with
a multiplicative error of 2, and an additive error bounded by the maximal weight of an edge
on some shortest u − v path in the graph.

Cohen [11], Elkin [17], and Gitlitz and the current authors [18] also showed that one can
obtain a (1 + ϵ, β · w)-approximation for the ASP problem for S × V in time O(|E| · nρ +
|S| · n1+1/κ), where β = β(ϵ, κ, ρ) is a quite large constant (as long as ϵ > 0, ρ > 0, 1/κ > 0
are constant), and w is as in the result of Baswana and Kavitha [5].

However, if one insists on a purely multiplicative error of at most 1 + ϵ, for an arbitrarily
small constant ϵ > 0, then for dense graphs (|E| = Θ(n2)), the best-known running time for
ASP for S × V is Õ(min{|S| · n2, nω}) (the first term can be achieved by running Dijsktra
from every source, the second term by using (1 + ϵ)-APASP). In the current paper we devise
an algorithm that solves the problem in Õ(nω(r) + |E| · no(1)) time,2 where ω(r) is the matrix
multiplication exponent of rectangular matrix multiplication. That is, nω(r) is the time
required to multiply an nr × n matrix by an n × n matrix. Coppersmith [13] showed that
for r ≤ 0.291, ω(r) ≤ 2 + o(1), and Le Gall and Urrutia [27] improved this bound further to
r ≤ 0.313. Denote α ≥ 0.313 as the maximal value such that ω(α) ≤ 2 + o(1). Therefore,
our algorithm solves (1 + ϵ)-ASP problem for S × V in n2+o(1) time, as long as |S| = O(nα).
Moreover, the bound on our running time grows gracefully from n2+o(1) to nω, as the number
of sources |S| increases from nα to n. When S = V , our bound matches the bound of Zwick
[40]. See Table 1.

Furthermore, Dor et al. [15] showed that any (2 − ϵ)-ASP algorithm for S × V that runs
in T (n) time, for any positive constant ϵ > 0 and any function T (n), translates into an
algorithm with running time T (O(n)) that multiplies two Boolean matrices with dimensions
|S|× n and n×n. Thus, the running time of our algorithm cannot be improved by more than
a factor of no(1) without improving the best-known algorithm for multiplying (rectangular)
Boolean matrices.

In terms of edge weights, the situation with our algorithm is similar to that with the
algorithm of Zwick [40]. Both algorithms apply directly to graphs with polynomially-bounded
edge weights. Nevertheless, we argue that both of them can be used in conjunction with
the Klein-Sairam’s reduction of weights [32] to provide the same bounds for graphs with
arbitrary weights.

1 By Õ(f(n)) we mean O(f(n) · logO(1) f(n)).
2 In fact, our result holds for arbitrary 0 < ϵ < 1, see Theorem 5.
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Table 1 Results on (1 + ϵ)-ASP for S × V in the centralized model for weighted graphs (previous
running time is for dense graphs).

# of sources Our running time Previous running time
n0.1 n2+o(1) n2.1

n0.2 n2+o(1) n2.2

n0.3 n2+o(1) n2.3

n0.4 n2.011 n2.373

n0.5 n2.045 n2.373

n0.6 n2.094 n2.373

n0.7 n2.154 n2.373

n0.8 n2.222 n2.373

n0.9 n2.296 n2.373

n1 n2.373 n2.373

1.2 Parallel Model

The situation in the parallel setting (PRAM) is similar to that in the centralized setting. The
first parallel (1+ϵ)-SSSP algorithm with polylogarithmic time (specifically, (log n)Õ((log 1/ρ)/ρ)

and O(|E| · nρ) work, for any arbitrarily small constant parameter ρ > 0, was devised by
Cohen [11]. Her bounds were improved in the last five years by [20, 21, 33, 3, 19], culminating
in polylogarithmic time and Õ(|E|) work [33, 3]. All these aforementioned algorithms are
randomized, except for the deterministic algorithm of Elkin and Matar [19] that requires
polylogarithmic time (log n)O(1/ρ) and work Õ(|E| · nρ).

On the opposite end of the spectrum, algorithms of Galil and Margalit [24], Alon et
al. [2], and Zwick [40] (based on FMM) can be used in the PRAM setting. They give rise to
deterministic polylogarithmic time Õ(nω) work [40] for the (1 + ϵ)-APASP problem.

By using sparse spanners, the algorithm of Cohen [11] in conjunction with that of Baswana
and Sen [4] provides polylogarithmic time and O(|E|·n1/κ +|S|·n1+1/κ) work for (2+ϵ)κ-ASP
for S × V , where κ = 1, 2, . . . is a parameter. Recently, Gitlitz and the current authors [18]
also showed that one can have (1 + ϵ, β · w)-ASP for S × V in polylogarithmic time and
O(|E| ·nρ + |S| ·n1+1/κ) work, where β = β(ϵ, κ, ρ) is a large constant (as long as ϵ, ρ, 1/κ > 0
are constant), and w is as above.

Nevertheless, if one insists on a purely multiplicative error of at most 1 + ϵ, currently
best-known solutions for the ASP problem for S × V that run in polylogarithmic time require
work at least Ω(min{|S| · |E|, nω}). Our parallel algorithm for the problem with |S| = nr

sources, 0 < r ≤ 1, has polylogarithmic time (log n)O(1/ρ) and work Õ(nω(r) + |E| · nρ), for
any arbitrarily small constant ρ > 0. Similarly to the centralized setting, this results in
work n2+o(1) + Õ(|E| · nρ), for any arbitrarily small constant ρ > 0, as long as |S| = O(nα),
α = 0.313, and it improves Zwick’s bound [40] of nω (which applies for (1 + ϵ)-APASP) for
all values of r < 1. The aforementioned reduction of [15] implies that the work complexity
of our algorithm cannot be improved by more than a factor of no(1) without improving the
best-known centralized algorithm for multiplying (rectangular) Boolean matrices.

Our algorithm uses FMM and hopsets. The ingredient that builds hopsets is randomized,
but by using a new deterministic construction of hopsets from [19], one can make it determ-
inistic, with essentially the same bounds. As a result our ultimate (1 + ϵ)-ASP algorithms
(both centralized and parallel ones) become deterministic.

STACS 2022
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1.3 Distributed Model
In the Congested Clique model, every two vertices of a given n-vertex graph G = (V, E), may
communicate in each round by a message of O(log n) bits. The running time of an algorithm
is measured by the number of rounds. Computing shortest paths in this model has been
extensively studied in the last decade. An exact APSP algorithm was devised in [10] with
running time O(n1−2/ω) = O(n0.158...) for unweighted undirected graphs (or with 1 + ϵ error
in weighted directed graphs), and in Õ(n1/3) time for weighted directed graphs. The latter
result was improved in [26] to n0.209 when the weights are constant.

The first algorithm with polylogarithmic time for weighted undirected graphs was devised
by [6], who showed a (1 + ϵ)-approximate single-source shortest paths algorithm. In [9],
among other results, a (1 + ϵ)-ASP algorithm with polylogarithmic time was shown for a set
of Õ(n1/2) sources. For unweighted graphs, the running time was recently improved by [16]
to poly(log log n), with a similar restriction of O(n1/2) sources.

In the current paper we obtain an algorithm for the (1 + ϵ)-ASP in the Congested Clique
model for weighted undirected graphs with polylogarithmic time, for a set of |S| = O(n 1+α

2 ) =
O(n0.655...) sources. For larger sets of sources, our running time gracefully increases until
it reaches Õ(n0.158) time when S = V (see Table 2). Denoting |S| = nr, our algorithm
outperforms the state-of-the-art bound of [9] for all 0.5 < r < 1. In the case of unweighted
graphs, we provide a similar improvement over the result of [16]: our (1 + ϵ)-ASP algorithm
has poly(log log n) time, allowing up to n0.655 sources.

Table 2 Results on (1 + ϵ)-ASP for S × V in the Congested Clique model (for any constant ϵ > 0,
and hiding constants and lower order terms).

# of sources Our running time Running time of [9] Running Time of [10]
n0.5 Õ(1) Õ(1) n0.158

n0.6 Õ(1) n0.06 n0.158

n0.7 n0.006 n0.13 n0.158

n0.8 n0.04 n0.2 n0.158

n0.9 n0.1 n0.26 n0.158

n1 n0.158 n1/3 n0.158

1.4 Additional Results
We also devise an algorithm for the (1 + ϵ)-approximate k-nearest neighbors (henceforth,
k-NN) problem in PRAM. Here k, 1 ≤ k ≤ n, is a parameter. For a vertex v, let z1, z2, . . . be
all other vertices ordered by their distance from v in non-decreasing order, with ties broken
arbitrarily. A vertex u is in the (1 + ϵ)-approximate k-NN of v if it is no farther from v than
(1 + ϵ)dG(v, zk). The objective is to compute (1 + ϵ)-approximate shortest paths for some set
P of pairs of vertices, that for every vertex u ∈ V contains at least k pairs (u, v) with v being
in the (1 + ϵ)-approximate k-NN of v. Our algorithm for this problem applies even in directed
weighted graphs. It requires polylogarithmic time and Õ(min{nω, k0.702n1.882 + n2+o(1)})
work. For k = O(n0.168), this work is n2+o(1), and for k = o(n0.698), this bound is better
than nω, i.e., it improves the bound for (1 + ϵ)-APASP problem.

From technical viewpoint, in this result we adapt a centralized algorithm of Yuster and
Zwick [39] for sparse matrix multiplication to the PRAM setting. We then employ this
algorithm in conjunction with the observation due to Censor-Hillel et al. [9] that the k-NN
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problem boils down to computing k matrix products of sparse matrices. We generalize this
observation and argue that this is the case not only for the exact k-NN problem, but also for
its approximate variant.

1.5 Technical Overview
As was mentioned above, our algorithms employ hopsets. A graph H = (V, E′, w′) is a
(1 + ϵ, β)-hopset for a graph G = (V, E, w), if for every vertex pair u, v ∈ V , we have

dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ (1 + ϵ)dG(u, v) . (1)

Here d
(β)
G∪H(u, v) stands for β-bounded distance between u and v in G ∪ H, i.e., the length of

the shortest u − v path between them with at most β edges (henceforth, β-bounded path).
Our algorithm is related to the algorithm of [9], designed for (1 + ϵ)-ASP for S × V

in the distributed Congested Clique (henceforth, CC) model. Their algorithm starts with
computing a (1 + ϵ, β)-hopset H for the input graph G. It then adds H to G, and creates
an adjacency matrix A of G ∪ H. It then creates a matrix B of dimensions |S| × n, whose
entries Bu,v, for (u, v) ∈ S × V , are defined as w(u, v) if (u, v) ∈ E, and ∞ otherwise. Then
the algorithm computes distance products B ⋆ A, (B ⋆ A) ⋆ A, . . . , (B ⋆ Aβ−1) ⋆ A = B ⋆ Aβ .
By equation (1), B ⋆ Aβ is a (1 + ϵ)-approximation of all distances in S × V .

Censor-Hillel et al. [9] developed an algorithm for efficiently multiplying sparse matrices
in the distributed CC model. They view the matrices B, B ⋆A, . . . , B ⋆Aβ−1, as sparse square
n×n matrices, and as a result compute B ⋆Aβ efficiently via their (tailored to the CC model)
algorithm. In particular, their algorithm does not use Strassen-like fast matrix multiplication
(FMM) techniques, but rather focuses on carefully partitioning all the products that need to
be computed in a naive matrix product of dimensions |S| × n by n × n among n available
processors.

Our first observation is that this product can be computed much faster using best available
fast rectangular matrix multiplication (FRMM) algorithms. This observation leads to our
(1 + ϵ)-ASP algorithms for weighted graphs that significantly improve the state-of-the-art in
all the three computational models that we consider (the centralized, PRAM, and distributed
CC). We also need to convert matrix distance products into ordinary algebraic matrix
products. This is, however, not difficult, and was accomplished, e.g., in [40]. We employ the
same methodology (of [40]). Our algorithm then employs a fast rectangular MM in this model
due to Le Gall [26]. This leads to our improved (1 + ϵ)-ASP algorithms in the distributed
CC model (cf. Table 2).

Remarkably, while so far hopsets were used extensively in parallel/distributed/dynam-
ic/streaming settings [11, 7, 34, 28, 29, 20, 21, 9], there were no known applications of
hopsets in the classical centralized setting. Our results demonstrate that this powerful tool
is extremely useful in the classical setting as well.

1.6 Organization
After reviewing some preliminary results in Section 2, we describe our algorithm for (1 + ϵ)-
ASP for S × V in the standard centralized model in Section 3. In Section 5 we provide our
algorithm for (1+ϵ)-ASP for S×V in the Congested Clique model that substantially improves
the number of allowed sources while maintaining polylogarithmic time (and poly(log log n)
time, for unweighted graphs). In Section 6 we devise a PRAM algorithm for (1 + ϵ)-ASP for
S × V . In Section 7 we analyze the weight reduction of [31] in the context of our algorithm
and the algorithm of [40]. Finally, in Appendix A we describe our PRAM algorithm for
approximate distances to k-NN.
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2 Preliminaries

Matrix Multiplication and Distance Product. Fix an integer n. For 0 ≤ r ≤ 1, let w(r)
denote the exponent of n in the number of algebraic operations required to compute the
product of an nr × n matrix by an n × n matrix.

Let 1 ≤ s, q ≤ n. Let A be an s × n matrix. We denote the entry in row i and column
j of the matrix A by Aij . The transpose of A is AT . We use * to denote a wildcard, e.g.,
the notation A∗j refers to the vector which is the j-th column of A. For an n × q matrix B,
define the distance product C = A ⋆ B by

Cij = min
1≤k≤n

{Aik + Bkj} ,

for 1 ≤ i ≤ s and 1 ≤ j ≤ q. For a parameter δ > 1, we say that C ′ is a δ-approximation to
C if for all i, j, Cij ≤ C ′

ij ≤ δ · Cij .
The following theorem is an extension of a result from [40]. The latter applies to square

matrices. We extend it to rectangular matrices, and argue that it is also applicable in a
parallel setting.

▶ Theorem 1 ([40]). Let M, R be positive integers. Let A be an nr × n matrix and B an
n × n matrix, whose entries are all in {1, ..., M} ∪ {∞}. Then there is an algorithm that
computes a (1 + 1

R )-approximation to A ⋆ B in deterministic time Õ(R · nw(r) · log M).

Proof. It was observed in [2] that the distance product C = A ⋆ B can be computed by
defining Âij = (n + 1)M−Aij and, similarly, B̂ij = (n + 1)M−Bij . Then C can be derived
from Ĉ = Â · B̂ by Cij = 2M − ⌊logn+1 Ĉij⌋. Since the values of entries in the matrices Â

and B̂ are of size O(M log n), and each algebraic operation (when computing the standard
product Â · B̂) requires Õ(M log n) time, it follows that the running time is Õ(M · nw(r)).

Next, we show that the running time can be reduced to Õ(R · log M · nw(r)), at the
expense of allowing (1 + 1/R)-approximation of the entries of A ⋆ B.

If R ≥ M then our algorithm computes the exact distance product in Õ(M · nw(r)) =
Õ(R · log M · nw(r)) time, and we are done.

Thus, we henceforth assume that M > R. We will also assume for simplicity that both R

and M are integer powers of 2. If it is not the case, we can increase them by a factor at most
2, and guarantee this property. This increases the running time by at most a constant factor.

For each integer r, log2 R ≤ r ≤ log2 M , we define scaled matrices A′(r), B′(r), by setting
A′

ij(r) = ⌈ R
2r · Aij⌉, if Aij ≤ 2r, and setting it to ∞ otherwise. The entries B′

ij(r) are defined
analogously (with respect to B). Note that A′

ij(r), B′
ij(r) ∈ {0, 1, . . . , R} ∪ {∞}.

We then compute the product matrices C ′(r) = A′(r) ⋆ B′(r), for all log2 R ≤ r ≤ log2 M .
Finally, the matrix C ′ is computed as entry-wise minimum of all the matrices 2r

R · C ′(r).
Note that we invoke O(log M) distance products of matrices with entries in the range
{0, 1, . . . , R} ∪ {∞}, and thus the overall running time is Õ(log M · R · nw(r)).

Observe that the matrix C ′ is entry-wise greater or equal than the matrix C = A ⋆ B. In
fact, this is the case for each of the matrices 2r

R · C ′(r), as

Cij = min
1≤k≤n

{Aik + Bkj}

≤ 2r

R
· min

1≤k≤n
{⌈ R

2r
· Aik⌉ + ⌈ R

2r
· Bkj⌉} ≤ 2r

R
· C ′

ij(r) .

For the inequality in the opposite direction, consider some fixed pair of indices i, j, and
let k be the witness for Cij , i.e., Cij = Aik + Bkj . Assume without loss of generality that
Aik ≤ Bkj . (Otherwise the index s below needs to be defined with respect to Aik.) Let s

be the positive integer that satisfies 2s−1 ≤ Bkj < 2s. (If Bkj = M , we will however set
s = log2 M . If Bkj = 0, then it is easy to verify that Cij = C ′

ij = 0.)
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If s ≤ log2 R then for r = log2 R we have

C ′
ij(r) = 2r

R
· C ′

ij(r) = 2r

R
· min

1≤t≤n
{A′

it(r) + B′
tj(r)}

= min
1≤t≤n

{⌈ R

2r
· Ait⌉ + ⌈ R

2r
· Btj⌉} = Aik + Bkj = Cij .

(Note that all terms in the minimum above are greater or equal than Aik + Bkj .)
Hence we assume that log2 R < s ≤ log2 M . Consider r = s. We have

2r

R
· C ′

ij(r) = 2r

R
· min

1≤t≤n
{⌈ R

2r
· Ait⌉ + ⌈ R

2r
· Btj⌉}

≤ 2r

R
· (⌈ R

2r
Aik⌉ + ⌈ R

2r
⌉Bkj)

≤ 2r

R

(
R

2r
Aik + R

2r
Bkj + 2

)
= (Aik + Bkj) + 2 · 2r

R
.

Recall that Bkj ≥ 2r−1, and thus 2r ≤ 2(Aik + Bkj). Hence

2r

R
· C ′

ij(r) ≤ (Aik + Bkj) + 4 · Aik + Bkj

R
= Cij · (1 + 4/R) .

Hence C ′
ij ≤ 2r

R · C ′
ij(r) ≤ Cij · (1 + 4/R). ◀

▶ Remark 2. The algorithm of Theorem 1 boils down to O(log M) standard matrix multi-
plications, and choosing the minimum value for each entry. Thus, we can also apply it in
the Congested Clique and PRAM models of computation. In the Congested Clique model,
naively, the overhead is O(R · log M). (See also Section 5 for a refined bound.) In the PRAM
model, naively, the time grows by a factor of O(R · log M). On the other hand, by the Chinese
Remainders’ theorem, one can also replace each matrix product with entries bounded by
nR by R matrix products with entries bounded by nO(1), and compute these products in
parallel. Hence, in fact, the PRAM running time grows by a factor of O(log M), while the
work complexity grows by a factor of O(R · log M).

Witnesses. Given an s × n matrix A and an n × q matrix B, an s × q matrix W is called a
witness for C = A ⋆ B if for all i, j, Cij = AiWij

+ BWijj . It was shown in [23, 40] how to
compute the matrix W in almost the same time required to compute C (up to logarithmic
factors). This holds also for a witness for C ′ which is a c-approximation for C (see [40,
Section 8]), for some c ≥ 1. The witness can assist us in recovering the actual paths, rather
than just reporting distance estimates. Since computing witnesses is done by an appropriate
distance product, these witnesses can also be efficiently computed in the PRAM model.

Hopsets. Recall the definition of hopsets in the beginning of Section 1.5. A randomized
construction of hopsets was gives in [11], see also [34, 29, 20]. The following version was
shown in [21].

▶ Theorem 3 ([21]). For any weighted undirected graph G = (V, E) on n vertices and
parameter κ > 1, there is a randomized algorithm running in time Õ(|E| · n1/κ), that
computes a (1 + ϵ, β)-hopset H with β =

(
κ
ϵ

)O(κ) of size O(n1+1/κ) (for every 0 < ϵ < 1
simultaneously) .

STACS 2022
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We note that [19] provides a deterministic construction of hopsets with similar properties.
There are two differences, which have essentially no effect on our result. First, the hopbound
in [19] is β =

(
log n

ϵ

)O(κ)
. Second, the construction there accepts ϵ > 0 as a part of its input.

Nevertheless, their hopsets can be used to make our results in PRAM deterministic, with
essentially the same parameters. Our centralized algorithm can also be made deterministic
using a hopset construction from [29].

Eliminating Dependence on Aspect Ratio. The aspect ratio of a graph G is the ratio
between the largest to smallest edge weight. A well-known reduction by [32] asserts that
to compute (1 + ϵ)-approximate shortest paths in G = (V, E) with |V | = n, it suffices to
compute (1 + ϵ)-approximate shortest paths in a collection of at most Õ(|E|) graphs {Gt}.
The total number of (non-isolated) vertices in all these graphs is O(n log n), the total number
of edges is Õ(|E|), and the aspect ratio of each graph is O(n/ϵ). This reduction can be
performed in parallel (PRAM EREW) within O(log2 n) rounds and work O(|E|). Thus it
can also be done in the standard centralized model in Õ(|E|) time. See also Section 7 and
[20, Section 4] for more details. Since in our algorithms the dependence on the aspect ratio
will be logarithmic, in the sequel we assume that M = poly(n).

3 Multi-Source Shortest Paths

Let G = (V, E, w) be a weighted undirected graph and fix a set of s sources S ⊆ V . We
compute a (1 + ϵ)-approximation for all distances in S × V , by executing Algorithm 1.

Algorithm 1 ASP(G, S, ϵ).

1: Let H be an (1 + ϵ, β)-hopset for G;
2: Set R = β/ϵ;
3: Let A be the adjacency matrix of G ∪ H;
4: Let B(1) = AS∗;
5: for t from 1 to β − 1 do
6: Let B′ be a (1 + 1/R)-approximation to B(t) ⋆ A;
7: Let B(t+1) be entry-wise minimum between B(t) and B′;
8: end for
9: return B(β);

The first step is to compute an (1+ϵ, β)-hopset H , for a parameter κ ≥ 1 with β =
(

κ
ϵ

)O(κ),
as in Theorem 3. Let A be the adjacency matrix of G ∪ H and fix R = β/ϵ. For every
integer 1 ≤ t ≤ β, let B(t) be an s × n matrix such that for all i ∈ S and j ∈ V , B

(t)
ij

is a (1 + 1
R )t−1-approximation to d

(t)
G∪H(i, j). Note that B(1) = AS∗ is a submatrix of A

containing only the rows corresponding to the sources S.
The following claim asserts that taking an approximate distance product of B(t) with the

adjacency matrix yields B(t+1).

▷ Claim 4. Let c, c′ ≥ 1. Let A be the adjacency matrix of an n-vertex graph G = (V, E),
and let B be an s × n matrix (whose rows correspond to S ⊆ V ) so that for all i, j, Bij

is a c-approximation to d
(t)
G (i, j), for some positive integer t. Let C = B ⋆ A and C ′ be a

c′-approximation to C. Then, for all i, j, C ′
ij is a c · c′-approximation to d

(t+1)
G (i, j).
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Proof. Consider a pair of vertices i ∈ S and j ∈ V . By definition of the ⋆ operation,
Cij = min1≤k≤n{Bik + Akj}. Let π be the shortest path in G from i to j that contains at
most t+1 edges, and let k ∈ V be the last vertex before j on π. Since Bik is a c-approximation
to d

(t)
G (i, k) and Akj is the edge weight of {k, j}, we have that Bik + Akj is a c-approximation

to d
(t+1)
G (i, j). Hence Cij ≤ Bik + Akj is a c-approximation of d

(t+1)
G (i, j) too. The assertion

of the claim follows since Cij ≤ C ′
ij ≤ c′ · Cij . ◁

Given B(t), we compute B(t+1) as a (1 + 1
R )-approximation to B(t) ⋆ A. Using Theorem 1

this can be done within Õ(R · nw(r)) rounds. Thus, the total running time to compute B(β) is

Õ(β · R · nw(r)) = Õ(nw(r) · (κ/ϵ)O(κ))

By Claim 4, B(β) is a (1 + 1
R )β−1 ≤ eϵ = 1 + O(ϵ) approximation to d

(β)
G∪H(u, v) for all

u ∈ S and v ∈ V . Since H is a (1+ϵ, β)-hopset, the matrix B(β) is a (1+O(ϵ))-approximation
to dG(u, v), for all u ∈ S, and v ∈ V .

Reporting paths. For each approximate distance in S × V we can also report a path in G

achieving this distance. To this end, we compute witnesses for each approximate distance
product, and as in [40, Section 5] there is an algorithm that can report, for any u, v ∈ V , a
path in G ∪ H of length at most (1 + ϵ) · d

(β)
G∪H(u, v). In order to translate this to a path in

G, we need to replace the hopset edges by corresponding paths in G. We use the fact that
the hopsets of [21] have a path reporting property. That is, each hopset edge of weight W ′

has a corresponding path π of length W ′ in G, and every vertex on π stores its neighbors on
the path. Thus, we can obtain a u − v path in G in time proportional to its number of edges.

We conclude with the following theorem.

▶ Theorem 5. Let G = (V, E) be a weighted undirected graph, fix S ⊆ V of size nr for some
0 ≤ r ≤ 1, and let 0 < ϵ < 1. Then for any κ ≥ 1, there is a deterministic algorithm that
computes a (1 + ϵ)-approximation to all distances in S × V that runs in time

Õ(max{nw(r) · (κ/ϵ)O(κ)
, |E| · n1/κ}) .

Furthermore, for each pair in S × V , a path achieving the approximate distance can be
reported in time proportional to the number of edges in it.

One may choose κ as a slowly growing function of n, e.g. κ = (log log n)/ log log log n,
so that κκ ≤ log n and n1/κ = no(1), and obtain running time Õ(nω(r) + |E| · no(1)) (for a
constant ϵ > 0). We stress that for all r ≤ 0.313, a result of [27] gives that w(r) = 2 + o(1).
So even for polynomially large set of sources S, with size up to n0.313, our algorithm computes
(1+ϵ)-approximate distances S ×V in time n2+o(1). In fact, for all r < 1, our bound improves
the current bound for (1 + ϵ)-APASP [40].

Observe that if r > 0.313, then we can choose κ as a large enough constant, so that
the running time to compute the hopset, which is Õ(|E| · n1/κ), is dominated by nw(r).
Alternatively, if |E| ≤ n2−δ we may choose κ = 1/δ, so the running time to compute the
hopset will be Õ(n2) = Õ(nw(r)) for all 0 ≤ r ≤ 1. In both cases we obtain β = (1/ϵ)O(1),
and thus our algorithm for computing (1 + ϵ)-approximate shortest paths for S × V has
running time Õ(nw(r)/ϵO(1)).
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4 Approximate Distance Preservers

A direct application of our s-ASP algorithm is the problem of approximate D-preservers.
Exact D-preservers were introduced in [8]. Given an unweighted n-vertex graph G = (V, E)
and a parameter D, a subgraph G′ = (V, H) of G (H ⊆ E) is called a D-preserver of G

if for every pair u, v ∈ V with dG(u, v) ≥ D, we have dG′(u, v) = dG(u, v). It was shown
in [8] that every unweighted graph (both undirected and directed) admits a D-preserver with
O(n2/D) edges, and that this bound is tight. We will next describe an efficient construction
of an approximate D-preserver that applies only for undirected graphs.

It is also well-known (see [37, 8]) that one can compute a D-preserver of size O( n2

D log n)
by sampling O( n

D log n) vertices S independently at random, computing a BFS tree rooted
at each of them, and inserting all these trees into the ultimate D-preserver. The running
time of this procedure is Õ( m·n

D ), where m = |E|.
For a pair of parameters D and ϵ > 0, we say that a subgraph G′ = (V, H) is a (1 + ϵ)-

approximate D-preserver of G if for every pair of vertices u, v ∈ V with dG(u, v) ≥ D, we
have dG′(u, v) ≤ (1 + ϵ) · dG(u, v). Using our (1 + ϵ)-approximate s-ASP algorithm one can
compute a (1 + ϵ)-approximate D-preserver within time Õ(nw(r)), with r = log n−log D

log n . This
expression is strictly better than Õ(n3/D), for all values of D, i.e., at least for dense graphs
(m = Θ(n2)), the new algorithm is always faster than the existing one.

The algorithm itself uses our (1 + ϵ)-ASP algorithm to compute (1 + ϵ)-approximate
BFS trees rooted at all vertices of the sampled set S, and returns the union of them as a
(1 + ϵ)-approximate D-preserver. For the stretch analysis, consider a pair u, v ∈ V of vertices
with dG(u, v) ≥ D. Let π be a shortest path between them. Since it contains at least D + 1
vertices, with high probability at least one of the sampled vertices s ∈ S belongs to the path.
Thus the preserver G′ satisfies dG′(u, s) ≤ (1 + ϵ) · dG(u, s) and dG′(s, v) ≤ (1 + ϵ) · dG(s, v).
Thus

dG′(u, v) ≤ (1 + ϵ) · (dG(u, s) + dG(s, v)) = (1 + ϵ) · dG(u, v) .

5 Improved ASP for S × V in the Congested Clique Model

In this section we show how to improve the (1 + ϵ)-ASP for S × V results of [9] and [16] in
the Congested Clique model. Specifically, we show that given a weighted graph G = (V, E)
and a set of S ⊆ V sources of size |S| = nr, there is a poly(log n) time algorithm to compute
(1 + ϵ)-ASP for S × V as long as r < (1 + α)/2 ≈ 0.655. For unweighted graphs, we obtain
an improved running time of poly(log log n). More generally, for S of arbitrary size, |S| = nr,
the running time is given by Õ(nf(r)), where the function f(r) grows from 0 to 1 − 2

ω ≈ 0.158.
(See Table 2 for more details.)

A polylogarithmic running time (respectively, poly(log log n) time for unweighted graphs),
was obtained only for r ≤ 1/2 in [9] (resp., [16]). More generally, their running time for
arbitrary S is Õ( |S|2/3

n1/3 ).
To achieve these improvements, we use the method of [10] combined with fast rectangular

matrix multiplication in the Congested Clique model. The following theorem is from [26].

▶ Theorem 6 ([26]). Let G = (V, E) be an n-vertex graph, and fix 0 < r ≤ 1. Let A and
B be nr × n and n × n matrices. Then there is a deterministic algorithm in the Congested
Clique that computes A · B in O(n1−2/ω(r′)) rounds, where r′ is the solution to the equation:

r′ = 1 − (1 − r) · ω(r′) . (2)

(Recall that ω(r′) is the exponent for nr′ × n MM.)



M. Elkin and O. Neiman 27:11

Using this theorem in conjunction with the reduction of Theorem 1, we obtain an
approximate distance product in the Congested Clique model:

▶ Corollary 7. Let G = (V, E) be an n-vertex graph, and fix 0 < r ≤ 1. Let A and B be
nr × n and n × n matrices with entries in {1, 2, ..., M} ∪ {∞}, and fix any R ≥ 1. Then there
is a deterministic algorithm in the Congested Clique that computes a (1+1/R)-approximation
to A ⋆ B in O(R · n1−2/ω(r′) · log M) rounds, with r′ as in (2).

In fact, Le Gall [26] showed that k pairs of nr × n and n × n matrices can be multiplied
in O(k2/ω(r′) · n1−2/ω(r′)) time. As a result, we improve the estimate in Corollary 7 to
O((R · log M)2/ω(r′) · n1−2/ω(r′)). Indeed, as we argued in the proof of Theorem 1, such an
approximate distance product can be computed by calculating O(log M) distance products
of matrices with entries in {0, 1, . . . , R} ∪ {∞}. Each such distance product can, in turn, be
computed via O(R) distance products of matrices with small entries (via Chinese Remainders’
Theorem; see the discussion that follows Lemma 2.2 in [40]). Hence overall, our algorithm
needs to compute distance products of O(R · log M) pairs of matrices, and this requires [26]
O((R log M)2/w(r′) · n1−2/w(r′)) time.

5.1 ASP for S × V in Weighted Graphs
Here we apply the improved rectangular MM to ASP for S × V , using the method of [9].
For completeness we sketch it below. The following theorem was shown in [9], based on a
construction from [21]. It provides a fast construction of a hopset with logarithmic hopbound
for the Congested Clique model.

▶ Theorem 8 ([9]). Let 0 < ϵ < 1. For any n-vertex weighted undirected graph G = (V, E),
there is a deterministic construction of an (1 + ϵ, β)-hopset H with Õ(n3/2) edges and
β = O(log n/ϵ), that requires O(log2 n/ϵ) rounds in the Congested Clique model.

Now, we approximately compute β-bounded distances in the graph G ∪ H, by letting B be
the adjacency matrix of G ∪ H, and A(1) the |S| × n matrix of sources. (Specifically, for every
pair (u, v) ∈ S × V , the entry A

(1)
u,v contains ω((u, v)) if (u, v) ∈ E, and ∞ otherwise.) Define

A(t+1) = A(t) ⋆ B, and by the definition of hopset, A
(β)
ij is a (1 + ϵ)-approximation to dG(i, j)

for any i ∈ S and j ∈ V . Each product is (1 + 1/R)-approximately computed by Corollary 7
within Õ(R ·n1−2/ω(r′) · log M) rounds. We obtain a (1+ ϵ)(1+1/R)β-approximation. We set
R = O( log n

ϵ2 ). Recall also that β = O(log n/ϵ). As a result we derive the following theorem:

▶ Theorem 9. Given any n-vertex weighted undirected graph G = (V, E) with polynomial
weights, parameters 0 < r < 1, 0 < ϵ < 1, and a set S ⊆ V of nr sources, let r′ be the
solution to equation (2). Then there is a deterministic algorithm in the Congested Clique
that computes (1 + ϵ)-ASP for S × V within Õ(n1−2/ω(r′)/ϵO(1)) rounds.

In particular, for a constant ϵ > 0, when r < (1 + α)/2 ≈ 0.655 the running time is Õ(1).
For r = 0.7, the solution is slightly smaller than r′ = 0.4, for which ω(r′) ≈ 2.01, and the
number of rounds is O(n0.006). When r = 0.8, the solution is roughly r′ = 0.59, for which
ω(r′) ≈ 2.085, and the number of rounds is O(n0.04). We show a few more values in the
following Table 2. (Note that at r = 1 we converge to the result of [10] for APASP.)

5.2 ASP for S × V in Unweighted Graphs
In this section we show an improved algorithm for unweighted graphs, based on [16]. The first
step of [16] was developing a fast algorithm for a sparse emulator: we say that H = (V, F ) is an
(α, β)-emulator for a graph G = (V, E) if for all u, v ∈ V , dG(u, v) ≤ dH(u, v) ≤ α·dG(u, v)+β.
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▶ Theorem 10 ([16], Theorem 24). For any n-vertex unweighted graph G = (V, E) and
0 < ϵ < 1, there is a randomized algorithm in the Congested Clique model that computes
(1 + ϵ, β)-emulator H with O(n log log n) edges within O(log2 β/ϵ) rounds w.h.p., where
β = O(log log n/ϵ)log log n.

Since the emulator is so sparse, all vertices can learn all of its edges within O(log log n)
rounds. Thus every pair of distance larger than β/ϵ already has an 1 + O(ϵ) approximation,
just by computing all distances in H locally. It remains to handle distances at most β/ϵ.

The next tool is a bounded-distance hopset that “takes care” of small distances. We say
that H ′ = (V, E′) is a (1 + ϵ, β′, t)-hopset if for every pair u, v ∈ V with dG(u, v) ≤ t we have
the guarantee of inequality (1).

▶ Theorem 11 ([16], Theorem 12). There is a randomized construction of a (1+ϵ, β′, t)-hopset
H ′ with O(n3/2 log n) edges and β′ = O(log t/ϵ) that requires O(log2 t/ϵ) rounds w.h.p. in
the Congested Clique model.

We use a (1 + ϵ, β′, t)-hopset H ′ for G with t = β/ϵ = O(log log n/ϵ)log log n, so that β′ =
poly(log log n/ϵ). As before we let B be the adjacency matrix of G ∪ H ′, and A(1) be the
|S| × n matrix of sources. Define A(s+1) = A(s) ⋆ B. By the definition of bounded-distance
hopset, A

(β′)
ij is a (1 + ϵ)-approximation to dG(i, j) for any i ∈ S and j ∈ V with dG(i, j) ≤ t.

Each distance product is (1+1/R)-approximated using the algorithm from Corollary 7 within
Õ(R · n1−2/ω(r′) · log M) rounds. We note that since G is unweighted, the maximal entry in
B and in any A(s) is t · (1 + ϵ) (one can simply ignore entries of larger weight, i.e., replace
them by ∞, since they will not be useful for approximating distances at most t). So we have
log M = poly(log log n). In the current setting we assume r ≤ 1+α

2 ≈ 0.655, and so ω(r′) = 2.
The overall approximation factor is (1+ ϵ)(1+ 1/R)β′ . We set R = β′/ϵ = poly((log log n)/ϵ),
and get overall stretch 1 + O(ϵ).

We conclude with the following theorem.

▶ Theorem 12. Given any n-vertex unweighted undirected graph G = (V, E), any 0 < ϵ < 1,
and a set S ⊆ V of at most O(n0.655...) sources, there is a randomized algorithm in the
Congested Clique that w.h.p. computes (1 + ϵ)-ASP for S × V within poly(log log n/ϵ) rounds.

Dory and Parter [16] provide also a deterministic counterparts of Theorems 10 and 11.
Specifically, Theorem 5 of [16] provides a deterministic algorithm for building emulators
with properties listed in Theorem 10 in time O( log2 β

ϵ + (log log n)4). Theorem 12(2) in [16]
provides a deterministic algorithm for building (1 + ϵ, β′, t)-hopsets with properties listed in
Theorem 11, in time O( log2 t

ϵ + (log log n)3). For our choice of parameters (given above), both
these expressions are poly(log log n, 1/ϵ). As a result, we derive a deterministic counterpart
of Theorem 12, i.e., (1 + ϵ)-ASP for S × V in deterministic poly(log log n, 1/ϵ) time, for
|S| ≤ n0.655....

6 PRAM Approximate Multi-Source Shortest Paths

The algorithm of Section 3 can be translated to the PRAM model. In this model, multiple
processors are connected to a single memory block, and the operations are performed in
parallel by these processors in synchronous rounds. The running time is measured by the
number of rounds, and the work by the number of processors multiplied by the number of
rounds.

To adapt our algorithm to this model, we need to show that approximate distance
products can be computed efficiently in PRAM. The second ingredient is a parallel algorithm
for hopsets. For the latter, the following theorem was shown in [21]. A deterministic analogue
of it was recently shown in [19].



M. Elkin and O. Neiman 27:13

▶ Theorem 13 ([21]). For any weighted undirected graph G = (V, E) on n vertices and
parameters κ ≥ 1 and 0 < ϵ < 1, there is a randomized algorithm that runs in parallel time(

log n
ϵ

)O(κ)
and work Õ(|E| · n1/κ), that computes a (1 + ϵ, β)-hopset with O(n1+1/κ · log∗ n)

edges where β =
(

κ
ϵ

)O(κ).

Matrix multiplication in PRAM. Essentially all the known fast matrix multiplication
algorithms are based on Strassen’s approach of divide and conquer, and thus are amenable
to parallelization [30]. In particular, these algorithms which classically require time T (n),
can be executed in the PRAM (EREW) model within O(log2 n) rounds and Õ(T (n)) work.

As was mentioned after Theorem 1, we can apply the reduction from MM to distance
product in the PRAM model. Thus, we can compute a (1+ 1

R )-approximate distance products
of an nr × n matrix by an n × n matrix in O(R · poly(log n)) rounds and Õ(R · nw(r)) work.

The path-reporting mechanism can be adapted to PRAM, by running the algorithm
from [40] sequentially. Since we have only β iterations, the parallel time will be only O(β)
(which is a constant independent of n, as long as κ is constant). Once we got the path in
G ∪ H, we can expand all the hopset edges in parallel. We thus have the following result.

▶ Theorem 14. Let G = (V, E) be a weighted undirected graph, fix S ⊆ V of size nr for some
0 ≤ r ≤ 1, and let 0 < ϵ < 1. Then for any κ ≥ 1, there is a randomized parallel algorithm
that computes a (1 + ϵ)-approximation to all distances in S × V , that runs in

(
log n

ϵ

)O(κ)

parallel time, using work

Õ(min{nw(r) · (κ/ϵ)O(κ), |E| · n1/κ}) .

Furthermore, for each pair in S × V , a path achieving the approximate distance can be
reported within parallel time (κ/ϵ)O(κ), and work proportional to the number of edges in it.

Note that we can set κ to be an arbitrarily large constant, and obtain a polylogarithmic
time and work Õ(nω(r) + |E|n1/κ).

7 Weight Reduction

In this section we argue that our s-ASP algorithm can be used in conjunction with Klein-
Sairam weight reduction [31] (see also [11, 20, 19]) to replace the factor log M in the running
time of its centralized version and in the work complexity of its parallel version by a factor
of O(log2 n/ϵ) (independent of the aspect ratio of the graph).

The weight reduction produces λ = ⌈log M⌉ graphs G(i) = (V (i), E(i)), i = 1, 2, . . . , λ,
each with aspect ratio at most ⌈n/ϵ⌉. The vertex set V (i) of G(i) is the set of connected
components of the subgraph of G in which all edges of weight at most ϵ · 2i/n are contracted.
The edge set E(i) contains edges between nodes of V (i) with weight at most 2i. Actually, we
keep in the node set V (i) only “active” nodes, i.e., nodes that are not isolated in G(i).

The vertex sets {V (i)}λ
i=1 form a laminar family, which can be represented by a forest F .

There is an edge in F between a node C(i+1) ∈ V (i+1) and a node C(i) ∈ V (i) if and only if
C(i) is merged into C(i+1) on scale i + 1, i.e., C(i+1) is a union of one or more distinct sets
from V (i) , one of which is C(i). (It is possible that C(i+1) = C(i).)

Denote the exponent of the running time of our centralized s-ASP algorithm by 2 ≤ ζ ≤ ω,
i.e., the running time is Õ(nζ) · poly(1/ϵ) · log M . Then, once it is invoked on all the graphs
{Gi}λ

i=1 created by the weight reduction, the running time becomes log n/ϵ · poly(1/ϵ) ·∑λ
i=1 Õ(nζ

i ). We next argue that
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λ∑
i=1

nζ
i = Õ(nζ) .

For the forest F as above, we denote by f(F) =
∑λ

i=1 nζ
i the sum over all levels of F , where

each level i contributes its number ni of nodes (that appear on level i) in the power ζ.
Observe that if a node C is active on level i (of F), then by a level i + ℓ, ℓ = ⌈log n/ϵ⌉, it

necessarily merges into some supernode Ĉ ∈ V (i+ℓ), C ⊂ Ĉ (C ̸= Ĉ). (This is because any
edge e ∈ R(i) incident on C will necessarily be contracted on or before level i + ℓ.)

We say that a path π in F between some ancestor node C(j) ∈ V (j) and some descendent
node C(i) ∈ V (i), i ≤ j, is a one-child path if each of the nodes C(i+1), C(i+2), . . . , C(j) has
one single child in F (and C(i) = C(i+1) = . . . = C(j)). Such a path is said to be maximal
if C(j) is a either a root or its parent has more than one child, and C(i) is either a leaf
or has more than one child. Note that a maximal one-child path π may also be empty, if
C(i+1) ∈ V (i+1) is a parent of C(i) ∈ V (i), C(i+1) ̸= C(i), and C(i) is either a leaf or has
more than one child, and C(i+1) has more than one child. In this case we write π = (C(i)).

Now consider a forest F̂ in which each maximal one-child path π = (C(i), C(i+1) =
C(i), . . . , C(j)) is replaced by a one-child path of length precisely ℓ. Let λ̂ ≤ λ · ℓ be the
number of levels in F̂ . Note that

f(F) =
λ∑

i=1
nζ

i ≤ f(F̂) =
λ̂∑

i=1
n̂ζ

i ,

where n̂i is the number of nodes on level i of the forest F̂ . (This is because, by induction on
i, we have ni ≤ n̂i, for every i.)

Let F ′ be the forest F̂ in which every maximal one-child path π = (C(i), . . . , C(j) = C(i))
is replaced by an empty one-child path (C(i)). Note that in F ′, every internal node has
degree at least 2. Let n′

i denote the number of nodes on level i of F ′.
Observe that as the number of leaves is n, the overall number of distinct nodes in F ′ is

at most 2n − 1. Each node C of F ′ contributes at most nζ−1 to the sum f(F ′). (This is
because if C belongs to a level on which the number of nodes is t, the total contribution of
this level is tζ . Hence each node C on this level can be charged for at most tζ−1 ≤ nζ−1.)
Hence f(F ′) ≤ (2n − 1) · nζ−1 = O(nζ). (Alternatively, this can be seen by noting that the
maximum of the sum f(F ′) =

∑
i n′ζ

i subject to
∑

i n′
i = 2n − 1 is O(nζ).)

Observe that every level of F ′ is duplicated ℓ times in F̂ . Hence

f(F̂) = ℓ · f(F ′) = O(log(n/ϵ) · nζ) .

Finally, as f(F) ≤ f(F̂), we conclude that f(F) = O(nζ · log(n/ϵ)).
Hence the overall running time of the centralized version of our s-ASP algorithm (and

the work complexity of its parallel version) is

log(n/ϵ) · poly(1/ϵ) · Õ(f(F)) = Õ(nζ) · log2(n/ϵ) · poly(1/ϵ) .

The time complexity of its parallel version is polylogarithmic in the aspect ratio (bounded
by n/ϵ) of each of the graphs Gi.

In the distributed CC model one needs to compute the connected components along with
their representatives in such a way that every vertex v ∈ V represents O(log n) components (of
all scales altogether). This is achieved by making sure that whenever a number of components
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C1, C2, . . . , Ch with |C1| ≥ |C2| ≥ . . . ≥ |Ch| merge into a higher-level component Ĉ, a
representative of one of the clusters C2, . . . , Ch (but not C1) becomes the representative of
Ĉ. See [20, 19] for more details.

Another issue arises when one needs to return output. One can compute an MST T of G,
and to compute an exact distance labeling for this MST. (In the sequential setting this can
be done in near-linear time.) These distance labels will provide an (n − 1)-approximation of
distances in G. Given a pair u, v ∈ V with a distance estimate δu,v, this provides us with
O(log1+ϵ n) = O

(
log n

ϵ

)
scales on which one needs to look for a (1 + ϵ)-approximate distance

estimate d̂u,v for this pair. Indeed, note that in scales i for which ϵ/n · 2i > δu,v ≥ dG(u, v),
the whole path will be contracted. Also, in scales i for which n · 2i < δu,v/(n − 1) ≤ dG(u, v),
at least one edge in the u − v path will have weight larger than 2i. Hence u and v will be in
different connected components of G(i).

We then identify components Cu, Cv, u ∈ Cu, v ∈ Cv, on each of the relevant scales i,
and fetch the distance estimate between Cu and Cv in Gi. (One also needs to add to these
estimates an upper bound on Diam(Cu) + Diam(Cv), which is bounded by O(ϵ · 2i).) Finally,
we then return the smallest among the resulting estimates. To summarize, this requires
polylog(n) time per vertex pair, and Õ(|S| · n + |E|) time altogether.

The same approach can be used also in the PRAM and in the CC models (details are
omitted). The time complexity will still be polylogarithmic in n, and the work complexity
(in PRAM) is Õ(|E|nδ), for an arbitrarily small δ > 0.

This completes the analysis of the weight reduction.

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

2 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, 1997. doi:10.1006/jcss.1997.1388.

3 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest
paths via low hop emulators. In STOC, 2020.

4 S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-spanner of
O(n1+1/k) size in weighted graphs. In Proceedings of the 30th International Colloquium on
Automata, Languages and Programming, volume 2719 of LNCS, pages 384–396. Springer, 2003.

5 Surender Baswana and Telikepalli Kavitha. Faster algorithms for approximate distance oracles
and all-pairs small stretch paths. In FOCS, pages 591–602, 2006. doi:10.1109/FOCS.2006.29.

6 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, pages 7:1–7:16, 2017. doi:10.4230/LIPIcs.DISC.2017.7.

7 Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast
query and close to linear update time. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 693–702,
2009. doi:10.1109/FOCS.2009.16.

8 Béla Bollobás, Don Coppersmith, and Michael Elkin. Sparse distance preservers and additive
spanners. SIAM J. Discret. Math., 19(4):1029–1055, 2005. doi:10.1137/S0895480103431046.

9 Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 74–83. ACM, 2019. doi:10.1145/3293611.3331633.

STACS 2022

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1109/FOCS.2006.29
https://doi.org/10.4230/LIPIcs.DISC.2017.7
https://doi.org/10.1109/FOCS.2009.16
https://doi.org/10.1137/S0895480103431046
https://doi.org/10.1145/3293611.3331633


27:16 Shortest Paths via Hopsets and Rectangular Matrix Multiplication

10 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 143–152, 2015.

11 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. J. ACM, 47(1):132–166, 2000. doi:10.1145/331605.331610.

12 Edith Cohen and Uri Zwick. All-pairs small-stretch paths. J. Algorithms, 38(2):335–353, 2001.
doi:10.1006/jagm.2000.1117.

13 Don Coppersmith. Rectangular matrix multiplication revisited. J. Complex., 13(1):42–49,
1997. doi:10.1006/jcom.1997.0438.

14 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

15 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29:1740–1759, 2000.

16 Michal Dory and Merav Parter. Exponentially faster shortest paths in the congested clique.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, PODC ’20,
pages 59–68, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3382734.3405711.

17 M. Elkin. Computing almost shortest paths. In Proc. 20th ACM Symp. on Principles of
Distributed Computing, pages 53–62, 2001.

18 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and PRAM distance
oracles in weighted graphs. CoRR, abs/1907.11422, 2019. arXiv:1907.11422.

19 Michael Elkin and Shaked Matar. Deterministic PRAM approximate shortest paths in
polylogarithmic time and slightly super-linear work. In Kunal Agrawal and Yossi Azar, editors,
SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual
Event, USA, 6-8 July, 2021, pages 198–207. ACM, 2021. doi:10.1145/3409964.3461809.

20 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to approx-
imate shortest paths. SIAM J. Comput., 48(4):1436–1480, 2019. doi:10.1137/18M1166791.

21 Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in RNC. In The 31st ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019., pages 333–341, 2019.
doi:10.1145/3323165.3323177.

22 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.

23 Zvi Galil and Oded Margalit. Witnesses for boolean matrix multiplication and for transitive
closure. J. Complex., 9(2):201–221, 1993. doi:10.1006/jcom.1993.1014.

24 Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length
edges. Inf. Comput., 134(2):103–139, 1997. doi:10.1006/inco.1997.2620.

25 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
296–303. ACM, 2014. doi:10.1145/2608628.2608664.

26 François Le Gall. Further algebraic algorithms in the congested clique model and applications
to graph-theoretic problems. In Cyril Gavoille and David Ilcinkas, editors, Distributed
Computing - 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings, volume 9888 of Lecture Notes in Computer Science, pages 57–70. Springer, 2016.
doi:10.1007/978-3-662-53426-7_5.

27 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers
of the Coppersmith-Winograd tensor. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1029–1046. SIAM, 2018. doi:10.1137/1.9781611975031.67.

https://doi.org/10.1145/331605.331610
https://doi.org/10.1006/jagm.2000.1117
https://doi.org/10.1006/jcom.1997.0438
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/3382734.3405711
https://doi.org/10.1145/3382734.3405711
http://arxiv.org/abs/1907.11422
https://doi.org/10.1145/3409964.3461809
https://doi.org/10.1137/18M1166791
https://doi.org/10.1145/3323165.3323177
https://doi.org/10.1145/28869.28874
https://doi.org/10.1006/jcom.1993.1014
https://doi.org/10.1006/inco.1997.2620
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1007/978-3-662-53426-7_5
https://doi.org/10.1137/1.9781611975031.67


M. Elkin and O. Neiman 27:17

28 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 146–155, 2014. doi:10.1109/FOCS.2014.24.

29 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Proceedings of
the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 489–498,
New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897638.

30 Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and applications.
J. Complex., 14(2):257–299, 1998. doi:10.1006/jcom.1998.0476.

31 Philip N. Klein and Sairam Subramanian. A linear-processor polylog-time algorithm for
shortest paths in planar graphs. In 34th Annual Symposium on Foundations of Computer
Science, Palo Alto, California, USA, 3-5 November 1993, pages 259–270, 1993. doi:10.1109/
SFCS.1993.366861.

32 Philip N. Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. J. Algorithms, 25(2):205–220, 1997. doi:10.1006/jagm.1997.0888.

33 Jason Li. Faster parallel algorithm for approximate shortest path. In STOC, 2020.
34 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In

Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 565–573, 2014. doi:10.1145/2591796.2591850.

35 Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging, and sorting in a parallel
computation model. J. Algorithms, 2(1):88–102, 1981. doi:10.1016/0196-6774(81)90010-9.

36 Mikkel Thorup. Integer priority queues with decrease key in constant time and the single
source shortest paths problem. J. Comput. Syst. Sci., 69(3):330–353, 2004. doi:10.1016/j.
jcss.2004.04.003.

37 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure al-
gorithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

38 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
887–898. ACM, 2012. doi:10.1145/2213977.2214056.

39 Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Trans. Algorithms,
1(1):2–13, 2005. doi:10.1145/1077464.1077466.

40 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

A Approximate Distances to k-Nearest Neighbors in PRAM

In this section, given a weighted directed graph G = (V, E), we focus on the task of
approximately computing the distances from each v ∈ V to its k nearest neighbors. The
main observation is that we work with rather sparse matrices, since for each vertex we do
not need to store distances to vertices that are not among its k nearest neighbors.

In [39] fast algorithms for sparse matrix multiplication were presented. Recall that
α ∈ [0, 1] is the maximal exponent so that the product of an n × nα by nα × n matrices can
be computed in n2+o(1) time. Currently by [27], α ≥ 0.313. Let γ = ω−2

1−α .

▶ Theorem 15 ([39]). The product of two n × n matrices each with at most m nonzeros can
be computed in time

min{O(nω), m
2γ

γ+1 · n
2−αγ
γ+1 +o(1) + n2+o(1)} .
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We present the following adaptation to distance products in the PRAM model. In our
setting, a matrix will be sparse if it contains few non-infinity values.

▶ Lemma 16. For R ≥ 1, the (1 + 1
R )-approximate distance product of two n × n matrices

each with at most m non-infinities can be computed in parallel time O(R logO(1) n) and work

Õ(R · min{nω, m0.702 · n1.18 + n2+o(1)}) . (3)

Proof. The (1+ 1
R )-approximate distance product of Theorem 1 involves O(log M) = O(log n)

standard matrix multiplications. These multiplications can be done in parallel, and we need
to compute entry-wise minimum of these matrices. This can also be done very efficiently in
PRAM (See e.g., [35]). By the reduction described in the proof of Theorem 1, the resulting
matrices will have O(m) nonzeros (and entries of size O(nR)). Thus the parallel time required
to compute each such multiplication is O(R logO(1) n). Using the currently known bounds on
ω and α, we have γ ≈ 0.542. Plugging this in Theorem 15, the work required is as in (3). ◀

For an n × n matrix A, denote by trunk(A) the matrix A in which every column is
truncated to contain only the smallest k entries, and ∞ everywhere else. Clearly this
operation can be executed in poly(log n) parallel time and Õ(n2) work. For a vertex i ∈ V ,
let Nk(i) be the set of k nearest neighbors of i.

▷ Claim 17. Let G be a weighted directed graph. For some t ≥ 1, and c, c′ ≥ 1, let A be an
n × n matrix such that for every 1 ≤ i ≤ n and every j ∈ Nk(i), Aij is a c-approximation to
d

(t)
G (i, j), and ∞ for j /∈ Nk(i). Then, if B is a c′-approximation to AT ⋆ A, then for each i

and j ∈ Nk(i), we have that Bij is a (c · c′)-approximation to d
(2t)
G (i, j).

Proof. Let h be the middle vertex on the shortest path with at most 2t edges between i and
j (so that there are at most t edges on the sub-paths from i to h and from h to j). Since
j ∈ Nk(i), the triangle inequality implies that h ∈ Nk(i) and j ∈ Nk(h). Thus, Aih (resp.,
Ahj) is a c-approximation to d

(t)
G (i, h) (resp., d

(t)
G (h, j)). By definition of distance product,

(AT ⋆ A)ij ≤ c · d
(t)
G (i, h) + c · d

(t)
G (h, j) ≤ c · d

(2t)
G (i, j). So Bij is a c · c′-approximation to

d
(2t)
G (i, j). (Note also that (AT ⋆ A)ij ≥ d

(t)
G (i, h) + d

(t)
G (h, j) = dG(i, j).) ◁

Our algorithm to compute approximate shortest paths to k nearest neighbors proceeds
by computing ⌈log k⌉ times an approximate distance product, truncating each time to the
smallest k entries in each column. See Algorithm 2. (This algorithm is based on an analogous
algorithm from [9], devised there in the context of the Congested Clique model.) One
difference between our algorithm and that of [9] is that on line 4 we apply a parallel version
of Yuster-Zwick’s sparse matrix multiplication [39], as opposed to an algorithm due to [9] for
multiplying sparse matrices in the Congested Clique model. Another difference is that we
are computing approximate distance products, as opposed to [9] that compute exact distance
products. The latter (exact) computation applies to the Congested Clique model, and it is
not clear if it can be performed in the centralized or PRAM models.

Since each matrix has m = O(nk) non-infinities, and there are only O(log k) iterations,
the parallel time is R · logO(1) n and the total work, using the bound of (3) with m = O(nk), is

Õ(R · min{nω, k0.702 · n1.882 + n2+o(1)}) .

The correctness of the algorithm follows from Claim 17, as the shortest path from a
vertex v to a neighbor u ∈ Nk(v) can have at most k edges. The approximation we obtain is
(1 + 1

R )⌈log k⌉ = 1 + O(ϵ). We remark that the truncation might actually remove the distance
from v ∈ V to some u ∈ Nk(v), because the computed distances are approximate, and so
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Algorithm 2 Approx k-NN(G, ϵ).

1: Let A be the adjacency matrix of G;
2: Let R = ⌈(log k)/ϵ⌉;
3: for i from 1 to ⌈log k⌉ do
4: Let A′ be a (1 + 1/R)-approximation to (trunk(A))T ⋆ trunk(A);
5: Let A be entry-wise minimum between A and A′;
6: end for
7: return trunk(A);

u can be replaced by a farther away vertex. Denote by N ′
k(v) the k vertices returned by

Algorithm 2 for v ∈ V . This vertex set has the property that for every vertex u ∈ Nk(v),
there is a distinct vertex u′ ∈ N ′

k(v), such that dG(v, u′) ≤ (1 + ϵ)dG(v, u).
Next we provide a formal argument that shows that our algorithm computes an approx-

imate k-NN. For a vertex u ∈ V , let z1(u), z2(u), . . . , zn−1(u) denote the sequence of vertices
in the monotonically non-decreasing order of distance from u. (Henceforth ties are broken
consistently by the Ids.) Let nu denote the number of vertices reachable from u in G. If
nu ≤ k then k-truncation has no effect on the computation for the vertex u, and thus the
computed set N ′

k(u) will contain all the nu vertices reachable from u, with distance estimates
approximated up to (1 + 1/R)⌈log k⌉. We from now on therefore focus on the case nu > k.

For an index i = 1, 2, . . ., we say that a vertex v is a (1 + ϵ)-replacement of zi(u) if it
satisfies dG(u, v) ≤ (1 + ϵ)dG(u, zi(u)). A (1 + ϵ)-approximate k-NN of u is a set S of size k

that satisfies the following property: Let i ∈ [k] be the minimum index so that zi(u) ̸∈ S, if
exists. Then for each j < i, the computed distance estimates of zj(u) are at most (1 + ϵ)-
approximations of the actual respective distance dG(u, zj(u)), and also S contains k distinct
(1 + ϵ)-replacements of zi(u).

Consider the following algorithm, whose pseudocode is given by Algorithm 2. Let
B0 = B′

0 = AG be the adjacency matrix of the graph G. Let A = trunk(AG), A0 = A be
the k-truncated matrix AG. (The entries (u, v) that survive also contain distance estimates
δ(u, v) = w(u, v). In other entries the estimates are set to ∞.)

Let B′
1 be a (1 + 1/R)-approximate AT

0 ⋆ A0. For every entry (x, y) we check if B′
1(x, y) >

A0(x, y). If it is the case, we set B1(x, y) = A0(x, y). Otherwise set B1(x, y) = B′
1(x, y). Set

A1 = trunk(B1), and iterate, i.e., repeat these operations h = ⌈log k⌉ times. The matrix Ah

is the output matrix.
For every i ∈ [0, h] and every vertex u, let Ŝu(i) denote the set of vertices v with

Bi(u, v) ̸= ∞, and Su(i) denote the set of vertices with Ai(u, v) ̸= ∞. Also, let Ballu(i)
denote the set of vertices v such that there exists a shortest u − v path with at most 2i hops.
Let pu(i) = |Ballu(i)|. Observe that since nu > k, for every i ∈ [0, h − 1] we have pu(i) ≥ 2i,
and pu(h) ≥ k. We also write Ball ′

u(i) = Ballu(i)∩{z1(u), . . . , zk(u)}, and qu(i) = |Ball ′
u(i)|.

Note that qu(h) = k.

▶ Lemma 18. For every vertex u ∈ V and index i ∈ [h], either
1. The set Su(i) contains all the qu(i) vertices of Ball ′

u(i) themselves (with estimates that
are (1 + 1/R)i-approximations of the actual respective distances from u)

2. Or: Let ki < k be the smallest index such that zki
(u) ̸∈ Su(i). Then Su(i) contains

all the vertices of {z1(u), . . . , zki−1(u)} ∩ Ballu(i) (with estimates that are (1 + 1/R)i-
approximations of the actual respective distances from u), and also, Su(i) contains k

distinct (1 + 1/R)i-replacements of zki(u).

STACS 2022
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▶ Remark. We will use the lemma with i = h, and deduce that for every vertex u, the set
Su(i) is a (1 + 1/R)h-approximate k-NN for u. (By outdeg(u) we denote the out-degree of
the vertex u, i.e., the number of its outgoing neighbors.)

Proof. The proof is by induction on i.

Base. For every u ∈ V , the set Su(0) contains the min{k, outdeg(u)} closest neighbors
to u. In particular, it contains the closest vertex z1(u), and its estimate is δ(u, z1(u)) =
w(u, z1(u)) = dG(u, z1(u)). Note that Ball ′

u(0) = Ballu(0) = {z1(u)}, i.e., qu(0) = 1. Thus
assertion 1 holds.

Step. First suppose that assertion 2 holds for u with respect to i. Let ki ≤ k be the smallest
index such that zki

(u) ̸∈ Su(i). Then all vertices of {z1(u), . . . , zki−1(u)} ∩ Ball ′
u(i) belong

to Su(i), and their distance estimates are (1 + 1/R)i-approximate ones. Also, Su(i) contains
k distinct (1 + 1/R)i-replacements of zki

(u).
There are two cases. If ki+1 ≥ ki then, by definition, all the vertices

{z1(u), . . . , zki+1−1(u)} ∩ Ball ′
u(i + 1) belong to Su(i + 1), and their distance estimates

are (1 + 1/R)i+1-approximate ones. Also, the remaining elements of Su(i + 1) have estimates
that are smaller or equal than the estimates of the respective elements in Su(i), and thus
they are (1 + 1/R)i-replacements of zki

(u). Hence they are also (1 + 1/R)i+1-replacements
of zki+1(u), and we are done.

Consider now the complementary case ki+1 < ki. Then Su(i + 1) contains all vertices of
{z1(u), . . . , zki+1−1(u)} ∩ Ball ′

u(i + 1) with (1 + 1/R)i+1-approximate estimates. (It is easy to
verify that for every j ∈ [0, h] and v ∈ Su(j), the estimate of v is a (1 + 1/R)j-approximate
one.) It follows that vertices from {zki+1(u), zki+1+1(u), . . . , zki−1(u)} that belong to Su(i)
were pushed out from Su(i + 1). For this to happen, the set Su(i + 1) must contain k

distinct vertices with a better estimate than that of zki+1(u), i.e., with an estimate at most
(1 + 1/R)i · dG(u, zki+1(u)). These k distinct vertices are (1 + 1/R)i-replacements, and thus
(1 + 1/R)i+1-replacements too, of zki+1(u), proving that assertion 2 holds for u with respect
to i + 1 in this case too.

Hence from now we assume that assertion 1 holds for u with respect to i. Thus, Su(i)
contains all the qu(i) vertices of Ball ′

u(i), with estimates that may possibly be by a factor at
most (1 + 1/R)i off their actual distance from u. The induction hypothesis with respect to i

applies also to all these vertices z1(u), . . . , zqu(i)(u) of Ball ′
u(i). 3

For each j ∈ [qu(i)], let qj = qzj(u)(i).

Case 1. Suppose first that all these vertices also satisfy assertion 1 of the induction
hypothesis for i, i.e., for every index j ∈ [qu(i)], the set Szj(u)(i) contains the vertices
z1(zj(u)), . . . , zqj (zj(u)) themselves with (1 + 1/R)i-approximate estimates of their distance
from zj(u).

Observe that for any vertex z ∈ Ball ′
u(i + 1), either z ∈ Ball ′

u(i), or z ∈ Ball ′
zj

(i)
and zj lies on a shortest u − z path in G, for some index j ∈ [qu(i)]. In both these
cases, the (1 + 1/R)-approximate distance product computed on iteration i + 1 of the
algorithm guarantees that the set Ŝu(i + 1) contains z, with a distance estimate which
is at most (1 + 1/R)(1 + 1/R)i = (1 + 1/R)i+1 off the actual distance dG(u, z). Hence
Ball ′

u(i + 1) ⊆ Ŝu(i + 1).

3 Actually, the indices of these vertices need not necessarily be consecutive with respect to the distance
from u. But to keep the notation simple, we denote them as if they were consecutive.



M. Elkin and O. Neiman 27:21

Recall that Su(i+1) is the k-truncation of Ŝu(i+1), i.e., it contains k vertices of Ŝu(i+1)
with the smallest estimates. If it contains all these vertices z with the aforementioned
(1 + 1/R)i+1-approximate estimates, then assertion 1 holds for u with respect to i + 1. So
(within Case 1) we are left with the subcase that at least one of these vertices z ∈ Ball ′

u(i + 1)
was pushed out of this k-truncation (Su(i+1)). In the latter case, let z′ = zr(u) = zki+1(u)(u)
be such a vertex with the smallest index r. It follows that zr ∈ Su(i + 1) \ Ball ′

u(i + 1), but
all vertices of Ball ′

u(i + 1) with smaller index (closer to u) belong to Su(i + 1). By the above
argument, these vertices have (1 + 1/R)i+1-approximate distance estimates.

In addition, Su(i + 1) must contain k vertices x whose estimate δ(u, x) satisfies

δ(u, x) ≤ δ(u, zr) ≤ (1 + 1/R)i+1 · dG(u, zr) .

As dG(u, x) ≤ δ(u, x) (this inequality holds for all estimates computed by our algorithm),
it follows that each such vertex x is a (1 + 1/R)i+1-replacement of zr = zki+1(u)(u). This
completes the proof for Case 1.

Case 2. In this case Su(i) contains all the qu(i) vertices of Ball ′
u(i) themselves (with

(1 + 1/R)i-approximate estimates), and at least one of these vertices zj ∈ Ball ′
u(i) satisfies

assertion 2 of the induction hypothesis with respect to i.
Recall that each zr ∈ Ball ′

u(i+1) either belongs to Ball ′
u(i) (and then, by the assumption

of this case, to Su(i)), or to Ball ′
zj

(i), for some zj ∈ Ball ′
u(i), and a shortest u − zr path

traverses zj .
If all zr ∈ Ball ′

u(i + 1) satisfy zr ∈ Szj
(i) for some zj ∈ Ball ′

u(i) (and a shortest u − zr

path traverses zj), then Ball ′
u(i + 1) ⊆ Ŝu(i + 1). In this case the argument that we gave in

Case 1 applies, and assertion of the lemma holds for u with respect to i + 1 as well.
Otherwise, let r be the smallest index such that zr = zr(u) ∈ Ball ′

u(i + 1) ∩ Ball ′
zj

(i), for
some zj ∈ Ball ′

u(i), and the shortest u − zr path contains zj , and zr ̸∈ Szj (i). (Moreover,
zr ̸∈ Ball ′

u(i), and there exists no other shortest u − zr path that traverses some zt ∈
Ball ′

u(i) ⊆ Su(i), such that zr ∈ Szt(i). Indeed, in the latter case, zr still reaches Ŝu(i + 1),
and the argument of Case 1 is applicable to it.)

For all vertices in Ball ′
u(i + 1) ∩ {z1, . . . , zr−1}, by the above argument, Su(i + 1) contains

them with (1 + 1/R)i+1-approximate estimates. Also, by the induction hypothesis applied to
to zj , the set Szj

(i) contains k distinct (1 + 1/R)i-replacements x of zr that reach Ŝu(i + 1),
and they satisfy

δ(u, x) ≤ (1 + 1/R) · (δ(u, zj) + δ(zj , zr))
≤ (1 + 1/R)((1 + 1/R)i · dG(u, zj) + (1 + 1/R)i · dG(zj , zr))
= (1 + 1/R)i+1 · dG(u, zr) .

Hence all these vertices are (1 + 1/R)i+1-replacements for zr, and Su(i + 1) contains either
them, or k distinct vertices with yet smaller estimates. Thus assertion 2 holds for u with
respect to i + 1, proving the lemma. ◀

Our algorithm can also recover the paths with approximate distances for every i ∈ V and
j ∈ N ′

k(i). This is done by applying the algorithm from [40, Section 5], while executing the
recursive calls in parallel.4

4 Here is a brief sketch: Recall that we compute the witnesses for all the O(log k) distance products.
Given a pair i ∈ V and j ∈ N ′

k(i), if W is the witness matrix in the last iteration of the algorithm, then
there are two cases: Either Wij contains the middle vertex h (with at most k/2 hops to both i, j) on
the approximate i − j path. Then we can simply recurse in parallel on the pairs i, h and h, j, and then
concatenate the paths. Otherwise, when Wij = 0, we just return the edge (i, j).

STACS 2022
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▶ Theorem 19. Let G = (V, E) be a weighted directed n-vertex graph, and let 1 ≤ k ≤ n and
0 < ϵ < 1 be some parameters. Then there is a deterministic parallel algorithm that computes
a (1 + ϵ)-approximation to all distances between any u ∈ V and its k nearest neighbors, that
runs in parallel time O((logO(1) n)/ϵ), using work

Õ(min{nω, k0.702 · n1.882 + n2+o(1)}/ϵ) .

Furthermore, for each i ∈ V and j ∈ N ′
k(i), a path achieving the approximate distance can be

reported in O(log k) parallel time and work proportional to the number of edges in it.

Note that for k ≤ n0.168 this work is n2+o(1), and while k ≤ n0.698 the work is smaller
than nω.
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Makespan minimization on parallel identical machines is a classical and intensively studied problem in
scheduling, and a classic example for online algorithm analysis with Graham’s famous list scheduling
algorithm dating back to the 1960s. In this problem, jobs arrive over a list and upon an arrival,
the algorithm needs to assign the job to a machine. The goal is to minimize the makespan, that is,
the maximum machine load. In this paper, we consider the variant with an additional cardinality
constraint: The algorithm may assign at most k jobs to each machine where k is part of the input.
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variant where upon arrival of a job of size p, we are allowed to migrate jobs of total size at most a
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small migration factors are a common approach to bridge the performance of online algorithms and
offline algorithms. One can obtain algorithms with a constant migration factor by rounding the size
of each incoming job and then applying an ordinal algorithm to the resulting rounded instance. With
this in mind, we also consider the framework of ordinal algorithms and characterize the competitive
ratio that can be achieved using the aforementioned approaches. More specifically, we show that in
both cases, one can get a competitive ratio that is strictly lower than 2, which is the bound from
the standard online setting. On the other hand, we prove that no PTAS is possible.
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1 Introduction

Scheduling jobs on identical parallel machines is a well-studied problem. Such problems
were in particular investigated extensively in online settings, where the algorithm has to
make decisions before the whole instance is revealed. Graham’s List Scheduling from the
1960’s [21] is a textbook algorithm by now and an early example of an online algorithm
(although the notion of competitive analysis was not formalized at that time). In this work,
we study a generalization that considers an additional cardinality constraint on the number
of jobs allowed on a machine.

The Cardinality Constrained Scheduling problem. We are given a set J of n jobs, a set M
of m identical parallel machines and a positive integer k. Each job j has a job size pj , which is
also known as the processing time of the job. A feasible solution is a non-preemptive schedule
(each job has to be assigned as a whole) satisfying the condition that for each machine i, the
number of jobs assigned to i is at most k. Our goal is to minimize the makespan, that is, the
maximum completion time of any job. In the context of makespan minimization, one does
not need to explicitly consider the time axis and instead, a non-preemptive schedule can be
defined as a partition of the job set to m machines, that is, a function σ : J → M. The load
of machine i in schedule σ is the total size of jobs assigned to i, that is,

∑
j∈σ−1(i) pj . The

objective is to minimize the maximum load of a machine. It is easy to see that given σ, one
can construct a schedule with makespan equal to the maximum load. Summarizing, the goal
for the cardinality constrained scheduling problem is to find a schedule σ : J → M such
that maxi∈M |σ−1(i)| ≤ k while minimizing the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pj .

The cardinality constraint arises naturally in settings where one needs to balance not
only the loads of the machines, but also the number of jobs. Suppose, for example, one wants
to distribute passengers to airplanes for the same trip, but different times. The passengers’
luggage weight may vary and jet fuel usage is very sensitive to excess weight. Thus, the goal
is to minimize the maximum loaded airplane (assuming for simplicity that this dominates
the fuel cost). Extensions of the original problem to multiple dimensions are well-known and
studied in both offline and online settings, see for example the vector scheduling problem
in [4]. However, in contrast to this problem, the second “dimension” in our problem is a hard
constraint, which makes it much more difficult to handle.

In the offline setting, the job set is given beforehand and the goal is to find a feasible
solution of minimum cost. We refer to [8, 10, 9, 23, 26, 27] for previous studies of the offline
setting of the problem. Since the problem is NP-hard in the strong sense, the best possible
approximation result is an efficient polynomial time approximation scheme (EPTAS), that
is, an algorithm that returns a feasible solution (if one exists) of cost at most (1 + ε) times
the optimal cost and the time complexity is upper bounded by the product of a computable
function in ε and a polynomial in the (binary) encoding length of the input. Such an
algorithm was given in [8]. Surprisingly, there exists no previous work on the online setting
of this problem.

Computational models studied in this work. In the online setting, the input is given as
a sequence of jobs. After a job is released, the algorithm learns the properties of the job
(that is, the job size) and decides on the assignment of this job. This assignment decision is
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irrevocable and the algorithm is forced to maintain the feasibility of the solution after the
assignment of each job (as long as the input has a feasible solution). Once the job assignment
is decided, the adversary constructing the input sequence learns the algorithm’s assignment
decision and chooses the size of the next job or stops the input sequence. The competitive
ratio of the online algorithm is a valid upper bound on the ratio between the cost of the
solution returned by the algorithm and the optimal cost of an offline algorithm that sees the
entire input sequence in advance (and may run in exponential time).

The model of ordinal algorithms is different. Here, the algorithm needs to decide an
assignment of n jobs to m machines without seeing the sizes of the jobs. The only information
that the algorithm can access is how these job sizes relate to each other, that is, the jobs are
given as a list sorted non-increasingly by their sizes. If the algorithm has decided upon the
assignment σ, it means that the i-th largest job in the input sequence is assigned to machine
σ(i), and this applies for all i. We say that an ordinal algorithm has rate α if for every input
that satisfies the ordinal assumptions, the cost of the solution constructed by the assignment
of the algorithm is at most α times the optimal cost for the same input.

Further, we study the model of algorithms with constant migration factor (also known as
robust algorithms) similar to the online setting. But, unlike in online algorithms, once a job j

is released, it is also allowed to modify the schedule of a subset of jobs of total size at most
β · pj where β is the migration factor. We require that β is a constant. Usually, one cannot
maintain an optimal solution using a robust algorithm. Thus, we use robust approximation
algorithms. We will use the terms competitive ratio and approximation ratio interchangeably,
since some of our models are intermediate between online algorithms and offline algorithms.
We say that a polynomial time algorithm that treats the input as a sequence is a robust
α-approximation algorithm if it has a constant migration factor and in every sequence of
jobs, the resulting solution has cost of at most α times the optimal cost. Similarly, a robust
PTAS is a family of algorithms containing a robust (1 + ε)-competitive algorithm for all
ε > 0. It is called robust EPTAS (or robust FPTAS respectively) if its running time is upper
bounded by some computable function of (or a polynomial in) 1

ε times a polynomial in the
binary encoding length of the input.

Results and outline of the paper. We present new results for all three of the models
mentioned above. An overview can be found in Table 1. In the pure online case, we first
prove a lower bound of 2 on the competitive ratio of any (deterministic) algorithm. A natural
idea for an online algorithm is to create a balanced schedule, i.e., a schedule in which the
property is maintained that any two machines receive approximately the same number of
jobs. This should limit the adversary’s options to exploit the cardinality constraint. However,
we show that such an approach fails by establishing a lower bound of m for the competitive
ratio of algorithms maintaining the property that the number of jobs placed on any two
machines differs by at most o(log(k)). Another simple approach is to use variants of Greedy
algorithms such as the list scheduling algorithm, which always assigns the next job to the
machine with the lowest load. One would need to stop considering a machine once it has
received k jobs. However, this approach is also deemed to fail, since it may create a large
inbalance in the number of jobs assigned to the machines. If for example one machine has
only one job and all others are full (which could happen using list scheduling), then the
competitive ratio can be k − 1 (when the next k − 1 jobs are huge compared to the previous
ones).

We utilize these insights in the design of an intricate online algorithm with constant
competitive ratio, namely 120. This algorithm avoids both lower bounds by allowing a certain
inbalance in the number of jobs, which is then gradually reduced as more and more jobs arrive.
These results are presented in Section 2. Furthermore, we give a tight 1+

√
5

2 -competitive
online algorithm for the special case m = k = 2 in the full version of the paper, see [13].
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Table 1 An overview of the main results of this paper. The results stated in the parentheses have
been completely removed from this extended abstract and can be found in the full version, see [13].

Computational Model Result

Online algorithms 120-competitive algorithm, lower bound of 2
Lower bound of m for balanced algorithms
(Tight 1+

√
5

2 -competitive algorithm for m = k = 2)

Ordinal algorithms Algoritm with rate 81
41

Robust algorithms Robust ((1 + ϵ) · 81
41 )-approximation with 1+ϵ

ϵ
migration factor

(Lower bound of ≈ 1.05 for constant migration, m ≥ 3, unbounded k)
(Robust FPTAS for m = 2, k > 1/ϵ2, and robust EPTAS for constant k)

Next, we consider the mentioned relaxed online settings starting with ordinal algorithms
in Section 3. There is a known lower bound of 3

2 regarding ordinal algorithm for the makespan
minimization problem [30] which applies to the CCS problem as well. We present an ordinal
algorithm with rate 81

41 for CCS which is based on spreading out the m largest jobs over all
machines and then filling the machines gradually with a repeating overlapping pattern. This
gives an improvement over the rate 2, which can be achieved using a very simple round robin
strategy.

In Section 4, we turn our attention to robust algorithms. First, we show that an ordinal
algorithm with rate at most α can be turned into a robust ((1 + ϵ)α)-approximation with
migration factor 1+ϵ

ϵ . Together with our ordinal algorithm, this shows a separation between
the strict online setting (having a lower bound of 2) and the setting with migration. On
the other hand, we present a lower bound of roughly 1.05 for the ratio of robust algorithms
for CCS. Hence, we cannot hope for a PTAS with a constant migration factor. However,
the lower bound only works for cases with m ≥ 3 and k part of the input, and we are able
to present a robust EPTAS or FPTAS for the case with constant k or m = 2, k > 1/ϵ2,
respectively.

Finally, we also show in the full version of the paper, see [13], that the results of this
paper cannot be extended to a generalization of CCS called Class Constrained Scheduling
by showing a super-constant lower bound on the competitive ratio of robust algorithms for
that problem.

All the results, proofs and details that were excluded in this extended abstract can be
found in the full version of the paper, see [13].

Related work. The standard problem of makespan minimization on identical machines
is obtained from the CCS problem by deleting the constraint saying that the number of
jobs assigned to each machine is at most k. At first glance, it seems that letting k grow to
infinity in CCS would lead to similar results to the ones known for makespan minimization
on identical machines (without cardinality constraints). However, we show that this is not
the case and the corresponding possible competitive ratios in our problem are significantly
higher than the one achievable for the problem without cardinality constraints. This is the
case for the study of online algorithms as well as for robust algorithms.

The possible competitive ratio of the online algorithm for makespan minimization on
identical machines is approximately 1.92 [1, 19] whereas the best lower bound for that
problem is 1.88 by Rudin [31]. For small constant number of machines, it is known that there
are better algorithms, for example, two machines List Scheduling (LS) [21] has a competitive
ratio of 3

2 . We establish a lower bound of 2 − 1
k on the competitive ratio for CCS that shows
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that the possible competitive ratios for CCS are strictly higher than the ones achievable
for the problem without cardinality constraints both in the regime of a small fixed number
of machines and in the general case (in both of these scenarios, we establish a lower bound
of 2 when k grows unboundedly). Makespan minimization was also studied in terms of
ordinal algorithms [30] and it is known that there is an ordinal algorithm for this problem
on identical machines with constant rate. In particular, for large numbers of machines m,
there is an algorithm of rate at most 5

3 and no algorithm has rate smaller than 3
2 . The

model of robust algorithms was introduced in [32] for makespan minimization on identical
machines, where it is shown that there is a robust polynomial time approximation scheme
for this problem. Namely, for every ε > 0, there is a (1 + ε)-approximation algorithm whose
migration factor is upper bounded by some function of ε.

Cardinality Constrained Bin Packing (CCBP) [2, 3, 11, 28] is the variant of CCS where
the maximum job size is at most 1, the makespan is forced to be at most 1 in every feasible
solution, but the algorithm is allowed to buy machines. The goal is to minimize the number
of machines bought by the algorithm. The best possible competitive ratio for CCBP is 2
with respect to the absolute competitive ratio as well as with respect to the asymptotic
competitive ratio [2, 3, 5]. Regarding robust algorithms, it was shown in [15] that for every
fixed value of k such that k ≥ 3, there is no asymptotic approximation scheme for CCBP
with constant migration factor. Observe the difference with our results for CCS where for
fixed constant value of k, we establish the existence of an approximation scheme for CCS
with constant migration factor.

Ordinal algorithms were studied for other scheduling problems as well, see e.g. [12, 22, 29,
34, 35], and robust algorithms were designed and analyzed for various scheduling problems
and other packing problems (see e.g. [6, 7, 14, 15, 16, 17, 18, 20, 24, 25, 33]).

Notation. Throughout the paper, log refers to a logarithm with base 2. For a job subset J ,
we let p(J) =

∑
j∈J pj . For a positive integer x, we let [x] = {1, 2, . . . , x}. Without loss of

generality, we assume M = [m]. When we consider a specific algorithm (online, ordinal, or
an algorithm with constant migration), we let alg denote the cost of the solution constructed
by the algorithm, and we let opt denote the optimal offline cost for the same instance.

2 Pure online algorithms

In this section, we study the competitive ratios of online algorithm for CCS, starting with
the lower bounds and then continuing with a constant competitive algorithm.

2.1 Lower bound
We show that when considering the online problem, there is no (deterministic) algorithm
that has a competitive ratio smaller than 2.

▶ Theorem 1. No online algorithm for CCS has a competitive ratio strictly smaller than 2,
and for a fixed value of k, no algorithm has a competitive ratio strictly smaller than 2 − 1

k .

Proof. We assume that m ≥ k. The input consists of two phases. In the first phase,
m × (k − 1) jobs of size 1 arrive. Then the adversary examines the output of the algorithm.
If the algorithm has assigned exactly k − 1 jobs to each machine, then the input continues
with one big job of size k that is the last job of the input. Otherwise the input continues
with m jobs of size N where N is some very big number. In the first case, we have a ratio of
2 − 1/k. In the second case, the competitive ratio is at least 2N/(N + k). ◀
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We sometimes use the intuition of every machine having k slots, each of which may
contain exactly one job or may be empty. Note that the ratio in the second case gets worse
if a larger number of slots remain free on some machine since the total number of free
slots remaining after the arrival of the first phase is m. This gives us the intuition that an
algorithm should try to balance the number of jobs each machine receives. However, this
possible strategy cannot guarantee a constant competitive algorithm as the next proposition
shows. The proof can be found in the full version of the paper, see [13].

▶ Proposition 2. Let t ≥ 1 be an integer number that may depend on k such that t = o(log k).
Let alg be an algorithm that maintains the invariant that the number of jobs placed on any
two machines may differ by at most t. Then the competitive ratio of alg is at least m.

Observe that obtaining an online algorithm with a competitive ratio of min{m, k} is
trivial, as any feasible solution has a cost that is at most min{m, k} times the optimal cost.
Thus, this is the competitive ratio of scheduling the jobs in a round-robin manner. Hence,
the lower bound of Proposition 2 for this class of algorithms means that in order to establish
small competitive algorithms, we need to exhibit an algorithm that does not belong to this
class. In fact, in our algorithm, we have situations where there is a pair of machines with
cardinalities that differ by Θ(log k).

2.2 A competitive algorithm for CCS
Next, we present an algorithm for CCS with a constant competitive ratio. For simplicity
we assume that every job’s size is a power of two, that is, pj = 2i for some (not necessarily
positive) integer i. More precisely, every incoming job is rounded down accordingly. Then
the resulting makespan (and the competitive ratio) will only increase by a factor of 2 when
considering the correct sizes.

The general idea of the algorithm. We start by briefly discussing the main idea of the
algorithm. For simplicity of presentation, assume that we know the value p∞

max, which is the
maximum size of any job by the end of the instance.

We group jobs by size. Group Gi contains the jobs j with pj = p∞
max/2i for i =

0, . . . , ⌊log k⌋. Further, group G∞ contains all smaller jobs, that is, jobs of sizes below
p∞

max/2⌊log k⌋+1 ≤ p∞
max/k (recall that the jobs are rounded to powers of 2). Consider the

following approach: Each group is scheduled independently using a round-robin strategy.
For each group, the first job of this size is assigned to machine 1, the next one to machine 2,
etc. Once every machine has one job of Gi, we continue with machine 1 again for this group.
This is done for all values of i including ∞, see Figure 1 for an illustration. This method
approximately balances both the loads of the machines and their cardinalities: There are
still differences between machine loads due to two reasons. First, each group may have one
additional job (of the group) assigned to some machines compared to the other machines
(this happens when the number of jobs of the group is not divisible by m). Second, the
group G∞ may have jobs of very different sizes. All these sizes are small with respect to
the maximum job size, and they are smaller by a factor of at least k (so the total size of k

such jobs, which is the maximum per machine, is still at most p∞
max). Thus, the load of every

machine is at most the average load plus an additional additive error term that is at most

⌊log k⌋∑
i=0

p∞
max
2i

+ k · p∞
max

2log k
≤ 3p∞

max.
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Figure 1 Example schedule of the round-robin based algorithm.

We use opt to denote the optimal makespan for the entire input. As p∞
max forms a lower

bound on opt, and the average load is also a valid lower bound on opt, the makespan is
never larger than four times the optimal makespan. An issue arises once the cardinality
on some machines arrives at k. In that case it is no longer feasible to schedule all groups
independently. On the other hand, every pair of cardinalities (for two machines) differs by at
most ⌊log k⌋ + 2. Thus, if this difficulty occurs, then on each machine, there is only space for
O(log k) more jobs (this is the number of remaining slots). If we assign the remaining jobs
arbitrarily, the difference in loads can increase only by O(log k) · p∞

max. This implies we get a
O(log k)-competitive algorithm assuming we know the value p∞

max.
Indeed, the algorithm above is even 8-competitive (including the factor of 2 due to

rounding) as long as no machine’s cardinality is full, that is, as long as no machine has k

jobs assigned to by the algorithm. On the other hand, we showed in Proposition 2 that no
competitive algorithm can maintain a constant difference in the cardinalities of the job sets
of any two machines, or even a difference of o(log k). Nevertheless, we manage to obtain a
constant competitive algorithm by modifying the approach stated above further. Towards
this we gradually decrease the number of groups Gi as the machines get filled more and
more, so that by the time some machine is full (i.e., has been assigned k jobs) there are only
a constant number of groups and, in particular, the cardinalities of the job sets assigned to
any two machines differ only by a constant. We will also remove the assumption of knowing
p∞

max in advance.

The algorithm. We first need to introduce some formal definitions. We think of every
machine as having k slots, each of which may contain one job or it can be empty. We form
k rows of these slots, where every row contains one slot of each machine. A row is full if
each slot of the row has a job, and it is not full otherwise, i.e., at least one slot of the row is
empty. A row is free if it has no job at all, i.e., all its slots are empty. In the following, let
pmax denote the maximum job size of a job seen so far, and let p∞

max denote the maximum
job size by the end of the instance. We keep track of pmax in an online fashion in the sense
that whenever a new job is released, we check if we need to update (increase) these values.

We form a partition of the jobs (released so far) into the groups G0, . . . , Gℓ, G∞, where
ℓ = ⌊2 log(k)⌋ and Gi, i = 0, . . . , ℓ, contains all jobs j of size pj = pmax/2i. Group G∞
contains all other (smaller) jobs.

The algorithm is defined recursively and in the recursive calls, it may remove full rows
from the existing schedule. The removal of the rows is only with respect to the rules of
assigning future jobs to the machines (in the sense that the jobs that were assigned to slots
of these rows are still assigned to the corresponding machines and are not actually removed).
When rows are removed, and the number of rows is decreased, the value of k will be decreased
and the value of ℓ will be updated accordingly. For a fixed value of ℓ, we can maintain the
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partition into groups in an online fashion. The value of ℓ may become smaller, in which case
some groups are merged into the group of small jobs. Since the jobs of each group except for
G∞ share a common size, groups that are not merged remain unchanged.

To cope with the dynamic grouping where large jobs may later become small over time,
we change the previous algorithm in the following way. Instead of keeping one row that is
currently being filled for each group, we keep two. One of these two rows may also contain
jobs from G∞. To make this more precise, we now formally state the structural invariants of
the algorithm’s schedule.

The invariants of the algorithm. Consider the following structure in a schedule. For each
i = 0, . . . , ℓ there are exactly two rows ri, r′

i containing elements of the group Gi. Row ri

contains only elements of Gi, whereas row r′
i contains elements of Gi and of G∞. Moreover,

of each pair of rows corresponding to a common group, at least one is not full. Finally, there
are ⌈k/2⌉ − 2(ℓ + 1) rows containing only elements from G∞ and none of them is full. The
remaining ⌊k/2⌋ rows are free.

The structure can be built trivially in the beginning when all rows are empty and
2(ℓ + 1) = 2⌊2 log(k)⌋ + 2 ≤ ⌈k/2⌉, which holds for all k ≥ 49. In the case where k is initially
smaller, the algorithm will output an arbitrary feasible schedule, which is 48-competitive.

The definition of this structure may give the (false) impression that the algorithm tries
to keep the rows not full. This is not the case. In its recursive calls, the algorithm removes
certain rows from the instance when they become full and the invariants above can also be
read as: When two rows ri, r′

i (or one row belonging to G∞) become full, they need to be
removed from the instance and new rows (e.g., from the empty ones) need to be allocated to
take their place. When the algorithm removes a pair of rows (two rows corresponding to a
common group become full), it also decreases k by 2.

We will argue inductively that given such a structure, we can assign the remaining jobs
using the recursive algorithm in a way that maintains the invariants, and so that each
machine ends up with a total load (including the jobs already in the schedule) of at most

2
m

· p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 1

)
p∞

max. (1)

Notice that the second term is the sum of all job sizes (that is, all powers of 2) between pmax

and p∞
max (multiplied with 8). Since the average load p(J)/m and 1/2 ·

∑log(p∞
max)

i=log(pmax) 2i ≤ p∞
max

form lower bounds on opt, this constitutes a 60-competitive algorithm (120-competitive
when taking into account the initial rounding). For k ∈ {48, 49} it is trivial to see that there
is an algorithm which (given the structure above) assigns all remaining jobs online while
maintaining the bound (1) on the loads. This is because (1) is greater than 49p∞

max and
therefore any feasible schedule satisfies the bound. This proves the base case of our inductive
argument.

The algorithm for scheduling the next job while maintaining the invariants and satisfying
the load bound (1). Let h denote the number of free slots in our current schedule, that is,
k ·m minus the number of jobs in the schedule. Our induction is over k and h: If k ∈ {48, 49},
we observed that we can guarantee the makespan bound (1); the base case h = 0 does not
have to be considered, since this contradicts the presumed structure on the current schedule
(the induction will always end in k ∈ {48, 49}). Assume now that k ≥ 50 and that we
have an algorithm that for all k′ ∈ {k, k − 1, k − 2} and h′ < h can continue the schedule
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with the specified structure while guaranteeing the bound (1). For all k ≥ 50 it holds that
2(ℓ + 1) = 2 + 2⌊2 log(k)⌋ < ⌈k/2⌉. This implies that the number of rows dedicated to G∞,
⌈k/2⌉ − 2(ℓ + 1), is strictly positive and the number of free rows, ⌊k/2⌋, is at least 25, which
will be important for our induction step. Suppose some job jnew arrives.

First consider the case that pjnew ≤ pmax (referring to the value of pmax before the arrival
of jnew) and jnew /∈ G∞. Let Gi be the group with jnew ∈ Gi. We assign jnew to an arbitrary
empty slot in ri or r′

i. If one of the rows remains not full, we have maintained the structure
and use the induction hypothesis to prove that we can construct the remaining schedule
with the desired guarantee. If on the other hand this makes both rows ri and r′

i full, we first
remove the two full rows and then we are going to use the induction hypothesis as described
below: We set k′ := k − 2. This reduces the index of the last group to ℓ′ = ⌊2 log(k′)⌋.
However, notice that ℓ ≥ ℓ′ ≥ ℓ − 1 (so it is possible that one group is merged into the group
of small jobs).
Case 1: ℓ′ = ℓ. We remove one row dedicated to G∞ and pair it with an empty row to form

new rows r′
i and ri respectively (we recall that the numbers of such rows are positive

before the removal). The number of rows dedicated to G∞ is now ⌊k/2⌋ − 2(ℓ + 1) − 1 =
⌊k′/2⌋−2(ℓ′ +1). Hence, the structure is repaired and we can use the induction hypothesis.

Case 2: ℓ′ = ℓ − 1 and i = ℓ. Then group Gi disappears, the number of rows dedicated
to G∞ is still ⌊k/2⌋ − 2(ℓ + 1) = ⌊k′/2⌋ − 2(ℓ′ + 1) − 1. To repair the structure, we add
one empty row to the group G∞.

Case 3: ℓ′ = ℓ − 1 and i < ℓ. Then group Gℓ is merged into G∞, and it creates two new
rows for G∞ that were corresponding previously to Gℓ. We create new rows ri and r′

i

corresponding to Gi by taking one of these rows previously corresponding to Gℓ (the
complete one if there is such a row) as r′

i and an empty one as ri. This means the number
of rows dedicated to G∞ is ⌊k/2⌋ − 2(ℓ + 1) + 1 = ⌊k′/2⌋ − 2(ℓ′ + 1) and no row dedicated
to G∞ is full (because full rows of G∞ will always be removed, and the only one that was
perhaps temporarily added to the set of its rows was moved to the set of another group).

Let JC denote the jobs in the two full rows that we have just removed. By induction
hypothesis, we obtain a schedule for J \ JC where the load of each machine is at most

2
m

· p(J \ JC) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k′ − 1

)
p∞

max.

Notice that the total size of the two jobs of JC on each machine is at least pmax/2i and at
most 2 · pmax/2i ≤ 2/m · p(JC). Thus, the total load on each machine is at most

2
m

p(JC) + 2
m

p(J \ JC) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k′ − 1

)
p∞

max

≤ 2
m

p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 1

)
p∞

max.

Now consider the case that jnew ∈ G∞. We add jnew to an arbitrary row dedicated to G∞.
If the row remains not full, we can directly use the induction hypothesis as the structure is
maintained. Otherwise, we remove the row and set k′ = k − 1 (accordingly, ℓ′ = ⌊2 log(k′)⌋).
The number of rows dedicated to G∞ has reduced to

⌊k/2⌋ − 2(ℓ + 1) − 1 ≤ ⌊k′/2⌋ − 2(ℓ + 1) ≤ ⌊k′/2⌋ − 2(ℓ′ + 1).
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That means, we potentially have too few rows in G∞, but not too many. On the other hand,

⌊k/2⌋ − 2(ℓ + 1) − 1 ≥ ⌊k′/2⌋ − 2(ℓ′ + 2) − 1 = ⌊k′/2⌋ − 2(ℓ′ + 1) − 3.

So G∞ is missing at most three rows. We fill up these missing row with empty ones (recall
there are at least 25 empty rows) and we have maintained the required structure. Let again
JC denote the jobs in the full row. Using the induction hypothesis and that each job in JC

is of size less than pmax/k2 (by using the previous values of ℓ, this is the upper bound on the
sizes of jobs of G∞), we get a schedule with maximum load at most

2
m

p(J \ JC) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k′ − 1

)
p∞

max + 1
k2 pmax

≤ 2
m

p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 2 + 1

k2

)
p∞

max

≤ 2
m

p(J) + 8
log(p∞

max)∑
i=log(pmax)

2i +
(

42 − 1
k − 1

)
p∞

max.

Finally consider the case that pjnew > pmax. This means the new maximal job size is
p′

max = pjnew . From the job set J0 of the jobs in our current schedule (not including jobs of
removed rows) and excluding jnew, we construct a new job instance J0′ where we increase
the size of the jobs in Gi, i = 0, . . . , ℓ, from pmax/2i to p′

max/2i and we consider the same
schedule for J0′, which satisfies our required structure. Let J ′ be the union of jobs J0′, jnew,
and all remaining jobs that have not arrived yet. If we can assign all remaining jobs in this
bigger instance J ′ with some bound on the loads of the machines, then we can in particular
obtain the same bound on the maximum load for our original instance J . Notice that since
in the current schedule there are only two rows containing jobs of each group Gi, i < ∞,
there can be at most 2m jobs in total of each such group. Thus,

p(J ′) ≤ p(J) + 2m

ℓ∑
i=0

p′
max
2i

≤ p(J) + 8m · p′
max
2 .

In the previous two cases, we have already proved that (for the given numbers h and k) we
can schedule the remaining jobs of J ′ with a bounded makespan, since we are in the case
that pjnew ≤ p′

max. More precisely, we obtain with the previous arguments a schedule for J ′

(and in particular for J) with a maximum load of at most

2
m

p(J ′)+8
log(p∞

max)∑
i=log(p′

max)

2i+
(

42 − 1
k − 1

)
p∞

max ≤ 2
m

p(J)+8
log(p∞

max)∑
i=log(pmax)

2i+
(

42 − 1
k − 1

)
p∞

max,

where the inequality holds since log(p′
max) ≥ log(pmax) + 1 due to the rounding. This

concludes the proof.

▶ Theorem 3. For cardinality constrained scheduling there is a 120-competitive online
algorithm.
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3 Ordinal algorithms

A straight-forward approach in the ordinal setting is to assign the jobs via round-robin, i.e.,
the i-th largest job is assigned to machine ((i − 1) mod m) + 1. Note that this already gives
an ordinal algorithm of rate 2 and applies to both, the makespan minimization problem on
identical machines as well as our problem. Thus, the goal of this section is to show that
by delicately defining a different algorithm, we can get an ordinal algorithm of rate strictly
smaller than 2.

Preliminaries and easy cases. We can always assume that the job sequence has n = m · k

jobs. If it has more jobs then we can safely output that there is no feasible solution, and
otherwise, we can add n − m · k jobs of size 0 at the end of the input sequence. These zero
sized jobs do not change the optimal cost, and for every feasible solution of the original
instance, there is a corresponding feasible solution of the same cost with the zero sizes jobs
(by adding for each machine the number of jobs so that it will have exactly k jobs).

Furthermore, we will assume that m ≥ 2 and k ≥ 3. For one machine (m = 1), placing the
k input jobs on the single given machine is a trivial ordinal algorithm with rate 1. Similarly,
if k = 1, assigning the i-th largest of the m input jobs to machine i is again ordinal and
optimal. Lastly, in the case k = 2, an optimal schedule can be achieved by assigning the
first (largest) job to the first machine, the second to the second and so on until each machine
received one job. Afterwards, we change the direction, that is, job m + 1 is assigned to
machine m, job m + 2 to machine m − 1, and so forth.

First ideas. Observe that assigning the first m jobs to different machines is necessary in any
algorithm of rate strictly smaller than 2 as the ordered input might consist of m jobs of size 1
and m(k − 1) jobs of size 0. On the other hand, the mentioned round-robin approach behaves
badly if we have one big and many small jobs, e.g., if we have m = k, one job of size k,
k(k − 1) jobs of size 1, and the remaining jobs of size 0. Then the first machine receives load
2k − 1 in the round-robin approach while there is a trivial solution with objective value k.

Keeping these examples in mind, a first idea for an ordinal algorithm might be to spread
out the first m jobs and afterward place fewer jobs on the machines that received the largest
jobs. More concretely we could, for instance, place the first m jobs as described and then
alternately take m and ⌈m/2⌉ jobs (from the input sequence, i.e., in non-increasing order) and
place them on all and the last ⌈m/2⌉ machines, respectively. This is, in fact, the central idea
for the known [30] ordinal algorithm with rate 5

3 for the case without cardinality constraints.
But in our case, we need another strategy after the last ⌈m/2⌉ machines each received k

jobs. The most obvious idea at this point, would be to apply round robin to the remaining
jobs and first ⌊m/2⌋ machines. However, it is relatively easy to see that we can adapt the
bad example for round-robin to the resulting algorithm by simply doubling the number of
machines and hence, a more sophisticated approach is needed.

Now, the first step of the algorithm presented here is again to place the i-th biggest
job to machine i for i ∈ [m]. Then we use the above approach of placing jobs alternately
on a smaller and a larger part of the last ⌈m/2⌉ machines and apply it repeatedly so that
the machines are gradually filled up starting from the last machines. In the following, this
approach is described in detail.

The algorithm for the general case. The assignment procedure works in phases, each of
which is composed of rounds. Let ξ = ⌊log m⌋+2 be the number of phases. A round is defined
as an interval of consecutive machines [mℓ, mr − 1], where the two indexes mℓ, mr ∈ [m + 1]
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are called border machines (the value m + 1 is to allow that an interval ends with the last
machine). In a round defined by the interval [mℓ, mr − 1], we assign the next mr − mℓ jobs
to the machines of this interval where the i-th largest job in this set of jobs that we assign in
the round is assigned to machine mℓ + i − 1.

Next, we define a subset of the machines that are border machines of some round of the
algorithm. We set µ(i) =

⌊
m

2ξ−i

⌋
+ 1 for each i ∈ [ξ]. The border machines of the rounds

are always from the set {µ(b) | b ∈ [ξ]}. Note that µ(1) = 1, µ(2) = 2 and µ(ξ) = m + 1 for
any value of m. Observe that the difference between two consecutive border machines, i.e.,
µ(i + 1) − µ(i), grows approximately as a geometric sequence. We briefly consider some
examples:

If m = {2, 3}, we have ξ = 3 and the three borders are 1, 2, and 3 or 4 respectively.
If m ∈ {4, 5, 6, 7}, we have ξ = 4, and the third border is 3 for m = 4, 5 and 4 for m = 6, 7.
If m = 2q for some integer q ≥ 1, we have q + 2 phases and {1} ∪ {1 + 2i | i ∈ {0, . . . , q}}
is the set of border machines.

We conclude that in order to define the assignment, we need to define the intervals of the
rounds of every phase. Like in the last chapter, we use the intuition that each machine has k

slots to be filled by jobs. Our algorithm works as follows, due to space restrictions, the proof
is excluded and can be found in the full version, see [13]:
1. In the first phase, there is only one round with borders µ(1) = 1 and µ(ξ) = m + 1.
2. In the second phase, we repeat the following until all the slots between µ(ξ − 1) and µ(ξ)

are filled: One round with borders µ(ξ − 2) and µ(ξ), followed by two rounds with borders
µ(ξ − 1) and µ(ξ) (or less rounds if each machine of this last interval has exactly k jobs).

3. In phase s ∈ {3, . . . , ξ −1}, there are alternating rounds with borders µ(ξ −s), µ(ξ −s+2)
and µ(ξ − s + 1), µ(ξ − s + 2) respectively. There are as many rounds as are needed to
fill all the slots of the interval between µ(ξ − s + 1) and µ(ξ − s + 2).

4. In the last phase, each round has borders µ(1) = 1 and µ(2) = 2, so in each such round
we assign one job to machine 1 (and no other jobs to other machines). The number of
rounds of this phase is so that the resulting number of jobs assigned to machine 1 in all
phases is exactly k.

▶ Theorem 4. There is an ordinal algorithm for cardinality constrained scheduling of rate at
most 81

41 .

4 Algorithms with constant migration factors

In this section, we consider algorithms with constant migration factor. Due to space
restrictions, most of our results in this context are not included in this extended abstract. In
the following, we focus on the connection between ordinal and robust algorithms.

▶ Theorem 5. Given a polynomial time algorithm alg for the ordinal settings of rate at
most α, there is a robust ((1 + ε)α)-approximation algorithm whose migration factor is 1+ε

ε .

Proof. Upon the release of a new job j, we immediately round up its size pj to the next
integer power of (1 + ε). Let p′

j be the rounded size of job j. Our algorithm ignores the
original sizes of jobs and simply schedules the jobs of this rounded input. Observe that every
feasible solution of the original instance is also a feasible solution of the rounded instance and
vice-versa. Furthermore, the cost of a solution in terms of the original instance is at most its
cost in terms of the rounded instance, and this last term is again at most (1 + ε) times the
cost of the solution with respect to the original instance. Regarding the migration factor,
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there may be a multiplicative increase by a factor of 1 + ε. Thus, in order to prove the claim,
it suffices to present an α-approximation algorithm for the rounded instance whose migration
factor is at most 1

ε . Thus, in the remainder of this proof we consider the rounded instance.
Our algorithm maintains a list of the jobs, ordered non-increasingly, that were already

released followed by a sequence of jobs of size 0. The (already) released jobs are sorted in
a non-decreasing order of their sizes. Based on this ordered list of jobs, we assign the jobs
using the ordinal algorithm. The approximation ratio of the resulting algorithm is at most α

(for the rounded input) based on the assumption on the rate of the ordinal algorithm. Thus,
in order to prove the claim it suffices to show that we can maintain this sorted list (and its
corresponding schedule) by migrating at most one job of each size that is smaller than the
size of the newly arrived job. To see that, recall that in the rounded instance, all job sizes
are integer powers of 1 + ε, and so the total size of migrated jobs when j is released would
be at most p′

j ·
∑∞

i=1
1

(1+ε)i = p′
j · 1

ε as we claimed.
In the rounded instance, we let a size class be the set of jobs of a common size, and this

appears as a consecutive sublist of jobs in the sorted list. Observe that we can modify the
sorted order of jobs by changing the order of jobs of a common size class (but when reflecting
this change to the schedule this may create further migration). We append the new job j as
the smallest job of its size class. Hence, it will be placed at the position of the largest job of
the next smallest non-empty size class. We can remove and reinsert this job treating it the
same way as we did the new job. Hence, for every non-empty size class whose common size
is smaller than p′

j we take its largest job j′ and move it to become the smallest of its size
class. As the last step of this procedure, one of the size 0 dummy jobs is removed from the
list. Observe that when reflected to the schedule, the jobs which were not the largest among
their size class were not migrated by this resorting of the jobs. Furthermore only one job
of each such size class is migrated. The running time of this procedure is linear (for every
arriving job), so the claim follows. ◀
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Abstract
We study two “above guarantee” versions of the classical Longest Path problem on undirected
and directed graphs and obtain the following results. In the first variant of Longest Path that
we study, called Longest Detour, the task is to decide whether a graph has an (s, t)-path of
length at least distG(s, t) + k (where distG(s, t) denotes the length of a shortest path from s to t).
Bezáková et al. [7] proved that on undirected graphs the problem is fixed-parameter tractable (FPT)
by providing an algorithm of running time 2O(k) · n. Further, they left the parameterized complexity
of the problem on directed graphs open. Our first main result establishes a connection between
Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new
insights, we design a 2O(k) · nO(1) time algorithm for the problem on directed planar graphs. Further,
the new approach yields a significantly faster FPT algorithm on undirected graphs.

In the second variant of Longest Path, namely Longest Path above Diameter, the task
is to decide whether the graph has a path of length at least diam(G) + k (diam(G) denotes the
length of a longest shortest path in a graph G). We obtain dichotomy results about Longest
Path above Diameter on undirected and directed graphs. For (un)directed graphs, Longest
Path above Diameter is NP-complete even for k = 1. However, if the input undirected graph is
2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show
that Longest Path above Diameter is solvable in polynomial time for each k ∈ {1, . . . , 4} and
is NP-complete for every k ≥ 5. The parameterized complexity of Longest Detour on general
directed graphs remains an interesting open problem.
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1 Introduction

In the Longest Path problem, we are given an n-vertex graph G and an integer k. (Graph G

could be undirected or directed.) The task is to decide whether G contains a path of length at
least k. Longest Path is a fundamental algorithmic problem that played one of the central
roles in developing parameterized complexity [46, 9, 2, 36, 40, 13, 12, 41, 51, 26, 26, 25, 42, 8].
To further our algorithmic knowledge about the Longest Path problem, Bezáková et al. [7]
introduced a novel “above guarantee” parameterization for the problem. For a pair of vertices
s, t of an n-vertex graph G, let distG(s, t) be the distance from s to t, that is, the length of a
shortest path from s to t. In this variant of Longest Path, the task is to decide whether a
graph has an (s, t)-path of length at least distG(s, t) + k. The difference with the “classical”
parameterization is that instead of parameterizing by the path length, the parameterization
is by the offset k.

Longest Detour Parameter: k

Input: A graph G, vertices s, t ∈ V (G), and an integer k.
Task: Decide whether there is an (s, t)-path in G of length at least distG(s, t) + k.

Since the length of a shortest path between s and t can be found in linear time, such
a parameterization could provide significantly better solutions than parameterization by
the path length. Bezáková et al. [7] proved that on undirected graphs the problem is fixed-
parameter tractable (FPT) by providing an algorithm of running time 2O(k) ·n. Parameterized
complexity of Longest Detour on directed graphs was left as the main open problem
in [7]. Our paper makes significant step towards finding a solution to this open problem.

Our results. Our first main result establishes a connection between Longest Detour and
another fundamental algorithmic problem p-Disjoint Paths. Recall that the p-Disjoint
Paths problem is to decide whether p pairs of terminal vertices (si, ti), i ∈ {1, . . . , p}, in a
(directed) graph G could be connected by pairwise internally vertex disjoint (si, ti)-paths.
We prove (the formal statement of our result is given in Theorem 4) that if C is a class of
(directed) graphs such that p-Disjoint Paths admits a polynomial time algorithm on C for
p = 3, then Longest Detour is FPT on C. Moreover, the FPT algorithm for Longest
Detour on C is single-exponential in k (running in time 2O(k) · nO(1)).

Unfortunately, our result does not resolve the question about parameterized complexity
of Longest Detour on directed graphs. Indeed, Fortune, Hopcroft, and Wyllie [29] proved
that p-Disjoint Paths is NP-complete on directed graphs for every fixed p ≥ 2. However,
the new insight helps to establish the tractability of Longest Detour on planar directed
graphs, whose complexity was also open. The theorem of Schrijver from [48] states that
p-Disjoint Paths could be solved in time nO(p) when the input is restricted to planar



F. V. Fomin, P. A. Golovach, W. Lochet, D. Sagunov, K. Simonov, and S. Saurabh 29:3

directed graphs. (This result was improved by Cygan et al. [17] who proved that p-Disjoint
Paths parameterized by p is FPT on planar directed graphs.) Pipelined with our theorem,
it immediately implies that Longest Detour is FPT on planar directed graphs.

Besides establishing parameterized complexity of Longest Detour on planar directed
graphs our theorem has several advantages over the previous work even on undirected graphs.
By the seminal result of Robertson and Seymour [47], p-Disjoint Paths is solvable in
f(p) · n3 time on undirected graphs for some function f of p only. Therefore on undirected
graphs p-Disjoint Paths is solvable in polynomial time for every fixed p, and for p = 3 in
particular. Later the result of Robertson and Seymour was improved by Kawarabayashi,
Kobayashi, and Reed [38] who gave an algorithm with quadratic dependence on the input
size. Pipelined with our result, this brings us to a Monte Carlo randomized algorithm
solving Longest Detour on undirected graphs in time 10.8k · nO(1). Our algorithm can
be derandomized, and the deterministic algorithm runs in time 45.5k · nO(1). While the
algorithm of Bezáková et al. [7] for undirected graphs runs in time O(ck · n), that is, is
single-exponential in k, the constant c is huge. The reason is that their algorithm exploits the
Win/Win approach based on excluding graph minors. More precisely, Bezáková et al. proved
that if a 2-connected graph G contains as a minor, a graph obtained from the complete graph
K4 by replacing each edge by a path with k edges, then G has an (s, t)-path of length at
least distG(s, t) + k. Otherwise, in the absence of such a graph as a minor, the treewidth of
G is at most 32k + 46. Combining this fact with an FPT 3-approximation algorithm [11],
running in time 2O(k) · nO(1), to compute the treewidth of a graph, brings us to a graph of
treewidth at most 96k + O(1). Finally, solving Longest Detour on graphs of bounded
treewidth by one of the known single-exponential algorithms, see [18, 10, 27], will result in
running time 396k · nO(1). Thus on undirected graphs, our algorithm reduces the constant c

in the base of the exponent from 396 down to 10.8!

Our second set of results addresses the complexity of the problem strongly related to
Longest Detour. The length of a longest shortest path in a graph G is denoted by
diameter of G, diam(G). Thus every graph G has a path of length at least diam(G). But
does it have a path of length longer than diam(G)? This leads to the following parameterized
problem.

Longest Path above Diameter Parameter: k

Input: A graph G and an integer k.
Task: Decide whether there is a path in G of length at least diam(G) + k.

As in Longest Detour, the parameterization is by the offset k. When (s, t) is a pair
of diametral vertices in G, the length of the shortest (s, t)-path in G is the diameter of G.
However, this does not allow to reduce Longest Path above Diameter to Longest
Detour– if there is a path of length diam(G) + k in G, it is not necessarily an (s, t)-path.
Moreover, such a path might connect two vertices with a much smaller distance between
them than diam(G). In fact, our hardness results for Longest Path above Diameter
are based precisely on instances where the target path has this property: its length is very
close to diam(G), but much larger than the shortest distance between its endpoints. Thus,
the lower bounds we obtain for Longest Path above Diameter are not applicable to
Longest Detour.

We obtain the following dichotomy results about Longest Path above Diameter on
undirected and directed graphs. For undirected graphs, Longest Path above Diameter
is NP-complete even for k = 1. However, if the input undirected graph is 2-connected, that is,
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it remains connected after deleting any of its vertices, then the problem is FPT. For directed
graphs, the problem is also NP-complete even for k = 1. However, the situation is more
complicated and interesting on 2-connected directed graphs. (Let us remind that a strongly
connected digraph G is 2-connected or strongly 2-connected, if for every vertex v ∈ V (G),
graph G − v remains strongly connected.) In this case, we show that Longest Path above
Diameter is solvable in polynomial time for each k ∈ {1, . . . , 4} and is NP-complete for
every k ≥ 5.

Our approach. A natural way to approach Longest Detour on directed graphs would
be to mimic the algorithm for undirected graphs. By the result of Kawarabayashi and
Kreutzer [39], every directed graph of sufficiently large directed treewidth contains a sizable
directed grid as a “butterfly minor”. However, as reported in [6], there are several obstacles
towards applying the grid theorem of Kawarabayashi and Kreutzer for obtaining a Win/Win
algorithm. After several unsuccessful attempts, we switched to another strategy.

We start the proof of Theorem 4 by checking whether G has an (s, t)-path of length
distG(s, t) + ℓ for k ≤ ℓ < 2k. This can be done in time 2O(k) · nO(1) by calling the algorithm
of Bezáková et al. [7] that finds an (s, t)-path in a directed G of length exactly distG(s, t) + ℓ.
If such a path is not found, we conclude that if (G, k) is a yes-instance, then G contains an
(s, t)-path of length at least distG(s, t) + 2k.

Next, we check whether there exist two vertices v and w reachable from s such that
distG(s, w) − distG(s, v) ≥ k and G has pairwise disjoint (s, w)-, (w, v)-, and (v, t)-paths. If
such a pair of vertices exists, we obtain a solution by concatenating disjoint (s, w)-, (w, v)-,
and (v, t)-paths. This is the place in our algorithm, where we require a subroutine solving
3-Disjoint Paths.

When none of the above procedures finds a detour, we prove a combinatorial claim that
allows reducing the search of a solution to a significantly smaller region of the graph. This
combinatorial claim is the essential part of our algorithm. More precisely, we show that
there are two vertices u and x, and a specific induced subgraph H of G (depending on u and
x) such that G has an (s, t)-path of length at least distG(s, t) + k if and only if H has an
(u, x)-path of length at least ℓ for a specific ℓ ≤ 2k (also depending on u and x). Moreover,
given u, in polynomial time, we can find a feasible domain for vertex x, and for each choice of
x, we can also determine ℓ and construct H in polynomial time. Then we apply the algorithm
of Fomin et al. [28] to check whether H has an (u, x)-path in H of length at least ℓ.

Our strategy for Longest Path above Diameter is different. For undirected graphs,
the solution turns out to be reasonably simple. It easy to show that Longest Path above
Diameter is NP-complete for k = 1 by reducing Hamiltonian Path to it. When an
undirected graph G is 2-connected, and the diameter is larger than k + 1, then G always
contains a path of length at least d + k. If the diameter is at most k, it suffices to run
a Longest Path algorithm to show that the problem is FPT. For directed graphs, a
similar reduction shows that the problem is NP-complete for k = 1. However, for 2-strongly-
connected directed graphs, the situation is much more interesting. It is not too difficult to
prove that when the diameter of a 2-strongly-connected digraph is sufficiently large, it always
contains a path of length diam(G) + 1. With much more careful arguments, it is possible
to push this up to k = 4. Thus for each k ≤ 4, the problem is solvable in polynomial time.
For k = 5 we can construct a family of 2-strongly-connected digraphs of arbitrarily large
diameter that do not have a path of length diam(G) + 5. These graphs become extremely
useful as gadgets that we use to prove that the problem is NP-complete for each k ≥ 5.
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Related work. There is a vast literature in the field of parameterized complexity devoted
to Longest Path [46, 9, 2, 36, 40, 13, 12, 41, 51, 26, 26, 8]. The surveys [25, 42] and the
textbook [16, Chapter 10] provide an overview of the advances in the area.

Longest Detour was introduced by Bezáková et al. in [7]. They gave an FPT algorithm
for undirected graphs and posed the question about detours in directed graphs. Even the
existence of a polynomial time algorithm for Longest Detour with k = 1, that is, deciding
whether a directed graph has a path longer than a shortest (s, t)-path, is open. For the related
Exact Detour problem, deciding whether there is a detour of length exactly distG(s, t) + k

is FPT both on directed and undirected graphs [7].
Another problem related to our work is Long (s, t)-Path. Here for vertices s and t of

a graph G, and integer parameter k, we have to decide whether there is an (s, t)-path in
G of length at least k. A simple trick, see [16, Exercise 5.8], allows to use color-coding to
show that Long (s, t)-Path is FPT on undirected graph. For directed graphs the situation
is more involved, and the first FPT algorithm for Long (s, t)-Path on directed graphs was
obtained only recently [28]. The proof of Theorem 4 uses some of the ideas developed in [28].

Both Longest Detour and Longest Path above Diameter fit into the research
subarea of parameterized complexity called “above guarantee” parameterization [44, 1, 15,
31, 32, 33, 34, 35, 43, 45]. Besides the work of Bezáková et al. [6], several papers study
parameterization of longest paths and cycles above different guarantees. Fomin et al. [23]
designed parameterized algorithms for computing paths and cycles longer than the girth
of a graph. The same set of the authors in [22] studied FPT algorithms that finds paths
and cycles above degeneracy. Fomin et al. [24] developed an FPT algorithm computing a
cycle of length 2δ + k, where δ is the minimum vertex degree of the input graph. Jansen,
Kozma, and Nederlof in [37] looked at parameterized complexity of Hamiltonicity below
Dirac’s conditions. Berger, Seymour, and Spirkl in [5], gave a polynomial time algorithm
that, with input a graph G and two vertices s, t of G, that decides whether there is an induced
(s, t)-path that is longer than a shortest (s, t)-path. All these algorithms for computing long
paths and cycles above some guarantee are for undirected graphs.

The remaining part of this paper is organized as follows. In Section 2, we give preliminaries.
In Section 3, we prove our first main result establishing connections between 3-Disjoint
Paths and Longest Detour (Theorem 4). Section 4 is devoted to Longest Path above
Diameter. The concluding Section 5 provides open questions for further research.

2 Preliminaries

Parameterized Complexity. We refer to the recent books [16, 20] for the detailed introduc-
tion to Parameterized Complexity. Here we just remind that the computational complexity
of an algorithm solving a parameterized problem is measured as a function of the input size n

of a problem and an integer parameter k associated with the input. A parameterized problem
is said to be fixed-parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some function f(·).

Graphs. Recall that an undirected graph is a pair G = (V, E), where V is a set of vertices
and E is a set of unordered pairs {u, v} of distinct vertices called edges. A directed graph
G = (V, A) is a pair, where V is a set of vertices and A is a set of ordered pairs (u, v) of
distinct vertices called arcs. Note that we do not allow loops and multiple edges or arcs. We
use V (G) and E(G) (A(G), respectively) to denote the set of vertices and the set of edges
(set of arcs, respectively) of G. We write n and m to denote the number of vertices and
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29:6 Detours in Directed Graphs

edges (arcs, respectively) if this does not create confusion. For a (directed) graph G and a
subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced by X. For
a set of vertices S, G − S denotes the (directed) graph obtained by deleting the vertices of
S, that is, G − S = G[V (G) \ S]. We write P = v1 · · · vk to denote a path with the vertices
v1, . . . , vk and the edges {v1, v2}, . . . , {vk−1, vk} (arcs (v1, v2), . . . , (vk−1, vk), respectively);
v1 and vk are the end-vertices of P and the vertices v2, . . . , vk−1 are internal. We say that
P is an (v1, vk)-path. The length of P , denoted by length(P ), is the number of edges (arcs,
respectively) in P . Two paths are disjoint if they have no common vertex and they are
internally disjoint if no internal vertex of one path is a vertex of the other. For a (u, v)-path
P1 and a (v, w)-path P2 that are internally disjoint, we denote by P1 ◦ P2 the concatenation
of P1 and P2. A vertex v is reachable from a vertex u in a (directed) graph G if G has a
(u, v)-path. For u, v ∈ V (G), distG(u, v) denotes the distance between u and v in G, that is,
the minimum number of edges (arcs, respectively) in an (u, v)-path. An undirected graph
G is connected if for every two vertices u and v, G has a (u, v)-path. A directed graph G

is strongly-connected if for every two vertices u and v both u is reachable form v and v is
reachable from u. For a positive integer k, an undirected (directed, respectively) graph G

is k-connected (k-strongly-connected, respectively) if |V (G)| ≥ k and G − S is connected
(strongly-connected, respectively) for every S ⊆ V (G) of size at most k − 1. For a directed
graph G, by GT we denote the transpose of G, i.e. GT is a directed graph defined on the
same set of vertices and the same set of arcs, but the direction of each arc in GT is reversed.

We use several known parameterized algorithms for finding long paths. First of all, let us
recall the currently fastest deterministic algortihm for Longest Path on directed graphs
due to Tsur [50].

▶ Proposition 1 ([50]). There is a deterministic algorithm for Longest Path with running
time 2.554k · nO(1).

We also need the result of Fomin et al. [28] for the Long Directed (s, t)-Path problem.
This problem asks, given a directed graph G, two vertices s, t ∈ V (G), and an integer k ≥ 0,
whether G has an (s, t)-path of length at least k.

▶ Proposition 2 ([28]). Long Directed (s, t)-Path can be deterministically solved in time
4.884k · nO(1).

Clearly, both results holds for the variant of the problem on undirected graphs.
Finally, we use the result of Bezáková et al. [7] for the variant of Longest Detour

whose task is, given a (directed) graph G, two vertices s, t ∈ V (G), and an integer k ≥ 0,
decide whether G has an (s, t)-path of length exactly distG(s, t) + k.

▶ Proposition 3 ([7]). There is a bounded-error randomized algorithm that solves Exact
Detour on undirected graphs in time 2.746k · nO(1) and on directed graphs in time 4k · nO(1).
For both undirected and directed graphs, there is a deterministic algorithm that runs in time
6.745k · nO(1).

3 An FPT algorithm for finding detours

In this section we show the first main result of our paper.

▶ Theorem 4. Let C be a class of directed graphs such that 3-Disjoint Paths can be solved
in f(n) time time on C. Then Longest Detour can be solved in 45.5k · nO(1) + O(f(n)n2)
time by a deterministic algorithm and in 23.86k · nO(1) + O(f(n)n2) time by a bounded-error
randomized algorithm when the input is restricted to graphs from C.
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Proof. Let (G, s, t, k) be an instance of Longest Detour with G ∈ C. For k = 0, the
problem is trivial and we assume that k ≥ 1. We also have that (G, s, t, k) is a trivial
no-instance if t is not reachable from s. We assume from now that every vertex of G is
reachable from s. Otherwise, we set G := G[R], where R is the set of vertices of G reachable
from s using the straightforward property that every (s, t)-path in G is a path in G[R].
Clearly, R can be constructed in O(n + m) time by the breadth-first search.

Using Proposition 3, we check in 6.7452k · nO(1) time by a deterministic algorithm (in
42k · nO(1) time by a randomized algorithm, respectively) whether G has an (s, t)-path of
length distG(s, t) + ℓ for some k ≤ ℓ ≤ 2k − 1 by trying all values of ℓ in this interval. We
return a solution and stop if we discover such a path. Assume from now that this is not the
case, that is, if (G, s, t) is a yes-instance, then the length of every (s, t)-path of length at
least distG(s, t) + k is at least distG(s, t) + 2k.

We perform the breadth-first search from s in G. For an integer i ≥ 0, denote by Li the
set of vertices at distance i from s. Let ℓ be the maximum index such that Lℓ ̸= ∅. Because
every vertex of G is reachable from s, V (G) =

⋃ℓ
i=0 Li. We call L0, . . . , Lℓ BFS-levels.

P1

L0 Lp Lq

s

t

u

v

w

Lℓ

P2

P3
Q

Figure 1 The choice of the BFS-levels Lp and Lq, vertices u, v, and w, and the paths P1, P2,
and P3.

Our algorithm is based on structural properties of potential solutions. Suppose that
(G, s, t, k) is a yes-instance and let a path P be a solution of minimum length, that is, P is an
(s, t)-path of length at least distG(s, t) + k and among such paths the length of P is minimum.
Denote by p ∈ {1, . . . , ℓ} the minimum index such that Lp contains at least two vertices of G.
Such an index exists, because if |V (P ) ∩ Li| ≤ 1 for all i ∈ {1, . . . , ℓ}, then P is a shortest
(s, t)-path by the definition of L0, . . . , Lℓ and the length of P is distG(s, t) < distG(s, t) + k

as k ≥ 1. Let u be the first (in the path order) vertex of P in Lp and let v ̸= u be the second
vertex of P that occurs in Lp. Denote by P1, P2, and P3 the (s, u), (u, v), and (v, t)-subpath
of P , respectively. Clearly, P = P1 ◦ P2 ◦ P3. Let q ∈ {p, . . . , ℓ} be the maximum index such
that P2 contains a vertex of Lq. Then denote by w the first vertex of P2 in Lq. See Figure 1
for the illustration of the described configuration. We use this notation for a (hypothetical)
solution throughout the proof of the theorem. The following claim is crucial for us.

▷ Claim 5. The length of P2 is at least k.

Proof of Claim 5. For the sake of contradiction, assume that the length of P2 is less than k.
Let Q be a shortest (s, v)-path in G. By the definition of BFS-levels, V (Q) ⊆ L0 ∪ · · · ∪ Lp

and v is a unique vertex of Q in Lp. This implies that Q is internally vertex disjoint with P3.
Note that the length of Q is the same as the length of P1, because P1 contains exactly one
vertex from each of the BFS levels L1, . . . , Lp. Then P ′ = Q ◦ P3 is an (s, t)-path and

length(P ′) =length(Q) + length(P3) = length(P1) + length(P3)
=length(P ) − length(P2) ≤ length(P ) − k.
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Recall that the length of every (s, t)-path of length at least distG(s, t) + k is at least
distG(s, t) + 2k. This means that length(P ) ≥ distG(s, t) + 2k and, therefore, the length of
P ′ is at least distG(s, t) + k, that is, P ′ is a solution to the considered instance. However,
length(P ′) < length(P ), because P2 contains at least one arc. This contradicts the choice of
P as a solution of minimum length. This completes the proof of the claim. ◁

By Claim 5, solving Longest Detour on (G, s, t, k) boils down to identifying internally
disjoint P1, P2, and P3, where the length of P2 is at least k.

First, we check whether we can find paths for q − p ≥ k − 1. Notice that if q − p ≥ k − 1,
then for every internally disjoint (s, w)-, (w, v)-, and (v, t)-paths R1, R2, and R3 respectively,
their concatenation R1 ◦ R2 ◦ R3 is an (s, t)-path of length at least distG(s, t) + k. Recall
that G ∈ C and p-Disjoint Paths can be solved in polynomial time on this graph class
for p = 3. For every choice of two vertices w, v ∈ V (G), we solve p-Disjoint Paths on the
instance (G, (s, w), (w, v), (v, s)). Then if there are paths R1, R2, and R3 forming a solution
to this instance, we check whether length(R1) + length(R2) + length(R3) ≥ distG(s, t) + k.
If this holds, we conclude that the path R1 ◦ R2 ◦ R3 is a solution to the instance (G, s, t, k)
of Longest Detour and return it. Assume from now that this is not the case, that is, we
failed to find a solution of this type. Then we can complement Claim 5 by the following
observation about our hypothetical solution P .

▷ Claim 6. q − p ≤ k − 2.

This means that we can assume that k ≥ 2 and have to check whether we can identify P1,
P2, and P3, where V (P2) ⊆

⋃p+k−2
i=p Li. For this, we go over all possible choices of u. Note

that the choice of u determines p, i.e., the index of the BFS-level containing u. We consider
the following two cases for each considered choice of u.

t

L0 Lp Lq

s

u

v

w
P2

P3

P1

LℓLp+k−2

Figure 2 The structure of paths P1, P2, and P3 in Case 1.

Case 1. t ∈ Lr for some p ≤ r ≤ p + k − 2 (see Figure 2). Then distG(s, t) = r and
(G, s, t, k) is a yes-instance if and only if G[Lp ∪ · · · ∪ Lℓ] has a (u, t)-path S of length at least
(r − p) + k, because the (s, u)-subpath of a potential solution should be a shortest (s, u)-path.
Since r − p ≤ k − 2, we have that (r − p) + k ≤ 2k − 2 and we can find S in 4.8842k · nO(1)

time by Proposition 2 if it exists. If we obtain S, then we consider an arbitrary shortest
(s, u)-path S′ in G and conclude that S′ ◦ S is a solution. This completes Case 1.

Case 2. t ∈ Lr for some r ≥ p + k − 1 (see Figure 3). We again consider our hypothetical
solution P = P1 ◦ P2 ◦ P3. Let H = G[Lp+k−1 ∪ · · · ∪ Lℓ]. Denote by X the set of vertices
x ∈ V (H) such that t is reachable from x in H. Denote by x the first vertex of P3 in X.
Clearly, such a vertex exists because t ∈ X. Moreover, x ∈ Lp+k−1 and its predecessor y in
P3 is in Lp+k−2. Otherwise, t would be reachable from y ∈ V (H) in H contradicting the
choice of x. Let Q1 and Q2 be the (v, y)- and (x, t)-subpaths of P3. Then P3 = Q1 ◦ yx ◦ Q2.
We show one more claim about the hypothetical solution P .
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Q2

L0 Lp Lq

s

u

v

w
P2

P3

P1

LℓLp+k−2 Lp+k−1

t

H

X
xyQ1

Figure 3 The structure of paths P1, P2, and P3 in Case 2.

▷ Claim 7. V (Q1) ∩ X = ∅.

Proof of Claim 7. The proof is by contradiction. Assume that z ∈ V (Q1) ∩ X. Then t is
reachable from z in H . However, x is the first vertex of P3 with this property by the definition;
a contradiction. ◁

Notice that because x ∈ X, there is an (x, t)-path Q′
2 with V (Q′

2) ⊆ X. By Claim 7, Q1
and Q′

2 are disjoint. Since X ⊆ Lp+k−1 ∪ · · · ∪ Lℓ, we have that (V (P1) ∪ V (P2)) ∩ X = ∅.
In particular, Q′

2 is disjoint with P1 and P2 as well. Let P ′
3 = Q1 ◦ yx ◦ Q′

2. By Claim 5,
P ′ = P1 ◦ P2 ◦ P ′

3 is a solution, because length(P2) ≥ k. This allows us to conclude that
(G, s, t, k) has a solution (for the considered choice of u) if and only if there is y ∈ Lp+k−2
such that

(i) there is x ∈ X such that (y, x) ∈ A(G), and
(ii) the graph G[Lp ∪ · · · ∪ Lℓ] − X has a (u, y)-path of length at least 2k − 2.

Our algorithm proceeds as follows. We construct the set X using the breadth-first search
in O(n + m) time. Then for every y ∈ Lp+k−2 we check (i) whether there is x ∈ X such
that (y, x) ∈ A(G), and (ii) whether G[Lp ∪ · · · ∪ Lℓ] − X has a (u, y)-path S of length at
least 2k − 2. To verify (ii), we apply Proposition 2 that allows to perform the check in
4.8842k · nO(1) time. If we find such a vertex y and path S, then to obtain a solution, we
consider an arbitrary shortest (s, u)-path S′ and an arbitrary (x, t) path S′′ in G[X]. Then
P ′ = S′ ◦ S ◦ yx ◦ S′′ is a required solution to (G, s, t, k). This concludes the analysis in
Case 2 and the construction of the algorithm.

The correctness of our algorithm has been proved simultaneously with its construction.
The remaining task is to evaluate the total running time. Recall that we verify in 6.7452k ·nO(1)

time whether G has an (s, t)-path of length distG(s, t) + ℓ for some k ≤ ℓ ≤ 2k − 1 by a
deterministic algorithm, and we need 42k · nO(1) time if we use a randomized algorithm.
Then we construct the BFS-levels in linear time. Next, we consider O(n2) choices of v and
w and apply the algorithm for 3-Disjoint Paths (G, (s, w), (w, v), (v, s)) in f(n) time. If
we failed to find a solution so far, we proceed with O(n) possible choices of u and consider
either Case 1 or 2 for each choice. In Case 1, we solve the problem in 4.8842k · nO(1) time. In
Case 2, we construct X in O(n + m) time. Then for O(n) choices of y, we verify conditions
(i) and (ii) in 4.8842k · nO(1) time. Summarizing, we obtain that the total running time is
6.7452k · nO(1) + O(f(n)n2). Because 6.7452 < 45.5, we have that the deterministic algorithm
runs in 45.5k · nO(1) + O(f(n)n2) time. Since 42 < 4.8842 < 23.86, we conclude that the
problem can be solved in 23.86k · nO(1) + O(f(n)n2) time by a bounded-error randomized
algorithm. ◀
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In particular, combining Theorem 4 with the results of Cygan et al. [17], we obtain the
following corollary.

▶ Corollary 8. Longest Detour can be solved in 45.5k · nO(1) time by a deterministic
algorithm and in 23.86k · nO(1) time by a bounded-error randomized algorithm on planar
directed graphs.

Using the fact that p-Disjoint Paths can be solved in O(n2) time by the results of
Kawarabayashi, Kobayashi, and Reed [38], we immediately obtain the result for Longest
Detour on undirected graphs. However, we can improve the running time of a randomized
algorithm by tuning our algorithm for the undirected case.

▶ Corollary 9. Longest Detour can be solved in 45.5k · nO(1) time by a deterministic
algorithm and in 10.8k · nO(1) time by a bounded-error randomized algorithm on undirected
graphs.

Proof. The deterministic algorithm is the same as in the directed case. To obtain a better
randomized algorithm, we follow the algorithm from Theorem 4 and use the notation
introduced in its proof. Let (G, s, t, k) be an instance of Longest Detour with G ∈ C.
We assume without loss of generality that k ≥ 1 and G is connected. Using Proposition 3,
we check in 2.7462k · nO(1) time by a randomized algorithm whether G has an (s, t)-path
of length distG(s, t) + ℓ for some k ≤ ℓ ≤ 2k − 1. If we fail to find a solution this way, we
construct the BFS-levels L0, . . . , Lℓ.

Suppose that (G, s, t, k) is a yes-instance with a hypothetical solution P composed by
the concatenation of P1, P2, and P3 as in the proof of Theorem 4. Let also Lp and Lq be
the corresponding BFS-levels. Observe that if q − p ≥ k/2, then length(P2) ≥ k, because
for every edge {x, y} of G, x and y are either in the same BFS-level or in consecutive levels
contrary to the directed case where we may have an arc (x, y) where x ∈ Li and y ∈ Lj

for arbitrary j ∈ {0, . . . , i}. Recall that for every choice of two vertices w, v ∈ V (G), we
solve p-Disjoint Paths on the instance (G, (s, w), (w, v), (v, s)) and try to find a solution
to (G, s, t, k) by concatenating the solutions for these instances of p-Disjoint Paths. If we
fail to find a solution this way, we can conclude now that q − p ≤ k/2 − 1 improving Claim 6.
Further, we pick u and consider two cases.

In Case 1, where t ∈ Lr for some p ≤ r ≤ p + k/2 − 1, we now find a (u, t)-path S in
G[Lp ∪ · · · ∪ Lℓ] of length at least (r − p) + k ≤ 3k/2 in 4.8843k/2 · nO(1) time. If such a path
exists, we obtain a solution.

In Case 2, where t ∈ Lr for some r ≥ p + k/2, we consider H = G[Lh+1 ∪ · · · ∪ Lℓ] for
h = p+⌈k/2⌉ and denote by X the set of vertices of the connected component of H containing
X. Then for every y ∈ Lh we check (i) whether there is x ∈ X such that {y, x} ∈ E(G),
and (ii) whether G[Lp ∪ · · · ∪ Lℓ] − X has a (u, y)-path S of length at least k + ⌈k/2⌉ in
4.8843k/2 · nO(1) time. If such a path exists, we construct a solution containing it in the same
way as on the directed case.

The running time analysis is essentially the same as in the proof of Theorem 4. The
difference is that now we have that 2.7462 ≤ 4.8843/2 < 10.80. This implies that the algorithm
runs in 10.8k · nO(1) time. ◀

4 Longest Path Above Diameter

In this section, we investigate the complexity of Longest Path above Diameter. It can
be noted that this problem is NP-complete in general even for k = 1.
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▶ Proposition 10. Longest Path above Diameter is NP-complete for k = 1 on undirected
graphs.

Proof. Let G be an undirected graph with n ≥ 2 vertices. We construct the graph G′ as
follows (see Figure 4).

Construct a copy of G.
Construct a vertex u and make it adjacent to every vertex of the copy of G.
Construct two vertices s and t, and then (s, u) and (u, t) paths Ps and Pt, respectively,
of length n − 1.

t

G

Pss u Pt

Figure 4 Construction of G′.

Notice that diam(G) = length(Ps) + length(Pt) = 2n − 2. It is easy to verify that
G′ has a path of length 2n − 1 if and only if G has a path of length n − 1, that is, G

is Hamiltonian. Because Hamiltonian Path is well-known to be NP-complete [30], we
conclude that Longest Path above Diameter is NP-complete for k = 1 ◀

Proposition 10 immediately implies that Longest Path above Diameter is NP-
complete for k = 1 on strongly connected directed graphs as we can reduce the problem on
undirected graphs to the directed variant by replacing each edge by the pair of arcs with
opposite orientations. Still, it can be observed that the reduction in Proposition 10 strongly
relies on the fact that the constructed graph G′ has an articulation point u. Hence, it is
natural to investigate the problem further imposing connectivity constraints on the input
graphs. And indeed, it can be easily seen that Longest Path above Diameter is FPT on
2-connected undirected graphs.

▶ Observation 11. Longest Path above Diameter can be solved in time 6.523k · nO(1)

on undirected 2-connected graphs.

Proof. Let (G, k) be an instance of Longest Path above Diameter where G is 2-
connected. If d = diam(G) ≤ k, we can solve the problem in time 2.554d+k · nO(1) by using
the algorithm of Proposition 1 to check whether G has a path of length d + k. Note that
2.554d+k ≤ 2.5542k ≤ 6.523k. Otherwise, if d > k, consider a pair of vertices s and t with
distG(s, t) = d. Because G is 2-connected, by Menger’s theorem (see, e.g., [19]), G has a
cycle C containing s and t. Since distG(s, t) = d and d ≥ k + 1, the length of C is at least
d + k + 1. This implies that C contains a path of length d + k. ◀

However, the arguments from the proof of Observation 11 cannot be translated to directed
graphs. In particular, if a directed graph G is 2-strongly-connected, it does not mean that
for every two vertices u and v, G has a cycle containing u and v. We show the following
theorem providing a full dichotomy for the complexity of Longest Path above Diameter
on 2-strongly-connected graphs.

▶ Theorem 12. On 2-strongly-connected directed graphs, Longest Path above Diameter
with k ≤ 4 can be solved in polynomial time, while for k ≥ 5 it is NP-complete.

STACS 2022



29:12 Detours in Directed Graphs

In what remains of this section, we give some intuition behind the proof of Theorem 12;
the details can be found in the full version of the paper [21]. To show the positive part
of the theorem, it is sufficient to consider graphs with diameter greater than some fixed
constant, because in graphs with smaller diameter the problem can be solved in linear time.
For graphs with a sufficiently large diameter, we show that a path of length diameter plus
four always exists. To construct such a path, we take the diameter pair (s, t) and employ
2-strong-connectivity of the graph to find two disjoint (s, t)-paths and two disjoint (t, s)-paths
in the graph. We then show that out of the several possible ways to comprise a path out
of the parts of these four paths, at least one always obtains a path of desired length. The
most non-trivial case of this construction involves constructing two paths of length five, one
ending in a vertex u that is at distance three from s and the other starting in a vertex v

from which we can reach t using three arcs. We then concatencate these two paths using a
specific (u, v)-path inbetween. Since (s, t) is a diameter pair, the length of any (u, v)-path is
at least diameter minus six, so the length of the concatenation is at least diameter plus four.
The other cases are analyzed in a similar fashion.

For the lower bound part of Theorem 12, the general idea of the proof is similar to
that of Proposition 10. We aim to take a path-like gadget graph, then take a sufficiently
large Hamiltonian Path instance and connect it to the middle of the gadget. However,
while in the general case it suffices to simply take a path graph (Proposition 10), the 2-
strongly-connected case is much more technically involved. First, we need a family of gadget
graphs that are 2-strongly-connected, have arbitrarily large diameter, but each graph in
the family does not have a path longer than diameter plus four. This, in fact, is exactly a
counterexample to the positive part of Theorem 12, as the existence of such family of graphs
proves that there cannot always be a path of length diameter plus four in a sufficiently large
2-connected directed graph. Additionally, for the reduction we need that graphs in this family
behave like paths, specifically that the length of the longest path that ends in the “middle”
of the gadget is roughly half of the diameter. Constructing this graph family is a main
technical challenge of the theorem. After constructing the gadget graph family the proof
is reasonably simple, as we take a 2-connected Hamiltonian Path instance, and connect
it to the “middle” of a sufficiently large gadget graph. The connection is done by a simple
4-vertex connector gadget that ensures that the resulting graph is 2-strongly-connected, but
only allows for paths that alternate at most once between the gadget graph and the starting
instance.

5 Conclusion

We proved that if C is a class of directed graph such that p-Disjoint Paths is in P on C for
p = 3, then Longest Detour is FPT on C. However p-Disjoint Paths is NP-complete on
directed graphs for every fixed p ≥ 2 [29]. This leaves open the question of Bezáková et al. [7]
about parameterized complexity of Longest Detour on general directed graphs. Even
the complexity (P versus NP) of deciding whether a directed graph contains an (s, t)-path
longer than distG(s, t) (the case of k = 1) remains open. Notice that Longest Detour is
not equivalent to p-Disjoint Paths for p = 3 and, therefore, the hardness of p-Disjoint
Paths does not imply hardness of Longest Detour.

Our result implies, in particular, that Longest Detour is FPT on planar directed
graphs. There are various classes of directed graphs on which p-Disjoint Paths is tractable
for fixed p (see, e.g., the book of Bang-Jensen and Gutin [3]). For example, by Chudnovsky,
Scott, and Seymour [14], p-Disjoint Paths can be solved in polynomial time for every fixed
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p on semi-complete directed graphs. Together with Theorem 4, it implies that Longest
Detour is FPT on semi-complete directed graphs and tournaments. However, from what
we know, these results could be too weak in the following sense. Using the structural results
of Thomassen [49], Bang-Jensen, Manoussakis, and Thomassen in [4] gave a polynomial-time
algorithm to decide whether a semi-complete directed graph has a Hamiltonian (s, t)-path
for two given vertices s and t. Thus the real question is whether Longest Detour is in P
on semi-complete directed graphs or tournaments.

The second part of our results is devoted to Longest Path above Diameter. We
proved that this problem is NP-complete for general graphs for k = 1 and showed that it is
in FPT when the input graph is undirected and 2-connected. We established the complexity
dichotomy for Longest Path above Diameter for the case of 2-strongly-connected
directed graphs by showing that the problem can be solved in polynomial time for k ≤ 4
and is NP-complete for k ≥ 5. This naturally leaves an open question for larger values of
strong connectivity. The computational complexity of Longest Path above Diameter
on t-strongly connected graphs for t ≥ 3 is open. For a very concrete question, is there a
polynomial algorithm for Longest Path above Diameter with k = 5 on graphs of strong
connectivity 3?
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Abstract
Most transportation networks are inherently temporal: Connections (e.g. flights, train runs) are
only available at certain, scheduled times. When transporting passengers or commodities, this fact
must be considered for the the planning of itineraries. This has already led to several well-studied
algorithmic problems on temporal graphs. The difficulty of the described task is increased by the
fact that connections are often unreliable – in particular, many modes of transportation suffer from
occasional delays. If these delays cause subsequent connections to be missed, the consequences
can be severe. Thus, it is a vital problem to design itineraries that are robust to (small) delays.
We initiate the study of this problem from a parameterized complexity perspective by proving its
NP-completeness as well as several hardness and tractability results for natural parameterizations.
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1 Introduction

Finding a path between two vertices in a graph is one of the most fundamental problems
in graph algorithmics. In the rise in popularity of temporal graphs as a mathematical
model [19, 20, 25, 24, 5], computing so-called temporal paths is one of the most important
algorithmic problems in this area. Herein, a temporal graph is a graph whose edges are
present only at certain, known points in time. For our purposes, it is specified by a set V

of vertices and a set E of time arcs, where each time arc (v, w, t, λ) ∈ E consists of a start
vertex v, an end vertex w, a time label t, and a traversal time λ; this means that there is a
(direct) connection from v to w starting at time t and arriving at time t+λ. Temporal graphs
are prime models for many real-world networks: Social graphs, communication networks,
and transportation networks are usually not static but vary over time.

The added dimension of time causes many aspects of connectivity to behave quite
differently from static (i.e., non-temporal) graphs. In particular, the flow of goods or
information through a temporal network has to respect time. More formally, it follows a
temporal walk (or path, if every vertex is visited at most once), i.e., a sequence of time arcs
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(vi, wi, ti, λi)ℓ
i=1 where vi+1 = wi and ti+1 ≥ ti + λi for all i < ℓ. While inheriting many

properties of their static counterparts, temporal walks exhibit certain characteristics that
add a new level of complexity to algorithmic problems centered around them. For example,
temporal connectivity is not transitive: the existence of a temporal walk from vertex u to w

and a temporal walk from v to w does not imply the existence of a temporal walk from u

to w. Furthermore, the temporal setting allows for several natural notions of an “optimal”
temporal path [3].

As the finding of (optimal) temporal paths and walks constitutes the perhaps most
important building block for (algorithmic) analysis of temporal networks, it has already been
studied intensively [28, 3]. However, the temporal setting allows to model further natural
constraints on temporal walks and paths that do not have a counterpart in the static setting.
For example, recently the study of the computational complexity of finding temporal walks
and paths that are subject to some waiting time constraints has been initiated [6, 1].

In this work, we investigate another very natural yet still unstudied temporal path variant,
namely so-called delay-robust temporal paths. Real-world networks are often not perfect:
Scheduled connections may be canceled or delayed. This immediately brings up the natural
issue of robustness. To the best of our knowledge, this issue has so far only been analyzed
with respect to cancellations [2], but not with respect to delays. We propose a model for
delay-robust temporal paths and analyze natural structural and computational problems
occurring in this context. Our main problem of interest is to determine whether there is a
delay-robust temporal path between two vertices in a temporal graph.

Delay-Robust Route
Input: A temporal graph G = (V, E), two vertices s, z ∈ V and x, δ ∈ N.
Question: Is there an x-delay-robust route from s to z in G?

It remains to say how delay-robustness is understood. Although different notions are
conceivable, we consider a sequence of vertices (called a route) in a temporal graph to be
x-delay-robust, if there is a temporal path visiting the vertices in this sequence even if up to
x time arcs are delayed by at most δ. We give a formal definition in Section 2.

This definition is motivated by the fact that changing the vertices may be costly for a
number of reasons: storage or transhipment facilities may need to be newly allocated; if the
new route passes through different jurisdictions, then new authorizations and documents have
to be acquired; insurance policies might not cover alternative routes; the chosen packaging
might no longer be adequate (e.g. when switching from rail to air transportation); or personnel
might need to be moved. All these and many more issues are of much less concern when the
chosen route can be kept and only the schedule has to be changed.

Related Work. Apart from the already mentioned work on finding temporal walks and paths,
there has been extensive research on many other connectivity-related problems on temporal
graphs [4, 14, 23]. Delays in temporal graphs have been considered as a modification operation
to manipulate reachability sets [8, 26]. The individual delay operation considered in the
mentioned work delays a single time arc and is similar to our notion of delays. The deletion of
time arcs [26, 12, 11], the deletion of vertices [29, 16, 22], as well as reordering of time arcs [13]
have also been considered as temporal graph modification operations to manipulate the
connectivity properties of the temporal graph. The corresponding computational problems
in all mentioned work are NP-hard and can be also considered as computing “robustness
measures” for the connectivity in temporal graphs.

In companion work [18] we investigate the related problem where we ask whether two
vertices remain connected even if up to x time arcs are delayed. Note that in this setting,
the specific temporal path connecting the two vertices can visit different vertices for different
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delays. We show that this problem can be solved in polynomial time. We further investigate
the problem variant where the delays occur dynamically during the “journey” from the start
to the destination vertex. In this case the problem becomes PSPACE-complete if every
vertex can be visited at most once and stays polynomial-time solvable, otherwise.

Our Contribution. We introduce the computational problem of finding routes that are robust
under delays. We investigate its computational complexity with a focus on parameterized
algorithms and hardness [10, 7].

We first give some structural results in Section 3, including that Delay-Robust Path
is solvable in polynomial time if the underlying graph1 is a forest. In Section 4, we show
that Delay-Robust Path is NP-hard even if the underlying graph has constant bandwidth,
which implies that it also has constant treewidth. We further show that Delay-Robust
Path is W[1]-hard when parameterized by the combination of the feedback vertex number
of the underlying graph and the number of delays. In Section 5, we present our general
algorithmic results where we explore how the polynomial-time algorithm for underlying
forests can be generalized. We give a polynomial-time algorithm for the case where we have
a constant number of delays. We further give two FPT algorithms: one for the underlying
feedback edge set number as a parameter and one for the combination of the so-called timed
feedback vertex number [6] and the number of delays as a parameter.

Due to the lack of space, several proofs (marked with (⋆)) had to be deferred to the full
version [17].

2 Preliminaries

We abbreviate {1, 2, . . . , n} as [n] and {n, n + 1, . . . , m} as [n, m]. For any time arc e =
(v, w, t, λe), we denote the starting and ending vertices as start(e) = v an end(e) = w, the
time label as t(e) = t, and the traversal time as λ(e) = λe. Furthermore, for any vertex v,
τ+

v denotes the set of time steps where v has outgoing time arcs, and τ−
v denotes the time

steps with incoming time arcs. We set τv := τ+
v ∪ τ−

v .
Given a temporal graph G, we denote by T the maximum time label of all time arcs

in G. When removing all time information and directions from the time arcs of a temporal
graph G = (V, E), the resulting (static & undirected) graph Gu(G) = (V, E′) with E′ =
{{v, w} | (v, w, t, λ) ∈ E} is called the underlying graph of G.

Delays. We distinguish two different types of delays. Both are applied to a single time
arc e and delay it by a natural number δ. A starting delay increases the time label t(e) by δ

while a traversal delay increases the traversal time λ(e) by δ. In the example of a railway
network, a starting delay would correspond to a delayed departure at a station whereas a
traversal delay would describe a delay occurring on the way between two stations.

For a given set D ⊆ E of delayed arcs, a sequence of time arcs (vi, wi, ti, λi)ℓ
i=1 is called

a D-starting-delayed temporal walk resp. a D-traversal-delayed temporal walk if it is a
temporal walk in the temporal graph obtained from G by applying starting delays resp.
traversal delays to all time arcs in D. (We omit D as well as the type of delay when they are
clear from context.) Note that a traversal-delayed temporal walk is always also a temporal
walk in G, which is not necessarily true for a starting-delayed temporal walk.

1 The underlying graph of a temporal graph is the undirected static graph obtained by connecting all
vertices that are connected by a time arc.
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s a b c z
(3,1)

(4,1)

(8,1) (5,1)

(9,1)

(11,1)

Figure 1 An example temporal graph where (s, a, b, c, z) is a traversal- and starting-delay-robust
temporal route for x = 1 and δ = 3. No matter which time arc is delayed, there is a temporal path
through these vertices in that order. On the other hand, the route ceases to be delay-robust for
δ ≥ 5, as delaying the first arc demonstrates.

As an example consider the following temporal walk with edges labeled by (t(e), λ(e)):

a b c
(1, 1) (3, 1)

When delaying the first time arc by 1, i.e. when setting δ = 1 and D = {(a, b, 1, 1)}, then
this is also a starting-delayed as well as a traversal-delayed temporal walk: Due to the delay,
the first time arc arrives in b at time step 2 + δ = 3 which is no later than the departure of
the second time arc. However, if we instead set δ = 2 and D = {(a, b, 1, 1), (b, c, 3, 1)}, then
it is still a starting-delayed temporal walk but no longer a traversal-delayed temporal walk,
because the first time arc only reaches b at time 4.

We say a sequence R of vertices forms a (delayed) route if there is a (delayed) temporal
walk which follows R, that is, which visits exactly the vertices of R in the given order.
Generally, a temporal walk or route from vertex s to vertex z is also called a temporal
(s, z)-walk or (s, z)-route. A (delayed) temporal path is a (delayed) temporal walk where no
vertex is visited twice.

Robustness. We say that a temporal route is traversal-delay-robust resp. starting-delay-
robust for a given number x of delays if it is a D-traversal-delayed resp. D-starting-delayed
temporal route for all delay sets D of size |D| ≤ x. Of course, this also depends on the value
of δ. An example can be seen in Figure 1.

We now have all the ingredients for the formal definition of our main problem, Delay-
Robust Route, as given in Section 1. In this definition, we did not specify whether traversal-
or starting-delay is used. The reason for that is that we will show in Section 3 that the
distinction is meaningless because both problem variants are equivalent. In the meantime,
however, we will refer to them as TD-Delay-Robust Route and SD-Delay-Robust
Route.

3 Structural Results and Recognizing Robust Routes

In this section, we derive some important properties of delay-robust routes.

3.1 Structural Results
We begin by investigating the distinction between walks and paths. Clearly, from any
temporal walk one can obtain a temporal path by eliminating all circular subwalks. This
leads to the following lemma, which holds for traversal as well as starting delays, and for all
delay sizes x and delay times δ and will come in handy later.

▶ Lemma 1. Let s and z be two vertices. If there is a delay-robust (s, z)-route, then there is
a delay-robust (s, z)-route without repeated vertices.
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Proof. If there is a delay-robust (s, z)-route R = (vi)k
i=1, then for each delay of size at most x

there is a delayed temporal walk traversing v1, v2, . . . , vk in that order. Each of these delayed
temporal walks can be turned into a delayed temporal walk by eliminating circular subwalks.
All the delayed temporal paths obtained in this way follow the same sequence of vertices,
making this sequence a delay-robust (s, z)-route without repeated vertices. ◀

By virtue of Lemma 1, we will subsequently assume routes to not contain repeated
vertices.

Next, we turn towards proving the equivalence of SD-Delay-Robust Route and TD-
Delay-Robust Route. We start with some important observations. The first one is that
every traversal-delayed temporal walk is also a starting-delayed temporal walk.

▶ Lemma 2. Let P be a traversal-delayed temporal walk for some delay set D and δ ∈ N.
Then P is also a starting-delayed temporal walk for D and δ.

Proof. Let P = (vi, wi, ti, λi)ℓ
i=1. This means that

ti + λi + [ei ∈ D] · δ ≤ ti+1

for all i ≤ ℓ − 1, where [ei ∈ D] =
{

1 if ei ∈ D

0 otherwise
denotes the Iverson bracket. Thus

ti + λi + [ei ∈ D] · δ ≤ ti+1 + [ei+1 ∈ D] · δ

which shows that P is a starting-delayed temporal walk. ◀

While the converse of Lemma 2 is generally not true, the following weaker statement
holds.

▶ Lemma 3. Let R be a route, δ ∈ N and D a minimal delay set such that R is not a
D-traversal-delayed route. Then R is not a D-starting-delayed route either.

Proof. Suppose for contradiction that R was a D-starting-delayed route. Then there is a
D-starting-delayed temporal walk P = (ei)ℓ

i=1 = (vi, wi, ti, λi)ℓ
i=1 that follows R, i.e.,

ti + λi + [ei ∈ D] · δ ≤ ti+1 + [ei+1 ∈ D] · δ

for all i ≤ ℓ − 1. Since R is not a traversal-delayed route, P is not a traversal-delayed
temporal path. Thus there exists an index j ≤ ℓ − 1 with

tj + λj + [ej ∈ D] · δ > tj+1

and we may assume j to be chosen maximally. This implies that

tj+1 < tj + λj + [ej ∈ D] · δ ≤ tj+1 + [ej+1 ∈ D] · δ,

which in turn implies that ej+1 ∈ D. By maximality of j, P ′ = (ei)ℓ
i=j+1 is a traversal-delayed

temporal path. Thus, for any traversal-delayed temporal path Q = (vi, wi, t′
i, λ′

i)
j
i=1 following

(vi)j+1
i=1 , we must have t′

j + λ′
j + [(vj , wj , t′

j , λ′
j) ∈ D] · δ > tj+1, for otherwise its concatenation

with P ′ would contradict the fact that R is not a traversal-delayed route. Therefore, R is also
not a D′-traversal-delayed temporal vertex walk, where D′ = D \ {ej+1}. This contradicts
the minimality of D. ◀

Using Lemmas 2 and 3, we can now prove the following.

STACS 2022
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▶ Theorem 4. TD-Delay-Robust Route = SD-Delay-Robust Route.

Proof. Let G = (V, E) be a temporal graph, s, z ∈ V be a start and an end vertex,
and x, δ ∈ N. If (G, s, z, x, δ) is a no-instance of SD-Delay-Robust Route, then for every
(s, z)-route R, there exists a set D of |D| ≤ x time arcs such that there is no D-starting-
delayed temporal path following R. By Lemma 2, there is then also no D-traversal-delayed
temporal path following R, thus (G, s, z, x, δ) is a no-instance of TD-Delay-Robust Route.

Conversely, if (G, s, z, x, δ) is a no-instance of TD-Delay-Robust Route, then for every
(s, z)-route R there exists a set D of |D| ≤ x time arcs such that R is no D-traversal-delayed
route. We may assume D to be minimal to that respect. Then Lemma 3 gives us that
R is no D-starting-delayed route, making (G, s, z, x, δ) a no-instance of SD-Delay-Robust
Route. ◀

Theorem 4 allows us now to drop the distinction between the two delay types and speak
simply of Delay-Robust Route. For the remainder of this paper we will mostly work with
traversal delays, for they are slightly easier to handle.

3.2 Recognizing Robust Routes
Since a route can be followed by an exponential number of different temporal walks, it is
not immediately clear whether delay-robustness can be efficiently checked. The following
theorem says that this is the case, and Delay-Robust Route is thus contained in NP.

▶ Theorem 5 (⋆). For any given x, δ ∈ N, one can determine in O(nmx2 + m log m) time
whether a given route R in a temporal graph G is x-delay-robust, where n is the number of
vertices of R and m is the number of time arcs connecting consecutive vertices of R.

Theorem 5 also gives us a polynomial-time algorithm to solve Delay-Robust Route
on temporal graphs with underlying forest: As any vertex pair (s, z) is connected by at most
one route, we only need to test the delay robustness of that route.

In the remainder of this section, we will prove Theorem 5. The basic idea is that a route
is delay-robust for a worst-case delay if and only if it is delay-robust for all delays. This
worst-case delay can be computed in polynomial time using a dynamic program.

First, we introduce the term earliest arrival time for a given route. A route R = (vi)k
i=1

requires that there is at least one temporal path following R. The earliest arrival time is
then the arrival time of the temporal path that arrives earliest. Formally, we define the
earliest arrival time as follows. Let P = {Pi}ℓ

i=1 be the set of temporal paths following R

with Pi = (e(i)
1 , e

(i)
2 , . . . , e

(i)
k−1). The earliest arrival time of R then is defined as the earliest

arrival time of any temporal path in P , i.e., as min
{

t(e(i)
k−1) + λ(e(i)

k−1)
∣∣∣ i ≤ ℓ

}
. Analogously,

if R = (vi)k
i=1 is a delayed route for the delay set D ⊆ E and delay time δ ∈ N, and if P as

above is the set of delayed temporal paths following R, then the earliest delayed arrival time
of R is min

{
t(e(i)

k−1) + λ(e(i)
k−1) + [e(i)

k−1 ∈ D] · δ
∣∣∣ i ≤ ℓ

}
.

We then define the worst-case arrival time of a route R = (vi)k
i=1 for a given delay size x

and delay time δ as the maximum earliest delayed arrival time of R, taken over all delay
sets D with |D| ≤ x. (If R is not x-delay-robust, then we define the worst-case arrival time
to be ∞.)

Now that we defined the worst-case arrival time, we show how to compute it. Let
Rj = (vi)j

i=1 denote the prefix routes of R. The dynamic program computes table entries
ARj [y] iteratively for all j ≤ k and y ≤ x, where ARj [y] stores the worst-case arrival time
of Rj for y delays.
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We begin with the single-vertex route R1 = (v1), setting AR1 [y] = 0 for all y since the
empty temporal path is always available to go from v1 to v1. Our goal is then to inductively
compute ARj

from ARj−1 .
Consider the situation where we want to get from v to w in a single step, starting at

time t. Then the set of available time arcs is E(v, w, t) = {(v, w, t′, λ) ∈ E | t′ ≥ t}. Suppose
E(v, w, t) = {ai}ℓ

i=1 where t(ai) + λ(ai) ≤ t(ai+1) + λ(ai+1) for all i. Now if up to y delays
occur, then the latest time at which we will reach w is

α(v, w, t, y) := min{t(a1) + λ(a1) + δ, t(ay+1) + λ(ay+1)}.

Here, the worst case occurs if a1 through ay are all delayed.
Using this fact, we can now compute the table entries ARi from ARi−1 as follows.

ARi
[y] = max

0≤y′≤y
{α(vi−1, vi, ARi−1 [y′], y − y′)}.

The idea here is that some number y′ ≤ y of delays will occur between vi−1 and vi, while
the other y − y′ delays can occur somewhere along Ri−1.

The formal proof that AR[x] contains the solution to the Delay-Robust Route instance
and that it can be computed in the specified time is deferred to the full version [17].

4 A Reduction Framework for Delay-Robust Route

In this section, we investigate the computational hardness of Delay-Robust Route with a
particular attention to parameterized hardness with respect to “distance to forest” parameters.
The goal is to lay out the ground for potential generalization of the algorithm presented in
Section 3.2. We introduce a new problem Multi-Colored Monotone SAT in Section 4.1
and design a polynomial-time reduction to Delay-Robust Route. We will use this as an
intermediate problem for reductions from 3-SAT and Multi-Colored Clique in Section 4.2
to show NP-hardness and parameterized hardness results.

4.1 Multi-Colored Monotone SAT
The problem Multi-Colored Monotone SAT is a Satisfiability variant where the
variables are partitioned into “color classes” and only one variable from each color may be
set to true. Furthermore, we do not make any assumptions on the Boolean formula other
than that all variables appear non-negated. Formally, the we define the problem as follows.

Multi-Colored Monotone SAT (MCMSAT)
Input: Disjoint sets of variables X1, X2, . . . , Xn and a boolean formula Φ only consisting

of positive literals and the operators ∧ and ∨.
Question: Is there a satisfying truth assignment for Φ where exactly one variable from each

Xi for i ∈ [n] is true?

We have the following theorem.

▶ Theorem 6 (⋆). MCMSAT ≤poly
m Delay-Robust Route.

We describe the reduction behind Theorem 6 here, but defer most of the formal correctness
proofs to the full version [17].
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(a) Selection gadgets for the variable sets with |X1| = 3 and |X2| = |X3| = 2.
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(b) Validation gadgets for Φ = (x1,1 ∨ (x1,2 ∧ x2,1)) ∧ (x2,2 ∨ x3,1). The time arcs belonging to a literal
are highlighted in the corresponding color.
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(c) Finalization gadgets for n = 3.

Figure 2 An example temporal graph resulting from a Multi-Colored Monotone SAT
reduction. Dummy time arcs are omitted. The instance has n = 3 disjoint variable sets.

Let I = ((X1, X2, . . . , Xn), Φ) be an instance of MCMSAT. We will construct a temporal
graph G = (V, E) and an instance I ′ = (G, s, z, δ, x) of Delay-Robust Route so that I is a
yes-instance of MCMSAT if and only if I ′ is a yes-instance of Delay-Robust Route. All
time arcs in G have a traversal time of 0. Thus, we abbreviate time arcs as 3-tuples (v, w, t).
In figures we omit the traversal time and label arcs only with their time step.

Let Xi = {xi,1, xi,2, . . . , xi,|Xi|} for all i ∈ [n]. Furthermore, let m := maxi |Xi| denote
the largest cardinality of a variable set Xi. The temporal graph consists of chained selection
gadgets for each variable set Xi, a recursively constructed validation gadget and chained
finalization gadgets for each variable set Xi. The selection gadgets are used to select the
variable from Xi that is assigned to true, for each i ∈ [n]. Then the validation gadgets check
whether the formula is satisfied under the selected truth assignment. If this is not the case,
then a connection breaks at latest in the finalization gadgets and the target vertex can not
be reached. The gadgets use an offset oi := (2m + 1) · (i − 1). We set the delay time to δ = 1
and the number of delays to x = 2 · n − 1. Figure 2 shows examples for all gadget types.
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Selection Gadgets. The selection gadgets are used to select one variable xi,a from each
set Xi. For each set Xi, we add a vertex si to V and one additional vertex sn+1. For each
set Xi and each variable xi,a ∈ Xi, we add the vertices x

(1)
i,a and x

(2)
i,a to V . Moreover, we add

the following time arcs to E so that there is one route from si to si+1 for this variable xi,a:

si
oi+a−−−→ x

(1)
i,a

oi+a,oi+1−a−−−−−−−−→ x
(2)
i,a

oi+a,oi+1−a,oi+1−−−−−−−−−−−→ si+1

Taking this sub-route corresponds to setting the variable xi,a to true. Additionally, for each
of the three underlying arcs we add a dummy time arc for each time step t ∈ [oi+1 − 1]. If
the sub-route si → x

(1)
i,a → x

(2)
i,a → si+1 is chosen, then the worst-case arrival time from s1

to si+1 is oi + a for 2 · (i − 1) delays and oi+1 − a = oi + 2 · m + 1 − a for 2 · (i − 1) + 1 delays.
Any sub-route is a Pareto optimum: while one arrives earlier for 2 · (i − 1) delays, another
arrives earlier for 2 · (i − 1) + 1 delays. An example for chained selection gadgets can be seen
in Figure 2a.

Validation Gadgets. The validation gadgets are used to check whether the formula Φ is
satisfied under the selected truth assignment. We will add a fresh vertex f1 to V which is the
start of the validation gadgets. The validation gadget for Φ will be constructed with sn+1 as
a start vertex and f1 as an end vertex. Given a start vertex v and an end vertex w, we can
recursively construct the validation gadget for a formula Φ in the following way:
1. Φ = xi,a is a single positive literal.

We add two fresh vertices ℓ
(1)
i,a and ℓ

(2)
i,a to V . We add the following time arcs, so that

there is a connection from v to w:

v
oi+a,oi+1−a−−−−−−−−→ ℓ

(1)
i,a

oi+a,oi+1−a−−−−−−−−→ ℓ
(2)
i,a

oi+a,oi+1−a−−−−−−−−→ w

Additionally for all three underlying arcs we add a dummy time arc for each time
step t ∈ [on+1 − 1] \ [oi, oi+1 − 1]. We call this constructed part of the validation gadget
a literal gadget. If the variable xi,a has been selected in the selection gadgets, then
traversing this literal gadget does not affect the worst-case arrival time with respect to
the number of delays. However, if xi,a has not been selected there is a delay that breaks
the connection at latest in the finalization gadgets.

2. Φ = Φ1 ∧ Φ2 ∧ . . . ∧ Φk is a conjunction of k sub-formulae.
We add a fresh vertex ci to V for all i ∈ [k − 1]. Then the validation gadgets for
all sub-formulae Φi are constructed, with ci−1 as the start and ci as the end vertex,
where c0 = v and ck = w. Thus, the gadgets for the sub-formulae are connected in a row,
and to traverse the temporal graph from v to w all gadgets for the sub-formulae have to
be traversed.

3. Φ = Φ1 ∨ Φ2 ∨ . . . ∨ Φk is a disjunction of k sub-formulae.
We construct the validation gadgets for all sub-formulae Φi with v as the start and w as
the end vertex. Thus, the gadgets for the sub-formulae are connected in parallel, and
to traverse the temporal graph from v to w one gadget for a sub-formulae has to be
traversed.

An example for a valid gadget can be seen in Figure 2b.

Finalization Gadgets. The finalization gadgets are similar to the selection gadgets for all
sets X2 to Xn. For each variable set Xi for i ∈ [2, n] we add a vertex fi to V . For each
variable xi,a ∈ Xi we add the vertices f

(1)
i,a and f

(2)
i,a to V and add the following time arcs:

fi−1
oi+a,oi+1−a−−−−−−−−→ f

(1)
i,a

oi+a,oi+1−a−−−−−−−−→ f
(2)
i,a

oi+a,oi+1−a−−−−−−−−→ fi
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Again for all three underlying arcs and each time step t ∈ [on+1 − 1] \ [oi, oi+1 − 1] we add a
dummy time arc. An example for finalization gadgets can be seen in Figure 2c.

The start and end vertices for our Delay-Robust Route-instance are s1 and fn,
respectively.

We defer the proof that the constructed Delay-Robust Route instance is equivalent
to the given Multi-Colored Monotone SAT instance to the full version [17].

4.2 Applications of the Framework
Next, we use our previous result that MCMSAT ≤poly

m Delay-Robust Route (Theorem 6)
to show that Delay-Robust Route is NP-complete even if the underlying graph has
bandwidth 3. The bandwidth bw(G) of a graph G is the smallest number b such that the
vertices of G can be placed at distinct integer points along a line so that the length of the
longest edge is b. The bandwidth of a graph upper-bounds both the graph’s pathwidth and
treewidth [27]. Formally, we show the following result by using an appropriate polynomial-
time reduction from the NP-complete 3-SAT problem [21] to MCMSAT.

▶ Theorem 7 (⋆). Delay-Robust Route is NP-complete for all fixed δ ≥ 1, maximum
traversal times λmax ≥ 0, and bandwidths of the underlying graph bw(Gu(G)) ≥ 3 .

Next, we show W[1]-hardness of Delay-Robust Route for the feedback vertex set
of the underlying graph, the length of a delay-robust temporal path, and the number of
delays combined. To this end, we give a parameterized polynomial-time reduction from
Multi-Colored Clique [15] to Delay-Robust Route. Again we use MCMSAT as an
intermediate problem and use Theorem 6. Formally, we show the following result.

▶ Theorem 8 (⋆). Delay-Robust Route is W[1]-hard with respect to x + L + f where x

is the number of delays, L is the length of a longest s-z path in Gu(G), and f is the feedback
vertex number of Gu(G).

The presented hardness results show that we presumably cannot generalize Theorem 5 to
an FPT result for parameters such as the treewidth of the underlying graph or the feedback
vertex number of the underlying graph.

5 Parameterized Algorithms

In Section 4, we presented several hardness results. Here, we present our algorithmic results
for general input graphs which can be seen as different ways to generalize Theorem 5. We
start with an XP-algorithm for the number of delays as a parameter and then present two
FPT algorithms for “distance to forest” parameters.

5.1 Number of Delays
In what follows, we present an algorithm similar to Dijkstra’s algorithm [9]. Starting at the
source vertex s, it finds all optimal temporal (s, v)-routes by expanding each optimum by one
step per iteration. However, as we have seen in the polynomial-time reductions in Section 4,
there can be many (s, z)-routes that are Pareto-optimal with respect to the arrival time
for a given number of delays. We use the dynamic program from Theorem 5 to extend the
paths by a single time arc. Our main result of this section is that Delay-Robust Route
admits an XP-algorithm with respect to the number x of delays. Theorem 8 implies that we
presumably cannot improve this to an FPT result for this parameter. Formally, we show the
following (in the remainder of this subsection, we provide a sketch of proof).
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▶ Theorem 9 (⋆). Delay-Robust Route can be solved in O(|V |3 · |E|2x · x2) time, where
x is the number of allowed delays.

For each route, its arrival time vector t⃗ = (t0, t1, . . . , tx) is a vector of x + 1 time steps
where ty is the worst-case arrival time for y delays. We define a partial order ⪯ to compare
arrival time vectors. For t⃗ = (t0, t1, . . . , tx) and t⃗′ = (t′

0, t′
1, . . . , t′

x), set t⃗ ⪯ t⃗′ if and only if
ty ≤ t′

y for all y ≤ x. This partial order can be used to decrease the set of prefix paths that
need to be considered due to the following observation.

▶ Observation 10. Let G = (V, E) be a temporal graph, let s, v, z ∈ V be three vertices, and
P1 and P2 be two delay-robust (s, v)-routes with the arrival time vectors t⃗1 ⪯ t⃗2. If there is
a delay-robust (s, z)-route P so that P = P2 ◦ P ′, then P1 ◦ P ′ is also a delay-robust route.
Additionally, if there is a delay-robust (s, v)-route, then there is one whose arrival time vector
is minimal among all (s, v)-routes.

Since for any delay one can arrive earlier in vertex v by using the route P1 compared
to P2, replacing the prefix P2 by P1 still guarantees delay-robustness.

We define a table A with entries for every vertex of G. The table entry A[v] contains a
set of arrival time vectors for (s, v)-routes. We will only store vectors that are minimal with
respect to ⪯, since we do not need to consider others due to Observation 10. Thus, the set
A[v] will represent the Pareto front of routes from s to v.

Furthermore, we define a priority queue Q that contains tuples (v, t⃗) of vertices and
arrival time vectors. The queue is sorted according by the arrival time vectors according
to ⪯. The queue elements (v, t⃗) contain the prefix routes from where a search should be
expanded.

We initialize the table A as follows:

A[v] =
{

{(0, . . . , 0)}, if v = s

∅, otherwise.

The start vertex s can always be reached through the empty path. For all other vertices
there is initially no route stored. Furthermore, we initialize the queue Q with the tuple
(s, (0, . . . , 0)).

To compute the table entries we repeatedly pop the first element (v, t⃗) from Q and
propagate possible delay-robust routes from there. If (v, t⃗) is in the queue, then this means
that there is a delay-robust (s, v)-route P with the arrival time vector t⃗.

Let nextv := {w | (v, w, t, λ) ∈ V } denote the set of vertices reachable from v by a
single time arc. For all w ∈ nextv, we compute the arrival time vector t⃗′ = (t′

0, t′
1, . . . , t′

x)
of P ′ = P ◦ (w) using the dynamic program described in Section 3.2: The arrival time vector
of P ′ is simply the table row AP ′ and P ′ is y-delay-robust if and only if AP ′ [y] < ∞.

As an optimization, we can round up the arrival time entries to the next time step in τ+
w ,

i.e. replace t′
y by

t̂′
y = min

t
{t ∈ τ+

w | t ≥ t′
y}.

This rounding does not change the delay-robustness of any route since no temporal walk can
leave w between time t′

y and t̂′
y.

If P ′ is x-delay-robust, then we can add t⃗′ to the set A[w], unless A[w] already contains
a smaller arrival time vector. We then delete all t⃗′′ with t⃗′ ⪯ t⃗′′ from A[w] and also remove
the corresponding elements (w, t⃗′′) from the queue Q. Finally, we insert (w, t⃗′) into Q.
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Once the queue Q is empty, we have investigated all x-robust prefix routes that might
eventually lead to z. There is then a delay-robust (s, v)-route if and only if A[z] ̸= ∅.

We defer the correctness proof for the presented algorithm as well as the running time
analysis to the full version [17].

5.2 Timed Feedback Vertex Number
In this section, we explore another way to generalize Theorem 5. We present an FPT
algorithm for the so-called timed feedback vertex number (introduced by Casteigts et al. [6])
and the number x of delays combined. Intuitively, the timed feedback vertex number is the
minimum number of “vertex appearances” that need to be removed from the temporal graph
to turn its underlying graph into a forest. Formally, it is defined as follows.

Let G be a temporal graph and X ⊆ V × [T ] a set of vertex appearances. Then we write
G − X := (V, E′), where E′ = E \ {(v, w, t, λ) | (v, t) ∈ X ∨ (w, t) ∈ X}. A timed feedback
vertex set of G is a set X ⊆ V × [T ] of vertex appearances such that Gu(G − X) is cycle-free.
The timed feedback vertex number of a temporal graph G is the minimum cardinality of a
timed feedback vertex set of G.

▶ Theorem 11 (⋆). Delay-Robust Route can be solved in 2O(xf log f) · (|V | + |E|)O(1)

time, where f is the timed feedback vertex number of the underlying graph.

In the following, we give a description of the main steps of the algorithm we use to obtain
the above result. The algorithm follows a simple “guess and check”-approach.
1. Compute a minimum timed feedback vertex set X of the input graph using an algorithm

provided by Casteigts et al. [6].
2. Let X̂ = {v | (v, t) ∈ X}. Iterate over all partitions X̂0 ⊎ X̂1 ⊎ X̂2 ⊎ X̂3 = X̂ of X̂. We

distinguish two types of neighbors of a vertex. A neighbor connected by a time arc that is
preserved in G −X is called a “forest neighbor”, while other neighbors are called “feedback
neighbors”. Intuitively, in this step we guess for each vertex whether its predecessor resp.
successor in the route is a feedback neighbor or a forest neighbor, leading to the following
four cases:

The route does not contain v or the predecessor and successor of v in the route are
forest neighbors of v (then v ∈ X̂0),
the predecessor of v in the route is a forest neighbor v, and the successor of v in the
route is a feedback neighbor of v (then v ∈ X̂1),
the predecessor of v in the route is a feedback neighbor v, and the successor of v in
the route is a forest neighbor of v (then v ∈ X̂2), or
the predecessor and successor of v in the route are feedback neighbors of v (then
v ∈ X̂3).

3. Iterate over all orders on X̂1 ∪ X̂2 ∪ X̂3. Intuitively, in this step we guess in which order
the vertices appear in the route.

4. Let T̂ = {t, t + δ | ∃w ∈ V : (w, t) ∈ X} ∪ {∞} be the relevant time steps. For each vertex
v ∈ X̂1 ∪ X̂2 ∪ X̂3, iterate over all delay profiles (t1, t2, . . . , tx) ∈ T̂ x. Intuitively, here we
guess for each delay size i the smallest relevant time ti which is at least the worst-case
arrival time at v.

5. Use Theorem 5 to find route segments that respect the guessed delay profiles between
consecutive vertices in X̂1 ∪ X̂2 ∪ X̂3 and which can be combined to an x-delay-robust
(s, z)-route.

A detailed description of the last step and a sketch of the main ideas for the correctness
proof and running time analysis are deferred to the full version [17].
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5.3 Underlying Feedback Edge Number
In this section, we show that Delay-Robust Route admits an FPT-algorithm with respect
to the feedback edge number of the underlying graph. Given a (static) undirected graph
G = (V, E), a feedback edge set F ⊆ E is a set of edges, so that G − F is acyclic. The
feedback edge number is the cardinality of a minimum feedback edge set of G. Formally, we
show the following.

▶ Theorem 12 (⋆). Delay-Robust Route can be solved in 2O(f) · (|V | · |E| · x2) + O(|E| ·
log |E|) time, where f is the feedback edge number of the underlying graph.

Casteigts et al. [6] designed an FPT-algorithm for the so-called Restless Temporal
Path parameterized by the feedback edge number of the underlying graph. This algorithm
can be applied to Delay-Robust Route as well with minor modifications in order to prove
Theorem 12.

6 Conclusion

We modeled a naturally motivated path-finding problem taking into account delays by means
of (algorithmic) temporal graph theory. For our central problem, Delay-Robust Route,
we found computational hardness already for some tree-like underlying (static) graphs. While
having provided a few encouraging parameterized tractability results, we leave plenty of room
for further investigations into this direction. In particular, we left open what happens for the
special case when the number of time labels per edge is bounded from above (in parameterized
complexity terms, taking this as a parameter). Recall that our central hardness reduction
needs many time labels. Moreover, the parameters vertex cover number or timed feedback
vertex set number [6] (as a single parameter) deserve investigations as well. Rather from a
modeling perspective, one might vary the basic problem by e.g. considering a global delay
budget or other variations of the delay concept.
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Abstract
Motivated by the serious problem that hospitals in rural areas suffer from a shortage of residents,
we study the Hospitals/Residents model in which hospitals are associated with lower quotas and the
objective is to satisfy them as much as possible. When preference lists are strict, the number of
residents assigned to each hospital is the same in any stable matching because of the well-known
rural hospitals theorem; thus there is no room for algorithmic interventions. However, when ties are
introduced to preference lists, this will no longer apply because the number of residents may vary
over stable matchings.

In this paper, we formulate an optimization problem to find a stable matching with the maximum
total satisfaction ratio for lower quotas. We first investigate how the total satisfaction ratio varies
over choices of stable matchings in four natural scenarios and provide the exact values of these
maximum gaps. Subsequently, we propose a strategy-proof approximation algorithm for our problem;
in one scenario it solves the problem optimally, and in the other three scenarios, which are NP-hard,
it yields a better approximation factor than that of a naive tie-breaking method. Finally, we show
inapproximability results for the above-mentioned three NP-hard scenarios.
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1 Introduction

The Hospitals/Residents model (HR), a many-to-one matching model, has been extensively
studied since the seminal work of Gale and Shapley [11]. Its input consists of a set of residents
and a set of hospitals. Each resident has a preference over hospitals; similarly, each hospital
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31:2 Maximally Satisfying Lower Quotas in the Hospitals/Residents Problem with Ties

has a preference over residents. In addition, each hospital is associated with a positive integer
called the upper quota, which specifies the maximum number of residents it can accept. In
this model, stability is the central solution concept, which requires the nonexistence of a
blocking pair, i.e., a resident–hospital pair that has an incentive to deviate jointly from the
current matching. In the basic model, each agent (resident or hospital) is assumed to have a
strict preference for possible partners. For this model, the resident-oriented Gale–Shapley
algorithm (also known as the deferred acceptance mechanism) is known to find a stable
matching. This algorithm has advantages from both computational and strategic viewpoints:
it runs in linear time and is strategy-proof for residents.

In reality, people typically have indifference among possible partners. Accordingly, a
stable matching model that allows ties in preference lists, denoted by HRT in the context
of HR, was introduced [20]. For such a model, several definitions of stability are possible.
Among them, weak stability provides a natural concept, in which agents have no incentive
to move within the ties. It is known that if we break the ties of an instance I arbitrarily,
any stable matching of the resultant instance is a weakly stable matching of I. Hence, the
Gale–Shapley algorithm can still be used to obtain a weakly stable matching. In applications,
typically, ties are broken randomly, or participants are forced to report strict preferences
even if their true preferences have ties. Hereafter, “stability” in the presence of ties refers to
“weak stability,” unless stated otherwise.

It is commonly known that HR plays an important role not only in theory but also in
practice; for example, in assigning students to high schools [1,2] and residents to hospitals [30].
In such applications, “imbalance” is one of the major problems. For example, hospitals in
urban areas are generally more popular than those in rural areas; hence it is likely that the
former are well-staffed whereas the latter suffer from a shortage of doctors. One possible
solution to this problem is to introduce a lower quota of each hospital, which specifies the
minimum number of residents required by a hospital, and obtain a stable matching that
satisfies both the upper and lower quotas. However, such a matching may not exist in
general [16, 28], and determining if such a stable matching exists in HRT is known to be
NP-complete (which is an immediate consequence from page 276 of [29]).

In general, it is too pessimistic to assume that a shortage of residents would force hospitals
to go out of operation. In some cases, the hospital simply has to reduce its service level
according to how much its lower quota is satisfied. In this scenario, a hospital will wish to
satisfy the lower quota as much as possible, if not completely. To formulate this situation,
we introduce the following optimization problem, which we call HRT to Maximally Satisfy
Lower Quotas (HRT-MSLQ). Specifically, let R and H be the sets of residents and hospitals,
respectively. All members in R and H have complete preference lists that may contain ties.
Each hospital h has an upper quota u(h), the maximum number of residents it can accept.
The stability of a matching is defined with respect to these preference lists and upper quotas,
as in conventional HRT. In addition, each hospital h is associated with a lower quota ℓ(h),
which specifies the minimum number of residents required to keep its service level. We
assume that ℓ(h) ≤ u(h) ≤ |R| for each h ∈ H . For a stable matching M , let M(h) be the set
of residents assigned to h. The satisfaction ratio, sM (h), of hospital h ∈ H (with respect to
ℓ(h)) is defined as sM (h) = min

{
1, |M(h)|

ℓ(h)

}
. Here, we let sM (h) = 1 if ℓ(h) = 0, because the

lower quota is automatically satisfied in this case. The satisfaction ratio reflects a situation
in which hospital h’s service level increases linearly with respect to the number of residents
up to ℓ(h) but does not increase after that, even though h is still willing to accept u(h) − ℓ(h)
more residents. These u(h) − ℓ(h) positions may be considered as “marginal seats,” which
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do not affect the service level but provide hospitals with advantages, such as generous work
shifts. Our HRT-MSLQ problem asks us to maximize the total satisfaction ratio over the
family M of all stable matchings in the problem instance, i.e.,

max
M∈M

∑
h∈H

sM (h).

The following are some remarks on our problem: (1) To our best knowledge, almost all
previous works on lower quotas have investigated cases with no ties and have assumed lower
quotas to be hard constraints. Refer to the discussion at the end of this section. (2) Our
assumption that all preference lists are complete is theoretically a fundamental scenario
used to study the satisfaction ratio for lower quotas. Moreover, there exist several cases in
which this assumption is valid [4, 14]. For example, according to Goto et al. [14], a complete
list assumption is common in student–laboratory assignment in engineering departments of
Japanese universities because it is mandatory that every student be assigned. (3) If preference
lists contain no ties, the satisfaction ratio sM (h) is identical for any stable matching M

because of the rural hospitals theorem [12,30,31]. Hence, there is no chance for algorithms to
come into play if the stability is not relaxed. In our setting (i.e., with ties), the rural hospitals
theorem implies that our task is essentially to find an optimal tie-breaking. However, it is
unclear how to find such a tie-breaking.

Our Contributions. First, we study the goodness of any stable matching in terms of the
total satisfaction ratios. For a problem instance I, let OPT(I) and WST(I), respectively,
denote the maximum and minimum total satisfaction ratios of the stable matchings of I.
For a family of problem instances I, let Λ(I) = maxI∈I

OPT(I)
WST(I) denote the maximum gap

of the total satisfaction ratios. In this paper, we consider the following four fundamental
scenarios of I: (i) general model, which consists of all problem instances, (ii) uniform model,
in which all hospitals have the same upper and lower quotas, (iii) marriage model, in which
each hospital has an upper quota of 1 and a lower quota of either 0 or 1, and (iv) R-side
ML model, in which all residents have identical preference lists. The exact values of Λ(I)
for all such fundamental scenarios are listed in the first row of Table 1, where n = |R|. In
the uniform model, we write θ = u(h)

ℓ(h) for the ratio of the upper and lower quotas, which is
common to all hospitals. Further detailed analyses can be found in the full version [13].

Subsequently, we consider our problem algorithmically. Note that the aforementioned
maximum gap corresponds to the worst-case approximation factor of the arbitrarily tie-
breaking Gale–Shapley algorithm, which is frequently used in practice; this algorithm first
breaks ties in the preference lists of agents arbitrarily and then applies the Gale–Shapley
algorithm on the resulting preference lists. This correspondence easily follows from the rural
hospitals theorem (see the full version [13] for the details).

In this paper, we show that there are two types of difficulties inherent in our problem
HRT-MSLQ for all scenarios except (iv). Even for scenarios (i)–(iii), we show that (1) the
problem is NP-hard and that (2) there is no algorithm that is strategy-proof for residents
and always returns an optimal solution; see Section 6 and Appendix A.1.

We then consider strategy-proof approximation algorithms. We propose a strategy-proof
algorithm Double Proposal, which is applicable in all above possible scenarios, whose
approximation factor is substantially better than that of the arbitrary tie-breaking method.
The approximation factors are listed in the second row of Table 1, where ϕ is a function
defined by ϕ(1) = 1, ϕ(2) = 3

2 , and ϕ(n) = n(1 + ⌊ n
2 ⌋)/(n + ⌊ n

2 ⌋) for any n ≥ 3. Note that
θ2+θ−1

2θ−1 < θ holds whenever θ > 1. We also provide inapproximability results in the last row,
where ϵ denotes an arbitrarily small positive constant.
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Table 1 Maximum gap Λ(I), approximation factor of Double Proposal, and inapproximability
of HRT-MSLQ for four fundamental scenarios I.

General Uniform Marriage R-side ML

Maximum gap Λ(I)
(i.e., Approx. factor of
arbitrary tie-breaking GS)

n + 1 θ 2 n + 1

Approx. factor of
Double Proposal

ϕ(n) (∼ n+2
3 ) θ2+θ−1

2θ−1 1.5 1

Inapproximability n
1
4 −ϵ 3θ+4

2θ+4 − ϵ 9
8 − ϵ —

∗) Under P ̸= NP
†) Under the Unique Games Conjecture

Techniques. Our algorithm Double Proposal is based on the resident-oriented Gale–
Shapley algorithm and is inspired by previous research on approximation algorithms [17, 25]
for another NP-hard problem called MAX-SMTI. Unlike in the conventional Gale–Shapley
algorithm, our algorithm allows each resident r to make proposals twice to each hospital.
Among the hospitals in the top tie of the current preference list, r prefers hospitals to which
r has not yet proposed to those which r has already proposed to once. When a hospital h

receives a new proposal from r, hospital h may accept or reject it, and in the former case, h

may reject a currently assigned resident to accommodate r. In contrast to the conventional
Gale–Shapley algorithm, a rejection may occur even if h is not full. If at least ℓ(h) residents
are currently assigned to h and at least one of them has not been rejected by h so far, then
h rejects such a resident, regardless of its preference. This process can be considered as the
algorithm dynamically finding a tie-breaking in r’s preference list.

The main difficulty in our problem originates from the complicated form of our objective
function s(M) =

∑
h∈H min{1, |M(h)|

ℓ(h) }. In particular, non-linearity of s(M) makes the
analysis of the approximation factor of Double Proposal considerably hard. We therefore
introduce some new ideas and techniques to analyze the maximum gap Λ and approximation
factor of our algorithm, which is one of the main novelties of this paper.

To estimate the approximation factor of the algorithm, we need to compare objective
values of a stable matching M output by the algorithm and an (unknown) optimal stable
matching N . A typical technique used to compare two matchings is to consider a graph
of their union. In the marriage model, the connected components of the union are paths
and cycles, both of which are easy to analyze; however, this is not the case in a general
many-to-one matching model. For some problems, this approach still works via “cloning,”
which transforms an instance of HR into that of the marriage model by replacing each hospital
h with an upper quota of u(h) by u(h) hospitals with an upper quota of 1. Unfortunately,
however, in HRT-MSLQ there seems to be no simple way to transform the general model
into the marriage model because of the non-linearity of the objective function.

In our analysis of the uniform model, the union graph of M and N may have a complex
structure. We categorize hospitals using a procedure like breadth-first search starting from
the set of hospitals h with the satisfaction ratio sN (h) larger than sM (h), which allows us
to provide a tight bound on the approximation factor. For the general model, instead of
using the union graph, we define two vectors that distribute the values s(M) and s(N) to
the residents. By making use of the local optimality of M proven in Section 3, we compare
such two vectors and give a tight bound on the approximation factor.



H. Goko, K. Makino, S. Miyazaki, and Y. Yokoi 31:5

We finally remark that the improvement of Double Proposal over the maximum gap
shows that our problem exhibits a different phenomenon from that of MAX-SMTI because
the approximation factor of MAX-SMTI cannot be improved from a naive tie-breaking
method if strategy-proofness is imposed [17].

Related Work. Recently, the Hospitals/Residents problems with lower quotas are quite
popular in the literature; however, most of these studies are on settings without ties. The
problems related to HRT-MSLQ can be classified into three models. The model by Hamada
et al. [16], denoted by HR-LQ-2 in [28], is the closest to ours. The input of this model is
the same as ours, but the hard and soft constraints are different from ours; their solution
must satisfy both upper and lower quotas, the objective being to maximize the stability (e.g.,
to minimize the number of blocking pairs). Another model, introduced by Biró et al. [5]
and denoted by HR-LQ-1 in [28], allows some hospitals to be closed; a closed hospital is
not assigned any resident. They showed that it is NP-complete to determine the existence
of a stable matching. This model was further studied by Boehmer and Heeger [6] from a
parameterized complexity perspective. Huang [19] introduced the classified stable matching
model, in which each hospital defines a family of subsets R of residents and each subset of
R has an upper and lower quota. This model was extended by Fleiner and Kamiyama [9]
to a many-to-many matching model where both sides have upper and lower quotas. Apart
from these, several matching problems with lower quotas have been studied in the literature,
whose solution concepts are different from stability [3, 10,26,27,33].

Paper Organization. The rest of the paper is organized as follows. Section 2 formulates
our problem HRT-MSLQ, and Section 3 describes our algorithm Double Proposal for
HRT-MSLQ. Section 4 shows the strategy-proofness of Double Proposal. Section 5 is
devoted to proving the maximum gaps Λ and approximation factors of algorithm Double
Proposal for the several scenarios mentioned above. Finally, Section 6 provides hardness
results such as NP-hardness and inapproximability for several scenarios. Because of space
constraints, some proofs are omitted and included in the full version [13].

2 Problem Definition

Let R = {r1, r2, . . . , rn} be a set of residents and H = {h1, h2, . . . , hm} be a set of hospitals.
Each hospital h has a lower quota ℓ(h) and an upper quota u(h) such that ℓ(h) ≤ u(h) ≤ n.
We sometimes denote a hospital h’s quota pair as [ℓ(h), u(h)] for simplicity. Each resident
has a preference list over hospitals, which is complete and may contain ties. If a resident r

prefers a hospital hi to hj , we write hi ≻r hj . If r is indifferent between hi and hj (including
the case that hi = hj), we write hi =r hj . We use the notation hi ⪰r hj to signify that
hi ≻r hj or hi =r hj holds. Similarly, each hospital has a preference list over residents and
the same notations as above are used. In this paper, a preference list is denoted by one row,
from left to right according to the preference order. When two or more agents are of equal
preference, they are enclosed in parentheses. For example, “r1: h3 ( h2 h4 ) h1” is a
preference list of resident r1 such that h3 is the top choice, h2 and h4 are the second choice
with equal preference, and h1 is the last choice.

An assignment is a subset of R × H. For an assignment M and a resident r, let M(r)
be the set of hospitals h such that (r, h) ∈ M . Similarly, for a hospital h, let M(h) be the
set of residents r such that (r, h) ∈ M . An assignment M is called a matching if |M(r)| ≤ 1
for each resident r and |M(h)| ≤ u(h) for each hospital h. For a matching M , a resident r
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is called matched if |M(r)| = 1 and unmatched otherwise. If (r, h) ∈ M , we say that r is
assigned to h and h is assigned r. We sometimes abuse notation M(r) to denote the unique
hospital where r is assigned. A hospital h is called deficient or sufficient if |M(h)| < ℓ(h) or
ℓ(h) ≤ |M(h)| ≤ u(h), respectively. Additionally, a hospital h is called full if |M(h)| = u(h)
and undersubscribed otherwise.

A resident–hospital pair (r, h) is called a blocking pair for a matching M (or we say that
(r, h) blocks M) if (i) r is either unmatched in M or prefers h to M(r) and (ii) h is either
undersubscribed in M or prefers r to at least one resident in M(h). A matching is called
stable if it admits no blocking pair. Recall that the satisfaction ratio of a hospital h (which
is also called the score of h) in a matching M is defined by sM (h) = min{1, |M(h)|

ℓ(h) }, where
we define sM (h) = 1 if ℓ(h) = 0. The total satisfaction ratio (also called the score) of a
matching M , is the sum of the scores of all hospitals, that is, s(M) =

∑
h∈H sM (h). The

Hospitals/Residents problem with Ties to Maximally Satisfy Lower Quotas, denoted by
HRT-MSLQ, is to find a stable matching M that maximizes the score s(M). The optimal
score of an instance I is denoted by OPT(I).

Note that if |R| ≥
∑

h∈H u(h), then all hospitals are full in any stable matching (recall
that preference lists are complete). Hence, all stable matchings have the same score |H|,
and the problem is trivial. Therefore, throughout this paper, we assume |R| <

∑
h∈H u(h).

In this setting, all residents are matched in any stable matching as an unmatched resident
forms a blocking pair with an undersubscribed hospital.

3 Algorithm

In this section, we present our algorithm Double Proposal for HRT-MSLQ along with
a few of its basic properties. Its strategy-proofness and approximation factors for several
models are presented in the following sections.

Our proposed algorithm Double Proposal is based on the resident-oriented Gale–
Shapley algorithm but allows each resident r to make proposals twice to each hospital. Here,
we explain the ideas underlying this modification.

Let us apply the ordinary resident-oriented Gale–Shapley algorithm to HRT-MSLQ,
which starts with an empty matching M := ∅ and repeatedly updates M by a proposal-
acceptance/rejection process. In each iteration, the algorithm takes a currently unassigned
resident r and lets her propose to the hospital at the top of her current list. If the preference
list of resident r contains ties, the proposal order of r depends on how to break the ties in
her list. Hence, we need to define a priority rule for hospitals that are in a tie. Recall that
our objective function is given by s(M) =

∑
h∈H min{1, |M(h)|

ℓ(h) }. This value immediately
increases by 1

ℓ(h) if r proposes to a deficient hospital h, whereas it does not increase if r

proposes to a sufficient hospital h′, although the latter may cause a rejection of some resident
if h′ is full. Therefore, a naive greedy approach is to let r first prioritize deficient hospitals
over sufficient hospitals and then prioritize those with small lower quotas among deficient
hospitals. This approach is useful for attaining a larger objective value for some instances;
however, it is not enough to improve the approximation factor in the sense of worst case
analysis, as a deficient hospital h in some iteration might become sufficient later and it might
be better if r had made a proposal to a hospital other than h in the tie. Furthermore, this
naive approach sacrifices strategy-proofness as demonstrated in Appendix A.2. This failure
of strategy-proofness follows from the adaptivity of this tie-breaking rule, in the sense that
the proposal order of each resident is affected by the other residents’ behaviors.
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In our algorithm Double Proposal, each resident can propose twice to each hospital.
If the head of r’s preference list is a tie when r makes a proposal, then the hospitals to which
r has not yet proposed are prioritized. This idea was inspired by an algorithm of [17]. Recall
that each hospital h has an upper quota u(h) and a lower quota ℓ(h). In our algorithm,
we use ℓ(h) as a dummy upper quota. Whenever |M(h)| < ℓ(h), a hospital h accepts any
proposal. If h receives a new proposal from r when |M(h)| ≥ ℓ(h), then h checks whether
there is a resident in M(h) ∪ {r} who has not been rejected by h so far. If such a resident
exists, h rejects that resident regardless of the preference of h. Otherwise, we apply the usual
acceptance/rejection operation, i.e., h accepts r if |M(h)| < u(h) and otherwise replaces
r with the worst resident r′ in M(h). Roughly speaking, the first proposals are used to
implement priority on deficient hospitals, and the second proposals are used to guarantee
stability.

Formally, our algorithm Double Proposal is described in Algorithm 1. For convenience,
in the preference list, a hospital h that is not included in any tie is regarded as a tie consisting
of h only. We say that a resident is rejected by a hospital h if she is chosen as r′ in Lines 12
or 17. To argue strategy-proofness, we need to make the algorithm deterministic. To this
end, we remove arbitrariness using indices of agents as follows. If there are multiple hospitals
(resp., residents) satisfying the condition to be chosen at Lines 5 or 7 (resp., at Lines 12
or 17), take the one with the smallest index (resp., with the largest index). Furthermore,
when there are multiple unmatched residents at Line 3, take the one with the smallest index.
In this paper, Double Proposal always refers to this deterministic version.

Algorithm 1 Double Proposal.

Input: An instance I where each h ∈ H has quotas [ℓ(h), u(h)].
Output: A stable matching M .

1: M := ∅
2: while there is an unmatched resident do
3: Let r be any unmatched resident and T be the top tie of r’s list.
4: if T contains a hospital to which r has not proposed yet then
5: Let h be such a hospital with minimum ℓ(h).
6: else
7: Let h be a hospital with minimum ℓ(h) in T .
8: end if
9: if |M(h)| < ℓ(h) then

10: Let M := M ∪ {(r, h)}.
11: else if there is a resident in M(h) ∪ {r} who has not been rejected by h then
12: Let r′ be such a resident (possibly r′ = r).
13: Let M := (M ∪ {(r, h)}) \ {(r′, h)}.
14: else if |M(h)| < u(h) then
15: M := M ∪ {(r, h)}.
16: else {i.e., when |M(h)| = u(h) and all residents in M(h) ∪ {r} have been rejected by

h once}
17: Let r′ be any resident that is worst in M(h) ∪ {r} for h (possibly r′ = r).
18: Let M := (M ∪ {(r, h)}) \ {(r′, h)}.
19: Delete h from r′’s list.
20: end if
21: end while
22: Output M and halt.
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▶ Lemma 1. Algorithm Double Proposal runs in linear time and outputs a stable
matching.

Proof. Clearly, the size of the input is O(|R||H|). As each resident proposes to each hospital
at most twice, the while loop is iterated at most 2|R||H| times. At Lines 5 and 7, a
resident prefers hospitals with smaller ℓ(h), and hence we need to sort hospitals in each tie
in an increasing order of the values of ℓ. Since 0 ≤ ℓ(h) ≤ n for each h ∈ H, ℓ has only
|R| + 1 possible values. Therefore, the required sorting can be done in O(|R||H|) time as a
preprocessing step using a method like bucket sort. Thus, our algorithm runs in linear time.

Observe that a hospital h is deleted from r’s list only if h is full. Additionally, once h

becomes full, it remains so afterward. Since each resident has a complete preference list and
|R| <

∑
h∈H u(h), the preference list of each resident never becomes empty. Therefore, all

residents are matched in the output M .
Suppose, to the contrary, that M is not stable, i.e., there is a pair (r, h) such that (i) r

prefers h to M(r) and (ii) h is either undersubscribed or prefers r to at least one resident
in M(h). By the algorithm, (i) implies that r is rejected by h twice. Just after the second
rejection, h is full, and all residents in M(h) have once been rejected by h and are no worse
than r for h. Since M(h) is monotonically improving for h, at the end of the algorithm h is
still full and no resident in M(h) is worse than r, which contradicts (ii). ◀

In addition to stability, the output of Double Proposal satisfies the following property,
which plays a key role in the analysis of the approximation factors in Section 5.

▶ Lemma 2. Let M be the output of Double Proposal, r be a resident, and h and h′ be
hospitals such that h =r h′ and M(r) = h. Then, we have the following conditions:

(i) If ℓ(h) > ℓ(h′), then |M(h′)| ≥ ℓ(h′).
(ii) If |M(h)| > ℓ(h), then |M(h′)| ≥ ℓ(h′).

Proof. (i) Since h =r h′, ℓ(h) > ℓ(h′), and r is assigned to h in M , the definition of the
algorithm (Lines 4, 5, and 7) implies that r proposed to h′ and was rejected by h′ before
she proposes to h. Just after this rejection occurred, |M(h′)| ≥ ℓ(h′) holds. Since |M(h′)| is
monotonically increasing, we also have |M(h′)| ≥ ℓ(h′) at the end.

(ii) Since |M(h)| > ℓ(h), the value of |M(h)| changes from ℓ(h) to ℓ(h)+1 at some moment
of the algorithm. By Line 11 of the algorithm, at any point after this, M(h) consists only
of residents who have once been rejected by h. Since M(r) = h for the output M , at some
moment r must have made the second proposal to h. By Line 4 of the algorithm, h =r h′

implies that r has been rejected by h′ at least once, which implies that |M(h′)| ≥ ℓ(h′) at
this moment and also at the end. ◀

Lemma 2 states some local optimality of Double Proposal. Suppose that we reassign r

from h to h′. Then, h may lose and h′ may gain score, but Lemma 2 says that the objective
value does not increase. To see this, note that if the objective value were to increase, h′ must
gain score and h would either not lose score or lose less score than h′ would gain. The former
and the latter are the “if” parts of (ii) and (i), respectively, and in either case the conclusion
|M(h′)| ≥ ℓ(h′) implies that h′ cannot gain score by accepting one more resident.

4 Strategy-proofness

An algorithm is called strategy-proof for residents if it gives residents no incentive to misrep-
resent their preferences. The precise definition follows. An algorithm that always outputs
a matching deterministically can be regarded as a mapping from instances of HRT-MSLQ
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into matchings. Let A be an algorithm. We denote by A(I) the matching returned by A

for an instance I. For any instance I, let r ∈ R be any resident, who has a preference ⪰r.
Additionally, let I ′ be an instance of HRT-MSLQ which is obtained from I by replacing ⪰r

with some other ⪰′
r. Furthermore, let M := A(I) and M ′ := A(I ′). Then, A is strategy-proof

if M(r) ⪰r M ′(r) holds regardless of the choices of I, r, and ⪰′
r.

In the setting without ties, it is known that the resident-oriented Gale–Shapley algorithm
is strategy-proof for residents (even if preference lists are incomplete) [8,15,32]. Furthermore,
it has been proved that no algorithm can be strategy-proof for both residents and hospitals [32].
As in many existing papers on two-sided matching, we use the term “strategy-proofness” to
refer to strategy-proofness for residents.

Before proving the strategy-proofness of Double Proposal, we remark that the exact
optimization and strategy-proofness are incompatible even if a computational issue is set
aside. The following fact is demonstrated in Appendix A.1.

▶ Proposition 3. There is no algorithm that is strategy-proof for residents and returns an
optimal solution for any instance of HRT-MSLQ. The statement holds even for the uniform
and marriage models.

This proposition implies that, if we require strategy-proofness for an algorithm, then we
should consider approximation even in the absence of computational constraints. Now, we
show the strategy-proofness of our approximation algorithm.

▶ Theorem 4. Algorithm Double Proposal is strategy-proof for residents.

Proof. To establish the strategy-proofness, we show that an execution of Double Proposal
for an instance I can be described as an application of the resident-oriented Gale–Shapley
algorithm to an auxiliary instance I∗. The construction of I∗ is based on the proof of
Lemma 8 in [17]; however, we need nontrivial extensions.

Let R and H be the sets of residents and hospitals in I, respectively. An auxiliary instance
I∗ is an instance of the Hospitals/Residents problem that has neither lower quotas nor ties
and allows incomplete lists. The set of residents in I∗ is R′ ∪ D, where R′ = {r′

1, r′
2, . . . , r′

n}
is a copy of R and D = { dj,p | j = 1, 2, . . . , m, p = 1, 2, . . . , u(hj) } is a set of

∑m
j=1 u(hj)

dummy residents. The set of hospitals in I∗ is H◦ ∪H•, where each of H◦ = {h◦
1, h◦

2, . . . , h◦
m}

and H• = {h•
1, h•

2, . . . , h•
m} is a copy of H. Each hospital h◦

j ∈ H◦ has an upper quota u(hj)
while each h•

j ∈ H• has an upper quota ℓ(hj).
For each resident r′

i ∈ R′, her preference list is defined as follows. Consider any tie
(hj1hj2 · · · hjk

) in ri’s preference list. Let j′
1 j′

2 · · · j′
k be a permutation of j1 j2 · · · jk such that

ℓ(hj′
1
) ≤ ℓ(hj′

2
) ≤ · · · ≤ ℓ(hj′

k
), and for each j′

p, j′
q with ℓ(hj′

p
) = ℓ(hj′

q
), p < q implies j′

p < j′
q.

We replace the tie (hj1hj2 · · · hjk
) with a strict order of 2k hospitals h•

j′
1
h•

j′
2

· · · h•
j′

k
h◦

j′
1
h◦

j′
2

· · · h◦
j′

k
.

The preference list of r′
i is obtained by applying this operation to all ties in ri’s list, where

a hospital not included in any tie is regarded as a tie of length one. The following is an
example of the correspondence between the preference lists of ri and r′

i:

ri : ( h2 h4 h5 ) h3 ( h1 h6 ) where ℓ(h4) = ℓ(h5) < ℓ(h2) and ℓ(h6) < ℓ(h1)
r′

i : h•
4 h•

5 h•
2 h◦

4 h◦
5 h◦

2 h•
3 h◦

3 h•
6 h•

1 h◦
6 h◦

1

For each j = 1, 2, . . . , m, the dummy residents dj,p (p = 1, 2, . . . , u(hj)) have the same list:

dj,p : h◦
j h•

j
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For j = 1, 2, . . . , m, let P (hj) be the preference list of hj in I and let Q(hj) be the strict
order on R′ obtained by replacing residents ri with r′

i and breaking ties so that residents
in the same tie of P (hj) are ordered in ascending order of indices. The preference lists of
hospitals h◦

j and h•
j are then defined as follows:

h◦
j : Q(hi) dj,1 dj,2 · · · dj,u(hj)

h•
j : dj,1 dj,2 · · · dj,u(hj) r′

1 r′
2 · · · r′

n

Let M be the output of Double Proposal applied to I. For each resident ri, there are
two cases: she has never been rejected by M(ri), and she had been rejected once by M(ri)
and accepted upon her second proposal. Let M1 be the set of pairs (ri, M(ri)) of the former
case and M2 be that of the latter. Note that |M1(hj)| ≤ ℓ(hj) for any hj . Define a matching
M∗ of I∗ by

M∗ = { (r′
i, h◦

j ) | (ri, hj) ∈ M2 } ∪ { (r′
i, h•

j) | (ri, hj) ∈ M1 }
∪ { (dj,p, h◦

j ) | 1 ≤ p ≤ u(hj) − |M2(hj)| }
∪ { (dj,p, h•

j) | u(hj) − |M2(hj)| < p ≤ min{u(hj) − |M(hj)| + ℓ(hj), u(hj)} } .

Then, the following holds.

▶ Lemma 5. M∗ coincides with the output of the resident-oriented Gale–Shapley algorithm
applied to the auxiliary instance I∗.

We now complete the proof of the theorem.
Given an instance I, suppose that some resident ri changes her preference list from

⪰ri to some other ⪰′
ri

. Let J be the resultant instance. Define an auxiliary instance J∗

from J in the manner described above. Let N be the output of Double Proposal for
J and N∗ be a matching defined from N as we defined M∗ from M . By Lemma 5, the
resident-oriented Gale–Shapley algorithm returns M∗ and N∗ for I∗ and J∗, respectively.
Note that all residents except r′

i have the same preference lists in I∗ and J∗ and so do all
hospitals. Therefore, by the strategy-proofness of the Gale–Shapley algorithm, we have
M∗(r′

i) ⪰r′
i

N∗(r′
i). By the definitions of I∗, J∗, M∗, and N∗, we have M(ri) ⪰ri

N(ri),
which means that ri is no better off in N than in M with respect to her true preference ⪰ri .
Thus, Double Proposal is strategy-proof for residents. ◀

5 Maximum Gaps and Approximation Factors of Double Proposal

In this section, we analyze the approximation factors of our algorithm, together with the
maximum gaps Λ for the four models mentioned in Section 1. All results in this section are
summarized in the first and second rows of Table 1 in Section 1.

For an instance I of HRT-MSLQ, let OPT(I) and WST(I) respectively denote the
maximum and minimum scores over all stable matchings of I, and let ALG(I) be the score
of the output of our algorithm Double Proposal. Then, WST(I) can be the score of the
output of the algorithm that first breaks ties arbitrarily and then applies the Gale–Shapley
algorithm for the resultant instance (see the full version [13]). Therefore, the maximum gap
is equivalent to the approximation factor of such arbitrary tie-breaking GS algorithm.

For a model I (i.e., subfamily of problem instances of HRT-MSLQ), let

Λ(I) = max
I∈I

OPT(I)
WST(I) and APPROX(I) = max

I∈I

OPT(I)
ALG(I) .
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In subsequent subsections, we provide exact values of Λ(I) and APPROX(I) for the four
fundamental models. Recall our assumptions that preference lists are complete, |R| <∑

h∈H u(h), and ℓ(h) ≤ u(h) ≤ n for each h ∈ H.

5.1 General Model
Let IGen denote the family of all instances of HRT-MSLQ, which we call the general model.

▶ Proposition 6. The maximum gap for the general model satisfies Λ(IGen) = n + 1.
Moreover, this equality holds even if residents have a master list, and preference lists of
hospitals contain no ties.

We next obtain the value of APPROX(IGen). Recall that ϕ is a function of n = |R| defined
by ϕ(1) = 1, ϕ(2) = 3

2 , and ϕ(n) = n(1 + ⌊ n
2 ⌋)/(n + ⌊ n

2 ⌋) for n ≥ 3.

▶ Theorem 7. The approximation factor of Double Proposal for the general model
satisfies APPROX(IGen) = ϕ(n).

We provide a full proof in the full version of the paper [13]. Here, we present the ideas to
show the inequality OPT(I)

ALG(I) ≤ ϕ(n) for any I ∈ IGen.

Proof sketch of Theorem 7. Let M be the output of the algorithm and N be an optimal
stable matching. We define vectors pM and pN on R, which distribute the scores to residents.
For each h ∈ H, among residents in M(h), we set pM (r) = 1

ℓ(h) for min{ℓ(h), |M(h)|} residents
and pM (r) = 0 for the remaining |M(h)|−min{ℓ(h), |M(h)|} residents. Similarly, we define pN

from N . We write pM (A) :=
∑

r∈A pM (r) for any A ⊆ R. By definition, pM (M(h)) = sM (h)
and pN (N(h)) = sN (h) for each h ∈ H, and hence s(M) =

∑
h∈H sM (h) = pM (R) and

s(N) =
∑

h∈H sN (h) = pN (R). Thus, pN (R)
pM (R) = s(N)

s(M) , which needs to be bounded.
Let R′ = {r′

1, r′
2, . . . , r′

n} be a copy of R and identify pN as a vector on R′. Consider a
bipartite graph G = (R, R′; E) whose edge set is E := { (ri, r′

j) ∈ R × R′ | pM (ri) ≥ pN (r′
j) }.

For any matching X ⊆ E in G, denote by ∂(X) ⊆ R ∪ R′ the set of vertices covered by
X. Then, pM (R ∩ ∂(X)) ≥ pN (R′ ∩ ∂(X)) holds since each edge (ri, r′

j) ∈ X ⊆ E satisfies
pM (ri) ≥ pN (r′

j). In addition, the value of pN (R′ \ ∂(X)) − pM (R \ ∂(X)) is bounded from
above by |R \ ∂(X)| = |R| − |X| = n − |X| because pN (r′) ≤ 1 for any r′ ∈ R′ and pM (r) ≥ 0
for any r ∈ R. Therefore, the existence of a matching X ⊆ E with large |X| helps us bound
pN (R)
pM (R) . Indeed, the following claim plays a key role in our proof: (⋆) The graph G admits a
matching X ⊆ E with |X| ≥ ⌈ n

2 ⌉.
In the proof in the full version [13], the required bound of pN (R)

pM (R) is obtained using a
stronger version of (⋆). Here we concentrate on showing (⋆). To this end, we divide R into

R+ := { r ∈ R | M(r) ≻r N(r) } ,

R− := { r ∈ R | N(r) ≻r M(r) or [M(r) =r N(r), pN (r) > pM (r)] } , and
R0 := { r ∈ R | M(r) =r N(r), pM (r) ≥ pN (r) } .

Let R′
+, R′

−, R′
0 be the corresponding subsets of R′. We show the following two properties.

There is an injection ξ+ : R+ → R′ such that pM (r) = pN (ξ+(r)) for every r ∈ R+.
There is an injection ξ− : R′

− → R such that pN (r′) = pM (ξ−(r′)) for every r′ ∈ R′
−.

We first define ξ+. For each hospital h with M(h) ∩ R+ ̸= ∅, there is r ∈ M(h) ∩ R+ with
h = M(r) ≻r N(r). By the stability of N , hospital h is full in N . Then, we can define an
injection ξh

+ : M(h) ∩ R+ → N(h) so that pM (r) = pN (ξh
+(r)) for all r ∈ M(h) ∩ R+. By

regarding N(h) as a subset of R′ and taking the direct sum of ξh
+ for all hospitals h with

M(h) ∩ R+ ̸= ∅, we obtain a required injection ξ+ : R+ → R′.
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We next define ξ−. For each hospital h′ with N(h′)∩R′
− ≠ ∅, any r ∈ N(h′)∩R′

− satisfies
either h′ = N(r) ≻r M(r) or [h′ = N(r) =r M(r), pN (r) > pM (r)]. If some r ∈ N(h′) ∩ R′

−
satisfies the former, the stability of M implies that h′ is full in M . If all r ∈ N(h′)∩R′

− satisfy
the latter, they all satisfy 0 ̸= pN (r) = 1

ℓ(h′) , and hence |N(h′) ∩ R′
−| ≤ ℓ(h′). Additionally,

pN (r) > pM (r) implies either pM (r) = 0 or ℓ(h′) < ℓ(h), where h := M(r). Observe that
pM (r) = 0 implies |M(h)| > ℓ(h). By Lemma 2, each of ℓ(h′) < ℓ(h) and |M(h)| > ℓ(h)
implies |M(h′)| ≥ ℓ(h′) ≥ |N(h′) ∩ R′

−|. Then, in any case, we can define an injection
ξh′

− : N(h′) ∩ R′
− → M(h′) such that pN (r′) = pM (ξh′

− (r′)) for all r′ ∈ N(h′) ∩ R′
−. By taking

the direct sum of ξh′

− for all hospitals h′ with M(h′) ∩ R− ̸= ∅, we obtain ξ− : R′
− → R.

Let G∗ = (R, R′; E∗) be a bipartite graph (possibly with multiple edges), where E∗ is
the disjoint union of E+, E−, and E0, defined by

E+ := { (r, ξ+(r)) | r ∈ R+ } , E− := { (ξ−(r′), r′) | r ∈ R′
− } , and

E0 := { (r, r′) | r ∈ R0 and r′ is the copy of r } .

Figure 1 A graph G∗ = (R, R′; E∗).

See Fig. 1 for an example. By the definitions of ξ+, ξ−, and R0, any edge (r, r′) in E∗

belongs to E, and hence any matching in G∗ is also a matching in G. Since ξ+ : R+ → R′

and ξ− : R′
− → R are injections, we observe that every vertex in G∗ is incident to at most

two edges in E∗. Then, E∗ is decomposed into paths and cycles, and hence E∗ contains a
matching of size at least ⌈ |E∗|

2 ⌉. Since |E∗| = |R+| + |R−| + |R0| = n, this means that there
exists a matching X ⊆ E with |X| ≥ ⌈ n

2 ⌉, as required. ◀

5.2 Uniform Model
Let IUniform denote the family of uniform problem instances of HRT-MSLQ, where an instance
is called uniform if upper and lower quotas are uniform. In the rest of this subsection, we
assume that ℓ and u are nonnegative integers to represent the common lower and upper
quotas, respectively, and let θ := u

ℓ (≥ 1). We call IUniform the uniform model.

▶ Proposition 8. The maximum gap for the uniform model satisfies Λ(IUniform) = θ.
Moreover, this equality holds even if preference lists of hospitals contain no ties.

▶ Theorem 9. The approximation factor of Double Proposal for the uniform model
satisfies APPROX(Iuniform) = θ2+θ−1

2θ−1 .

Note that θ2+θ−1
2θ−1 < θ whenever ℓ < u because θ − θ2+θ−1

2θ−1 = (θ−1)2

2θ−1 > 0. Here is the ideas to
show that OPT(I)

ALG(I) ≤ θ2+θ−1
2θ−1 holds for any I ∈ IUniform.
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Proof sketch of Theorem 9. Let M be the output of the algorithm and N be an optimal
stable matching, and assume s(M) < s(N). Consider a bipartite graph (R, H ; M ∪N), which
may have multiple edges. Take an arbitrary connected component, and let R∗ and H∗ be the
sets of residents and hospitals, respectively, contained in it. It is sufficient to bound sN (H∗)

sM (H∗) .
Let H0 be the set of all hospitals in H∗ having strictly larger scores in N than in M , i.e.,

H0 := { h ∈ H∗ | sN (h) > sM (h) } .

Using this, we sequentially define

R0 := { r ∈ R∗ | N(r) ∈ H0 } , H1 := { h ∈ H∗ \ H0 | ∃r ∈ R0 : M(r) = h } ,

R1 := { r ∈ R∗ | N(r) ∈ H1 } , H2 := H∗ \ (H0 ∪ H1), and R2 := R∗ \ (R0 ∪ R1).

Figure 2 Example with [ℓ, u] = [2, 3].

See Fig. 2 for an example. We use scaled score functions vM := ℓ ·sM and vN := ℓ ·sN and
write vM (A) =

∑
h∈A vM (h) for any A ⊆ H. We bound vN (H∗)

vM (H∗) , which equals sN (H∗)
sM (H∗) . Note

that the set of residents assigned to H∗ is R∗ in both M and N . The scores differ depending
on how efficiently those residents are assigned. In this sense, we may think that a hospital h

is assigned residents “efficiently” in M if |M(h)| ≤ ℓ and is assigned “most redundantly” if
|M(h)| = u. Since vM (h) = min{ℓ, |M(h)|}, we have vM (h) = |M(h)| in the former case and
vM (h) = 1

θ · |M(h)| in the latter. We show that hospitals in H1 provide us with advantage of
M ; any hospital in H1 is assigned residents either efficiently in M or most redundantly in N .

For any h ∈ H0, sM (h) < sN (h) implies |M(h)| < ℓ. Then, the stability of M implies
M(r) ⪰r N(r) for any r ∈ R0. Hence, the following {H≻

1 , H=
1 } defines a bipartition of H1:

H≻
1 := { h ∈ H1 | ∃r ∈ M(h) ∩ R0 : h ≻r N(r) } ,

H=
1 := { h ∈ H1 | ∀r ∈ M(h) ∩ R0 : h =r N(r) } .

For each h ∈ H≻
1 , as some r satisfies h ≻r N(r), the stability of N implies that h is

full, i.e., h is assigned residents most redundantly, in N . Note that any h ∈ H≻
1 satisfies

vM (h) ≥ vN (h) because h ̸∈ H0, and hence vM (h) = vN (h) = ℓ. Then, |N(h)| = u =
θ · vN (h) = (θ − 1) · vM (h) + vN (h) for each h ∈ H≻

1 . Additionally, for any h ∈ H∗, we have
|N(h)| ≥ min{ℓ, |N(h)|} = vN (h). Since |R∗| =

∑
h∈H∗ |N(h)|, we have

|R∗| ≥ (θ − 1) · vM (H≻
1 ) + vN (H≻

1 ) + vN (H∗ \ H≻
1 ) = (θ − 1) · vM (H≻

1 ) + vN (H∗).
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For each h ∈ H=
1 , there is r ∈ R0 with M(r) = h =r N(r). As r ∈ R0, the hospital

h′ := N(r) belongs to H0, and hence |M(h′)| < ℓ. Then, Lemma 2(ii) implies |M(h)| ≤ ℓ, i.e.,
h is assigned residents efficiently in M . Note that any h ∈ H0 satisfies vM (h) < vN (h) ≤ ℓ.
Then, the number of residents assigned to H0 ∪ H=

1 is vM (H0 ∪ H=
1 ). Additionally, the

number of residents assigned to H≻
1 ∪ H2 is at most θ · vM (H≻

1 ∪ H2). Thus, we have

|R∗| ≤ vM (H0 ∪ H=
1 ) + θ · vM (H≻

1 ∪ H2) = vM (H∗) + (θ − 1) · vM (H≻
1 ∪ H2).

From these two estimations of |R∗|, we obtain vN (H∗) ≤ (θ − 1) · vM (H2) + vM (H∗), which
gives us a relationship between vM (H∗) and vN (H∗). Combining this with other inequalities,
we can obtain the required upper bound of vN (H∗)

vM (H∗) . ◀

5.3 Marriage Model
Let IMarriage denote the family of instances of HRT-MSLQ, in which each hospital has an
upper quota of 1. We call IMarriage the marriage model. By definition, [ℓ(h), u(h)] in this
model is either [0, 1] or [1, 1] for each h ∈ H. Since this is a one-to-one matching model,
the union of two stable matchings can be partitioned into paths and cycles. By applying
standard arguments used in other stable matching problems, we can obtain Λ(IMarriage) = 2
and APPROX(IMarriage) = 1.5.

As shown in Example 15 in Appendix A.1, there is no strategy-proof algorithm that can
achieve an approximation factor better than 1.5 even in the marriage model. Therefore, we
cannot improve this ratio without sacrificing strategy-proofness.

5.4 Resident-side Master List Model
Let IR-ML denote the family of instances of HRT-MSLQ in which all residents have the same
preference list. This is well studied in literature on stable matching [7,21–23]. We call IR-ML
the R-side ML model. We have already shown in Proposition 6 that Λ(IR-ML) = n + 1. Our
algorithm, however, solves this model exactly.

Note that this is not the case for the hospital-side master list model, which is NP-hard
as shown in Theorem 14 below. This difference highlights the asymmetry of two sides in
HRT-MSLQ.

6 Hardness Results

We obtain various hardness and inapproximability results for HRT-MSLQ. First, we show
that HRT-MSLQ in the general model is inapproximable and that we cannot hope for a
constant factor approximation.

▶ Theorem 10. HRT-MSLQ is inapproximable within a ratio n
1
4 −ϵ for any ϵ > 0 unless

P=NP.

Proof. We show the theorem by way of a couple of reductions, one from the maximum
independent set problem (MAX-IS ) to the maximum 2-independent set problem (MAX-2-IS ),
and the other from MAX-2-IS to HRT-MSLQ.

For an undirected graph G = (V, E), a subset S ⊆ V is an independent set of G if no
two vertices in S are adjacent. S is a 2-independent set of G if the distance between any
two vertices in S is at least 3. MAX-IS (resp. MAX-2-IS) asks to find an independent set
(resp. 2-independent set) of maximum size. Let us denote by IS(G) and IS2(G), respectively,
the sizes of optimal solutions of MAX-IS and MAX-2-IS for G. We assume without loss
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of generality that input graphs are connected. It is known that, unless P=NP, there is no
polynomial-time algorithm, given a graph G1 = (V1, E1), to distinguish between the two
cases IS(G1) ≤ |V1|ϵ1 and IS(G1) ≥ |V1|1−ϵ1 , for any constant ϵ1 > 0 [34].

Now, we give the first reduction, which is based on the NP-hardness proof of the
minimum maximal matching problem [18]. Let G1 = (V1, E1) be an instance of MAX-
IS. We construct an instance G2 = (V2, E2) of MAX-2-IS as V2 = V1 ∪ E1 ∪ {s} and
E2 = { (v, e) | v ∈ V1, e ∈ E1, e is incident to v in G1 } ∪ { (s, e) | e ∈ E1 }, where s is a new
vertex not in V1 ∪ E1. For any two vertices u and v in V1, if their distance in G1 is at least
2 then that in G2 is at least 4. Hence, any independent set in G1 is also a 2-independent
set in G2. Conversely, for any 2-independent set S in G2, S ∩ V1 is independent in G1 and
|S ∩ (V2 \ V1)| ≤ 1. These facts imply that IS2(G2) is either IS(G1) or IS(G1) + 1. Since
|E2| = 3|E1| ≤ 3|V1|2, distinguishing between IS2(G2) ≤ |E2|ϵ2 and IS2(G2) ≥ |E2|1/2−ϵ2 for
some constant ϵ2 > 0 would imply distinguishing between IS(G1) ≤ |V1|ϵ1 and IS(G1) ≥
|V1|1−ϵ1 for some constant ϵ1 > 0, which in turn implies P=NP.

We then proceed to the second reduction. Let G2 = (V2, E2) be an instance of MAX-
2-IS. Let n2 = |V2|, m2 = |E2|, V2 = {v1, v2, . . . , vn2}, and E2 = {e1, e2, . . . , em2}. We
construct an instance I of HRT-MSLQ as follows. For an integer p which will be determined
later, define the set of residents of I as R = { ri,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p }, where ri,j

corresponds to the jth copy of vertex vi ∈ V2. Next, define the set of hospitals of I as H ∪ Y ,
where H = { hk | 1 ≤ k ≤ m2 } and Y = { yi,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p }. The hospital hk

corresponds to the edge ek ∈ E2 and the hospital yi,j corresponds to the resident ri,j .
We complete the reduction by giving preference lists and quotas in Fig. 3, where 1 ≤

i ≤ n2, 1 ≤ j ≤ p, and 1 ≤ k ≤ m2. Here, N(vi) = { hk | ek is incident to vi in G2 }
and “( N(vi) )” denotes the tie consisting of all hospitals in N(vi). Similarly, N(ek) =
{ ri,j | ek is incident to vi in G2, 1 ≤ j ≤ p } and “( N(ek) )” is the tie consisting of all
residents in N(ek). The notation “· · · ” denotes an arbitrary strict order of all agents missing
in the list.

ri,j : ( N(vi) ) yi,j · · · hk [0, p]: ( N(ek) ) · · ·

yi,j [1, 1]: ri,j · · ·

Figure 3 Preference lists of residents and hospitals.

We will show that OPT(I) = m2 + p · IS2(G2). To do so, we first see a useful prop-
erty. Let G3 = (V3, E3) be the subdivision graph of G2, i.e., V3 = V2 ∪ E2 and E3 =
{ (v, e) | v ∈ V2, e ∈ E2, e is incident to v in G2 }. Then, the family I2(G2) of 2-independent
sets in G2 is characterized as follows [18]:

I2(G2) =
{

V2 \
⋃

e∈M

{endpoints of e}

∣∣∣∣∣ M is a maximal matching of G3

}
.

In other words, for a maximal matching M of G3, if we remove all vertices matched in M

from V2, then the remaining vertices form a 2-independent set of G2, and conversely, any
2-independent set of G2 can be obtained in this manner for some maximal matching M of
G3.

Let S be an optimal solution of G2 in MAX-2-IS, i.e., a 2-independent set of size
IS2(G2). Let M̃ be a maximal matching of G3 corresponding to S. We construct a
matching M of I as M = M1 ∪ M2, where M1 = { (ri,j , hk) | (vi, ek) ∈ M̃, 1 ≤ j ≤ p }
and M2 = { (ri,j , yi,j) | vi ∈ S, 1 ≤ j ≤ p }. It is not hard to see that each resident is
matched by exactly one of M1 and M2 and that no hospital exceeds its upper quota.

STACS 2022
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We then show the stability of M . Each resident matched by M1 is assigned to a first-
choice hospital, so if there were a blocking pair, then it would be of the form (ri,j , hk) where
M(ri,j) = yi,j and hk ∈ N(vi). Then, vi is unmatched in M̃ . Additionally, all residents
assigned to hk (if any) are its first choice; hence, hk must be undersubscribed in M . Then, ek

is unmatched in M̃ . hk ∈ N(vi) implies that there is an edge (vi, ek) ∈ E3, so M̃ ∪ {(vi, ek)}
is a matching of G3, contradicting the maximality of M̃ . Hence, M is stable in I.

A hospital in H has a lower quota of 0, so it obtains a score of 1. The number of hospitals
in Y that are assigned a resident is |M2| = p|S| = p ·IS2(G2). Hence, s(M) = m2 +p ·IS2(G2).
Therefore, we have OPT(I) ≥ s(M) = m2 + p · IS2(G2).

Conversely, let M be an optimal solution for I, i.e., a stable matching of score OPT(I).
Note that each ri,j is assigned to a hospital in N(vi) ∪ {yi,j} as otherwise (ri,j , yi,j) blocks
M . We construct a bipartite multi-graph GM = (V2, E2; F ) where V2 = {v1, v2, . . . , vn2} and
E2 = {e1, e2, . . . , em2} are identified as vertices and edges of G2, respectively, and an edge
(vi, ek)j ∈ F if and only if (ri,j , hk) ∈ M . Here, a subscript j of edge (vi, ek)j is introduced to
distinguish the multiplicity of edge (vi, ek). The degree of each vertex of GM is at most p, so
by Kőnig’s edge coloring theorem [24], GM is p-edge colorable and each color class c induces
a matching Mc (1 ≤ c ≤ p) of GM . Each Mc is a matching of G3, and by the stability of M ,
we can show that it is in fact a maximal matching of G3. Let M∗ be a minimum cardinality
one among them.

Define a subset S of V2 by removing vertices that are matched in M∗ from V2. By the above
observation, S is a 2-independent set of G2. We will bound its size. Note that s(M) = OPT(I)
and each hospital in H obtains the score of 1, so M assigns residents to OPT(I) − m2
hospitals in Y and each such hospital receives one resident. There are pn2 residents in
total, among which OPT(I) − m2 ones are assigned to hospitals in Y , so the remaining
pn2 − (OPT(I) − m2) ones are assigned to hospitals in H. Thus F contains this number of
edges and so |M∗| ≤ pn2−(OPT(I)−m2)

p = n2 − OPT(I)−m2
p . Since |V2| = n2 and exactly one

endpoint of each edge in M∗ belongs to V2, we have that |S| = |V2| − |M∗| ≥ OPT(I)−m2
p .

Therefore IS2(G2) ≥ |S| ≥ OPT(I)−m2
p . Hence, we obtain OPT(I) = m2 + p · IS2(G2) as

desired. Now we let p = m2, and have OPT(I) = m2(1 + IS2(G2)).
Therefore distinguishing between OPT(I) ≤ (m2)1+δ and OPT(I) ≥ (m2)3/2−δ for some

δ would distinguish between IS2(G2) ≤ (m2)ϵ2 and IS2(G2) ≥ (m2)1/2−ϵ2 for some constant
ϵ2 > 0. Since n = |R| = n2m2 ≤ (m2)2, a polynomial-time n1/4−ϵ-approximation algorithm
for HRT-MSLQ can distinguish between the above two cases for a constant δ < ϵ/2. Hence,
the existence of such an algorithm implies P=NP. This completes the proof. ◀

We then show inapproximability results for the uniform model and the marriage model
under the Unique Games Conjecture (UGC).

▶ Theorem 11. Under UGC, HRT-MSLQ in the uniform model is not approximable within
a ratio 3θ+3

2θ+4 − ϵ for any positive ϵ.

▶ Theorem 12. Under UGC, HRT-MSLQ in the marriage model is not approximable within
a ratio 9

8 − ϵ for any positive ϵ.

Furthermore, we give two examples showing that HRT-MSLQ is NP-hard even in very
restrictive settings. The first is a marriage model for which ties appear in one side only.

▶ Theorem 13. HRT-MSLQ in the marriage model is NP-hard even if there is a master
preference list of hospitals and ties appear only in preference lists of residents or only in
preference lists of hospitals.
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The other is a setting like the capacitated house allocation problem, where all hospitals
are indifferent among residents.

▶ Theorem 14. HRT-MSLQ in the uniform model is NP-hard even if all the hospitals quotas
are [1, 2], preferences lists of all residents are strict, and all hospitals are indifferent among
all residents (i.e., there is a master list of hospitals consisting of a single tie).
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A Examples

We give some examples that show the difficulty of implementing strategy-proof algorithms
for HRT-MSLQ.

A.1 Incompatibility between Optimization and Strategy-proofness
Here, we provide two examples that show that solving HRT-MSLQ exactly is incompatible
with strategy-proofness even if we ignore computational efficiency. This incompatibility holds
even for restrictive models. The first example is an instance in the marriage model in which
ties appear only in preference lists of hospitals. The second example is an instance in the
uniform model in which ties appear only in preference lists of residents.

▶ Example 15. Consider the following instance I, consisting of two residents and three
hospitals.

r1: h1 h2 h3 h1 [1, 1]: (r1 r2)

r2: h1 h2 h3 h2 [1, 1]: (r1 r2)

h3 [0, 1]: (r1 r2)

Then, I has two stable matchings M1 = {(r1, h1), (r2, h2)} and M2 = {(r1, h2), (r2, h1)},
both of which have a score of 3. Let A be an algorithm that outputs a stable matching with
a maximum score for any instance of HRT-MSLQ. Without loss of generality, suppose that
A returns M1. Let I ′ be obtained from I by replacing r2’s list with “r2 : h1 h3 h2.” Then,
the stable matchings for I ′ are M3 = {(r1, h1), (r2, h3)} and M4 = {(r1, h2), (r2, h1)}, which
have scores 2 and 3, respectively. Since A should return one with a maximum score, the
output is M4, in which r2 is assigned to h1 while she is assigned to h2 in M1. As h1 ≻r3 h2
in her true preference, this is a successful manipulation for r2, and A is not strategy-proof.

Example 15 shows that there is no strategy-proof algorithm for HRT-MSLQ that attains an
approximation factor better than 1.5 even if there are no computational constraints.

▶ Example 16. Consider the following instance I, consisting of six residents and five hospitals,
where the notation “· · · ” at the tail of lists denotes an arbitrary strict order of all agents
missing in the list.

r1: h1 · · · h1 [1, 2]: r1 r2 r6 · · ·

r2: h3 h2 h1 · · · h2 [1, 2]: r2 · · ·

r3: h3 · · · h3 [1, 2]: r3 r4 r2 · · ·

r4: (h3 h4) · · · h4 [1, 2]: r5 r4 r6 · · ·

r5: h4 · · · h5 [1, 2]: r6 · · ·

r6: h4 h5 h1 · · ·
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This instance I has two stable matchings

M1 = {(r1, h1), (r2, h2), (r3, h3), (r4, h3), (r5, h4), (r6, h4)}, and
M2 = {(r1, h1), (r2, h3), (r3, h3), (r4, h4), (r5, h4), (r6, h5)},

both of which have a score of 4. Let A be an algorithm that outputs an optimal solution for
any input. Then, A must output either M1 or M2.

Suppose that A outputs M1. Let I ′ be an instance obtained by replacing r2’s preference
list from “r2 : h3 h2 h1 · · · ” to “r2 : h3 h1 h2 · · · .” Then, the stable matchings I ′ admits are
M2 and M ′

1 = {(r1, h1), (r2, h1), (r3, h3), (r4, h3), (r5, h4), (r6, h4)}, whose score is 3. Hence,
A must output M2. As a result, r2 is assigned to a better hospital h3 than h2, so this
manipulation is successful.

If A outputs M2, then r6 can successfully manipulate the result by changing her list from
“r6 : h4 h5 h1 · · · ” to “r6 : h4 h1 h5 · · · .” The instance obtained by this manipulation has two
stable matchings M1 and M ′

2 = {(r1, h1), (r2, h3), (r3, h3), (r4, h4), (r5, h4), (r6, h1)}, whose
score is 3. Hence, A must output M1 and r6 is assigned to h4, which is better than h5.

A.2 Absence of Strategy-proofness in Adaptive Tie-breaking
We provide an example that demonstrates that introducing a greedy tie-breaking method
into the resident-oriented Gale–Shapley algorithm in an adaptive manner destroys the
strategy-proofness for residents.

▶ Example 17. Consider the following instance I (in the uniform model), consisting of five
residents and three hospitals.

r1: h1 h2 h3 h1 [1, 2]: r2 r3 r5 r1 r4

r2: (h1 h2) h3 h2 [1, 2]: r2 r4 r1 r3 r5

r3: h1 h2 h3 h3 [1, 2]: r1 r2 r3 r4 r5

r4: h2 h1 h3

r5: h1 h3 h2

Consider an algorithm that is basically the resident-oriented Gale–Shapley algorithm and
let each resident prioritize deficient hospitals over sufficient hospitals among the hospitals
in the same tie. Its one possible execution is as follows. First, r1 proposes to h1 and is
accepted. Next, as h1 is sufficient while h2 is deficient, r2 proposes to h2 and is accepted.
If we apply the ordinary Gale–Shapley procedure afterward, then we obtain a matching
{(r1, h3), (r2, h2), (r3, h1), (r4, h2), (r5, h1)}. Thus, r1 is assigned to her third choice.

Let I ′ be an instance obtained by swapping h1 and h2 in r1’s preference list. If we run
the same algorithm for I ′, then r1 first proposes to h2. Next, as h2 is sufficient while h1 is
deficient, r2 proposes to h1 and is accepted. By applying the ordinary Gale–Shapley procedure
afterward, we obtain {(r1, h2), (r2, h1), (r3, h1), (r4, h2), (r5, h3)}. Thus, r1 is assigned to a
hospital h2, which is her second choice in her original list. Therefore, this manipulation is
successful for r1.
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Abstract
This paper introduces an online scheduling problem on m identical machines with a metric state
space, which generalizes the classical online scheduling problem on identical machines, the online
traveling salesman problem, and the online dial-a-ride problem. Each job is associated with a
source state, a destination state, a processing time, and a release time. Each machine can process
a job on and after its release time. Before processing a job, a machine needs to change its state
to the source state (in a time corresponding to the distance), and after the process of the job, the
machine’s state becomes the destination state. While related research deals with a model in which
only release times are unknown to the algorithm, this paper focuses on a general model in which
destination states and processing times are also unknown. The main result of this paper is to propose
a O(log m/ log log m)-competitive online algorithm for the problem, which is best possible. A key
approach is to divide the difficulty of the problem. To cope with unknown release times, we provide
frameworks to produce a min{2ρ+1/2, ρ+2}-competitive algorithm using a ρ-competitive algorithm
for a basic case where all jobs are released at time 0. Then, focusing on unknown destination states
and processing times, we construct an O(log m/ log log m)-competitive algorithm for the basic case.
We also provide improved algorithms for some special cases.
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1 Introduction

For a metric space M = (X, d) and a positive integer m, we consider the following (M , m)-
scheduling problem. We have m identical machines, which work in parallel. Each machine i

has a state si(t) in X at time t ∈ R+, and moves along a path P in M to change a state x

to a state y, where each machine is assumed to move in M with at most unit speed. All
machines are initially (i.e., at time 0) located at the origin o in X and need to return to
o at the end. Machines process jobs given in an online fashion. Each job j has two states
called the source state aj ∈ X and destination state bj ∈ X. It also has the processing time
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32:2 Online Scheduling on Identical Machines with a Metric State Space

pj ∈ R+ and the release time rj ∈ R+. Job j appears on rj , can be processed on and after
rj , and requires pj time to process it. To processes job j, machine i first needs to change its
state to the source state aj and reaches the destination state bj afterward. We assume that
pj ≥ d(aj , bj), which means that pj − d(aj , bj) (≥ 0) time is additionally required to process
the job j. The jobs are non-preemptive, i.e., once a machine starts to process a job, it must
finish the processing of the job without doing anything else. In addition, any job has to be
processed by exactly one machine. The (M , m)-scheduling problem is to find a schedule
to minimize the makespan, that is, the time when all machines return to the origin o after
completing all jobs.

We study the real-time online version of this scheduling problem, called the online
(M , m)-scheduling problem. No information on jobs is available before their release time.
Namely, we first see the job j at time rj , and we do not know if it comes or not before time rj .
There exist two information models, called the complete and incomplete models, for the online
(M , m)-scheduling problem, where we mainly study the incomplete model. In the complete
model, all the information of the job j are revealed at the release time rj . On the other hand,
in the incomplete model, the processing time pj and destination state bj are still unknown at
time rj and revealed when the job j is completed by some machine. Several fundamental
cases of the online (M , m)-scheduling problem in the complete information model have
been studied in the literature of scheduling and combinatorial optimization [1–10, 17, 18],
as described in the next subsection. On the other hand, little is known for the incomplete
information model [19, 21]. However, there are a number of practical situations for which
the incomplete model is suitable. For example, in the scheduling problems such as repairing
companies, we do not know in advance the exact processing time for jobs as well as their
situations (or states) when finishing them. Classical taxi-hailing services only collect the
pick-up locations when customers phone the companies, and elevator systems are usually
equipped with only landing call buttons, although the systems can get information on the
directions (i.e., up and down) of the requests. Our goal is to design online algorithms for
the online (M , m)-scheduling problem under several natural settings of M and m. We also
consider designing online algorithms for the basic online (M , m)-scheduling problem, where
all jobs are released at time 0, since it turns out that any algorithm for the basic problem
can be extended to the one for the general problem. We analyze the performance of online
algorithms by the competitive ratio, that is, the ratio between the optimal makespan and the
one of the schedule obtained by the online algorithm.

1.1 Previous work
One of the simplest cases of the online (M , m)-scheduling problem is the case when the metric
space consists of a single point, i.e., the states of the machines are fixed. We denote the trivial
metric as R0. For the online (R0, m)-scheduling problem, the following greedy algorithm is
(2 − 1/m)-competitive, and this is best possible [13–15, 21]: assign an unprocessed job to
any available machine anytime if possible. This result is regardless of information models.
Shmoys et al. [21] focus on the incomplete information model and introduced a technique
to convert a ρ-competitive algorithm for the basic online (R0, m)-scheduling problem into a
2ρ-competitive one for the general online (R0, m)-scheduling problem.

An important special case of the problem is when the processing of each job does not change
the state, i.e., aj = bj for all jobs j. Such a situation appears in a production system with
sequence-dependent setup or changeover, e.g., mold setup, die setup, or color setup [16,20].
To process a job in a plastic production system, we must attach the corresponding injection
mold to an injection machine. Thus, we need setup time before and after processing the job.
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Gambosi and Nicosia [12] studied an online version (in the one-by-one model) of scheduling
with setup costs. Furthermore, a particular case where the processing time of every job
equals 0 is studied as the online traveling salesman problem (TSP) [2, 3, 7, 8, 17]. The
competitive ratio of the online TSP is 2 for any metric and any number of machines [2,17]. In
addition, the competitive ratio of the single-server (m = 1) online TSP with the line metric
is (9 +

√
17)/8 ≈ 1.64 [2, 3, 7]. We remark that the online TSP is included in the complete

information model.
When the processing time of each job is equal to its travel distance, i.e., pj = d(aj , bj) for

all jobs j, our problem is studied under the name of the online dial-a-ride problem. There
is a large body of studies on the online dial-a-ride problem [1, 4–6, 9, 10, 18, 19], but only
Lipmann et al. [19] addresses the incomplete information model. Lipmann et al. [19] showed
that upper and lower bounds of the single machine online dial-a-ride problem are 4 and
1 + 3

2
√

2 (≈ 3.121), respectively. For the upper bound, they designed an algorithm, called
BOUNCER, which decides a process order based on a solution to the online TSP over the
source states. In the algorithm, every time the machine completes a job, the machine changes
the state to the source state of the job. Thus, the makespan is the length of the TSP tour
plus twice the sum of processing times. Because a 2-competitive algorithm is known for the
online TSP, the BOUNCER algorithm is 4-competitive. Note that the BOUNCER algorithm
is easily extended to the online (M , m)-scheduling problem, but its competitive ratio is
2 + 2m. We also note that in their paper, the processing time and destination state of a job
are revealed at the moment when some machine starts processing the job. When m = 1 and
preemption is not allowed, this is the same as our model. However, our model is more general
when m > 1. For the online dial-a-ride problem under the complete information model,
Ascheuer et al. [1] analyzed two natural algorithms, which they call IGNORE and REPLAN,
for the single machine setting. They also provide an algorithm called SMARTSTART, which
is 2-competitive for any metric and any number of machines. This is best possible since a
lower bound of the competitive ratio is 2 even for the online TSP [2].

1.2 Our results
Our main result is to provide an O(log m/ log log m)-competitive algorithm (Theorem 8) and
prove that this is best possible up to a constant factor (Theorem 7) among algorithms for the
general (M , m)-scheduling problem. We summarize our results and existing ones in Table 1.

We describe the techniques to obtain our results. Our approach is to divide the difficulty
of our problem into two types of unknown information; one is a release time (online arrival),
and the other consists of a destination state and a processing time.

First, to cope with the unknown release times, we show a framework to design an algorithm
using one for the basic online (M , m)-scheduling problem. We describe this in Section 3.
Roughly speaking, our framework computes a schedule by repeatedly applying the basic case
algorithm. As rules for applying the algorithm, we adopt three natural strategies, called
IGNORE, REPLAN, and SMARTSTART, proposed for the online dial-a-ride problem in the
complete information model [1]. We analyze these strategies in detail using three factors that
contribute to the makespan. The analysis implies that a ρ-competitive algorithm for the basic
online (M , m)-scheduling problem can be converted into a min{2ρ + 1/2, ρ + 2}-competitive
algorithm for the general case (Corollaries 2 and 4). We remark that this extends the result
by Shmoys et al. [21]. They deal with only the fixed state case (i.e., M = R0), and their
method results in a 2ρ-competitive algorithm. If ρ is greater than 2, our method leads to a
better competitive ratio. Consequently, we only need to focus on the basic case.
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Then, focusing only on unknown destination states and processing times, we present an
O(log m/ log log m)-competitive algorithm for the basic online (M , m)-scheduling problem
(Algorithm 1) in Section 4.1. Our algorithm first partition the jobs into m groups and assigns
one group to each machine based only on the information of source states. To shorten the
makespan, we set machines that complete their assigned groups to process a group that has
not yet complete. It is not a good idea to assign additional machines to an uncompleted
group immediately and greedily: this method may cause a machine making a vain effort
to assist one completing soon. Thus, we control reassignments. Namely, we appropriately
wait and reassign jobs so that the number of assisting machines increases exponentially
with base q where qq > m ≥ (q − 1)q−1. Our analysis is not only elementary but also it
shows a tight competitive ratio for the basic problem. This result together with the above
conversion implies our main algorithmic result. We can see the ratio is the best possible
because we show that any online algorithm is Ω(log m/ log log m)-competitive for the basic
online (M , m)-scheduling problem. Note that this lower bound also holds for the cases of (i)
pj = d(aj , bj) for all job j, (ii) aj = bj for all job j, and (iii) the destination state and the
processing time of each job are revealed at the moment when some machine starts processing
the job.

We also discuss the competitive ratio of special cases in Section 5. One is a single machine
case. We show that Algorithm 1 is 3-competitive for the basic online (M , 1)-scheduling
problem, and prove that no online algorithm has the competitive ratio better than 2.255
and 3.181 for the basic and the general problems, respectively. We note that our bound
of 3.181 improves the best known lower bound of 1 + 3

√
2

2 ≈ 3.12 for the online dial-a-ride
problem under the incomplete information model [19]. Another is a two-machine case. We
improve Algorithm 1 to obtain a 3.5-competitive and a (4 +

√
3

2 )-competitive algorithm for
the basic and the general online (M , 2)-scheduling problem, respectively. In addition, when
the optimal values of the TSP with a single machine and m machines are close, we provide a
13/3-competitive algorithm for the basic online (R, m)-scheduling problem.

Finally, we discuss several other variants of our problem in Section 6: minimizing the
total completion time is hopeless, the open setting (the machines do not need to return to
the origin) can easily be reduced to the closed setting (the machines do not need to return
to the origin) with loss of factor 2, and preemption does not help if the destination state and
the processing time of each job are revealed upon completion.

Due to space limitations, some proofs are deferred to Appendix A.

Table 1 Summary of our results and previous work.

incomplete info. model complete info. model
release time # machines upper bound lower bound upper bound lower bound

general m Θ( log m
log log m

) (Thms. 8, 7) 2 [1]
1 4 (Thm. 13) 3.181 (Thm. 15)

0 (basic) m Θ( log m
log log m

) (Thms. 9, 7) 1
1 3 (Thm. 12) 2.255 (Thm. 14)

2 Preliminaries

An instance of the online (M , m)-scheduling problem is specified by a metric space M = (X, d)
with a distinguished origin o ∈ X, the number of machines m, and a set of jobs J . Let
[m] = {1, 2, . . . , m} be the set of machines. Note that d : X ×X → R+ is a function such
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that for any x, y, z ∈ X, the following holds: (i) d(x, y) = 0 ⇐⇒ x = y, (ii) d(x, y) = d(y, x),
and (iii) d(x, z) ≤ d(x, y) + d(y, z). We assume that M is path-connected, i.e., for any pair
of points x, y ∈ X, there is a continuous path γ : [0, 1] → X with γ(0) = x and γ(1) = y

of length d(x, y). Examples of such metric spaces are the real line R, the Euclidean plane
R2, and a circle R/Z, where we assume that each set has the Euclidean distance. Each job
j ∈ J is associated with a tuple (aj , bj , pj , rj) ∈ X × X × R+ × R+, where aj and bj are
respectively the source and the destination states, pj is the processing time, and rj is the
release time of job j. When processing a job j by a machine in state s, it is first necessary to
change the state of machine to aj in time d(s, aj). Then after the machine starts to process
job j, the machine’s state is changed continuously from aj , and finally reaches bj . Possibly
the process is done without state change (e.g., injection molds remain unchanged during
production of one item). A job j is called empty if aj = bj and pj = 0. Assume that the
state of each machine i is the origin o at time 0 (i.e., si(0) = o), the state can be changed
in at most unit speed (i.e., d(si(t), si(t′)) ≤ |t − t′| for all i ∈ [m] and t, t′ ∈ R+), and the
processing time pj is at least d(aj , bj) for all job j. Each machine can process at most one
job at a time. We do not allow preemption; once a machine starts processing a job, it is not
permitted to stop until the process is completed. The objective of the problem is to minimize
the completion time (makespan), which is the time when the machines have completed all
jobs and returned to o.

A (feasible) schedule is a sequence of processing and states change of the machines
satisfying the following: (1) the state of each machine is the origin o at time 0 and at the end,
(2) the state of each machine is changed in at most unit speed, and (3) every job is processed
on or after its release time. An online algorithm decides a partial schedule in real-time. We
focus on the incomplete information model in which an online algorithm has no information
about the destination state and the processing time of each job until the job is completed.
The source state of each job is revealed at its release time.

We evaluate the performance of an online algorithm by the competitive ratio. Throughout
the paper, we only care about deterministic online algorithms. For a problem instance I,
we denote the completion time by an algorithm ALG and an optimal offline algorithm OPT
by ALG(I) and OPT(I), respectively. We assume that the optimal offline algorithm knows
the information of all the jobs in advance. An algorithm ALG is said to be c-competitive if
ALG(I) ≤ c ·OPT(I) for any instance I of the online (basic) (M , m)-scheduling problem.
We refer to the schedule of the optimal offline algorithm as the optimal offline schedule.

3 Reduction to the Basic Problem

In this section, we consider three natural strategies, called IGNORE, REPLAN, and SMART-
START, to convert an algorithm for the basic online (M , m)-scheduling problem into an
algorithm for the online (M , m)-scheduling problem. These strategies are applied to the
(complete information) online dial-a-ride problem in [1]. IGNORE is a strategy that runs an
optimal subsequent schedule (which can be computed in the complete information setting)
for unprocessed jobs if they exist, ignoring all new jobs until all machines finish the assigned
jobs and come back to the origin o. REPLAN is a greedy strategy that stops the current
plan whenever a new job is released, makes all the machines return to the origin o right after
the current process, and starts a replanned optimal subsequent schedule for the remaining
jobs. We remark that these two strategies decide when to start independently of processing
times, while SMARTSTART uses the information. SMARTSTART is similar to IGNORE,
but it may keep the machines idle for a time depending on an estimated processing time of
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remaining jobs (which is, for example, calculated by assuming that the processing time is all
zero). These strategies do not move machines until some jobs are released, and hence we do
not need to consider the instance with no jobs, called the empty instance, in the competitive
analysis.

Let ALG0 be an algorithm for the basic online (M , m)-scheduling problem, and let I0
be an instance. We analyze our conversions by the following three factors that contribute
to the makespan: (i) the optimal completion time OPT(I0), (ii) the mean sum p(I0)/m of
processing times per machine, where p(I0) =

∑
j∈J pj for the jobs in I0, and (iii) the lower

bound LB(I0) on the minimum completion time for I0, which is given by the optimal value
of the m-traveling salesman problem (m-TSP) over the source states. We refer to the m-TSP
as the problem of finding m tours that visit every location so as to minimize the length of
the longest tour [11]. The 1-TSP coincides with TSP. In what follows, we assume that

ALG0(I0) ≤ αOPT(I0) + β · p(I0)/m + γLB(I0), (1)

where α, β, and γ are nonnegative reals independent from I0. Note that ALG0 is (α + β + γ)-
competitive because OPT(I0) ≥ p(I0)/m and OPT(I0) ≥ LB(I0). In addition, α + γ ≥ 1
because ALG0(I0) ≤ (α + γ) ·OPT(I0) for any instance I0 with p(I0) = 0. For a set S′ of
jobs, we denote by S′

0 the instance of the basic (M , m)-scheduling problem with job set S′.
We first consider the following IGNORE algorithm. The machines remain idle (i.e., the

machines are in the origin and not working) until a non-empty set S of unprocessed jobs
appear. The algorithm then immediately processes S following the schedule obtained by
ALG0 for S0. We refer to this schedule as a subschedule for S. All jobs that arrive during
the execution of the subschedule are temporarily ignored until the subschedule is completed
and all machines become idle again. Then, the algorithm continues the same process.

▶ Theorem 1. IGNORE is (2α + β + 2γ + 1/2)-competitive for the online (M , m)-scheduling
problem.

Proof. We fix a non-empty instance I. Let t∗ be the last released time of jobs in I.
Suppose that the machines are idle at time t∗. Let R be the set of jobs processed in

the last subschedule of the IGNORE algorithm. By construction, the length of the last
subschedule is ALG0(R0) ≤ αOPT(R0) + βp(R0)/m + γLB(R0) ≤ (α + β + γ)OPT(I). Since
t∗ ≤ OPT(I) and α + β ≥ 1, it holds that

IGNORE(I) = t∗ + ALG0(R0) ≤ t∗ + (α + β + γ) ·OPT(I)
≤ (1 + α + β + γ)OPT(I) ≤ (2α + β + 2γ + 1/2)OPT(I).

Now suppose that some machines are not idle at time t∗. Then t∗ is in the second last
subschedule of the algorithm, and the last subschedule starts right after the second last
subschedule ends. Let R and S be the sets of jobs processed in the last and the second last
subschedule, respectively. We denote by r′ = min(a,b,p,r)∈R r.

Let qi be the state of machine i at time r′ in the optimal offline schedule for I. Thus,
maxi∈[m] d(o, qi) ≤ r′ ≤ OPT(I) and OPT(I) ≥ 2 maxi∈[m] d(o, qi). For the instance R0, the
minimum makespan is OPT(R0). On the other hand, when we first move each machine
i to state qi, and then imitate an optimal offline schedule for I after time r′, ignoring
jobs not in R, the makespan will be maxi∈[m] d(o, qi) + OPT(I) − r′. Thus, we see that
OPT(R0) ≤ maxi∈[m] d(o, qi) + OPT(I)− r′. Hence, we obtain that
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IGNORE(I)
≤ r′ + ALG0(S0) + ALG0(R0)
≤ r′ + (α + γ)OPT(S0) + (α + γ)OPT(R0) + βp(S0)/m + βp(R0)/m

≤ r′ + (α + γ)OPT(I) + (α + γ)OPT(R0) + βp(I0)/m + (α + γ − 1)(r′ −max
i

d(o, qi))

≤ (α + γ)
(

r′ + OPT(R0)− max
i∈[m]

d(o, qi)
)

+ (α + β + γ)OPT(I) + max
i∈[m]

d(o, qi)

≤ (2α + β + 2γ + 1/2)OPT(I). ◀

▶ Corollary 2. If there exists a ρ-competitive algorithm for the basic online (M , m)-scheduling
problem, then there exists a (2ρ+1/2)-competitive algorithm for the online (M , m)-scheduling
problem.

Next, we consider the following REPLAN algorithm. When a new job is released, the
REPLAN algorithm calls all the machines, and each machine comes back to the origin o

immediately after completing the currently processing job. After all machines are returned,
it processes the unprocessed jobs S following the schedule obtained by ALG0 for S0.

▶ Theorem 3. REPLAN is (α + β + γ + 2)-competitive for the online (M , m)-scheduling
problem.

Proof. We fix a non-empty instance I. Let t∗ be the last release time of jobs appearing in I,
and let R be the set of unprocessed jobs at time t∗.

At the time t∗, all machines are made to directly return to the origin o as soon as possible.
A machine that is not processing any job (including on the way to some job) at time t∗

can return in t∗ (≤ OPT(I)) time, and a machine that is processing job j can return in
pj + d(bj , o) (≤ OPT(I)) time. Thus, all machines return in at most OPT(I) time. After all
the machines have returned to the origin o, it takes ALG0(R0) ≤ αOPT(R0) + βp(R0)/m +
γLB(R0) ≤ (α + β + γ)OPT(I) time to complete all the jobs in R. Hence, the completion
time by REPLAN is at most

REPLAN(I) ≤ t∗ + OPT(I) + (α + β + γ)OPT(I) ≤ (α + β + γ + 2)OPT(I). ◀

▶ Corollary 4. If there exists a ρ-competitive algorithm for the basic online (M , m)-scheduling
problem, then there exists a (ρ + 2)-competitive algorithm for the online (M , m)-scheduling
problem.

Finally, we discuss the SMARTSTART strategy, which is originally proposed for the
complete information model [1]. SMARTSTART calculates the minimum completion time
T for the unprocessed jobs and waits until the time T . However, this is impossible in the
incomplete information model. Therefore, we use LB(I0) as an alternative parameter to
decide when to start.

To be precise, the algorithm SMARTSTART has a fixed parameter θ ≥ 0, which will be
optimized later. When the machines are idle, and there is a non-empty set S of unprocessed
jobs, the algorithm computes LB(S0). The algorithm keeps machines idle until the time
θ · LB(S0) if it is before the time. Then, it immediately processes S following the schedule
obtained by ALG0 for S0. The algorithm ignores all jobs that arrived during the execution
of the subschedule until the subschedule is completed and all machines become idle again.
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▶ Theorem 5. SMARTSTART is 6α+4β+4γ+1+
√

(2α+1)2+8γ

4 -competitive for the online

(M , m)-scheduling problem by setting θ = 2α+1+
√

(2α+1)2+8γ

4 .

We remark that similar statements to Theorems 1, 3, and 5 hold for other settings such
as complete information and preemptive setting. Corollaries 2 and 4 yield that we only need
to construct an O(log m/ log log m)-competitive algorithm for the basic case, and we do this
in the next section. We mention that SMARTSTART derives better competitive algorithms
than others for the single and two machine cases as shown Section 5.

4 Algorithm and Hardness of the Basic Problem

In this section, we show our main results for the basic online (M , m)-scheduling problem.
We first present an O(log m/ log log m)-competitive algorithm in Section 4.1, and then prove
that this is best possible among deterministic online algorithms in Section 4.2.

Specifically, we show the following theorems.

▶ Theorem 6. For any metric M , there exists an O(log m/ log log m)-competitive algorithm
for the basic online (M , m)-scheduling problem.

▶ Theorem 7. There exists a metric M such that every online algorithm is
Ω(log m/ log log m)-competitive for the basic online (M , m)-scheduling problem.

We remark that Theorem 6 together with Theorem 1 or 3 in the previous section implies
our main result for the general case.

▶ Theorem 8. For any metric M , there exists an O(log m/ log log m)-competitive algorithm
for the online (M , m)-scheduling problem.

The lower bound on the basic case also applies to the general case, and hence we see that
the competitive ratio of O(log m/ log log m) is best possible.

4.1 Upper bound
Let I be an instance of the basic online (M , m)-scheduling problem. Recall that we know
the source states of all the jobs. A simple way to construct a reasonable schedule for the
problem would be to use a shortest tour for the source states. More precisely, we solve the
m-TSP over the source states. Let C1, . . . , Cm be the optimal solution of the m-TSP over
the source states. Then each machine i processes jobs appearing in (directed) tour Ci in the
order of Ci. After processing a job, the machine returns to its source state and moves on to
the next job. Unfortunately, the competitive ratio of this simple method is Ω(m) even when
the metric is R2 (see Example 21 in Appendix).

The reason why the above simple method did not work well is that some machines
spend time in idleness. We resolve this issue by carefully reassigning idle machines to an
uncompleted tour. A tour is said to be completed if all the jobs appearing in the tour have
been completed, and all the machines assigned to the tour have returned to the origin o.
We describe the idea of our algorithm. We first assign machine i to each tour Ci, and each
machine processes jobs in the assigned tour in the same way as the simple method. If a tour
takes a long time to be completed, our algorithm additionally assigns idle machines to the
tour. Each machine travels along the assigned tour. When a machine arrives at the source of
an unprocessed job, then it processes the job, returns to its source, and continues the travel
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(see Figure 1). The point of our algorithm is that it does not reassign machines immediately
and greedily. Our algorithm reassigns machines so that the number of machines assigned to
each uncompleted tour increases exponentially by the following rule. To avoid reassigning to
a tour that will be completed soon, the algorithm waits for a certain number of idle machines
before reassigning. This exponential increase in the number of assigned machines will help
us analyze the competitive ratio of the algorithm.

4

4
2

2

p1 = 2
d(a1, b1) = 2

p2 = 3
d(a2, b2) = 3

p3 = 4
d(a3, b3) = 4

a1

a2

a3

o
(a) A tour Ci.

t0 2 10
o

a1

a2
a3
o

(b) Diagram of machines’ locations.

Figure 1 A process of a tour when three machines assigned at time 0, 2, and 10, respectively.

Let q be a positive integer, which will be set later. The execution of our algorithm
consists of phases. In phase k, our algorithm adds idle machines to each uncompleted tour
so that the number of assigned machines for the tour is qk−1. The phase k continues until
the number of uncompleted tours decreases to ⌊m/qk⌋. The algorithm terminates in phase
k∗ with m/qk∗−1 ≥ 1 > m/qk∗ , that is, k∗ = ⌊logq m⌋ + 1 (≤ q). Then, we set q so as
to bound the makespan. Intuitively, the number of phases increases as q becomes smaller,
and the time length of each phase increases as q becomes larger. We set q to the integer
such that qq > m ≥ (q − 1)q−1, taking the tradeoff between them into account. Note that
q = Θ(log m/ log log m).

Our algorithm is summarized as Algorithm 1. Note that, at line 6, the number of
uncompleted tours may become less than ⌊m/qk⌋ because of multiple tours being completed
at the same time. In such a case, we break ties arbitrarily to choose ⌊m/qk⌋ tours for phase
k and carry the other (already completed) tours over into the next phase.

Algorithm 1 The proposed algorithm for the basic online(M , m)-scheduling problem.

1 Let q be the integer such that qq > m ≥ (q − 1)q−1;
2 Set k∗ ← ⌊logq m⌋+ 1;
3 Compute optimal m-TSP tours C1, . . . , Cm over the sources;
4 for k ← 1, 2, . . . , k∗ do
5 Assign available machines to the uncompleted tours so that the number of

assigned machines becomes qk−1 for each tour;
6 Continue the process for each uncompleted tour until the number of uncompleted

tours becomes ⌊m/qk⌋;

We prove that Algorithm 1 is O(log m/ log log m)-competitive for any metric M , which
immediately yields Theorem 6.

▶ Theorem 9. For any metric M , Algorithm 1 is O(log m/ log log m)-competitive for the
basic online (M , m)-scheduling problem.
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We prove this theorem in the following. We define ℓi to be the length of tour Ci (over
the sources) and Ji to be the set of all jobs corresponding to Ci for each i ∈ [m]. Let
hsum

i =
∑

j∈Ji
(pj + d(bj , aj)) and hmax

i = maxj∈Ji
(pj + d(bj , aj)). Note that if one machine

processes jobs in Ji according to Ci, then it takes at most ℓi + hsum
i time.

We first provide lower bounds on the optimal offline makespan OPT(I).

▶ Lemma 10. OPT(I) ≥ max{maxi∈[m] ℓi, maxi∈[m] hmax
i ,

∑
i∈[m] hsum

i /(2m)}.

Proof. As the optimal offline algorithm must reach all source states and maxi∈[m] ℓi is the
optimal value of m-TSP over the sources, we have OPT(I) ≥ maxi∈[m] ℓi.

Let j∗ be a job such that pj∗ + d(bj∗ , aj∗) = maxi∈[m] hmax
i (= maxj∈J(pj + d(bj , aj))).

Since j∗ must be processed at some time, we have

OPT(I) ≥ d(o, aj∗) + p∗ + d(bj∗ , o) ≥ p∗ + d(bj∗ , aj∗) = max
i∈[m]

hmax
i ,

where the second inequality holds by the triangle inequality.
Finally, the makespan is not less than the mean sum of processing times spent by each

machine. By this and the assumption that p ≥ d(a, b) for each job, we obtain

OPT(I) ≥ 1
m

∑
j∈J

pj ≥
∑
j∈J

pj + d(aj , bj)
2m

=
∑

i∈[m]

hsum
i

2m
. ◀

We analyze the completion time for each set of jobs Ji in terms of ℓi, hmax
i , and hsum

i .

▶ Lemma 11. For a set of jobs Ji, let κ be the number of machines assigned for Ji throughout
the algorithm. Then, the process for Ji is completed within ℓi + hmax

i + hsum
i

κ from the time
when the last machine was added.

Proof. Throughout this proof, we only focus on the elapsed time after the last investment
of machines for Ji. Let x and y be the machines that return to the origin o first and last,
respectively. Suppose to the contrary that y returns to the origin o after time ℓi + hmax

i +
hsum

i /κ. As the sum of the completion times of κ machines for Ji is at most κ · ℓi + hsum
i , x

will complete the process on and before time ℓi + hsum
i /κ. Thus, x returns to o at least hmax

i

time earlier than y.
Consider the time when y starts processing the last job j∗ in Ji. Here, y processes at

least one job since otherwise y returns to the origin o by time ℓi, which is a contradiction.
When working on j∗, the machine y must precede (or be at the same point as) the machine
x, since otherwise y does not process j∗. Therefore, the time at which x return to the origin
o is at most pj∗ + d(bj∗ , aj∗) time earlier than y. However, this contradicts the assumption
because pj∗ + d(bj∗ , aj∗) ≤ hmax

i . ◀

Combining the above two lemmas, we can prove Theorem 9. For each phase k ∈ [k∗], let
τk ∈ R+ be the time length of phase k, and let Sk ⊆ [m] be the set of tours completed in
phase k. Note that |Sk| = ⌊m/qk−1⌋ − ⌊m/qk⌋ (∀k ∈ [k∗]) and the makespan of the schedule
obtained by the algorithm is

∑k∗

k=1 τk. We will bound the value τk by using Lemma 11.
Using the lemma in an intuitive way, we can obtain that τk ≤ maxi∈Sk

(
ℓi + hmax

i + hsum
i

qk−1

)
.

However, this does not work well because it is far from
∑

i∈[m] hsum
i /(2m), which is the only

tool we have now to bound hsum
i by OPT(I). Our main idea to overcome this issue is to use

Sk+1 instead of Sk, which allows us to evaluate τk as an average rather than a maximum.
By combining this with the exponential increase in the number of machines in each phase,
we can obtain the desired upper bound.
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Proof of Theorem 9. It is sufficient to prove
∑k∗

k=1 τk = O(q) · OPT(I) because O(q) =
O(log m/ log log m).

We first bound τk for each phase k ∈ [k∗−1]. By Lemma 11, we have τk ≤ ℓi +hmax
i + hsum

i

qk−1

for any i ∈ Sk+1. Hence, by Lemma 10, we obtain

τk ≤ min
i∈Sk+1

(
ℓi + hmax

i + hsum
i

qk−1

)
≤ 1
|Sk+1|

∑
i∈Sk+1

(
ℓi + hmax

i + hsum
i

qk−1

)

≤ 2OPT(I) +
∑

i∈Sk+1

hsum
i

qk−1 · |Sk+1|
= 2OPT(I) + 2m

qk−1 · |Sk+1|
·

∑
i∈Sk+1

hsum
i

2m
.

As |Sk+1| = ⌊m/qk⌋ − ⌊m/qk+1⌋ ≥ ⌊m/qk⌋ − 1
q ⌊m/qk⌋ = (1− 1/q)⌊m/qk⌋, we get

2m

qk−1 · |Sk+1|
≤ 2q · m/qk

⌊m/qk⌋ − 1
q ⌊m/qk⌋

= 2q · 1
1− 1/q

· m/qk

⌊m/qk⌋
≤ 8q,

where the second inequality holds by q ≥ 2 and m/qk ≥ 1. Thus, we obtain

τk ≤ 2OPT(I) + 8q
∑

i∈Sk+1

hsum
i

2m
. (2)

Next, we bound τk∗ . By Lemmas 10 and 11, we have

τk∗ ≤ max
i∈Sk∗

(
ℓi + hmax

i + hsum
i

qk∗−1

)
≤ 2OPT(I) + max

i∈Sk∗

hsum
i

qk∗−1

< 2OPT(I) + 2q · max
i∈Sk∗

hsum
i

2m
≤ (2 + 2q)OPT(I), (3)

where the third inequality holds by m < qk∗ .
Hence, by (2) and (3), we obtain

k∗∑
k=1

τk ≤ 2(k∗ − 1) ·OPT(I) + 8q
k∗−1∑
k=1

∑
i∈Sk+1

hsum
i

2m
+ (2 + 2q) ·OPT(I)

≤ 4q ·OPT(I) + 8q ·
∑

i∈[m]

hsum
i

2m
≤ 4q ·OPT(I) + 8q ·OPT(I) = 12q ·OPT(I).

Therefore, Algorithm 1 is O(log m/ log log m)-competitive. ◀

Before concluding this subsection, we would like to mention that we can also construct a
polynomial-time O(log m/ log log m)-competitive algorithm for the online (M , m)-scheduling
problem by using a constant approximation solution of m-TSP (which can be computed in
polynomial-time [11]) instead of the optimal one in Algorithm 1.

4.2 Lower bound
We prove Theorem 7 that the competitive ratio O(log m/ log log m) is best possible.

Proof of Theorem 7. We define a star-shaped metric M = (X, d) with o = (0, 0) as follows:

X =
(
N× (0, 1]

)
∪ {o} and d

(
(i, x), (j, y)

)
=

{
|x− y| if i = j,

x + y if i ̸= j.

Let us denote the end point (i, 1) ∈ X by σi.
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Let q be the positive integer such that qq ≤ m < (q + 1)q+1. For each i ∈ [qq], we prepare
sufficiently many jobs (say m2) that are either (σi, σi, 0) or (σi, σi, 1), depending on the
actions taken by the online algorithm. We will refer to jobs (σi, σi, 0) and (σi, σi, 1) as empty
and non-empty, respectively.

We fix an online algorithm. Then the adversary partitions the index set [qq] of end points
into q + 1 sets S1, S2, . . . , Sq+1 based on the behavior of the algorithm. For each k ∈ [q + 1],
every job with source σi (i ∈ Sk) will be set to be non-empty if the algorithm picks it (strictly)
before time k, and empty otherwise. For each time t and i ∈ [qq], we denote by κi(t) the
number of machines such that the distance to σi is less than 1 at time t (i.e., machines at
positions in {(i, x) | x ∈ (0, 1]}). Define S1 to be the set of indices i ∈ [qq] of end points with
the qq − qq−1 largest values of κi(1). Hence, |S1| = qq − qq−1 and κi(1) ≥ κi′(1) for any
i ∈ S1 and i′ /∈ S1. Similarly, for each k = 2, 3, . . . , q, define Sk sequentially to be the set
of i ∈ [qq] \

⋃k−1
k′=1 Sk′ such that κi(k) (i ∈ Sk) are the qq+1−k − pq−k largest values among

κi′(k) (i′ ∈ [qq] \
⋃k

k′=1 Sk′). Finally, define Sq+1 to be the set of remaining indices, i.e.,
Sq+1 = [qq] \

⋃q
k′=1 Sk′ . We remark that Sk’s are disjoint, and Sq+1 is a singleton because∑q

k′=1 |Sk′ | =
∑q

k′=1(qq+1−k′ − qq−k′) = qq − 1.
As some jobs with source σi (i ∈ Sk) must be processed at time q + 1 or later, the

makespan of the schedule obtained by the online algorithm is at least q + 2.
For each k ∈ [q], let Jk be the set of non-empty jobs that were started to be processed in

the interval [k, k + 1). We observe the cardinality of Jk. Recall that it takes one unit time
to process a non-empty job. Hence, each machine can process at most one job in Jk. In
addition, in order for a machine to start processing a job with source σi in the interval, the
distance from σi from its state at time k must be less than 1. Since the sources of jobs in Jk

are located at σi for some i ∈
⋃q+1

k′=k+1 Sk′ , we obtain that

|Jk| ≤
∑

i∈
⋃q+1

k′=k+1
Sk′

κi(k) ≤ m ·

∣∣∣⋃q+1
k′=k+1 Sk′

∣∣∣∣∣∣⋃q+1
k′=k Sk′

∣∣∣ = m · qq−k

qq+1−k
·m = m

q
.

As the algorithm starts to process any non-empty job at a time in [1, q+1) =
⋃q

k=1[k, k+1),
the total number of non-empty jobs is

∑
k∈[q] |Jk| ≤ (m/q) · q = m. Hence, the optimal

offline makespan is at most the sum of 2 time units to process the empty jobs and 3 time
units to process the non-empty jobs, which equals 5. Therefore, the competitive ratio is at
least (q + 2)/5 = Ω(log m/ log log m). ◀

5 Special Cases

In this section, we focus on the following three special cases: (i) single machine case (m = 1),
(ii) two machines case (m = 2), and (iii) the optimal values of the 1-TSP and the m-TSP are
close. In particular, for cases (ii) and (iii), we provide algorithms that improves Algorithm 1.

5.1 Single machine case

In this subsection, we consider the case where there is only one machine, i.e., m = 1. We
first show that Algorithm 1 with m = 1 is 3-competitive.

▶ Theorem 12. For any metric M , Algorithm 1 is 3-competitive for the basic online
(M , 1)-scheduling problem.
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We remark that the competitive ratio 3 is tight for Algorithm 1. To see this, let us
consider an instance with M = R and three jobs, where job 1 is (1, 0, 1), job 2 is (1, 1, 0),
and job 3 is (0, 1, 1). In Algorithm 1, the machine processes the jobs in the order 1, 2, 3, and
the makespan is 6. On the other hand, the optimal offline makespan is 2 by processing jobs
in the order 3, 2, 2. Hence, the competitive ratio of Algorithm 1 is at least 3 when m = 1.

The proof of Theorem 12 implies that the makespan of the schedule obtained by Algo-
rithm 1 is at most 2p(I) + LB(I) for any instance I, i.e., (α, β, γ) = (0, 2, 1) for the values in
(1). By Theorems 1, 3, and 5, the competitive ratios of IGNORE, REPLAN, and SMART-
START incorporating with Algorithm 1 are 4.5, 5, and 4 for the online (M , 1)-scheduling
problem, respectively. We remark that our SMARTSTART is the same algorithm as the
BOUNCER algorithm proposed by Lipmann et al. [19] (if it uses SMARTSTART as a
2-competitive algorithm for the online TSP over the sources).

▶ Theorem 13. For any metric M , there exists a 4-competitive algorithm for the online
(M , 1)-scheduling problem.

Next, we provide a lower bound of the competitive ratio for the basic online (M , 1)-
scheduling problem.

▶ Theorem 14. There exists no 2.255-competitive algorithm even for the basic online
([−1, +1], 1)-scheduling problem.

Proof. Fixing an algorithm, we construct an adversary that gives the lower bound. Let η

and ξ be the solutions of the following equations:

(8 + 2η)/4 = (10 + 2ξ)/(4 + 2η) = 12/(4 + 2ξ).

Note that 0.5101 < η < 0.5102 and 0.6606 < ξ < 0.6607.
Suppose that there are 6 jobs in total, three of which have their source state in +1, and

the other three have their source state in −1. Without loss of generality, the algorithm first
serves a job in +1. Then, the adversary sets the first job to be (1, 1− η, η). We prove the
theorem by cases according to the behavior of the algorithm (see Figure 2).

+1−1 1 − ηo
(a) Case 1.

+1−1 1 − η−1 + ξ o
(b) Case 2.1.

+1−1 1 − η−1 + ξ o
(c) Case 2.2.

Figure 2 Adversarial instance for the basic online ([−1, +1], 1)-scheduling problem.

Case 1. Suppose that the algorithm next serves another job in +1. Then the adversary sets
the remaining jobs in +1 to be (1, 1, 0), (1, 1, 0). After jobs in +1, the machine moves to
−1, and the adversary sets the first job in −1 chosen by the algorithm to be (−1, 1, 2),
and the remaining jobs to be (−1,−1, 0), (−1,−1, 0). Then the algorithm takes time at
least 1 + η × 2 + 2 + 2 + 2 + 1 = 8 + 2η, while the optimal offline makespan is 4. Hence,
the competitive ratio is at least (8 + 2η)/4 > 2.255.

Case 2. Suppose that the algorithm next serves a job in −1. Then, the adversary sets the
job to be (−1,−1 + ξ). We divide cases according to the third job which the machine
processes.
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Case 2.1. If the third job is in −1, then the remaining jobs are set to be (−1,−1, 0),
(−1,−1, 0), (1,−1, 2), (1, 1, 0), and the algorithm is made to choose the jobs in this order.
The algorithm takes time at least 10 + 2ξ while the optimal offline makespan is 4 + 2η.
Hence, the competitive ratio is at least (10 + 2ξ)/(4 + 2η) > 2.255.

Case 2.2. If the third job is in +1, then the remaining jobs are set to be (1, 1, 0), (1, 1, 0),
(−1, 1, 2), (−1,−1, 0), and the algorithm is made to choose the jobs in this order. The
algorithm takes time at least 12 while the optimal offline makespan is 4 + 2ξ. Hence, the
competitive ratio is at least 12/(4 + 2ξ) > 2.255.

Therefore, the competitive ratio is at least 2.255 in any cases. ◀

Combining the instance in the proof of Theorem 14 with the idea of setting jobs used
in [19, Theorem 4], we can obtain a lower bound of 3.181 for the general case. This result also
improves the best known lower bound of 1 + 3

√
2

2 ≈ 3.12 for the online dial-a-ride problem
under the incomplete information model [19].

▶ Theorem 15. For some metric M , there exists no 3.181-competitive algorithm for the
online (M , 1)-scheduling problem.

Proof. Let η = 0.362 . . . , ξ = 0.514 . . ., and ρ = 3.181 . . . be the unique numbers satisfying

ρ = 12 + 2 · η
4 = 14 + 2 · ξ

4 + 2 · η = 16
4 + 2 · ξ . (4)

Let N ∈ N be an integer bigger than 1.25/(ρ−3.181), and let M be the star graph with 2 ·N
leaves, each of which is at unit distance from the origin o. Consider an online algorithm ALG.
We construct an instance for which ALG has makespan 3.181 times longer than the optimal
(offline) schedule. Initially, there are three jobs (whose sources are) in each leaf. Each time
ALG processes a job before time 4 ·N − 4, the adversary sets the job to be empty, and adds
a job with the same source and the release time being one unit amount of time later. Thus,
at most 4 ·N − 4 jobs are added by time 4 ·N − 4, and there are exactly three unprocessed
jobs (including unreleased jobs) in each leaf at time 4 ·N − 4. We call them the decisive jobs
(as in [19]), and specify their processing information below.

Because it takes two units of time to travel between leaves, at least two of the 2 · N
leaves, say 0− and 0+, are left unvisited by ALG during the time interval [0, 4 · N − 4).
Likewise, among the 2 · N − 2 remaining leaves, there are two, say 1− and 1+, that are
unvisited during [4, 4 ·N − 4). Continuing in this way, we can name the leaves 0±, 1±, . . . ,
(N − 1)± so that for each j ∈ {0, . . . , N − 1}, neither j− nor j+ is visited by ALG during
[4 · j, 4 ·N − 4). We identify the path Mj ⊆M between j− and j+ (through o) with the
interval [−1, +1], and determine the processing information of the six decisive jobs in j± by
the order in which ALG processes them, in the way described in the cases 1, 2.1, and 2.2 in
the proof of Theorem 14 (but now with the new η and ξ defined in (4)).

Note that some jobs may be unreleased at time 4N − 3. This affects Case 1 in the proof
of Theorem 14, in which the machine processes three jobs in the same leaf consecutively.
However, since the machine skips unreleased jobs and has to come back later, the completion
time gets longer. Thus, we may assume that three jobs are released on each leaf.

By the analysis there, the amount of time after 4 ·N − 5 spent by ALG in Mj is at least
8 + 2 · η, 10 + 2 · ξ, and 12 in the three cases, respectively, whereas the best schedule for the
basic (Mj , 1)-scheduling instance given by the six decisive jobs in j± (forgetting their release
times) has makespan 4, 4 + 2 · η, and 4 + 2 · ξ, respectively. Note that simply concatenating
these best schedules for j = 0, . . . , N − 1 gives an offline schedule for our whole instance,
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since all jobs in j± appear by time 4 · j + 1. Thus, writing N1, N2.1, and N2.2 for the number
of j ∈ {0, . . . , N − 1} for which the three cases happen (N1 + N2.1 + N2.2 = N), we can
bound from below the ratio of ALG’s makespan to the optimal by

(4 ·N − 5) + N1 · (8 + 2 · η) + N2.1 · (10 + 2 · ξ) + N2.2 · 12
N1 · 4 + N2.1 · (4 + 2 · η) + N2.2 · (4 + 2 · ξ)

=N1 · (12 + 2 · η) + N2.1 · (14 + 2 · ξ) + N2.2 · 16 − 5
N1 · 4 + N2.1 · (4 + 2 · η) + N2.2 · (4 + 2 · ξ)

≥min
{

12 + 2 · η
4 ,

14 + 2 · ξ
4 + 2 · η ,

16
4 + 2 · ξ

}
− 5

N · 4 ≥ ρ− 1.25
N

> 3.181. ◀

5.2 Two machines case
In this subsection, we focus on the two-machine case, i.e., m = 2. As shown in Example 22
in Appendix, the competitive ratio of Algorithm 1 is at least 4 even for the basic online
(R, 2)-scheduling problem. In fact, we can improve Algorithm 1 as follows. The main idea is
to move the machines in the opposite directions in phase 2. Formally, our algorithm can be
stated as follows. The algorithm first computes optimal 2-TSP tours C1 and C2 over the
sources. Then, machine i travels along Ci in a direction (i = 1, 2). When a machine arrives
at the source of an unprocessed job, then it processes the job, returns to its source, and
continues the travel. If C1 is completed first, then machine 1 now travels along C2 in the
reverse direction. Similarly for the case when C2 is completed. When all jobs have been
processed, each machine directly returns to the origin as soon as possible.

▶ Theorem 16. For any metric M , there exists a 3.5-competitive algorithm for the basic
online (M , 2)-scheduling problem.

We can also prove that the makespan of the above schedule is at most 1
2 OPT(I) + 2 ·

p(I)/2 + LB(I), i.e., (α, β, γ) = (1/2, 2, 1) for the values in (1). Thus, the competitive ratio
of SMARTSTART incorporating with the above algorithm is 4 +

√
3

2 ≈ 4.866 by Theorem 5.

▶ Theorem 17. For any metric M , there exists a (4 +
√

3
2 )-competitive algorithm for the

online (M , 2)-scheduling problem.

5.3 Special metrics
Finally, we improve Algorithm 1 for the case where the optimal values of 1-TSP and m-TSP
are close. A typical example of such a situation is instances with the half-line metric: the
optimal value of 1-TSP coincides with that of m-TSP for any m because the values are twice
the distance between origin and the rightmost source. The main idea of the improvement
is to use the optimal 1-TSP tour instead of the m-TSP. This reduces the completion time
because the number of phases is reduced to one. We further reduce the completion time by
moving the machines in both directions of the optimal 1-TSP tour.

To be more precise, our algorithm first computes an optimal 1-TSP tour C over the
sources. After that, half the machines (i.e., ⌈m/2⌉ machines) travel along the tour in a
direction, and the other half (i.e., ⌊m/2⌋ machines) travel along the tour in the opposite
direction. When a machine arrives at the source of an unprocessed job, then it processes
the job, returns to its source, and continues the travel. When all jobs have been processed
(including processing), each machine directly returns to the origin as soon as possible.
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▶ Theorem 18. Fix the number of machines m ≥ 2 and the metric M . Suppose that the
ratio between the optimal values of 1-TSP and m-TSP is at most µ for any instance on M .
There exists a ( ⌈m/2⌉

m ·µ + 3)-competitive algorithm for the online (M , m)-scheduling problem.

Note that ⌈m/2⌉
m ≤ 2/3 for any m ≥ 2. Additionally, recall that, when m = 1, there is a

3-competitive algorithm for any metric (Theorem 13). As the value µ can be taken as 1 and
2 for R+ and R, respectively, we can obtain the following corollaries.

▶ Corollary 19. For any m, there exists a 11/3-competitive algorithm for the basic online
(R+, m)-scheduling problem.

▶ Corollary 20. For any m, there exists a 13/3-competitive algorithm for the basic online
(R, m)-scheduling problem.

6 Other Settings

In this section, we discuss other variants of online (M , m)-scheduling problems.
We first consider minimizing the total completion time, i.e., the sum of completion times

of all jobs. We observe that if the objective is to minimize the total completion time, any
online algorithm is not competitive even for the basic online (R0, 1)-scheduling problem. Fix
an online algorithm. Let n be a positive integer and consider an instance with n jobs with
source and destination being the origin o. Suppose that the algorithm first processes job
j∗. We set (aj , bj , pj) = (o, o, 0) for all j ̸= j∗ and (aj∗ , bj∗ , pj∗) = (o, o, 1). Then, the total
completion time of the algorithm is at least n as the completion time of every job is at least
1, but the optimal total completion time is 1 by processing job j∗ last. As n can be taken as
an arbitrarily large number, any algorithm is not competitive.

For the case where the processing time is known (but the destination state is not), we can
design a constant competitive algorithm. In fact, we can obtain a 3-competitive algorithm
for the basic case by using a solution of m-TSP in which the processing time is taken into
account. On the other hand, if the destination state is known (but the processing time is
not), the competitive ratio is Θ(log m/ log log m) since the lower bound shown in Theorem 7
also holds in this setting.

Next, we observe the case where the machines do not need to return to the origin, i.e.,
the objective is to minimize the time until all jobs have been completed. Such a setting is
called open or nomadic, whereas the setting of our problem is said to be closed or homing. It
is not difficult to see that the optimal makespan for the open setting is not less than half of
the optimal makespan for the closed setting. Hence, if there exists a ρ-competitive algorithm
for the closed setting, then there exists a 2ρ-competitive algorithm for the open setting.
By combining this with 8, we obtain an O(log m/ log log m)-competitive algorithm for the
open version of the online (M , m)-scheduling problem. For the open version of the basic
online (M , 1)-scheduling problem, we can obtain a 3-competitive algorithm by the same
way as Algorithm 1 (but use the path TSP). In addition, for the open version of the online
(M , 1)-scheduling problem, we can obtain a 6-competitive algorithm by applying REPLAN.

Finally, we discuss the preemptive version, i.e., the machines are allowed to preempt jobs
in any point and resume the job later. We can observe that the competitive ratio of the
basic online (M , m)-scheduling problem is lower bounded by Ω(log m/ log log m) even when
the source and the destination states are the same for all jobs. To see this, we consider an
adversary similar to the one shown in Theorem 7. Consider the same metric, sources and the
destinations of the jobs, and partition of the end points S1, S2, . . . , Sq+1. However, we set
the processing time of each job j with source in Sk to be min{t + ϵ, 1} for each k ∈ [q + 1],
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where t is the total processing length of that job j has been processed by time k and ϵ > 0.
Then, the makespan of the schedule obtained by the online algorithm is at least q + 2 while
the optimal offline makespan is at most 5. Therefore, by setting ϵ→ 0, the competitive ratio
is at least (q + 2)/5 = Ω(log m/ log log m).
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A Omitted proofs and examples

▶ Theorem 5. SMARTSTART is 6α+4β+4γ+1+
√

(2α+1)2+8γ

4 -competitive for the online

(M , m)-scheduling problem by setting θ = 2α+1+
√

(2α+1)2+8γ

4 .

Proof. We note that θ satisfies the equality (2α + 1)θ + γ = 2θ2. We consider a non-empty
instance I. Let S be the set of jobs processed in the last subschedule of the SMARTSTART
algorithm, and let tS be the time when the execution of the subschedule started.

Suppose that the machines are idle just before time tS . In this case, tS = θ · LB(S0) and
we have

SMARTSTART(I) = tS + ALG0(S0)
≤ θ · LB(S0) + αOPT(S0) + β · p(S0)/m + γLB(S0)
≤ (θ + α + β + γ)OPT(I)

=
6α + 4β + 4γ + 1 +

√
(2α + 1)2 + 8γ

4 ·OPT(I).

Next, suppose that the last subschedule is started immediately after the second last one.
Let R be the set of jobs processed in the second last subschedule and let tR be the time
when the second last subschedule is started. Define λ = 1

2 + γ
2θ (= θ − α). Then, we have

SMARTSTART(I)
= tR + ALG0(R0) + ALG0(S0)
≤ tR + (αOPT(R0) + β · p(R0)/m + γLB(R0)) + (α + γ)OPT(S0) + βp(S0)/m

≤ (1 + γ/θ)tR + (α + β)OPT(I) + (α + γ − λ)OPT(S0) + λOPT(S0)
≤ (1 + γ/θ)tR + (2α + β + γ − λ)OPT(I) + λOPT(S0)
= 2λ · tR + (2α + β + γ − λ)OPT(I) + λOPT(S0),

where the second inequality holds by tR ≥ θ · LB(R0) and p(R0)/m + p(S0)/m ≤ OPT(I),
and the third inequality holds by α + γ ≥ λ. Let f ∈ arg maxj∈S d(o, aj). As OPT(S0) ≤
OPT(I)− tR + d(o, af ), we have,

SMARTSTART(I) ≤ 2λ · tR + (2α + β + γ − λ)OPT(I) + λ(OPT(I)− tR + d(o, af ))
= (2α + β + γ)OPT(I) + λ(tR + d(o, af ))
≤ (2α + β + γ + λ)OPT(I) = (α + β + γ + θ)OPT(I)

=
6α + 4β + 4γ + 1 +

√
(2α + 1)2 + 8γ

4 ·OPT(I). ◀

▶ Example 21. To observe this, consider an instance with m2 jobs, where the source,
destination, and processing time of job j are respectively

aj = bj =
(
cos 2π(j−1)

m , sin 2π(j−1)
m

)
and pj =

{
100 if j ≡ 1 (mod m),
0 otherwise.
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Note that only jobs 1, m + 1, . . . , m(m− 1) + 1 are non-empty. Then, the makespan of the
schedule obtained by the simple method is 100m + 2. Indeed, each machine processes m jobs
i, m + i, . . . , m(m− 1) + i for some i. The completion time of the machine processing jobs
1, . . . , m(m− 1) + 1 is 100m + 2, while that of others is 2. On the other hand, the optimal
schedule is that each machine processes each of the m non-empty jobs, and then machine
i processes jobs i, m + i, . . . , m(m− 1) + i for i = 2, . . . , m − 1 (see also Figure 3). The
makespan of this schedule is at most 104, and hence the competitive ratio is (100m+2)/104 =
Ω(m).

o

(a) Simple method.

o

(b) Optimal.

Figure 3 An instance that the simple method does not work well (m = 5).

▶ Theorem 12. For any metric M , Algorithm 1 is 3-competitive for the basic online
(M , 1)-scheduling problem.

Proof. When m = 1, Algorithm 1 just processes the jobs along with an optimal 1-TSP tour
over the sources (there is only one phase). Let hsum =

∑
j∈J (pj + d(bj , aj)) and let ℓ1 be the

length of the optimal 1-TSP tour. By Lemma 10, we observe that hsum ≤ 2p(I) ≤ 2OPT(I)
and ℓ1 = LB(I) ≤ OPT(I). Thus, the makespan of the schedule obtained by the algorithm
is at most ℓ1 + hsum ≤ LB(I) + 2p(I) ≤ 3OPT(I). Therefore, Algorithm 1 is 3-competitive
when m = 1. ◀

▶ Example 22. To observe this, let us consider an instance with 6 jobs, where job 1 is
(0,−1, 1), job 2 is (1, 0, 1), job 3 is (1, 1, 0), job 4 is (0, 1, 1), job 5 is (−1, 0, 1), and job 6
is (−1,−1, 0). It is not difficult to see that an optimal 2-TSP tours over the sources are
C1 = (1, 2, 3, 4) and C2 = (5, 6). In Algorithm 1, machines 1 and 2 processes jobs {1, 2, 3, 4}
and {5, 6} in these orders (see Figure 4). Hence, the makespan of the schedule obtained by
the algorithm is 8. On the other hand, the makespan is 2 if machines 1 and 2 processes
jobs {4, 3, 2} and {1, 6, 5}, respectively, in these orders. Hence, the competitive ratio of
Algorithm 1 is at least 4 when m = 2.

state

t

1

2 3

4

5 6

Figure 4 The schedule of Algorithm 1.

▶ Theorem 16. For any metric M , there exists a 3.5-competitive algorithm for the basic
online (M , 2)-scheduling problem.
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Proof. We analyze the above algorithm. Define ℓ1 and ℓ2 to be the lengths of the tours C1
and C2, respectively, and let hsum =

∑
j∈J

(
pj + d(bj , aj)

)
. By Lemma 10, (ℓ1 + ℓ2)/2 ≤

max{ℓ1, ℓ2} ≤ OPT(I) and hsum ≤ 2
∑

j∈J pj ≤ 4OPT(I). Let τ∗ be the latest time to
start processing a job, and let i be the machine that returns to the origin later (breaking
ties arbitrarily). Let job j be the last job processed by machine i. Note that job j may
be started to be processed earlier than τ∗. We may assume without loss of generality
that such a job exists, because otherwise i processes no jobs and the makespan is at most
max{ℓ1, ℓ2} ≤ OPT(I). Note that τ∗ ≤ 1

2
(
ℓ1 + ℓ2 + hsum)

≤ 3OPT(I).
Suppose that i is processing (or starts processing) job j at time τ∗. Then, the time when

job j is started to process is at the latest 1
2

(
ℓ1 + ℓ2 +

∑
j′∈J\{j}

(
pj′ + d(bj′ , aj′)

))
. Hence,

the makespan is at most

1
2

ℓ1 + ℓ2 +
∑

j′∈J\{j}

(
pj′ + d(bj′ , aj′)

) + pj + d(bj , o)

≤ 1
2

(
ℓ1 + ℓ2 + hsum − pj − d(bj , aj)

)
+ pj + d(o, aj) + d(aj , bj) + d(bj , o)

2
≤ 1

2
(
ℓ1 + ℓ2 + hsum + d(o, aj) + pj + d(bj , o)

)
≤ 7

2OPT(I),

where the last inequality holds by d(o, aj) + pj + d(bj , o) ≤ OPT(I).
Next, suppose that i is returning to a tour after processing job j at time τ∗. Let u be

the state of i at time τ∗. As u is on the way from bj to aj , we have

d(u, o) ≤ min{d(u, aj) + d(aj , o), d(u, bj) + d(bj , o)}

≤ 1
2

((
d(u, aj) + d(aj , o)

)
+

(
d(u, bj) + d(bj , o)

))
= 1

2
(
d(o, aj) + d(aj , bj) + d(bj , o)

)
≤ 1

2OPT(I).

Hence, the makespan is at most τ∗ + d(u, o) ≤ 7
2 OPT(I).

Finally, suppose that i is traveling a tour without processing a job at time τ∗. Let u be
the state of i at time τ∗. Then, d(u, o) ≤ 1

2 max{ℓ1, ℓ2} ≤ 1
2 OPT(I). Hence, the makespan

is at most τ∗ + d(u, o) ≤ 7
2 OPT(I).

Therefore, the competitive ratio of the above algorithm is at most 7/2 = 3.5. ◀

▶ Theorem 18. Fix the number of machines m ≥ 2 and the metric M . Suppose that the
ratio between the optimal values of 1-TSP and m-TSP is at most µ for any instance on M .
There exists a ( ⌈m/2⌉

m ·µ + 3)-competitive algorithm for the online (M , m)-scheduling problem.

Proof. We analyze the above algorithm. Let ℓ∗
1 and ℓ∗

m be the optimal length of the 1-TSP
and m-TSP over the sources, respectively. In addition, let hsum =

∑
j∈J (pj + d(bj , aj)), and

let τ∗ be the time when the last job started to be processed. Then, τ∗ is at most

1
m

(⌈m/2⌉ · ℓ∗
1 + hsum) ≤ ⌈m/2⌉

m

ℓ∗
1

ℓ∗
m

OPT(I) + OPT(I) ≤
(
⌈m/2⌉

m
· µ + 2

)
OPT(I)

because ℓ∗
m ≤ OPT(I) and hsum/(2m) ≤ OPT(I) by Lemma 10. Next, consider the machine

i∗ that is the last to return to the origin. If i∗ is either in the middle of processing job j or
returning to its source after processing job j at time (just after) τ∗, the makespan is at most



H. Goko, A. Kawamura, Y. Kawase, K. Makino, and H. Sumita 32:21

τ∗ + pj + d(bj , o) ≤
(

⌈m/2⌉
m · µ + 3

)
OPT(I) because pj + d(bj , o) ≤ d(o, aj) + pj + d(bj , o) ≤

OPT(I). Otherwise, suppose that the state of i∗ at time τ∗ is q, which is located on the way
from aj to aj′ . Then, we have

d(p, o) ≤ min{d(q, aj) + d(aj , o), d(q, aj′) + d(aj′ , o)}

≤ 1
2(d(aj , o) + d(aj , aj′) + d(aj′ , o)) ≤ d(aj , o) + d(aj′ , o) ≤ OPT(I).

Thus, the makespan is at most τ∗ + OPT(I) ≤
(

⌈m/2⌉
m · µ + 3

)
OPT(I). ◀
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Abstract
The standard semantics of multi-agent epistemic logic S5n is based on Kripke models whose
accessibility relations are reflexive, symmetric and transitive. This one dimensional structure
contains implicit higher-dimensional information beyond pairwise interactions, that we formalized
as pure simplicial models in a previous work in Information and Computation 2021 [10]. Here we
extend the theory to encompass simplicial models that are not necessarily pure. The corresponding
class of Kripke models are those where the accessibility relation is symmetric and transitive, but
might not be reflexive. Such models correspond to the epistemic logic KB4n. Impure simplicial
models arise in situations where two possible worlds may not have the same set of agents. We
illustrate it with distributed computing examples of synchronous systems where processes may crash.
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1 Introduction

A very successful research programme of using epistemic logic to reason about multi-agent
systems began in the early 1980’s showing the fundamental role of notions such as common
knowledge [6, 20]. The semantics used is the one of “normal modal logics”, based on the
classic possible worlds relational structure developed by Rudolf Carnap, Stig Kanger, Jakko
Hintikka and Saul Kripke in the late 1950’s and early 1960’s.

From global states to local states. The intimate relationship between distributed computing
and algebraic topology discovered in 1993 [2, 13, 23] showed the importance of moving from
using worlds as the primary object, to perspectives about possible worlds. After all, what
exists in many distributed systems is only the local states of the agents and events observable
within the system.

Taking local states as the main notion led to the study of distributed systems based on
geometric structures called simplicial complexes. In this context, a simplicial complex is
constructed using the local states as vertices and the global states as simplexes. While the
solvability of some distributed tasks such as consensus depends only on the one-dimensional
(graph) connectivity of global states, the solvability of other tasks, most notably k-set
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agreement, depends on the higher-dimensional connectivity of the simplicial complex of local
states. See [12] for an overview of the topological theory of distributed computability.

Pure simplicial model semantics [10]. From the very beginning [23], distributed computer
scientists have used the word “knowledge” informally to explain their use of simplicial
complexes. However, a formal link with epistemic logic was established only recently [10].

The idea is to replace the usual one-dimensional Kripke models by a new class of models
based on simplicial complexes, called simplicial models. In [10], we focused on modelling
the standard multi-agent epistemic logic, S5n. In this setting, a core assumption is that
the same set of n agents always participate in every possible world. Because of this, all
the facets of the simplicial model are of the same dimension. Such models are called pure
simplicial models. With this restriction, we showed that the class of pure simplicial models
is equivalent to the usual class of S5n Kripke models.

Using pure simplicial models, we provided epistemic logic tools to reason about solvability
of distributed tasks such as consensus and approximate agreement. In subsequent work,
we also studied the equality negation task, explored bisimilarity of pure simplicial models,
and connections with covering spaces [4, 9, 25]. In [10], we left open the question of a
logical obstruction to the solvability of k-set agreement, which was later given by Yagi and
Nishimura [27] using the notion of distributed knowledge [11], in a sense a higher-dimensional
version of knowledge.

Systems with detectable crashes. In this paper, we wish to extend the work of [10] by lifting
the restriction to “pure” simplicial complexes. In distributed computing, pure complexes can
be used to analyse the basic wait-free shared-memory model of computation [14]. However,
impure1 complexes also show up in many situations: perhaps the most simple one is the
synchronous crash model, where processes may fail by crashing2. Due to the synchronous
nature of the system, when a process crashes, the other processes will eventually know about
it. This contrasts with asynchronous systems, where processes can be arbitrarily slow, and
there is no way to distinguish a crashed process from a slow one.

Systems where crash-prone processes operate in synchronous rounds have been thoroughly
studied since early on in distributed computing, see e.g. [7, 17]. At the start of each round,
every process sends a message to all the other processes, in unspecified order. A process
may crash at any time during the round, in which case only a subset of its messages will
be received. A global clock indicates the end of the round: any message that has not been
received by then signifies that the sender has crashed. Moreover, we usually assume a
full-information protocol: in each round, the messages sent by the processes consist of its
local state at the end of the previous round.

Figure 1 below depicts the simplicial complexes of local states for three processes, after
one and two rounds of the synchronous crash model. In the initial situation (left), the local
states are binary input values of the processes, 0 or 1. Each of the 8 triangles represents
a possible global state, i.e. an assignment of inputs to processes. The two other complexes
(middle and right) represent the situation after one round and two rounds, respectively. These
complexes are impure: they contain both triangles (representing global states where all three

1 Throughout this paper, the adjective “impure” usually stands for “not necessarily pure”.
2 In the distributed computing literature, agents are called processes, and when a process stops its

execution prematurely, it is said to have crashed. In this paper, we will say that agents may die.
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processes are alive) and edges (representing global states where only two agents are alive).
Throughout the paper, we use this model as a running example, starting with Example 6.
Further details from the distributed computing perspective can be found in [15].

Synchronous systems have also been studied using epistemic logic, e.g. in the seminal
work of Dwork and Moses [5], where a complete characterization of the number of rounds
required to reach simultaneous consensus is given, in terms of common knowledge. The focus
however has been on studying solvability of consensus and other problems related to common
knowledge, which as mentioned above, depend only on the 1-dimensional connectivity of
epistemic models.

Figure 1 Input complex for three agents starting with binary inputs, then the complex after one,
and after two rounds. At most one agent may die [15].

Contributions. With the long-term goal of going beyond consensus-like problems, to k-set
agreement, renaming, and other tasks whose solvability depends on higher dimensional
topological connectivity, we introduce in this paper an epistemic logic where agents may die,
whose semantics is naturally given by impure simplicial models.

Our approach is guided by the categorical equivalence between S5n Kripke models and
pure simplicial models, established in [10]. It is easy and natural to generalize the class of
simplicial models by simply removing the “pure” assumption. However, the main technical
challenge resides in finding an equivalent category of Kripke models. This is achieved
in Section 3, where the categorical equivalence is established in Theorem 23 for the frames,
and Theorem 27 for the models. Guided by the equivalence with simplicial models, we
introduce partial epistemic models, whose underlying frame has the following characteristics:

Indistinguishability relations must be transitive and symmetric, but may not be reflexive.
The frames must be proper, in a sense defined in Section 3.1.

Surprisingly, the morphisms between those frames are also unusual: a world is mapped to a
sets of worlds, which must be saturated (Definition 13).

In Section 4, we reap the benefits of this equivalence theorem. Modal logics on Kripke
models are well understood, and we can then translate results back to simplicial models.
Each of the peculiar conditions that we impose on partial epistemic frames reveals an implicit
assumption of simplicial models.

The consequence of losing reflexivity is that the logic is no longer S5n, but instead KB4n,
where the Axiom T does not hold. This logic is not often considered by logicians; its close
cousin KD45n being more commonly studied, in order to reason about belief [26]. But, as
we argue in Sections 4.3 and 4.4, KB4n is an interesting setting to reason about alive and
dead agents. Moreover, the requirement of having proper frames leads us to introduce two
additional axioms: the axiom of Non-Emptiness NE says that at least one agent is alive
in every world; and the Single-Agent axioms SAa says that if exactly one agent a is alive,
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this agent knows that all other agents are dead. In Section 4.5, we claim that the logic
KB4n augmented with these two extra axioms is sound and complete with respect to class
of (possibly non-pure) simplicial models. While soundness is easy to prove, the proof of
completeness is more intricate and we leave it for the full version of this work. Finally in
Section 4.6, we prove the so-called knowledge gain property, which has been instrumental in
applications to impossibility results in distributed computing, see e.g. [10].

Related work. A line of work started by Dwork and Moses [5] studied in great detail the
synchronous crash failures model from an epistemic logic perspective. However, in their
approach, the crashed processes are treated the same as the active ones, with a distinguished
local state “fail”. In that sense, all agents are present in every state, hence they still model
the usual epistemic logic S5n. Instead of changing the underlying Kripke models as we do
here, they introduce new knowledge and common knowledge operators that take into account
the non-rigid set of agents (see e.g. [22], Chapter 6.4).

Giving a formal epistemic semantics to impure simplicial models has also been attempted
by van Ditmarsch [24], at the same time and independently from our work. This approach
end up quite different from ours. It describes a two-staged semantics with a definability
relation prescribing which formulas can be interpreted, on top of which the usual satisfaction
relation is defined. This results in a quite peculiar logic: for instance, it does not obey
Axiom K, which is the common ground of all Kripke-style modal logics. The question of
finding a complete axiomatization is left open. In contrast, we take a more systematic
approach: we first establish a tight categorical correspondence between simplicial models and
Kripke models. Via this correspondence, we translate the standard Kripke-style semantics
to simplicial models. This leads us to the modal logic KB4n. We will discuss further the
technical differences between our approach and that of [24] in Section 3.2.

2 Background on simplicial complexes and Kripke structures

Chromatic simplicial complexes. Simplicial complexes are the basic structure of combinato-
rial topology [16]. In the field of fault-tolerant distributed computing [12], their vertices are
usually labelled by process names, often viewed as colours; hence the adjective “chromatic”.

▶ Definition 1. A simplicial complex is a pair C = ⟨V, S⟩ where V is a set, and S ⊆ P(V ) is a
family of non-empty subsets of V such that for all v ∈ V , {v} ∈ S, and S is downward-closed:
for all X ∈ S, if Y is non-empty and Y ⊆ X then Y ∈ S.

Considering a finite, non-empty set A of agents, a chromatic simplicial complex coloured
by A is a triple ⟨V, S, χ⟩ where ⟨V, S⟩ is a simplicial complex, and χ : V → A assigns colours
to vertices such that for every X ∈ S, all vertices of X have distinct colours.

Elements of V are called vertices, and are identified with singletons of S. Elements of S
are simplexes, and the ones that are maximal w.r.t. inclusion are facets. The set of facets
of C is written F(C). The dimension of a simplex X ∈ S is dim(X) = |X| − 1. A simplicial
complex C is pure if all facets are of the same dimension. The condition of having distinct
colours for vertices of the same simplex is a fairly strong one: in particular, we will always
be allowed to take the (unique) subface of a simplex X of a chromatic simplicial complex
with colours in some subset U of χ(X).

▶ Definition 2. A chromatic simplicial map f : C → D from C = ⟨V, S, χ⟩ to D = ⟨V ′, S′, χ′⟩
is a function f : V → V ′ preserving simplexes, i.e. for every X ∈ S, f(X) ∈ S′, and
preserving colours, i.e. for every v ∈ V , χ′(f(v)) = χ(v).
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We denote by SimCpxA the category of chromatic simplicial complexes coloured by A,
and SimCpxpure

A the full sub-category of pure chromatic simplicial complexes on A.

Equivalence with epistemic frames. The traditional possible worlds semantics of (multi-
agent) modal logics relies on the notion of Kripke frame. Let A be a finite set of agents.

▶ Definition 3. A Kripke frame M = ⟨W,R⟩ is a set of worlds W , together with an A-
indexed family of relations on W , R : A → P(W ×W ). We write Ra rather than R(a), and
uRa v instead of (u, v) ∈ Ra. The relation Ra is called the a-accessibility relation. Given
two Kripke frames M = ⟨W,R⟩ and N = ⟨W ′, R′⟩, a morphism from M to N is a function
f : W → W ′ such that for all u, v ∈ W , for all a ∈ A, uRa v implies f(u)R′

a f(v).

To model multi-agent epistemic logic S5n, we additionally require each relation Ra to be
an equivalence relation. When this is the case, we usually denote the relation by ∼a, and
call it the indistinguishability relation. For the equivalence class of w with respect to ∼a,
we write [w]a ⊆ W . Kripke frames satisfying this condition are called epistemic frames. An
epistemic frame is proper when two distinct worlds can always be distinguished by at least
one agent: for all w,w′ ∈ W , if w ̸= w′ then w ̸∼a w

′ for some a ∈ A. In [10], we exploited
an equivalence of categories between pure chromatic simplicial complexes and proper Kripke
frames, to give an interpretation of S5n on simplicial models. This allowed us to apply
epistemic logics to study distributed tasks.

▶ Theorem 4 ([10]). The category of pure chromatic simplicial complexes SimCpxpure
A is

equivalent to the category of proper epistemic frames EFrameproper
A .

▶ Example 5. The picture below shows an epistemic frame (left) and its associated chromatic
simplicial complex (right). The three agents are named a, b, c. The three worlds {w1, w2, w3}
of the epistemic frame correspond to the three facets (triangles) of the simplicial complex.
In the epistemic frame, the c-labelled edge between the worlds w2 and w3 indicates that
w2 ∼c w3. Correspondingly, the two facets w2 and w3 of the simplicial complex share a
common vertex, labelled by agent c. Similarly, the worlds w1 and w2 are indistinguishable
by both agents a and b; so the corresponding facets share their ab-labelled edge.

w1 w2 w3

a

b

c ∼= w1 w2 w3c

a

b

c

a

b

3 Partial epistemic frames and simplicial complexes

In this section, we generalise Theorem 4 to deal with chromatic simplicial complexes that
may not be pure. For that purpose, we will need to enlarge the class of Kripke frames to be
considered, which we call partial epistemic frames. First, we start with our running example
of an impure simplicial complex, which has been studied in distributed computing.

▶ Example 6 (Synchronous crash-failure model, one round, three agents). Consider a set of
three processes/agents A = {a, b, c}. For simplicity, we consider a single initial state where
the agent a, b, c start with input value 1, 2, 3, respectively3. Each agent sends a message to

3 Typically, in distributed computing, many initial assignments of inputs are possible. Thus, we model a
situation where the inputs of other processes are not known until a message from them is received.
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the two other agents (and to itself, for uniformity), containing its input value. An agent may
crash during the computation, in which case it stops sending messages. We assume moreover
that at most two agents may crash, as in e.g. [5]. At the end of the round, an agent is alive
if it successfully sent all its messages, and dead if it crashed before finishing. The view (or
local state) of an alive agent is the set of messages that it received during the round. Note
that an alive agent always sees its own value. For instance, the four possible views of agent a
after one round are {1}, {1, 2}, {1, 3} and {1, 2, 3}.

This situation is modelled by the chromatic simplicial complex C on the left of Figure 2.
Formally, the vertices of C are pairs (a, view) where a ∈ A and view ⊆ {1, 2, 3} is its view.
There are 12 such vertices, 4 for each agent. The colouring χ(a, view) = a of a vertex is
indicated on the picture. There are 13 facets w0, . . . , w12, corresponding to the possible global
states at the end of the round. The middle triangle w1 = {(a, viewa), (b, viewb), (c, viewc)},
with viewa = viewb = viewc = {1, 2, 3}, represents the execution where no agent dies. The
three isolated vertices, w0, w11, w12 are executions where two agents died. For instance, in
w0 = {(a, {1})}, both b and c crashed before sending their value to a. The 9 edges represent
situations where one agent died, and two survived. For example, w2 = {(a, viewa), (c, viewc)},
with viewa = {1, 2, 3} and viewc = {1, 3}, represents the execution where b crashed after
sending its value to a, but not to c. In w10, agent b crashed before sending any messages.

w5

w4
w3 w2

w10

w9

w8

w7

w6

a

cb

c

a

bc

b

a

b
w11

c

w12

a w0

w1

a

b

a

b
b

c b

c

c

a

c

a

a

a,b a,b a,c a,c

a,ca,b

b

b,c b,c

c

b,c

a,b,c

w1 w9

w2

w8w6

w3

w5

w4 w10

w7

w0

w12w11

Figure 2 A chromatic simplicial complex C (left), and a proper partial epistemic frame M (right).
The three agents are A = {a, b, c} and the 13 facets/worlds are labelled w0, . . . , w12.

3.1 Partial epistemic frames
We consider now another type of Krikpe frame, in the spirit of PER semantic models of
programming languages and “Kripke logical partial equivalence relations” of e.g. [18].

▶ Definition 7. A Partial Equivalence Relation (PER) on a set X is a relation R ⊆ X ×X

which is symmetric and transitive (but not necessarily reflexive).

The domain of a PER R is the set dom(R) = {x ∈ X | R(x, x)} ⊆ X, and it is easy to
see that R is an equivalence relation on its domain, and empty outside of it. Thus, PERs are
equivalent to the “local equivalence relations” defined in [24]. Recall A is the set of agents.

▶ Definition 8. A partial epistemic frame M = ⟨W,∼⟩ is a Kripke frame such that each
relation (∼a)a∈A is a PER.
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We say that agent a is alive in a world w when w ∈ dom(∼a), i.e., when w ∼a w.
In that case, we write [w]a for the equivalence class of w with respect to ∼a, within
dom(∼a). We write w for the set of agents that are alive in world w and w for the set
of agents that are dead in world w (the complement of w). A partial epistemic frame is
proper if in all worlds, there is at least one agent which is alive, and moreover any two
distinct worlds w,w′ can be distinguished by at least one agent that is alive in w, i.e.,
∀w,w′ ∈ W, ∃a ∈ A, w ∼a w and (w ̸= w′ =⇒ w ̸∼a w

′). Note that, by symmetry of ̸=,
there is also a (possibly different) agent a′ that is alive in w′ and can distinguish w and w′.

▶ Example 9. Two partial epistemic frames over the set of agents A = {a, b, c} are represented
below. The frame on the left is proper, because agent b is alive in w1 and can distinguish
between w1 and w2; and agent c is alive in w2 and can distinguish between w1 and w2. The
frame on the right is not proper, because there is no agent alive in w′

2 that can distinguish
between w′

1 and w′
2.

w1 w2

a, b

a

a, c

w′
1 w′

2

a, b, c

a, b

a, b

▶ Example 10. The partial epistemic frame modelling the synchronous crash model of
Example 6 is pictured Figure 2 (right). It has 13 worlds w0, . . . , w12. In each world, the set
of alive agents can be read off the reflexive “loop” edge.

In w1, all three agents {a, b, c} are alive.
In worlds w3, w4 and w5, the two alive agents are a and b. In worlds w2, w10 and w9,
the alive agents are a and c. And in worlds w6, w7, w8, agents b and c are alive.
In w0, only a is alive. In w11, only b is alive, and in w12, only c is alive.

The accessibility relation is represented by edges labelled with the agents that do not
distinguish between the worlds at its extremities. For instance, agent a cannot distinguish
between w3 and w1, and agent b cannot distinguish between w3 and w4. It can easily be
checked to be a proper partial epistemic frame.

Morphisms of partial epistemic frames. Our notion of morphism for partial epistemic
frames differs from the one for a general Kripke frame (Definition 3). Here again, our
definitions are guided by our goal (Theorem 23), the equivalence between simplicial maps
and morphisms of partial epistemic frames. Example 11 below should help motivate our
definitions. The novelty arises when we want a morphism f that maps a world w, in which
some agents w are alive, to a world w′

1 where strictly more agents are alive. In this case,
there might exist some other world w′

2, such that w′
1 ∼a w

′
2 for all a ∈ w. We claim that

such a world w′
2 should also be in the image of w by the morphism f . Thus, f(w) is not a

world but a set of worlds, which we require to be saturated, in the following sense.

▶ Example 11. The two pictures below show a chromatic simplicial map g (left) and a
morphism f of partial epistemic frames (right). The simplicial map g is uniquely specified
by the preservation of colours: it maps the edge w0 onto the vertical ab-coloured edge of
the complex on the right. The morphism f is defined by f(w0) = {w′

1, w
′
2}. We will see in

Section 3.2 how to relate these morphisms: one can be built from the other, and vice-versa.

w′
1 w′

2c

b

a

c

b

a

w0
g

w0

a, b

w′
1 w′

2

a, b, c

a, b

a, b, c
f
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▶ Definition 12. Given a partial epistemic frame M = ⟨W,∼⟩, a subset of agents U ⊆ A,
and a world w ∈ W , let satU (w) = {w′ ∈ W | w ∼a w

′ for all a ∈ U}.

The saturation requirement will be crucial in Section 3.2 when we establish the equivalence
of categories between partial epistemic frames and chromatic simplicial complexes.

▶ Definition 13. Let M = ⟨W,∼⟩ and N = ⟨W ′,∼′⟩ be two partial epistemic frames. A
morphism of partial epistemic frame from M to N is a function f : W → P(W ′) such that

(Preservation of ∼) for all a ∈ A, for all u, v ∈ W , u ∼a v implies u′ ∼′
a v′, for all

u′ ∈ f(u) and v′ ∈ f(v),
(Saturation) for all u ∈ W , there exists u′ ∈ f(u) such that f(u) = satu(u′).

Composition of morphisms is defined by (g◦f)(u) = satu(w), for some v ∈ f(u) and w ∈ g(v).

Let us check that the composite g ◦ f above is well-defined, i.e., that it does not depend
on the choice of v ∈ f(u) and w ∈ g(v). Assume we pick v′ ∈ f(u) and w′ ∈ g(v′) instead.
Then v ∼a v

′ for all a ∈ u, because f(u) is saturated. And by preservation of ∼, we get
w ∼a w

′ for all a ∈ u, that is, satu(w) = satu(w′).
The first condition of a morphism f of partial epistemic frame above means that worlds

that are indistinguishable by some agent a should have images composed of worlds that are
indistinguishable by a. The second condition states that the image of a world u of M is
“generated” by a world u′ of N , as the set of all worlds of N that cannot be distinguished
from u′ by the agents alive in u. In particular, notice that the saturation condition implies
that f(u) is always non-empty.

The next proposition says that, on proper frames, the only case when f(u) can be
multivalued is when u ⊊ u′ for every u′ in f(u).

▶ Proposition 14. Let M = ⟨W,∼⟩ and N = ⟨W ′,∼′⟩ be two partial epistemic frames, and
f : M → N be a morphism. For all u ∈ W and u′ ∈ f(u), u ⊆ u′. Moreover, if N is proper
and u = u′, then f(u) = {u′}.

Proof. The first fact is a direct consequence of the preservation of ∼. For the second one, let
u′ ∈ f(u) such that u′ = u. Assume by contradiction that there is u′′ ∈ f(u) with u′′ ≠ u′.
By saturation, we have u′′ ∼a u

′ for all a ∈ u = u′. This is impossible since N is proper. ◀

The category of partial epistemic frames with set of agents A is denoted by KPERA, and
the full subcategory of proper partial epistemic frames is denoted by KPERproper

A . Note that
the category of proper epistemic frames EFrameproper

A is a full subcategory of KPERproper
A .

Indeed, in an epistemic frame all agents are alive in all worlds, so by Proposition 14 morphisms
between proper epistemic frames are single-valued. Then Definition 13 reduces to the standard
notion of Kripke frame morphisms (Definition 3).

3.2 Equivalence between chromatic simplicial complexes and partial
epistemic frames

In this section, we show how to canonically associate a proper partial epistemic frame
with any chromatic simplicial complex, and vice-versa. In fact, we have an equivalence of
categories, meaning this correspondence can be extended to morphisms too (see Example 11).
We construct functors κ : SimCpxA → KPERproper

A and σ : KPERproper
A → SimCpxA and show

that they form an equivalence of categories in Theorem 23. A similar correspondence appears
in [24], with two differences:
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They only show the equivalence between the objets of those categories, while we also deal
with morphisms. To achieve this, we had to define morphisms of partial epistemic frames
(Definition 13), since the standard notion does not work.
They only show that κ ◦ σ(M) is bisimilar to M , while we prove a stronger result, that
there is an isomorphism. To achieve this, we had to impose the condition of M being
proper, which is not considered in [24].

▶ Definition 15 (Functor κ). Let C = ⟨V, S, χ⟩ be a chromatic simplicial complex on the set
of agents A. Its associated partial epistemic frame is κ(C) = ⟨W,∼⟩, where W := F(C) is the
set of facets of C, and the PER ∼a is given by X ∼a Y if a ∈ χ(X ∩ Y ) (for X,Y ∈ F(C)).

The image of a morphism f : C → D in SimCpxA, is the morphism κ(f) : κ(C) → κ(D)
in KPERproper

A that takes a facet X ∈ F(C) to κ(f)(X) = {Z ∈ F(D) | f(X) ⊆ Z}.

▶ Example 16. In Figure 2, the simplicial complex C on the left is mapped by κ to the
partial epistemic frame M = κ(C) on the right. The epistemic frame M contains a world
per facet w0, . . . , w12 of the simplicial complex. The reflexive “loops” in the M , indicating
which agents are alive in a given world, are labelled with the colours of the corresponding
facet. For instance, w1 ∼{a,b,c} w1 but w3 ∼{a,b} w3 only; because w3 in C is an edge whose
extremities have colours a and b.

We now check that κ(C) and κ(f) above are correctly defined.

▶ Proposition 17. κ is a well-defined functor from SimCpxA to KPERproper
A .

Conversely, we now consider a partial epistemic frame M = ⟨W,∼⟩ on the set of agents A,
and we define the associated chromatic simplicial complex σ(M). Intuitively, each world
w ∈ W where k + 1 agents are alive will be represented by a facet Xw of dimension k, whose
vertices are coloured by w. Such facets must then be “glued” together according to the
indistinguishability relations. Formally, this is done by the following quotient construction:

▶ Definition 18 (Functor σ on objects). Let M = ⟨W,∼⟩ be a partial epistemic frame. Its
associated chromatic simplicial complex is σ(M) = ⟨V, S, χ⟩, where:

The set of vertices is V = {(a, [w]a) | w ∈ W,a ∈ w}. We denote such a vertex (a, [w]a)
by vw

a for succinctness; but note that vw
a = vw′

a when w ∼a w
′.

The facets are of the form Xw = {vw
a | a ∈ w} for each w ∈ W ; and the set S consists of

all their sub-simplexes.
The colouring is given by χ(vw

a ) = a.

It is straightforward to see that this is a chromatic simplicial complex. We now check
that there is indeed one distinct facet of σ(M) for each world of M .

▶ Lemma 19. If M is proper, the facets of σ(M) are in bijection with the worlds of M .

▶ Example 20. In Figure 2, the partial epistemic frame M on the right is mapped by σ onto
the simplicial complex C = σ(M) on the left. Each world w0, . . . , w12 of M is turned into a
facet of the simplicial complex σ(M), whose dimension is the number of alive agents minus
one. These facets are glued along the sub-simplexes whose colours are the agents that cannot
distinguish between two worlds. For instance, world w1 is associated with the facet of the
same name, with 3 colours, hence of dimension 2 (the central triangle). On the other hand,
the world w3 turns into an edge (dimension 1), glued to the triangle w1 along the vertex
with colour a, because w1 ∼a w3.

We also define the action of σ on morphisms of partial epistemic frames:
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▶ Definition 21 (Functor σ on morphisms). Now let f : M → N be a morphism in KPERproper
A .

We define the simplicial map σ(f) : σ(M) → σ(N) as follows. For each vertex of σ(M) of
the form vw

a with w ∈ W , we pick any w′ ∈ f(w) and define σ(f)(vw
a ) = vw′

a .

To check that this is well-defined, we need to show that the simplicial map σ(f) does not
depend on the choices of w and w′. Assume we pick a different world u′ ∈ f(w), u′ ≠ w′. By
the saturation property of f we have u′ ∼′

a w
′, so vu′

a = vw′

a . Hence σ(f)(vw
a ) is a uniquely

defined vertex of σ(N). Now, assume that the vertex vw
a of σ(M) could also be described

as vu
a with u ∈ W . Since vw

a = vu
a , we have w ∼a u in M . By the preservation property of f ,

for every u′ ∈ f(u) we have u′ ∼′
a w

′, so vu′

a = vw′

a . Once again, the choice of w ∈ W does
not influence the definition of σ(f).

It is easy to check that σ(f) is indeed a chromatic simplicial map: preservation of colours
is obvious by construction; and for the preservation of simplexes, notice that each facet Xw

of σ(M) is mapped into the facet Xw′ of σ(N), for some w′ ∈ f(w). However, note that
σ(f)(Xw) might not in general be a facet; we only know that σ(f)(Xw) ⊆ Xw′ .

▶ Proposition 22. σ is functorial, i.e. σ(g ◦ f) = σ(g) ◦ σ(f).

Now we can state the main technical result of this paper:

▶ Theorem 23. κ and σ define an equivalence of categories between KPERproper
A and SimCpxA.

Proof. We have already seen that κ and σ are well-defined functors, it remains to show that:
(i) The composite κ ◦ σ is naturally isomorphic to the identity functor on KPERproper

A .
(ii) The composite σ ◦ κ is naturally isomorphic to the identity functor on SimCpxA.

(i) Consider a partial epistemic frame M = ⟨W,∼⟩ in KPERproper
A . By definition, κσ(M) =

⟨F,∼′⟩ where F is the set of facets of σ(M). By Lemma 19 there is a bijection W ∼= F , where
a world w ∈ W if associated with the facet Xw = {vw

a | a ∈ w} of σ(M). Furthermore, for all
w,w′ ∈ W , w ∼a w

′ iff Xw ∼′
a Xw′ . Indeed, w ∼a w

′ ⇐⇒ vw
a = vw′

a ⇐⇒ a ∈ χ(Xw ∩Xw′).
Hence, κσ(M) and M are isomorphic partial epistemic frames.

Consider a morphism of partial epistemic frames f : M → N , with M = ⟨W,∼⟩ and
N = ⟨W ′,∼⟩. By definition, κσ(f) takes a facet Xw of σ(M) to a set of facets of σ(N),
κσ(f)(Xw) = {Z ∈ σ(N) | σ(f)(Xw) ⊆ Z}. We want to show that this set is equal to
{Xw′ | w′ ∈ f(w)}. Let w′ ∈ f(w). By definition, σ(f) maps each vertex vw

a of Xw to vw′

a , so
σ(f)(Xw) ⊆ Xw′ . Conversely, assume σ(f)(Xw) ⊆ Z. Since Z is a facet of σ(N), Z = Xw′

for some w′ ∈ W ′. For each a ∈ w, the vertex vw
a of Xw is mapped by σ(f) to vx′

a , for
x′ ∈ f(w). But since σ(f)(vw

a ) ∈ Z, we must have vx′

a = vw′

a , so x′ ∼a w
′. By the saturation

property of f , x′ ∈ f(w) implies w′ ∈ f(w) as required. Therefore κσ is an isomorphism also
on morphisms of partial epistemic frames.

(ii) Consider now a chromatic simplicial complex C = ⟨V, S, χ⟩. Then σκ(C) = ⟨V ′, S′, χ′⟩
has vertices of the form V ′ = {vZ

a | Z ∈ F(C) and a ∈ χ(Z)}. We must exhibit a bijection
V ∼= V ′ which is a chromatic simplicial map in both directions. Given u ∈ V of colour a,
we map it to vZ

a where Z is any facet of C that contains u. This is well-defined since any
other facet Z ′ also containing u gives rise to the same vertex vZ′

a = vZ
a , because Z ′ ∼a Z

in κ(C). This map is obviously chromatic, and preserves simplexes because any simplex
Y ∈ S contained in a facet Z ∈ F(C) will be mapped to {vZ

a | a ∈ χ(Y )} ⊆ XZ ∈ F(σκ(C)).
Conversely, we map a vertex vZ

a ∈ V ′ to the a-coloured vertex of Z. This is also chromatic,
and preserves simplexes because any sub-simplex of XZ is mapped to a sub-simplex of Z. It
is easy to check that our two maps form a bijection, therefore C and σκ(C) are isomorphic.

Lastly, consider a chromatic simplicial map f : C → D with C = ⟨V, S, χ⟩ and D = ⟨U,R, ζ⟩.
As above, we write V ′ and U ′ for the vertices of σκ(C) and σκ(D), respectively. By definition,
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σκ(f) maps a vertex vZ
a ∈ V ′, with Z ∈ F(C), to the vertex vY

a ∈ U ′, with Y ∈ κ(f)(Z). So
by definition of κ(f), f(Z) ⊆ Y . To prove that σκ(f) agrees with f up to the isomorphism
of the previous paragraph, we need to show that f sends the a-coloured vertex of Z to the
a-coloured vertex of Y . But this is immediate since f(Z) ⊆ Y and f is chromatic. ◀

▶ Remark 24. Note that the equivalence of categories of Theorem 23 strictly extends the one
of [10], which was restricted to pure chromatic simplicial complexes on one side and proper
epistemic frames on the other. Indeed, if C is a pure simplicial complex of dimension |A| − 1,
it is easy to check that κ(C) is an epistemic frame, since all agents are alive in all worlds.
Moreover, by Proposition 14, the morphisms between those frames are single-valued; so we
recover the usual notion of Kripke frame morphism that we had in [10]. Similarly, when M

is a proper epistemic frame, the associated simplicial complex σ(M) is pure of dimension
|A| − 1. When restricted to these subcategories, σ and κ are the same functors as in [10].

4 Epistemic logics and their simplicial semantics

Let At be a countable set of atomic propositions and A a finite set of agents. The syntax of
epistemic logic formulas φ ∈ LK is generated by the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | Kaφ p ∈ At, a ∈ A

We will also use the derived operators, defined as usual: φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ ⇒ ψ :=
¬φ∨ψ, true := p∨¬p, false := ¬true. Moreover, we assume that the set of atomic propositions
is split into a disjoint union of sets, indexed by the agents: At =

⋃
a∈A Ata. This is usually

the case in distributed computing where the atomic propositions represent the local state of a
particular agent a. For U ⊆ A, we write AtU :=

⋃
a∈U Ata for the set of atomic propositions

concerning the agents in U .

4.1 Partial epistemic models and Simplicial models
In Section 3, we exhibited the equivalence between partial epistemic frames and chromatic
simplicial complexes. In order to give a semantics to epistemic logic, we need to add some
extra information on those structures, by labelling the worlds (resp., the facets) with the set
of atomic propositions that are true in this world. This gives rise to the notions of partial
epistemic models and simplicial models, respectively. As we shall see, the equivalence of
Theorem 23 extends to models in a straightforward manner.

▶ Definition 25. A partial epistemic model M = ⟨W,∼, L⟩ over the set of agents A consists
of a partial epistemic frame ⟨W,∼⟩ on A, together with function L : W → P(At).

Given another partial epistemic model M ′ = ⟨W ′,∼′, L′⟩, a morphism of partial epistemic
models f : M → M ′ is a morphism of the underlying partial epistemic frames such that for
every world w ∈ W and w′ ∈ f(w), L′(w′) ∩ Atw = L(w) ∩ Atw.

Let us give some intuition about Definition 25. The set L(w) contains the atomic
propositions that are true in the world w. Note that partial epistemic models are simply Kripke
models (in the usual sense of modal logics), such that all the accessibility relations (∼a)a∈A

are PERs. In particular, one might have expected the additional restriction L(w) ⊆ Atw,
saying that a world only contains atomic propositions concerning the alive agents. As we will
see in Example 28, there are practical cases where this is not desirable, so we do not impose
this. Secondly, recall from Definition 13 that, given a morphism f of partial epistemic frames,
a world w ∈ W and a world w′ ∈ f(w), it is possible that w′ has strictly more alive agents
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than w. When that is the case, in the definition of model morphisms above, we require that
the labellings L and L′ are preserved only for those agents that are alive in w.

A partial epistemic model is called proper when the underlying frame is proper in the
sense of Section 3.1. A pointed partial epistemic model is a pair (M,w) where w is a world
of M . A morphism of pointed partial epistemic models f : (M,w) → (M ′, w′) is a morphism
of the partial epistemic models f : M → M ′ that preserves the distinguished world, i.e.
w′ ∈ f(w). We denote by PMA,At (resp. PM∗

A,At) the category of (resp. pointed) proper
partial epistemic models over the set of agents A and atomic propositions At.

Recall from Theorem 23 that the worlds of a partial epistemic frame correspond to the
facets of the associated chromatic simplicial complex. Thus, to get a corresponding notion of
simplicial model, we label the facets by sets of atomic propositions:

▶ Definition 26. A simplicial model C = ⟨V, S, χ, ℓ⟩ over the set of agents A consists of
a chromatic simplicial complex ⟨V, S, χ⟩ together with a labelling ℓ : F(C) → P(At) that
associates with each facet X ∈ F(C) a set of atomic propositions.

Given another simplicial model D = ⟨V ′, S′, χ′, ℓ′⟩, a morphism of simplicial models
f : C → D is a chromatic simplicial map such that for all X ∈ F(C) and all Y ∈ F(D), if
f(X) ⊆ Y then ℓ′(Y ) ∩ Atχ(X) = ℓ(X) ∩ Atχ(X).

A pointed simplicial model is a pair (C, X) where C is a simplicial model and X is a facet
of C. A morphism f : (C, X) → (D, Y ) of pointed simplicial models is a morphism f : C → D
such that f(X) ⊆ Y . We denote by SMA,At (resp. SM∗

A,At) the category of (resp. pointed)
simplicial models over the set of agents A and atomic propositions At. The equivalence of
Theorem 23 can be extended to models and pointed models:

▶ Theorem 27. κ and σ induce an equivalence of categories between SMA,At (resp. SM∗
A,At)

and PMA,At (resp. PM∗
A,At).

▶ Example 28. In distributed computing, we are usually interested in reasoning about the
input values of the various agents, so the set of atoms is At = {inputx

a | a ∈ A, x ∈ Values}.
The meaning of the atomic proposition inputx

a is that “agent a has input value x”.
Consider again the chromatic simplicial complex C of Example 6. Here, we have three

agents A = {a, b, c} and three values Values = {1, 2, 3}. Hence, we can construct a simplicial
model via the following labelling of facets ℓ : F(C) → P(At).

For the middle triangle w1, all three agents are alive and successfully communicated their
input values. So, it makes sense to set ℓ(w1) = {input1

a, input2
b , input3

c}.
Perhaps more surprisingly, we also choose the same labelling for the six edges adjacent
to w1: ℓ(w2) = ℓ(w3) = ℓ(w5) = ℓ(w6) = ℓ(w8) = ℓ(w9) = {input1

a, input2
b , input3

c}. Indeed,
consider for instance the world w2, where agent b crashed after sending its input value
to a. In this world w2, it is the case that agent a knows that the input of b was 2. Hence,
the atomic proposition input2

b must be true in w2, even though the agent b is dead.
The worlds, w4, w7 and w10 represent situations where one agent died before being
able to send any message. Thus, it is as if only two agents have ever existed, and
the labelling only encodes the corresponding two local states: ℓ(w4) = {input1

a, input2
b},

ℓ(w7) = {input2
b , input3

c} and ℓ(w10) = {input1
a, input3

c}.
Similarly, w0, w11 and w12 have labelling {input1

a}, {input2
b} and {input3

c} respectively.
We will see in Example 29 some formulas that are true or false in this simplicial model.

4.2 Semantics of epistemic logic
Partial epistemic models are a special case of the usual Kripke models; so we can straight-
forwardly define the semantics of an epistemic formula φ ∈ LK in these models. Formally,
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gven a pointed partial epistemic model (M,w), we define by induction on φ the satisfaction
relation M,w |= φ which stands for “in the world w of the model M , it holds that φ”.

M,w |= p iff p ∈ L(w)
M,w |= ¬φ iff M,w ̸|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= Kaφ iff M,w′ |= φ for all w′ such that w ∼a w
′

We now take advantage of the equivalence with simplicial models (Theorem 27) to define
the interpretation of a formula φ ∈ LK(A,P ) in a simplicial model. Given a pointed simplicial
model (C, X) where X ∈ F(C) is a facet of C, we define the relation C, X |= φ by induction:

C, X |= p iff p ∈ ℓ(X)
C, X |= ¬φ iff C, X ̸|= φ

C, X |= φ ∧ ψ iff C, X |= φ and C, X |= ψ

C, X |= Kaφ iff C, Y |= φ for all Y ∈ F(C) such that a ∈ χ(X ∩ Y )

▶ Example 29. In the simplicial model of Example 28, we have, for instance:
In world w1, agent a knows the values of all three agents, i.e. C, w1 |= Ka(input1

a ∧ input2
b ∧

input3
c) since w2 and w3 are indistinguishable from w1 by agent a and input1

a∧input2
b∧input3

c

is true in these three facets. This corresponds to the view of process a, see Example 6.
In w3, agent a knows the values of all three agents but agent b only knows the values of a
and b: C, w3 |= Ka(input1

a ∧ input2
b ∧ input3

c) but C, w3 |= Kb(input1
a ∧ input2

b) and C, w3 |=
¬Kb input3

c since in facet w4 do not have input3
c . Similarly, in w4, agents a and b know each

other’s values, but do not know the input value of agent c: C, w4 |= Ka(input1
a ∧ input2

b),
C, w4 |= Kb(input1

a ∧ input2
b), C, w4 |= (¬Ka input3

c) ∧ (¬Kb input3
c)

In world w1, agent a knows that agent b knows about their respective input values:
C, w1 |= KaKb(input1

a ∧ input2
b) but agent a does not know if agent b knows about the

value of agent c: C, w1 |= ¬KaKb input3
c (because of w3).

As expected, our two interpretation of LK agree up to the equivalence of Theorem 27:

▶ Proposition 30. Given a pointed simplicial model (C, X), C, X |= φ iff κ(C, X) |= φ.
Conversely, given a pointed proper partial epistemic model (M,w), M,w |= φ iff σ(M,w) |= φ.

This is straightforward by induction on the structure of the formula φ.

4.3 Reasoning about alive and dead agents
In Example 29, we only considered formulas talking about what the agents know about
each other’s input values. It is a natural idea to also contemplate formulas expressing which
agents are alive or dead, for example “agent a knows that agent b is dead”. Fortunately, such
formulas can already be expressed in our logic without any extra work, as derived operators
dead(a) := Ka false, and alive(a) := ¬dead(a). It is easy to check that indeed:

In partial epistemic models, M,w |= alive(a) iff w ∼a w.
In simplicial models, C, X |= alive(a) iff a ∈ χ(X).

▶ Example 31. Consider again the simplicial model of Examples 6 and 28, and its corre-
sponding partial epistemic model of Example 10. It is easy to see that:

M,w3 |= alive(b) ∧ alive(a) but M,w3 |= dead(c),
M,w1 |= ¬Ka alive(c) since e.g. M,w3 |= dead(c) whereas M,w1 |= alive(c),
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Agents a and b know, in world w4, that c is dead: M,w4 |= Kb dead(c) ∧Ka dead(c) since,
first, in world w3 (which is indistinguishable from w3 by agent b), agent c is not alive, and
second, in world w5 (which is indistinguishable from w3 by agent a, c is not alive either.

In w4 everything looks as if agents a and b were executing solo, without c ever existing,
whereas in worlds w3 and w5, agent c dies at some point, but has been active and its local
value has been observed by one of the other agents.

4.4 The axiom system KB4n

We consider the usual proof theory of normal modal logics, with all propositional tautologies,
closure by modus ponens, and the necessitation rule: if φ is a tautology, then Kaφ is a
tautology. In normal modal logics, there is a well-known correspondence between properties
of Kripke models that we consider, and corresponding axioms that make the logic sound and
complete [8]. In our case, partial epistemic models are symmetric and transitive. Thus we
get the logic KB4n, obeying the following additional axioms.

K : Ka(φ ⇒ ψ) =⇒ (Kaφ ⇒ Kaψ)
B : φ =⇒ Ka¬Ka¬φ
4 : Kaφ =⇒ KaKaφ

The difference between KB4n and the more standard multi-agent epistemic logics S5n is
that we do not necessarily have axiom T: Kaφ =⇒ φ. Axiom T is valid in Kripke models
whose accessibility relation is reflexive, which we do not enforce. The logic KB4n is in fact
equivalent to KB45n (see e.g. [8]), so we also have for free the Axiom 5, which corresponds
to Euclidean Kripke frames. We have the following well-known result, see e.g. [6].

▶ Theorem 32. The axiom system KB4n is sound and complete with respect to the class of
partial epistemic models.

Here are a few examples of valid formulas in KB4n, related to the liveness of agents.
Dead agents know everything: KB4n ⊢ dead(a) =⇒ Kaφ.
Alive agents know they are alive: KB4n ⊢ alive(a) =⇒ Ka alive(a).
Alive agents satisfy Axiom T: KB4n ⊢ alive(a) =⇒ (Kaφ ⇒ φ).
Only alive agents matter for Kaφ: KB4n ⊢ Kaφ ⇐⇒ (alive(a) ⇒ Kaφ).

As an application of the fourth tautology, notice that a formula of the form KaKbφ is
equivalent to Ka(alive(b) ⇒ Kbφ). So, to check whether this formula is true in some pointed
model (M,w), we only need to check that Kbφ is true in the worlds w′ ∼a w where b is alive.

4.5 Completeness for simplicial models
According to Theorem 27, simplicial models are equivalent to proper partial epistemic models.
Thus Theorem 32 does not apply directly to simplicial models, and some extra care must
be taken to deal with this “proper” requirement. Indeed, it is easy to check that the two
formulas below are true in every simplicial model; but they are not provable in KB4n.

NE:
∨

a∈A alive(a)

SAa:
(

alive(a) ∧
∧

b̸=a dead(b)
)

=⇒ Ka

∧
b̸=a dead(b)

The formula NE (Non-Emptiness) says that in every world, there is at least one agent that
is alive; and the formula SAa (Single Agent) says that if there is exactly one alive agent a,
this agent knows that all other agents are dead. It is straightforward to check that:
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▶ Proposition 33. The axiom system KB4n + NE + (SAa)a∈A is sound with respect to the
class of simplicial models.

We also believe that this axiom system is complete; but the proof is more involved and
we leave it for future work. A proof sketch is given in the Appendix G. The axioms NE
and SAa embody the “hidden” assumptions in the use of simplicial models. Note that we
could easily get rid of NE by allowing the existence of a fictitious (−1)-dimensional simplex
representing an empty world. This is known in geometry as augmented simplicial complexes.
However, the axioms SAa are more substantial.

▶ Conjecture 34. KB4n + NE + (SAa)a∈A is complete w.r.t. the class of simplicial models.

4.6 Knowledge gain
In [10], a key property of the logic used in distributed computing applications is the so-called
“knowledge gain” property. This principle says that agents cannot acquire new knowledge
along morphisms of simplicial models. Namely, what is known in the image of a morphism
was already known in the domain. The knowledge gain property is used when we want to
prove that a certain simplicial map f : C → D cannot exist. To achieve this, we choose a
formula φ and show that φ is true in every world of D, and that φ is false in at least one
world of C. Then by the knowledge gain property, the map f does not exist. Such a formula
φ is called a logical obstruction. While we are not interested in proving distributed computing
results in this paper (the synchronous crash model of Figure 2 is merely an illustrative
example), we still check that some version of the knowledge gain property holds, as a sanity
check towards future work.

The knowledge gain property that appeared in [10] applied to positive epistemic formulas,
i.e., they are cannot talk about what an agent does not know. Here, we also require an
additional condition, which says that every atomic proposition p ∈ Ata that appears in the
formula must be guarded by a conditional making sure that agent a is alive. This is because
there might be agents that are dead in the domain of a morphism, but are alive in the
codomain.

Formally, the fragment of guarded positive epistemic formulas φ ∈ L+
K,alive is defined by

the grammar φ ::= alive(B) ⇒ ψ | φ ∧ φ | φ ∨ φ | Kaφ, a ∈ A, B ⊆ A, ψ ∈ L↾B , where the
formula alive(B) stands for

∧
a∈B alive(a), and the formula ψ ∈ L↾B is a propositional formula

restricted to the agents in B, defined formally by the grammar: ψ ::= p | ¬ψ | ψ∧ψ, p ∈ AtB .

▶ Theorem 35 (knowledge gain). Consider simplicial models C = ⟨V, S, χ, ℓ⟩ and D =
⟨V ′, S′, χ′, ℓ′⟩, and a morphism of pointed simplicial models f : (C, X) → (D, Y ). Let
φ ∈ L+

K,alive be a guarded positive epistemic formula. Then D, Y |= φ implies C, X |= φ.

5 Conclusion

We began exposing the interplay between epistemic logics and combinatorial geometry in [10].
The importance of this perspective has been well established in distributed computing, where
the topology of the simplicial model determines the solvability of a distributed task [12].
Here we extended it to situations where agents may die: impure simplicial complexes need
to be considered. Many technical interesting issues arise, which shed light on the epistemic
assumptions hiding behind the use of simplicial models.

But the main point is that our work opens the way to give a formal epistemic semantics to
distributed systems where processes may fail and failures are detectable (as in the synchronous
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crash failure model). It would be interesting to use our simplicial model to reason about
the solvability of tasks in such systems, for example, the following have not been studied
using epistemic logic, to the best of our knowledge: non-complete communication (instead
of broadcast situation we considered here) graphs [3], and tasks such as renaming [21] and
lattice agreement [28]. Especially interesting would be extending the set agreement logical
obstruction of [27] to the synchronous crash setting.

Finally, we hope that our simplicial semantics can be useful to reason not only about
distributed computing, but also about in other situations with interactions beyond pairs
of agents [1]. For instance, impure simplicial complexes have been shown to occur when
modelling social systems, neuroscience, and other biological systems (see e.g. [19]).
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A Proof of Proposition 17

We break down Proposition 17 into three statements:

▶ Proposition 36. κ(C) is a proper partial epistemic frame.

Proof. The relation ∼a on facets is easily seen to be symmetric and transitive, because there
can be at most one vertex v ∈ X ∩ Y with χ(v) = a. To show that κ(C) is proper, consider
two worlds X and Y in κ(C), i.e., two facets of C. In simplicial complexes, X ̸= Y implies
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that at least one vertex of X, say v, does not belong to Y : otherwise, we would have X ⊆ Y

so X would not be a facet. Let a = χ(v) be the colour of v. Then a is alive in X because
a ∈ χ(X ∩X); and X ̸∼a Y because v ̸∈ X ∩ Y and there can be only one vertex with colour
a in X. ◀

▶ Proposition 37. κ(f) is a morphism of partial epistemic frames from κ(C) to κ(D).

Proof. Assume X and Y are facets of C = ⟨V, S, χ⟩ such that X ∼a Y in κ(C). So there is a
vertex v ∈ V such that v ∈ X∩Y and χ(v) = a. Therefore f(v) is in all facets Z ∈ κ(D) such
that f(X) ⊆ Z and all facets T ∈ κ(D) such that f(Y ) ⊆ T . As χ(f(v)) = a, this means that
a ∈ χ(Z ∩ T ), hence, for all Z ∈ κ(f)(X) and T ∈ κ(f)(Y ), Z ∼a T . Furthermore, κ(f)(X)
as defined is obviously saturated, so κ(f) is a morphism of partial epistemic frames. ◀

▶ Proposition 38. κ is functorial, i.e. κ(g ◦ f) = κ(g) ◦ κ(f).

Proof. Let f : C → D and g : D → E be two chromatic simplicial maps. By definition,
for a world/facet X ∈ κ(C), we have κ(g ◦ f)(X) = {Z ′ ∈ F(E) | (g ◦ f)(X) ⊆ Z ′}, while
(κ(g) ◦ κ(f))(X) = satχ(X)(Z) for some facets Z ∈ κ(g)(Y ) and Y ∈ κ(f)(X). We show that
they are equal.

Consider Z ′ such that (g ◦ f)(X) ⊆ Z ′; we need to show that Z ′ ∼a Z for all a ∈ χ(X).
Indeed, let v be the a-coloured vertex of X. Then (g ◦ f)(v) ∈ Z ′ by assumption, and
(g ◦ f)(v) ∈ Z because f(v) ∈ Y . So there is an a-coloured vertex (g ◦ f)(v) ∈ Z ′ ∩ Z.

Conversely, let Z ′ ∈ satχ(X)(Z), i.e. Z ′ ∼a Z for all a ∈ χ(X). Let v be a vertex of X, and
let a = χ(v). Since f(v) ∈ Y , we have (g ◦ f)(v) ∈ Z. Since Z can have only one a-colored
vertex and a ∈ χ(Z ′ ∩ Z), we get (g ◦ f)(v) ∈ Z ′. Thus (g ◦ f)(X) ⊆ Z ′ as required. ◀

B Proof of Proposition 19

Proof. Each world w ∈ W is associated with the simplex Xw = {vw
a | a ∈ w}. We need to

prove that these simplexes are indeed facets, and that they are distinct for w ̸= w′. It suffices
to show that for all w ̸= w′, Xw ̸⊆ Xw′ . Since M is proper, there exists an agent a which is
alive in w such that w ̸∼a w

′. Then, either a is alive in w′, in which case vw
a ̸= vw′

a , or a is
dead in w′. In both cases, vw

a is not a vertex of Xw′ so Xw ̸⊆ Xw′ . ◀

C Proof of Proposition 22

Proof. Let f : M → N and g : N → P be morphisms of partial epistemic frames. Let vw
a

be a vertex of σ(M), where w ∈ W is a world of M . By definition, σ(g ◦ f)(vw
a ) = vw′′

a

where w′′ ∈ (g ◦ f)(w); whereas (σ(g) ◦ σ(f))(vw
a ) = vy′′

a where y′′ ∈ g(y′) and y′ ∈ f(w).
To show that they are the same vertex, we need to prove that w′′ ∼a y

′′. By definition of
(g ◦ f)(w), there exists x′ ∈ f(w) and x′′ ∈ g(x′) such that w′′ ∼a x

′′. Since w ∼a w, we
have x′ ∼a y

′ by the preservation property of f , and then x′′ ∼a y
′′ again by preservation.

Finally, w′′ ∼a y
′′ by transitivity. ◀

D Proof of Theorem 27

Proof. For a simplicial model C = ⟨V, S, χ, ℓ⟩, recall that the worlds of the associated partial
epistemic frame are the facets of C; so the labelling in κ(C) is L(X) = ℓ(X) for X ∈ F(C). For
a partial epistemic model M = ⟨W,∼, L⟩, recall that the facets of the associated chromatic
simplicial complex are of the form Xw for w ∈ W ; so to define σ(M), we set ℓ(Xw) = L(w).
For the pointed version, we similarly define κ(C, X) = (κ(C), X) and σ(M,w) = (σ(M), Xw).
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Checking that this is indeed an equivalence of category is an immediate consequence
of Theorem 23. The only detail to check is that the extra conditions on morphisms are
preserved: if f is a morphism of (pointed) simplicial models, then κ(f) is a morphism of
(pointed) partial epistemic models. Indeed, f(X) ⊆ Y implies that Y ∈ κ(f)(X) by definition
of κ(f). Similarly, if g is a morphism of (pointed) partial epistemic models, then σ(g) is a
morphism of (pointed) simplicial models. ◀

E Proofs of the sample valid formulas in KB4n, Section 4.4

Proof. We begin by proving that KB4n ⊢ dead(a) ⇒ Kaφ. By the K axiom, we have
Ka(false ⇒ φ) ⇒ (Kafalse ⇒ Kaφ). But false ⇒ φ is a tautology, and by the necessitation
rule, Ka(false ⇒ φ) is a tautology. Hence Kafalse ⇒ Kaφ but dead(a) ≡ Kafalse.

We then prove that KB4n ⊢ alive(a) ⇒ Ka alive(a). By axiom B we know that true ⇒
Ka¬Kafalse, that is, true ⇒ Kaalive(a), hence Kaalive(a). As a matter of fact, either a is
dead and it knows everything by the first property above, even Kaalive(a) or a is alive, and
knows it is alive.

Now we prove that KB4n ⊢ alive(a) ⇒ (Kaφ ⇒ φ). We will show the contrapositive,
KB4n ⊢ (Ka φ ∧ ¬φ) ⇒ dead(a). Assume Ka φ and ¬φ, we want to show dead(a), i.e.
Ka false. By axiom B, ¬φ ⇒ Ka¬Ka φ; so by modus ponens, Ka¬Ka φ. Moreover, by
axiom 4 and the assumption of Ka φ, we get KaKa φ. Therefore, since we proved both
Ka¬Ka φ and KaKa φ, by axiom K and modus ponens, we obtain Kafalse.

Finally we prove that KB4n ⊢ Kaφ ⇐⇒ (alive(a) ⇒ Kaφ). The left to right implication
is trivial. Now suppose alive(a) ⇒ Kaφ, we want to prove that Kaφ. By modus ponens
dead(a) ∨ alive(a) and if dead(a) then a knows everything by the first property we proved,
for instance Kaφ. If alive(a) then, because alive(a) ⇒ Kaφ, Kaφ holds. ◀

F Proof of Proposition 33

Proof. Let us first consider axiom NE:
∨

a∈A alive(a). Take a proper epistemic model
M = ⟨W,∼⟩. To prove that for all w ∈ W , M,w |= NE, we have to prove that there exists
a ∈ A such that w ∼a w. This is by definition of properness.

We now turn to axiom SAa:
(

alive(a) ∧
∧

b̸=a dead(b)
)

=⇒ Ka

∧
b̸=a dead(b). Take M

again, a proper epistemic frame, and w ∈ W such that M,w |= alive(a) ∧
∧

b̸=a dead(b). We
must prove that M,w |= Ka

∧
b̸=a dead(b). As M,w |= alive(a) ∧

∧
b̸=a dead(b), w ∼a w and,

for all b ̸= a, there is no w′ such that w′ ∼b w.
Consider now any u such that u ∼a w, we need to show that for all b ̸= a, M,u |= dead(b),

i.e. that u ̸∼b u. But in w, only a is alive, and by the properness property of M , such a u is
necessarily equal to w. This is because if u ̸= w, it has to be distinguished by some agent
that is alive in w, which can only be a by hypothesis on w, which contradicts the fact that
u ∼a w. Therefore we have trivially M,u |= dead(b) since M,w |= dead(b). ◀

G Proof sketch of Conjecture 34

We prove completeness for the class of proper partial epistemic models. Completeness for
simplicial models then follows directly by Proposition 30.

▶ Lemma 39. The axiom system KB4n + NE + (SAa)a∈A is complete w.r.t. the class of
proper partial epistemic models.
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33:20 A General Epistemic Logic Approach to Distributed Tasks

Proof sketch. As usual in completeness proofs, we build a canonical model M c whose worlds
are maximal and consistent sets of formulas (for the logic KB4n + NE + (SAa)a∈A). The
usual machinery (Lindenbaum’s Lemma, the Truth Lemma) works as expected.

All we have to do to complete the proof is show that M c is a proper partial epistemic
model. Showing that M c is a partial epistemic model is standard (see e.g. [8]): the axioms
B and 4 are used to prove symmetry and transitivity, respectively. However, the model M c

is in fact not proper: while the axiom NE ensures that every world has at least one alive
agent, non-proper behaviour (such as the one of Example 9) can occur within M c.

To fix this, we resort to the classic unwinding construction. From M c, we build an
unwinded model U(M c) whose worlds are paths in M c, of the form (w0, a1, w1, . . . , ak, wk),
where each wi is a world of M c and for all i, wi ∼ai+1 wi+1. This model U(M c) can be shown
to be bisimilar to M c. Moreover, U(M c) is proper: behaviours such as the one of Example 9
are ruled out by the unwinding construction. The only remaining possibility for non-
properness concerns worlds with a unique agent; they are ruled out by the axioms SAa. ◀

H Proof of Theorem 35

Proof. We proceed by induction on the structure of the guarded positive formula φ.
For the base case, assume φ = alive(B) ⇒ ψ for some set of agents B ⊆ A and some

propositional formula ψ ∈ L↾B . We distinguish two cases. Either some agent a ∈ B is dead
in the world X, in which case C, X |= φ is true. Or all agents in B are alive in X, and
since f(X) ⊆ Y (because f is a morphism of pointed simplicial models), all agents in B are
also alive in Y . Thus, we have D, Y |= ψ. Moreover, since f is a morphism, we know that
ℓ(X) ∩ Atχ(X) = ℓ(Y ) ∩ Atχ(X). In particular, this yields ℓ(X) ∩ AtB = ℓ(Y ) ∩ AtB because
B ⊆ χ(X). So all atomic propositions in AtB have the truth value in the worlds X and Y .
As a consequence D, Y |= ψ implies that C, X |= ψ, and thus C, X |= φ as required.

The cases of conjunction and disjunction follow trivially from the induction hypothesis.
Finally, for the case of a formula Kaφ, suppose that D, Y |= Kaφ. If a ̸∈ χ(X) then
C, X |= Kaφ, trivially (dead agents know everything). So let us assume that a ∈ χ(X). In
order to show C, X |= Kaφ, assume that a ∈ χ(X ∩X ′) for some facet X ′, and let us prove
C, X ′ |= φ. Let v be the a-coloured vertex in X ∩X ′. Then f(v) ∈ f(X) ∩f(X ′). Recall that
f(X) ⊆ Y by assumption, and let Y ′ be a facet of D containing f(X ′). So f(v) ∈ Y ∩ Y ′,
and since χ(f(v)) = a, we get a ∈ χ(Y ∩ Y ′) and thus D, Y ′ |= φ. By induction hypothesis,
we obtain C, X ′ |= φ. ◀
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1 Introduction

Permutations and combinations are two of the most fundamental classes of combinatorial
objects. Specifically, k-permutations are all linear orderings of [k] := {1, . . . , k}, and their
number is k!. Moreover, (α, β)-combinations are all β-element subsets of [n] where n := α+β,
and their number is

(
n
α

)
=

(
n
β

)
. Permutations and combinations are generalized by so-called

multiset permutations, and in this paper we consider the task of listing them such that any
two consecutive objects in the list differ by particular transpositions, i.e., by swapping two
elements. Such a listing of objects subject to a “small change” operation is often referred to
as Gray code [27, 30]. One of the standard references for algorithms that efficiently generate
various combinatorial objects, including permutations and combinations, is Knuth’s book [19]
(see also [25]).

1.1 Permutation generation

There is a vast number of Gray codes for permutation generation, most prominently the
Steinhaus-Johnson-Trotter algorithm [18, 40], which generates all k-permutations by adjacent
transpositions, i.e., swaps of two neighboring entries of the permutation; see Figure 1 (a). In
this work, we focus on star transpositions, i.e., swaps of the first entry of the permutation with
any later entry. An efficient algorithm for generating permutations by star transpositions was
found by Ehrlich, and it is described as Algorithm E in Knuth’s book [19, Section 7.2.1.2];
see Figure 1 (b). For any permutation generation algorithm based on transpositions, we can
define the transposition graph as the graph with vertex set [k], and an edge between i and j if
the algorithm uses transpositions between the ith and jth entry of the permutation. Clearly,
the transposition graph for adjacent transpositions is a path, whereas the transposition graph
for star transpositions is a star (hence the name “star transposition”). In fact, Kompel’maher
and Liskovec [20], and independently Slater [36], showed that all k-permutations can be
generated for any transposition tree on [k]. Transposition Gray codes for permutations
with additional restrictions were studied by Compton and Williamson [7] and by Shen and
Williams [33].

SJT Ehrlich Zaks Corbett Sawada/
Williams

(a) (b) (c) (d) (e)

Figure 1 Gray codes for 4-permutations (SJT=Steinhaus-Johnson-Trotter).
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Several known algorithms for permutation generation use operations other than trans-
positions. Specifically, Zaks [43] presented an algorithm for generating permutations by
prefix reversals; see Figure 1 (c). Moreover, Corbett [8] showed that all k-permutations
can be generated by cyclic left shifts of any prefix of the permutation by one position; see
Figure 1 (d). Another notable result is Sawada and Williams’ recent solution [32] of the
Sigma-Tau problem, proving that all k-permutations can be generated by cyclic left shifts
of the entire permutation by one position or transpositions of the first two elements; see
Figure 1 (e).

All of the aforementioned results can be seen as explicit constructions of Hamilton
paths in the Cayley graph of the symmetric group, generated by different sets of generators
(transpositions, reversals, or shifts). It is an open problem whether the Cayley graph of the
symmetric group has a Hamilton path for any set of generators [28]. This is a special case of
the well-known open problem whether any connected Cayley graph has a Hamilton path, or
even more generally, whether this is the case for any vertex-transitive graph [21].

1.2 Combination generation and the middle levels conjecture
In a computer, (α, β)-combinations can be conveniently represented by bitstrings of
length n := α + β, where the ith bit is 1 if the element i is in the set and 0 otherwise. For
example, the (5, 3)-combination {1, 6, 7} is represented by the string 10000110.

In the 1980s, Buck and Wiedemann [3] conjectured that all (α, α)-combinations can be
generated by star transpositions for every α ≥ 1, i.e., in every step we swap the first bit of the
bitstring representation with a later bit. Figure 2 (a) shows such a star transposition Gray
code for (4, 4)-combinations. Buck and Wiedemann’s conjecture was raised independently by
Havel [15], as a question about the existence of a Hamilton cycle through the middle two
levels of the (2α − 1)-dimensional hypercube. This conjecture became known as middle levels
conjecture, and it attracted considerable attention in the literature and made its way into
popular books [9, 42], until it was answered affirmatively by Mütze [23]; see also [13].

Similarly to permutations, there are also many known methods for generating general
(α, β)-combinations that use operations other than star transpositions, see [5, 11, 17, 29, 38].
In particular, (α, β)-combinations can be generated by adjacent transpositions if and only if
α = 1, β = 1, or α and β are both odd [3, 10, 26].

1.3 Multiset permutations
Shen and Williams [34] proposed a far-ranging generalization of the middle levels conjecture
that connects permutations and combinations. Their conjecture is about multiset permuta-
tions. For integers k ≥ 2 and a1, . . . , ak ≥ 1, an (a1, . . . , ak)-multiset permutation is a string
over the alphabet {1, . . . , k} that contains exactly ai occurrences of the symbol i. We refer
to the sequence a := (a1, . . . , ak) as the frequency vector, as it specifies the frequency of each
symbol. The length of a multiset permutation is na := a1 + · · · + ak, and if the context is
clear we omit the index and simply write n = na. If all symbols appear equally often, i.e.,
a1 = · · · = ak = α, we use the abbreviation αk := (a1, . . . , ak). For example 123433153 is a
(2, 1, 4, 1)-multiset permutation, and 331232142144 is a 34-multiset permutation.

Clearly, multiset permutations are a generalization of permutations and combinations.
Specifically, k-permutations are 1k-multiset permutations, and (α, β)-combinations are (α, β)-
multiset permutations (up to shifting the symbol names 1, 2 7→ 0, 1). Stachowiak [37] showed
that (a1, . . . , ak)-multiset permutations can be generated by adjacent transpositions if and
only if at least two of the ai are odd.

STACS 2022
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0 1 1 2 3

(a) (a1, a2) = (4, 4) (b) (a1, a2, a3) = (2, 2, 2)

Figure 2 Star transposition Gray codes for (a) (4, 4)- and (b) (2, 2, 2)-multiset permutations.
The strings are arranged in clockwise order, starting at 12 o’clock, with the first entry on the inner
track, and the last entry on the outer track. As every star transposition changes the first entry, the
color on the inner track changes in every step.

G(1, 1)
12

21

112 121
G(2, 1)

211

123
G(1, 1, 1)

213

132

231
312
321

G(2, 1, 1)
2113 2131 2311

3112 3121 3211

1132

1312

1231

1213

13211123

G(2, 2)
1122

2112 2121

1212 1221

2211

G(1, 1, 1, 1) 1234
2134 4231

3214

4213 2314

3124

4123

1423

2413
3412

4312

1342

2341

3241
4132

1324

2143

3421

1432

3142

4321

1243

2431

G(3, 2)
21112 11122

11212

12112

21211 2211121211

21121

12121

11212

Figure 3 Star transposition graphs G(a) for several small multiset permutations a. Vertices
are colored according to the first entry of the multiset permutations, and these color classes form
independent sets. In G(2, 1, 1), an odd cycle is highlighted.
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Shen and Williams [34] conjectured that all αk-multiset permutations can be generated by
star transpositions, for any α ≥ 1 and k ≥ 2. We state their conjecture in terms of Hamilton
cycles in a suitably defined graph, as follows. We write Π(a) = Π(a1, . . . , ak) for the set of all
(a1, . . . , ak)-multiset permutations. Moreover, we let G(a) = G(a1, . . . , ak) denote the graph
on the vertex set Π(a) = Π(a1, . . . , ak) with an edge between any two multiset permutations
that differ in a star transposition, i.e., in swapping the first entry of the multiset permutation
with any entry at positions 2, . . . , n that is distinct from the first one. Figure 3 shows various
examples of the graph G(a). When denoting specific multiset permutations we sometimes
omit commas and brackets for brevity, for example 1312214 ∈ Π(3, 2, 1, 1).

▶ Conjecture 1 ([34]). For any α ≥ 1 and k ≥ 2, the graph G(αk) has a Hamilton cycle.

In this and the following statements, the single edge G(1, 1) is also considered a cycle,
as it gives a cyclic Gray code. Note that G(a1, . . . , ak) is vertex-transitive if and only if
a1 = · · · = ak =: α. In this case, Conjecture 1 is an interesting instance of the aforementioned
conjecture of Lovász [21] on Hamilton paths in vertex-transitive graphs.

Evidence for Conjecture 1 comes from the results mentioned in Sections 1.1 and 1.2
on generating permutations by star transpositions and the solution of the middle levels
conjecture, respectively, formulated in terms of the graph G(a) below. These known results
settle the boundary cases α = 1 and k ≥ 2, and α ≥ 1 and k = 2, respectively, of Conjecture 1.

▶ Theorem 2 (Ehrlich; [20]; [36]). For any k ≥ 2, the graph G(1k) has a Hamilton cycle.

▶ Theorem 3 ([23, 13]). For any α ≥ 1, the graph G(α, α) has a Hamilton cycle.

In their paper, Shen and Williams also provided an ad-hoc solution for the first case
of their conjecture that is not covered by Theorems 2 and 3, namely a Hamilton cycle in
G(2, 2, 2), which is displayed in Figure 2 (b).

We approach Conjecture 1 by tackling the following even more general question: For which
frequency vectors a = (a1, . . . , ak) does the graph G(a) have a Hamilton cycle? By renaming
symbols, we may assume w.l.o.g. that the entries of the vector a are non-increasing, i.e.,

a1 ≥ a2 ≥ · · · ≥ ak. (1)

We can thus think of the vector a as an integer partition of n.

2 Our results

For any i ∈ [n] and c ∈ [k], we write Π(a)i,c for the set of all multiset permutations from Π(a)
whose ith symbol equals c. Note that every star transposition changes the first entry; see
the inner track of each of the two wheels in Figure 2. As a consequence, G(a) is a k-partite
graph with partition classes Π(a)1,1, . . . , Π(a)1,k; see Figure 3. Moreover, the partition
class Π(a)1,1 is a largest one because of (1). This k-partition of the graph G(a) is a potential
obstacle for the existence of Hamilton cycles and paths. Specifically, if one partition class
is larger than all others combined, then there cannot be a Hamilton cycle, and if the size
difference is more than 1, then there cannot be a Hamilton path.

We capture this by defining a parameter ∆(a) for any integer partition a = (a1, . . . , ak) as

∆(a) := n − 2a1 = −a1 +
k∑

i=2
ai. (2)
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We will see that if ∆(a) < 0, then the partition class Π(a)1,1 of the graph G(a) is larger
than all others combined, excluding the existence of Hamilton cycles. On the other hand,
if ∆(a) ≥ 0, then every partition class of the graph G(a) is at most as large as all others
combined (equality holds if ∆(a) = 0), which does not exclude the existence of a Hamilton
cycle. The cases with ∆(a) = 0 lie on the boundary between the two regimes, and they are
the hardest in terms of proving Hamiltonicity. These cases can be seen as generalizations of
the middle levels conjecture, namely the case a = (α, α) captured by Theorem 3, which also
satisfies ∆(a) = 0.

▶ Theorem 4. For any integer partition a = (a1, . . . , ak) with ∆(a) < 0 the graph G(a)
does not have a Hamilton cycle, and it does not have a Hamilton path unless a = (2, 1).

For k = 2 symbols, the condition ∆(a) < 0 is equivalent to a1 > a2, i.e., there is no star
transposition Gray code for “unbalanced” combinations.

We now discuss the cases ∆(a) ≥ 0. Our first main goal is to reduce all cases with ∆(a) > 0
to cases with ∆(a) = 0. For doing so, it is helpful to consider stronger notions of Hamiltonicity.
Specifically, we consider Hamilton-connectedness and Hamilton-laceability, which have been
heavily studied (see [1, 2, 6, 14, 16, 35]). A graph is called Hamilton-connected if there is
a Hamilton path between any two distinct vertices. A bipartite graph is called Hamilton-
laceable if there is a Hamilton path between any pair of vertices from the two partition classes.
In general, the graphs G(a) are not bipartite, so we say that G(a) is 1-laceable if there is a
Hamilton path between any vertex in Π(a)1,1 and any vertex not in Π(a)1,1, i.e., between
any vertex with first symbol 1 and any vertex with first symbol distinct from 1.

This approach is inspired by the following result of Tchuente [39], who strengthened
Theorem 2 considerably.

▶ Theorem 5 ([39]). For any k ≥ 4, the graph G(1k) is Hamilton-laceable.

The key insight is that proving a stronger property makes the proof easier and shorter,
because the inductive statement is more powerful and flexible; see Section 3.2 below. En-
couraged by this, we raise the following conjecture about graphs G(a) with ∆(a) = 0. It
is another natural and far-ranging generalization of the middle levels conjecture, which we
support by extensive computer experiments and by proving some special cases.

▶ Conjecture 6. For any integer partition a = (a1, . . . , ak) with ∆(a) = 0 the graph G(a) is
Hamilton-1-laceable, unless a = (2, 2).

The exceptional graph G(2, 2) mentioned in this conjecture is a 6-cycle; see Figure 3.
Assuming the validity of this conjecture, we settle all cases G(a) with ∆(a) > 0 in the
strongest possible sense. While being a conditional result, the main purpose of this theorem
is to reduce all cases ∆(a) ≥ 0 to the boundary cases ∆(a) = 0.

▶ Theorem 7. Conditional on Conjecture 6, for any integer partition a = (a1, . . . , ak) with
∆(a) > 0 the graph G(a) is Hamilton-connected, unless a = (1, 1, 1) or a = 1k for k ≥ 4,
and possibly unless a = (α, α, 1) for α ≥ 3.

The dependence of Theorem 7 on Conjecture 6 can be captured more precisely. Specifically,
G(a) with ∆(a) > 0 is shown to be Hamilton-connected, assuming that G(b) with ∆(b) = 0
is Hamilton-1-laceable for all integer partitions b that are majorized componentwise by a.

The three exceptions mentioned in Theorem 7 are well understood: Specifically, G(1, 1, 1)
is a 6-cycle; see Figure 3. Furthermore, G(1k) for k ≥ 4 is Hamilton-laceable by Theorem 5.
Lastly, we will show that G(α, α, 1) for α ≥ 3 satisfies a variant of Hamilton-laceability, which
also guarantees a Hamilton cycle. In fact, we believe that G(α, α, 1) is Hamilton-connected,
but we cannot prove it.
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We provide the following evidence for Conjecture 6. First of all, with com-
puter help we verified that G(a) is indeed Hamilton-1-laceable for all integer par-
titions a ̸= (2, 2) with ∆(a) = 0 that satisfy n ≤ 8, i.e., for a ∈
{(1, 1), (2, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (4, 4), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}. Fur-
thermore, we prove the case of k = 2 symbols unconditionally. Note that for k = 2,
Hamilton-1-laceability is the same as Hamilton-laceability. Recall that G(α, α) is isomorphic
to the subgraph of the (2α − 1)-dimensional hypercube induced by the middle two levels, so
the following result is a considerable strengthening of Theorem 3, the middle levels theorem.

▶ Theorem 8. For any α ≥ 3, the graph G(α, α) is Hamilton-laceable.

We also have the following (unconditional) result for k = 3 symbols.

▶ Theorem 9. For any α ≥ 2, the graph G(α, α − 1, 1) has a Hamilton cycle.

Lastly, we consider integer partitions a = (a1, . . . , ak), k ≥ 3, with ∆(a) ≥ 0 and
an upper bound on the part size, i.e., a1 ≤ α for some constant α. By the remarks
after Theorem 7, the inductive proof of the theorem for such integer partitions only re-
lies on Conjecture 6 being satisfied for integer partitions with the same upper bound
on the part size. For any fixed bound α, there are only finitely many such partitions
with ∆(a) = 0 that can be checked by computer. For example, for α = 4 these are
a ∈ {(2, 1, 1), (3, 2, 1), (3, 1, 1, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}. This yields the
following (unconditional) result.

▶ Theorem 10. For α ∈ {2, 3, 4} and any integer partition a = (a1, . . . , ak) with ∆(a) > 0
and a1 = α, the graph G(a) is Hamilton-connected.

In words, Theorem 10 settles all integer partitions a whose largest part is at most 4. In
particular, this settles the cases α ∈ {2, 3, 4} and k ≥ 2 of Shen and Williams’ Conjecture 1
in a rather strong sense.

3 Proof ideas

In this section, we give a high-level overview of the main ideas and techniques used in our
proofs. No formal proofs of our results are presented in this extended abstract due to space
constraints, but they can be found in the preprint [12].

3.1 The case ∆(a) < 0
The main idea for proving Theorem 4 is that if ∆(a) < 0, then the partition class Π(a)1,1 of
the graph G(a) is larger than all others combined, which excludes the existence of a Hamilton
cycle. To exclude the existence of a Hamilton path, we show that the size difference is strictly
more than 1, unless a = (2, 1). Note that the graph G(2, 1) is the path on three vertices, so
in this case the size difference is precisely 1. These arguments are based on straightforward
algebraic manipulations involving multinomial coefficients.

3.2 The case ∆(a) > 0
To prove Theorem 7, it is convenient to think of an integer partition a = (a1, . . . , ak) as an
infinite non-increasing sequence (a1, a2, . . .), with only k nonzero entries at the beginning.
Given two such integer partitions a = (a1, a2, . . .) and b = (b1, b2, . . .), we write b ≺ a if
bi ≤ ai for all i ≥ 1. Integer partitions with the partial order ≺ form a lattice, which is the

STACS 2022



34:8 Star Transposition Gray Codes for Multiset Permutations

1

11

111

1111

11111

111111

ε

2

21

211

2111

21111

211111

22

221

222 2211

221112221

3

31

31132

3111

31111

311111

321

3211

321112222 22211

22221 222111

221111

222221

3221

3222 32211

322

321111

322111

32221132222

322221

322222

33

331

3311

33111

331111

332

3321

3322 33211

33221

33222

332111

332211

332221

332222

333

3331

33311

333111

3332

33321

333211

333221

333222

3333

33331

333311

333321

333322

33332

0

1

2

3

4

∆(a) =

5

6

7

< 0

22222 22221132221

0 → 12 → 31 → 2

222222

33322

Figure 4 The lattice of integer partitions a = (a1, . . . , ak) with largest part a1 ≤ 3. The
coordinates are projected into three dimensions depending on which value is increased.

sublattice of the infinite lattice NN cut out by the hyperplanes defined by (1); see Figure 4.
The cover relations in this lattice are given by decrementing any of the ai for which ai > ai+1.
We write b ≺· a for partitions a ̸= b if b ≺ a and there is no c /∈ {a, b} with b ≺ c ≺ a.

In this lattice of integer partitions, the hyperplane defined by ∆(a) = 0 separates the cases
where Hamiltonicity is impossible, which lie on the side of the hyperplane where ∆(a) < 0
(Theorem 4), from the cases where Hamiltonicity can be established more easily, which lie
on the side of the hyperplane where ∆(a) > 0 (Theorem 7). The cases ∆(a) = 0 on the
hyperplane are the hardest ones (Conjecture 6).

Our proof of Theorem 7 proceeds by induction in this partition lattice and establishes
the Hamiltonicity of G(a) by using the Hamiltonicity of G(b) for all integer partitions b ≺· a,
where Conjecture 6 serves as the base case of the induction. This is based on the observation
that fixing one of the symbols at positions 2, . . . , n in G(a) yields subgraphs that are
isomorphic to G(b) for b ≺· a.
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G(2, 1, 1)

2113 2131 2311

3112 3121 3211

1132
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13211123

G(1, 1, 1)

G(2, 1)

G(2, 1)

Figure 5 Decomposing G(2, 1, 1) into three subgraphs by fixing the last symbol.

Specifically, for any a = (a1, . . . , ak), i = 2, . . . , n, and c ∈ [k], the subgraph of G(a)
induced by the vertex set Π(a)i,c is isomorphic to G(b) where b is the partition obtained
from a by decreasing ai by 1 (and possibly sorting the resulting numbers non-increasingly);
see Figure 5.

Moreover, for any b ≺· a we have ∆(b) = ∆(a) − 1 or ∆(b) = ∆(a) + 1. In particular,
if ∆(a) > 0, then we have ∆(b) ≥ 0. For example, the vertex set of G(a) for a = (3, 2, 2)
(∆(a) = 1) can be partitioned into one copy of G(b) for b = (2, 2, 2) (if the fixed symbol
is c = 1; ∆(b) = 2) and two copies of G(b′) for b′ = (3, 2, 1) (if the fixed symbol is c = 2
or c = 3; ∆(b′) = 0). Therefore, we may construct a Hamilton path in G(3, 2, 2) by gluing
together paths in each of these three subgraphs which exist by induction.

While conceptually simple, implementing this idea incurs considerable technical obstacles,
in particular for some of the graphs G(a) with ∆(a) = 1, i.e., instances that are very close
to the hyperplane ∆(a) = 0. The proof is split into several interdependent lemmas, and it is
the technically most demanding part of our work.

Theorem 10 follows immediately from the inductive proof of Theorem 7 and by settling
finitely many cases with computer help.

To further illustrate the ideas outlined before, we close this section by reproducing
Tchuente’s proof of Theorem 5.

x =

y =

u1

v1

uj

vj

π1 = xı̂

π2

πj

uk

vk

π1

πj−1

πj
πj+1

πk

πk = yı̂

...
...

...
...

πk πk−1
πk−1

ı̂

πj+1

πj

πj
πj−1

π1
π2

72 3

a = (1, 1, 1, 1, 1, 1, 1)
∆(a) = 5

4

56 b = (1, 1, 1, 1, 1, 1) ≺· a
∆(b) = 4

4

12 3 45 67

4

3
3

3
3

5
5

5
5

6
6

1
1

1
1

2
2

2
2
4

1

4

7
7

vj−1

π = (7, 3, 2, 4, 1, 5, 6)

uj+1

Figure 6 Illustration of the proof of Theorem 5. The left hand side shows the general schematic
partitioning of the graph G(1k) into blocks, each of which is a copy of G(1k−1), by fixing symbols at
position ı̂. The right hand side shows a concrete example for k = 7.
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Proof of Theorem 5. To prove that G(1k) is Hamilton-laceable, we proceed by induction
on k. The induction basis k = 4 can be checked by straightforward case analysis. For the
induction step, we assume that G(1k−1), k ≥ 5, is Hamilton-laceable, and we prove that
G(1k) is also Hamilton-laceable. Note that 1k−1 ≺· 1k and ∆(1k) = k − 2 = ∆(1k−1) + 1.
The following arguments are illustrated in Figure 6. The partition classes of the graph G(1k)
are given by the parity of the permutations, i.e., by the number of inversions. Therefore,
we consider two distinct permutations x and y of [k] with opposite parity, and we need to
show how to connect them by a Hamilton path in G(1k). As x ̸= y, there is a position ı̂ > 1
in which x and y differ, i.e., xı̂ ≠ yı̂, and this is the position that we will fix to different
symbols. Specifically, we choose a permutation π of [k] such that π1 = xı̂ and πk = yı̂.
The permutation π captures the order in which we will fix symbols at position ı̂. We then
choose permutations uj , vj of [k], j = 1, . . . , k, satisfying u1 = x, vk = y, and such that
uj is obtained from vj−1 by a star transposition of the symbol πj at position 1 with the
symbol πj−1 at position ı̂, for all j = 2, . . . , k. Moreover, we choose uj and vj such that the
parity of the number of inversions after removing the symbol πj is opposite. Specifically,
for uj this parity is the same as for u1 = x if and only if πj has the same parity as π1, and
for vj this parity is the same as for vk = y if and only if πj has the same parity as πk. For
each j = 1, . . . , k, we now consider the permutations whose ı̂th entry equals πj (formally,
this is the set Π(1k)ı̂,πj ). Clearly, the subgraph of G(1k) induced by these permutations is
isomorphic to G(1k−1). In other words, by removing the ı̂th entry and renaming entries
to 1, . . . , k − 1, we obtain permutations of [k − 1]. Consequently, by induction there is a
path in G(1k) that visits all permutations whose ı̂th entry equals πj and that connects uj

to vj . The concatenation of those k paths obtained by induction is the desired Hamilton
path in G(1k) from x to y, which completes the induction step. ◀

Note that the constraints imposed on the permutations π and uj , vj , j = 1, . . . , k, in this
proof are very mild, and leave a lot of room for modifications to construct many different
Hamilton paths, possibly so as to satisfy some additional conditions.

3.3 The case ∆(a) = 0
Our proofs of Theorems 8 and 9 build on ideas introduced in the papers [13, 22].

Specifically, the first step in proving Theorem 8 is to build a cycle factor in the
graph G(α, α), i.e., a collection of disjoint cycles in the graph that together visit all vertices.
We then choose vertices x and y from the two partition classes of the graph that we want to
connect by a Hamilton path. In this we can take into account automorphisms of G(α, α), i.e.,
for proving laceability only certain pairs of vertices x and y in the two partition classes have
to be considered. In the next step, we join a small subset of cycles from the factor, including
the ones containing x and y, to a short path between x and y. This is achieved by taking
the symmetric difference of the edge set of the cycle factor with a carefully chosen path P

from x to y that alternately uses edges on one of the cycles from the factor and edges that
go between two such cycles; see Figure 7 (a)+(b). In the last step, we join the remaining
cycles of the factor to the path between x and y, until we end with a Hamilton path from x

to y. Each such joining is achieved by taking the symmetric difference of the cycle factor
with a suitably chosen 6-cycle; see Figure 7 (b)+(c).

It was shown in [13] that the cycles of the aforementioned cycle factor in G(α, α) are
bijectively equivalent to plane trees with α vertices, and the joining operations via 6-cycles can
be interpreted combinatorially as local change operations between two such plane trees. To
prove Theorem 9, we first generalize the construction of this cycle factor in the graph G(α, α)
to a cycle factor in any graph G(a), a = (a1, . . . , ak), with ∆(a) = 0. It turns out that
the cycles of this generalized factor can be interpreted combinatorially as vertex-labeled
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x y x y x yP

(a) (b) (c)

Figure 7 Strategy of the proof of Theorem 8.

plane trees, where exactly ai vertices have the label i for i = 2, . . . , k. If a = (α, α), then
all vertex labels are the same, so we can consider the trees as unlabeled. Moreover, the
joining 6-cycles in G(α, α) generalize nicely to joining 12- or 6-cycles in G(a) with ∆(a) = 0,
and they correspond to local change operations involving sets T of labeled plane trees with
|T | ∈ {2, 3, 5, 6}, depending on the location of vertex labels. For proving Theorem 9, we
consider the special case a = (α, α − 1, 1), i.e., exactly one vertex in the plane trees is labeled
differently from all other vertices, and we show that there is a choice of joining cycles so that
the symmetric difference with the cycle factor yields a Hamilton cycle in the graph G(a).

4 Open questions

We conclude this paper with the following open questions.

We believe that the ideas outlined in Section 3.3 to prove that G(α, α − 1, 1) has a
Hamilton cycle are in principle suitable to prove that G(a) has a Hamilton cycle for all a

with ∆(a) = 0, which would be an important first step towards a proof of Conjecture 6. In
particular, the construction of the cycle factor and gluing tuples based on vertex-labeled
plane trees are fully general. The main difficulty in combining these ingredients lies in
the fact that some gluing cycles join more than two cycles from the factor (namely 3, 5,
or 6 cycles) to a single cycle, and in this case the resulting interactions between different
gluing cycles seem to be hard to control.
We conjecture that G(α, α, 1) for α ≥ 2 is Hamilton-connected, just as all other
graphs G(a) with ∆(a) > 0 covered by Theorem 7. However, we are unable to
prove this based on Conjecture 6. With computer help, we verified that G(α, α, 1)
is Hamilton-connected for α = 2, 3, 4. Proving this in general would streamline our proof
of Theorem 7 considerably, as it would make several auxiliary lemmas redundant. To
prove that G(α, α, 1) is Hamilton-connected, it may help to establish a Hamiltonicity
property for graphs G(a) with ∆(a) = 0 and k ≥ 3 that is stronger than 1-laceability.
Specifically, in addition to a Hamilton path between any vertex in Π(a)1,1 and any
vertex not in Π(a)1,1, we may also ask for a Hamilton path between any two distinct
vertices in Π(a)1,1. We checked by computer whether G(a) has this stronger property
for a ∈ {(2, 1, 1), (3, 2, 1), (3, 1, 1, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}, and it was
satisfied in all cases except for a = (2, 1, 1).
While our proofs are constructive, they are far from yielding efficient algorithms for
computing the corresponding Gray codes. Ideally, one would like algorithms whose
running time is polynomial in n per generated multiset permutation of length n. Such
algorithms are known for the Hamilton cycles mentioned in Theorems 2 and 3, see [19,
Section 7.2.1.2] and [24], respectively. An interesting direction could be to explore greedy
algorithms for generating multiset permutations by star transpositions, which may yield
much simpler constructions to start with, cf. [41, 4, 31].
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Knuth raised the question whether there are star transposition Gray codes for (α, α)-
combinations whose flip sequence can be partitioned into 2α − 1 blocks, such that each
block is obtained from the previous one by adding +1 modulo 2α − 1. This problem
is a strengthening of the middle levels conjecture, and it was answered affirmatively
in [22]. The Gray code for (4, 4)-combinations shown in Figure 2 (a) has such a 7-fold
cyclic symmetry. We can ask more generally: Are there star transposition Gray codes
for multiset permutations whose flip sequence can be partitioned into n − 1 blocks, such
that each block is obtained from the previous one by adding +1 modulo n − 1? Figure 8
shows an ad-hoc solution for (2, 2, 2)-multiset permutations with 5-fold cyclic symmetry.

A more general version of the problem considered in this paper is the following: We
consider an alphabet {1, . . . , k} of size k ≥ 2, and frequencies a1, . . . , ak ≥ 1 that specify
that symbol i appears exactly ai times for all i = 1, . . . , k. Moreover, there is an additional
integer parameter s with 1 ≤ s ≤ k − 1 that has the following significance. The objects
to be generated are all pairs (S, x), where S is a set or string of s distinct symbols, and x

is a string of the remaining n − s symbols, where n := a1 + · · · + ak. A star transposition
swaps one symbol from S with one symbol from x that is currently not in S, and the
question is whether there is a star transposition Gray code for all those objects.
Note that multiset permutations considered in this paper are the special case when s = 1.
Andrea Sportiello suggested this problem with a1 = · · · = ak = α (uniform frequency)
and S being a set as a generalization of the middle levels conjecture (s = 1, k = 2,
a1 = a2 = α). Moreover, Ajit A. Diwan suggested this problem with a1 = · · · = ak = α

(uniform frequency) and a set S of size s = k − 1. Note that the uniform frequency case is
particularly interesting, as the underlying flip graph for this problem is vertex-transitive
if and only if a1 = · · · = ak (recall Lovász’ conjecture [21]).

1 2 3

Figure 8 Star transposition Gray code for (2, 2, 2)-multiset permutations with 5-fold cyclic
symmetry.



P. Gregor, T. Mütze, and A. Merino 34:13

References
1 B. Alspach and Y. Qin. Hamilton-connected Cayley graphs on Hamiltonian groups. European

J. Combin., 22(6):777–787, 2001. doi:10.1006/eujc.2001.0456.
2 T. Araki. Hyper Hamiltonian laceability of Cayley graphs generated by transpositions.

Networks, 48(3):121–124, 2006. doi:10.1002/net.20126.
3 M. Buck and D. Wiedemann. Gray codes with restricted density. Discrete Math., 48(2-3):163–

171, 1984. doi:10.1016/0012-365X(84)90179-1.
4 B. Cameron, J. Sawada, and A. Williams. A Hamilton cycle in the k-sided pancake network,

2021. arXiv:2103.09256.
5 P. Chase. Combination generation and graylex ordering. Congr. Numer., 69:215–242, 1989.

Eighteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB,
1988).

6 C. C. Chen and N. F. Quimpo. On strongly Hamiltonian abelian group graphs. In Combinatorial
mathematics, VIII (Geelong, 1980), volume 884 of Lecture Notes in Math., pages 23–34.
Springer, Berlin-New York, 1981.

7 R. C. Compton and S. G. Williamson. Doubly adjacent Gray codes for the symmetric group.
Linear and Multilinear Algebra, 35(3-4):237–293, 1993. doi:10.1080/03081089308818261.

8 P. F. Corbett. Rotator graphs: An efficient topology for point-to-point multiprocessor networks.
IEEE Transactions on Parallel and Distributed Systems, 3:622–626, 1992.

9 P. Diaconis and R. Graham. Magical mathematics. Princeton University Press, Princeton, NJ,
2012. The mathematical ideas that animate great magic tricks, With a foreword by Martin
Gardner.

10 P. Eades, M. Hickey, and R. C. Read. Some Hamilton paths and a minimal change algorithm.
J. Assoc. Comput. Mach., 31(1):19–29, 1984. doi:10.1145/2422.322413.

11 P. Eades and B. McKay. An algorithm for generating subsets of fixed size with a strong minimal
change property. Inform. Process. Lett., 19(3):131–133, 1984. doi:10.1016/0020-0190(84)
90091-7.

12 P. Gregor, A. Merino, and T. Mütze. arXiv:2108.07465.
13 P. Gregor, T. Mütze, and J. Nummenpalo. A short proof of the middle levels theorem. Discrete

Analysis, 2018:8:12 pp., 2018.
14 F. Harary and M. Lewinter. Hypercubes and other recursively defined Hamilton laceable

graphs. Congr. Numer., 60:81–84, 1987. Eighteenth Southeastern International Conference on
Combinatorics, Graph Theory, and Computing (Boca Raton, Fla., 1987).

15 I. Havel. Semipaths in directed cubes. In Graphs and other combinatorial topics (Prague,
1982), volume 59 of Teubner-Texte Math., pages 101–108. Teubner, Leipzig, 1983.

16 S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho. Hamiltonian-laceability of star graphs. Networks,
36(4):225–232, 2000. doi:10.1002/1097-0037(200012)36:4<225::AID-NET3>3.0.CO;2-G.

17 T. Jenkyns and D. McCarthy. Generating all k-subsets of {1 · · · n} with minimal changes. Ars
Combin., 40:153–159, 1995.

18 S. Johnson. Generation of permutations by adjacent transposition. Math. Comp., 17:282–285,
1963.

19 D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1.
Addison-Wesley, Upper Saddle River, NJ, 2011.

20 V. L. Kompel’maher and V. A. Liskovec. Sequential generation of permutations by means of a
transposition basis. Kibernetika (Kiev), 3:17–21, 1975.

21 L. Lovász. Problem 11. In Combinatorial Structures and Their Applications (Proc. Calgary
Internat. Conf., Calgary, Alberta, 1969). Gordon and Breach, New York, 1970.

22 A. I. Merino, O. Mička, and T. Mütze. On a combinatorial generation problem of Knuth.
In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 735–743. SIAM, 2021. doi:
10.1137/1.9781611976465.46.

STACS 2022

https://doi.org/10.1006/eujc.2001.0456
https://doi.org/10.1002/net.20126
https://doi.org/10.1016/0012-365X(84)90179-1
http://arxiv.org/abs/2103.09256
https://doi.org/10.1080/03081089308818261
https://doi.org/10.1145/2422.322413
https://doi.org/10.1016/0020-0190(84)90091-7
https://doi.org/10.1016/0020-0190(84)90091-7
http://arxiv.org/abs/2108.07465
https://doi.org/10.1002/1097-0037(200012)36:4<225::AID-NET3>3.0.CO;2-G
https://doi.org/10.1137/1.9781611976465.46
https://doi.org/10.1137/1.9781611976465.46


34:14 Star Transposition Gray Codes for Multiset Permutations

23 T. Mütze. Proof of the middle levels conjecture. Proc. Lond. Math. Soc., 112(4):677–713, 2016.
doi:10.1112/plms/pdw004.

24 T. Mütze and J. Nummenpalo. A constant-time algorithm for middle levels Gray codes.
Algorithmica, 82(5):1239–1258, 2020. doi:10.1007/s00453-019-00640-2.

25 A. Nijenhuis and H. Wilf. Combinatorial algorithms. Academic Press, New York-London,
1975. Computer Science and Applied Mathematics.

26 F. Ruskey. Adjacent interchange generation of combinations. J. Algorithms, 9(2):162–180,
1988. doi:10.1016/0196-6774(88)90036-3.

27 F. Ruskey. Combinatorial Gray code. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages
342–347. Springer, 2016.

28 F. Ruskey and C. D. Savage. Hamilton cycles that extend transposition matchings in Cayley
graphs of Sn. SIAM J. Discrete Math., 6(1):152–166, 1993. doi:10.1137/0406012.

29 F. Ruskey and A. Williams. The coolest way to generate combinations. Discrete Math.,
309(17):5305–5320, 2009. doi:10.1016/j.disc.2007.11.048.

30 C. D. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.
doi:10.1137/S0036144595295272.

31 J. Sawada and A. Williams. Greedy flipping of pancakes and burnt pancakes. Discrete Appl.
Math., 210:61–74, 2016. doi:10.1016/j.dam.2016.02.005.

32 J. Sawada and A. Williams. Solving the sigma-tau problem. ACM Trans. Algorithms, 16(1):Art.
11, 17 pp., 2020. doi:10.1145/3359589.

33 X. S. Shen and A. Williams. A ‘hot potato’ Gray code for permutations. Electronic Notes in
Discrete Mathematics, 44:89–94, 2013. doi:10.1016/j.endm.2013.10.014.

34 X. S. Shen and A. Williams. A k-ary middle levels conjecture. In Proceedings of the 23rd
Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games,
2021.

35 G. J. Simmons. Almost all n-dimensional rectangular lattices are Hamilton-laceable. In
Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and
Computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. Numer., XXI, pages
649–661. Utilitas Math., Winnipeg, Man., 1978.

36 P. J. Slater. Generating all permutations by graphical transpositions. Ars Combin., 5:219–225,
1978.

37 G. Stachowiak. Hamilton paths in graphs of linear extensions for unions of posets. SIAM J.
Discrete Math., 5(2):199–206, 1992. doi:10.1137/0405016.

38 D. Tang and C. Liu. Distance-2 cyclic chaining of constant-weight codes. IEEE Trans.
Computers, C-22:176–180, 1973.

39 M. Tchuente. Generation of permutations by graphical exchanges. Ars Combin., 14:115–122,
1982.

40 H. F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434–435, 1962. doi:10.1145/
368637.368660.

41 A. Williams. The greedy Gray code algorithm. In Algorithms and Data Structures - 13th
International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings,
pages 525–536, 2013. doi:10.1007/978-3-642-40104-6_46.

42 P. Winkler. Mathematical puzzles: a connoisseur’s collection. A K Peters, Ltd., Natick, MA,
2004.

43 S. Zaks. A new algorithm for generation of permutations. BIT, 24(2):196–204, 1984. doi:
10.1007/BF01937486.

https://doi.org/10.1112/plms/pdw004
https://doi.org/10.1007/s00453-019-00640-2
https://doi.org/10.1016/0196-6774(88)90036-3
https://doi.org/10.1137/0406012
https://doi.org/10.1016/j.disc.2007.11.048
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1016/j.dam.2016.02.005
https://doi.org/10.1145/3359589
https://doi.org/10.1016/j.endm.2013.10.014
https://doi.org/10.1137/0405016
https://doi.org/10.1145/368637.368660
https://doi.org/10.1145/368637.368660
https://doi.org/10.1007/978-3-642-40104-6_46
https://doi.org/10.1007/BF01937486
https://doi.org/10.1007/BF01937486


Improved Quantum Lower and Upper Bounds for
Matrix Scaling
Sander Gribling #

IRIF, Université de Paris, CNRS, France

Harold Nieuwboer #

Korteweg–de Vries Institute for Mathematics and QuSoft,
University of Amsterdam, The Netherlands

Abstract
Matrix scaling is a simple to state, yet widely applicable linear-algebraic problem: the goal is to scale
the rows and columns of a given non-negative matrix such that the rescaled matrix has prescribed
row and column sums. Motivated by recent results on first-order quantum algorithms for matrix
scaling, we investigate the possibilities for quantum speedups for classical second-order algorithms,
which comprise the state-of-the-art in the classical setting.

We first show that there can be essentially no quantum speedup in terms of the input size in
the high-precision regime: any quantum algorithm that solves the matrix scaling problem for n × n

matrices with at most m non-zero entries and with ℓ2-error ε = Θ̃(1/m) must make Ω̃(m) queries to
the matrix, even when the success probability is exponentially small in n. Additionally, we show
that for ε ∈ [1/n, 1/2], any quantum algorithm capable of producing ε

100 -ℓ1-approximations of the
row-sum vector of a (dense) normalized matrix uses Ω(n/ε) queries, and that there exists a constant
ε0 > 0 for which this problem takes Ω(n1.5) queries.

To complement these results we give improved quantum algorithms in the low-precision regime:
with quantum graph sparsification and amplitude estimation, a box-constrained Newton method
can be sped up in the large-ε regime, and outperforms previous quantum algorithms. For entrywise-
positive matrices, we find an ε-ℓ1-scaling in time Õ(n1.5/ε2), whereas the best previously known
bounds were Õ(n2polylog(1/ε)) (classical) and Õ(n1.5/ε3) (quantum).
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1 Introduction

The matrix scaling problem asks to scale each row and column of a given matrix A ∈ [0, 1]n×n

by a positive number in such a way that the resulting matrix has marginals (i.e., row- and
column-sums) that are close to some prescribed marginals. For example, one could ask to
scale the matrix in such a way that it becomes doubly stochastic.
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Matrix scaling has applications in a wide variety of areas including numerical linear
algebra [4], optimal transport in machine learning [13], statistics [23, 14, 9, 8], and also
in more theoretical settings, e.g. for approximating the permanent [28]. For a survey, we
refer the reader to [19]. Furthermore, the matrix scaling problem is a special (commutative)
instance of a more general (non-commutative) class of problems, which includes operator
and tensor scaling; these problems have many more applications and are a topic of much
recent interest [16, 10].

Formally, the matrix scaling problem is defined for the ℓp-norm as follows. Given a matrix
A ∈ [0, 1]n×n with at most m non-zero entries, entrywise-positive target marginals r, c ∈ Rn

with ∥r∥1 = 1 = ∥c∥1, and a parameter ε ≥ 0, find vectors x, y ∈ Rn such that the (rescaled)
matrix A(x, y) := (Aijexi+yj )i,j∈[n] satisfies

∥r(A(x, y))− r∥p ≤ ε, ∥c(A(x, y))− c∥p ≤ ε. (1.1)

Here r(A(x, y)) = (
∑n

j=1 Aijexi+yj )i∈[n] is the vector of row-marginals of the matrix A(x, y)
and similarly c(A(x, y)) = (

∑n
i=1 Aijexi+yj )j∈[n] is the vector of column-marginals. We refer

to x and y as the scaling vectors, whereas exi and eyj are called scaling factors. A common
choice of target marginals is (r, c) = ( 1

n , 1
n ), i.e., every row and column sum target is 1/n,

and we refer to these as the uniform target marginals. As is standard in the matrix scaling
literature, we will henceforth assume that A is asymptotically (r, c)-scalable: for every ε > 0,
there exist x, y such that A(x, y) satisfies Equation (1.1). This depends only on the support
of A [30, Thm. 3], and is the case if and only if (r, c) is in the convex hull of the points
(ei, ej) ∈ R2n such that Aij > 0, where the ei are the standard basis vectors for Rn. We will
also always assume the smallest non-zero entry of each of A, r and c is at least 1/poly(n).

Many classical algorithms for the matrix scaling problem can be viewed from the per-
spective of convex optimization. For example, one can solve the matrix scaling problem by
minimizing the convex (potential) function

f(x, y) =
n∑

i,j=1
Aijexi+yj − ⟨r, x⟩ − ⟨c, y⟩, (1.2)

where ⟨·, ·⟩ denotes the standard inner product on Rn. The popular and practical Sinkhorn
algorithm [31] – which alternates between rescaling the rows and columns to the desired
marginals – can be viewed as a (block-)coordinate descent algorithm on f , i.e., a first-order
method. Given its simplicity, it is no wonder that it has been rediscovered in many settings,
and is known by many names, such as the RAS algorithm, iterative proportional fitting, or
raking.

It is known that the iterates in the Sinkhorn algorithm converge to a (r, c)-scaled matrix
whenever A is asymptotically (r, c)-scalable. The convergence rate of Sinkhorn’s algorithm
is known in various settings, and we give a brief overview of the (classical) time complexity
of finding an ε-ℓ1-scaling, noting that a single iteration can be implemented in time Õ(m).
When A is entrywise positive then one can scale in time Õ

(
n2/ε

)
[15]; in the ℓ2-setting for

uniform target marginals a similar result can be found in [21, 20]. In the general setting where
A has at most m ≤ n2 non-zero entries the complexity becomes Õ

(
m/ε2) (for arbitrary

target marginals (r, c)); a proof may be found in [2] for the entrywise-positive case, [11]
for exactly scalable matrices (i.e., where the problem can be solved for ε = 0) and [5] for
asymptotically scalable matrices.

While simple, the Sinkhorn algorithm is by no means the fastest when the parameter ε

is small. The classical state-of-the-art algorithms are based on second-order methods such
as (traditional) interior point methods or so-called box-constrained Newton methods [12, 1],
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the latter of which we describe in more detail below. We note that these algorithms depend
on fast algorithms for graph sparsification and Laplacian system solving, so are rather
complicated compared to Sinkhorn’s algorithm. The box-constrained Newton methods can
find ε-ℓ1-scaling vectors in time Õ(mR∞), where the Õ hides polylogarithmic factors in n

and 1/ε, and R∞ is a certain diameter bound (made precise later in the introduction). For
entrywise-positive matrices, R∞ is of size Õ(1), and in general it is known to be Õ(n) [1,
Lem. 3.3]. Alternatively, the interior-point method of [12] has a time complexity of Õ

(
m3/2),

which is better than the box-constrained Newton method for general inputs, but worse for
entrywise-positive matrices.

Recently, a quantum algorithm for matrix scaling was developed based on Sinkhorn’s
algorithm [5]. It uses quantum approximate counting for computing marginals, and finds
ε-ℓ1-scaling vectors in time Õ

(√
mn/ε4) for general matrices or Õ

(
n1.5/ε3) for entrywise-

positive matrices. This improves the dependence on m and n at the cost of a higher
dependence on 1/ε when compared to the classical Sinkhorn algorithm (which we recall
runs in Õ

(
m/ε2), or Õ

(
n2/ε

)
for entrywise-positive matrices). Furthermore, it was shown

that this quantum algorithm is optimal for (sufficiently small) constant ε: there exists an
ε0 > 0 (independent of n) such that every quantum algorithm that ε0-ℓ1-scales to uniform
target marginals with probability at least 2/3 must make at least Ω(

√
mn) queries. It was

left as an open problem whether one can also obtain quantum speedups (in terms of n or
m) using second-order methods. In this work we give improved quantum lower and upper
bounds on the complexity of matrix scaling. We first prove a lower bound: we show that
every quantum algorithm that solves the matrix scaling problem for small enough ε must
make a number of queries proportional to the number of non-zero entries in the matrix, even
when the success probability of the algorithm is only assumed to be exponentially small.
This shows that one cannot hope to get a quantum algorithm for matrix scaling with a
polylogarithmic 1/ε-dependence and sublinear dependence on m. However, this does not
rule out that second-order methods can be useful in the quantum setting. Indeed, we give
a quantum box-constrained Newton method which has a better 1/ε-dependence than the
previously mentioned quantum Sinkhorn algorithm, and in certain settings is strictly better,
such as for entrywise-positive instances.

1.1 Lower bounds
As previously mentioned, we show for entrywise-positive instances that a polynomial 1/ε-
dependence is necessary for a scaling algorithm whose n-dependence is n2−γ for a constant
γ > 0. More precisely, we prove the following theorem (which we extend to an Ω̃(m)-lower
bound in the general setting of m ≤ n2 non-zero entries in Corollary 2.11):

▶ Theorem 1.1. There exists a constant C > 0 such that every matrix scaling algorithm that,
with probability ≥ 3

2 exp(−n/100), finds scaling vectors for entrywise-positive n× n-matrices
with ℓ2-error C/(n2

√
ln n) must make at least Ω(n2) queries to the matrix. This even holds

for uniform targets and matrices with smallest entry Ω(1/n2).

The proof of this lower bound is based on a reduction from deciding whether bit strings have
Hamming weight n/2 + 1 or n/2 − 1. Specifically, given k bit strings z1, . . . , zk ∈ {±1}n

for k = Θ(n), each with Hamming weight |zi| = n/2 + ai where ai ∈ {±1}, we show that
any matrix scaling algorithm can be used to determine all the ai. One can show that every
quantum algorithm that computes all the ai’s needs to make Ω(nk) quantum queries to the
bit string z1, . . . , zk, even if the algorithm has only exponentially small success probability: to
determine a single ai with success probability at least 2/3, one needs to make Ω(n) quantum

STACS 2022



35:4 Improved Quantum Lower and Upper Bounds for Matrix Scaling

queries to the bit string zi [7, 29, 3], and one can use the strong direct product theorem of
Lee and Roland [26] to prove the lower bound for computing all k ai’s simultaneously. To
convert the problem of computing the ai to an instance of matrix scaling, one constructs a
2k×n matrix A whose first k rows are (roughly) given by the vectors 1 + zi/b for some b ≥ 2,
and whose last k rows are given by 1− zi/b. For such an A, the column sums are all 2k, and
the row sums are determined by the ai. If the matrix A′ obtained by a single Sinkhorn step
from A (i.e., rescaling all the rows) were exactly column scaled, then the optimal scaling
factors encode the ai. We show that, if one randomly (independently for each i) permutes
the zi beforehand, this is approximately the case: the column sums of this A′ will be close
to the desired column sums with high probability, and hence the first step of Sinkhorn gives
approximately optimal scaling factors (which encode the ai). Then, we give a lower bound
on the strong convexity parameter of the potential f , to show that all sufficiently precise
minimizers of f also encode the ai. In other words, from sufficiently precise scaling factors,
we can recover the ai, yielding the reduction to matrix scaling, and consequently a lower
bound for the matrix scaling problem.

We additionally study the problem of computing an ε-ℓ1-approximation of the vector
of row sums of an ℓ1-normalized n× n matrix A. This is a common subroutine for matrix
scaling algorithms; for instance, the gradient of the potential function f from (1.2) that
we optimize for the upper bound can be determined from the row and column sums by
subtracting the desired row and column sums, so the complexity of this subroutine directly
relates to the complexity of each iteration in our algorithm. We give the following lower
bound for this problem.

▶ Theorem 1.2 (Informal). For ε ∈ [1/n, 1/2] and an ℓ1-normalized matrix A ∈ [0, 1]n×n,
computing an ε

100 -ℓ1-approximation of r(A) takes Ω(n/ε) queries to A. Moreover, there
exists a constant ε0 > 0 such that computing an ε0-ℓ1-approximation of r(A) takes Ω(n1.5)
queries to A.

The first lower bound in the theorem is proven in Theorem 2.12. Its proof is based on a
reduction from Θ(n) independent instances of the majority problem, as for the lower bound
for matrix scaling. The second lower bound can be derived from the lower bound for matrix
scaling given in [5]: using a constant number of calls to a subroutine that provides constant-
precision approximations to the row- and column-sum vectors, one can implement Sinkhorn’s
algorithm to find a constant-precision ℓ1-scaling, which for a small enough constant takes
Ω(n1.5) queries. Hence, there exists a constant ε0 > 0 (independent of n) such that computing
an ε0-ℓ1-approximation of r(A) takes at least Ω(n1.5) queries to the matrix entries.

1.2 Upper bounds
While the first lower bound (Theorem 1.1) shows that a (quantum) algorithm for matrix scaling
cannot have both an m1−γ-dependence for γ > 0 and a polylogarithmic 1/ε-dependence,
one can still hope to obtain a second-order Õ(

√
mn/poly(ε))-time algorithm with a better

1/ε-dependence than the quantum Sinkhorn algorithm of [5] (which we recall is based on
quantum approximate counting). We show that one can build on a box-constrained Newton
method [12, 1] to obtain a quantum algorithm which achieves this, at the cost of depending
quadratically on a certain diameter bound R∞; recall for comparison that the classical
box-constrained Newton methods run in time Õ(mR∞). For general matrices, one has the
bound R∞ = Õ(n) [1, Lem. 3.3]. The performance of the resulting quantum box-constrained
Newton method is summarized in the following theorem:
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▶ Theorem 1.3 (Informal version of Corollaries 3.14 and 3.15). For asymptotically-scalable
matrices A ∈ Rn×n

≥0 with m non-zero entries and target marginals (r, c), one can find (x, y)
such that A(x, y) is O(ε)-ℓ1-scaled to (r, c) in quantum time Õ

(
R2

∞
√

mn/ε2) where R∞
is the ℓ∞-norm of at least one ε2-minimizer of f . When A is entrywise positive we have
R∞ = Õ(1), so the algorithm runs in quantum time Õ

(
n1.5/ε2).

We emphasize that the diameter bound R∞ does not need to be provided as an input to
the algorithm. Note that for entrywise-positive matrices, the algorithm improves over the
quantum Sinkhorn method, which runs in time Õ

(
n1.5/ε3).

Let us give a sketch of the box-constrained method that we use, see Section 3.1 for details.
The algorithm aims to minimize the (highly structured) convex potential function f from
Equation (1.2). A natural iterative method for minimizing convex functions f is to minimize
in each iteration i the quadratic Taylor expansion 1

2 xT∇2f(x(i))x + xT∇f(x(i)) + f(x(i)) of
the function at the current iterate. A box-constrained method constrains the minimization
of the quadratic Taylor expansion to those x that lie in an ℓ∞-ball of radius c around the
current iterate (hence the name):

x(i) = argmin
∥x−x(i)∥∞≤c

1
2xT∇2f(x(i))x + xT∇f(x(i)).

This is guaranteed to decrease a convex function f whenever it is second-order robust, i.e.,
whenever the Hessian of f at a point is a good multiplicative approximation of the Hessian at
every other point in a constant-radius ℓ∞-ball. One can show that the steps taken decrease
the potential gap by a multiplicative factor which depends on the distance to the minimizer.

One then observes that the function f from Equation (1.2) is second-order robust.
Moreover, its Hessian has an exceptionally nice structure: given by

∇2f(x, y) =
[

diag(r(A(x, y))) A(x, y)
A(x, y)T diag(c(A(x, y)))

]
,

it is similar to a Laplacian matrix. This means that the key subroutine in this method
(approximately) minimizes quadratic forms 1

2 zT Hz + zT b over ℓ∞-balls, where H is a
Laplacian matrix; without the ℓ∞-constraint, this amounts to solving the Laplacian system
Hz = b. Such a subroutine can be implemented for the more general class of symmetric
diagonally-dominant matrices (with non-positive off-diagonal entries) on a classical computer
in (almost) linear time in the number of non-zero entries of H [12]. For technical reasons, one
has to add a regularization term to f , and the regularized potential instead has a symmetric
diagonally-dominant Hessian structure. Given the recent quantum algorithm for graph
sparsification and Laplacian system solving of Apers and de Wolf [6], one would therefore
hope to obtain a quantum speedup for the box-constrained Newton method. We show that
one can indeed achieve this by first using the quantum algorithm for graph sparsification,
and then using the classical method for the minimization procedure. We note, however,
that in order to achieve a quantum speedup in terms of m and n, we incur a polynomial
dependence in the time complexity on the precision with which we can approximate H and
b (as opposed to only a polylogarithmic dependence classically). Such a speedup with respect
to one parameter (dimension) at the cost of a slowdown with respect to another (precision) is
more common in recent quantum algorithms for optimization problems and typically requires
a more careful analysis of the impact of approximation errors. Interestingly, for the classical
box-constrained Newton method, the minimization subroutine is the bottleneck, whereas
in our quantum algorithm, the cost of a single iteration is dominated by the time it takes
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to approximate the vector b. Using quantum approximate counting (carefully) as in [5],
one can obtain an additive δ · ∥A(x, y)∥1-approximation of b in time roughly

√
mn/δ. To

obtain an efficient quantum algorithm we therefore need to control ∥A(x, y)∥1 throughout
the run of the algorithm. We do so efficiently by testing in each iteration whether the 1-norm
of A(x, y) is too large, if it is, we divide the matrix by 2 (by shifting x by an appropriate
multiple of the all-ones vector), which reduces the potential.

1.3 Open problems
Our lower bound on matrix scaling shows that it is not possible to provide significant
quantum speedups for scaling of entrywise-positive matrices in the high-precision scaling
regime. However, the best classical upper bound for ε-scaling when no assumptions are made
on the support of the matrices is Õ

(
m3/2), where m is the number of non-zero entries [12]

(recall that this hides a polylogarithmic dependence on 1/ε). The algorithm that achieves this
bound is an interior-point method, rather than a box-constrained Newton method. It is an
interesting open problem whether such an algorithm also admits a quantum speedup in terms
of m while retaining a polylogarithmic 1/ε-dependence. Note that while the interior-point
method relies on fast Laplacian system solvers, it is not enough to merely replace this by
a quantum Laplacian system solver, as the dimension of the linear system in question is
m + n rather than Θ(n). More generally, the possibility of obtaining quantum advantages in
high-precision regimes for optimization problems is still a topic of ongoing investigation.

A second natural question is whether the lower bounds from Theorem 1.2 for computing
an approximation of the row sums are tight. The best upper bound for the row-sum vector
approximation that we are aware of is the one we use in our scaling algorithm: we can
compute an ε-ℓ1-approximation of the row sums in time Õ

(
n1.5/ε

)
. For constant ε0 ≥ ε > 0

this matches the lower bound Ω(n1.5) (up to log-factors), but for non-constant ε > 1
100n it

remains an interesting open problem to close the gap between Õ
(
n1.5/ε

)
and Ω(n/ε).

2 Lower bounds for matrix scaling and marginal approximation

In this section we prove two lower bounds: an Ω̃(m)-lower bound for 1/poly(n)-ℓ2-scaling
n×n matrices with at most m non-zero entries, and for ε ∈ [1/n, 1/2] an Ω(n/ε)-lower bound
for ε-ℓ1-approximation of the row-sum vector of a normalized n×n matrix (with non-negative
entries). The proofs for both lower bounds are based on a reduction from the lower bound
given below in Theorem 2.1. In Section 2.1 we construct the associated instances for matrix
scaling, and in Section 2.2 we analyze their column marginals after a single iteration of the
Sinkhorn algorithm. Afterwards, in Section 2.3 we show that these column marginals are
close enough to the target marginals for the reduction to matrix scaling to work, and in
Section 2.4 we put the ingredients together, with the main theorem being Theorem 2.10.
Finally, in Section 2.5 we prove the lower bound for computing approximations to the row
marginals. The lower bound we reduce from is the following:

▶ Theorem 2.1. Let n be even, τ ∈ [1/n, 1/2] such that nτ is an integer, and let k ≥ 1
be an integer. Given k binary strings z1, . . . , zk ∈ {±1}n, where zi has Hamming weight
n/2+aiτn for ai ∈ {−1, 1}, computing with probability ≥ exp(−k/100) a string ã ∈ {−1, 1}k

that agrees with a in ≥ 99% of the positions requires Ω(k/τ) quantum queries.

Proof. Let D = {z ∈ {±1}n : |z| = n/2 + τn or |z| = n/2 − τn} and define the partial
Boolean function f : D → {±1} by f(z) = 1 if |z| = n/2 + τn, and f(z) = −1 otherwise.
It is known that computing f with probability at least 2/3 takes Θ(1/τ) quantum queries
to z [29, Cor. 1.2], i.e., the bounded-error quantum query complexity Q1/3(f) is Θ(1/τ).
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We now proceed with bounding the query complexity of computing 99% of the entries of
f (k) : Dk → {±1}k defined by f (k)(z1, . . . , zk) = (f(z1), . . . , f(zk)). We will make use of the
general adversary bound Adv±(f) [18] which is known to satisfy Adv±(f) = Θ(Q1/3(f)) [25,
Thm. 1.1]. The strong direct product theorem of Lee and Roland [26, Thm. 5.5] says
that for every 0 ≤ δ < 1, µ ∈ [ 1+

√
δ

2 , 1] and integers k, K, every quantum algorithm
that outputs a bit string ã ∈ {±1}k, and makes T quantum queries to the bit strings
z1, . . . , zk with T ≤ kδ

K(1−δ) Adv±(f) has the property that ã agrees with f (k)(z1, . . . , zk)
on at least a µ-fraction of the entries with probability at most exp(k( 1

K −D(µ∥ 1+
√

δ
2 ))).1

Here D(µ∥ 1+
√

δ
2 ) is the Kullback–Leibler divergence between the distributions (µ, 1 − µ)

and ( 1+
√

δ
2 , 1−

√
δ

2 ). For µ = 0.99, δ = 0.1 and K = 3, one has 1
K −D(µ∥ 1+

√
δ

2 ) ≈ −0.03 ≤
−1/100. Therefore, the strong direct product theorem shows that computing 99% of the
entries of f (k)(z1, . . . , zk) = a correctly, with success probability at least exp(−k/100), takes
Ω(k Adv±(f)) = Ω(k Q1/3(f)) = Ω(k/τ) quantum queries. ◀

We will use this lower bound with k = n/2 and τ = 1/n. The following intuition is
useful to keep in mind. For a fixed b ≥ 2, define the 2k × n matrix A whose (2i− 1)-th row
equals 1 + zi/b and whose (2i)-th row equals 1− zi/b. Then A has the property that the
row-marginals encode the Hamming weights of the zi, and are all very close to n. (This
implies that the first row-rescaling step of Sinkhorn’s algorithm encodes the ai.) Moreover,
the column-marginals are exactly uniform. Hence, one may hope that all sufficiently precise
scalings of A to uniform targets have scaling factors that are close to those given by the first
row-rescaling step of Sinkhorn’s algorithm (and hence learn most of the ai).

Below we formalize this approach. We show that if one randomly permutes the coordinates
of each zi (independently over i), then with high probability, all ε-scalings of the resulting
matrix Aσ are close to the first step of Sinkhorn’s algorithm; here we need to choose b

sufficiently large (∼
√

ln(n)) and ε sufficiently small (∼ 1
n2b ). The section is organized as

follows. In Section 2.1 we formally define our matrix scaling instances and we analyse the first
row-rescaling step of Sinkhorn’s algorithm. In Section 2.2 we show that after the row-rescaling
step, with high probability (over the choice of permutations), the column-marginals are close
to uniform. In Sections 2.3 and 2.4 we use the strong convexity of the potential f from
Equation (1.2) to show that if the above event holds, then all approximate minimizers of f

can be used to solve the counting problem.

2.1 Definition of the scaling instances and analysis of row marginals

Let n ≥ 4 be even. Let k = n/2 and let z1, . . . , zk ∈ {±1}n have Hamming weight
|zi| = |{j : zi

j = 1}| = n/2 + ai for ai ∈ {±1}. Sample uniformly random permutations
σ1, . . . , σk ∈ Sn and define wi by wi

j = zi
(σi)−1(j). Let b ≥ 2 be some number depending on n,

and consider the 2k × n matrix Aσ whose entries are Aσ
2i−1,j = 1 + wi

j

b and Aσ
2i,j = 1− wi

j

b .
Then each column sum cj(Aσ) is 2k, and the row sums of Aσ are given by

r2i−1(Aσ) = n + 1
b

n∑
j=1

wi
j = n + 2

b
ai, r2i(Aσ) = n− 2

b
ai.

1 In [26] the upper bound on T is stated in terms of Adv∗(F ) where F = (δf(x),f(y))x,y∈D is the Gram
matrix of f . For Boolean functions f one has Adv∗(F ) = Adv±(f) [25, Thm. 3.4].
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Let

X2i−1 = 1
2k
· 1

n + 2
b ai

and X2i = 1
2k
· 1

n− 2
b ai

for all i ∈ [k] (2.1)

be the row scaling factors obtained from a single Sinkhorn step. We first observe that the
difference between x2i−1 := ln(X2i−1) and x2i := ln(X2i) permits to recover ai.

▶ Lemma 2.2. For the specific row-scaling factors X for Aσ given in (2.1), for every i ∈ [k]
it holds that |ln(X2i−1/X2i)| ≥ 4

nb , and sign(ln(X2i/X2i−1)) = ai.

Proof. Using nb > 2, we have |ln(X2i−1/X2i)| =
∣∣∣ln(n+ 2

b

n− 2
b

)∣∣∣ = ln
(

nb+2
nb−2

)
≥ 4

nb . ◀

2.2 Concentration of column marginals
We record here an explicit expression for the j-th column marginal of XAσ for the X
from (2.1), which follows from straightforward algebraic manipulations.

▶ Lemma 2.3. We have cj(XAσ) = 1
2k(n2−4/b2)

(
2kn− 4

b2

∑k
i=1 wi

jai

)
for j ∈ [n].

We now show that with high probability (over the choice of permutations) the column
marginals are close to uniform. To do so, we first compute the expectation of

∑k
i=1 wi

jai

(Corollary 2.5). This quantity allows us to obtain the desired concentration of the column
marginals via Hoeffding’s inequality (Lemma 2.6).

▶ Lemma 2.4. Let I = {i ∈ [k] : ai = 1} and Ic = [k] \ I. Define random variables Wj , W c
j

by Wj =
∑

i∈I wi
j and W c

j =
∑

i∈Ic wi
j. Then E[Wj ] = 2|I|

n and E[W c
j ] = − 2|Ic|

n .

Proof. Observe that each wi
j is 1 with probability 1

2 + ai

n because σi is chosen uniformly
randomly from Sn, and is −1 with probability 1

2 −
ai

n . Therefore E[wi
j ] = 2ai

n . By linearity
of expectation, the result follows. ◀

▶ Corollary 2.5. We have E
[∑k

i=1 wi
jai

]
= E[Wj ]− E[W c

j ] = 2(|I|+|Ic|)
n = 2k

n .

▶ Lemma 2.6. For t ≥ 0 and j ∈ [n], with probability at least 1 − 2e−t2/2, we have∣∣cj(XAσ)− 1
n

∣∣ = O
(

t
b2n2

√
k

)
.

Proof. One can verify that
∣∣cj(XAσ)− 1

n

∣∣ = 4
2kn(n2−4/b2)b2

∣∣∣2k − n
∑k

i=1 wi
jai

∣∣∣. For fixed j

and distinct i, i′ ∈ [k], wi
j and wi′

j are independently distributed random variables because σi

and σi′ are independent. Therefore, Vj := Wj −W c
j =

∑k
i=1 wi

jai is a sum of k independent
random variables, with each aiw

i
j ∈ [−1, 1], and Hoeffding’s inequality yields for any t ≥ 0

that Pr[|Vj − E[Vj ]| ≥ t ·
√

k] ≤ 2 exp(−t2/2). Assuming that |Vj − E[Vj ]| ≤ t
√

k, we have∣∣∣2k − n
∑k

i=1 aiw
i
j

∣∣∣ = n|E[Vj ]− Vj | ≤ nt
√

k. With this estimate, we see that∣∣∣∣cj(XAσ)− 1
n

∣∣∣∣ ≤ 4
2kn(n2 − 4/b2)b2 · nt

√
k = 2t

b2(n2 − 4/b2)
√

k
. ◀

▶ Corollary 2.7. For any t ≥ 0, with probability ≥ 1− 2ne−t2/2, we have
∥∥c(XAσ)− 1

n

∥∥
2 ≤

2
√

nt

b2(n2−4/b2)
√

k
= O

(
t

b2n2

)
.
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2.3 Strong convexity properties of the potential
For a λ-strongly convex function f , the set {z : ∥∇f(z)∥2 ≤ ε} has a diameter that is
bounded by a function of λ (we make this well-known fact precise in Lemma A.4). We show
that our potential is strongly convex when viewed as a function from (a suitable subset of)
the linear subspace V = {(x, y) ∈ Rn × Rn : ⟨(x, y), (1n,−1n)⟩ = 0} to R (note that f is
invariant under translation by multiples of (1n,−1n)). We use this to prove the following
lemma, which shows that whenever ∇f(x, y) is small, (x, y) is close to the minimizer of f

on V . It is easy to verify that Corollary 2.7 in fact gives an upper bound on the ℓ2-norm
of the gradient at (ln(X), 0) (with X as in (2.1)). This implies that (ln(X), 0) is close to
the minimizer of f on V , and by the triangle inequality, is also close to any other (x, y) for
which ∥∇f(x, y)∥2 is small. The full proof is given in Appendix A.

▶ Lemma 2.8. Let f : V ⊂ Rn×Rn → R be the standard potential for the matrix Aσ, where
V is the orthogonal complement of (1n,−1n). Then for every (x, y) ∈ V and δ ∈ (0, 1), if
∥∇f(x, y)∥2 ≤ δ

27ne2 , then ∥(x, y)− (x∗, y∗)∥∞ ≤ δ.

2.4 Concluding the lower bound for matrix scaling
Let (x̄, ȳ) ∈ V be the unique vector such that (x̄, ȳ)− (x, y) is a multiple of (1n,−1n), where
(x, y) are the scaling vectors of the first step of Sinkhorn. By choosing t and b appropriately
we obtain, with high probability over the choice of permutations, a bound on the distance
between (x̄, ȳ) and the unique scaling vectors (x∗, y∗) ∈ V of an exact scaling of Aσ. This
allows us to conclude that, with high probability, all sufficiently precise scalings of Aσ encode
the Hamming weights ai.

▶ Corollary 2.9. There exists a constant C > 0 such that for b = C
√

ln n the following
holds. With probability ≥ 2/3 (over the choice of σ) we have for the exact scaling vectors
(x∗, y∗) ∈ V of Aσ that ai = sign(x∗

2i − x∗
2i−1) for all i. Furthermore, there exists a

constant C ′ > 0 such that for any (x′, y′) that yield a (C ′/n2b)-ℓ2-scaling of Aσ, ai can be
recovered from x′ as ai = sign(x2i − x2i−1) = sign(x′

2i − x′
2i−1).

Proof. Applying Corollary 2.7 with t = 10
√

ln n shows that with probability at least 2/3
we have ∥∇f(x̄, ȳ)∥2 = ∥∇f(x, y)∥2 = t

b
2

√
n

b(n2−4/b2)
√

k
. Hence, there exists a constant C > 0

such that for b = Ct we have ∥∇f(x̄, ȳ)∥2 ≤ 1
nb

1
27ne2 . Lemma 2.8 then implies that

∥(x̄, ȳ) − (x∗, y∗)∥∞ ≤ 1
nb and hence |(x∗

2i−1 − x∗
2i) − (x2i−1 − x2i)| ≤ 2

nb . Together with
Lemma 2.2 (which shows that |x2i−1 − x2i| ≥ 4

nb ) this means that ai = sign(x∗
2i − x∗

2i−1).
Moreover, |x∗

2i−1 − x∗
2i| ≥ 2

nb .
Now consider approximate scalings of Aσ. Without loss of generality we may assume

that the (x′, y′) that yield a ( 1
2nb

1
27ne2 )-ℓ2-scaling of Aσ belong to V (otherwise we shift it

by an appropriate multiple of (1n,−1n)). Then, again due to Lemma 2.8, we obtain that
∥(x′, y′) − (x∗, y∗)∥∞ ≤ 1

2nb ≤
1
4 |x

∗
2i−1 − x∗

2i| and hence |(x′
2i−1 − x′

2i) − (x∗
2i−1 − x∗

2i)| ≤
1
2 |x

∗
2i−1 − x∗

2i| which means that sign(x′
2i − x′

2i−1) = sign(x∗
2i−1 − x∗

2i) = ai. ◀

▶ Theorem 2.10. There exists a constant C > 0 such that any matrix scaling algorithm that,
with probability ≥ 3

2 exp(−n/100), finds scalings for n×n-matrices with ℓ2-error C/(n2
√

ln n)
must make at least Ω(n2) queries to the matrix. This even holds for uniform targets and
entrywise-positive matrices with smallest entry Ω(1/n2).

Proof. We construct a set of hard instances as in Section 2.1. Let n ≥ 4 be even. Let
k = n/2 and let z1, . . . , zk ∈ {±1}n have Hamming weight |zi| = |{j : zi

j = 1}| = n/2 + ai for
ai ∈ {±1}. By Theorem 2.1, finding at least 99% of the ai’s with probability ≥ exp(−n/100)
takes Ω(n2)-queries to the zi

j . One can recover the ai’s with probability ≥ 2/3 as follows.
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First, sample the σ1, . . . , σn/2 uniformly from Sn. A single query to Aσ takes a single query to
some wi, which takes a single query to zi. Using Corollary 2.9, there exists a constant C > 0
such that, with probability ≥ 2/3, any scaling of Aσ with ℓ2-error C/(n2

√
ln n) recovers

all ai’s. Therefore any matrix scaling algorithm finding such a scaling with probability
≥ exp(−n/100) allows us to find all ai’s with probability ≥ exp(−n/100). ◀

▶ Corollary 2.11. There exist constants C0, C1 > 0 such that every matrix scaling algorithm
that, with probability ≥ exp(−C0n/ ln(n)), finds scalings for n× n-matrices with at most m

non-zero entries and ℓ2-error C1/(m
√

ln(m/n)) must make at least Ω̃(m) queries. This even
holds for uniform targets and matrices with smallest non-zero entry Ω(1/m).

2.5 Lower bound for computing the row marginals

In Theorem 2.12 we show that computing an ε-ℓ1-approximation of the row (or column
marginals) of an entrywise-positive n × n matrix takes Ω(n/ε) queries to its entries (for
ε = Ω(1/n)). As a consequence, the same holds for computing an approximation of the
gradient of common (convex) potential functions used for matrix scaling – among which is the
potential we use in Section 3 – takes as many queries. Although the bound does not imply
that testing whether a matrix is ε-ℓ1-scaled takes at least Ω(n/ε) queries, it gives reasonable
evidence that this should be the case. The proof can be found in the full version [17].

▶ Theorem 2.12. Let τ ∈ [1/n, 1/2]. Suppose we have a quantum algorithm that, given
query access to a positive n× n matrix A with row-sums r = (r1, . . . , rn) and column-sums
c = (1/n, . . . , 1/n), outputs (with probability ≥ exp(−n/100)) a vector r̃ ∈ Rn

+ such that
∥r̃− r∥1 < τ/100. Then this algorithm uses Ω(n/τ) queries.

3 Quantum box-constrained Newton method for matrix scaling

In this section, we show how to obtain a quantum speedup based on the box-constrained
Newton method for matrix scaling from [12], with the main result being Theorem 3.13,
and its consequences for matrix scaling given in Corollaries 3.14 and 3.15. We first recall
some of the concepts that are used in the algorithm, including the definition of second-order
robust convex functions, the notion of a k-oracle, and a theorem regarding efficient (classical)
implementation of a k-oracle for the class of symmetric diagonally-dominant matrices with
non-positive off-diagonal entries. We then show that for a second-order robust function
g : Rn → R and a given x ∈ Rn such that the sublevel set {x′ : g(x′) ≤ g(x)} is bounded,
one can use a k-oracle and approximations to the gradient and Hessian of g to find a vector
x′ such that the potential gap g(x′) − g(x∗) is smaller than g(x) − g(x∗) where x∗ is a
minimizer of g. This result extends [12, Thm. 3.4] to a setting where one can only obtain
rough approximations of the gradient and Hessian of g. We then show that this applies to a
regularized version f̃ of the potential f discussed in the introduction; to approximate the
Hessian of f̃ , we use a quantum algorithm for graph sparsification, whereas we approximate
the gradient of f̃ using quantum approximate summing. One challenge is that the quality
of the gradient approximation is directly related to the 1-norm of the matrix A(x, y), so
we must control this throughout the algorithm, which we achieve by manually shifting x
when the norm becomes too large, and showing that this does not increase the regularized
potential under suitable circumstances.
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3.1 Minimizing second-order robust convex functions
In what follows we will minimize a convex function (potential) that satisfies a certain
regularity condition: its Hessian can be approximated well on an infinity-norm ball.

▶ Definition 3.1 ([12, Def. 3.1]). A convex function g : Rn → R is called second-order robust
with respect to ℓ∞ if for any x, y ∈ Rn with ∥x−y∥∞ ≤ 1, 1

e2∇2g(x) ⪯ ∇2g(y) ⪯ e2∇2g(x).

This implies that the local quadratic approximation to g has a good quality on a small
ℓ∞-norm ball. It is therefore natural to consider the problem of minimizing a convex quadratic
function over an ℓ∞-norm ball. We will use the following notion.

▶ Definition 3.2 (k-oracle). An algorithm A is called a k-oracle for a class of matrices
M⊆ Rn×n if for input (H, b) with H ∈ M, b ∈ Rn, it returns a vector x ∈ Rn such that
∥x∥∞ ≤ k and 1

2 xT Hx + ⟨b, x⟩ ≤ 1
2 ·min∥z∥∞≤1( 1

2 zT Hz + ⟨b, z⟩).

▶ Definition 3.3 (SDD matrix). A matrix A ∈ Rn×n is called symmetric diagonally-dominant
if it is symmetric, and for every i ∈ [n], one has Aii ≥

∑
j ̸=i|Aij |.

In [12] it is shown how to efficiently implement an O (log(n))-oracle for the class of SDD
matrices H whose off-diagonal entries are non-positive. Their algorithm uses an efficient
construction of a vertex sparsifier chain of H due to [27, 24].

▶ Theorem 3.4 ([12, Thm. 5.11]). Given a classical description of an SDD matrix H ∈ Rn×n

with Õ(m) non-zero entries, such that Hi,j ≤ 0 for i ≠ j, and a classical vector b ∈ Rn, we
can find in time Õ(m) a vector x ∈ Rn such that ∥x∥∞ = O(log n) and

1
2xT Hx + ⟨b, x⟩ ≤ 1

2 · min
∥z∥∞≤1

(1
2zT Hz + ⟨b, z⟩).

A k-oracle A gives rise to an iterative method for minimizing a second-order robust
function g: starting from x0 ∈ Rn, we define a sequence x(0), x(1), x(2), . . . by

x(i+1) = x(i) + 1
k

∆i, ∆i = A
(

e2

k2 Hi,
1
k

bi

)
where Hi is an approximate Hessian at x(i), and bi is an approximate gradient at x(i). The
following theorem, which is an adaptation of [12, Thm. 3.4], upper bounds the progress made
in each iteration. We defer its proof to Appendix B.

▶ Theorem 3.5. Let g : Rn → R be a second-order robust function with respect to ℓ∞, let
x ∈ Rn be a starting point, and suppose x∗ is a minimizer of g. Assume that we are given
1. a vector b ∈ Rn such that ∥b−∇g(x)∥1 ≤ δ,
2. two SDD matrices Hm and Ha with non-positive off-diagonal entries, such that there

exists δa ≥ 0 and symmetric H′
m and H′

a satisfying ∇2g(x) = H′
m + H′

a and 2
3 Hm ⪯

H′
m ⪯ 4

3 Hm, ∥Ha −H′
a∥1 ≤ δa.

Let k = O (log n) be such that there exists a k-oracle A for the class of SDD-matrices
with non-positive off-diagonal entries (cf. Theorem 3.4). Then for H = Hm + Ha and
∆ = A

(
4e2

3k2 H, 1
k b
)

, the vector x′ = x + 1
k ∆ satisfies

g(x′)− g(x∗) ≤
(

1− 1
4e4 max(kR∞, 1)

)
(g(x)− g(x∗)) + e2δa

k2 + 3
2δ,

where R∞ is the ℓ∞-radius of the sublevel set {x′ : g(x′) ≤ g(x)} about x.
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3.2 A second-order robust potential for matrix scaling and its properties
Given a sparse matrix A ∈ Rn×n

≥0 , a desired error ε > 0, and some number B > 0, we consider
the regularized potential function f̃(x, y) given by

f̃(x, y) = f(x, y) + ε2

neB

∑
i

(exi + e−xi) +
∑

j

(eyj + e−yj )

 ,

where f is the commonly-used potential function from Equation (1.2). In [12], the same
regularization term is used, but with a different weight (since they aim for ℓ2-scaling and we
aim for ℓ1-scaling). The following is an adaptation of [12, Lem. 4.10], see Appendix B.2.

▶ Lemma 3.6. Assume A is asymptotically scalable, with ∥A∥1 ≤ 1, and µ > 0 its smallest
non-zero entry. Let B > 0 and ε > 0 be given. Then the regularized potential f̃ satisfies the
following properties:
1. f̃ is second-order robust with respect to ℓ∞, and its Hessian is SDD;
2. we have f(z) ≤ f̃(z) for any z = (x, y),
3. for all z such that f̃(z) ≤ f̃(0), we have ∥z∥∞ ≤ B + ln(4n + (n ln(1/µ)/ε2)), and
4. for any zε such that f(zε) ≤ f∗ + ε2 and ∥zε∥∞ ≤ B, one has f̃(zε) ≤ f∗ + 5ε2. In

particular, if such a zε exists, then |f∗ − f̃∗| ≤ 5ε2.

In order to use Theorem 3.5 to minimize f , we need to show how to approximate both
the gradient and Hessian of f̃ . We first consider the Hessian of f̃ , which can be written as
the sum of the Hessian of f and the Hessian of the regularizer f̃ − f . We have

∇2f(x, y) =
[

diag(r(A(x, y))) A(x, y)
A(x, y)T diag(c(A(x, y)))

]
,

∇2(f̃ − f)(x, y) = ε2

neB

[
diag(ex + e−x) 0

0 diag(ey + e−y)

]
. (3.1)

Note that computing ∇2f̃(x, y) up to high precision can be done using Õ(m) classical
queries to A, x, and y. Below we show how to obtain a sparse approximation of ∇2f̃(x, y)
using only Õ(

√
mn) quantum queries. We will do so in the sense of condition (2) of

Theorem 3.5 where we take H′
m to be a (high-precision) additive approximation of ∇2f(x, y),

and H′
a = ∇2f̃(x, y)−H′

m.
We first obtain a multiplicative spectral approximation of (a high-precision additive

approximation of) ∇2f(x, y). In order to do so we use its structure: it is similar to a
Laplacian matrix. This allows us to use the recent quantum Laplacian sparsifier of Apers
and de Wolf [6]. For a full proof, carefully keeping track of the bit-complexity, we refer to
the full version [17].

▶ Lemma 3.7. Given quantum query access to x, y and sparse quantum query access to
A, such that ∥A(x, y)∥1 ≤ C, we can compute an SDD matrix Hm with Õ(n) non-zero
entries, each off-diagonal entry non-negative, such that there exist symmetric H′

m and H′
a,f

satisfying H′
m + H′

a,f = ∇2f(x, y), and 0.9Hm ⪯ H′
m ⪯ 1.1Hm, ∥H′

a,f∥1 ≤ δa, in time
Õ(
√

mn polylog(C/δa)).

Similarly, we can efficiently compute an additive approximation of the Hessian of the
regularization term f̃ − f as long as x and y have ℓ∞-norm not much larger than B, using
the expression given in Equation (3.1).
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▶ Lemma 3.8. Given quantum query access to x, y with ∥x∥∞, ∥y∥∞ ≤ B + ln(4n +
(n ln(1/µ)/ε2)), we can compute a non-negative diagonal matrix Ha,f̃ that satisfies ∥Ha,f̃ −
∇2(f̃ − f)(x, y)∥1 ≤ δa, in time Õ(n log(1/δaµ) polylog(ε)).

▶ Theorem 3.9. Given quantum query access to x, y with ∥x∥∞, ∥y∥∞ ≤ B + ln(4n +
(n ln(1/µ)/ε2)), and sparse quantum query access to A, if ∥A(x, y)∥1 ≤ C, then we can
compute (classical descriptions of) an SDD matrix Hm with Õ(n) non-zero entries, with all
of the off-diagonal entries non-negative, and a non-negative diagonal matrix Ha such that
there exist symmetric H′

m, H′
a with H′

m + H′
a = ∇2f̃(x, y) and

0.9Hm ⪯ H′
m ⪯ 1.1Hm, ∥Ha −H′

a∥1 ≤ δa

in quantum time Õ(
√

mn polylog(C/µδa)).

Proof. Let Hm be the matrix obtained from Lemma 3.7, and let Ha be the matrix Ha,f̃

obtained from Lemma 3.8. Then H satisfies the desired properties, with H′
m as in Lemma 3.7,

and H′
a = H′

a,f +∇2(f̃ − f)(x, y) with H′
a,f as in Lemma 3.7. ◀

In order to obtain a good approximation of the gradient of f̃ , which is given by

∇f̃(x, y) =
[

r(A(x, y))− r
c(A(x, y))− c

]
+ ε2

neB

[
ex − e−x

ey − e−y

]
,

we can use similar techniques as the prior work on quantum algorithms for matrix scaling [5].
For computing the i-th row marginal, these are based on a careful implementation of amplitude
estimation on the unitary that prepares states that are approximately of the form∑

j

|0⟩
√

Aijexi+yj |j⟩+ |1⟩
√

1−Aijexi+yj |j⟩ ,

assuming that the i-th row of A(x, y) is properly normalized. The output is an estimate of
the i-th row marginal with multiplicative error 1± δ, which translates into additive error
δ · ri(A(x, y)); we refer to [5, Thm. 4.5 (arXiv)] for a more precise statement. The part of
the gradient coming from the regularization term is dealt with similarly as in Lemma 3.8.

▶ Lemma 3.10. Given quantum query access to x, y and sparse quantum query access to
A, if ∥A(x, y)∥1 ≤ C, we can find a classical description of a vector b ∈ Rn such that
∥b−∇f̃(x, y)∥1 ≤ δ · C in quantum time Õ(

√
mn/δ · polylog(C/µ)).

The following lemma and corollary help us ensure that throughout the algorithm,
∥A(x, y)∥1 is bounded above by a constant; if ∥A(x, y)∥1 is too large, we can change
the overall scaling of the matrix and decrease the regularized potential (so in particular, we
stay in the sublevel set of the regularized potential).

▶ Lemma 3.11. Let x, y be such that f̃(x, y) ≤ f̃(0, 0), and assume ∥A(x, y)∥1 ≥ C ′

where C ′ > 1. Let x′ = x − ln(γ)1 where 1 ≤ γ ≤ C ′. Then f̃(x′, y) − f̃(x, y) ≤
( 1

γ − 1)C ′ + ln(γ) + (γ − 1)
(

ln(1/µ) + 4ε2

eB

)
.

Proof. We have

f̃(x′, y)− f̃(x, y)

=
(

1
γ
− 1
)
∥A(x, y)∥1 + ln(γ) + ε2

neB

(
1
γ
− 1
)(∑

i

exi

)
+ ε2

neB
(γ − 1)(

∑
i

e−xi)
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≤
(

1
γ
− 1
)
∥A(x, y)∥1 + ln(γ) + 0 + ε2

neB
(γ − 1)(

∑
i

e−xi)

≤
(

1
γ
− 1
)

C ′ + ln(γ) + (γ − 1)
(

ln(1/µ) + 4ε2

eB

)
where for the last inequality we use ∥A(x, y)∥1 ≥ C ′ for the first term and Equation (B.5)
for the last term. ◀

An appropriate choice of C ′ and γ makes the bound in the above lemma non-positive.

▶ Corollary 3.12. Let ε ≤ 1 and µ ≤ 1, set γ = 2 and C ′ = 2(ln(2/µ) + 4ε2/eB). Then, if
∥A(x, y)∥1 ≥ C ′ and f̃(x, y) ≤ f̃(0, 0), we have f̃(x′, y) ≤ f̃(x, y).

3.3 Quantum box-constrained scaling

Combining the above leads to a quantum algorithm for matrix scaling that is based on
classical box-constrained Newton methods. See Algorithm 1 for its formal definition. In
Theorem 3.13 we analyze its output.

Algorithm 1 Quantum box-constrained Newton method for matrix scaling.

Input: Oracle access to A ∈ [µ, 1]n×n with ∥A∥1 ≤ 1 and µ > 0, error ε > 0, targets
r, c ∈ Rn

>0 with ∥r∥1 = 1 = ∥c∥1, diameter bound B ≥ 1, classical k-oracle A
for SDD matrices with non-negative off-diagonal entries

Output: Vectors x, y ∈ Rn with ∥(x, y)∥∞ ≤ B + ln(4n + (n ln(1/µ)/ε2))
1 set T = ⌈4e4 max(kB + ln(4n + (n ln(1/µ)/ε2)), 1) · ln

(
ln(1/µ)+2ε2/eB

ε2/2

)
⌉;

2 set C ′ = 2⌈ln(2/µ) + 8ε2/eB⌉;
3 set ε′ = ⌊ε2/8e4 max(k(B + ln(4n + (n ln(1/µ)/ε2))), 1)⌋;
4 store x(0), y(0) = 0 ∈ Rn in QCRAM;
5 for i = 0, . . . , T − 1 do
6 compute Hm, Ha s.t. Hm + Ha ≈ ∇2f̃(x(i), y(i)) as in Theorem 3.9 with

δa = ε′k2/2e2;
7 compute b ≈ ∇f̃(x(i), y(i)) as in Lemma 3.10 at x(i), y(i) with δ = ε′/3;
8 compute ∆ = A( 4e2

3k2 · (Hm + Ha), b
k );

9 compute (x(i+1), y(i+1)) = (x(i), y(i)) + 1
k ∆ and store in QCRAM;

10 set flag = true;
11 while flag do
12 Compute C ′/2-additive approximation γ of ∥A(x(i+1), y(i+1))∥1;
13 if γ ≤ 3C ′/2 then
14 set flag = false;
15 else
16 update x(i+1) ← x(i+1) − ln(2)1 in QCRAM;
17 end if
18 end while
19 end for
20 return (x, y) = (x(T ), y(T ));
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▶ Theorem 3.13. Let A ∈ [0, 1]n×n with m non-zero entries, r, c ∈ Rn
>0 such that ∥r∥1 =

1 = ∥c∥, and assume A is asymptotically (r, c)-scalable. Let ε > 0, let B ≥ 1, and assume
there exist (xε, yε) such that ∥(xε, yε)∥∞ ≤ B and f(xε, yε)− f∗ ≤ ε2. Furthermore, let A
be the O (log(n))-oracle of Theorem 3.4. Then Algorithm 1 with these parameters outputs,
with probability ≥ 2/3, vectors x, y such that f(x, y)− f∗ ≤ 6ε2 and runs in quantum time
Õ
(
B2√mn/ε2).

Proof. In every iteration, the matrices Hm, Ha and the vector b are such that they satisfy
the requirements of Theorem 3.5, hence

f̃(x(i+1), y(i+1))− f̃∗ ≤
(

1− 1
4e4 max(kR∞, 1)

)
(f̃(x(i), y(i))− f̃∗) + e2δa

k2 + 3δ

2

where R∞ ≤ B + ln(4n + (n ln(1/µ)/ε2))) is the ℓ∞-radius of the sublevel set {(x, y) :
f̃(x, y) ≤ f̃(0, 0)} about (0, 0), whose upper bound follows from Lemma 3.6. From here
on, we write M = 4e4 max(kR∞, 1). The choice of δa and δ in the algorithm is such that
e2δa/k2 + 3δ/2 ≤ ε2

2M , hence we can also bound the progress by

f̃(x(i+1), y(i+1))− f̃∗ ≤
(

1− 1
M

)
(f̃(x(i), y(i))− f̃∗) + ε2

2M
.

Corollary 3.12 shows that if ∥A(x(i+1), y(i+1))∥1 is larger than C ′, then we can shift x by
− ln(2)1, this halves ∥A(x(i+1), y(i+1))∥1 and does not increase the regularized potential. Re-
peating this roughly log2(∥A(x(i+1), y(i+1))∥1/C ′) many times2 reduces ∥A(x(i+1), y(i+1))∥1
to at most C = 2C ′. Determining when to stop this process requires a procedure to distinguish
between the cases ∥A(x(i+1), y(i+1))∥1 ≤ C ′ and ∥A(x(i+1), y(i+1))∥1 ≥ 2C ′ (if in between
C ′ and 2C ′ either continuing or stopping is fine). Such a procedure can be implemented
by computing a C ′/2-additive approximation of ∥A(x(i+1), y(i+1))∥1, which can be done
using Õ(

√
mn polylog(C ′/µ)) quantum queries, see (the proof of) [5, Lemma 4.6 (arXiv)].

Therefore, throughout the algorithm we may assume that ∥A(x(i+1), y(i+1))∥1 ≤ 2C ′ = C.
It remains to show that f̃(x(T ), y(T ))− f̃∗ ≤ ε2 for our choice of T . Note that we have

f̃(x(T ), y(T ))− f̃∗ ≤
(

1− 1
M

)T

(f̃(0, 0)− f̃∗) +
T −1∑
i=0

(
1− 1

M

)T −i−1
· ε2

2M

≤
(

1− 1
M

)T (
f̃(0, 0)− f̃∗)+

(
1− (1− 1

M
)T

)
· ε2

2

≤
(

1− 1
M

)T (
f(0, 0)− f∗ + 2ε2

eB

)
+ ε2

2

≤
(

1− 1
M

)T (
ln(1/µ) + 2ε2

eB

)
+ ε2

2 ≤ ε2

where in the third inequality we use Lemma 3.6, and in the last inequality we use

T =
⌈

4e4 max(kB + ln(4n + (n ln(1/µ)/ε2)), 1) · ln
(

ln(1/µ) + 2ε2/eB

ε2/2

)⌉
≥
⌈

M · ln
(

ln(1/µ) + 2ε2/eB

ε2/2

)⌉
≥ 1

ln(1− 1
M )
· ln
(

ε2/2
ln(1/µ) + 2ε2

eB

)
.

2 Which is an almost constant number of times: in a single update of the box-constrained method, we
take steps of size at most 1 in ℓ∞-norm, so individual entries can only grow by a factor e2 in a single
iteration, and the holds same for ∥A(x, y)∥1.
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This implies that f(x(T ), y(T ))− f∗ ≤ f̃(x(T ), y(T ))− f̃∗ + 5ε2 ≤ 6ε2, where we crucially use
the last point of Lemma 3.6 and the assumption that there exist (xε, yε) with ∥(xε, yε)∥∞ ≤ B

which ε2-minimize f .
Finally we bound the time complexity of Algorithm 1. For each of the quoted results, we

use the choice C = 2C ′ = Õ
(
ln(n) + ε2). In each of the T iterations we compute:

1. approximations Hm, Ha of ∇2f̃(x(i), x(i)) in time Õ(
√

mn polylog(1/ε)) (using that C,
1/µ are at most poly(n)),

2. an ε′/3-ℓ1-approximation of ∇f̃(x(i), y(i)) in time Õ(
√

mn/ε′) = Õ
(
B
√

mn/ε2),
3. an update ∆ in time Õ(n) using one call to the k = O (log(n))-oracle on SDD-matrices

with Õ(n) non-zero entries from Theorem 3.4,
4. at most O (1) many times (using the fact that in Algorithm 1 the 1-norm changes by at

most a constant factor since ∥ 1
k ∆∥∞ ≤ 1) an O

(
ln(1/µ) + ε2)-additive approximation of

∥A(x(i), y(i))∥1 in time Õ(
√

mn).
Note that the second contribution dominates the others, resulting in an overall time complexity
of Õ

(
B2√mn/ε2). ◀

The above proof relies on Theorem 3.5 to show that the (regularized) potential decreases in
each iteration. This decrease depends on the precision used for the marginal estimation in
that iteration and one can show that the choice of precision in Algorithm 1 is asymptotically
optimal, see the full version [17].

Algorithm 1 takes as (part of the) input a bound B on the ℓ∞-norm of an ε2-minimizer
of f . For the purpose of matrix scaling, one can avoid knowing such a bound in advance, by
running the algorithm for successive powers of 2 (i.e., B = 1, B = 2, B = 4,. . .) and testing
whether the output yields an ε-scaling or not. Verifying whether given x, y yield an ε-scaling
of A can be done in time Õ

(√
mn/ε2). Note that this gives an algorithm for ε-scaling whose

complexity depends on a diameter bound for ε2-minimizers of f , rather than a diameter
bound for ε-scaling vectors. Furthermore, such an approach does not work for the task of
finding an ε2-minimizer of f , as we do not know how to test this property efficiently.

▶ Corollary 3.14. For asymptotically-scalable matrices A ∈ Rn×n
≥0 with m non-zero entries,

one can find O(ε)-ℓ1-scaling vectors (x, y) of A to target marginals r, c ∈ Rn
>0 with ∥r∥1 =

1 = ∥c∥1 in time Õ
(
R2

∞
√

mn/ε2), where R∞ is such that there exists an ε2-approximate
minimizer (xε, yε) of f with R∞ = ∥(xε, yε)∥∞ + ln(4n + (n ln(1/µ)/ε2)).

For the general case mentioned above, we do not have good (i.e., polylogarithmic) bounds on
the parameter R∞. We do have such bounds when A is entrywise positive: it is well-known
that such an A can be exactly scaled to uniform marginals with scaling vectors (x, y) such that
∥(x, y)∥∞ = O(log(∥A∥1/µ)) (cf. [22, Lem. 1], [12, Lem. 4.11]). In particular, this implies
that there exists a minimizer (x∗, y∗) of f with ∥(x∗, y∗)∥∞ = O(log(∥A∥1/µ)) = Õ(1) and
therefore we have the following corollary.

▶ Corollary 3.15. For entrywise-positive matrices A, one can find an ε-ℓ1-scaling of A to
uniform marginals in time Õ

(
n1.5/ε2).
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A Missing proofs for Section 2

A.1 Strong convexity properties of the potential
Lemma 2.8 shows that a vector (x, y) ∈ V for which ∥∇f(x, y)∥2 is small, is close to
the minimizer of f . Here we prove this lemma (see Corollary A.6) using strong convexity
properties of f . In Lemma A.1 we show that the Hessian of f restricted to V has smallest
eigenvalue at least n · µ(x, y) where µ(x, y) is the smallest entry appearing in (Aijexi+yj )i,j .
In Lemma A.3 we show that µ(x∗, y∗) = Θ(1/n2). This implies that µ(x, y) = Θ(1/n2) for
all (x, y) that are a constant distance away from (x∗, y∗) in the ℓ∞-norm, in other words, f

is Θ(1/n)-strongly convex around its minimizer. Lemma A.5 summarizes these lemmas: it
gives a quantitative bound on the distance to a minimizer, in terms of the gradient.

▶ Lemma A.1. Let A be an entrywise non-negative n×n matrix and let f : V ⊂ Rn×Rn → R
be the potential for this matrix as given in (1.2), where V is the orthogonal complement of
(1n,−1n). Then ∇2f(x, y) ⪰ µ(x, y) · n ·PV where PV is the projection onto V and µ(x, y)
is the smallest entry appearing in A(x, y). In particular, f is strictly convex on V .

Proof. The Hessian of the potential f(x, y) =
∑n

i,j=1 Aijexi+yj − ⟨r, x⟩ − ⟨c, y⟩ is given by

∇2f(x, y) =
[
diag(r(A(x, y)) A(x, y)

A(x, y)T diag(c(A(x, y)))

]
.
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We give a lower bound on the non-zero eigenvalues of the Hessian as follows. Conjugating the
Hessian with the 2n× 2n matrix diag(I,−I) preserves the spectrum, i.e., changing the signs
of the off-diagonal A(x, y) blocks yields a matrix which one can recognize as the weighted
Laplacian of a complete bipartite graph. We denote by µ(x, y) the smallest entry of A(x, y)
and we use J for the n× n all-ones matrix. Then[

diag(r(A(x, y)) −A(x, y)
−A(x, y)T diag(c(A(x, y)))

]
⪰
[

nµ(x, y)I −µ(x, y)J
−µ(x, y)J nµ(x, y)I

]
= µ(x, y)

[
nI −J
−J nI

]
,

where the PSD inequality follows because the difference of the terms is the weighted Laplacian
of the bipartite graph with weighted bipartite adjacency matrix A(x, y)− µ(x, y)J, which

has non-negative entries. Now observe that the last term
[

nI −J
−J nI

]
is the (unweighted)

Laplacian of the complete bipartite graph Kn,n, whose spectrum is 2n, n, 0 with multiplicities
1, 2n− 2 and 1 respectively. The zero eigenvalue corresponds to the all-ones vector of length
2n and it is easy to see that indeed (1,−1) also lies in the kernel of ∇2f(x, y). This
shows that the non-zero eigenvalues of ∇2f(x, y) are at least n · µ(x, y), and that it has
a one-dimensional eigenspace corresponding to 0, spanned by the vector (1,−1). Hence,
∇2f(x, y) ⪰ µ(x, y) · n ·PV . ◀

We now bound the smallest entry of the rescaled matrix. For this we use the following
lemma (cf. [20, Lem. 6.2], [5, Cor. C.3 (arXiv)]) which bounds the variation norm of the
scaling vectors (x∗, y∗) of an exact scaling.

▶ Lemma A.2. Let A ∈ [µ, ν]n×n and let (x∗, y∗) ∈ Rn × Rn be such that A(x∗, y∗) is
exactly (r, c)-scaled. Then

x∗
max − x∗

min ≤ ln ν

µ
+ ln rmax

rmin
and y∗

max − y∗
min ≤ ln ν

µ
+ ln cmax

cmin
.

▶ Lemma A.3. Let A ∈ [µ, ν]n×n be an entrywise-positive matrix with ∥A∥1 = 1 and
let f : V ⊂ Rn × Rn → R be the potential for this matrix as given in (1.2), where V is
the orthogonal complement of (1n,−1n). Let (x∗, y∗) ∈ V be the unique minimizer of
f in V . Then µ(x∗, y∗) ≥ 1

n2

(
µ
ν

)3. Moreover, for every (x, y) ∈ V we have µ(x, y) ≥
µ(x∗, y∗)e−2∥(x,y)−(x∗,y∗)∥∞ .

Proof. By Lemma A.1 f is strictly convex on V . We also know that A is exactly scalable.
Hence f has a unique minimizer (x∗, y∗). By Lemma A.2 we know that the variation norm
of x∗ and y∗ are bounded by ln(ν/µ). Hence, for every i, i′, j, j′ ∈ [n] we have∣∣∣∣∣ln

(
ex∗

i +y∗
j

e
x∗

i′ +y∗
j′

)∣∣∣∣∣ ≤ |x∗
i − x∗

i′ |+ |y∗
j − y∗

j′ | = 2 ln(ν/µ).

Therefore, the ratio between entries of A(x∗, y∗) is bounded:∣∣∣∣ A(x∗, y∗)ij

A(x∗, y∗)i′j′

∣∣∣∣ ≤ ∣∣∣∣ Aij

Ai′j′

∣∣∣∣
∣∣∣∣∣
(

ex∗
i +y∗

j

e
x∗

i′ +y∗
j′

)∣∣∣∣∣ ≤ ν

µ
e2 ln(ν/µ) =

(
ν

µ

)3
.

Since the sum of the entries of A(x∗, y∗) equals 1, this implies that the smallest entry
of A(x∗, y∗) is at least µ(x∗, y∗) ≥ 1

n2

(
µ
ν

)3. Finally, for (x, y) ∈ V and all i, j ∈ [n] we
have Aijexi+yj ≥ Aijex∗

i +y∗
j −2∥(x,y)−(x∗,y∗)∥∞ , so taking the minimum over all i, j gives

µ(x, y) ≥ µ(x∗, y∗)e−2∥(x,y)−(x∗,y∗)∥∞ . ◀
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Finally, to obtain a diameter bound for the set of points with a small gradient we will use
the following (well-known) lemma.

▶ Lemma A.4. Assume g : Rd → R is a C2 convex function such that ∇g(0) = 0, and
assume that for all x ∈ Rd with ∥x∥∞ ≤ r, we have ∇2g(x) ⪰ λI. Then

∥∇g(x)∥2 ≥ λ∥x∥2 min(1, r/∥x∥∞) ≥ λ min(∥x∥∞, r).

In particular, to guarantee that ∥x∥∞ ≤ C for C ≥ 0, it suffices to show that ∥∇g(x)∥2 <

λ min(C, r) (strict inequality is necessary as it forces min(∥x∥∞, r) = ∥x∥∞).

Proof. Fix x ∈ Rn and consider h : R → R defined by h(t) = g(tx). Then h is convex,
∂t=0h(t) = 0 and ∂2

t=sh(t) ≥ 0 for all s ∈ R. Now assume for s ∈ R that |s|∥x∥∞ ≤ r. Then

∂2
t=sh(t) = ∂t=s(Dg(tx)[x]) = D2g(sx)[x, x] = xT∇2g(sx)x ≥ λ∥x∥2

2.

For s ≥ 0 this yields a lower bound on ⟨∇g(sx), x⟩ of the form

⟨∇g(sx), x⟩ = ∂t=sh(t) =
∫ s

0
∂2

t=τ h(t) dτ ≥
∫ min(s,r/∥x∥∞)

0
∂2

t=τ h(t) dτ

≥
∫ min(s,r/∥x∥∞)

0
λ∥x∥2

2 dτ = λ∥x∥2
2 min(s, r/∥x∥∞),

where the first inequality follows from the convexity of h. Setting s = 1 and using the
Cauchy–Schwarz inequality gives ∥∇g(x)∥2∥x∥2 ≥ λ∥x∥2

2 min(1, r/∥x∥∞) so

∥∇g(x)∥2 ≥ λ∥x∥2 min(1, r/∥x∥∞) ≥ λ∥x∥∞ min(1, r/∥x∥∞) = λ min(∥x∥∞, r). ◀

▶ Lemma A.5. Let A ∈ [µ, ν]n×n be an entrywise non-negative matrix with ∥A∥1 = 1
and let f : V ⊂ Rn × Rn → R be the potential for this matrix as given in (1.2), where V

is the orthogonal complement of (1n,−1n). Let (x∗, y∗) be the unique minimizer of f in
V and let 0 < δ < 1. Let (x, y) ∈ V be such that ∥∇f(x, y)∥2 < δ · 1

n

(
µ
ν

)3
e−2. Then

∥(x, y)− (x∗, y∗)∥∞ ≤ δ.

Proof. Lemma A.1 shows that ∇2f(x, y) ⪰ n · µ(x, y) · PV , where PV is the ortho-
gonal projector on V . Lemma A.3 shows that µ(x, y) ≥ µ(x∗, y∗)e−2∥(x,y)−(x∗,y∗)∥∞ ≥
1

n2

(
µ
ν

)3
e−2∥(x,y)−(x∗,y∗)∥∞ . Hence, for (x, y) with ∥(x, y) − (x∗, y∗)∥∞ ≤ 1, we have

∇2f(x, y) ⪰ 1
n

(
µ
ν

)3
e−2 · PV . It then follows from Lemma A.4 that if ∥∇f(x, y)∥2 <

δ · 1
n

(
µ
ν

)3
e−2, then ∥(x, y)− (x∗, y∗)∥∞ ≤ δ. ◀

Observe that for Aσ the ratio between its largest and smallest entry is b+1
b−1 ≤ 3. This gives

the following corollary, proving Lemma 2.8.

▶ Corollary A.6. Let Aσ be as in Section 2.1 and let f be the associated potential. Let (x∗, y∗)
be the unique exact scaling of Aσ in V . If (x, y) ∈ V is such that ∥∇f(x, y)∥2 < δ

27ne2 , then
∥(x, y)− (x∗, y∗)∥∞ ≤ δ.

B Missing proofs for Section 3

B.1 Minimizing a second-order robust function
Before giving the proof of Theorem 3.5, we introduce the following notation. For a symmetric
matrix H and b, z ∈ Rn, we denote

Q(H, b, z) = ⟨b, z⟩+ 1
2zT Hz.

We will use the following easily-verified properties of Q repeatedly.
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▶ Lemma B.1. For symmetric matrices H, H′ and vectors b, b′, z, we have the following
estimates:

1. If H ⪯ H′, then Q(H, b, z) ≤ Q(H′, b, z).

2. If ∥H−H′∥1 ≤ δa, then
∣∣Q(H, b, z)−Q(H′, b, z)

∣∣ ≤ 1
2 δa∥z∥2

∞.

3. We have
∣∣Q(H, b, z)−Q(H, b′, z)

∣∣ =
∣∣⟨b− b′, z⟩

∣∣ ≤ ∥b− b′∥1∥z∥∞.

Proof of Theorem 3.5. We follow the proof of [12, Thm. 3.4], and use their implementation
of a k-oracle A for k = O (log n), as detailed in Theorem 3.4. That is, A takes as input an
SDD matrix H with Õ(m) non-zero entries (off-diagonal entries ≤ 0) and a vector b, and
outputs a vector z such that ∥z∥∞ ≤ k and

Q(H, b, z) ≤ 1
2 inf

∥z′∥∞≤1
Q(H, b, z′).

Then for x′ = x + 1
k ∆, ∆ = A

(
4e2

3k2 H, 1
k b
)

we have

Q

(
4e2

3 H, b,
1
k

∆
)

= Q

(
4e2

3k2 H,
1
k

b, ∆
)
≤ 1

2 inf
∥z∥∞≤1

Q

(
4e2

3k2 H,
1
k

b, z
)

= 1
2 inf

∥z∥∞≤1
Q

(
4e2

3 H, b, z/k

)
= 1

2 inf
∥z∥∞≤ 1

k

Q

(
4e2

3 H, b, z
)

.

Note that the second-order robustness of g implies that for x̃ ∈ Rn with ∥x− x̃∥∞ ≤ 1, we
have quadratic lower and upper bounds

Q

(
1
e2∇

2g(x),∇g(x), x̃− x
)
≤ g(x̃)− g(x) ≤ Q

(
e2∇2g(x),∇g(x), x̃− x

)
. (B.1)

The remainder of the proof is structured as follows. We first compare quadratics involving
∇2g(x) and ∇g(x) to quadratics involving the approximations H and b in Equations (B.2)
and (B.3). Using these estimates we then obtain a local progress bound over an ℓ∞-ball
of radius 1/k, see Equation (B.4). Finally, we convert this local bound into a more global
estimate.

The properties of the approximate Hessian and gradient guarantee that

Q
(
e2∇2g(x),∇g(x), x̃− x

)
≤ Q

(
e2∇2g(x), b, x̃− x

)
+ δ

= Q
(
e2H′

m, b, x̃− x
)

+ Q
(
e2H′

a, b, x̃− x
)
− ⟨b, x̃− x⟩+ δ

≤ Q

(
4e2

3 Hm, b, x̃− x
)

+ Q
(
e2Ha, b, x̃− x

)
+ e2

2 δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩+ δ

≤ Q

(
4e2

3 Hm, b, x̃− x
)

+ Q

(
4e2

3 Ha, b, x̃− x
)

+ e2

2 δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩+ δ

= Q

(
4e2

3 H, b, x̃− x
)

+ e2

2 δa∥x̃− x∥2
∞ + δ. (B.2)
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Furthermore, we also have the upper bound

Q

(
4e2

3 H, b, x̃− x
)

= Q

(
4e2

3 Hm, b, x̃− x
)

+ Q

(
4e2

3 Ha, b, x̃− x
)
− ⟨b, x̃− x⟩

≤ Q
(
2e2H′

m, b, x̃− x
)

+ Q
(
2e2Ha, b, x̃− x

)
− ⟨b, x̃− x⟩

≤ Q
(
2e2H′

m, b, x̃− x
)

+ Q
(
2e2H′

a, b, x̃− x
)

+ e2δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩

≤ Q
(
2e2H′

m, b, x̃− x
)

+ Q
(
2e2H′

a, b, x̃− x
)

+ e2δa∥x̃− x∥2
∞ − ⟨b, x̃− x⟩

= Q
(
2e2∇2g(x), b, x̃− x

)
+ e2δa∥x̃− x∥2

∞

≤ Q
(
2e2∇2g(x),∇g(x), x̃− x

)
+ e2δa∥x̃− x∥2

∞ + δ. (B.3)

Let vL and vU be the minimizers of quadratics over the ℓ∞-ball of radius 1/k:

vL = argmin
∥v∥∞≤1/k

Q( 1
e2∇

2g(x),∇g(x), v), vU = argmin
∥v∥∞≤1/k

Q(2e2∇2g(x),∇g(x), v).

Then by the guarantees of the k-oracle, we have

Q

(
4e2

3 H, b,
1
k

∆
)
≤ 1

2 inf
∥v∥∞≤1/k

Q

(
4e2

3 H, b, v
)

≤ 1
2 inf

∥v∥∞≤1/k
(Q
(
2e2∇2g(x),∇g(x), v

)
+ e2δa∥v∥2

∞ + δ)

≤ 1
2Q
(
2e2∇2g(x),∇g(x), vU

)
+ e2δa

2k2 + 1
2δ,

where the second inequality uses Equation (B.3), and the norm bounds ∥v∥∞ ≤ 1/k ≤
1 (to apply the inequality). Using the quadratic upper bound from Equation (B.1) on
g(x + 1

k ∆)− g(x) and Equation (B.2), this yields

g(x + 1
k

∆)− g(x) ≤ Q(e2∇2g(x),∇g(x), 1
k

∆) ≤ Q

(
4e2

3 H, b,
1
k

∆
)

+ e2

2 δa + δ

≤ 1
2Q
(
2e2∇2g(x),∇g(x), vU

)
+ e2δa

k2 + 3
2δ,

We can then further upper bound this using

Q
(
2e2∇2g(x), ∇g(x), vU

)
≤ Q

(
2e2∇2g(x), ∇g(x), vL

2e4

)
= 1

2e4 Q
( 1

e2 ∇2g(x), ∇g(x), vL

)
where the inequality uses that vU = argmin∥v∥∞≤1/k Q(2e2∇2g(x),∇g(x), v) and ∥vL∥∞ ≤

1/k. Collecting estimates, we obtain

g(x + 1
k

∆)− g(x) ≤ 1
4e4 Q

(
1
e2∇

2g(x),∇g(x), vL

)
+ e2δa

k2 + 3
2δ. (B.4)

We now convert this to a more global estimate. Let x∗ be a global minimizer of g. Set
y = x + 1

max(kR∞,1) (x∗ − x), so that ∥y− x∥∞ ≤ 1
k . For the lower bound

gL(x̃) = g(x) + Q( 1
e2∇

2g(x),∇g(x), x̃− x)
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on g(x̃) we see that gL(x + vL) ≤ gL(y) ≤ g(y) since x + vL minimizes gL ≤ g over the
ℓ∞-ball of radius 1/k around x. By convexity of g we get

g(y) = g(x + 1
max(kR∞, 1)(x∗ − x)) ≤ (1− 1

max(kR∞, 1))g(x) + 1
max(kR∞, 1)g(x∗)

so

g(x)− gL(x + vL) ≥ g(x)− g(y) ≥ 1
max(kR∞, 1)(g(x)− g(x∗)).

Using this estimate in Equation (B.4), this gives

g(x)− g(x + 1
k

∆) ≥ 1
4e4 max(kR∞, 1)(g(x)− g(x∗))− (e2δa

k2 + 3
2δ),

which after rearranging and rewriting x′ = x + 1
k ∆ reads

g(x′)− g(x∗) ≤
(

1− 1
4e4 max(kR∞, 1)

)
(g(x)− g(x∗)) + e2δa

k2 + 3
2δ. ◀

B.2 Approximating the Hessian of the regularized potential
Proof of Lemma 3.6. The first point is easy to verify, as is the second point (the regulariza-
tion term is always positive). For the third point, suppose we have a z such that f̃(z) ≤ f̃(0).
Then

ε2

neB

∑
i

(exi + e−xi) +
∑

j

(eyj + e−yj )

 ≤ f(0)−f(z)+ ε2

neB
·4n ≤ ln(1/µ)+ 4ε2

eB
. (B.5)

where the last inequality follows from the potential bound f(0) − f∗ ≤ ln(1/µ) (which
depends on ∥A∥1 ≤ 1; in general the upper bound is ∥A∥1 − 1 + ln(1/µ)). Since each of
the regularization terms is positive, we may restrict ourselves to a single term and see that
exi + e−xi ≤ eBn ln(1/µ)

ε2 + 4n, from which we may deduce

|xi| ≤ ln
(

eBn ln(1/µ)
ε2 + 4n

)
= B + ln

(
n ln(1/µ)

ε2 + 4n

eB

)
≤ B + ln

(
n ln(1/µ)

ε2 + 4n

)
,

where the last inequality uses eB ≥ 1 (recall B > 0). The same upper bound holds for |yj |.
For the last point, note that if zε = (x, y), then exi + e−xi ≤ 2eB and similarly for y, so

f̃(zε) ≤ f(zε) + ε2

neB
· 4neB = f(zε) + 4ε2 ≤ f∗ + 5ε2.

If such a zε exists, then f∗ ≤ f̃∗ ≤ f̃(zε) ≤ f∗ + 5ε2. ◀
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Abstract
We study the fine-grained complexity of counting the number of colorings and connected spanning
edge sets parameterized by the cutwidth and treewidth of the graph. While decompositions of small
treewidth decompose the graph with small vertex separators, decompositions with small cutwidth
decompose the graph with small edge separators.

Let p, q ∈ N such that p is a prime and q ≥ 3. We show:
If p divides q − 1, there is a (q − 1)ctwnO(1) time algorithm for counting list q-colorings modulo
p of n-vertex graphs of cutwidth ctw. Furthermore, there is no ε > 0 for which there is a
(q − 1 − ε)ctwnO(1) time algorithm that counts the number of list q-colorings modulo p of n-vertex
graphs of cutwidth ctw, assuming the Strong Exponential Time Hypothesis (SETH).
If p does not divide q −1, there is no ε > 0 for which there exists a (q −ε)ctwnO(1) time algorithm
that counts the number of list q-colorings modulo p of n-vertex graphs of cutwidth ctw, assuming
SETH.

The lower bounds are in stark contrast with the existing 2ctwnO(1) time algorithm to compute the
chromatic number of a graph by Jansen and Nederlof [Theor. Comput. Sci.’18].

Furthermore, by building upon the above lower bounds, we obtain the following lower bound
for counting connected spanning edge sets: there is no ε > 0 for which there is an algorithm that,
given a graph G and a cutwidth ordering of cutwidth ctw, counts the number of spanning connected
edge sets of G modulo p in time (p − ε)ctwnO(1), assuming SETH. We also give an algorithm with
matching running time for this problem.

Before our work, even for the treewidth parameterization, the best conditional lower bound by
Dell et al. [ACM Trans. Algorithms’14] only excluded 2o(tw)nO(1) time algorithms for this problem.

Both our algorithms and lower bounds employ use of the matrix rank method, by relating the
complexity of the problem to the rank of a certain “compatibility matrix” in a non-trivial way.
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36:2 Tight Bounds for Counting Colorings and Connected Edge Sets

1 Introduction

A popular topic of interest in (fine-grained) algorithmic research is to determine the decom-
posability of NP-hard problems in easier subproblems. A natural decomposition strategy is
often implied by decomposing the solution into sub-solutions induced by a given decompos-
ition of the input graph such as tree decompositions, path decompositions, or tree depth
decompositions, independent of the problem to be solved. However, the efficiency of such a
decomposition can wildly vary per computational problem. Recently, researchers developed
tools that allow them to get a precise understanding of this efficiency : non-trivial algorithmic
tools (such as convolutions and the cut-and-count method [9, 25]) were developed to give
algorithms that have an optimal running time conditioned on hypotheses such as the Strong
Exponential Time Hypothesis (SETH) [16]. While the efficiency of such decompositions has
been settled for most decision problems parameterized by treewidth, many other interesting
settings remain elusive. Two of them are cutwidth and counting problems.

The cutwidth of an ordering of the vertices of the graph is defined as the maximum
number of edges with exactly one endpoint in a prefix of the ordering (where the maximum is
taken over all prefixes of the ordering). The cutwidth of a graph is defined to be the minimum
width over all its cutwidth orderings. Cutwidth is very similar to pathwidth, except that
cutwidth measures the number of edges of a cut, while the pathwidth measures the number
of endpoints of edges over the cut. Thus the cutwidth of a graph is always larger than its
pathwidth. But for some problems a decomposition scheme associated with a cutwidth
ordering of cutwidth k can be used much more efficiently than a decomposition of pathwidth
k. A recent example of such a problem is the q-coloring problem:1 While there is a (q − ε)pw

lower bound [21] assuming SETH, there is a 2ctwnO(1) time randomized algorithm [18].
Counting problems pose an interesting challenge if we want to study their decomposability.

Counting problems are naturally motivated if we are interested in any statistic rather than
just existence of the solutions space. While often a counting problem behaves very similarly
to its decision version (as in, the dynamic programming approach can be fairly directly
extended to solve the counting version as well), for some problems there is a rather puzzling
increase in complexity when going from the decision version to the counting version. 2

One of the most central problems in counting complexity is the evaluation of the Tutte
polynomial. The strength of this polynomial is that it expresses all graph invariants that can
be written as a linear recurrence using only the edge deletion and contraction operation [23],
and its evaluations specialize to a diverse set of parameters ranging from the number of
forests, nowhere-0 flows, q-colorings and spanning connected edge sets.

An interesting subdirection within counting complexity that is in between the decision
and counting version and that we will also address in this paper is modular counting, where
we want to count the number of solutions modulo a number p. This is an interesting direction
since the complexity of the problem at hand can wildly vary for different p (see [24] for a
famous example), but in the setting of this paper it is also naturally motivated: For example,
the cut-and-count method achieves the fastest algorithms for several decision problems by
actually solving the modular counting variant instead.

1 Recall that a q-coloring is a mapping from the vertices of the graph to {1, . . . , q} such that every two
adjacent vertices receive distinct colors, and the q-coloring problem asks whether a q-coloring exists.

2 Two examples herein are detecting/counting perfect matchings (while the decision version is in P , the
counting version can not be solved in time (2 − ε)twnO(1) for any ε > 0 assuming the SETH [7]) and
Hamiltonian cycles (while the decision version can be solved in (2 +

√
2)pw time [8], the counting version

can not be solved in time (6 − ε)twnO(1) for any ε > 0 assuming the SETH [6]).
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1.1 Our results
In this paper we study the complexity of two natural hard (modular) counting problems:
Counting the number of q-colorings of a graph and counting the number of spanning connected
edge sets, parameterized by the cutwidth of the graph.

Counting Colorings. Let G be a graph and suppose that for each v ∈ V we have an
associated list L(v) ⊆ {1, . . . , q}. A list q-coloring is a coloring c of G such that c(v) ∈ L(v)
for each v ∈ V . Two colorings are essentially distinct if they cannot be obtained from each
other by permuting the color classes. Since the number of essentially distinct colorings is
q! times the number of distinct colorings (assuming the chromatic number of the graph
is q), counting colorings modulo p may become trivial if p ≤ q. For this reason, we focus on
counting essentially distinct colorings in our lower bounds.

In this paper, we will focus on counting list q-colorings modulo a prime number p. Our
main theorem reads as follows:

▶ Theorem 1. Let p, q ∈ N with p prime and q ≥ 3.
If p divides q−1, then there is a (q−1)ctwnO(1) time algorithm for counting list q-colorings
modulo p of n-vertex graphs of cutwidth ctw. Furthermore, there is no ε > 0 for which
there exists a (q − 1 − ε)ctwnO(1) time algorithm that counts the number of essentially
distinct q-colorings modulo p in time (q − 1 − ε)ctwnO(1), assuming SETH.
If p does not divide q − 1, there is no ε > 0 for which there exists a (q − ε)ctwnO(1) time
algorithm that counts the number of essentially distinct q-colorings modulo p, assuming
SETH.

Thus, we show that under the cutwidth parameterization, the (modular) counting variant
of q-coloring is much harder than the decision, as the latter can be solved in 2ctwnO(1)

time with a randomized algorithm [18]. Additionally, we show there is a curious jump in
complexity based on whether p divides q − 1 or not: Since our bounds are tight, this jump is
inherent to the problem and not an artifact of our proof.

The proof strategy of all items of Theorem 1 relates the complexity of the problems to a
certain compatibility matrix. This is a Boolean matrix that has its rows and columns indexed
by partial solutions, and has a 1 if and only if the corresponding partial solutions combine
into a global solution. In previous work, it was shown that the rank of this matrix can be
used to design both algorithms [4, 8, 18, 22] and lower bounds [6, 8].

With this in mind, the curious jump can intuitively be explained as follows. Consider
the base case where the graph is a single edge and we decompose a (list) q-coloring into
the two colorings induced on the vertices. The compatibility matrix corresponding to this
decomposition is the complement of an q × q identity matrix. This matrix has full rank
if p does not divide q − 1 and it has rank q − 1 otherwise. We believe this is a very clean
illustration of the rank based methods, since it explains a curious gap that would be rather
mysterious without the rank based perspective.

Connected Spanning Edge Sets and Tutte polynomial. We say that X ⊆ E is a connected
spanning edge set if G[X] is connected and every vertex is adjacent to an edge in X. Our
second result is about counting the number of such sets. This problem is naturally motivated:
It gives the probability that a random subgraph remains connected, and is an important
special case of the Tutte polynomial. We determine the complexity of counting connected
spanning edge sets by treewidth and cutwidth by giving matching lower and upper bounds:
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▶ Theorem 2. Let p be a prime number. There is an algorithm that counts the number of
connected edge sets modulo p of n-vertex graphs of treewidth tw in time ptwnO(1).

Furthermore, there is no ε > 0 for which there is an algorithm that counts the number
of spanning connected edge sets modulo p of n-vertex graphs of cutwidth ctw in time (p −
ϵ)ctwnO(1), assuming SETH.

Note that before our work, even for the treewidth parameterization, the best conditional
lower bound by Dell et al. [10] only excluded 2o(tw)nO(1) time algorithms for this problem.

While the algorithm follows relatively quickly by using a cut-and-count type dynamic
programming approach, obtaining the lower bound is much harder.

In fact, for related counting variants of connectivity problems such as counting the number
of Hamiltonian cycles or Steiner trees, 2O(tw)nO(1) time algorithms do exist. So one may
think that connected spanning edge sets can be counted in a similar time bound. But in
Theorem 2 we show that this is not the case (by choosing p arbitrarily large).

To prove the lower bound, we make use of an existing formula for the Tutte polynomial
that relates the number of connected spanning edge sets to the number of essentially distinct
colorings, and subsequently apply Theorem 1.

Organization. The rest of the paper is organized as follows: in Section 2 we introduce the
notation that will be used throughout the paper and define the color compatibility matrix. In
Section 3 we prove the upper bound for #q-coloring modulo p. Section 4 contains the results
about lower bounds. We conclude the paper by discussing directions for further research.
The appendix contains the proofs omitted from previous sections.

1.2 Related work
Coloring. Counting the number of colorings of a graph is known to be #P -complete, even for
special classes of graphs such as triangle free regular graphs [14]. Björklund and Husfeldt [2]
and Koivisto [20] gave a 2nnO(1) algorithm for counting q-colorings, and a more general
2nnO(1) time algorithm even evaluates any point of the Tutte polynomial [3].

A q-coloring of a graph G is a special case of H-coloring, i.e. a homomorphism from G

to a given graph H. Namely, q-colorings correspond to homomorphisms from G to Kq, i.e.
Kq-colorings. Dyer and Greenhill [11] showed that counting the number of H-colorings is
#P -complete unless H is one of the few exceptions (an independent set, a complete graph
with loops on every vertex or a complete bipartite graph). Kazeminia and Bulatov [19]
classified the hardness of counting H-colorings modulo a prime p for square-free graphs H.

Methods. Our approach makes use of the rank based method, and in particular the so-called
color compatibility matrix introduced in [18]. This matrix tells us whether we can “combine”
two colorings. In [18], the authors studied the rank of a different matrix with the same
support as the color compatibility matrix, whereas in this paper we use the rank directly.
The rank based method has been used before only once for an algorithm for a counting
problem in [8] and only once for a lower bound for a counting problem in [6].

The Tutte polynomial T (G; x, y) is a graph polynomial in two variables which describes
how G is connected. In particular, calculating T (G; x, y) at specific points gives us the
number of subgraphs of G with certain properties: T (G; 2, 1) is equal to the number of forests
in G, T (G; 1, 1) is the number of spanning forests, T (G; 1, 2) counts the number of spanning
connected subgraphs etc. We will use the properties of the Tutte polynomial to give a lower
bound on the complexity of counting spanning connected edge sets.
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2 Preliminaries

In this section, we introduce the notation that will be used throughout the paper.

2.1 Notation and standard definitions
For integers a, b, we write [a, b] = {a, a + 1, . . . , b} for the integers between a and b, and for
a natural number n we short-cut [n] = [1, n] = {1, . . . , n}. Throughout the paper, p will
denote a prime number and Fp the finite field of order p. We will use a ≡p b to denote that
a and b are congruent modulo p, i.e. that p divides a − b. We write N = {1, 2, . . . } for the
set of natural numbers.

For a function f : A → Z (where A is any set), we define the support of f as the set
supp(f) = {a ∈ A : f(a) ̸= 0}. For B ⊆ A, the function f |B : B → Z is defined as
f |B(b) = f(b) for all b ∈ B.

In this paper, all graphs will be undirected and simple. Given a graph G = (V, E) and a
vertex v ∈ V , we denote by N(v) the open neighbourhood of v, i.e. the set of all vertices
adjacent to v. We often use n for the number of vertices of G, and denote the cutwidth of G

by ctw. We sometimes write V (G) for the vertex set of the graph G.
Note that, if G is not connected, we can count the number of q-colorings in each connected

component and multiply them to get the total number of q-colorings of G. Therefore, we
may assume that G is connected.

Given a graph G = (V, E), and lists L : V → 2[q], a list q-coloring of G is a coloring
c : V → [q] of its vertices such that c(u) ̸= c(v) for all edges uv and c(v) ∈ L(v) for all
vertices v. We will often abbreviate “list q-coloring” to “coloring”. For a subset B ⊆ V (G),
we will use the abbreviation c(B) = {c(v) : v ∈ B}.

Cutwidth and treewidth are graph parameters which are often used in parameterized
complexity. Informally, treewidth describes how far a graph is from being a tree. The
cutwidth is defined as follows.

▶ Definition 3. The cutwidth of a graph G is the smallest k such that its vertices can be
arranged in a sequence v1, . . . , vn such that for every i ∈ [n − 1], there are at most k edges
between {v1, . . . , vi} and {vi+1, . . . , vn}.

We recall the definition of Tutte polynomial.

▶ Definition 4. For a graph G, we denote by T (G; x, y) the Tutte polynomial of G evaluated
at the point (x, y). If G has no edges we have T (G; x, y) = 1. Otherwise we have

T (G; x, y) =
∑

A⊆E(G)

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

where r(A) = |V (G)| − k(A) indicates the rank of the edge set A and k(A) indicates the
number of connected components of (V, A).

Note that T (G; 1, 2) is exactly the number of spanning connected edge sets.
We denote the counting version of a problem by using the prefix #, and the counting

modulo p version of by using #p (e.g. #pSAT, #pCSP).

2.2 The color compatibility matrix and its rank
Given a subset A ⊆ V , we use colL(A) to denote the set of all list q-colorings of G[A]. If it
is clear which lists are used, we omit the subscript.
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It is often useful to color parts of the graph separately, and then “combine” those colorings.
If two colorings can be combined without conflicts, we call them compatible:

▶ Definition 5. For subsets A, B ⊆ V and colorings x ∈ col(A), z ∈ col(B), we say that x

and z are compatible, written x ∼ z, if
x(v) = z(v) for all v ∈ A ∩ B, and
x(u) ̸= z(v) for all uv ∈ E, where u ∈ A and v ∈ B.

For a set of colorings S ⊆ col(B), we write S[x] for the set of colorings y ∈ S that are
compatible with x.

If x ∼ z, then we define x ∪ z as the q-list coloring of G[A ∪ B] such that (x ∪ z)(a) = x(a)
for all a ∈ A and (x ∪ z)(b) = z(b) for all b ∈ B. This is well-defined by the definition above.

A key definition for this paper is the following.

▶ Definition 6. Let (X ∪ Y, E) be a bipartite graph and q a natural number. The qth color
compatibility matrix M is indexed by all q-colorings of X and Y , with

M [x, y] =
{

1, if x ∼ y,

0, otherwise,

for x ∈ col(X) and y ∈ col(Y ).

We denote the color compatibility matrix indexed by all q-colorings associated with the
bipartite graph that is matching on t vertices by Jt, and short-hand J := J1.

We will show that, if p divides q − 1, we can count all q-list colorings modulo p more
quickly due to the following bound on the rank of the color compatibility matrices.

▶ Lemma 7. Let p be a prime, q a natural number and let G = (X ∪ Y, E) be a bipartite
graph with qth color compatibility matrix M . Then the rank of M over Fp satisfies

rankp(M) ≤

{
(q − 1)|E| if p divides q − 1,

q|E| otherwise.

Moreover, equality is achieved if G is a perfect matching.

The proof can be found in the full version of our paper [15].
In particular, Jt is invertible mod p if and only if p does not divide q − 1.

3 Algorithm for #q-coloring modulo p

In this section we prove the first part of the first item of Theorem 1:

▶ Theorem 8. Let G be a graph with n vertices and cutwidth ctw. Given an integer q ≥ 3
and a prime p that divides q − 1, there is an (q − 1)ctwnO(1) algorithm for counting list
q-colorings modulo p.

3.1 Definitions and overview
We first introduce some additional notation and definitions needed in this section. Let q be
an integer and let p be a prime that divides q − 1. We are given a graph G = (V, E) with
the cutwidth ordering v1, . . . , vn of the vertices. Without loss of generality, we may assume
that G is connected. We write Gi = G[{v1, . . . , vi}] and

Li = {v ∈ V (Gi) : vvj ∈ E for some j > i}.

Note that by definition of cutwidth, Li ⊆ Li−1 ∪ {vi} and |Li| ≤ ctw for all i (since the
number of endpoints of a set of edges is upper bounded by the number of edges in the set).
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Let i ∈ [n] be given and write Xi = Li ∪ {vi} for the set of vertices left of the cut that
either have an edge in the cut, or are the rightmost vertex left of the cut. We also define
Yi = {vi+1, . . . , vn} ∩ N(Xi). Figure 1 illustrates this notation.

v1 v3 v4v2 v5 v6 v7

Figure 1 In the above graph, L4 = {v1, v3}, X4 = {v1, v3, v4} (the red vertices) and Y4 = {v5, v7}.

Let Ti[x] be the number of extensions of x ∈ col(Xi) to a coloring of Gi = G[{v1, . . . , vi}].
Equivalently, Ti[x] gives the number of colorings of Gi that are compatible with x.

A standard dynamic programming approach builds on the following observation.

▶ Lemma 9 (Folklore). For x ∈ col(Xi),

Ti[x] =
∑

z∈col(Xi−1)
z∼x

Ti−1[z].

The proof can be found in the full version of our paper [15]. Since | col(Xi)| may be of size
q|Xi|, we cannot compute Ti in its entirety within the claimed time bound. The idea of our
algorithm is to use the same dynamic programming iteration, but to compute the values of
Ti only for a subset S ′

i ⊆ col(Xi) of the possible colorings which is of significantly smaller
size. In fact, we will compute a function T ′

i : S ′
i → Fp that does not necessarily agree with

Ti on S ′
i. The important property that we aim to maintain is that T ′

i carries the “same
information” about the number of colorings modulo p as Ti does. This is formalised below.

▶ Definition 10. Let H = (X ∪ Y, E) be a bipartite graph with color compatibility matrix M .
Let T, T ′ : col(X) → Fp. We say T ′ is an M -representative of T if∑

x∈col(X)

M [x, y]T [x] ≡p

∑
x∈col(X)

M [x, y]T ′[x] for all y ∈ col(Y ).

In other words, T ′ is an M -representative of T if M⊤ · T ≡p M⊤ · T ′.
Above we left the lists and the integer q implicit. We recall that the color compatibility

matrix has entries M [x, y] = 1 if x ∈ col(X) and y ∈ col(Y ) are compatible, and M [x, y] = 0
otherwise. Let i ∈ [n − 1] be given. Let Mi be the color compatibility matrix of the bipartite
graph given by the edges between Xi and Yi.

Then for y ∈ col(Yi),∑
x∈col(Xi)

Mi[x, y]Ti[x]

gives the number of colorings of Gi compatible with y. If we can compute T ′
n−1 that is

an Mn−1-representative of Tn−1, then by Lemma 9 we can compute the number of q-list
colorings of the graph (modulo p) as∑

y∈col(G[vn])

∑
x∈supp(T ′

n−1)

Mn−1[x, y]T ′
n−1[x].

It is an exercise in linear algebra to show that there always exists a T ′ that M -represents T

with | supp(T ′)| ≤ rank(M). We also need to make sure that we can actually compute this
T ′ within the desired time complexity and therefore reduce the support in a slightly more
complicated fashion in Section 3.2. We then prove an analogue of Lemma 9 in Section 3.3,
and describe our final algorithm in Section 3.4.
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3.2 Computing a reduced representative
In this subsection, we show how to find a function T ′ that M -represents T , while decreasing
an upper bound on the size of the support of the function.

▶ Definition 11. For a function f : col(X) → Fp we say that r ∈ X is a reduced vertex if
f(c) = 0 whenever c(r) = q.

The link between reduced vertices and the support of T : col(X) → Fp is explained
as follows. If R is a set of reduced vertices of T , then we can compute a set of colorings
containing the support of T of size at most (q − 1)|R|q|X|−|R|. Indeed, we may restrict to the
colorings that do not assign the color q to any vertex in R.

The following result allows us to turn vertices of degree 1 in H into reduced vertices.
The assumption that the vertex has degree 1 will be useful in proving the result because it
implies the associated compatibility matrix can be written as a Kronecker product with Jq

and another matrix.

▶ Lemma 12. There is an algorithm Reduce that, given a bipartite graph H with parts
X, Y and associated color compatibility matrix M , a function T : col(X) → Fp with reduced
vertices R ⊆ X and a vertex v ∈ X \ R of degree 1 in H, outputs a function T ′ : col(X) →
Fp with reduced vertices R ∪ {v} that is an M-representative of T . The run time is in
O((q − 1)|R|q|X|−|R|).

The proof is given in Appendix A. We say that a function T : col(X) → Fp is fully reduced if
every vertex v ∈ X of degree 1 is a reduced vertex of T . In order to keep the running time
low, we will ensure that R is relatively large whenever we apply Lemma 12.

3.3 Computing T ′
i from T ′

i−1

Recall that Ti[x] gives the number of colorings of Gi that are compatible with x ∈ col(Xi)
and that Mi is the color compatibility matrix of the bipartite graph between Xi and Yi

(corresponding to the ith cut).

▶ Lemma 13. Let i ∈ [n − 1]. Suppose that T ′
i−1 is an Mi−1-representative of Ti−1 and that

T ′
i−1 is fully reduced. Given T ′

i−1 and a set Ri−1 of reduced vertices for T ′
i−1, we can compute

a function T ′
i that is an Mi-representative of Ti in time O((q − 1)|Ri−1|q|Xi−1|−|Ri−1|+1),

along with a set Ri of reduced vertices for T ′
i such that |Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1.

Proof. Let i ∈ [n − 1] and let T ′
i−1 be Mi−1-representative of Ti−1 and fully reduced,

with Ri−1 a set of reduced vertices for T ′
i−1. We need to compute (in time O((q −

1)|Ri−1|q|Xi−1|−|Ri−1|+1)) a function T ′
i that is Mi-representative of Ti, along with a set

Ri of reduced vertices for T ′
i , such that |Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1.

We will work over Fp during this proof, in particular abbreviating ≡p to =. Analogous to
Lemma 9, we define, for x ∈ col(Xi),

T ′
i [x] =

∑
z∈col(Xi−1)

z∼x

T ′
i−1[z]. (1)

Note that∑
z∈col(Xi−1)

z∼x

T ′
i−1[z] =

∑
z∈supp(T ′

i−1)
z∼x

T ′
i−1[z].
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We compute T ′
i from T ′

i−1 as follows. Let

S ′
i−1 = {c ∈ col(Xi−1) : c(r) ̸= q for all r ∈ Ri−1}.

By the definition of reduced vertex, S ′
i−1 contains the support of T ′

i−1 since T ′
i−1 is fully

reduced. Recall that Xi \ {vi} ⊆ Xi−1, so any x ∈ col(Xi) is determined if we provide colors
for the vertices in Xi−1 ∪ {vi}. For a color c ∈ [q], let fc : {vi} → {c} be the function that
assigns color c to vi. For each z ∈ S ′

i−1, for each c ∈ [q] for which z ∼ fc, we compute

x = (z ∪ fc)|Xi ∈ col(Xi)

and increase T ′
i [x] by T ′

i−1[z] if it has been defined already, and initialise it to T ′
i−1[z]

otherwise. The remaining values are implicitly defined to 0. The running time is as claimed
because |S ′

i−1| ≤ (q − 1)|Ri−1|q|Xi−1|−|Ri−1| and |[q]| ≤ q.
Next, we compute a set Ri of reduced vertices for T ′

i . We set Ri = Xi \ (Ai ∪ Bi ∪ {vi}),
where

Ai = {u ∈ Xi \ {vi} : |N(u) ∩ Yi| ≥ 2}

and

Bi = {u ∈ Xi \ {vi} : |N(u) ∩ Yi| = 1 and uvi ∈ E}.

It is easy to see that Ai and Bi are disjoint. Within the (i − 1)th cut, each vertex in
Ai ∪ Bi has at least two edges going across the cut, so |Ri| + 2|Ai| + 2|Bi| ≤ ctw. Therefore,
|Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1.

We now show that Ri is indeed a set of reduced vertices. Suppose not, and let r ∈ Ri and
c ∈ col(Xi) with c(r) = q yet T ′

i [c] ̸= 0. Since T ′
i [c] ̸= 0, there exists z ∈ col(Xi−1) with z ∼ c

and T ′
i−1[z] ̸= 0. By definition r ∈ Xi \ {vi} ⊆ Xi−1. Moreover, z(r) = q since z ∼ c and

c(r) = q. Therefore r is not reduced for T ′
i−1. We now show r moreover has degree 1 in the

bipartite graph between Xi−1 and Yi−1 (corresponding to the (i − 1)th cut), contradicting
our assumption that T ′

i−1 is fully reduced. Since r ̸∈ Ai ∪ Bi, it has at most one edge going
over the (i − 1)th cut. Moreover, r ∈ Xi \ {vi} ⊆ Li, and so it has at least one edge to
Yi ⊆ Yi−1. So r has exactly one neighbor in Yi−1.

It remains to prove that T ′
i is Mi-representative of Ti. This technical part of the proof

can be found in the full version of our paper [15]. ◀

3.4 Analysis of final algorithm
We initialize T1 = 1, the all-ones vector. Indeed, each x ∈ col({v1}) has a unique extension
to G1 (namely itself). We then repeatedly apply the Reduce algorithm from Lemma 12
until we obtain a fully reduced function T ′

1 that is an M1-representative of T1, with some set
of reduced vertices R1. For i = 2, . . . , n, we repeat the following two steps.
1. Apply Lemma 13 with inputs (T ′

i−1, Ri−1) in order to obtain the vector T ′
i that is an

Mi-representative of Ti, and a set of reduced vertices Ri for T ′
i .

2. While Xi \ Ri has a vertex v of degree 1, apply the Reduce algorithm from Lemma 12
to (T ′

i , Ri), and add v to Ri.
At the end of step 2, we obtain a fully reduced function T ′

i that is an Mi-representative of
Ti. Moreover, the set Ri of reduced vertices has only increased in size compared to the set
we obtained in step 1. We apply Lemma 12 at most |Xi| times in the second step.
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We eventually compute T ′
n−1 that is an Mn−1-representative of Tn−1 with a fully reduced

set Rn−1. We output∑
y∈col(Yn−1)

∑
x∈col(Xn−1)

T ′
n−1[x]Mn−1[x, y].

Since T ′
n−1 is an Mn−1-representative of Tn−1, this gives the number of list colorings of

G modulo p. We may compute the expression above efficiently by reducing the second
summation to the colorings in

S ′
n−1 = {c ∈ col(Xn−1) : c(r) ̸= q for all r ∈ Rn−1}.

The total running time is now bounded by

C
n−1∑
i=1

|Xi|(q − 1)|Ri|q|Xi|−|Ri|

for some constant C > 0. By Lemma 13, |Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1 for all i ∈ [n − 1].
For q ≥ 3, q1/2 < q − 1 and so

(q − 1)|Ri|q|Xi|−|Ri| ≤ q(q − 1)|Ri|(q1/2)ctw−|Ri| < q(q − 1)ctw.

This shows the total running time is of order (q − 1)ctwnO(1). This finishes the proof of
Theorem 8.

4 Lower bounds

There exists an efficient reduction from SAT to the problem #pSAT of counting the number
of satisfying assignments for a given boolean formula modulo p [5]. There also exists a
reduction from SAT to CSP(q, r), which preserves the number of solutions [12]. Putting
these two together gives a reduction from SAT to #pCSP(q, r).

In this section we give a reduction from #pSAT to #pList q-Coloring, the problem of
counting the number of valid list q-colorings of a given graph G with color lists (Lv)v∈V (G).
We use this to conclude the lower bounds of Theorem 1 and Theorem 2.

4.1 Controlling the number of extensions modulo p

Our main gadget can be attached to a given set of vertices, and has the property that for
each precoloring of the “glued on” vertices, there is a specified number of extensions. This is
made precise in the result below.

▶ Theorem 14. Let k ∈ N and f : [q]k → N. There exist a graph Gf , a set of vertices
B = {b1, . . . , bk} ⊆ V (Gf ) of size k and lists (Lv)v∈V (Gf ), such that for any α ∈ [q]k, there
are exactly f(α) list q-colorings c of Gf with c(bi) = α(i) for all i ∈ [k]. Additionally,
|V (Gf )| ≤ 20kqk+1 max(f) and Gf has cutwidth at most 6kqk+2.

The proof is given in Appendix B.

4.2 Reduction for counting q-colorings modulo p

In this section we prove the following result.
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▶ Theorem 15. Let p be a prime and let q ∈ N such that p does not divide q − 1. Assuming
SETH, there is no ε > 0 for which there exists an algorithm that counts the number of list
q-colorings modulo p for a given n-vertex graph, with a given cut decomposition of width ctw,
in time (q − ε)ctwnO(1).

Suppose now that p divides q − 1. Let q′ = q − 1. Then p does not divide q′ − 1 = q − 2
and so the result above applies. Noting that any algorithm for #List q-Coloring also
works for #List q′-Coloring, we find the following corollary.

▶ Corollary 16. Let p be a prime and let q ∈ N such that p divides q − 1. Assuming SETH,
there is no ε > 0 for which there exists an algorithm that counts the number of list q-colorings
modulo p for a given n-vertex graph, with a given cut decomposition of width ctw, in time
(q − 1 − ε)ctwnO(1).

Combining the two results above with Theorem 8 gives Theorem 1.
We use the notion of constraint satisfaction problems (CSP). Informally, a CSP asks if

there is an assignment of values from a given domain to a set of variables such that they
satisfy a given set of relations. We denote by CSP(q, r) the CSP with domain [q] and
constraints of arity at most r. We use #CSP(q, r) to denote the problem of counting the
number of solutions of a given instance of CSP(q, r). We use the following result from [12].

▶ Theorem 17 ([12], Theorem 2.5). For each prime p, for every integer q ≥ 2 and ε > 0
there is an integer r, such that the following holds. Unless the SETH fails, #pCSP(q, r) with
n variables and m constraints cannot be solved in time (q − ε)n(n + m)O(1).

This theorem follows from the proof of [12, Theorem 2.5], since their reduction preserves the
number of solutions.

Proof of Theorem 15. Let q ∈ N and let p be a prime that does not divide q − 1. Fix ϵ > 0
and let r be given from Theorem 17. We will reduce a given instance of #pCSP(q, r) with
constraints C1, . . . , Cm and variables x1, . . . , xn to an instance (G, L) of #pList q-Coloring
on Op,r,q(nm) vertices of cutwidth n + Op,r,q(1).

The graph G contains 2m columns with n vertices: for each constraint Cj , and for each
variable xi, we create two vertices si,j and ti,j (where j ∈ [m] and i ∈ [n]), which all get
{1, . . . , q} as list. For all j ∈ [m − 1], we place an edge between ti,j and si,j+1.

The color assigned to si,1 will be interpreted as the value assigned to variable xi. Fix
j ∈ [m]. We create gadgets on some vertex set Vj using Theorem 14, that are “glued” on
subsets of vertices from Cj = {si,j , ti,j : i ∈ [n]}.
1. For each i ∈ [n], if j < m, we create a gadget on boundary set {si,j , ti,j} which ensures

that we may restrict to counting list colorings c of (G, L) with c(si,j) = c(si,j+1).
2. There is a gadget on a boundary set of size at most r (the si,j corresponding to the

variables involved in the jth constraint), for which the number of extensions of any
coloring of the boundary to this gadget is equivalent to 0 modulo p whenever the jth
constraint is not satisfied, and equal to one otherwise.

A broad overview of the construction is depicted in Figure 2.
For the first property, we need the fact that p does not divide q − 1: this ensures that

the color compatibility matrix of a single edge is invertible, which will allow us to “transfer
all information about the colors”. The precise construction of the gadgets is deferred to
Appendix B.

We obtain a cutwidth decomposition of the graph by first running over the vertices in
the order

C1 ∪ V1, C2 ∪ V2, . . . , Cm ∪ Vm.
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C1

V1

C2

V2

C3

V3

Figure 2 A sketch overview of the construction is given on the left-hand side and a more detailed
view of two of the columns is given on the right-hand side. The red areas ensure the preservation
of information, as described in point 1. The blue area checks whether the clause is satisfied, as
described in point 2.

Within Cj ∪ Vj , we first list s1,j , t1,j and the vertices in the gadget that has those vertices as
boundary set, and then repeat this for s2,j , t2,j , etcetera. Finally, we run over the vertices in
the gadget that verifies the jth constraint. At each point, the cutwidth is bounded by n plus
a constant (that may depend on p, q and r). ◀

4.3 Corollaries
We now extend the lower bound of Theorem 15 to counting connected edge sets via the
following problem.

▶ Definition 18. Given a graph G, two q-colorings c and c′ are equivalent if there is some
permutation π : [q] → [q] such that c = π ◦ c′. We will refer to these equivalence classes as
essentially distinct q-colorings and denote the problem of counting the number of essentially
distinct q-colorings modulo a prime p by #pEssentially distinct q-coloring.

A simple reduction now gives us the following lower bound for #pEssentially distinct
q-coloring.

▶ Corollary 19. Let p be a prime and q ∈ N an integer such that p does not divide q − 1.
Assuming SETH, there is no ϵ > 0 for which there exists an algorithm that counts the number
of essentially distinct q-colorings mod p for a given n-vertex graph that is not (q −1)-colorable,
with a given cut decomposition of cutwidth ctw, in time (q − ϵ)ctwnO(1).

Proof. Let (G, L) be an instance of list coloring with cut decomposition v1, . . . , vn. We
construct an instance of #pEssentially distinct q-coloring. The graph G′ has vertex set

V (G′) = V (G) ∪ {ui
c : c ∈ [q], i ∈ [n]}.

We add edges such that the vertices {ui
c : c ∈ [q]} induce a q-clique for all i ∈ [n], and for

i ∈ [n − 1] we add the edges ui
cui+1

c′ for all c ̸= c′. This ensures that, if u1
c is colored c, then

ui
c is colored c for all i ∈ [n]. We now also add edges ui

cui for all c ̸∈ Lvi
. Our new cut

decomposition is

v1, u1
1, . . . , u1

q, v2, u2
1, . . . , un−1

q , vn, un
1 , . . . , un

q .

Note that ctw(G′) ≤ ctw(G)+q2, |V (G′)| ≤ (q+1)|V (G)| and that G′ is not (q−1)-colorable.
By Theorem 1, it suffices to show that the number of essentially distinct q-colorings of G′

equals the number of list q-colorings of (G, L). We will do this by defining a bijective map.



C. Groenland, I. Mannens, J. Nederlof, and K. Szilágyi 36:13

G

G′ \ G

v1

u1
1

u1
2 u1

3

v2

u2
1

u2
2 u2

3

v3

u3
1

u3
2 u3

3

Figure 3 Example of the construction on (a part of) a graph G, with the cliques indicated in red.
In this case q = 3 and we have Lv1 = {3}, Lv2 = {2, 3} and Lv3 = {2}.

Let α be a list coloring of (G, L). Then we can color G′ by setting α′(v) = α(v) for
v ∈ V (G) and α′(ui

c) = c for c ∈ [q] and i ∈ [n]. This gives us a mapping γ : α 7→ α′, where
α′ is the equivalence class of α′. We find an inverse map by first fixing a representative α′

for α′, such that α′(u1
c) = c for c ∈ [q]. We can do this since G′[{u1

1, . . . , u1
q}] is a clique and

thus each u1
c must get a unique color. Also note that since every color is now used, the rest

of the coloring is also fixed and thus we find a unique representative this way. We now map
c′ to c′|V (G). Note that these two maps are well defined and compose to the identity map.
We conclude that the number of list colorings of (G, L) is equal to the number of essentially
distinct colorings of G′. ◀

To achieve the lower bound in Theorem 2, we use an existing argument from [1] to extend
this bound to #pConnected Edge Sets. For this we will need the following definition.

▶ Definition 20. The k-stretch of a graph G is the graph obtained from G by replacing each
edge with a path of length k. We denote the k-stretch of G by kG.

Note that kG has the same cutwidth as G.
We now show that, assuming SETH, there is no ϵ > 0 for which there exists an algorithm

that counts the number of spanning connected edge sets mod p of n-vertex graphs of cutwidth
at most ctw in time O((p − ϵ)ctwnO(1)).

Proof. This proof closely follows a reduction from Annan [1], using ideas from Jaeger,
Vertigan and Welsh [17].

Let G be any graph with cutwidth ctw and let p be a prime. Note that the number of
spanning connected edgesets of G is equal to the value of T (G; 1, 2), the Tutte polynomial of
G at the point (1, 2). The following formula is found in ([17], proof of Theorem 2)

T (kG; a, b) = (1 + a + · · · + ak−1)n−r(G)T

(
G; ak,

b + a + · · · + ak−1

1 + a + · · · + ak−1

)
.

Choosing a = 1, b = 2 and k = p − 1, gives

T (p−1G; 1, 2) = (p − 1)n−r(G)T

(
G; 1,

2 + p − 2
p − 1

)
≡p (−1)n−r(G)T (G; 1 − p, 0).

Here we use the fact that for any multivariate polynomial P (x, y) ≡p P (x + tp, y + sp) for
any s, t ∈ Z. We find that, since the k-stretch of a graph G has the same cutwidth as G, an
algorithm that counts the number of spanning connected edgesets (mod p) on a graph with
bounded cutwidth, also gives the Tutte polynomial at (1 − p, 0) mod p.
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Using another well known interpretation of the Tutte polynomial [23] we can relate the
T (G; 1 − p, 0) to the chromatic polynomial P (G; p) as follows:

P (G; p) = (−1)r(G)pk(G)T (G; 1 − p, 0).

Note that we may assume that the number of connected components k(G) = 1 (and thus
r(G) = n − 1), since the number of spanning connected edgesets is trivially 0 if G has more
than one component. We want to get rid of the remaining factor of p (since we will work
mod p). To do this we will count the number of essentially distinct colorings (different up to
color-permutations) using exactly p colors instead. This will turn out to be at least as hard
as counting all colorings.

Let G be a graph that is not (p − 1)-colorable. With this assumption, the number of p

colorings of G is p! times the number Cp(G) of essentially distinct p-colorings of G, since any
coloring uses all colors and thus can be mapped to p! equivalent colorings by permuting the
colors. So

(−1)n−1pT (G, 1 − p, 0) = P (G; p) = p(p − 1)!Cp(G),

which holds over the real numbers hence we may divide both sides by p. By Wilson’s Theorem
(p − 1)! ≡p −1, so we find

(−1)n−1T (G, 1 − p, 0) ≡p −Cp(G).

Hence we can use the number of spanning connected edgesets (mod p) of the (p − 1)-stretch
of G to find the Tutte polynomial at (1 − p, 0) mod p and then also the number of essentially
distinct colorings. The lower bound of Theorem 2 now follows from Corollary 19 (with q = p).
The upper bound is proved in the full version of our paper [15]. ◀

5 Conclusion

In this paper we give tight lower and upper bounds for counting the number of (list) q-colorings
and connected spanning edge sets of graphs with a given cutwidth decomposition of small
cutwidth. Our results specifically relate to list q-coloring and essentially distinct q-coloring,
but they can easily be extended to normal q-coloring for certain cases. In particular, if q < p,
we may apply Corollary 19, since in the setting of the corollary, the values differ by q! which
is nonzero modulo p. If the chromatic number χ(G) ≥ p, then the number of q-colorings is
trivially 0 mod p, since the number of q-colorings is a multiple of χ(G). This leaves us with
the rather specific case of χ(G) < p ≤ q, for which the exact complexity remains unresolved.

Our results on the modular counting of colorings show that the modulus can influence the
complexity in interesting ways, and that in some cases this effect can be directly explained
by the rank of the compatibility matrix.

Our results leave several directions for further research:
What is the fine-grained complexity of evaluating other points of the Tutte polynomial
(modulo p)?
What is the complexity of counting homomorphisms to graphs different from complete
graphs, e.g. cycles or paths. Is it still determined by the rank of an associated compatibility
matrix?

Another question in the direction of fast decision problems is how small representative
sets we can get for the compatibility matrix of graphs other than complete bipartite graphs
(which is equivalent to the setting of [13, Theorem 1.2]) or matchings which has been studied
for the decision version in [18].
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A Proof of Lemma 12

Let H a bipartite graph with parts X, Y and associated color compatibility matrix M . Let
T : col(X) → Fp be a function with reduced vertices R ⊆ X and let vertex v ∈ X \ R

be a vertex of degree 1 in H. We need to find a function T ′ : col(X) → Fp with reduced
vertices R ∪ {v} that is M -representative of T . (And need to show this can be done in time
O((q − 1)|R|q|X|−|R|).)

We may restrict to colorings x that do not assign value q to any element of R. There are
at most (q − 1)|R|q|X\R| such colorings. We set

T ′[x] =

{
0, if x(v) = q,

T [x] − T [x′], where x′ is obtained from x by changing the value of v to q, otherwise.

This computation is done in time linear in the number of the colorings x we consider, so the
running time is in O((q − 1)|R|q|X\R|).

First we will show that T ′ is an M -representative of T . Let y ∈ col(Y ) be a coloring of
the right hand side of the bipartite graph H. We need to show that∑

x∈col(X)
x∼y

T [x] ≡p

∑
x∈col(X)

x∼y

T ′[x].

By definition,∑
x∈col(X)

x∼y

T ′[x] =
∑

x∈col(X)
x∼y

x(v)=q

0 +
∑

x∈col(X)
x∼y

x(v)̸=q

T [x] − T [x′].
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Thus it remains to show that∑
x∈col(X)

x∼y
x(v)̸=q

−T [x′] ≡p

∑
x∈col(X)

x∼y
x(v)=q

T [x].

Let x ∈ col(X) with x(v) = q. We show the equality by proving that the number of times
T [x] appears on the left hand side equals the number of times T [x] appears on the right
hand side, modulo p. Let w ∈ Y be the unique neighbor of the vertex v.

First assume that x ∼ y. Then y(w) ̸= q. If we adjust x to the coloring xi, which is
equal to x apart from assigning color i to v instead of q, then xi ∼ y if and only if i ̸= y(w).
Hence the term −T [x] appears q − 2 times on the left hand side, and T [x] appears once on
the right hand side. Since p divides q − 1, we find q − 2 ≡p −1 and hence both contributions
are equal modulo p.

If x ̸∼ y, then either x does not appear on both sides (because x|X\{v} is already
incompatible with y) or y(w) = q. If y(w) = q, then the term T [x] appears q − 1 ≡p 0 times
on the left hand side by a similar argument as the above, and does not appear on the right
hand side. This shows the claimed equality and finishes the proof.

B Proofs omitted from Section 4

B.1 Proof of Theorem 14
We first reduce the lists of each bi to {1, 2} using the following gadget.

▶ Lemma 21. Let q, k ∈ N and let a ∈ [q]. There is a graph G with b, b′ ∈ V (G) and color
lists Lv ⊆ [q] for v ∈ V (G), such that Lb = [q] and the following two properties hold:

for all cb ∈ [q], there is a unique list coloring c of G with c(b) = cb,
for all list colorings c of G, if c(b) = a, then c(b′) = 1 and if c(b) ̸= a then c(b′) = 2.

Proof. We first note that it is easy to “relabel colors”, as shown in the construction3 in
Figure 4. We can therefore first make a gadget for which b′ has color list {a, a′} for some

b′

{a, a′}

{a, 1}

{1, a′}

{2, a′}

b′′

{1, 2}

Figure 4 A gadget to “relabel colors”. It has two special vertices b′ and b′′, and lists are depicted
with sets. For any list coloring c of the depicted gadget, if c(b′) = a, then c(b′′) = 1 and if c(b′) = a′,
then c(b′′) = 2. In both cases, there is a unique way to color the remaining vertices.

a′ ̸= a, and then relabel a, a′ to 1, 2. By symmetry, we can therefore assume that a = 1 (or
simply replace 1 with a and 2 with a′ in the argument below). Let

V = {b, b′} ∪ {si : i = 2, . . . , q} ∪ {ti : i = 2, . . . , q}

and

3 If a = 1 or a′ = 2 we slightly change the construction by removing the top left or top right vertex
respectively.
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E = {sib : i = 2, . . . , q} ∪ {sib
′ : i = 2, . . . , q} ∪ {sitj : i, j = 2, . . . , q}.

Now let Lb = [q], Lb′ = {1, 2} and Lti
= Lsi

= {1, i} for i ∈ {2, . . . , q}. A depiction is given
in Figure 5.

b
{1, . . . , q}

s2{1, 2} sq {1, q}

t2{1, 2} tq {1, q}

b′

{1, 2}

. . .

. . .

Figure 5 The construction of the list coloring instance of the proof of Lemma 21.

If a list coloring c of G satisfies c(b) = 1, then c(si) = i and thus c(ti) = 1 for each
i ∈ {2, . . . , q}. In particular c(s2) = 2 and c(b′) = 1.

If cb ∈ {2, . . . , q}, then any list coloring c with c(b) = cb satisfies c(si) = 1 and c(ti) = i

for all i ∈ {2, . . . , q}, and so c(b′) = 2.
This proves that, starting with the color cb ∈ [q] for b, there is always a unique extension

to a list coloring of G, and this satisfies the property that vertex b′ receives color 1 if cb = 1,
and receives color 2 otherwise. ◀

We also make use of the following construction.

▶ Lemma 22. Let k, ℓ ∈ N. There is a graph G, a subset of vertices B = {b1, . . . , bk} ⊆ V

of size k, and color lists Lv for all v ∈ V (G) such that:
Lbi

= {1, 2} for all i ∈ {1, . . . , k},
there are exactly ℓ list colorings c of G with c(B) = {1},
for each partial coloring cB of B with cB(B) ̸= {1}, there is a unique extension of cB to
a list coloring of G.

Proof. We start with V = B and add a path4 w1, . . . , wℓ−1 with color lists

Lwi
=


{2, 3} if i ≡3 1,

{1, 3} if i ≡3 2,

{1, 2} if i ≡3 0,

and add edges biw1 for i = 1, . . . , k. A depiction is given in Figure 6.
If a list coloring c satisfies c(bi) = 2 for some i ∈ [k], then c(w1) = 3, c(w2) = 1, c(w3) = 2

etcetera. Hence there is a unique extension of any partial coloring of B that assigns color 2
somewhere.

If c(bi) = 1 for all i ∈ [k], then we have a choice for the color of w1. If c(w1) = 3 then we
get the same propagation as before, however if c(w1) = 2, then we have a choice for the color
of w2. Using a simple induction argument we find that the number of possible list colorings
with c(B) = 1 equals ℓ. ◀

4 When ℓ = 1, we add no vertices of the form wi and the statements of the lemma immediately follow.
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b1

{1, 2}

bk

{1, 2}

w1

{2, 3}

w2

{1, 3}

w3

{1, 2}

wℓ−1

{2, 3}

. . .

. . .

Figure 6 Construction in the proof of Lemma 22 when ℓ ≡3 2.

We are now ready to construct the main gadget.

Proof of Theorem 14. Let f ∈ [q]k. We create vertices b1, . . . , bk and give them all [q] as
list.

For each partial coloring α ∈ [q]k, we create a graph Gα that contains b1, . . . , bk in their
vertex set, but the graphs are on disjoint vertex sets otherwise (we “glue” the graphs on the
special vertices b1, . . . , bk). It suffices to show that we can find lists for the “private” vertices
of Gα such that the number of extensions of a coloring cB of B is 1 if cB(bi) ̸= α(i) for some
i ∈ [k], and f(α) otherwise. The resulting gadget will then have 1 · 1 · . . . · 1 · f(α) = f(α)
possible extensions for the precoloring α, as desired.

We now turn to constructing the gadget Gα for a fixed coloring α ∈ [q]k. We first reduce
to the case in which each bi has {1, 2} as list. Let i ∈ [k]. Using Lemma 21 with a = α(i), we
obtain a gadget Hb,b′ and identify the special vertex b with bi. For each α, we obtain a new
set of vertices b′

1, . . . , b′
k with lists {1, 2}. We then glue these onto the special vertices from a

gadget obtained by applying Lemma 22 with ℓ = f(α). If b1, . . . , bk are colored as specified
by α, then b′

1, . . . , b′
k all receive color 1 and Gα has f(α) possible extensions; however if

some bi receives the wrong color, the corresponding b′
i receives color 2 and there is a unique

extension to the rest of Gα.
It remains to show the bounds on the number of vertices and the cutwidth. We give the

very rough upperbound of 6kqk+2 on the cutwidth. The gadget from Lemma 21 has cutwidth
at most q2 + 6 (since this is an upper bound on the number of edges in that construction).
The gadgets from Lemma 22 have cutwidth at most k. A final cut decomposition can be
obtained by first enumerating the vertices in B, and then adding the cut decompositions of
each Gα, one after the other.

Finally the number of vertices of the graph is upper bounded by qk times the maximum
number of vertices of the graph Gα. The gadget of Lemma 21 has at most 2q + 6 vertices
and there are k of them, so they contribute at most 12kq vertices. The gadgets from Lemma
22 add at most f(α) vertices. In total,

|V (Gf )| ≤ 20kqk+1 max(f). ◀

B.2 Remaining details of the proof of Theorem 15
We first describe the gadgets for the “color transfer” (the first desired property). Let
j ∈ [m − 1] and i ∈ [n]. We will apply Theorem 14 to a function fi,j with boundary set
Bi,j = (si,j , ti,j) and max(fi,j) = p, resulting in a graph on Op,q(1) vertices. Let J1 be the
q × q coloring compatibility matrix of a single edge, and let J−1

1 denote its inverse over Fp
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(that is, J−1
1 J1 ≡p Iq, the q × q identity matrix). We “choose a representative” J̃1, which has

entries in {1, . . . , p} that are equivalent to those in J−1
1 modulo p. For c1, c2 ∈ [q] possible

colors for si,j and ti,j respectively, we set

fi,j(c1, c2) = J̃1[c1, c2].

Let Vi,j denote the vertices in the gadget obtained by applying Theorem 14 to (fi,j , Bi,j)
that are not in Bi,j . Let c1, c3 ∈ [q]. The number of list colorings c of the graph induced on
Bi,j ∪ Vi,j ∪ {si,j+1} with c(si,j) = c1 and c(si,j+1) = c3 is equal to∑

c2∈[q]

fi,j(c1, c2)J1[c2, c3] = (J̃1J1)[c1, c3],

since for any coloring c2 we have fi,j(c1, c2)J1[c2, c3] such colorings with c(ti,j) = c2, by
definition of fi, j and J1. Therefore, modulo p this number of extensions is equal to 1 if
c1 = c3 and 0 otherwise, as desired.

We now describe the gadgets that check the constraints. Let j ∈ [m] and let i1, . . . , iℓ

be given so that the jth constraint only depends on the variables xi1 , . . . , xiℓ
(where by

assumption ℓ ≤ r). We will apply Theorem 14 to a function gj with boundary set Bj =
(si1,j , . . . , siℓ,j) and max(gj) = p, resulting in a graph on Op,q,ℓ(1) = Op,q,r(1) vertices. We
set gj(c1, . . . , cℓ) to be equal to 1 if the assignment (c1, . . . , cℓ) to (xi1 , . . . , xiℓ

) satisfies the
jth constraint, and p otherwise. This ensures the second property described in the proof of
Theorem 15.
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1 Introduction

The problem of deciding whether an equation over an algebraic structure has a solution has
got quite deep attention both in mathematics and computer science. Let us only mention
two crucial examples:

10th Hilbert’s problem for Diophantine equations, i.e. equations over the ring of integers –
shown to be undecidable by Matiyasevich [24],
the problem Sat of satisfiability of Boolean formulas – shown to be NP-complete by
Cook [4].

In this paper we consider equations of the form tpx1, . . . , xnq “ spx1, . . . , xnq, where t and s
are polynomials over a fixed finite algebra A (i.e. a finite set A with finitely many operations),
i.e. terms with some of their variables already evaluated by elements of A. We are interested
in the complexity of the problem PolSatpAq, i.e. the problem of deciding whether an
equation (of two polynomials) over A has a solution in A.
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37:2 Satisfiability of Circuits and Equations over Finite Malcev Algebras

Recently, this problem for equations over finite groups and other finite algebraic structures
(like e.g. rings [10], semigroups [2, 21] or lattices [25]) attracted many researchers. For groups
the story began with the paper [7] of Goldmann and Russell where NP-completeness of
PolSat has been shown for nonsolvable groups and a polynomial time algorithm has been
created for nilpotent groups. However the gap between solvable and nilpotent groups remained
unfilled. More recently several examples of solvable but non-nilpotent groups with PolSat
tractable in polynomial time have been provided [12, 13, 11, 5]. Among such groups there
is the symmetric group S3 and the alternating group A4. Those two examples are of a
special interest, as after endowing them by additional operations definable in terms of group
multiplication the PolSat problem becomes NP-complete for such extensions. For the group
S3 this phenomenon has been first described in [8], while for A4 in [13]. The NP-hardness
for A4 has been obtained by extending this group by the binary commutator operation
rx, ys “ x´1y´1xy, which is heavily used in group theory.

The existence of such examples made the expectation of characterizing finite algebras with
PolSat solvable in polynomial time rather hopeless. For this reason our paper [18] modified
PolSat to make it independent of the choice of the basic operations in the algebra. This has
been done by interpreting the size of a term (or a polynomial) not as the size of the tree that
represent this term but as the size of a circuit computing it. One can easily see that the tree
(built up with group multiplication only) computing the n-ary term r. . . rrx1, x2s, x3s . . . xns

has exponential size, while there is a circuit of linear size computing this term. This small
change allows us to expand a finite algebra A by (finitely many) operations definable by
polynomials of A without actually changing the complexity. Thus by a circuit satisfiability
over an algebra A we mean the following problem

CSatpAq: given a circuit over A with two output gates g1,g2, is there an assignment
of values to the input gates x “ px1, . . . , xnq that gives the same output on g1,g2, i.e.
g1pxq “ g2pxq.

Note here that the characterizations given in [10, 25] show that the problems PolSat and
CSat are tractable for the same rings and lattices: namely the only tractable rings are the
nilpotent rings and the only tractable lattices are the distributive lattices.

The paper [18] shows that replacing polynomials by circuits representing those polynomials
allows us to attack the complexity of CSat in a more general setting than just for particular
algebraic structures like groups, rings or lattices. The setting considered there includes all of
the above structures and many more, i.e. algebras from the so-called congruence modular
varieties. Roughly speaking, most of the structures in classical abstract algebra (except
semigroups) are included.

In this paper we improve the result of [18] and generalize the result of [14] from groups
to more general algebraic structures. First, in both of those two improvements we restrict
ourselves to the so-called Malcev algebras, i.e. algebras having a ternary term dpx, y, zq
that satisfies dpx, x, yq “ y “ dpy, x, xq. Note that groups and in fact all algebras that are
extensions of groups (like rings or Boolean algebras) are Malcev, as the term dpx, y, zq “
xy´1z does the job. Also many generalizations of groups, like quasigroups or loops, are
Malcev. Next we refer to the monograph [6] where a commutator theory is developed in a
way that generalizes the commutator rH,Ks of normal subgroups H,K in the group theory
and the ideal multiplication I ¨ J in the ring theory. In general setting we use congruences
instead of normal subgroups or ideals. The book [6] shows how for two congruences α, β of
an algebra A define their commutator rα, βs and can serve as a reference source. With the
help of the commutator one can define notions of abelianess, solvability and nilpotency for
arbitrary algebras. First, for a congruence θ and i “ 1, 2, . . . we put
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θp0q “ θ θr0s “ θ

θpi`1q “ rθ, θpiqs θri`1s “ rθris, θriss.

Now, a congruence θ of A is called k-nilpotent [or k-solvable] if θpkq “ 0A [θrks “ 0A] and
the algebra A is nilpotent [solvable] if 1A is k-nilpotent [k-solvable] for some finite k. In
particular θ [or A] is Abelian if rθ, θs “ 0A [or r1A, 1As “ 0A]. In a similar way we can
define what it means for a congruence θ to be Abelian, nilpotent or solvable over a smaller
congruence α, by simply saying that an appropriate commutator power of θ is contained in
α. Finally we define θpωq “

Ş8

i“0 θ
piq, and note that since in a finite algebra the descending

chain θp0q ě θp1q ě θp2q ě . . . stabilizes the congruence θpωq is in fact one of the θpiq’s.
In our study of solvable Malcev algebra a series of congruences 0 “ ν0 ď ν1 ď . . . ď

νh´1 ď νh “ 1A in which νi is the largest nilpotent congruence over νi´1 will play a crucial
role. This series is called the nilpotent series (or sometimes the Fitting series in the group
theory), and we will use this teminology as well. We define the nilpotent (or Fitting)
rank nr pαq of a congruence α to be the smallest integer k for which there is a sequence of
congruences 0 “ α0 ď α1 ď . . . ď αk´1 ď αk “ α where each αi is nilpotent over αi´1. Note
here that νk is the largest congruence with nilpotent rank k, so that we have nr pαq ď k iff
α ď νk. By the same token any solvable congruence in a Malcev algebra has finite nilpotent
rank.

For a finite Malcev algebra A and a covering pair α ă β of congruences (i.e. without any
congruence between them) there are tools to describe the behaviour of A locally, depending
on whether β is Abelian over α. In the case it is not, tame congruence theory (as described
in [9]) tells us that A has a unary idempotent polynomial e (i.e. epepxqq “ epxq for all x P A)
with a two element range t0, 1u “ epAq so that the induced algebra A|t0,1u (i.e. the set
t0, 1u with all the polynomials of A that preserve that set) has Boolean operations ^,_,␣
definable by polynomials. As one can expect the presence of a Boolean behaviour results
in NP-hardness of CSatpAq (see the proof of Corollary 1.3 for details). If there is no local
Boolean behaviour in A, i.e. A behaves locally in the Abelian fashion, then A is solvable.
Thus our goal is to understand solvable algebras with tractable PolSat or even CSat.

In [18] it was shown that if a finite Malcev algebra A is not nilpotent then A has a
nonnilpotent quotient A1 with NP-complete CSatpA1q. Here we significantly improve that
result to be read as follows.

▶ Theorem 1.1. If a finite Malcev algebra A is not nilpotent then CSatpAq is NP-complete.

Unfortunately [18] does not provide a proof that nilpotency is already strong enough to
force tractability. In fact [16] describes examples of nilpotent Malcev algebras with CSat
outside P under the assumption of Exponential Time Hypothesis. On the other hand [18]
(and independently [22]) provides an argument that supernilpotent Malcev algebras have
tractable CSat. Due to [20], for algebras with finitely many basic operations this stronger
condition of supernilpotency simply means that an algebra is nilpotent and decomposes into a
direct product of algebras of prime power order. (Note here that due to Sylow’s results every
nilpotent group is already supernilpotent; the same is true for rings). Obviously the examples
from [16] are not supernilpotent. In fact they are rather far from being supernilpotent. The
very same paper [16] isolates a concept of supernilpotent rank, similar to the nilpotent rank,
with the help of supernilpotent congruences instead of nilpotent ones. Thus we say that the
supernilpotent rank of a congruence α is at most k (and write sr pαq ď k) if there is a sequence
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of congruences 0 “ α0 ď α1 ď . . . ď αk´1 ď αk “ α in which each αi is supernilpotent
over αi´1. (Note here that in [16] a congruence α with sr pαq ď k has been called k-step
supernilpotent.) Analogously as in the case of the nilpotent series pνkqk we can define the
supernilpotent series pσkqk in which σk is the largest congruence of supernilpotent rank k

(all that is needed to do that is to observe that the join of two supernilpotent congruences is
supernilpotent). We also have sr pαq ď k iff α ď σk. Moreover, since every supernilpotent
congruence is nilpotent, σk ď νk and nr pαq ď sr pαq. Note that the concepts of nilpotency
and supernilpotency coincide in groups so that nr pαq “ sr pαq for every congruence α of a
finite group. This however is not the case in general, as for nilpotent but not supernilpotent
algebra A we have nr pAq “ 1 ă sr pAq.

We have already noticed that the examples from [16] are not supernilpotent. Actually
their supernilpotent rank is at least 3. Very recently Kompatscher [23] applied the technique
from [16] to show that (under ETH) no finite nilpotent algebra with supernilpotent rank at
least 3 has tractable CSat (but note here that Kompatscher use the term Fitting rank, for
what we call here supernilpotent rank). However even sr pAq ď 2 does not suffice to have
tractable CSat (or ETH fails). Appropriate examples are created in [17].

The sequence of papers [16, 26, 14] explores the same idea to show that for a solvable group
G with nr pGq ě 3 the problem PolSatpGq is not tractable (if ETH holds). Actually [14]
combines some premature results from [16] and [26]. Here we leave the group realm and
use tame congruence theory (instead of well understood group techniques) to bound the
nilpotent rank of solvable algebras with tractable PolSat.

▶ Theorem 1.2. Let A be a finite solvable Malcev algebra with nilpotent rank h ě 3. Then
checking if an equation of length ℓ over A has a solution needs at least 2Ωplogh´1 ℓq steps, or
the Exponential Time Hypothesis fails.

Combining Theorem 1.2 with the possibility of eliminating nonabelian (and therefore
Boolean) local behaviour we will also get the following Corollary.

▶ Corollary 1.3. Let A be a finite Malcev algebra. If PolSatpAq P P then A is solvable and
nr pAq ď 2, or ETH fails.

We conclude the description of our results by noting that (under the Exponential Time
Hypothesis) nilpotent rank 2 does not put PolSat into P, as some dihedral groups described
in [17] show.

2 Proof of the Theorems

To prove the results formulated in the Introduction we need some preparation stated in two
Lemmas below. Their proofs are postponed to Section 3 as they make some (or sometimes
even quite heavy) use of the theory of commutator in congruence modular varieties (or the
modular commutator theory, for short) and the tame congruence theory described in [6] and
[9], respectively. This section however does not require the knowledge of these theories. All
we need to state our Lemmas is the concept of a join irreducible congruence i.e. a congruence
θ that cannot be represented as a join θ1 _ θ2 for θ1, θ2 ă θ. Such a congruence has a unique
subcover, which will be denoted by θ´. Moreover θ has to be principal, i.e. it is generated
by a single pair, say pa, bq. This last fact is to be denoted by θ “ Θpa, bq. For these and all
other basic algebraic concepts and notation we refer the reader to [3].
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▶ Lemma 2.1. Let A be a finite solvable Malcev algebra. Then for every join irreducible
congruence δ “ Θpe, aq with nr pδq ą nr pδ´q ą 0 there is another join irreducible congruence
δ‹ “ Θpe‹, a‹q with nr pδ‹q “ nr pδq ´ 1 and nr pδ‹q ą nr

`

δ‹´
˘

, and for each integer n there is
an n-ary polynomial andnpx1, . . . , xnq such that for x1, . . . , xn P te, au we have

andnpx1, . . . , xnq “

"

a‹, if x1 “ . . . “ xn “ a,

e‹, otherwise.

The polynomial andn can be constructed in a time bounded by 2Opnq while the circuit that
computes andn can be constructed in a linear time Opnq.

▶ Lemma 2.2. In a finite solvable Malcev algebra A with nilpotent rank h ě 2 there are:
a join irreducible congruence δh´1 “ Θpeh´1, ah´1q with h´ 1 “ nr

`

δh´1˘ ą nr
`

δh´1
´

˘

“

h´ 2,
a partition of A into two nonempty disjoint subsets A “ AK YAJ,

such that for any 3-CNF-formula Φ with m clauses there exists a 3m-ary polynomial satΦ of
A with range contained in teh´1, ah´1u and such that for z1

1 , z
1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 P tJ,Ku

and x1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 P A with xj

i P Azj
i

we have

Φpz1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 q “ J iff satΦpx

1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ ah´1.

The polynomial satΦ can be constructed (from the formula Φ) in time bounded by 2Opmq while
the circuit that computes satΦ can be constructed in linear time Opmq.

Now we are ready to prove our results stated in the Introduction.

Proof of Theorem 1.2. We are going to translate a 3-CNF formula Φ with m clauses into
an equation of length 2Opm1{ph´1q

q (and with the very same time needed for this translation)
such that the formula Φ is satisfiable iff the corresponding equation has a solution. This,
according to ETH (together with the Sparsification Lemma) shows that the time needed to
check if an equation of length ℓ has a solution is at least 2Ωplogh´1 ℓq. For if not, a PolSatpAq
algorithm working in 2oplogh´1 ℓq time would solve 3-CNF-SAT in 2opmq, contrary to ETH.

Without loss of generality we assume that m “ kh´1. We will produce a 3m-ary
polynomial ΦSat represented by a tree having:

exactly h levels,
3m leaves, all of them on the level h,
m{k “ kh´2 nodes on level h´ 1, each of which labeled by 3k-ary polynomial of the form
sat provided by Lemma 2.2,
m{kh´l “ kl´1 nodes at the l-th level (for l “ h´ 2, ..., 1), each of which labeled by k-ary
polynomial of the form andk supplied by Lemma 2.1.

To do that we start with a 3-CNF formula Φ with m “ kh´1 clauses and group them into m{k
groups each of which containing exactly k clauses. Thus Φ can be represented as

Źm{k
j“1 Φj ,

with Φj being a conjunction of k clauses in the j-th group. Now, with the help of Lemma
2.2 we produce:

the partition A “ AJ YAK,
the join irreducible congruence δh´1 with nr

`

δh´1˘ “ h´ 1 “ 1` nr
`

δh´1
´

˘

,
the elements eh´1, ah´1 with δh´1 “ Θpeh´1, ah´1q,
and for each Φj a corresponding 3k-ary polynomial satΦj

with the property described by
the Lemma 2.2.

Next we go down with l “ h ´ 1, ..., 2 to use Lemma 2.1 and for δl “ Θpel, alq satisfying
nr

`

δl
˘

“ l we produce
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the congruence δl´1 “ Θpel´1, al´1q with nr
`

δl´1˘ “ l ´ 1 by putting δl´1 “
`

δl
˘˚,

el´1 “ e˚l and al´1 “ a˚l ,
the k-ary polynomial andl´1

k with the range tel´1, al´1u, so that

andl´1
k px1, . . . , xkq “

"

al´1, if x1 “ . . . “ xk “ al,

el´1, otherwise,

whenever x1, . . . , xk P tel, alu.
To get the polynomial ΦSat we first compute satΦ1pxq, . . . , satΦm{k

pxq. Note that in fact
in each of the satΦj

pxq’s at most 3k variables (from x) may occur, as the zj
i ’s in different

clauses do not have to be different. Next, to pass from level l “ h ´ 1, . . . , 2 to l ´ 1 we
group kl´1 values into kl´2 groups, each of which having k elements and apply the k-ary
polynomial andl´1

k to each of these groups to get kl´2 values on level l ´ 1. Note that, due
the properties of the ranges of the satΦj

’s and of the andl
k’s, the only values that may occur

at the l-th level (with l “ h´ 1, . . . , 1) are el and al. Moreover the value al occurs only if
the conjunction of kh´l clauses that were used to compute this value is properly evaluated
(to be satisfied). In particular arriving at level 1 we get one of the values e1 or a1 so that the
resulting 3m-ary polynomial ΦSatpx1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q satisfies

Φpz1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 q “ J iff ΦSatpx1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ a1,

whenever z1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 P tJ,Ku and x1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 P A are such that

xj
i P Azj

i
. This means that the equation ΦSatpx1

1, x
1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ a1 has a solution

iff the formula Φ is satisfiable.

To conclude the proof we observe that Lemmas 2.1 and 2.2 guarantee that the polynomials
of the form satΦj and andl

k have their size bounded by 2Opkq and in fact they can be
constructed in the very same amount of steps. Thus composing them to get ΦSat we need
roughly

`

2Opkq
˘h
“ 2Opm1{ph´1q

q steps, as promised. ◀

Proof of Corollary 1.3. As we have already mentioned in the Introduction a finite Malcev
algebra admits only two kinds of a local behaviour. One of them is Boolean (or type 3 in the
sense of tame congruence theory [9]). Modifying our argument used in Section 5 of [18] we
show that the presence of type 3 leads to NP-completeness. Indeed, in this case the algebra
has:

two elements, say 0, 1,
an idempotent unary polynomial e01pxq with range t0, 1u,
two binary polynomials ^,_ and a unary polynomial ␣ that act on the set t0, 1u like
Boolean operation, i.e. meet, join and negation, respectively.

Let c be a constant bounding the sizes of all these four polynomials.
The presence of these polynomials allows us to translate each 3-CNF-SAT instance

Φ ”
Źm

i“1 ℓ
i
1 _ ℓ

i
2 _ ℓ

i
3, where ℓi

j P

!

zj
i ,␣z

j
i

)

, into the equation of the algebra A

m
ľ

j“1
δj

1e01px
j
1q _ δ

j
2e01px

j
2q _ δ

j
3e01px

j
3q “ 1, (1)

where

δi
je01px

j
i q “

#

e01px
j
i q, if the literal ℓi

j is the variable, i.e., ℓi
j “ zj

i ,

␣e01px
j
i q, if ℓi

j is the negated variable, i.e., ℓi
j “ ␣z

j
i .
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It should be obvious that the formula Φ is satisfiable if and only if the equation (1) has
a solution. However we need to take care of the size of this equation. But this can be
secured by representing the m-ary conjunction in (1) in a balanced form, i.e. by a complete
binary tree. This ensures us that the size of our equation is bounded by Opclog mq, i.e. by
a polynomial in m. This shows that in the presence of local Boolean behaviour in A the
problem PolSatpAq is NP-complete, so that in view of ETH it cannot be in P.

Now we may assume that there is no local Boolean behaviour in A, or in other words
that the algebra A is solvable. In this case we simply refer to Theorem 1.2 to conclude that
PolSatpAq P P implies nr pAq ď 2, as claimed. ◀

By using the circuits constructed in Lemma 2.1 we can easily derive Theorem 1.1.

Proof of Theorem 1.1. The first part of the proof of Corollary 1.3 shows that the presence
of Boolean local behaviour leads to NP-completeness of PolSatpAq and therefore also of
CSatpAq. Thus we may assume that A is solvable. In this case Lemma 2.2 supplies us with
an element ah´1 P A so that each 3-CNF formula Φ can be turned, in a polynomial time,
into a corresponding circuit satΦ such that the equation satΦpxq “ ah´1 has a solution iff Φ
is satisfiable.

This reduction obviously shows NP-completeness of CSatpAq. ◀

3 Proofs of the Lemmas

For the proofs of Lemmas 2.1 and 2.2 we need an auxiliary Lemma. It uses the concept of
the centralizer pα : βq, that is the largest congruence θ satisfying rθ, βs ď α.

▶ Lemma 3.1. Let A be a finite solvable Malcev algebra and α ă β be a covering pair of its
congruences such that nr pβq ą nr pαq ą 0. Then there is a join irreducible congruence γ with
nr pγq “ nr pαq and α ď pγ´ : γq but β ę pγ´ : γq.

Moreover for any pair pe1, a1q P γ ´ γ´ and pe, aq R pγ´ : γq there is a binary polynomial
seapx, yq of A, satisfying

seape
1, yq “ e1, for all y P A,

seapa
1, eq

γ´

” e1, (2)
seapa

1, aq “ a1.

Proof. Let k “ nr pβq ą nr pαq “ k ´ 1, i.e. β ę νk´1 ě α. Since nr
`

βpωq
˘

“ nr pβq ´ 1 we
know that βpωq ę νk´2 so there is a congruence φ such that βpωq X νk´2 ď φ ă βpωq. Put
ρ0 “ βpωq and ρi`1 “ rρi, αs and observe that ρi ď αpiq whenever i ě 1. Since αpωq “ αpjq

holds for some j, we have ρj ď αpjq “ αpωq ď βpωq X νk´2 ď φ. As ρ0 “ βpωq ę φ then
the minimal integer ℓ for which ρℓ ď φ is at least 1. Thus ρℓ´1 _ φ “ βpωq so that in
fact ρ1 “

“

βpωq, α
‰

“ rρℓ´1 _ φ, αs “ rρℓ´1, αs _ rφ, αs “ ρℓ _ rφ, αs ď φ. This shows
α ď

`

φ : βpωq
˘

. Obviously β ę
`

φ : βpωq
˘

as
“

βpωq, β
‰

“ βpωq ę φ. Now we pick a minimal
congruence γ below βpωq but not below φ. Obviously γ is join irreducible and the covering
pair φ ă βpωq transposes down to γ´ ă γ where γ´ is the unique subcover of γ. Consequently
pγ´ : γq “

`

φ : βpωq
˘

, i. e. γ has the properties described in the Lemma. To calculate
nr pγq note first that γ ď βpωq ď νk´1 so that nr pγq ď k ´ 1. But nr pγq ď k ´ 2 would give
γ ď νk´2 X β

pωq ď φ, contrary to our choice of γ.
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For the second part of the Lemma we fix any pair pe1, a1q P γ´ γ´. Due to the join irredu-
cibility of γ we know that γ “ Θpe1, a1q. Now if pe, aq R pγ´ : γq then rΘpe, aq,Θpe1, a1qs ę γ´
so that Exercise 6.6 in [6] supplies us with a binary polynomial spx, yq of A such that

spe1, eq
γ´

” spa1, eq,

spe1, aq
γ´

ı spa1, aq.

The very last line gives Θpspe1, aq, spa1, aqq “ γ Q pe1, a1q and therefore there is a unary
polynomial p of A that takes the pair pspe1, aq, spa1, aqq to pe1, a1q. Using Malcev polynomial
d we modify spx, yq to a new polynomial seapx, yq “ dppspx, yq,pspe1, yq, e1q for which it
should be easy to check that

seape
1, yq “ dppspe1, yq,pspe1, yq, e1q “ e1,

seapa
1, eq “ dppspa1, eq,pspe1, eq, e1q

γ´

” dppspe1, eq,pspe1, eq, e1q “ e1,

seapa
1, aq “ dppspa1, aq,pspe1, aq, e1q “ dpa1, e1, e1q “ a1,

so that all three conditions of (2) hold. ◀

With the help of Lemma 3.1 we are ready to prove Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We start our proof by referring to Lemma 3.1 with pα, βq “ pδ´, δq
to get a join irreducible congruence γ with δ ę pγ´ : γq ě δ´. We fix a pγ´, γq-minimal
set V of A and a pair pe1, a1q P γ|V ´ γ´. On the other hand δ “ Θpe, aq ensures us that
pe, aq R pγ´ : γq so that Lemma 3.1 supplies us with a polynomial seapx, yq satisfying (2). Our
first goal is to consecutively modify this polynomial sea to force the middle line in the display
(2) to be the real equality instead of

γ´

” . First we replace seapx, yq with eV seapeV pxq, yq, where
eV is a unary idempotent polynomial of A with range V . This new seapx, yq not only satisfies
(2) but also has its range contained in V and for any fixed y we have seapA, yq “ seapV, yq.

Now, note that the first two lines of (2) tell us that the unary polynomial s0pxq “ seapx, eq

does not permute V and consequently s0pAq “ s0pV q Ł V . Note also that for all φ ă ψ ď γ

we have s0pψq Ď φ, as otherwise the range of s0 would contain an pφ,ψq-minimal set properly
contained in V . This however (in view of Lemma 4.30 of [9]) cannot happen as V is a
minimal set of type 2. Now if a maximal chain of congruences strictly below γ has exactly l
congruences then by replacing the polynomial seapx, yq with seap. . . seapseapx, yq, yq . . . , yq,
where the iteration in the variable x is done l times, we keep the first and the third line of
(2) to be true, while the middle one can be replaced by the equality. Thus we end up with a
new polynomial seapx, yq satisfying

seape
1, yq “ e1, for all y P A,

seapa
1, eq “ e1, (3)

seapa
1, aq “ a1.

Now the n-ary polynomial and0
npx1, . . . , xnq “ seap. . . seapseapa

1, x1q, x2q . . . , xnq satisfies

and0
npx1, . . . , xnq “

"

a1, if x1 “ . . . “ xn “ a,

e1, otherwise, (4)

whenever x1, . . . , xn P te, au.
To conclude our argument note that γ ę νnrpδ´q´1 and then simply pick a minimal

congruence δ‹ below γ but not below νnrpδ´q´1. Obviously δ‹ is join irreducible (with the
unique subcover δ‹´) so that it is principal, say δ‹ “ Θpe‹, a‹q. Also, by minimality we have
nr pδ‹q “ nr pδ´q and nr

`

δ‹´
˘

“ nr pδ´q ´ 1.
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Finally pe‹, a‹q P δ‹ Ď γ “ Θpe1, a1q, so that there is a unary polynomial p of A
that maps e1 onto e‹ and a1 onto a‹. By (4) it should be clear that the polynomial
andnpx1, . . . , xnq “ ppand0

npx1, . . . , xnqq does the job described in the Lemma.
To bound the length of the polynomial andn and the size of the circuits that compute

andn, first note that the polynomial sea can be realized by a circuit of a constant size
(independent of n). Thus the entire circuit computing and0

n, and therefore of andn, can
be constructed in a linear time Opnq. On the other hand unwinding this circuit to the tree
(corresponding to the polynomial andn) enlarges the size exponentially and requires at most
exponential time 2Opnq. ◀

The proof of Lemma 2.2 is slightly more involved.

Proof of Lemma 2.2. We start with observing that νh´1 ă 1A so that we can pick a cover
β ą νh´1. This together with α set to νh´1 allows us to use Lemma 3.1 to produce a join
irreducible congruence γ with νh´1 ď pγ´ : γq ğ β. In particular we know that pγ´ : γq ‰ 1A.

By Lemma 3.1 we know that nr pγq “ nr pνh´1q “ h ´ 1 so that γ ę νh´2 and we can
pick δh´1 to be a minimal congruence below γ but not below νh´2. Obviously δh´1 is join
irreducible so that it is a principal congruence, say δh´1 “ Θpeh´1, ah´1q. By the very same
token we know that γ is principal, but here we need to choose its generating pair more
carefully. First we fix a pγ´, γq-minimal set V and then a pair pe1, a1q P γ|V ´ γ´ to have
γ “ Θpe1, a1q. The pγ´, γq-trace of V containing both e1 and a1 is denoted by N . We know
that the induced algebra pA|N q {γ´ is polynomially equivalent to a (one dimensional) vector
space and we may assume that e1{γ´ is its zero element with respect to the vectors addition
` which has to be a polynomial of A. Since Θpeh´1, ah´1q “ δh´1 ď γ “ Θpe1, a1q we can
pick a unary polynomial p of A that maps e1 to eh´1 and a1 to ah´1. This polynomial is
going to be used at the end of the proof.

Now we put τ “ pγ´ : γq and choose a transversal td0, d1, . . . , dru of A{τ . If i ‰ j then
pdi, djq R pγ´ : γq and Lemma 3.1 gives us a binary polynomial sij “ sdi,dj

satisfying

sijpe
1, yq “ e1, for all y P A,

sijpa
1, diq

γ´

” e1, (5)
sijpa

1, djq “ a1.

As in the proof of Lemma 2.1 we replace sijpx, yq by eV sijpeV pxq, yq, where eV is the unary
idempotent polynomial of A with the range V . Obviously the properties in the display (5)
hold for this new sij , but this new polynomial has the range contained in V and for any
fixed y P A the mapping V Q v ÞÝÑ sijpv, yq P V is either a permutation of V or collapses
γ|V to γ´, i.e. it is constant modulo γ´ on γ|V -classes. Thus, iterating sijpv, yq in the first
variable a sufficient number of times, we can modify sij to additionally have that (for each
fixed y P A) the new polynomial sijpv, yq is either the identity map on V or it is constant
modulo γ´ on γ|V -classes. Actually, in the second case, i.e. if sijpv, yq collapses γ|V to γ´, it
collapses the entire trace N to sijpe

1, yq{γ´ “ e1{γ´. Summing up, we produced polynomials
sij satisfying

sijpe
1, yq “ e1, for each y P A,

sijpv, diq
γ´

” e1, for each v P N,

sijpv, djq “ v, for each v P V.
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Now, using the fact that rγ, τ s ď γ´ we can keep the above equalities modulo γ´ by varying
the second variable modulo τ :

sijpe
1, yq “ e1, for each y P A,

sijpv, yq
γ´

” e1, for each v P N and y P di{τ,

sijpv, yq
γ´

” v, for each v P V and y P dj{τ.

(6)

Now for each j “ 0, . . . , r define

sjpx, yq “ si1jp. . . sir´1jpsirjpx, yq, yq . . . , yq,

where tj, i1, . . . , iru “ t0, 1, . . . , ru. Obviously sj has the range contained in V and

sjpe
1, yq “ e1, for each y P A,

sjpv, yq
γ´

” e1, for each v P N and y P A´ dj{τ,

sjpv, yq
γ´

” v, for each v P V and y P dj{τ.

(7)

Indeed, the first and the last item follow directly from the definition of sj . To see the middle
one, note that for v P N and y P diℓ

{τ , defining v1 “ siℓ`1p. . . sir´1jpsirjpv, yq, yq . . . , yq we
have

v1
γ
” siℓ`1jp. . . sir´1jpsirjpe

1, yq, yq . . . , yq “ e1,

i.e. v1 P N so that siℓjpv
1, yq

γ´

” e1, and consequently

sjpv, yq “ si1jp. . . siℓ´1jpsiℓjpv
1, yq, yq . . . , yq

γ´

” si1jp. . . siℓ´1jpe
1, yq . . . , yq “ e1.

Recall that pA|N q{γ´ is polynomially equivalent to a vector space in which e1{γ´ serves as
a zero element, while the addition is defined by x ` y “ dpx, e1, yq and x ´ y “ dpx, y, e1q.
Obviously this addition does not behave so nice outside the trace N and before factoring out
by γ´ but since for v P N (and arbitrary y P A) the elements sjpv, yq are in A|N , it makes
sense to sum them up and define

sJpx, yq “
r
ÿ

j“1
sjpx, yq

(by associating the “summands” to the left) to observe that

sJpe1, yq “ e1, for each y P A,

sJpv, yq
γ´

” e1, for each v P N and y P d0{τ,

sJpv, yq
γ´

” v, for each v P N and y P A´ d0{τ.

(8)

To see (8) first note that in the sum defining sJ for v P N , at most one summand lies outside
of e1{γ´, namely sjpv, yq with j ‰ 0 for which y P dj{τ . This obviously gives the last two
lines in (8) as well as sJpe1, yq

γ´

” e1. To replace this by the equality note that due to the
first line in (7) all summands in sJpe1, yq are equal to e1 so that “summing” them up with
the help of Malcev polynomial d returns e1.

Now we put sKpx, yq “ s0px, yq and observe that for any fixed v P N both sJpv, yq and
sKpv, yq have their ranges contained in e1{γ´Yv{γ´. Moreover sJ and sK are complementary
in the sense that sJpv, yq ` sKpv, yq “ v. In fact they switch their values (between v and e1)
depending on whether y is in AK “ d0{τ or in its complement AJ “ A´AK “

Ťr
i“1 di{τ .
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Now, for ε “ pε1, ε2, ε3q P tJ,Ku
3 we define the polynomial

qsεpv, y1, y2, y3q “ sε3psε2psε1pv, y1q, y2q, y3q ` sε1pv, y1q ` sε2pv, y2q ` sε3pv, y3q

´ sε2psε1pv, y1q, y2q ´ sε3psε1pv, y1q, y3q ´ sε2psε3pv, y2q, y3q,

Using (7) and (8) one can calculate that

qsεpe
1, y1, y2, y3q “ e1,

qsεpv, y1, y2, y3q
γ´

” e1, if yi R Aεi
for i P t1, 2, 3u,

qsεpv, y1, y2, y3q
γ´

” v, if yi P Aεi
for some i,

(9)

due to the fact that, modulo γ´, each of the seven summands in qsεpv, y1, y2, y3q is either e1,
or v, or ´v.
Arguing like in the proof of Lemma 2.1, by going down from γ´ to 0 through a maximal
chain of congruences (and iterating qsε in the first variable), we improve (9) to get

qsεpe
1, y1, y2, y3q “ e1,

qsεpv, y1, y2, y3q “ e1, if yi R Aεi
for every i P t1, 2, 3u,

qsεpv, y1, y2, y3q “ v, if yi P Aεi for some i.
(10)

With the help of the polynomials qsε (which have been invented to code clauses) we can create
the polynomial satΦ for a given 3-CNF formula Φ ”

Źm
j“1 ℓ

j
1_ ℓ

j
2_ ℓ

j
3, where ℓj

i P

!

zj
i ,␣z

j
i

)

,
by first putting

εj
i “

#

J, if the literal ℓj
i is the variable, i.e., ℓj

i “ zj
i ,

K, if the literal ℓj
i is the negated variable, i.e., ℓj

i “ ␣z
j
i ,

then εj “ pεj
1, ε

j
2, ε

j
3q and finally

satΦpx
1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ ppqsεmp. . .qsε1pa1, x1

1, x
1
2, x

1
3q, . . . x

m
1 , x

m
2 , x

m
3 qq.

By (10) it should be clear that for any evaluation of the zj
i ’s in tJ,Ku and xj

i ’s in A so that
xj

i P Azj
i

we have

Φpz1
1 , z

1
2 , z

1
3 , . . . , z

m
1 , z

m
2 , z

m
3 q “ J iff satΦpx

1
1, x

1
2, x

1
3, . . . , x

m
1 , x

m
2 , x

m
3 q “ ah´1.

as required by the Lemma.

The complexity arguments simply repeat those from the proof of Lemma 2.1 to bound
the time needed to construct the polynomial satΦ by 2Opmq, while to construct the circuit
computing satΦ by Opmq. ◀

4 Conclusions and Open Problems

Since Theorem 1.1 that improves the result from [18], one can hope for a classification of
finite algebras from congruence modular varieties that have tractable CSat. Indeed, by [18,
Corollary 6.5], such an algebra has to decompose into a direct product Sˆ L of a solvable
algebra S and an algebra L that behaves pretty similarly to a lattice (at least locally). Now,
our Theorem 1.1 forces S to be nilpotent without actually assuming (like it has been done
in [18]) that CSat is tractable for all quotients of S. The paper [18] also enforces that
the algebra L has to behave not only like a lattice, but in fact like a distributive lattice,
provided CSat is tractable for all quotients of L. The natural problem is to eliminate this
strong assumption about quotients also from the L side, i.e. for algebras from congruence
distributive varieties. Thus, we are left with the following
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▶ Question 1. Does tractability of CSat for a finite algebra L from a congruence distributive
variety implies tractability of CSat for all quotients of L?

As we have already mentioned in the Introduction the classification of finite algebras with
tractable CSat is not fully done on the solvable side. Now, by Theorem 1.1, we know that
such an algebra S has to be nilpotent. Moreover, due to the work of Kompatscher [23], we
know that in fact sr pAq ď 2. Unfortunately this bound does not suffice to have tractable
CSatpSq, as it has been shown by some examples described in [17]. On the other hand
one cannot hope to strengthen this bound and force S to be supernilpotent (in which case
[18] gives a polynomial time algorithm for CSat). This in turn has been witnessed by our
examples provided in [15]. Thus we are left with the following

▶ Problem 2. Characterize finite nilpotent Malcev algebras of supernilpotent rank at most 2
with tractable CSat.

A very similar, and somehow connected, problem CEqvpAq of circuit equivalence has also
been considered in [18]. This time we ask if two circuits over A compute the same function.
In this case, if a finite algebra A is taken from a congruence modular variety then [18] shows
that tractability of CEqvpAq implies that A is solvable. Note that there is no lattice-like
part here, as the co-NP-completeness of CEqv even over the 2-element lattice eliminates
this part. Arguing like in the proof of Theorem 1.1 we can force nilpotency of algebras with
tractable CEqv. Again, Kompatscher [23] forces such algebras to have supernilpotent rank
bounded by 2. Suprisingly, here we do not have any single example of a nilpotent algebra A
with sr pAq “ 2 and intractable CEqvpAq. In fact among the examples in [17] of algebras
with sr pAq “ 2 but intractable CSatpAq there are 2-nilpotent algebras. However, [19] shows
that for 2-nilpotent algebras the problem CEqv is tractable. Therefore the answer to the
next Problem differs from the answer to Problem 2.

▶ Problem 3. Characterize finite nilpotent Malcev algebras of supernilpotent rank at most 2
with tractable CEqv.

In our opinion this difference in the complexity for CSat and CEqv may result in a search
for completely new techniques. Nevertheless, note that both CSat and CEqv behave the
same on supernilpotent algebras, as CEqv for such algebras has been shown to be tractable
in [1].

Now we switch to the problem PolSat. For a fixed algebra its complexity is not bigger
than this of CSat. However, as there are examples (e.g. the already mentioned groups
S3 or A4) where CSat is essentially harder. This is because using (in CSat) additional
polynomials we compress (in our opinion artificially inflated) the input of PolSat. For a
better understanding of this phenomenon among Malcev algebras first note that, due to
Theorem 1.2, PolSatpAq P P S CSatpAq may happen only if nr pAq ď 2. Among algebras
of nilpotent rank 1, i.e. among nilpotent algebras, all known cases (i.e. both tractable and
intractable examples, as well as some more general results, like for supernilpotent algebras)
enjoy the same complexity for both PolSat and CSat. This leads to the following:

▶ Question 4. Does there exist a finite nilpotent Malcev algebra with tractable PolSat and
intractable CSat?

A careful reading of the proof of Corollary 6.5 in [18] shows that the earlier described
decomposition A “ Sˆ L requires in fact a weaker assumption that only PolSatpAq (but
not necessarily CSat) is not NP-complete. Note that a positive answer to Question 1 can
possibly be carried out to PolSat. Thus we believe that the next question, similar to
Question 4, has a negative answer.



P. M. Idziak, P. Kawałek, and J. Krzaczkowski 37:13

▶ Question 5. Does there exist a finite algebra from a congruence distributive variety with
tractable PolSat and intractable CSat?

Summing up we expect that the following conjecture holds.

▶ Conjecture 6. The only examples of finite algebras (from a congruence modular variety)
that separate complexity of PolSat and CSat have to be solvable and of nilpotent rank 2.

When considering complexity of i.e. the polynomial equivalence problem, versus this of
CEqv we can repeat Questions 4 and Conjecture 6. An analogous modification of Question 5
is already answered, as both PolEqv and CEqv are co-NP-complete for nontrivial algebras
in this realm.
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Abstract
While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected
graphs, the role of intersection digraphs in algorithms is much less understood. We present several
contributions towards a better understanding of the algorithmic treatment of intersection digraphs.
First, we introduce natural classes of intersection digraphs that generalize several classes studied
in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which
capture many well-studied problems on digraphs such as (Independent) Dominating Set, Kernel,
and H-Homomorphism. Third, we give a new width measure of digraphs, bi-mim-width, and show
that the DLCV problems are polynomial-time solvable when we are provided a decomposition of
small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded
bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time
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1 Introduction

The computational intractability of graph problems is often dealt with by restricting the
input graph to be a member of some graph class and exploit the structural properties of
this class to design efficient algorithms. Intersection graph classes are an extensively studied
family of classes of undirected graphs where vertices are represented by sets with two vertices
being adjacent if and only if their corresponding sets intersect. For instance, a graph is
an interval graph if it is an intersection graph of intervals on a line. The literature on
algorithmic aspects of classes of intersection graphs is vast, and we refer to [13] for an
overview. Even though the concept of intersection digraphs has already been introduced
in the early 1980s [9], these classes of directed graphs have not received nearly as much
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38:2 Intersection Digraphs with Good Algorithmic Properties

attention in the algorithmic literature as their undirected counterparts. That is not to say
that they have not been considered before; for instance, interval digraphs [38], circular-arc
digraphs [39], and permutation digraphs [33] have been introduced quite early on.

Formally, a digraph G is an intersection digraph if there exists a family {(Sv, Tv) : v ∈
V (G)} of ordered pairs of sets such that there is an edge from v to w in G if and only if
Sv intersects Tw. Note that we add a loop on a vertex v if Sv and Tv intersect. Even for
interval digraphs, a natural starting point for the investigation of algorithmic properties
of intersection digraphs, no algorithmic applications are known besides a polynomial-time
recognition algorithm of the class [33]. One possible explanation for this is that the class of
interval digraphs appears to be much richer than their undirected counterparts. We observe
that interval digraphs contain, for each integer n, some orientation of the (n × n)-grid (see
Proposition 15); in contrast, interval graphs do not contain an induced subgraph isomorphic
to the 1-subdivision of the claw. This shows that the underlying undirected graphs of interval
digraphs are very different from interval graphs.

The case of interval digraphs suggests that further structural restrictions are necessary
to make classes of intersection digraphs amenable for algorithmic treatment. In this vein,
restrictions of interval digraphs have been considered in the literature [20, 35] with ap-
plications to digraph problems such as Independent Dominating Set, Kernel, and
List Homomorphism. A common feature of the restrictions considered in [20, 35] is that
the digraphs are reflexive, meaning that each vertex has a loop. Note that for a class of
intersection digraphs, reflexivity gives much more additional structure than just added loops.

In this work, we give a host of algorithmic applications of intersection digraph classes, in
the following manner:

We give new and more general classes of intersection digraphs, namely H-digraphs, rooted
directed path digraphs, and H-convex digraphs. (See the discussion below Theorem 3 for
definitions.)
We introduce directed analogues of the locally checkable vertex problems [43], which
include many well-studied digraph problems such as (Independent) Dominating Set,
Kernel, H-Homomorphism, and Oriented k-Coloring, see Tables 1 and 2.
We define a new width measure of digraphs, called bi-mim-width, and prove that the
directed locally checkable vertex problems can be solved in polynomial time when a
decomposition of bounded bi-mim-width of the input graph is given.
We prove that fairly general subclasses of these intersection digraph classes have bounded
bi-mim-width, see Figure 1.

Note in particular that the last item implies that given a representation of the input
digraph, all directed locally checkable problems are solvable in polynomial time on the classes
of intersection digraphs in question. For H-digraphs, we identify reflexivity as the additional
restriction that gives bounded bi-mim-width, and therefore algorithmic applications, while
we prove that the bi-mim-width is unbounded when we drop this requirement. Recently,
Francis, Hell, and Jacob [22] obtained polynomial-time algorithms for Kernel, Dominating
Set, and Absorbing Set on reflexive interval digraphs. Our results are more general in
two ways: we give algorithms for more problems, including the aforementioned ones (see
Tables 1 and 2), and on much broader digraph classes (see Figure 1). Naturally, the specific
algorithms presented in [22] are more efficient than the algorithm following from our general
framework. In the following, we discuss the above items in more detail.

Bi-mim-width. We introduce a new digraph width parameter, called bi-mim-width, which
is a directed analogue of the mim-width of an undirected graph introduced by Vatshelle [44].
Roughly speaking, the bi-mim-width of a digraph G is defined as a branch-width with a cut
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Table 1 Examples of (σ+, σ−, ρ+, ρ−)-sets, represented by finite or co-finite sets. For any row
there is an associated NP-complete problem, usually maximizing or minimizing the cardinality of
a set with the property. Some properties are known under different names; e.g. Efficient Total
Dominating sets are also called Efficient Open Dominating sets, and here even the existence of such
a set in a digraph G is NP-complete, as it corresponds to deciding if V (G) can be partitioned by
the open out-neighborhoods of some S ⊆ V (G). If rows A and B have their in-restrictions and
out-restrictions swapped for both σ and ρ (i.e. σ+ of row A equals σ− of row B and vice-versa, and
same for ρ+ and ρ−), then a row-A set in G is always a row-B set in the digraph with all arcs of G

reversed; this is the case for Dominating set vs in-Dominating set and for Kernel vs Independent
Dominating set.

σ+ σ− ρ+ ρ− Standard name

{0} {0} N \ {0} N Kernel [45]
{0, ..., k − 1} {0} {i : i ≥ l} N (k, l)-out Kernel [36]
N N N N \ {0} Dominating set [24]
{0} {0} N N \ {0} Independent Dominating set [16]
N N N \ {0} N In-Dominating set/Absorbing set [23]
N N N \ {0} N \ {0} Twin Dominating set [17]
N N N {i : i ≥ k} k-Dominating set [34]
N N \ {0} N N \ {0} Total Dominating set [2]
{0} {0} N {1} Efficient (Closed) Dominating set [8]
N {1} N {1} Efficient Total Dominating set [37]
{k} {k} N N k-Regular Induced Subdigraph [15]

function that measures for a vertex partition (A, B) of G, the sum of the sizes of maximum
induced matchings in two bipartite digraphs, one induced by edges from A to B, and the
other induced by edges from B to A. This is similar to how rank-width is generalized to
bi-rank-width for digraphs [29, 30]. We formally define bi-mim-width and linear bi-mim-width
in Section 3. We compare bi-mim-width and other known width parameters. The mim-width
of an undirected graph is exactly the half of the bi-mim-width of the digraph obtained by
replacing each edge with bi-directed edges, and this observation can be used to argue that a
bound on the bi-mim-width of a class of digraphs implies a bound on the mim-width of a
certain class of undirected graphs.

Directed Locally Checkable Vertex (DLCV) Problems. We introduce directed locally
checkable vertex subset (DLCVS) and partitioning (DLCVP) problems, in analogy with [43].
We abbreviate the union of these two families of problems to “DLCV problems”. A DLCVS
problem is represented as a (σ+, σ−, ρ+, ρ−)-problem for some σ+, σ−, ρ+, ρ− ⊆ N, and it
asks to find a maximum or minimum vertex set S in a digraph G such that for every vertex
v in S, the numbers of out/in-neighbors in S are contained in σ+ and σ−, respectively, and
for every vertex v in V (G) \ S, the numbers of out/in-neighbors in S are contained in ρ+

and ρ−, respectively. If each µ ∈ {σ+, σ−, ρ+, ρ−} is either finite or co-finite (i.e., N \ µ is
finite), then we say that the problem is represented by finite or co-finite sets. See Table 1
for several examples of DLCVS problems that appear in the literature and note that they
are all represented by finite or co-finite sets. In particular, it includes the Kernel problem,
which was introduced by von Neumann and Morgenstern [45].

A DLCVP problem is represented by a (q × q)-matrix D for some positive integer q,
where for all i, j ∈ {1, . . . , q}, D[i, j] = (µ+

i,j , µ−
i,j) for some µ+

i,j , µ−
i,j ⊆ N. The problem asks

to find a vertex partition of a given digraph into X1, X2, . . . , Xq such that for all i, j ∈ [q],

STACS 2022
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Table 2 Examples of directed LCVP problems that are represented by finite or co-finite sets.
For every row there are choices of values for which the problems are NP-complete. For Directed
H-Homomorphism let V (H) = {1, . . . , |V (H)|} and denote by H : −→

Kk that H is an orientation of
a complete graph on k vertices, and by H :

−→
K◦

k that H is an orientation of a complete graph on k

vertices, with loops. (*) For Simple k-Coloring, we require two nonempty color classes to avoid
trivial solutions. The general algorithm can easily be modified to take this into account.

Problem name q DLCVP (q × q)-matrix D

Directed H-Homomorphism [25] |V (H)| ∀(i, j) ∈ E(H) : D[i, j] = (N,N)
∀(i, j) /∈ E(H) : D[i, j] = ({0}, {0})

Oriented k-Coloring [18, 42] k
∨

H : −→
Kk

Directed H-Homomorphism
Simple k-Coloring (*) [40] k

∨
H :

−→
K◦

k

Directed H-Homomorphism

∃ (σ+, σ−, ρ+, ρ−)-set [This paper] 2
(

(σ+, σ−) (N,N)
(ρ+, ρ−) (N,N)

)
(δ+ ≥ k1, δ− ≥ k2)-Partition [6] 2

(
({j : j ≥ k1},N) (N,N)

(N,N) (N, {j : j ≥ k2})

)
(δ+ ≥ k1, δ+ ≥ k2)-Partition [5] 2

(
({j : j ≥ k1},N) (N,N)

(N,N) ({j : j ≥ k2},N)

)
(∆+ ≤ k1, ∆+ ≤ k2)-Partition [3] 2

(
({j : j ≤ k1},N) (N,N)

(N,N) ({j : j ≤ k2},N)

)
(δ+ ≥ k1, δ− ≥ k2)-Bipartite-Partition [4] 2

(
(N,N) ({j : j ≥ k1},N)

(N, {j : j ≥ k2}) (N,N)

)
(δ+ ≥ k1, δ+ ≥ k2)-Bipartite-Partition [4] 2

(
(N,N) ({j : j ≥ k1},N)

({j : j ≥ k2},N) (N,N)

)
2-Out-Coloring [1] 2

(
(N \ {0},N) (N \ {0},N)
(N \ {0},N) (N \ {0},N)

)

the numbers of out/in-neighbors of a vertex of Xi in Xj are contained in µ+
i,j and µ−

i,j ,
respectively. In analogy with subset problems, we say that the problem is represented by
finite or co-finite sets if each set appearing in a pair that is an entry of D is either finite
or co-finite. Directed H-Homomorphism is a directed LCVP problem represented by
finite or co-finite sets: For a digraph H on vertices {1, . . . , q}, we can view a homomorphism
from a digraph G to H as a q-partition (X1, . . . , Xq) of V (G) such that we can only have
an edge from Xi to Xj if the edge (i, j) is present in H. See Table 2. The Oriented
k-Coloring problem, introduced by Sopena [41], asks whether there is a homomorphism to
some orientation of a complete graph on at most k vertices, and can therefore be reduced
to a series of directed LCVP problems. Removing the requirement that the color classes
have to be independent sets, Smolíková [40] introduced the notion of a simple k-coloring,
requiring however that the number of colors is at least two, to avoid trivial solutions. Several
works in the literature concern problems of 2-partitioning the vertex sets of digraphs into
parts with degree constraints either inside or between the parts of the partition [1, 3, 4, 5, 6].
All of these problems can be observed to be LCVP problems as well, see Table 2. Note that
in the DLCVP-framework, we can consider q-partitions for any fixed q ≥ 2, for all problems
apart from 2-Out-Coloring. This fails for q-Out-Coloring, since this problem asks for
a q-coloring with no monochromatic out-neighborhood.

▶ Theorem 1. Directed LCVS and LCVP problems represented by finite or co-finite sets can
be solved in time XP parameterized by bi-mim-width, when a branch decomposition is given.
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Furthermore, we show that the distance variants of DLCVS problems, for instance
Distance-r Dominating Set can be solved in polynomial time on digraphs of bounded
bi-mim-width. Another natural variant is the k-Kernel problem (see [7, Section 8.6.2]),
which asks for a kernel in the (k −1)-th power of a given digraph. To show this, we prove that
the r-th power of a digraph of bi-mim-width w has bi-mim-width at most rw (Lemma 12).
For undirected graphs, there is a bound that does not depend on r [26], but we were not
able to obtain such a bound for the directed case.

▶ Theorem 2. Distance variants of directed LCVS problems represented by finite or co-finite
sets can be solved in time XP parameterized by bi-mim-width, when a branch decomposition
is given.

Classes of intersection digraphs and their bi-mim-width. We provide various classes of
digraphs of bounded bi-mim-width. We first summarize our results in the following theorem
and give the background below. We illustrate the bounds in Figure 1.

▶ Theorem 3.
1. Given a reflexive interval digraph, one can output a linear branch decomposition of

bi-mim-width at most 2 in polynomial time. On the other hand, interval digraphs have
unbounded bi-mim-width.

2. Given a representation of an adjusted permutation digraph G, one can construct in poly-
nomial time a linear branch decomposition of G of bi-mim-width at most 4. Permutation
digraphs have unbounded bi-mim-width.

3. Given a representation of an adjusted rooted directed path digraph G, one can construct in
polynomial time a branch decomposition of G of bi-mim-width at most 2. Rooted directed
path digraphs have unbounded bi-mim-width and adjusted rooted directed path digraphs
have unbounded linear bi-mim-width.

4. Let H be an undirected graph. Given a representation of a reflexive H-digraph G, one
can construct in polynomial time a linear branch decomposition of G of bi-mim-width at
most 12|E(H)|. P2-digraphs, which are interval digraphs, have unbounded bi-mim-width.

5. Let H be an undirected graph. Given a nice H-convex digraph G with its bipartition
(A, B), one can construct in polynomial time a linear branch decomposition of G of
bi-mim-width at most 12|E(H)|. P2-convex digraphs have unbounded bi-mim-width.

6. Tournaments and directed acyclic graphs have unbounded bi-mim-width.

(1. Interval digraphs) Recall that Müller [33] devised a recognition algorithm for interval
digraphs, which also outputs a representation. By testing the reflexivity of a digraph,
we can recognize reflexive interval digraphs, and output its representation. We convert
it into a linear branch decomposition of bi-mim-width at most 2. On the other hand,
interval digraphs generally have unbounded bi-mim-width. By Theorem 1, we can solve
all DLCV problems on reflexive interval digraphs in polynomial time. This extends
the polynomial-time algorithms for Independent Dominating Set and Kernel on
interval nest digraphs given by Prisner [35], and includes polynomial-time algorithms for
Absorbing Set, Dominating Set, and Kernel by Francis, Hell, and Jacob [22].

(2. Permutation digraphs) A permutation digraph is an intersection digraph of pairs of line
segments whose endpoints lie on two parallel lines. Müller [33] considered permutation
digraphs under the name “matching diagram digraph”, and observed that every interval
digraph is a permutation digraph. Therefore, permutation digraphs have unbounded
bi-mim-width. We say that a permutation digraph is adjusted if there exists one of the
parallel lines, say Λ, such that for all v ∈ V (G), Sv and Tv have the same endpoint in Λ.
We show that every adjusted permutation digraph has linear mim-width at most 4.

STACS 2022
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Adjusted Interval?

Reflexive Interval?

Interval?

Reflexive H-digraph

H-digraph

TournamentDAG

Reflexive Circular Arc

Rooted Directed Path

Convex

Nice H-Convex

H-Convex

Permutation bimimw = ω(1)

Reflexive Rooted
Directed Path

Adjusted
Permutation

Reflexive
Permutation

Adjusted Rooted
Directed PathNice Convex

?

lbimimw = O(1)
bimimw = O(1)

Figure 1 Digraph classes with bounds on their (linear) bi-mim-width. For graph classes marked
with ⋆ there are polynomial-time algorithms to compute representations of their members. If digraph
class A is depicted above B and there is an edge between A and B then B ⊆ A.

(3. Rooted directed path digraphs) It is known that chordal graphs have unbounded mim-
width [28, 32]. As restrictions of chordal graphs, it has been shown that rooted directed
path graphs, and more generally, leaf power graphs have mim-width at most 1 [26], while
they have unbounded linear mim-width. A rooted directed path digraph is an intersection
digraph of pairs of directed paths in a rooted directed tree (every node is reachable from
the root), and it is adjusted if for every vertex v, the endpoint of Sv that is farther from
the root is the same as the endpoint of Tv that is farther from the root. We show that
every adjusted rooted directed path digraph has bi-mim-width at most 2. Since this class
includes the biorientations of trees, it has unbounded linear bi-mim-width.

(4. H-digraphs) For an undirected graph H, an H-graph is an undirected intersection
graph of connected subgraphs in an H-subdivision, introduced by Bíró, Hujter, and
Tuza [11]. For example, interval graphs and circular-arc graphs are P2-graphs and
C3-graphs, respectively. Fomin, Golovach, and Raymond [21] showed that H-graphs
have linear mim-width at most 2|E(H)| + 1. Motivated by H-graphs, we introduce
an H-digraph that is the intersection digraph of pairs of connected subgraphs in an
H-subdivision (where H and its subdivision are undirected). We prove that reflexive
H-digraphs have linear bi-mim-width at most 12|E(H)|. This extends the linear bound
of Fomin et al. [21] for H-graphs.

(5. H-convex digraphs) For an undirected graph H , a bipartite digraph G with bipartition
(A, B) is an H-convex digraph, if there exists a subdivision F of H with V (F ) = A such
that for every vertex b of B, each of the set of out-neighbors and the set of in-neighbors
of v induces a connected subgraph in F . We say that an H-convex digraph is nice if for
every vertex b of B, there is a bi-directed edge between b and some vertex of A. Note
that H-convex graphs, introduced by Bonomo-Braberman et al. [12], can be seen as
nice H-convex digraphs, by replacing every edge with bi-directed edges. We prove that
nice H-convex digraphs have linear bi-mim-width at most 12|E(H)|. This implies that
H-convex graphs have linear mim-width at most 6|E(H)|. For the special case when T is
a tree with maximum degree ∆ and t branching nodes, Bonomo-Braberman et al. [12]
showed an improved bound of 2 + t(∆ − 2) on the mim-width of T -convex graphs.
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(6. Directed acyclic graphs and tournaments) We show that if H is the underlying undir-
ected graph of a digraph G, then the bi-mim-width of G is at least the mim-width of H.
Using this, we can show that acyclic orientations of grids have unbounded bi-mim-width.
We also prove that tournaments have unbounded bi-mim-width. This refines an argument
that they have unbounded bi-rank-width [7, Lemma 9.9.11].

We can summarize our algorithmic results as follows.

▶ Corollary 4. Given a reflexive interval digraph, or a representation of either an adjusted
permutation digraph, or an adjusted rooted directed path digraph, or a reflexive H-digraph, or
a nice H-convex digraph, we can solve all DLCV problems represented by finite or co-finite
sets, and their distance variants, in polynomial time.

Related work. Intersection digraphs have first been considered by Beineke and Zamfirescu
in 1982 [9]. Sen et al. [38] introduced the class of interval digraphs and Sen et al. [39] the class
of circular-arc digraphs. Permutation digraphs were first studied under the name “matching
diagram digraphs” by Müller [33]. Prisner [35] showed that the problems Clique, Chromatic
Number, Independent Set, Partition into Cliques, Kernel, and Independent
Dominating Set are polynomial-time solvable on interval nest digraphs, a subclass of
interval digraphs G having a representation {(Sv, Tv) : v ∈ V (G)} where for each vertex
v ∈ V (G), either Sv ⊆ Tv or Tv ⊆ Sv. Very recently, and independently of this work,
Francis, Hell, and Jacob [22] showed that Absorbing Set, Dominating Set, and Kernel
are polynomial-time solvable on reflexive interval digraphs, a superclass of interval nest
digraphs. They also showed that these problems remain hard on interval digraphs, even
when all intervals are single points. Feder et al. [20] considered the List H-Homomorphism
problem, but posing a structural restriction on H rather than the input graph. They showed
that if H is an adjusted interval digraph, i.e. an interval digraph with a representation
where both intervals associated with each vertex have the same left endpoint, then List
H-Homomorphism is polynomial-time solvable.

The algorithmic result for undirected graphs analogous to ours is that all (undirected)
locally checkable vertex problems are polynomial-time solvable if the input graph is given
together with a decomposition of constant mim-width. This has been shown by Bui-Xuan,
Telle, and Vatshelle [14]. In their work, the runtime of the algorithms is stated in terms of the
number of equivalence classes of the d-neighborhood equivalence relation, and the connection
between this notion and mim-width was made explicit by Belmonte and Vatshelle [10].

Organization of the paper. The paper is organized as follows. In Section 2, we introduce
basic notations. In Section 3, we formally introduce bi-mim-width and compare with other
known width parameters. In Section 4, we prove Theorem 3, and in Section 5, we prove
Theorems 1 and 2. Proofs of statements marked with “⋆” are deferred to the full version.

2 Preliminaries

For a positive integer n, we use the shorthand [n] := {1, . . . , n}.

Undirected Graphs. We use standard notions of graph theory and refer to [19] for an
overview. All undirected graphs considered in this work are finite and simple. For a graph
G, we denote by V (G) the vertex set of G and E(G) the edge set of G. For an edge
{u, v} ∈ E(G), we may use the shorthand “uv”.
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For two vertices u, v ∈ V (G), the distance between u and v, denoted by distG(u, v) or
simply dist(u, v), is the length of the shortest path between u and v. For u ∈ V (G) and
A ⊆ V (G), we let distG(u, A) = minv∈A distG(u, v).

Let G be a graph and e = uv ∈ E(G). The (edge) subdivision of e is the operation of
removing the edge e and adding a new vertex x and the edges ux and xv to G. A graph H

is a subdivision of G if H can be obtained from G by a series of edge subdivisions. If H is a
subdivision of G, then each vertex in V (G) is called a branching vertex in H. A path P in
H is called a branching path if its endpoints are branching vertices and no other vertices in
P are branching vertices.

Digraphs. All digraphs considered in this work are finite and have no multiple edges, but may
have loops. For a digraph G, we denote by V (G) its vertex set and by E(G) ⊆ V (G) × V (G)
its edge set. We say that an edge (u, v) ∈ E(G) is directed from u to v. For a vertex v of G,
we denote by N+

G (v) the set of out-neighbors of v, and by N−
G (v) the set of in-neighbors of v.

If G is clear from the context, then we allow to remove G from the subscript.
A rooted directed tree is a digraph obtained from an undirected tree by selecting a root

and directing all edges away from the root.
For a digraph G and two disjoint vertex sets A, B ⊆ V (G), we denote by G[A → B]

the bipartite digraph on bipartition (A, B) with edge set E(G[A, B]) = E(G) ∩ (A × B),
and denote by G[A, B] the bipartite digraph on bipartition (A, B) with edge set E(G[A →
B]) ∪ E(G[B → A]). A set M of edges in a digraph G is a matching if no two edges share an
endpoint, and it is an induced matching if there are no edges in G meeting two distinct edges
in M . We denote by ν(G) the maximum size of an induced matching of G. For a vertex set
A of G, we denote by A := V (G) \ A. A vertex bipartition (A, A) of G for some vertex set A

of G is called a cut.
For two vertices u, v ∈ V (G), the distance between u and v, denoted by distG(u, v) or

simply dist(u, v), is the length of the shortest directed path from u to v. For a positive
integer d, we denote by Gd the graph obtained from G by, for every pair (x, y) of vertices in
G, adding an edge from x to y if there is a path of length at most d from x to y in G. We
call it the d-th power of G.

3 Bi-mim-width

Throughout this section, definitions of concepts that are only touched on briefly can be found
in Appendix A.

▶ Definition 5 (Branch Decomposition). Let Ω be a set. A branch decomposition over Ω
is a pair (T, L) of a subcubic tree T and a bijection L from Ω to the leaves of T . If T is
a caterpillar, then (T, L) is called a linear branch decomposition of G. For e ∈ E(T ), let
TA, TB be the components of T − e. Let (Ae, Be) be the cut of Ω where Ae is the set of
elements that L maps to the leaves in TA and Be is the set of elements that L maps to the
leaves in TB.

We introduce the bi-mim-width of a digraph. For a digraph G and A ⊆ V (G), let
mim+

G(A) := ν(G[A → A]), mim−
G(A) := ν(G[A → A]), and bimimG(A) := mim+

G(A) +
mim−

G(A). A branch decomposition of a digraph G is a branch decomposition over V (G).

▶ Definition 6 (Bi-mim-width). Let G be a digraph and (T, L) be a branch decomposition
of G. The bi-mim-width of (T, L) is bimimw(T, L) := maxe∈E(T ) (bimimG(Ae)) . The bi-
mim-width of G, denoted by bimimw(G), is the minimum bi-mim-width of any branch
decomposition of G. The linear bi-mim-width of G, denoted by lbimimw(G), is the minimum
bi-mim-width of any linear branch decomposition of G.
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For an undirected graph G, we denote by mimw(G) its mim-width and by lmimw(G) its
linear mim-width. The following two lemmas are clear by definition.

▶ Lemma 7. Let G be a digraph and let H be an induced subdigraph of G. Then bimimw(H) ≤
bimimw(G) and lbimimw(H) ≤ lbimimw(G).

▶ Lemma 8. Let G be an undirected graph and let H be the biorientation of G. Then
mimw(G) = bimimw(H)

2 .

We show that if a digraph G has small bi-mim-width, then its underlying undirected
graph has small mim-width. But the other direction does not hold; the class of tournaments
has unbounded bi-mim-width. We also argue that directed tree-width [27] and bi-mim-width
are incomparable.

▶ Lemma 9 (⋆). Let G be a digraph and let H be the underlying undirected graph of G.
Then mimw(H) ≤ bimimw(G) and lmimw(H) ≤ lbimimw(G). On the other hand, the class
of tournaments has unbounded bi-mim-width, while their underlying undirected graphs have
linear mim-width 1.

▶ Lemma 10 (⋆). Directed tree-width and bi-mim-width are incomparable.

We compare the bi-mim-width with the bi-rank-width of a digraph, introduced by
Kanté [29]. Kanté and Rao [30] later generalized this notion to edge-colored graphs. For a
digraph G, we denote by birw(G) its bi-rank-width and by lbirw(G) its linear bi-rank-width.
We can verify that for every digraph G, bimimw(G) ≤ birw(G). Interestingly, we can further
show that for every positive integer r, the bi-mim-width of the r-th power of G is at most
the bi-rank-width of G. This does not depend on the value of r.

▶ Lemma 11 (⋆). Let r and w be positive integers. If (T, L) is a branch-decomposition of a
digraph G of bi-rank-width w, then it is a branch-decomposition of Gr of bi-mim-width at
most w.

Next, we show that the r-th power of a digraph of bi-mim-width w has bi-mim-width at
most rw. This will be used to prove Theorem 2.

▶ Lemma 12. Let r and w be positive integers. If (T, L) is branch-decomposition of a digraph
G of bi-mim-width w, then it is a branch-decomposition of Gr of bi-mim-width at most rw.

Proof. It is sufficient to prove that for every ordered vertex partition (A, B) of G, we have
ν(Gr[A → B]) ≤ rν(G[A → B]). Assume ν(G[A → B]) = t and suppose for contradiction
that ν(Gr[A → B]) ≥ rt + 1.

Let {(ai, bi) : i ∈ [rt+1]} be an induced matching of Gr[A → B] with {ai : i ∈ [rt+1]} ⊆ A.
For each i ∈ [rt + 1], let Pi be a directed path of length at most r from ai to bi in G. We
choose an edge (ci, di) in each Pi where ci ∈ A and di ∈ B. For each i ∈ [rt + 1], let ℓi be
the length of the subpath of Pi from ai to ci. Observe that 0 ≤ ℓi ≤ r − 1.

By the pigeonhole principle, there exists a subset I of [rt + 1] of size at least t + 1 such
that for all i1, i2 ∈ I, ℓi1 = ℓi2 . Since ν(G[A → B]) = t, there exist distinct integers i1, i2 ∈ I

such that there is an edge from ci1 to di2 . Then there is a path of length at most d from ai1

to bi2 , contradicting the assumption that there is no edge from ai1 to bi2 in Gr. ◀

4 Classes of digraphs of bounded bi-mim-width

In this section we present several digraph classes of bounded bi-mim-width. Recall that a
digraph G is an intersection digraph if there is a family of ordered pairs of sets {(Sv, Tv) : v ∈
V (G)}, called a representation of G, such that (u, v) ∈ E(G) if and only if Su ∩ Tv ̸= ∅. G
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Figure 2 An example of a reflexive interval digraph. On the top left is its representation, on the
top right one of its drawings, on the bottom left a linear branch decomposition and the bottom right
shows that the cut associated with the “middle” edge of the branch decomposition has bi-mim-width
value 2.

is called reflexive if for each v ∈ V (G), Sv ∩ Tv ̸= ∅. Let H be a fixed undirected graph. A
digraph G is an H-digraph if there is a subdivision F of H such that G is an intersection
digraph of pairs of vertex sets inducing connected components in F .

▶ Proposition 13. Let H be an undirected graph. Given a representation of a reflexive
H-digraph G, one can construct in polynomial time a linear branch decomposition of G of
bi-mim-width at most 12|E(H)|.

Proof. Let m := |E(H)|. We may assume that H is connected. If H has no edge, then
it is trivial. Thus, we may assume that m ≥ 1. Let G be a reflexive H-digraph, let F be
a subdivision of H, and let M := {(Sv, Tv) : v ∈ V (G)} be a given reflexive H-digraph
representation of G with underlying graph F . For each v ∈ V (G), choose a vertex αv in
Sv ∩ Tv. We may assume that vertices in (αv : v ∈ V (G)) are pairwise distinct and they are
not branching vertices, by subdividing F more and changing M accordingly, if necessary.

We may assume that F has a branching vertex r, and we obtain a BFS ordering of F

starting from r. We denote by v <B w if v appears before w in the BFS ordering. We give a
linear ordering L of G such that for all v, w ∈ V (G), if αv <B αw, then v appears before w

in L. This can be done in linear time. We claim that L has width at most 12m. We choose a
vertex v of G arbitrarily, and let A be the set of vertices in G that are v or a vertex appearing
before v in L, and let B := V (G) \ A. It suffices to show bimimG(A) ≤ 12m. Let A∗ be the
set of vertices of F that are αv or a vertex appearing before αv, and let B∗ := V (F ) \ A∗.
Let P be the set of paths in F such that

for every P ∈ P, P is a subpath of some branching path of F and it is a maximal path
contained in one of A∗ and B∗,⋃

P ∈P V (P ) = V (F ).
Because of the property of a BFS ordering, it is easy to see that each branching path of F is
partitioned into at most 3 vertex-disjoint paths in P. Thus, we have |P| ≤ 3m. Note that
two paths in P from two distinct branching paths may share an endpoint.
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We first show that mim+
G(A) ≤ 6m. Suppose for contradiction that G[A → B] contains

an induced matching M of size 6m + 1. By the pigeonhole principle, there is a subset
M1 = {(xi, yi) : i ∈ [3]} of M of size 3 and a path P in P such that for every (x, y) ∈ M1,
Sx and Ty meet on P . Let p1, p2 be the endpoints of P .

Observe that V (P ) ⊆ A∗ or V (P ) ⊆ B∗. So, for each i ∈ [3], it is not possible that
αxi

and αyi
are both contained in V (P ). It implies that each connected component of

(Sxi
∪ Tyi

) ∩ P contains an endpoint of P , as Sxi
∪ Tyi

is connected. Therefore, there are
at least two integers j1, j2 ∈ [3] and a connected component C1 of (Sxj1

∪ Tyj1
) ∩ P and

a connected component C2 of (Sxj2
∪ Tyj2

) ∩ P so that (1) C1 and C2 contain the same
endpoint of P , and (2) for each i ∈ [2], Ci contains a vertex of Sxji

and a vertex of Tyji
.

However, it implies that (xj1 , yj2) or (xj2 , yj1) is an edge, a contradiction.
We deduce that mim+

G(A) ≤ 6m. By a symmetric argument, we get mim−
G(A) ≤ 6m.

Therefore, we have bimimG(A) ≤ 12m, as required. ◀

Interval digraphs are intersection digraphs of pairs of intervals over the real line, or,
equivalently, P2-digraphs. We first obtain a bound on the bi-mim-width of reflexive interval
digraphs that improves the bound due to Proposition 13.

▶ Proposition 14 (⋆). Given a reflexive interval digraph, one can output a linear branch
decomposition of bi-mim-width at most 2 in polynomial time.

▶ Proposition 15 (⋆). Interval digraphs have unbounded bi-mim-width.

A permutation digraph is an intersection digraph of pairs of line segments whose endpoints
lie on two parallel lines. A permutation digraph G with representation {(Sv, Tv) : v ∈ V (G)}
is adjusted if for one of the two parallel lines, say Λ, it holds that all for all v ∈ V (G), Sv

and Tv have the same endpoint on Λ. We show that adjusted permutation digraphs have
linear bi-mim-width at most 4.

▶ Proposition 16 (⋆). Given a representation of an adjusted permutation digraph G, one can
construct in polynomial time a linear branch decomposition of G of bi-mim-width at most 4.

Proof Sketch. Let Λ1 := {(x, 0) : x ∈ R} and Λ2 := {(x, 1) : x ∈ R} be two lines. Let G be
a given adjusted permutation digraph with its representation {(Sv, Tv) : v ∈ V (G)} where
Sv and Tv are line segments whose endpoints lie on Λ1 and Λ2 and they have a common
endpoint in Λ1, say (αv, 0). For each v ∈ V (G), let (βv, 1) be the endpoint of Sv in Λ2
and (γv, 1) be the endpoint of Tv in Λ2. We give a linear ordering L of G such that for all
v, w ∈ V (G), if αv < αw, then v appears before w in L.

We claim that L has bi-mim-width at most 4. We choose a vertex v of G arbitrarily, and
let A be the set of vertices in G that are v or a vertex appearing before v in L, and let B :=
V (G) \ A. We verify that mim+

G(A) ≤ 2. By a symmetric argument, we have mim−
G(A) ≤ 2.

Suppose for contradiction that G[A → B] has an induced matching {(vi, wi) : i ∈ [3]} with
v1, v2, v3 ∈ A. Without loss of generality, we assume that αv1 ≤ αv2 ≤ αv3 . Observe that
αw1 , αw2 > αv3 and αw3 ≥ αv3 . Let w ∈ {wi : i ∈ [3]} such that |αw − αv3 | is minimum.

If αw = αv3 and γw3 > βv3 , then it is not difficult to verify that βv3 < βv1 , βv2 , γw1 , γw2 <

γw3 , as {(vi, wi) : i ∈ [3]} is an induced matching. If βv1 ≤ βv2 , then Tw1 has to meet Sv2 , a
contradiction. We can deal with other cases similarly. ◀

A rooted directed path digraph is an intersection digraph of pairs of directed paths in a
rooted directed tree, and it is adjusted if for every vertex v, the endpoint of Sv that is farther
from the root is the same as the endpoint of Tv that is farther from the root. We prove that
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adjusted rooted directed path digraphs have bounded bi-mim-width. We obtain a desired
branch decomposition by attaching a leaf node corresponding to a vertex v to the common
endpoint of Sv and Tv that is farther from the root, after finding an equivalent representation
where the underlying directed tree has out-degree at most 2 and there are no two vertices v

and w for which Sv and Sw share the endpoint farther from the root.

▶ Proposition 17 (⋆). Given a representation of an adjusted rooted directed path digraph G,
one can construct in polynomial time a branch decomposition of G of bi-mim-width at most
2. Adjusted rooted directed path digraphs have unbounded linear bi-mim-width.

For an undirected graph H , a bipartite digraph G with bipartition (A, B) is an H-convex
digraph if there is a subdivision F of H with V (F ) = A such that for every b ∈ B, both the
set of out-neighbors of b and the set of in-neighbors of b induce a connected subgraph in F .
An H-convex digraph is nice if every vertex of B is incident to some bi-directed edge. We
prove that nice H-convex digraphs have linear bi-mim-width at most 12|E(H)|. This proof
resembles the proof of Proposition 13.

▶ Proposition 18 (⋆). Let H be an undirected graph. Given a nice H-convex digraph G with
its bipartition (A, B), one can construct in polynomial time a linear branch decomposition of
G of bi-mim-width at most 12|E(H)|.

▶ Proposition 19 (⋆). P2-convex digraphs have unbounded bi-mim-width.

5 Algorithmic applications

In this section we give the algorithmic applications of bi-mim-width. We show that all directed
locally checkable vertex subset and all directed locally checkable vertex partitioning problems
can be solved in XP time parameterized by the bi-mim-width of a given branch decomposition
of the input digraph. We do so by adapting the framework of the d-neighborhood equivalence
relation introduced by Bui-Xuan et al. [14] to digraphs.

d-Bi-neighhorhood-equivalence. The subsets of natural numbers that characterize locally
checkable vertex subset/partitioning problems can be fully characterized when counting
in- and out-neighbors up to some constant d. Therefore, if a vertex v has more than d for
instance out-neighbors in two sets X and Y , then these two sets look the same to v in terms
of its out-neighborhood. This is the main motivation for the following definition.

▶ Definition 20. Let d ∈ N. Let G be a digraph and A ⊆ V (G). For two sets X, Y ⊆ A, we
say that X and Y are d-bi-neighbor equivalent, written X ≡±

d,A Y , if 1

∀u ∈ V (G) \ A : min{d, |N−(u) ∩ X|} = min{d, |N−(u) ∩ Y |} and
min{d, |N+(u) ∩ X|} = min{d, |N+(u) ∩ Y |}.

We denote the number of equivalence classes of ≡±
d,A by nec(≡±

d,A). If (T, L) is a branch
decomposition of G, we let necd(T, L) = maxt∈V (T ) max{nec(≡±

d,Vt
), nec(≡±

d,Vt
)}.

The enumeration of equivalence classes is based on pairs of vectors called d-bi-
neighborhoods of a subset X of A.

1 Since the definition is given in terms of vertices from A, we consider the directions of the edges in
reverse, i.e., we consider N−(v) for v ∈ A when defining ≡+.
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▶ Definition 21. Let G be a digraph, X ⊆ A ⊆ V (G), and d ∈ N. The d-out-neighborhood
of X, denoted by U+

d,A(X), and the d-in-neighborhood of X, denoted by U−
d,A(X) are the

following vectors in {0, 1, . . . , d}A:

U+
d,A(X) = (min{d, |N−(v) ∩ X|})v∈A U−

d,A(X) = (min{d, |N+(v) ∩ X|})v∈A

We refer to the pair (U+
d,A(X), U−

d,A(X)) as the d-bi-neighborhood U±
d,A(X); and we denote

the set of all d-bi-neighborhoods as U±
d,A.

There is a natural bijection between the d-bi-neighborhoods and the equivalence classes
of ≡±

d,A.

▶ Observation 22. Let G be a digraph and X, Y ⊆ A ⊆ V (G). Then, X ≡±
d,A Y if and only

if U±
d,A(X) = U±

d,A(Y ).

▶ Lemma 23 (⋆). Let G be a digraph on n vertices, A ⊆ V (G), and d ∈ N. There is an
algorithm that enumerates all members of U±

d,A in time O(nec(≡±
d,A) log nec(≡±

d,A) · dn2).
Furthermore, for each Y ∈ U±

d,A, the algorithm can provide some X ⊆ A with U±
d,A(X) = Y .

5.1 Generalized Directed Domination Problems
The algorithm in this section is bottom-up dynamic programming along the given branch
decomposition (T, L) of the input digraph G, which we assume to be rooted in an arbitrary
degree two node. For a node t ∈ V (T ), we let Vt be the vertices of G that are mapped to a
leaf in the subtree of T rooted at t. We recall the formal definition of (σ+, σ−, ρ+, ρ−)-sets.

▶ Definition 24. Let σ+, σ−, ρ+, ρ− ⊆ N, and let Σ = (σ+, σ−) and R = (ρ+, ρ−). Let G

be a digraph and S ⊆ V (G). We say that S (σ+, σ−, ρ+, ρ−)-dominates G, or simply that S

(Σ, R)-dominates G, if:

∀v ∈ V (G) : |N+(v) ∩ S| ∈
{

σ+, if v ∈ S

ρ+, if v /∈ S
and |N−(v) ∩ S| ∈

{
σ−, if v ∈ S

ρ−, if v /∈ S

▶ Definition 25. Let d(N) = 0. For a finite or co-finite set µ ⊆ N, let d(µ) = 1 +
min{maxx∈N x ∈ µ, maxx∈N x /∈ µ}. For finite or co-finite σ+, σ−, ρ+, ρ− ⊆ N, Σ = (σ+, σ−)
and R = (ρ+, ρ−): d(σ+, σ−, ρ+, ρ−) = d(Σ, R) = max{d(σ+), d(σ−), d(ρ+), d(ρ−)}.

As our algorithm progresses, it keeps track of partial solutions that may become a (Σ, R)-
set once the computation has finished. This does not necessarily mean that at each node
t ∈ V (T ), such a partial solution X ⊆ Vt has to be a (Σ, R)-dominating set of G[Vt]. Instead,
we additionally consider what is usually referred to as the “expectation from the outside” [14]
in form of a subset Y of Vt such that X ∪ Y is a (Σ, R)-dominating set of G[Vt].

▶ Definition 26. Let µ+, µ− ⊆ N and let M = (µ+, µ−). Let G be a digraph, A ⊆ V (G) and
X ⊆ V (G). We say that X M-dominates A if for all v ∈ A, we have that |N+(v) ∩ X| ∈ µ+

and |N−(v) ∩ X| ∈ µ−. Let Σ and R be as above. For X ⊆ A and Y ⊆ A, we say that (X, Y )
(Σ, R)-dominates A, if X ∪ Y Σ-dominates X and X ∪ Y R-dominates A \ X.

To describe an equivalence class Q of ≡±
d,A we use the d-bi-neighbohoods of its members,

which we denote by desc(Q). Note that by Observation 22, this is well-defined.
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▶ Definition 27. Let σ+, σ−, ρ+, ρ− ⊆ N be finite or co-finite, let Σ = (σ+, σ−), R = (ρ+, ρ−),
and d = d(Σ, R). Let opt stand for min if we consider a minimization problem and for max
if we consider a maximization problem. Let G be a digraph with branch decomposition (T, L)
and let t ∈ V (T ). For an equivalence class Qt of ≡±

d,Vt
, and an equivalence class Qt of ≡±

d,Vt
,

we let:

Tabt[desc(Qt), desc(Qt)] =


optS⊆Vt

|S| : S ∈ Qt and for any St ∈ Qt :
(S, St) (Σ, R)-dominates Vt

∞ if opt = min and no such S exists
−∞ if opt = max and no such S exists

We use the shorthand “Tabt[Qt, Qt]” for “Tabt[desc(Qt), desc(Qt)]”. For all such t, Qt,
and Qt, we initialize Tabt[Qt, Qt] to be −∞ if opt = max and ∞ if opt = min.

Leaves of T . For a leaf ℓ ∈ V (T ), let v ∈ V (G) be such that L(v) = ℓ. Clearly, ≡d,{v}
has only two equivalence classes, namely the one containing ∅ and the one containing {v}.
For each equivalence class Q of ≡d,V (G)\{v}, let R ∈ Q which we can assume is given to us
by Lemma 23. If |N+(v) ∩ R| ∈ σ+ and |N−(v) ∩ R| ∈ σ−, then Tabℓ[{{v}}, Q] = 1. If
|N+(v) ∩ R| ∈ ρ+ and |N−(v) ∩ R| ∈ ρ−, then Tabℓ[{∅}, Q] = 0.

Internal nodes of T . Let t ∈ V (T ) be an internal node with children a and b.
1. Consider each triple Qa, Qb, Qt of equivalence classes of ≡±

d,Va
, ≡±

d,Vb
, and ≡±

d,Vt
, respect-

ively.
2. Let Ra ∈ Qa, Rb ∈ Qb, and Rt ∈ Qt. Determine:

Qa, the equivalence class of ≡±
d,Va

containing Rb ∪ Rt.
Qb, the equivalence class of ≡±

d,Vb
containing Ra ∪ Rt.

Qt, the equivalence class of ≡±
d,Vt

containing Ra ∪ Rb.
3. Update Tabt[Qt, Qt] = opt{Tabt[Qt, Qt], Taba[Qa, Qa] + Tabb[Qb, Qb]}.

▶ Theorem 28 (⋆). Let σ+, σ−, ρ+, ρ− ⊆ N be finite or co-finite, Σ = (σ+, σ−), R = (ρ+, ρ−),
and d = d(Σ, R). There is an algorithm that given a digraph G on n vertices together with one
of its branch decompositions (T, L), computes and optimum-size (Σ, R)-dominating set in time
O(necd(T, L)3 · n3 log n). For n ≤ necd(T, L), the algorithm runs in time O(necd(T, L)3 · n2).

▶ Observation 29 (⋆). For d ∈ N, a digraph G, and A ⊆ V (G): nec(≡±
d,A) ≤ nd·bimimG(A).

▶ Corollary 30. Let σ+, σ−, ρ+, ρ− ⊆ N be finite or co-finite, Σ = (σ+, σ−), R = (ρ+, ρ−),
and d = d(Σ, R). Let G be a digraph on n vertices with branch decomposition (T, L) of
bi-mim-width w ≥ 1. There is an algorithm that given any such G and (T, L) computes an
optimum-size (Σ, R)-dominating set in time O(n3dw+2).

5.2 Directed Vertex Partitioning Problems
We now show that the locally checkable vertex partitioning problems can be solved in XP time
parameterized by the bi-mim-width of a given branch decomposition. In analogy with [14], we
lift the d-bi-neighborhood equivalence to q-tuples over vertex sets, which allows for devising
the desired dynamic programming algorithm. The resulting algorithm follows a very similar
strategy to the one for (Σ, R)-problems; the details are deferred to the full version (⋆).
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▶ Definition 31. A bi-neighborhood-constraint matrix is a (q × q)-matrix Dq over pairs
of finite or co-finite sets of natural numbers. Let G be a digraph, and X = (X1, . . . , Xq)
be a q-partition of V (G). We say that X is a D-partition if for all i, j ∈ {1, . . . , q} with
Dq[i, j] = (µ+

i,j , µ−
i,j), we have that for all v ∈ Xi, |N+(v)∩Xj | ∈ µ+

i,j and |N−(v)∩Xj | ∈ µ−
i,j .

The d-value of Dq is d(Dq) = maxi,j{d(µ+
i,j), d(µ−

i,j)}.

▶ Theorem 32 (⋆). Let Dq be a bi-neighborhood constraint matrix with d = d(Dq). There is an
algorithm that given a digraph G on n vertices together with one of its branch decompositions
(T, L), determines whether G has a Dq-partition in time O(necd(T, L)3q · q · n3 log n). For
n ≤ necd(T, L), the algorithm runs in time O(necd(T, L)3q · q · n2).

▶ Corollary 33. Let Dq be a bi-neighborhood constraint matrix with d = d(Dq). Let G be a
digraph on n vertices with branch decomposition (T, L) of bi-mim-width w ≥ 1. There is an
algorithm that given any such G and (T, L) decides whether G has a Dq-partition in time
O(q · n3qdw+2).

6 Conclusion

We introduced the digraph width measure bi-mim-width, and showed that (finitely represen-
ted) directed locally checkable vertex problems and their distance-r versions can be solved
in polynomial time if the input digraph is given together with a branch decomposition of
constant bi-mim-width. A natural next step in the understanding of this new parameter
would be to determine the complexity of the Directed Feedback Vertex Set problem on
digraphs of bounded bi-mim-width. We showed that several classes of intersection digraphs
have constant bi-mim-width which adds a large number of polynomial-time algorithms for
locally checkable problems related to domination and independence (given a representation)
to the relatively sparse literature on the subject.

Intersection digraph classes such as interval digraphs seem too complex to give polynomial-
time algorithms for optimization problems. Our work points to reflexivity as a reasonable
additional restriction to give successful algorithmic applications of intersection digraphs,
while maintaining a high degree of generality. This was observed independently for interval
digraphs by Francis, Hell, and Jacob [22] who studied the Kernel, Absorbing Set,
and Dominating Set problems. Apart from giving polynomial-time algorithms for these
problems on reflexive interval digraphs, they showed that even for the severely restricted
case when the intervals associated with the vertices are single points, the aforementioned
problems remain hard.

Reflexivity presents a natural tractability barrier in the case of interval digraphs, or,
more generally, H-digraphs for fixed H. The situation is not as clear yet when considering
permutation digraphs or rooted directed path digraphs. Both digraph classes contain interval
digraphs, therefore the hardness results from [22] apply as well. However, there are no
matching polynomial-time algorithms for directed locally checkable vertex problems on
reflexive permutation digraphs or reflexive rooted directed path digraphs; in particular, it
is not known whether their bi-mim-width is bounded or not. We did show bounds on the
bi-mim-width of their adjusted subclasses where we additionally require that every pair of
objects representing a vertex share a common “endpoint” (where the concrete notion of
endpoint depends on the considered type of representation). Arguably, reflexivity is the more
natural restriction and one would hope that also in the case of these two digraph classes, it
is the right barrier separating the tractable cases from the intractable ones. However, this
question remains open for the time being.
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A Additional Definitions

For an undirected graph G and two disjoint vertex sets A, B ⊆ V (G), we denote by G[A, B]
the bipartite graph on bipartition (A, B) such that E(G[A, B]) is exactly the set of edges of
G incident with both A and B.

For a graph G and a set A ⊆ V (G), we let mimG(A) := ν(G[A, A]). A branch decomposi-
tion of G is a branch decomposition over V (G) (recall Definition 5).

▶ Definition 34 (Mim-width). Let G be a graph and (T, L) be a branch decomposition of
G. The mim-width of (T, L) is mimw(T, L) := maxe∈E(T ) mimG(Ae). The mim-width of G,
denoted by mimw(G), is the minimum mim-width over all branch decompositions of G. The
linear mim-width of G, denoted by lmimw(G), is the minimum mim-width over all linear
branch decompositions of G.

Let G be a digraph, and A, B ⊆ V (G) be two disjoint vertex sets. We let MG[A → B] the
matrix whose columns are indexed by A and whose rows are indexed by B such that for a ∈ A

and b ∈ B, MG[A → B](a, b) = 1 if (a, b) ∈ E(G) and MG[A → B](a, b) = 0 otherwise. For
each A ⊆ V (G),we let cutrk+

G(A) := rank(MG[A → A]) and cutrk−
G(A) := rank(MG[A → A]).

We let bicutrkG(A) := cutrk+
G(A) + cutrk−

G(A).

▶ Definition 35 (Bi-rank-width). Let G be a digraph, and (T, L) be a branch decomposition
of G. The bi-rank-width of (T, L) is maxe∈E(T ) bicutrkG(Ae). The (linear) bi-rank-width
of G is the minimum bi-rank-width of any (linear) branch decomposition of G.

Let T be a rooted directed tree. For a vertex t ∈ V (T ), we denote by Tt the subtree of T

containing all vertices v such that there is a directed path from t to v in T .

▶ Definition 36 (Strong guard). Let G be a digraph and X, Y ⊆ V (G). We say that Y is a
strong guard for X if every walk starting and ending in X, and containing a vertex from
V (G) \ X, contains a vertex from Y .

▶ Definition 37 (Directed treewidth). Let G be a digraph. A directed tree decomposition is
a triple (T, β, γ) of a rooted directed tree T and two maps β : V (T ) → 2V (G) and γ : E(T ) →
2V (G),
1. The set {β(t) : t ∈ V (T )} is a partition of V (G).
2. For each e = (u, v) ∈ E(T ), γ(e) is a strong guard for

⋃
t∈V (Tv) β(t).

For each t ∈ V (T ), we let Γ(t) := β(t) ∪
⋃

e∼t γ(e), where e ∼ t means that e is incident
with t. The width of (T, β, γ) is maxt∈V (T )|Γ(t)| − 1, and the directed treewidth of a digraph
G is the minimum width over all its directed tree decompositions.

We refer to [31] for an introduction to the width measures bi-rank-width and directed
treewidth.
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Abstract
For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices in
G have at most c − 1 neighbours in common. The closure of a graph G, denoted by cl(G), is the
least positive integer c for which G is c-closed. The class of c-closed graphs was introduced by Fox
et al. [ICALP ‘18 and SICOMP ‘20]. Koana et al. [ESA ‘20] started the study of using cl(G) as
an additional structural parameter to design kernels for problems that are W-hard under standard
parameterizations. In particular, they studied problems such as Independent Set, Induced
Matching, Irredundant Set and (Threshold) Dominating Set, and showed that each of these
problems admits a polynomial kernel, either w.r.t. the parameter k + c or w.r.t. the parameter k for
each fixed value of c. Here, k is the solution size and c = cl(G). The work of Koana et al. left several
questions open, one of which was whether the Perfect Code problem admits a fixed-parameter
tractable (FPT) algorithm and a polynomial kernel on c-closed graphs. In this paper, among other
results, we answer this question in the affirmative. Inspired by the FPT algorithm for Perfect
Code, we further explore two more domination problems on the graphs of bounded closure. The
other problems that we study are Connected Dominating Set and Partial Dominating Set.
We show that Perfect Code and Connected Dominating Set are fixed-parameter tractable
w.r.t. the parameter k + cl(G), whereas Partial Dominating Set, parameterized by k is W[1]-hard
even when cl(G) = 2. We also show that for each fixed c, Perfect Code admits a polynomial
kernel on the class of c-closed graphs. And we observe that Connected Dominating Set has no
polynomial kernel even on 2-closed graphs, unless NP ⊆ co-NP/poly.
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39:2 Further Exploiting c-Closure for FPT Algorithms and Kernels

1 Introduction

For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent
vertices in G have at most c − 1 neighbours in common. That is, for distinct vertices
u and v of G, |N(u) ∩ N(v)| ≤ c − 1 if uv /∈ E(G). In this paper, we investigate the
parameterized complexity of domination problems on the class of c-closed graphs. The
problems that we study are Perfect Code, Connected Dominating Set and Partial
Dominating Set. All these problems are W[1]-hard (w.r.t. standard parameters) on general
graphs [12, 18, 19], and their complexities on various restricted graph classes have been
studied extensively [4, 15, 22, 29, 30, 31, 34, 41, 44].

Fox et al. [25, 26] introduced the class of c-closed graphs in 2018 as a “distribution-free”
model of social networks. While the literature abounds with models that attempt to capture
the structure of social networks, they are all probabilistic models. (See, for instance, the
survey by Chakrabarti and Faloutsos [13].) And in an attempt to capture the spirit of
“social-network-like” graphs without relying on probabilistic models, Fox et al. [26] “turn[ed]
to one of the most agreed upon properties of social networks – triadic closure, the property
that when two members of a social network have a friend in common, they are likely to
be friends themselves.” It is easy to see that the definition of c-closed graphs is a reasoned
approximation of this property. In a c-closed graph, every pair of vertices with at least c

common neighbours are adjacent to each other. Fox et al. [26, Table A.1], and later Koana
et al. [39, Table 1], showed that several social networks and biological networks are indeed
c-closed for rather small values of c.

Fox et al. [26] showed that an n-vertex c-closed graph contains at most 3c/3 · n2 maximal
cliques.1 This bound, when coupled with an algorithm for enumerating all maximal cliques
in a graph, yields a 2O(c) · poly(n) time algorithm that enumerates all maximal cliques in
c-closed graphs. Observe that an algorithm that enumerates all maximal cliques in a graph
can be used to determine if a graph contains a clique of a given size as well. Thus, the
Clique problem, which, given a graph G and an integer k as input, asks if G contains a
clique of size k, is fixed-parameter tractable with respect to the parameter c. Notice that
Clique, when parameterized by k, is W[1]-complete on general graphs [18], and therefore
does not admit a fixed-parameter tractable algorithm unless FPT=W[1].

In light of this result, we could very well ask: How do other problems that are W-hard
on general graphs fare on the class of c-closed graphs? In particular, is Independent Set,
another canonical W[1]-complete problem [18], fixed-parameter tractable on c-closed graphs?
Koana et al. [39] showed that Independent Set, which takes a graph G and an integer
k as input, and asks if G contains an independent set of size k, is indeed fixed-parameter
tractable w.r.t. the parameter k + c. In fact, by applying a “Buss-like” reduction rule [9],
they showed that the problem admits a kernel with ck2 vertices. Motivated by this example,
they studied the (kernelization) complexity of three more problems – Induced Matching,
Irredundant Set and Threshold Dominating Set (TDS) – and showed that these
problems admit polynomial kernels (either w.r.t. the parameter k + c, or w.r.t. the parameter
k for each fixed c.) TDS is a variant of Dominating Set in which each vertex needs to
be dominated at least r times for a given integer r. The kernels for the first two of these
problems have size poly(c, k) whereas the kernel for TDS has size kO(cr). They also designed
an FPT algorithm for TDS that runs in time 3c/3 + (ck)O(rk)nO(1). A key ingredient in all

1 Note that the classic Moon-Moser theorem only guarantees an upper bound of 3n/3 for the number of
maximal cliques in an n-vertex graph [47].
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these results was a polynomial bound for the Ramsey number on c-closed graphs. Koana et
al. [39] proved that every c-closed graph with O(cb2 + ab) vertices contains either a clique of
size a or an independent set of size b, and predicted that this bound could be useful in settling
the parameterized complexity of other problems as well. In this paper, we use this bound,
and show that two variants of Dominating Set admit fixed-parameter tractable algorithms
on c-closed graphs. In particular, we show that Perfect Code is FPT on c-closed graphs,
and thus settle a question left open by Koana et al. [39].

Closure of a graph. Recall that a graph G is said to be c-closed if every pair of non-
adjacent vertices have at most c − 1 neighbours in common. The closure2 of a graph
G, denoted by cl(G), is the least positive integer c for which G is c-closed. Notice that
cl(G) = 1 + max {|N(u) ∩ N(v)| | u, v ∈ V (G), uv /∈ E(G)}, and therefore cl(G) can be
computed in polynomial time. In this paper, we study the parameterized complexity of
some of the widely-studied problems on graphs of bounded closure, and thus attempt to
present a more comprehensive answer to the following questions. How good a structural
parameter is cl(G) when it comes to the tractability of domination problems? And in this
regard, how does cl(G) differ from some of the other widely-studied structural parameters
such as maximum degree, degeneracy and treewidth? Observe that if the maximum degree
of graph G is ∆(G), then cl(G) ≤ ∆(G) + 1. But the comparability ends there. As noted
by Koana et al. [39], an n-vertex clique is 1-closed, but has degeneracy and treewidth n − 1.
On the other hand, the complete bipartite graph K2,n−2 has treewidth and degeneracy 2,
but cl(K2,n−2) = n − 1. Thus, closure is incomparable with degeneracy and treewidth. We
also note that when parameterized by cl(G) alone, most of the widely-studied problems,
with the exception of Clique, would be para-NP-hard. This applies to problems such as
Vertex Cover, Independent Set, Dominating Set, Connected Dominating Set
and Perfect Code, as all these problems are NP-hard on graphs of maximum degree
4 [21, 27], and therefore NP-hard on 5-closed graphs. So this parameter alone is too small
to yield tractability results, and therefore, has to be used in combination with some other
parameter, for example, the solution size. But this is often the case with other structural
parameters such as degeneracy and maximum degree as well; they are often combined with
the solution size [3, 48].

Our results and methods. Let us first define the concept of domination in graphs. Consider
a graph G. We say that a vertex in G dominates itself and all its neighbours. That is, a
vertex v dominates N [v]. And for a set V ′ ⊆ V (G), V ′ dominates N [V ′]. A dominating set of
a graph is a set of vertices D ⊆ V (G) that dominates the entire vertex set, i.e., N [D] = V (G).
Or equivalently, D ⊆ V (G) is a dominating set of G if |D ∩ N [v]| ≥ 1 for every vertex
v ∈ V (G). A dominating set D ⊆ V (G) is said to be a connected dominating set of G if G[D]
is a connected subgraph of G. A perfect code of G is a dominating set of G that dominates
every vertex exactly once. That is, D ⊆ V (G) is a perfect code of G if |D ∩ N [v]| = 1 for
every vertex v ∈ V (G). For a non-negative integer t, a set of vertices V ′ ⊆ V (G) is said to
be a t-partial dominating set of G if V ′ dominates at least t vertices of G, i.e., if |N [V ′]| ≥ t.

2 Koana et al. [39] use the term c-closure instead of closure. But we believe that closure is more appropriate.
We must note that the term closure is already used in existing graph theory literature to refer to a
certain super-graph of a graph [8, p. 486]. But for that matter, so is the term k-closure [7]. We believe
that given the context, there is no room for ambiguity.
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In the Perfect Code (resp. Connected Dominating Set (CDS)) problem, the
input consists of an n-vertex graph G and a non-negative integer k, and the question is to
decide if G contains a perfect code (resp. connected dominating set) of size at most k. In
the Partial Dominating Set (PDS) problem, the input consists of an n-vertex graph
G and two non-negative integers k and t, and the question is to decide if G contains a
t-partial dominating set of size at most k. We show that Perfect Code and CDS, when
parameterized by k+cl(G), are fixed-parameter tractable, whereas PDS, when parameterized
by k, is W[1]-hard, even for cl(G) = 2. Specifically, we prove the following results. (Here,
n = |V (G)| and c = cl(G).)

1. Perfect Code admits a fixed-parameter tractable algorithm that runs in time
2O(c+k log(ck))nO(1). Moreover, for each fixed c ≥ 1, Perfect Code admits a kernel with
kO(2c) vertices on the family of c-closed graphs.

2. CDS admits a fixed-parameter tractable algorithm that runs in time 2O(ck2 log(ck))nO(1).
But CDS does not admit a polynomial kernel when parameterized by k even when
cl(G) = 2, unless NP ⊆ co-NP/poly. (The kernelization lower bound follows from a result
due to Misra et al. [44].)

3. PDS, when parameterized by k, is W[1]-hard on 2-closed graphs.

Note that a perfect code and a connected dominating set are both dominating sets.
Naturally, our algorithms for Perfect Code and CDS rely on three crucial properties of
dominating sets and c-closed graphs. Consider a c-closed graph G, and a dominating set D

of G of size k. (P1) If G contains an independent set I of size k + 1, then by the pigeonhole
principle, there exists a vertex v ∈ D that dominates at least two vertices of I. That is,
v ∈ N(u) ∩ N(u′) for a pair of vertices u, u′ ∈ I (Lemma 11). (P2) The dominating set
D must intersect every “large” maximal clique (Corollary 7). This follows from the fact
that any vertex outside a maximal clique can dominate at most c − 1 vertices of the clique
(Lemma 6). Thus, if G contains a maximal clique of size (c − 1)k + 1, say Q, then we must
have D ∩ V (Q) ̸= ∅. (P3) If G contains ℓ distinct “large” maximal cliques, then G contains
an independent set of size ℓ as well (Lemma 8). This again is a consequence of the property
that any vertex outside a maximal clique has at most c − 1 neighbours in the clique. Here,
depending on each problem, we will define an appropriate lower bound on the size of a clique
for it to be large. But in both the problems, this bound will be poly(c, k). Finally, we use the
following two results due to Koana et al. [39]. (R1) Every c-closed graph with O(cb2 + ab)
vertices contains either a clique of size a or an independent set of size b (Lemma 1). (R2)
We can find a (k + 1)-sized independent set of an n-vertex c-closed graph, if it exists, or
correctly conclude that no such set exists, in time 2O(k log(ck))nO(1) (Corollary 4).

We now briefly outline how our algorithms exploit these properties. In light of (P1),
we first find an independent set I of size k + 1 using (R2), and branch on the vertices in⋃

u,u′∈I N(u) ∩ N(u′). Note that since |I| = k + 1, we have
(

k+1
2

)
= O(k2) choices for the

pair {u, u′}. And for each pair u, u′ ∈ I, we have |N(u) ∩ N(u′)| ≤ c − 1 as G is c-closed.
Once this branching step is exhaustively applied, every independent set in G has size at most
k. But then (P3) will imply that G contains at most k “large” maximal cliques. Now we
partition the vertex set of G into two parts, L and R, where L is the set of vertices that
belong to at least one large maximal clique and R the set of remaining vertices. Thus, L

is the union (not necessarily disjoint) of at most k large cliques. And the subgraph G[R]
contains no large clique or no independent set of size k + 1. Therefore, by (R1), we will have
|R| = poly(c, k). So we can guess the set of vertices from R that belongs to the “dominating
set” that we are looking for, in case (G, k) is indeed a yes-instance. And corresponding to
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each such guess, we then use the property that L is a union of cliques to solve the problem
appropriately. For example, in the case of Perfect Code, we show that once we guess the
subset of R that belongs to the solution, the problem then reduces to solving an instance
of the d-Exact Hitting Set problem (a variant of Hitting Set in which every set has
size at most d and needs to be hit exactly once) for an appropriate choice of d, which can
then be solved in time dknO(1). In the case of CDS, we reduce the final step to 2poly(c,k)

many instances of the (edge-weighted) Steiner Tree problem, a common technique used in
algorithms that seek connected solutions [32, 44, 45, 46]. And we will have the guarantee that
our original CDS instance is a yes-instance if and only if at least one of the Steiner Tree
instances is a yes-instance. We prove the W-hardness of PDS by designing a parameterized
reduction from the Independent Set problem on regular graphs, which is known to be
W[1]-complete [10]. The inadmissibility of a polynomial kernel for CDS follows from a result
due to Misra et al. [44], which says that CDS admits no polynomial kernel on graphs of
girth 5, and the fact that graphs of girth 5 are 2-closed.

To design our kernel for Perfect Code, we bound the size of independent sets and
cliques in the input graph by kO(2c), and then invoke (R1). The main ingredient in bounding
the independent set size is a reduction rule, by which we find a sufficiently large independent
set with sufficiently many common neighbours and delete an arbitrary vertex from that
independent set. To find this independent set, we design an algorithm that works as follows:
Given a c-closed graph G and an integer k, the algorithm will either output an independent
set of size k or correctly report that every independent set in G has size poly(c, k) (Lemma 10).
After an exhaustive application of this reduction rule, every independent set in the input
graph will have bounded size, and by (P3), the graph will contain only a bounded number of
large cliques. Then, we bound the size of each clique as well, which, by (R1), will result in
the kernel. We note that our fixed-parameter tractable algorithm and polynomial kernel for
Perfect Code do not imply each other. The kernel runs in time 2O(c)nO(c), and therefore,
does not imply a fixed-parameter tractable algorithm w.r.t the parameter k + c.

We must point out that properties (P1) and (P2) have been used by Koana et al. [39] in
their algorithm and kernel for the TDS problem. But these properties alone are inadequate
for Perfect Code and CDS. Hence we introduce (P3), which bounds the number of large
maximal cliques in terms of the maximum size of an independent set. We also note that
while properties (P1) and (P2) are specific to domination problems, (P3) is a general-purpose
bound. Our strategy of partitioning the vertices into L and R (vertices of large cliques and
the remaining vertices) is also not specific to domination problems, and could be applicable
to other problems as well. So is Lemma 10, which, as mentioned above, gives an algorithm
that either outputs an independent set of size k or guarantees an upper bound of poly(c, k)
on the independent set size. We use Lemma 10 to fashion a reduction rule (Reduction
Rule 19), which we use to bound the size of independent sets while designing our kernel for
Perfect Code. The idea behind Reduction Rule 19 is as follows. To bound the size of any
independent in the graph, it is sufficient to bound the size of independent sets within the
induced subgraph G[N(v)] for every v ∈ V (G). Then, to bound the size of independent sets
in G[N(v)], it is sufficient to bound the size of independent sets in G[N(v) ∩ N(u)] for every
u ∈ V (G) \ {v}. And to bound the size of independent sets in G[N(v) ∩ N(u)], it is sufficient
to bound the size of independent sets in G[N(v) ∩ N(u) ∩ N(w)] for every w ∈ V (G) \ {v, u}
and so on. This strategy of successively bounding the independent sets in stages could be
applicable to other problems on c-closed graphs as well. Since G is c-closed, we only need to
continue for c − 1 stages. That is, we only need to bound the size of independent sets in
G[∩x∈Y N(x)] for all Y ⊆ V (G) with |Y | = c − 1.
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Related work on domination problems. Domination problems have long been the subject
of extensive research in algorithmic graph theory. All the domination problems discussed
above are W-hard on general graphs, when parameterized by the solution size. Therefore,
a great deal of effort has gone into studying the complexity of these problems on various
graph classes. In particular, the classic Dominating Set problem is known to be W[2]-
complete [19] on general graphs, and W[2]-hard even on bipartite graphs (and hence on
triangle-free graphs) [49], but admits a fixed-parameter tractable algorithm on graphs of girth
at least 5 [49], planar graphs [1, 2, 24, 35], graphs of bounded genus [20], map graphs [16],
H-minor free graphs [17] and graphs of bounded degeneracy [3]. The CDS problem is also
known to be W[2]-hard on general graphs [19], but admits a polynomial kernel on planar
graphs, and more generally, on apex-minor-free graphs [22, 30, 41]. The problem is FPT on
graphs of bounded degeneracy [29]. Cygan et al. [14] showed that CDS has no polynomial
kernel even on 2-degenerate graphs unless NP ⊆ co-NP/poly. Misra et al. [44] studied the
effect of the girth of the input graph on the complexity of CDS, and showed that CDS
remains W[1]-hard on graphs of girth 3 and 4, admits a fixed-parameter tractable algorithm
but no polynomial kernel (unless NP ⊆ co-NP/poly) on graphs of girth 5 and 6, and admits
a polynomial kernel on graphs of girth at least 7. Fomin et al. [23] showed that both
Dominating Set and CDS admit linear kernels on graphs with excluded topological minors.
We refer the reader to [23] for a historical overview of the literature on these problems.

The Perfect Code problem, also called Efficient Domination or Perfect Domina-
tion, is known to be W[1]-complete [12, 18], and remains W[1]-hard even on bipartite graphs
of girth 4 [34], but admits a polynomial kernel on planar graphs [31] and graphs of girth
at least 5 [34]. Dawar and Kreutzer [15] showed that Perfect Code is fixed-parameter
tractable on effectively nowhere dense graphs. For a summary of results on the (classical)
complexity of Perfect Code on various graph classes, see [43].

The Partial Vertex Cover (PVC) problem, the “partial variant” of the widely-studied
Vertex Cover problem, asks if t edges of a graph can be covered using k vertices. Both
PVC and PDS have been studied w.r.t. the two natural parameters: k and t. When
parameterized by k, unlike the widely-studied Vertex Cover, PVC is W[1]-hard on general
graphs [32], and remains NP-hard even on bipartite graphs [5]. But Amini et al. [4], using
a nuanced branching strategy called implicit branching, showed that PVC admits fixed-
parameter tractable algorithms on graph classes with “large independent sets.” In particular,
they showed that PVC (parameterized by k) is FPT on bipartite graphs, triangle-free graphs,
and H-minor free graphs, and thus, in particular, on planar graphs and graphs of bounded
genus. As for PDS, note that a PDS instance with t = n is precisely the Dominating Set
problem, and therefore, the W [2]-hardness of Dominating Set (w.r.t. the parameter k)
extends to PDS as well. And in contrast to Dominating Set, PDS remains W[1]-hard even
on graphs of bounded degeneracy [29]. But the results due to Amini et al. [4] for a more
general problem called Weighted Partial-(k, r, t)-Center showed that PDS, in particular,
is FPT on planar graphs, graphs of bounded genus and graphs of bounded maximum degree.
When parameterized by t, both PVC and PDS are FPTon general graphs [6, 11, 36, 37].

Related work on c-closed graphs. As mentioned earlier, Fox et al. [26] showed that every
n-vertex c-closed graph contains at most 3c/3 · n2 maximal cliques, and that all maximal
cliques can be enumerated in time 2O(c)nO(1). In a preprint announced in 2020, Husic and
Roughgarden [33] showed that instead of cliques, other “dense subgraphs” can be enumerated
in time f(c) · poly(n) as well. In particular, they showed that the problems of finding
and enumerating subgraphs of bounded co-degree, bounded co-degeneracy and bounded
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co-treewidth in a c-closed graph admit algorithms that run in time 2O(c)nO(1). This result
was soon followed by the work of Koana and Nichterlein [40], who investigated the complexity
of enumerating all copies of a (small) fixed-graph H in a given c-closed graph. Note that
for each fixed graph H, by brute-force, we can detect and enumerate all copies of H in a
given n-vertex graph in time nO(|V (H)|). Nonetheless, Koana and Nichterlein [40] designed
significantly better combinatorial algorithms for such problems. They showed that for small
graphs (i.e., graphs on 3 or 4 vertices) H, the H-detection and enumeration problems admit
“FPT in P” algorithms [28] w.r.t. the parameter c, i.e., algorithms with runtime O(cℓnimj)
or O(cℓni + mj), where m and n respectively are the number of edges and vertices of the
input graph G, c = cl(G), and ℓ, i and j are small constants independent of c and H. In
particular, they designed such algorithms for 11 out of the 15 graphs on 3 or 4 vertices.

Related work on weakly γ-closed graphs. Along with c-closed graphs, Fox et al. [26] had
also introduced a larger class of graphs called weakly γ-closed graphs. For a positive integer
γ, a graph G is weakly γ-closed if every induced subgraph G′ of G has a vertex v such
that |NG′(v) ∩ NG′(u)| < γ for each u ∈ V (G′) with u ̸= v and uv /∈ E(G′). Note that if
a graph G is c-closed, then G is weakly c-closed as well. In a subsequent work, Koana et
al. [38] extended their result for Independent Set in [39] to weakly γ-closed graphs. They
showed that Independent Set admits a polynomial kernel on weakly γ-closed graphs as
well. And they showed that a similar result holds for the G-Subgraph problem, for a fixed
family of graphs G that is closed under subgraphs, where the goal is to check if a given
graph G contains an induced subgraph on at least k vertices that belongs to G. Notice
that Independent Set is a special case of G-Subgraph with G being the family of all
edgeless graphs. Koana et al. [38] also showed that two variants of Dominating Set, namely,
Independent Dominating Set and Dominating Clique, are FPT on weakly γ-closed
graphs. But they left open the complexity of Dominating Set on weakly γ-closed graphs,
which was recently shown to be FPT by Lokshtanov and Surianarayanan [42]. Koana et
al. [38] also gave bounds and enumeration algorithms for various choices of “dense subgraphs”
in weakly γ-closed subgraphs. See [38, Table 1] for an overview of their results.

Due to space constraints, we only present our kernel for Perfect Code here. We omit
other results and the proofs of statements marked with a ♣.

2 Preliminaries

For a positive integer ℓ, we denote the set {1, . . . , ℓ} by [ℓ]. We define the functions
α, β : N → N as follows: α(a, b) = (a−1)b+1 and β(a, b) = 2[(a−1)(b−1)+1] for every a, b ∈ N.
All graphs in this paper are simple and undirected. For a graph G, V (G) and E(G) respectively
denote the vertex set and edge set of G. For a vertex v ∈ V (G), NG(v) and NG[v] respectively
denote the open and closed neighbourhood of v in G. Also, dG(v) denotes the degree of v in
G, i.e., dG(v) = |NG(v)|. For a set V ′ ⊆ V (G), NG(V ′) and NG[V ′] respectively denote the
open neighbourhood and closed neighbourhood of V ′, i.e., NG(V ′) = (

⋃
v∈V ′ NG(v)) \ V ′ and

NG[V ′] =
⋃

v∈V ′ NG[v]. And CNG(V ′) denotes the common neighbours of the vertices in V ′,
i.e., CNG(V ′) =

⋂
v∈V ′ NG(v). Note that CNG(V ′) ⊆ V (G) \ V ′, because for every v ∈ V ′,

we have v /∈ NG(v), and therefore, v /∈ CNG(V ′). Also, for V ′ ⊆ V (G) with |V ′| ≥ 2, by
N

[2]
G (V ′), we denote the union of the sets of common neighbours of every pair of vertices in V ′,

i.e., N
[2]
G (V ′) = (

⋃
u,v∈V ′

u ̸=v

CNG({u, v})) \ V ′. For a pair of vertices u, v ∈ V (G), distG(x, y)

denotes the length of a shortest path between x and y in G. We may omit the subscript
when the graph G is clear from the context.
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Consider a graph G. By a maximal clique (resp. maximal independent set) in G, we
mean an inclusion-wise vertex maximal clique (resp. independent set) in G. That is, a clique
Q (resp. an independent set I) in G is a maximal clique (resp. a maximal independent
set) if G[V (Q) ∪ {v}] is not a clique (resp. I ∪ {v} is not an independent set) for any
v ∈ V (G) \ V (Q) (resp. v ∈ V (G) \ I). We say that an independent set I in G is 2-maximal
if I is a maximal independent set and (I \ {v}) ∪ {u, u′} is not an independent set for every
v ∈ I and u, u′ ∈ V (G). That is, I is 2-maximal if I is maximal and no vertex in I can be
replaced by 2 vertices from V (G) \ I.

We use Q(G) to denote the family of all maximal cliques in G. For ℓ > 0, we denote by
Qℓ(G), the family of all maximal cliques in G of size at least ℓ. We also define two vertex
subsets as follows: Lℓ(G) =

⋃
Q∈Qℓ(G) V (Q), and Rℓ(G) = V (G) \ Lℓ(G). That is, Lℓ(G) is

the set of all vertices in G that belong to at least one maximal clique of size at least ℓ, and
Rℓ(G) contains the remaining vertices. Notice that

{
Lℓ(G), Rℓ(G)

}
is a partition of V (G)

(with one of the parts possibly being empty).

2.1 Summary of Results From [26] and [39]

In this section, we briefly summarise the results from [26] and [39] that we will be using
throughout. Following the notation of Koana et al. [39], for positive integers a, b and c, we
let Rc(a, b) = (c − 1)

(
b−1

2
)

+ (a − 1)(b − 1) + 1.

▶ Lemma 1 ([39]). For positive integers a, b and c, every c-closed graph with at least Rc(a, b)
vertices contains either a clique of size a or an independent set of size b.

▶ Remark 2. The proof of the above lemma [39, Proof of Lemma 3.1], in fact, shows that if
G is a c-closed graph on at least Rc(a, b) vertices such that G contains no clique of size a,
then any 2-maximal independent set in G has size at least b.

Recall that the Independent Set problem takes a graph G and a non-negative integer
k as input, and the task is to decide if G has an independent set of size at least k. Koana et
al. [39] also showed that the Independent Set problem on c-closed graphs admits a kernel
with ck2 vertices. Specifically, they proved the following.

▶ Lemma 3 ([39]). There is an algorithm that, given a graph G and a non-negative integer
k as input, runs in polynomial time, and outputs a graph G′ such that (i) G′ is an induced
subgraph of G, (ii) G has an independent set of size k if and only if G′ has an independent
set of size k, and (iii) if |V (G′)| > ck2 then any maximal independent set in G′ has size at
least k.

▶ Corollary 4 (♣). There is an algorithm that, given an n-vertex c-closed graph G and a
non-negative integer k as input, runs in time 2O(k log(ck))nO(1), and either returns a k-sized
independent set of G if one exists, or correctly reports that no such set exists.

Note that Corollary 4 follows immediately from Lemma 3. Fox et al. [26] showed that the
number of maximal cliques in an n-vertex c-closed graph is bounded by 2O(c)n2. Specifically,
they proved the following.

▶ Lemma 5 ([26]). Let G be a c-closed graph on n vertices. Then G contains at most
3(c−1)/3n2 maximal cliques. Moreover, there is an algorithm that, given G as input, runs in
time 2O(c)nO(1), and enumerates all maximal cliques in G.
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2.2 Some Preliminary Lemmas
We now prove a few lemmas that we will be using throughout this paper.

▶ Lemma 6 ([39]). Let G be a c-closed graph, and Q a maximal clique in G. Then, for any
v ∈ V (G) \ V (Q), v has at most c − 1 neighbours in V (Q), i.e., |N(v) ∩ V (Q)| ≤ c − 1.

Lemma 6 implies that in a c-closed graph, every “small” dominating set must intersect
every “large” clique.

▶ Corollary 7 (♣). Let G be a c-closed graph and k a non-negative integer. Let D be a
dominating set of G of size at most k, and C a maximal clique in G of size at least (c−1)k+1.
Then, D ∩ V (C) ̸= ∅.

We now show that if a c-closed graph G contains sufficiently many large cliques, then G

contains a sufficiently large independent set as well.

▶ Lemma 8 (♣). Let ℓ be a positive integer, and G be a c-closed graph such that |Qβ(c,ℓ)(G)| ≥
ℓ. Then, G has an independent set of size ℓ. Moreover, there is a polynomial time algorithm
that, given a c-closed graph G and distinct Q1, Q2, . . . , Qℓ ∈ Qβ(c,ℓ)(G) as input, returns an
ℓ-sized independent set in G.

▶ Lemma 9 (♣). Let ℓ be a positive integer. Let G be a graph and V1, V2, . . . , Vℓ ⊆ V (G) be
such that

⋃
i∈[ℓ] Vi = V (G), and G[Vi] is a clique for every i ∈ [ℓ]. Then, any independent

set in G has size at most ℓ.

▶ Lemma 10. There is an algorithm that, given an n-vertex c-closed graph G and a
positive integer ℓ as input, runs in time 2O(c)nO(1), and either returns an independent
set of size at least ℓ, or correctly concludes that every independent set in G has size at most
(ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1 = O(c · ℓ2).

Proof. Given G and ℓ as input, our algorithm works as follows. We first use the algorithm
in Lemma 5 to construct Q(G) and Qβ(c,ℓ)(G) in time 2O(c)nO(1). If |Qβ(c,ℓ)(G)| ≥ ℓ, then
we return an ℓ-sized independent set constructed using the algorithm in Lemma 8.

Otherwise we construct the sets Lβ(c,ℓ)(G), and Rβ(c,ℓ)(G). By the definition of the sets
Lβ(c,ℓ)(G), and Rβ(c,ℓ)(G), the induced subgraph G′ = G[Rβ(c,ℓ)(G)] contains no clique of size
β(c, ℓ). And G′, being an induced subgraph of G, is c-closed. So, if |V (G′)| ≥ Rc(β(c, ℓ), ℓ),
then by Lemma 1, G′ contains an independent set of size ℓ. And we return a 2-maximal
independent set in G′, which can be computed in polynomial time, and which, by Remark 2,
has size at least ℓ.

Otherwise, if |Qβ(c,ℓ)(G)| ≤ ℓ − 1, and |V (G′)| = |Rβ(c,ℓ)(G)| ≤ Rc(β(c, ℓ), ℓ) − 1, then
we return that every independent set in G has size at most (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1.

Note that the only time consuming step in this algorithm is the construction of the
families Q(G) and Qβ(c,ℓ)(G) in time 2O(c)nO(1). The rest of the steps run in polynomial
time.

To see the correctness of the last step, assume that |Qβ(c,ℓ)(G)| ≤ ℓ − 1 and |V (G′)| =
|Rβ(c,ℓ)(G)| ≤ Rc(β(c, ℓ), ℓ) − 1. Note that by definition, Lβ(c,ℓ)(G) =

⋃
Q∈Qβ(c,ℓ)(G) V (Q).

And therefore, by Lemma 9, any independent set in G[Lβ(c,ℓ)(G)] has size at most
|Qβ(c,ℓ)(G)| ≤ ℓ − 1. Finally, as

{
Lβ(c,ℓ)(G), Rβ(c,ℓ)(G)

}
is a partition of V (G), for

any independent set I ⊆ V (G), we have |I| = |I ∩ Lβ(c,ℓ)(G)| + |I ∩ Rβ(c,ℓ)(G)| ≤
(ℓ − 1) + |Rβ(c,ℓ)(G)| ≤ (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1. Hence, the lemma follows. ◀
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▶ Lemma 11 (♣). Let G be a graph and k a non-negative integer. Let I be an independent
set in G of size k +1. Then, for any dominating set D of G, if |D| ≤ k, then D ∩N [2](I) ̸= ∅.
Moreover, if G is c-closed, then |N [2](I)| ≤ (c − 1)

(
k+1

2
)
.

▶ Lemma 12 (♣). Let G be a c-closed graph, and Y ⊆ V (G) be such that |Y | ≤ c − 1. Then,
the graph G[CN(Y )] is (c − |Y |)-closed.

3 A Polynomial Kernel for Perfect Code on c-closed graphs

To design our kernel, we consider a slightly more general version of the problem, which we
call BW-Perfect Code. A bw-graph is a graph G along with a partition of V (G) into two
parts, B and W . We do not require that both B and W be non-empty. We call the elements
of B black vertices and the elements of W white vertices, and for convenience we write that
(G, B, W ) is a bw-graph. A bw-perfect code of (G, B, W ) is a set of vertices D ⊆ B such
that |N [v] ∩ D| = 1 for every v ∈ V (G). That is, a bw-perfect code is a set of black vertices
that dominates every vertex of G exactly once. The definition of a perfect code immediately
implies the following observation.

▶ Observation 13. Let (G, B, W ) be a bw-graph, and D ⊆ B a bw-perfect code of G. Then,
(i) D is a dominating set of G, and (ii) distG(x, y) ≥ 3 for every pair of distinct vertices
x, y ∈ D.

We now formally define the BW-Perfect Code problem below.

BW-Perfect Code Parameter: k + cl(G)
Input: A bw-graph (G, B, W ) and a non-negative integer k.
Question: Does (G, B, W ) have a bw-perfect code of size at most k?

It is not difficult to see that an instance (G, k) of Perfect Code can be reduced to
an equivalent instance ((G, B, W ), k) of BW-Perfect Code by taking B = V (G) and
W = ∅. We now move to designing a kernel for BW-Perfect Code on c-closed graphs.
We first prove that for each fixed positive integer c, the BW-Perfect Code problem on
c-closed graphs admits a kernel with O(k3(2c−1)) vertices. And then argue that an instance
of BW-Perfect Code can be reduced in polynomial time to an equivalent instance of
Perfect Code, which will give us the required kernel. Specifically, we prove the following
theorem.

▶ Theorem 14. Let c be a fixed positive integer. There is an algorithm that, when given an
instance ((G, B, W ), k) of BW-Perfect Code as input, where G is an n-vertex c-closed
graph, runs in polynomial time, and returns an equivalent instance ((G′, B′, W ′), k′) of the
BW-Perfect Code problem such that G′ is a c-closed graph and |V (G′)|+k′ = O(k3(2c−1)).

In addition to Theorem 14, we also need the following two intermediate lemmas to prove
that Perfect Code admits a kernel. The first of these lemmas deals with the Perfect
Code problem on 1-closed graphs, (which are precisely graphs in which every connected
component is a clique), and the second one presents a polynomial time reduction from
BW-Perfect Code to Perfect Code.

▶ Lemma 15 (♣). Perfect Code is polynomial time solvable on 1-closed graphs.

▶ Lemma 16. Let c > 1 be a fixed integer. There is an algorithm that given an instance
((G′, B′, W ′), k′) of BW-Perfect Code, runs in polynomial time, and returns an equivalent
instance (G′′, k′′) of Perfect Code such that (i) G′′ is c-closed if G′ is c-closed, (ii)
|V (G′′)| = O(|V (G′)|), and (ii) k′′ ≤ k′ + 1.
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Finally, as a consequence of Theorem 14, Lemmas 15 and 16, we derive the following.

▶ Theorem 17. Let c be a fixed positive integer. Perfect Code on c-closed graphs admits
a kernel with O(k3(2c−1)) vertices.

Proof. Let (G, k) be an instance of Perfect Code, where G is a c-closed graph. Our
kernelization algorithm returns an equivalent instance (G′′, k′′) of Perfect Code as follows.
If c = 1, then we use the algorithm in Lemma 15 to solve the Perfect Code problem
on (G, k). And if (G, k) is a yes-instance, we take (G′′, k′′) to be a trivial yes-instance of
Perfect Code with |V (G′′)| + k′′ = O(k), and otherwise we take (G′′, k′′) to be a trivial
no-instance of Perfect Code with |V (G′′)| + k′′ = O(k), and return (G′′, k′′).

If c > 1, then we create from (G, k), an equivalent instance ((G, B, W ), k) of BW-
Perfect Code by taking B = V (G) and W = ∅. And then apply the algorithm in
Theorem 14, to obtain an equivalent instance ((G′, B′, W ′), k′) of BW-Perfect Code,
where |V (G′)| + k′ = O(k3(2c−1)). Finally, we apply the algorithm in Lemma 16 to obtain
from ((G′, B′, W ′), k′) an equivalent instance (G′′, k′′) of Perfect Code. Note that as
the algorithms in Lemma 15, Theorem 14 and Lemma 16, run in polynomial time, our
kernelization algorithm returns (G′′, k′′) in polynomial time. And since Lemma 16 guarantees
that |V (G′′)| = O(|V (G′)|), and k′′ ≤ k′ + 1, we have |V (G′′)| + k′′ = O(k3(2c−1)), and the
theorem follows. ◀

So now we only need to prove Theorem 14. We first give a sketch of the proof of
Lemma 16.

Proof Sketch of Lemma 16. Consider an instance ((G′, B′, W ′), k′) of BW-Perfect Code.
If W ′ = ∅, then we take G′′ = G′ and k′′ = k′. Note that this choice of G′′ and k′′ satisfies all
the properties stated in the lemma. So, assume that W ′ ̸= ∅. Let V (G) = {v1, v2, . . . , vn}, and
without loss of generality let W ′ = {v1, v2, . . . , vr} for some r ≤ n. We define the graph G′′

as follows: V (G′′) = X ∪ Y ∪ Z and E(G′′) = E1 ∪ E2 ∪ E3 ∪ E4, where X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yr} and Z = {z, z1, z2, . . . , zk′+2}; and E1 = {xixj | vivj ∈ E(G′)},
E2 = {xiyi | i ∈ [r]} and E3 = {yiz | i ∈ [r]} and E4 = {zzi | i ∈ [k′ + 2]}. And we set
k′′ = k′ + 1. Note that G′′[X] is an isomorphic copy of G′. The set Y is another copy of
W ′. Thus, {x1, x2, . . . , xr} and Y are two copies of W ′, and the set E2 is a matching in G′′

between the two copies.
First, |V (G′′)| = |X|+ |Y |+ |Z| = |V (G′)|+ |W ′|+(k′ +3) = O(|V (G′)|). Second, we can

show that ((G′, B′, W ′), k′) is a yes-instance of BW-Perfect Code if and only if (G′′, k′′)
is a yes-instance of Perfect Code. ◀

The rest of this section is dedicated to proving Theorem 14. To that end, we first
define two functions γ, µ : N → N as follows. (Recall that α(a, b) = (a − 1)b + 1 and
β(a, b) = 2[(a−1)(b−1)+1].) For a, b ∈ N, we have γ(1, b) = b+1, and γ(a, b) = bµ(a−1, b)+1;
and µ(a, b) = γ(a, b) + Ra(β(a, γ(a, b) + 1), γ(a, b) + 1) − 1. These functions γ and µ will be
used to bound the size of independent sets in G when ((G, B, W ), k) is a yes-instance.

▶ Observation 18. Observe that for every fixed a, i ∈ N, and for b ∈ N, we have Ri(a, b) =
O(b2) and β(a, b) = O(b). Therefore, we have

γ(1, b) = O(b) µ(1, b) = O(b) + R1(O(b), O(b)) = O(b2)
γ(2, b) = bµ(1, b) + 1 = O(b3) µ(2, b) = O(b3) + R2(O(b3), O(b3)) = O(b6)
γ(3, b) = bµ(2, b) + 1 = O(b7) µ(3, b) = O(b7) + R3(O(b7), O(b7)) = O(b14)
· · · · · ·
γ(a, b) = O(b2a−1) µ(a, b) = O(b2(2a−1)).
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Outline of the kernel. Our kernel for BW-Perfect Code has two parts. In the first part,
we bound the size of independent sets in (G, B, W ) using Reduction Rule 19, and in the
second part, we bound the size of cliques in (G, B, W ) using Reduction Rules 27-29. Once
the size of cliques and independent sets are bounded, we apply Lemma 1.

To bound the size of independent sets in case ((G, B, W ), k) is a yes-instance, observe
the following fact. Consider an independent set I in G and a bw-perfect code D ⊆ B of
size at most k. Then, we can partition I into at most k parts, say, I1, I2, . . . , Ik, such that
for each j ∈ [k], there exists a unique vertex vj ∈ D that dominates Ij , i.e., Ij ⊆ N(vj).
Thus, to bound |I|, we only need to bound |Ij | for every j ∈ [k]. More generally, we only
need to bound the size of independent sets contained in N(v) for every v ∈ V (G). To do
this, suppose that for every Y ⊆ V (G) with |Y | = 2 we have already managed to bound
the size of independent sets contained in CN(Y ) by some function of c and k, say, f(c, k).
That is, every independent set with at least 2 common neighbours has size at most f(c, k).
Now, consider v ∈ V (G). And let I ′ be an independent set of size at least k · f(c, k) + 1
contained in N(v) and D a bw-perfect code of size at most k. Then, we must have v ∈ D.
If not, there exists u ∈ D that dominates at least |I ′|/k vertices of I. That is, there exist
u ∈ D and I ′′ ⊆ I ′ such that |I ′′| ≥ |I ′|/k > f(c, k) and I ′′ ⊆ N(u). But note that
I ′′ ⊆ I ′ ⊆ N(v). Thus, I ′′ ⊆ CN({u, v}) and |I ′′| > f(c, k), which we have already ruled out
to be impossible. By repeating these arguments, we can show that, to obtain the bound of
f(c, k) for independent sets with 2 common neighbours, we only need to bound the size of
independent sets with 3 common neighbours. This train of arguments only needs to continue
until we reach independent sets with c − 1 common neighbours. Thus, we start with sets Y of
size c − 1 and bound the size of independent sets contained in CN(Y ). Then proceed to sets
Y of size c − 2 and so on. This idea is formalised in Reduction Rule 19. But the difficulty
comes in checking if CN(Y ) contains an independent set of the required size, which cannot
be done in time 2O(c)nO(1). To overcome this, we use the weaker result of Lemma 10, which
causes the bound on the independent set size to increase exponentially in each successive
stage. Thus, after c − 1 stages, we only manage to obtain a bound of µ(c − 1, k) = kO(2c) for
the size of independent sets contained in N(v) for every v ∈ V (G). And this bound is where
the kernel size comes from.

In the second part, bounding the clique size is fairly straightforward. This involves
removing twin vertices (Reduction Rule 27), and identifying irrelevant vertices (vertices
that cannot belong to any bw-perfect code of size at most k) and colouring them white or
removing them (Reduction Rules 28 and 29). (Also, each time we introduce a reduction rule,
we apply it exhaustively. So from that point onwards, we would assume that the reduction
rule is no longer applicable.)

We now formally introduce the following reduction rule.

▶ Reduction Rule 19. For each i ∈ [c − 1], we introduce Reduction Rule 19.i as follows. Let
((G, B, W ), k) be an instance of BW-Perfect Code. For each fixed set Y ⊆ V (G) with
|Y | = c − i, we run the algorithm in Lemma 10 on the graph G[CN(Y )] with ℓ = γ(i, k) + 1.
If the algorithm returns an independent set I of size ℓ, then delete a vertex v ∈ I from G,
and colour NG(v) \ Y white. That is, we create a new instance ((G′, B′, W ′), k) as follows:
G′ = G − v, B′ = B \ (NG[v] \ Y ) and W ′ = V (G′) \ B′ = W ∪ (NG[v] \ Y ). We keep
repeating this proceudre until the algorithm in Lemma 10 returns that every independent set
in G[CN(Y )] has size at most (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1. Also, we apply Reduction Rule 19.i
in the increasing order of i. That is, we first apply Reduction Rule 19.1 exhaustively, and for
each i ∈ [c − 1] \ {1}, we apply Reduction Rule 19.i only if Reduction Rule 19.(i − 1) is no
longer applicable.
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We now observe the following fact, which will be useful in establishing the correctness of
Reduction Rule 19.

▶ Observation 20. Fix i ∈ [c − 1]. For any Y ⊆ V (G) with |Y | = c − i, by Lemma 12,
the subgraph G[CN(Y )] is i-closed. Therefore, after an exhaustive application of Reduction
Rule 19.i, by Lemma 10, every independent set in G[CN(Y )] has size at most γ(i, k) +
Ri(β(i, γ(i, k) + 1), γ(i, k) + 1) − 1 = µ(i, k). In particular, when i = c − 1, we get that after
an exhaustive application of Reduction Rule 19.(c−1), for every v ∈ V (G), every independent
set in G[N(v)] has size at most µ(c − 1, k).

▶ Lemma 21. Let ((G, B, W ), k) be an instance of BW-Perfect Code. Let Y ⊆ V (G) be
such that |Y | = c − 1, and I ⊆ CN(Y ) be an independent set with |I| ≥ γ(1, k). Then, for
any bw-perfect code D ⊆ B of (G, B, W ) with |D| ≤ k, we have |D ∩ Y | = 1.

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ) with |D| ≤ k. We first claim that
D ∩ Y ̸= ∅. Assume for a contradiction that D ∩ Y = ∅. Now, since |I| ≥ γ(1, k) = k + 1
and |D| ≤ k, by the pigeonhole principle, there exists a vertex u ∈ D that dominates
at least two vertices of I, say, w1, w2 ∈ I. That is, u ∈ N [w1] ∩ N [w2]. Since I is an
independent set, and uw1, uw2 ∈ E(G), we can conclude that u ̸= w1 and u ̸= w2. Thus,
u ∈ N(w1) ∩ N(w2). But since since w1, w2 ∈ I ⊆ CN(Y ), we get that Y ⊆ N(w1) ∩ N(w2).
Thus, Y ∪ {u} ⊆ N(w1) ∩ N(w2). Because of our assumption that D ∩ Y = ∅, we have u /∈ Y ,
and thus |Y ∪ {u}| = c. Thus, w1 and w2 have at least c common neighbours, and therefore
w1w2 ∈ E(G), which is not possible as w1and w2 belong to the independent set I. Thus,
D ∩ Y ̸= ∅. Now, if there exist y1, y2 ∈ D ∩ Y , where y1 ≠ y2, then for any x ∈ I, we have
y1, y2 ∈ N [x] ∩ D, which, by the definition of a bw-perfect code, is not possible. Therefore,
we conclude that |D ∩ Y | = 1. ◀

▶ Lemma 22. Fix i ∈ [c − 1] \ {1}. Let ((G, B, W ), k) be an instance of BW-Perfect
Code to which Reduction Rule 19.(i − 1) has been applied exhaustively. Let Y ⊆ V (G) be
such that |Y | = c − i, and I ⊆ CN(Y ) be an independent set with |I| ≥ γ(i, k). Then, for
any bw-perfect code D ⊆ B of (G, B, W ) with |D| ≤ k, we have |D ∩ Y | = 1.

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ) with |D| ≤ k. We first claim that
D ∩ Y ≠ ∅. Assume for a contradiction that D ∩ Y = ∅. Now, since |I| ≥ γ(i, k) =
kµ(i − 1, k) + 1 and |D| ≤ k, by the pigeonhole principle, there exists a vertex u ∈ D that
dominates at least µ(i−1, k)+1 vertices of I. Let I ′ ⊆ I be such that |I ′| ≥ µ(i−1, k)+1 and
u dominates I ′. That is, I ′ ⊆ N [u]. Observe first that u /∈ I ′. To see this, suppose that u ∈ I ′.
Then, for every w ∈ I ′\{u}, since u dominates w, we must have uw ∈ E(G), which contradicts
the fact that I ′ is an independent set. So, u /∈ I ′, and therefore, I ′ ⊆ N(u). And we already
have I ′ ⊆ I ⊆ CN(Y ). We can conclude that I ′ ⊆ N(u)∩CN(Y ) = CN(Y ∪{u}). Because of
our assumption that D∩Y = ∅, we have u /∈ Y , and thus |Y ∪ {u}| = c−i+1 = c−(i−1). That
is, Y ∪{u} is a set of size c−(i−1), and I ′ is an independent set such that I ′ ⊆ CN(Y ∪{u}),
and |I ′| ≥ µ(i − 1, k) + 1. But this conclusion contradicts Observation 20 because of our
assumption that Reduction Rule 19.(i − 1) has been applied exhaustively. Thus, D ∩ Y ̸= ∅.
Now, if there exist y1, y2 ∈ D∩Y , where y1 ̸= y2, then for any x ∈ I, we have y1, y2 ∈ N [x]∩D,
which, by the definition of a bw-perfect code, is not possible. Therefore, we conclude that
|D ∩ Y | = 1. ◀

▶ Lemma 23. Reduction Rule 19.i is safe.
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Proof. Let ((G′, B′, W ′), k) be the instance obtained from ((G, B, W ), k) by a single ap-
plication of Reduction Rule 19.i. Then, there exists Y ⊆ V (G) with |Y | = c − i, and an
independent set I ⊆ CN(Y ) with |I| = γ(i, k) + 1 and a vertex v ∈ I such that G′ = G − v,
B′ = B \ (NG[v] \ Y ) and W ′ = V (G′) \ B′ = W ∪ (NG[v] \ Y ). We shall show that
((G, B, W ), k) and ((G′, B′, W ′), k) are equivalent instances.

First consider the case when i = 1. Then, |Y | = c − 1, and |I| = γ(1, k) + 1. Assume
that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B be a bw-perfect
code of (G, B, W ) of size at most k. Then, by Lemma 21, |D ∩ Y | = 1. Let {y} = D ∩ Y .
But then since y ∈ D, and I ⊆ CN(Y ) ⊆ N(y), we have I ∩ D = ∅. In particular v /∈ D.
Also, for any w ∈ NG(v) \ Y , we have distG(y, w) ≤ 2, and thus, by Observation 13, we have
w /∈ D. Thus, D ∩ (NG[v] \ Y ) = ∅, and therefore, D ⊆ B \ (NG[v] \ Y ) = B′. Thus, D is a
bw-perfect code of (G′, B′, W ′) as well.

Conversely, assume that ((G′, B′, W ′), k) is a yes-instance, and let D′ ⊆ B′ be a bw-perfect
code of (G′, B′, W ′) with |D′| ≤ k. We claim that D′ is a bw-perfect code of (G, B, W ) as well.
Note that for any x ∈ V (G) \ {v}, we have NG′ [x] = NG[x] \ {v}. Therefore, since v /∈ D′, we
have |D′ ∩ NG[x]| = |D′ ∩ NG′ [x]| = 1. So, now we only need to show that |D′ ∩ NG[v]| = 1.
Note that NG[v] = (NG[v] \ Y ) ∪ (NG[v] ∩ Y ). First, since NG[v] \ Y ⊆ W ′, and D′ ⊆ B′, we
get that D′ ∩ (NG[v] \ Y ) = ∅. So we only need to show that |D′ ∩ (NG[v] ∩ Y )| = 1. Now,
observe that as |I \ {v}| = γ(1, k), by Lemma 21, we have |D′ ∩ Y | = 1. Let {y′} = D′ ∩ Y .
Then, y′ ∈ D′ ∩ NG[v], and in fact, {y′} = D′ ∩ (NG[v] ∩ Y ). This completes the proof for
the case when i = 1.

Now, assume that i > 1. First, by assumption, Reduction Rule 19.j is not applicable to
((G, B, W ), k) for any j ∈ [i−1]. And we have |Y | = c−i, and |I| = γ(i−1, k)+1. Assume that
((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B be a bw-perfect code
of (G, B, W ) of size at most k. Then, by Lemma 22, we have |D ∩ Y | = 1. Let {y} = D ∩ Y .
But then since y ∈ D, and I ⊆ CN(Y ) ⊆ N(y), we have I ∩ D = ∅. In particular v /∈ D.
Also, for any w ∈ NG(v) \ Y , we have distG(y, w) ≤ 2, and thus, by Observation 13, we have
w /∈ D. Thus, D ∩ (NG[v] \ Y ) = ∅, and therefore, D ⊆ B \ (NG[v] \ Y ) = B′. Thus, D is a
bw-perfect code of (G′, B′, W ′) as well.

Conversely, assume that ((G′, B′, W ′), k) is a yes-instance, and let D′ ⊆ B′ be a bw-perfect
code of (G′, B′, W ′) with |D′| ≤ k. We claim that D′ is a bw-perfect code of (G, B, W ) as well.
Note that for any x ∈ V (G) \ {v}, we have NG′ [x] = NG[x] \ {v}. Therefore, since v /∈ D′, we
have |D′ ∩ NG[x]| = |D′ ∩ NG′ [x]| = 1. So, now we only need to show that |D′ ∩ NG[v]| = 1.
Note that NG[v] = (NG[v] \ Y ) ∪ (NG[v] ∩ Y ). First, since NG[v] \ Y ⊆ W ′, and D′ ⊆ B′, we
get that D′ ∩ (NG[v] \ Y ) = ∅. So we only need to show that |D′ ∩ (NG[v] ∩ Y )| = 1. Now,
observe that as |I \ {v}| = γ(i, k), by Lemma 22, we have |D′ ∩ Y | = 1. Let {y′} = D′ ∩ Y .
Then, y′ ∈ D′ ∩ NG[v], and in fact, {y′} = D′ ∩ (NG[v] ∩ Y ). This completes the proof for
the lemma. ◀

▶ Remark 24. Observe that each application of Reduction Rule 19 can be executed in time
2O(c)nO(1). Also, for each set Y ⊆ V (G) with |Y | ≤ c − 1, Reduction Rule 19 is applied only
at most |CN(Y )| ≤ n times. And note that the set Y has at most

∑c−1
i=1

(
n
i

)
= nO(c) choices.

Thus, Reduction Rule 19 can be applied exhaustively in time 2O(c)nO(c). Since c is a fixed
constant, we have 2O(c)nO(c) = nO(1). That is, we can exhaustively apply Reduction Rule 19
in polynomial time. So, from now on, we assume that Reduction Rule 19 has been applied
exhaustively.

The following lemma bounds the size of an independent set in G if ((G, B, W ), k) is a
yes-instance.
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▶ Lemma 25. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)
is a yes-instance, then every independent set in G has size at most γ(c, k) − 1.

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B

be a bw-perfect code of (G, B, W ) of size at most k. Let I ⊆ V (G) be an independent set.
Assume for a contradiction that |I| ≥ γ(c, k) = kµ(c − 1, k) + 1. Then, since |D| ≤ k, by the
pigeonhole principle, there exists v ∈ D such that v dominates at least µ(c − 1, k) + 1 vertices
of I. That is, there exists an independent set I ′ such that I ′ ⊆ N(v) and |I ′| ≥ µ(c−1, k)+1,
which, by Observation 20, is not possible, as Reduction Rule 19, and in particular, Reduction
Rule 19.(c − 1) has been applied exhaustively. ◀

We have thus bounded the size of every independent set in G for yes-instances. This
immediately bounds the number of large cliques (by Lemma 8), as well as the number of
vertices that do not belong to any large maximal clique (by Lemma 1).

▶ Lemma 26. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)
is a yes-instance, then
1. |Qβ(c,γ(c,k))(G)| ≤ γ(c, k) − 1, and
2. |Rβ(c,γ(c,k))(G)| ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1.

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code.
1. If |Qβ(c,γ(c,k))(G)| ≥ γ(c, k), then by Lemma 8, G contains an independent set of size

γ(c, k), which contradicts Lemma 25.
2. By the definition of Rβ(c,γ(c,k))(G), the induced subgraph G[Rβ(c,γ(c,k))(G)] of G con-

tains no clique of size β(c, γ(c, k)). By Lemma 25, the graph G, and hence the graph
G[Rβ(c,γ(c,k))(G)], contains no independent set of size γ(c, k). The bound then follows
from Lemma 1. ◀

In the next three reduction rules we bound the size of every clique in G as well, which, in
turn, will help us bound |Lβ(c,γ(c,k))(G)|. We begin by introducing a reduction rule, which
says that if two vertices have same closed neighborhood and the same colour, then we can
safely delete one of them.

▶ Reduction Rule 27. Let ((G, B, W ), k) be an instance of BW-Perfect Code. Let
x, y ∈ V (G) be distinct vertices such that NG[x] = NG[y]. If x, y ∈ B or x, y ∈ W , then
delete x.

Let Q be a maximal clique of size at least α(c, k). By Corollary 7, exactly one vertex
from V (Q) is in every bw-perfect code. Therefore, no vertex from N(V (Q)) belongs to a
bw-perfect code of size at most k. So we color N(V (Q)) white in the next reduction rule.

▶ Reduction Rule 28. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let
Q ∈ Qα(c,k)(G). Colour N(V (Q)) white. That is, we construct the instance ((G, B′, W ′), k)
of BW-Perfect Code, where W ′ = W ∪ N(V (Q)), and B′ = B \ N(V (Q)).

Let Q ∈ Qα(c,k)+1(G). We define Z(Q) to be the set of vertices in V (Q) that have neigh-
bours in some other maximal clique of size at least α(c, k), i.e., Z(Q) = {u ∈ V (Q) | uv ∈
E(G) for some v ∈ V (Q′), where Q′ ∈ Qα(c,k)(G), u /∈ V (Q′), and Q′ ̸= Q}. In the follow-
ing reduction rule we show that we can safely delete Z(Q).

▶ Reduction Rule 29. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If there
exists Q ∈ Qα(c,k)+1(G) and v ∈ Z(Q), then delete v. That is, we construct the instance
((G′, B′, W ′), k) of BW-Perfect Code, where G′ = G−v, B′ = B\{v}, and W ′ = W \{v}.
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▶ Lemma 30 (♣). Reduction Rules 27, 28, and 29 are safe.

▶ Remark 31. Observe that given an instance ((G, B, W ), k) of BW-Perfect Code, using
the algorithm in Lemma 5, we can construct Qα(c,k)(G) (and Qα(c,k+1)(G)) in time 2O(c)nO(1).
And once we construct these families of cliques, we can then exhaustively apply Reduction
Rules 28 in time |Qα(c,k)(G)|nO(1) and Reduction Rule 29 in time |Qα(c,k+1)(G)|nO(1). Also,
observe that we can exhaustively apply Reduction Rule 27 in polynomial time. So from now
on, we assume that we have exhaustively applied Reduction Rules 27-29.

▶ Lemma 32 (♣). Let ((G, B, W ), k) be an instance of BW-Perfect Code. If
((G, B, W ), k) is a yes-instance, then for every Q ∈ Qβ(c,γ(c,k))(G), we have
1. Z(Q) = ∅, and
2. |V (Q)| ≤ (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2.
Finally, Lemmas 26-(1) and 32-(2) together bound |Lβ(c,γ(c,k))(G)|, which bounds |V (G)|.

▶ Lemma 33. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)
is a yes-instance, then |V (G)| = O(k3(2c−1)).

Proof. Assume that ((G, B, W ), k) is a yes-instance. Then, by Lemma 26-(1), we have
|Qβ(c,γ(c,k))(G)| ≤ γ(c, k) − 1 = O(k2c−1), and by Lemma 32-(2), we have |V (Q)| ≤ (c −
1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2 = O((γ(c, k))2) = O(k2(2c−1)). Therefore, we have

|Lβ(c,γ(c,k))(G)| = |
⋃

Q∈Qβ(c,γ(c,k))(G)

V (Q)|

≤ (γ(c, k) − 1) · (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2

= O(k2c−1) · O(k2(2c−1))

= O(k3(2c−1)).

Also, by Lemma 26-(2), we have |Rβ(c,γ(c,k))(G)| ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1 =
Rc(O(k2c−1), O(k2c−1)) = O(k2(2c−1)). Finally, since

{
Lβ(c,γ(c,k))(G), Rβ(c,γ(c,k))(G)

}
is

a partition of V (G), we conclude that |V (G)| = O(k3(2c−1)). ◀

Each of our reduction rules is safe and by Remarks 24 and 31, all the reduction rules we
introduced can be executed in polynomial time, and are applied only polynomially many
times. We have thus proved Theorem 14.

4 Conclusion

We resolved the parameterized complexity of three domination problems – Perfect Code,
CDS and PDS– on c-closed graphs. We believe that our results, along with that of Koana et
al. [39], make a convincing case for pursuing the closure of a graph as a significant structural
parameter. We also believe that the arguments in this paper can be adapted to solve
similar problems on c-closed graphs. In particular, our strategy for Perfect Code may
be applicable to the Even Dominating Set (resp. Odd Dominating Set) problems,
where the goal is to check if a graph G has a dominating set D of size at most k such that
D dominates every vertex of G an even (resp. odd) number of times. While we showed
that PDS is W[1]-hard even on 2-closed graphs, the status of Partial Vertex Cover on
c-closed graphs still remains open. It would be interesting to see if any our results extend to
weakly γ-closed graphs (see [26] and [38]) as well.



L. Kanesh, J. Madathil, S. Roy, A. Sahu, and S. Saurabh 39:17

References
1 Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier. Fixed

parameter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002. doi:10.1007/s00453-001-0116-5.

2 Jochen Alber, Hongbing Fan, Michael R. Fellows, Henning Fernau, Rolf Niedermeier, Frances A.
Rosamond, and Ulrike Stege. A refined search tree technique for dominating set on planar
graphs. J. Comput. Syst. Sci., 71(4):385–405, 2005. doi:10.1016/j.jcss.2004.03.007.

3 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed size
in degenerated graphs. Algorithmica, 54(4):544–556, 2009. doi:10.1007/s00453-008-9204-0.

4 Omid Amini, Fedor V. Fomin, and Saket Saurabh. Implicit branching and parameterized
partial cover problems. J. Comput. Syst. Sci., 77(6):1159–1171, 2011. doi:10.1016/j.jcss.
2010.12.002.

5 Nicola Apollonio and Bruno Simeone. The maximum vertex coverage problem on bipartite
graphs. Discret. Appl. Math., 165:37–48, 2014. doi:10.1016/j.dam.2013.05.015.

6 Markus Bläser. Computing small partial coverings. Inf. Process. Lett., 85(6):327–331, 2003.
doi:10.1016/S0020-0190(02)00434-9.

7 J. Adrian Bondy and Vasek Chvátal. A method in graph theory. Discret. Math., 15(2):111–135,
1976. doi:10.1016/0012-365X(76)90078-9.

8 J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory. Graduate Texts in Mathematics.
Springer, 2008. doi:10.1007/978-1-84628-970-5.

9 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993. doi:10.1137/0222038.

10 Leizhen Cai. Parameterized complexity of cardinality constrained optimization problems.
Comput. J., 51(1):102–121, 2008. doi:10.1093/comjnl/bxm086.

11 Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method for solving
fixed-cardinality optimization problems. In Hans L. Bodlaender and Michael A. Langston,
editors, Parameterized and Exact Computation, Second International Workshop, IWPEC 2006,
Zürich, Switzerland, September 13-15, 2006, Proceedings, volume 4169 of Lecture Notes in
Computer Science, pages 239–250. Springer, 2006. doi:10.1007/11847250_22.

12 Marco Cesati. Perfect code is W[1]-complete. Inf. Process. Lett., 81(3):163–168, 2002.
doi:10.1016/S0020-0190(01)00207-1.

13 Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and al-
gorithms. ACM Comput. Surv., 38(1):2, 2006. doi:10.1145/1132952.1132954.

14 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Ker-
nelization hardness of connectivity problems in d-degenerate graphs. Discret. Appl. Math.,
160(15):2131–2141, 2012. doi:10.1016/j.dam.2012.05.016.

15 Anuj Dawar and Stephan Kreutzer. Domination problems in nowhere-dense classes. In Ravi
Kannan and K. Narayan Kumar, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009,
IIT Kanpur, India, volume 4 of LIPIcs, pages 157–168. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2315.

16 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005. doi:10.1145/1077464.1077468.

17 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

18 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995. doi:10.1016/
0304-3975(94)00097-3.

19 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

STACS 2022

https://doi.org/10.1007/s00453-001-0116-5
https://doi.org/10.1016/j.jcss.2004.03.007
https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1016/j.jcss.2010.12.002
https://doi.org/10.1016/j.jcss.2010.12.002
https://doi.org/10.1016/j.dam.2013.05.015
https://doi.org/10.1016/S0020-0190(02)00434-9
https://doi.org/10.1016/0012-365X(76)90078-9
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1137/0222038
https://doi.org/10.1093/comjnl/bxm086
https://doi.org/10.1007/11847250_22
https://doi.org/10.1016/S0020-0190(01)00207-1
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1016/j.dam.2012.05.016
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2315
https://doi.org/10.1145/1077464.1077468
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4612-0515-9


39:18 Further Exploiting c-Closure for FPT Algorithms and Kernels

20 John A. Ellis, Hongbing Fan, and Michael R. Fellows. The dominating set problem is
fixed parameter tractable for graphs of bounded genus. J. Algorithms, 52(2):152–168, 2004.
doi:10.1016/j.jalgor.2004.02.001.

21 Michael R. Fellows and Mark N. Hoover. Perfect domination. Australas. J Comb., 3:141–150,
1991. URL: http://ajc.maths.uq.edu.au/pdf/3/ocr-ajc-v3-p141.pdf.

22 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pages 503–510. SIAM, 2010. doi:10.1137/1.9781611973075.43.

23 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Kernels
for (connected) dominating set on graphs with excluded topological minors. ACM Trans.
Algorithms, 14(1):6:1–6:31, 2018. doi:10.1145/3155298.

24 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006. doi:10.1137/
S0097539702419649.

25 Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques in social
networks: A new distribution-free model. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.55.

26 Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques
in social networks: A new distribution-free model. SIAM J. Comput., 49(2):448–464, 2020.
doi:10.1137/18M1210459.

27 Michael R. Garey and David S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness. W.H. Freeman, New York, 1979.

28 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. Theor. Comput. Sci.,
689:67–95, 2017. doi:10.1016/j.tcs.2017.05.017.

29 Petr A. Golovach and Yngve Villanger. Parameterized complexity for domination problems on
degenerate graphs. In Hajo Broersma, Thomas Erlebach, Tom Friedetzky, and Daniël Paulusma,
editors, Graph-Theoretic Concepts in Computer Science, 34th International Workshop, WG
2008, Durham, UK, June 30 - July 2, 2008. Revised Papers, volume 5344 of Lecture Notes in
Computer Science, pages 195–205, 2008. doi:10.1007/978-3-540-92248-3_18.

30 Qianping Gu and Navid Imani. Connectivity is not a limit for kernelization: Planar connected
dominating set. In Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics,
9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings, volume
6034 of Lecture Notes in Computer Science, pages 26–37. Springer, 2010. doi:10.1007/
978-3-642-12200-2_4.

31 Jiong Guo and Rolf Niedermeier. Linear problem kernels for NP-hard problems on planar
graphs. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors,
Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw,
Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Computer Science,
pages 375–386. Springer, 2007. doi:10.1007/978-3-540-73420-8_34.

32 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of vertex
cover variants. Theory Comput. Syst., 41(3):501–520, 2007. doi:10.1007/s00224-007-1309-3.

33 Edin Husic and Tim Roughgarden. FPT algorithms for finding dense subgraphs in c-closed
graphs. CoRR, abs/2007.09768, 2020. arXiv:2007.09768.

34 Minghui Jiang and Yong Zhang. Perfect domination and small cycles. Discret. Math. Algorithms
Appl., 9(3):1750030:1–1750030:11, 2017. doi:10.1142/S1793830917500306.

https://doi.org/10.1016/j.jalgor.2004.02.001
http://ajc.maths.uq.edu.au/pdf/3/ocr-ajc-v3-p141.pdf
https://doi.org/10.1137/1.9781611973075.43
https://doi.org/10.1145/3155298
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.4230/LIPIcs.ICALP.2018.55
https://doi.org/10.1137/18M1210459
https://doi.org/10.1016/j.tcs.2017.05.017
https://doi.org/10.1007/978-3-540-92248-3_18
https://doi.org/10.1007/978-3-642-12200-2_4
https://doi.org/10.1007/978-3-642-12200-2_4
https://doi.org/10.1007/978-3-540-73420-8_34
https://doi.org/10.1007/s00224-007-1309-3
http://arxiv.org/abs/2007.09768
https://doi.org/10.1142/S1793830917500306


L. Kanesh, J. Madathil, S. Roy, A. Sahu, and S. Saurabh 39:19

35 Iyad A. Kanj and Ljubomir Perkovic. Improved parameterized algorithms for planar dominating
set. In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of Computer
Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,
2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 399–410. Springer,
2002. doi:10.1007/3-540-45687-2_33.

36 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Intuitive algorithms
and t-vertex cover. In Tetsuo Asano, editor, Algorithms and Computation, 17th International
Symposium, ISAAC 2006, Kolkata, India, December 18-20, 2006, Proceedings, volume 4288 of
Lecture Notes in Computer Science, pages 598–607. Springer, 2006. doi:10.1007/11940128_60.

37 Joachim Kneis, Daniel Mölle, and Peter Rossmanith. Partial vs. complete domination: t-
dominating set. In Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek, Christoph
Meinel, Harald Sack, and Frantisek Plasil, editors, SOFSEM 2007: Theory and Practice of
Computer Science, 33rd Conference on Current Trends in Theory and Practice of Computer
Science, Harrachov, Czech Republic, January 20-26, 2007, Proceedings, volume 4362 of Lecture
Notes in Computer Science, pages 367–376. Springer, 2007. doi:10.1007/978-3-540-69507-3_
31.

38 Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Computing dense and sparse
subgraphs of weakly closed graphs. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors,
31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18,
2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 20:1–20:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ISAAC.2020.20.

39 Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Exploiting c-closure in kernel-
ization algorithms for graph problems. In Fabrizio Grandoni, Grzegorz Herman, and Peter
Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 65:1–65:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.65.

40 Tomohiro Koana and André Nichterlein. Detecting and enumerating small induced subgraphs
in c-closed graphs. CoRR, abs/2007.12077, 2020. arXiv:2007.12077.

41 Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Linear kernel for planar connected
dominating set. In Jianer Chen and S. Barry Cooper, editors, Theory and Applications of
Models of Computation, 6th Annual Conference, TAMC 2009, Changsha, China, May 18-22,
2009. Proceedings, volume 5532 of Lecture Notes in Computer Science, pages 281–290. Springer,
2009. doi:10.1007/978-3-642-02017-9_31.

42 Daniel Lokshtanov and Vaishali Surianarayanan. Dominating set in weakly closed graphs is
fixed parameter tractable. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages
29:1–29:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
FSTTCS.2021.29.

43 Chin Lung Lu and Chuan Yi Tang. Weighted efficient domination problem on some perfect
graphs. Discret. Appl. Math., 117(1-3):163–182, 2002. doi:10.1016/S0166-218X(01)00184-6.

44 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. The kernelization
complexity of connected domination in graphs with (no) small cycles. Algorithmica, 68(2):504–
530, 2014. doi:10.1007/s00453-012-9681-z.

45 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Somnath Sikdar.
FPT algorithms for connected feedback vertex set. J. Comb. Optim., 24(2):131–146, 2012.
doi:10.1007/s10878-011-9394-2.

46 Daniel Mölle, Stefan Richter, and Peter Rossmanith. Enumerate and expand: Improved
algorithms for connected vertex cover and tree cover. Theory Comput. Syst., 43(2):234–253,
2008. doi:10.1007/s00224-007-9089-3.

47 John W Moon and Leo Moser. On cliques in graphs. Israel journal of Mathematics, 3(1):23–28,
1965.

STACS 2022

https://doi.org/10.1007/3-540-45687-2_33
https://doi.org/10.1007/11940128_60
https://doi.org/10.1007/978-3-540-69507-3_31
https://doi.org/10.1007/978-3-540-69507-3_31
https://doi.org/10.4230/LIPIcs.ISAAC.2020.20
https://doi.org/10.4230/LIPIcs.ESA.2020.65
http://arxiv.org/abs/2007.12077
https://doi.org/10.1007/978-3-642-02017-9_31
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.29
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.29
https://doi.org/10.1016/S0166-218X(01)00184-6
https://doi.org/10.1007/s00453-012-9681-z
https://doi.org/10.1007/s10878-011-9394-2
https://doi.org/10.1007/s00224-007-9089-3


39:20 Further Exploiting c-Closure for FPT Algorithms and Kernels

48 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms, 9(1):11:1–11:23,
2012. doi:10.1145/2390176.2390187.

49 Venkatesh Raman and Saket Saurabh. Short cycles make W -hard problems hard: FPT
algorithms for W -hard problems in graphs with no short cycles. Algorithmica, 52(2):203–225,
2008. doi:10.1007/s00453-007-9148-9.

https://doi.org/10.1145/2390176.2390187
https://doi.org/10.1007/s00453-007-9148-9


Obstructions for Matroids of Path-Width at most k

and Graphs of Linear Rank-Width at most k

Mamadou Moustapha Kanté #

Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Aubière, France

Eun Jung Kim #

Université Paris-Dauphine, PSL University, CNRS, UMR 7243, LAMSADE, Paris, France

O-joung Kwon #

Department of Mathematics, Incheon National University, Incheon, South Korea
Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea

Sang-il Oum #

Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
Department of Mathematical Sciences, KAIST, Daejeon, South Korea

Abstract

Every minor-closed class of matroids of bounded branch-width can be characterized by a minimal
list of excluded minors, but unlike graphs, this list could be infinite in general. However, for
each fixed finite field F, the list contains only finitely many F-representable matroids, due to the
well-quasi-ordering of F-representable matroids of bounded branch-width under taking matroid
minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive
and does not provide any algorithm for computing these F-representable excluded minors in general.

We consider the class of matroids of path-width at most k for fixed k. We prove that for a finite
field F, every F-representable excluded minor for the class of matroids of path-width at most k has
at most 2|F|O(k2)

elements. We can therefore compute, for any integer k and a fixed finite field F,
the set of F-representable excluded minors for the class of matroids of path-width k, and this gives
as a corollary a polynomial-time algorithm for checking whether the path-width of an F-represented
matroid is at most k. We also prove that every excluded pivot-minor for the class of graphs having
linear rank-width at most k has at most 22O(k2)

vertices, which also results in a similar algorithmic
consequence for linear rank-width of graphs.
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40:2 Obstructions for Matroids of Path-Width ≤ k and Graphs of Linear Rank-Width ≤ k

1 Introduction

For a class C of graphs or matroids, a graph or a matroid is an excluded minor for C if it
does not belong to C but all of its proper minors belong to C.

Robertson and Seymour [20] proved that every minor-closed class of graphs has finitely
many excluded minors. This deep theorem has many algorithmic consequences for minor-
closed classes of graphs. One of the corollaries is that for each minor-closed class I of graphs,
there exists a monadic second-order formula φI that expresses the membership in I, as there
is a formula to decide whether a graph has a minor isomorphic to a fixed graph. However,
the proof of Robertson-Seymour theorem is non-constructive and provides no algorithm of
constructing the list of excluded minors and therefore we only know the existence of φI and
do not know how to construct φI in general.

The class of graphs of path-width at most k is minor-closed and therefore the list of
excluded minors for the class of graphs of path-width at most k is finite for each k. Actually,
this is also implied by an earlier theorem of Robertson and Seymour [19], stating that
graphs of bounded tree-width are well-quasi-ordered under taking minors. But this is still
non-constructive. In 1998, Lagergren [14] proved that each excluded minor for the class of
graphs of path-width at most k has at most 2O(k4) edges. Therefore we can now construct a
monadic second-order formula φk to decide whether the path-width of a graph is at most k for
each k. Since Courcelle’s theorem [3] allows us to decide φk on graphs of bounded tree-width
in polynomial time, we obtain a polynomial-time algorithm to decide whether an input graph
has path-width at most k for each fixed k, even though a direct algorithm was proposed by
Bodlaender and Kloks [2].

We aim to prove analogous theorems for the class of matroids of path-width at most k

and for the class of graphs of linear rank-width at most k. For a matroid M on the ground
set E(M), we define its connectivity function λM by

λM (X) = rM (X) + rM (E(M) − X) − r(M) for X ⊆ E(M),

where rM is the rank function of M . The path-width of a matroid M is defined as the
minimum width of linear orderings of its elements, called path-decompositions or linear layouts,
where the width of a path-decomposition e1, e2, . . . , en is defined as the maximum of the
values λM ({e1, e2, . . . , ei}) for all i = 1, 2, . . . , n.

For matroid path-width, we do not yet know whether there are only finitely many excluded
minors for the class of matroids of path-width at most k. Previously, Koutsonas, Thilikos,
and Yamazaki [13] showed a lower bound, proving that the number of excluded minors for
the class of matroids of path-width at most k is at least (k!)2. We remark that a class of
matroids of bounded path-width is not necessarily well-quasi-ordered under taking minors;
Geelen, Gerards, and Whittle [6] showed that there is an infinite antichain of matroids of
bounded path-width.

Geelen, Gerards, and Whittle [6] proved that for each finite field F, F-representable
matroids of bounded branch-width are well-quasi-ordered under taking minors, as a gener-
alization of the theorem of Robertson and Seymour [19] on graphs of bounded tree-width.
This implies that for each finite field F, there are only finitely many F-representable excluded
minors for the class of matroids of path-width at most k.

As a corollary, for each finite field F and an integer k, there exists a monadic second-order
formula φF

k to decide whether an F-representable matroid has path-width at most k, because
one can write a monadic second-order formula to describe whether a matroid has a fixed
matroid as a minor by Hliněný [7]. Hliněný [7] also proved an analog of Courcelle’s theorem
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for F-represented matroids, showing a fixed-parameter algorithm to decide a monadic second-
order formula on F-represented matroids of bounded branch-width, for a finite field F. This
allows us to conclude that there “exists” a fixed-parameter tractable algorithm to decide
whether an input F-represented matroid has path-width at most k by testing φF

k.
However, the theorem of Geelen, Gerards, and Whittle [6] does not provide any method

of constructing the list of F-representable excluded minors and so we did not know how to
find φF

k. We are now ready to state our main theorem, showing an explicit upper bound of
the size of every F-representable excluded minor.

▶ Theorem 1. For a finite field F and an integer k, each F-representable excluded minor for
the class of matroids of path-width at most k has at most 2|F|O(k2) elements.

Thus, by Theorem 1, we “have” an algorithm to construct φF
k and we “have” a fixed-

parameter algorithm to decide whether an input F-represented matroid has path-width at
most k. Note that there is a subtle difference between “have” and “there exist”; by Geelen,
Gerards, and Whittle [6], we knew that there exists φF

k, but we did not know how to construct
it, because their proof is non-constructive. By Theorem 1 we can enumerate all matroids of
small size to find the list of all F-representable excluded minors and therefore we can finally
construct φF

k.
We remark that Geelen, Gerards, Robertson, and Whittle [5] showed an analogous

theorem for branch-width of matroids; for each k ≥ 1, every excluded minor for the class of
matroids of branch-width at most k has at most (6k+1 − 1)/5 elements.1

By extending our method slightly, we also prove a similar theorem for the linear rank-width
of graphs as follows.

▶ Theorem 2. Each excluded pivot-minor for the class of graphs of linear rank-width at
most k has at most 22O(k2) vertices.

Since every vertex-minor obstruction is also a pivot-minor obstruction, we deduce the
following.

▶ Corollary 3. Each excluded vertex-minor for the class of graphs of linear rank-width at
most k has at most 22O(k2) vertices.

The situation is very similar to that of matroids representable over a fixed finite field.
Oum [16] showed that graphs of bounded rank-width are well-quasi-ordered under taking
pivot-minors, which implies that the list of excluded pivot-minors for the class of graphs of
linear rank-width at most k is finite. Again its proof is non-constructive and therefore it
provides no algorithm to construct the list. Jeong, Kwon, and Oum [10, 11] proved that any
list of excluded pivot-minors characterizing the class of graphs of linear rank-width at most k

has at least 2Ω(3k) graphs.
Corollary 3 answers an open problem of Jeong, Kwon, and Oum [11] on the number of

vertices of each excluded vertex-minor for the class of graphs of linear rank-width at most k.
Adler, Farley, and Proskurowski [1] characterized excluded vertex-minors for the class of
graphs of linear rank-width at most 1. Theorem 6.1 of Kanté and Kwon [12] implies that
distance-hereditary excluded vertex-minors for the class of graphs of linear rank-width at
most k have at most O(3k) vertices.

1 In [5], the connectivity function of matroids is defined to have +1, which makes (6k − 1)/5.
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40:4 Obstructions for Matroids of Path-Width ≤ k and Graphs of Linear Rank-Width ≤ k

Previously, we only knew the existence of a modulo-2 counting monadic second-order
formula Φk testing whether a graph has linear rank-width at most k. This is due to the
theorem of Courcelle and Oum [4] stating that for each graph H , there is a modulo-2 counting
monadic second-order formula to decide whether a graph has a pivot-minor isomorphic to H .
As there is a polynomial-time algorithm to decide a modulo-2 counting monadic second-order
formula for graphs of bounded rank-width (see [4, Proposition 5.7]), we can conclude that
there “exists” a polynomial-time algorithm to decide whether an input graph has linear
rank-width at most k. However, this algorithm is based on the existence of Φk, and we
did not know how to construct Φk. Finally, by Theorem 2, we know how to construct Φk

algorithmically.

Let us now explain the main ideas. We first observe that each excluded minor M has
path-width k+1, admits a linked path-decomposition, which is a path-decomposition satisfying
some Menger-like condition, and each proper minor of M has path-width at most k. Secondly,
we show that each excluded minor of sufficiently large size has many nested cuts, all of the
same value. We finally show that among those cuts of the same value, there are two nested
cuts X and Y such that M has a minor on X ∪ (E(M)\Y ) of path-width k +1, contradicting
that all proper minors of M have path-width at most k. One of the key ingredients in
finding the minor is to use the data structure proposed by Jeong, Kim, and Oum [9]. Based
on dynamic programming, they devised fixed-parameter algorithms to decide whether an
F-represented matroid has path-width at most k and to decide whether a graph has linear
rank-width at most k without using the fact that there are only finitely many excluded
minors. Their so-called B-trajectories encode partial solutions which may be extended to
the full solutions. Here is the idea behind B-trajectories. If λM (X) = k, then the dimension
of the vector space spanned by both X and E(M) \ X is exactly k. Since the underlying
field is finite, this intersection subspace has only finitely many subspaces. Combining this
observation with the idea of typical sequences appearing in Bodlaender and Kloks [2], Jeong,
Kim, and Oum [9] deduce that there are only finitely many collections, called the full sets,
of meaningful partial solutions (compact B-trajectories) at every moment of the dynamic
programming algorithm. We indeed prove that among all nested cuts ensured by the large
size of M , there are two nested cuts X and Y such that the full set associated with Y can be
obtained by applying the same linear transformation to all compact B-trajectories of the full
set associated with X, where B is the vector space spanned by both X and E(M) \ X. The
second key ingredient of our proof is the linking theorem for minors of matroids of Tutte [21]
and a corresponding theorem for pivot-minors of graphs by Oum [16]; both are analogs of
Menger’s theorem. These linking theorems will ensure that when two nested cuts display the
identical full set up to a certain linear transformation, one can obtain a proper minor or a
proper pivot-minor having the same path-width or linear rank-width, respectively.

This paper is organized as follows. Section 2 reviews necessary definitions and known
facts on matroids, branch-decompositions, path-decompositions, and Tutte’s linking theorem.
We review in Section 3 the data structure introduced in Jeong, Kim, and Oum [9]. Section 4
presents a lemma on finding many cuts of the same width inside a linked path-decomposition.
We present the proof of the main theorem in Section 5. In Section 6, we present the proof
for Theorem 2 on linear rank-width of graphs.
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2 Preliminaries

For two sets A and B, we write A△B to denote (A − B) ∪ (B − A).

2.1 Matroids and minors
A matroid is a pair (E, I) of a finite set E and a set I of subsets of E satisfying the following
three properties:
(I1) ∅ ∈ I.
(I2) If X ∈ I and Y ⊆ X, then Y ∈ I.
(I3) If X, Y ∈ I and |X| < |Y |, then there is e ∈ Y − X such that X ∪ {e} ∈ I.
A subset of E is independent if it belongs to I. The ground set of a matroid M = (E, I) is
the set E denoted by E(M). A subset of E is dependent if it is not independent.

Let M = (E, I) be a matroid on n elements. We write I(M) to denote the set of
independent sets of a matroid M . A base of a matroid is a maximal independent set. A
subset of E is coindependent if it is disjoint with some base. The rank of a set X in a matroid
M , denoted by rM (X), is the size of a maximal independent subset of X in M . The rank of
a matroid M is r(M) := rM (E(M)). The connectivity function of a matroid M , denoted by
λM is defined as

λM (X) := rM (X) + rM (E(M) − X) − r(M)

for all X ⊆ E(M). It is easy to verify that λM is submodular, that is

λM (X) + λM (Y ) ≥ λM (X ∪ Y ) + λM (X ∩ Y )

for all X, Y ⊆ E(M). Also observe that λM is symmetric, that is λM (X) = λM (E(M) − X)
for all X ⊆ E(M).

For X ⊆ E, the restriction M |X of a matroid M on X is a matroid on the ground set
X such that I ⊆ X is an independent set of M |X if and only if it is an independent set
of M . The deletion of X from M is the restriction of M on E − X, denoted as M \ X.
Another matroid operation is a contraction. The contraction of M by X, denoted as M/X,
is a matroid with the ground set E − X such that a set I ⊆ E − X is an independent set of
M/X if and only if there exists a base BX of M |X such that I ∪ BX is an independent set
of M . Note that for Y ⊆ E − X, rM/X(Y ) = rM (Y ∪ X) − rM (X), where rM is the rank
function of a matroid M . For two matroids M, N , we say that N is a minor of M if there
exist disjoint subsets C and D of E(M) such that N = M \ D/C. A minor N of M is proper
if E(N) ̸= E(M).

The following lemma is obtained easily from the above equation on the rank of a minor.

▶ Lemma 4 (Geelen, Gerards, and Whittle [6, (5.3)]). Let M = (E, I) be a matroid and
let X, C, D be disjoint subsets of E. Then λM\D/C(X) ≤ λM (X). Furthermore, the
equality holds if and only if rM (X ∪ C) = rM (X) + rM (C) and rM (E − X) + rM (E − D) =
rM (E) + rM (E − (X ∪ D)).

2.2 Vector matroids
One of the key examples of matroids is the class of vector matroids. Let A be an m × n

matrix over a field F whose columns are indexed by a set E of column labels. Then a matroid
M(A) on E can be defined from A so that X is independent in M(A) if and only if the
corresponding column vectors of A are linearly independent. Such a matroid M(A) is called a

STACS 2022
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vector matroid and A is called a representation of the matroid M(A). We say that a matroid
M is representable over F, or equivalently F-representable if there is a matrix A over F such
that M = M(A). We say a matroid M is F-represented if it is given with its representation
over F.

Instead of using matrices, we may regard a vector matroid defined from a finite set of
labeled vectors in a vector space, called a configuration as in [6]. For a configuration A, we
write M(A) to denote the matroid on A such that a subset of A is independent in M(A) if
and only if it is linearly independent in the underlying vector space. Note that vectors in a
configuration may coincide as we allow two different labels to represent the same vector. We
write ⟨A⟩ to denote the linear span of the vectors in A.

2.3 Path-width
Let E be a finite set with n elements. A function f : 2E → Z is submodular if f(X) + f(Y ) ≥
f(X ∪ Y ) + f(X ∩ Y ) for all X, Y ⊆ E and is symmetric if f(X) = f(E − X) for all X ⊆ E.
We say that a function f : 2E → Z is a connectivity function if it is submodular, symmetric,
and f(∅) = 0.

A linear layout of E is a permutation σ = e1, e2, . . . , en of E. The width of a linear layout
σ = e1, e2, . . . , en with respect to f is max1≤i<n f({e1, e2, . . . , ei}). The path-width of f is
the minimum width of all possible linear layouts of E with respect to f .

If f is the matroid connectivity function λM of a matroid M , then the linear layout
of E(M) is called a path-decomposition of M and the path-width of M is defined as the
path-width of λM .

A linear layout σ = e1, e2, . . . , en is linked if for all 0 ≤ i < j ≤ n,

min
{e1,e2,...,ei}⊆X⊆{e1,e2,...,ej}

f(X) = min
i≤ℓ≤j

f({e1, e2, . . . , eℓ}).

Nagamochi [15] presented an algorithm that runs in polynomial time for fixed k to find a
linear layout of width at most k if it exists for general connectivity functions. The key step
of his algorithm implies the following theorem easily from [15, Lemma 2], which ensures that
there always exists a linked linear layout of the optimum width. Actually, his algorithm
outputs a linked linear layout.

▶ Theorem 5 (Nagamochi [15]). If a connectivity function f has path-width k, then it has a
linked linear layout of width at most k.

2.4 Tutte’s linking theorem
▶ Theorem 6 (Tutte [21]). Let M be a matroid and A, B be disjoint subsets of E(M). Then

λM (X) ≥ k for all A ⊆ X ⊆ E(M) − B

if and only if M has a minor N on A ∪ B such that λN (A) ≥ k.

For a configuration A and X ⊆ A, let

∂A(X) := ⟨X⟩ ∩ ⟨A − X⟩.

Observe that λM(A)(X) = dim ∂A(X). The following proposition is essentially due to Geelen,
Gerards, and Whittle [6, (5.7)] and we modified their statement with the almost same proof.
Note that if N = M/C \ D is a minor of M , then we can choose D as a coindependent set in
M without changing N , see [18, Lemma 3.3.2]. Thus it is easy to satisfy the requirements of
the following proposition from Tutte’s linking theorem.
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▶ Proposition 7. Let A be a configuration over a field F and let S, T be subcollections of A

such that S ∩ T = ∅. Let C, D be disjoint subcollections of A such that C ∪ D = A − (S ∪ T ),
D is coindependent in M(A), and for the minor N = M(A)/C \ D of M(A) on S ∪ T ,

λN (S) = min
S⊆X⊆A−T

λM(A)(X) = k.

Then for all subcollections Z of A, if S ⊆ Z ⊆ A − T and λM(A)(Z) = k, then the following
hold.

(i) For all x, y ∈ ⟨Z⟩, x − y ∈ ⟨C⟩ if and only if x − y ∈ ⟨C ∩ Z⟩.
(ii) For all x, y ∈ ⟨A − Z⟩, x − y ∈ ⟨C⟩ if and only if x − y ∈ ⟨C − Z⟩.
(iii) For all x, y ∈ ∂A(Z), x − y ∈ ⟨C⟩ if and only if x = y.
(iv) If Z ′ is also a subcollection of A such that S ⊆ Z ′ ⊆ A − T and λM(A)(Z ′) = k, then

for each x ∈ ∂A(Z ′), there is a unique y ∈ ∂A(Z) such that x − y ∈ ⟨C⟩. Moreover,
x − y ∈ ⟨C ∩ (Z△Z ′)⟩.

Proof. Let M = M(A). Since D is coindependent, rM (A − D) = rM (A). Let C1 = C ∩ Z,
D1 = D ∩ Z, C2 = C − Z, and D2 = D − Z. By Lemma 4,

rM (A − Z) + rM (A − D2) = rM (A) + rM (A − (Z ∪ D2)),
rM (Z ∪ C2) = rM (Z) + rM (C2).

As rM (A − D2) = rM (A), from the first equation, we have rM (A − Z) = rM (A − (Z ∪ D2)) =
rM (T ∪ C2) and so

⟨A − Z⟩ = ⟨T ∪ C2⟩. (1)

From the second equation, we have

⟨Z⟩ ∩ ⟨C2⟩ = {0}. (2)

By symmetry between S and T and between Z and V − Z, we have

⟨Z⟩ = ⟨S ∪ C1⟩ and ⟨A − Z⟩ ∩ ⟨C1⟩ = {0}. (3)

Suppose that x, y ∈ ⟨Z⟩ and x − y ∈ ⟨C⟩. Let c1 ∈ ⟨C1⟩ and c2 ∈ ⟨C2⟩ such that
x − y = c1 + c2. Then x − y − c1 ∈ ⟨C2⟩ ∩ ⟨Z⟩. By (2), x − y − c1 = 0 and so x − y ∈ ⟨C1⟩.
This proves (i). By symmetry, (ii) is also proved.

By (i) and (ii), if x, y ∈ ∂A(Z) and x − y ∈ ⟨C⟩, then x − y ∈ ⟨C ∩ Z⟩ ∩ ⟨C − Z⟩. By (2),
⟨C ∩ Z⟩ ∩ ⟨C − Z⟩ = {0} and therefore x = y. This proves (iii).

To prove (iv), suppose that x ∈ ∂A(Z ′). By (1) applied to Z ′, there exist t ∈ ⟨T ⟩ and
c2 ∈ ⟨C −Z ′⟩ such that x = t+c2. Similarly, by (3), there exist s ∈ ⟨S⟩ and c1 ∈ ⟨C ∩Z ′⟩ such
that x = s + c1. We can write c1 = c11 + c12 for c11 ∈ ⟨C ∩ (Z ∩ Z ′)⟩ and c12 ∈ ⟨C ∩ (Z ′ − Z)⟩
and write c2 = c21 + c22 for c21 ∈ ⟨C ∩ (Z − Z ′)⟩ and c22 ∈ ⟨C − (Z ∪ Z ′)⟩. Let us define
y = s + c11 − c21 = t + c22 − c12. Then y ∈ ∂A(Z) because s + c11 − c21 ∈ ⟨Z⟩ and
t + c22 − c12 ∈ ⟨A − Z⟩. Now observe that x − y = c12 + c21 ∈ ⟨C ∩ (Z△Z ′)⟩. This proves
that the desired y exists. By (iii), such y is unique. ◀
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3 Full sets

We review the concepts of B-trajectories and full sets introduced by Jeong, Kim, and Oum [9].

3.1 B-trajectories
Let B be a vector space. A statistic is a triple a = (L, R, λ) of subspaces L, R of B and a
non-negative integer λ. For convenience, we write L(a) = L, R(a) = R, and λ(a) = λ. A
B-trajectory is a sequence Γ = a0, a1, . . . , an of statistics for a non-negative integer n such
that

R(a0) = L(an),
L(a0) ⊆ L(a1) ⊆ · · · ⊆ L(an) ⊆ B,
R(an) ⊆ R(an−1) ⊆ · · · ⊆ R(a0) ⊆ B.

The width of Γ is max0≤i≤n λ(ai). We write Γ(i) to denote ai. The length of Γ, denoted by
|Γ|, is n + 1.

Let A = {e1, e2, . . . , en} be a configuration over a field F. From a path-decomposition
σ = e1, e2, . . . , en of a represented matroid M = M(A), we can obtain its canonical B-
trajectory as follows. For i = 0, 1, 2, . . . , n, let

Li = ⟨e1, e2, . . . , ei⟩ ∩ B,

Ri = ⟨ei+1, ei+2, . . . , en⟩ ∩ B, and
λi = dim⟨e1, e2, . . . , ei⟩ ∩ ⟨ei+1, ei+2, . . . , en⟩ − dim Li ∩ Ri.

Note that L0 = Rn = {0} and λ0 = λn = 0. Let ai = (Li, Ri, λi) for i = 0, 1, 2, . . . , n. Then
it is easy to see that Γ = a0, a1, a2, . . . , an is a B-trajectory, which we call the canonical B-
trajectory of σ. If Γ is a canonical B-trajectory of some path-decomposition σ of M = M(A),
then we say Γ is realizable in A.

For a B-trajectory Γ = a0, a1, a2, . . . , an, the compactification of Γ, denoted by τ(Γ), is
a B-trajectory obtained from Γ by applying the following operations repeatedly until no
further operations can be applied.

Remove an entry ai if ai−1 = ai.
Remove a subsequence ai+1, ai+2, . . ., aj−1 if i+1 < j, L(ai) = L(aj), R(ai) = R(aj), and
either λ(ai) ≤ λ(ak) ≤ λ(aj) for all k ∈ {i + 1, i + 2, . . . , j − 1} or λ(ai) ≥ λ(ak) ≥ λ(aj)
for all k ∈ {i + 1, i + 2, . . . , j − 1}.

We say that a B-trajectory is compact if τ(Γ) = Γ. Let Uk(B) be the set of all compact
B-trajectories of width at most k.

▶ Lemma 8 (Jeong, Kim, and Oum [9, Lemma 11]). Let B be a vector space over a finite
field F with dimension θ. Then

|Uk(B)| ≤ 29θ+2|F|θ(θ−1)22(2θ+1)k.

We can define binary relations which compare two B-trajectories as follows [9]. For two
statistics a and b, we write a ≤ b if

L(a) = L(b), R(a) = R(b), and λ(a) ≤ λ(b).

For two B-trajectories Γ1 and Γ2, we write Γ1 ≤ Γ2 if the lengths of Γ1 and Γ2 are the same,
say n, and Γ1(i) ≤ Γ2(i) for all 0 ≤ i ≤ n − 1. A B-trajectory Γ∗ is called an extension of a
B-trajectory Γ if Γ∗ can be obtained by repeating some statistics of Γ. We say that Γ1 ≼ Γ2
if there are extensions Γ∗

1 of Γ1 and Γ∗
2 of Γ2 such that Γ∗

1 ≤ Γ∗
2.
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3.2 A full set
We review the full set notion introduced by Jeong, Kim, and Oum [9] used for their algorithm
to decide the path-width of represented matroids. Let A be a configuration of vectors in a
vector space V over a field F. Let B be a subspace of V .

The full set of A of width k with respect to B, denoted by FSk(A, B), is the set of
all compact B-trajectories Γ of width at most k such that there exists a B-trajectory ∆
realizable in A with ∆ ≼ Γ. From the definition, it is clear that

FSk(A, {0}) ̸= ∅ if and only if M(A) has path-width at most k.

By Lemma 8, the number of B-trajectories in FSk(A, B) is bounded by a function of |F|,
dim B, and k.

The following lemma is an immediate consequence of Jeong, Kim, and Oum [9, Proposi-
tions 35 and 36].

▶ Lemma 9. Let A, A′ be configurations in a vector space V . Let k be a non-negative integer.
Let B be a subspace of V . If FSk(A, B) = FSk(A′, B), then FSk(A, {0}) = FSk(A′, {0}).

▶ Lemma 10. Let A1, A′
1, A2, A′

2 be configurations in a vector space V . Let k be a non-
negative integer. Let B be a subspace of V such that (⟨A1⟩ + B) ∩ (⟨A2⟩ + B) = B and
(⟨A′

1⟩ + B) ∩ (⟨A′
2⟩ + B) = B. If FSk(A1, B) = FSk(A′

1, B) and FSk(A2, B) = FSk(A′
2, B),

then FSk(A1 ∪ A2, B) = FSk(A′
1 ∪ A′

2, B).

For a configuration A = {e1, e2, . . . , en} and a linear transformation ϕ, we write ϕ(A) to
denote a configuration {ϕ(e1), ϕ(e2), . . . , ϕ(en)}.

If B1 and B2 are subspaces of the same dimension and ϕ is a bijective linear transformation
from B1 to B2, then for each B1-trajectory Γ we can define a B2-trajectory ∆ := ϕ(Γ) in the
following way:

L(∆(i)) = ϕ(L(Γ(i))), R(∆(i)) = ϕ(R(Γ(i))), λ(∆(i)) = λ(Γ(i)),

for every 0 ≤ i ≤ |Γ| − 1. For a set of B-trajectories R, we define the set ϕ(R) = {ϕ(Γ) : Γ ∈
R}.

Observe that if ϕ is a linear transformation on ⟨A⟩ that is injective on ⟨A1⟩ and B1 is a
subspace of ⟨A1⟩, then

ϕ(FSk(A1, B1)) = FSk(ϕ(A1), ϕ(B1)).

Here on the right-hand side, we use ϕ values for all vectors in ⟨A1⟩ but on the left-hand side,
we only use ϕ for vectors in B1.

We can deduce the following lemma easily from Lemmas 9 and 10. We omit its proof.

▶ Lemma 11. Let k be a non-negative integer and let F be a field. Let A be a configuration
in a vector space V over F and let A′ be a configuration in a vector space V ′ over F. Let
(A1, A2) be a partition of A and (A′

1, A′
2) be a partition of A′. If there is a bijective linear

transformation ϕ : ∂A(A1) → ∂A′(A′
1) such that

ϕ(FSk(A1, ∂A(A1))) = FSk(A′
1, ∂A′(A′

1)) and
ϕ(FSk(A2, ∂A(A1))) = FSk(A′

2, ∂A′(A′
1)),

then the path-width of M(A) is at most k if and only if the path-width of M(A′) is at most k.
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4 Finding many repeated cuts

The following lemma finds many cuts in the linked path-decomposition that are of the same
width and linked each other.

▶ Lemma 12. Let ℓ ≥ 4 be an integer. Let a0, a1, a2, . . . , an be a sequence of integers such
that ai ≥ a0 = an for all 0 ≤ i ≤ n and |ai − ai+1| ≤ 1. If

n ≥
(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)max0≤i≤n(ai−a0) − 2(ℓ − 2)

ℓ − 3 ,

then there exist 0 ≤ i1 < i2 < i3 < · · · < iℓ ≤ n and w such that

ai1 = ai2 = · · · = aiℓ
= w and ai ≥ w for all i1 ≤ i ≤ iℓ.

Proof. We proceed by induction on M = max0≤i≤n(ai − a0). It is trivial if M = 0. Let
m = |{i ∈ {0, 1, . . . , n} : ai = a0}|. If m ≥ ℓ, then we are done. Thus we may assume
that m ≤ ℓ − 1. Then there exists a subsequence ap, ap+1, . . . , aq such that ai > a0 for all
p ≤ i ≤ q, and q−p+1 ≥ n

m−1 −1 ≥ n
ℓ−2 −1. Equivalently, q−p+ 2(ℓ−2)

ℓ−3 ≥ 1
ℓ−2

(
n + 2(ℓ−2)

ℓ−3

)
and therefore

q − p ≥
(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)M−1 − 2(ℓ − 2)

ℓ − 3 .

We may assume that q − p is chosen as a maximum. Then by the assumption that
|ai − ai+1| ≤ 1, we deduce that ap = aq = a0 + 1. Now we apply the induction hypothesis to
the subsequence ap, ap+1, . . . , aq to conclude the proof. ◀

We will apply Lemma 12 to a sequence a0, a1, a2, . . . , an obtained from a linked path-
decomposition σ = e1, e2, . . . , en, where ai = λM ({e1, e2, . . . , ei}) for i = 0, 1, 2, . . . , n. It is
easy to verify that any path-decomposition σ of a represented matroid meets the requirement
that |ai − ai+1| ≤ 1 of Lemma 12. The next lemma is needed.

▶ Lemma 13. Let M be a matroid. If e ∈ X ⊆ E(M), then |λM (X) − λM (X − {e})| ≤ 1.

Proof. By the submodularity of the connectivity function, we have λM (X −{e})+λM ({e}) ≥
λM (X). Since λM ({e}) ≤ 1, we have λM (X) ≤ λM (X − {e}) + 1. Since λM is symmetric,
we deduce that λM (X − {e}) ≤ λM (X) + 1. ◀

5 The proof

The following proposition proves Theorem 1.

▶ Proposition 14. Let F be a finite field and k be a non-negative integer. Let M be an
F-representable matroid of path-width larger than k. Let ℓ = 229k+11|F|k(k+1)22(2k+3)k + 1. If

|E(M)| ≥
(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)k+1 − 2(ℓ − 2)

ℓ − 3 ,

then there is e ∈ E(M) such that M/e or M \ e has path-width larger than k.

Proof. Let A be a configuration in a vector space over F such that M = M(A). We may
assume that M \ e and M/e has path-width at most k for every e ∈ E(M). This implies that
M has path-width exactly k + 1 and by Theorem 5, there is a linked path-decomposition
σ = e1, e2, . . . , en of M of width k + 1. We identify ei with a vector in A.
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For i = 0, 1, 2, . . . , n, let ai = λM ({e1, e2, . . . , ei}). Then 0 ≤ ai ≤ k + 1 for all i.
By Lemma 12, there exist integers 0 ≤ t1 < t2 < · · · < tℓ ≤ n and 0 ≤ θ ≤ k + 1 such

that at1 = at2 = · · · = atℓ
= θ and ai ≥ θ for all t1 ≤ i ≤ tℓ. Let Ai = {e1, e2, . . . , eti

} and
Bi = ∂A(Ai) for 1 ≤ i ≤ ℓ.

Since σ is a linked path-decomposition, λM (X) ≥ θ for all A1 ⊆ X ⊆ Aℓ. By Theorem 6,
there are disjoint subcollections C, D of A such that C ∪ D = A − (A1 ∪ (A − Aℓ)) and
λM/C\D(A1) = θ. We may assume that D is coindependent, see [18, Lemma 3.3.2]. Let
π : ⟨A⟩ → ⟨A⟩/⟨C⟩ be the linear transformation mapping x ∈ ⟨A⟩ to an equivalence class
[x] containing x where two vectors x and x′ are equivalent if and only if x − x′ ∈ ⟨C⟩. Let
B = π(∂A(A1)).

By (iii) and (iv) of Proposition 7, dim B = θ and π(∂A(Ai)) = π(∂A(Aj)) for all
1 ≤ i < j ≤ ℓ.

Observe that π(FSk(Ai, ∂A(Ai))) ⊆ Uk(B). Since ℓ is big enough, by Lemma 8 and
the pigeon-hole principle, there exist 1 ≤ i < j ≤ ℓ such that π(FSk(Ai, ∂A(Ai))) =
π(FSk(Aj , ∂A(Aj))).

Let C ′ = C ∩ (Aj − Ai) and D′ = D ∩ (Aj − Ai). Let ϕ : ⟨A⟩ → ⟨A⟩/⟨C ′⟩ be the linear
transformation mapping x ∈ ⟨A⟩ to an equivalence class containing x where two elements x,
y are equivalent if and only if x − y ∈ ⟨C ′⟩.

Let B′ = ϕ(∂A(Ai)). Since C ′ ⊆ C, by (iii) of Proposition 7, we have dim B′ = θ.
Furthermore, from (iv) of Proposition 7, we deduce that for x ∈ ∂A(Ai) and y ∈ ∂A(Aj),
π(x) = π(y) if and only if ϕ(x) = ϕ(y). Therefore, B′ = ϕ(∂A(Aj)) and ϕ(FSk(Ai, ∂A(Ai))) =
ϕ(FSk(Aj , ∂A(Aj))).

We claim that ϕ is an injection on ⟨Ai⟩. Suppose that x, y ∈ ⟨Ai⟩ and x − y ∈ ⟨C ′⟩ =
⟨C ∩ (Aj − Ai)⟩ ⊆ ⟨A − Ai⟩. Then x − y ∈ ⟨C⟩ and by (i) of Proposition 7, we deduce that
x − y ∈ ⟨C ∩ Ai⟩ ⊆ ⟨Ai⟩. This would imply that x − y ∈ ∂A(Ai) and therefore x = y by (iii)
of Proposition 7. By symmetry, we can also deduce that ϕ is an injection on ⟨A − Aj⟩.

Let N = M(A)/C ′ \ D′. Then A′ = ϕ(Ai ∪ (A − Aj)) is a configuration in the vector
space ⟨A⟩/⟨C ′⟩ such that N = M(A′). Since B′ ⊆ ⟨ϕ(Ai)⟩ and B′ ⊆ ⟨ϕ(A − Aj)⟩, we have
B′ ⊆ ∂A′(ϕ(Ai)). By Lemma 4, dim ∂A′(ϕ(Ai)) ≤ θ and therefore B′ = ∂A′(ϕ(Ai)).

Since ϕ is an injection on Ai, FSk(ϕ(Ai), ∂A′(ϕ(Ai))) = ϕ(FSk(Aj), ∂A(Aj)). Since ϕ is an
injection on A−Aj , trivially FSk(ϕ(A−Aj), ∂A′(ϕ(A−Aj))) = ϕ(FSk(A−Aj), ∂A(A−Aj)).

Since N is a proper minor of M , the path-width of N is at most k. By Lemma 11, M

has path-width at most k if and only if N has path-width at most k and therefore we deduce
that the path-width of M is at most k, contradicting the assumption. ◀

6 Obstructions to linear rank-width

All graphs in this section are simple, having no loops and no parallel edges.
For a graph G, the cut-rank function ρG of G is defined as a function that maps a set

X of vertices of G to the rank of the X × (V (G) − X) matrix over the binary field whose
ab-entry is 1 if and only if a ∈ X is adjacent to b ∈ V (G) − X. It is known that ρG is
symmetric and submodular, see Oum and Seymour [17], and therefore it is a connectivity
function. We remark that ρG(∅) = ρG(V (G)) = 0. The linear rank-width of a graph G is
defined to be the path-width of ρG.

For a pair (x, y) of distinct vertices of a graph G, flipping (x, y) is an operation that adds
an edge xy if x, y are non-adjacent in G and deletes the edge xy otherwise. For an edge uv

of a graph G, we write G ∧ uv to denote the graph G′ on V (G) obtained by the following
procedures.
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1. For every pair x ∈ N(u) ∩ N(v) and y ∈ N(u) − N(v), flip (x, y).
2. For every pair x ∈ N(u) ∩ N(v) and y ∈ N(v) − N(u), flip (x, y).
3. For every pair x ∈ N(u) − N(v) and y ∈ N(v) − N(u), flip (x, y).
4. Swap the label of u and v.
This operation is called the pivot. We remark that the purpose of the last operation is to
make G ∧ uv ∧ vw = G ∧ uw, see Oum [16]. Here is an important property of pivots with
respect to the cut-rank function.

▶ Proposition 15 (See Oum [16]). If H = G ∧ uv, then ρH(X) = ρG(X) for all X ⊆ V (G).

We say that a graph H is a pivot-minor of a graph G if H is an induced subgraph of a
graph obtained from G by applying some sequence of pivots. We say that a pivot-minor H of
G is proper if V (H) ̸= V (G). Since deleting a vertex never increases the cut-rank function,
we deduce the following easily from the previous proposition.

▶ Corollary 16. If H is a pivot-minor of G, then the linear rank-width of H is at most the
linear rank-width of G.

Oum [16] proved an analog of Tutte’s linking theorem for pivot-minors.

▶ Theorem 17. Let G be a graph and let S, T be disjoint vertex sets of G. Then there exists
a pivot-minor H on S ∪ T such that ρH(S) = minS⊆X⊆V (G)−T ρG(X).

Let us now show how to represent a graph with a subspace arrangement. A subspace
arrangement V over a field F is a finite set of subspaces of a finite-dimensional vector space
over F. We usually write a subspace arrangement as a family V = {Vi}i∈E of subspaces
indexed by a finite set E.

A linear layout of a subspace arrangement V is a permutation σ = V1, V2, . . . , Vn of V.
The width of a linear layout σ = V1, V2, . . . , Vn is equal to

max
1≤i<n

dim(V1 + V2 + · · · + Vi) ∩ (Vi+1 + Vi+2 + · · · + Vn).

Note that this function is a connectivity function on V . The path-width of V is the minimum
width of linear layouts of V . If |V| ≤ 1, then we define the width of its linear layout to be 0
and its path-width to be 0.

As observed in [9, Section VII], for a matroid M represented by a configuration A, if we
take V = {⟨v⟩ : v ∈ A}, then the path-width of V is equal to the path-width of M(A).

We are now going to review the construction, appeared in [9, Section VIII], of a subspace
arrangement from graphs to relay the concept of linear rank-width to the path-width of its
corresponding subspace arrangement. For a graph G on the vertex set {1, 2, . . . , n}, let us
define a subspace arrangement over the binary field as follows. Let {e1, e2, . . . , en} be the
standard basis of Fn

2 where F2 is the binary field. Let vi =
∑

j∈NG(i) ej , where NG(i) denotes
the set of neighbors of i. Let Vi = ⟨ei, vi⟩ and let VG = {Vi}i∈V (G).

Here is the key observation.

▶ Lemma 18 (Jeong, Kim, and Oum [9, Lemma 52]). For X ⊆ V (G),

dim
(
(
∑
i∈X

Vi) ∩ (
∑

j∈V (G)−X

Vj)
)

= 2ρG(X).

▶ Corollary 19. The path-width of VG is equal to twice the linear rank-width of G.
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For a subset X of V (G), let IX = {ei : i ∈ X}, AX = {vi : i ∈ X}, and ∂X =
⟨IX ∪ AX⟩ ∩ ⟨IV (G)−X ∪ AV (G)−X⟩. By Lemma 18, dim ∂X = 2ρG(X). One can see that IZ

is a set of some column vectors in the n × n identity matrix and AZ is a set of some column
vectors in the adjacency matrix of G. Let MG be the binary matroid represented by the
matrix (In A(G)), where In is the n × n identity matrix and A(G) is the adjacency matrix
of G.

In Subsection 3.2, we reviewed the concept of full sets for the context of represented
matroids or configurations. In fact, Jeong, Kim, and Oum [9] introduced full sets in more
general form for subspace arrangements.

Here we are going to show the difference compared to Subsections 3.1 and 3.2. For a
subspace arrangement V and its linear layout σ = V1, V2, . . . , Vn, the canonical B-trajectory
is defined as follows. For i = 0, 1, . . . , n, let Li = (

∑i
j=1 Vj) ∩ B, Ri = (

∑n
j=i+1 Vj) ∩ B, λi =

dim(
∑i

j=1 Vj)∩ (
∑n

j=i+1 Vj)−dim Li ∩Ri, and ai = (Li, Ri, λi). Then Γ = a0, a1, a2, . . . , an

is the canonical B-trajectory of σ. We say that Γ is realizable in V if it is a canonical
B-trajectory of some linear layout of V.

For a subspace arrangement V, FSk(V, B) is defined as the set of all compact B-tra-
jectories Γ of width at most k such that there exists a B-trajectory ∆ realizable in V with
∆ ⪯ Γ.

Lemmas 9 and 10 are special cases of the following two lemmas easily deduced from the
result of Jeong, Kim, and Oum [9].

▶ Lemma 20. Let V, V ′ be subspace arrangements over a field F. Let k be a non-negative
integer. Let B be a subspace of ⟨V ∪ V ′⟩. If FSk(V, B) = FSk(V ′, B), then FSk(V, {0}) =
FSk(V ′, {0}).

▶ Lemma 21. Let V1, V ′
1, V2, V ′

2 be subspace arrangements over a field F. Let k be a non-
negative integer. Let B be a subspace of ⟨V1∪V2∪V ′

1∪V ′
2⟩ such that (⟨V1⟩+B)∩(⟨V2⟩+B) = B

and (⟨V ′
1⟩ + B) ∩ (⟨V ′

2⟩ + B) = B. If FSk(V1, B) = FSk(V ′
1, B) and FSk(V2, B) = FSk(V ′

2, B),
then FSk(V1 ∪ V2, B) = FSk(V ′

1 ∪ V ′
2, B).

We can deduce the following lemma easily from Lemmas 20 and 21 by the same method of
deducing Lemma 10 from Lemmas 9 and 10.

▶ Lemma 22. Let k be a non-negative integer and let F be a field. Let V be a subspace
arrangement over F and let V ′ be a subspace arrangement over F. Let (V1, V2) be a partition of
V and (V ′

1, V ′
2) be a partition of V ′. If there is a bijective linear transformation ϕ : ∂V(V1) →

∂V′(V ′
1) such that

ϕ(FSk(V1, ∂V(V1))) = FSk(V ′
1, ∂V′(V ′

1)) and ϕ(FSk(V2, ∂V(V1))) = FSk(V ′
2, ∂V′(V ′

1)),

then the path-width of V is at most k if and only if the path-width of V ′ is at most k.

The following proposition implies Theorem 2 and Corollary 3. We omit its proof.

▶ Proposition 23. Let G be a graph of linear rank-width larger than k.
Let ℓ = 2218(k+1)+2+(2k+2)(2k+1)+2(4k+3)2k + 1. If G has more than(

ℓ − 1 + 2(ℓ − 2)
ℓ − 3

)
(ℓ − 2)k+1 − 2(ℓ − 2)

ℓ − 3 ,

vertices, then G has a proper pivot-minor H whose linear rank-width is larger than k.
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Abstract
We consider a matching problem in a bipartite graph G = (A ∪ B, E) where vertices have strict
preferences over their neighbors. A matching M is popular if for any matching N , the number of
vertices that prefer M is at least the number that prefer N ; thus M does not lose a head-to-head
election against any matching where vertices are voters. It is easy to find popular matchings; however
when there are edge costs, it is NP-hard to find (or even approximate) a min-cost popular matching.
This hardness motivates relaxations of popularity.

Here we introduce fairly popular matchings. A fairly popular matching may lose elections but
there is no good matching (wrt popularity) that defeats a fairly popular matching. In particular,
any matching that defeats a fairly popular matching does not occur in the support of any popular
mixed matching. We show that a min-cost fairly popular matching can be computed in polynomial
time and the fairly popular matching polytope has a compact extended formulation.

We also show the following hardness result: given a matching M , it is NP-complete to decide
if there exists a popular matching that defeats M . Interestingly, there exists a set K of at most
m popular matchings in G (where |E| = m) such that if a matching is defeated by some popular
matching in G then it has to be defeated by one of the matchings in K.
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1 Introduction

Our input is a bipartite graph G = (A ∪ B,E) on n vertices and m edges where every
vertex has a strict ranking of its neighbors. Such a graph is also called a marriage instance
and this is a very well-studied model in two-sided matching markets. A matching M is
stable if no edge blocks it; edge (a, b) blocks M if both a and b prefer each other to their
respective assignments in M . The existence of stable matchings in a marriage instance and
the Gale-Shapley algorithm [14] to find one are classical results in algorithms.

Stable matchings are used in many real-world applications such as matching students
to schools and colleges [1, 3] and medical residents to hospitals [5, 28]. Stability is a rather
strict notion – all stable matchings match the same subset of vertices [15] and the size of a
stable matching might be only half the size of a maximum matching. In several applications,
the notion of stability can be relaxed to a less demanding notion for the sake of collective
welfare.

Popularity is a meaningful relaxation of stability based on empowering matchings (instead
of edges) to block other matchings. Any pair of matchings, say M and N , can be compared
by holding an election between them where every vertex v either casts a vote for the matching
in {M,N} where it gets a better partner (and being unmatched is its worst choice) or v
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41:2 Fairly Popular Matchings and Optimality

abstains from voting if it is indifferent between M and N . Let ϕ(M,N) (resp., ϕ(N,M))
be the number of votes for M (resp., N). Matching N is more popular than matching M
(equivalently, N defeats M) if ϕ(N,M) > ϕ(M,N). Let ∆(M,N) = ϕ(M,N) − ϕ(N,M).

▶ Definition 1. A matching M is popular if there is no matching more popular than M , i.e.,
∆(M,N) ≥ 0 for all matchings N in G.

Gärdenfors [16] introduced the notion of popularity in 1975 where he showed that every
stable matching is popular. In fact, stable matchings are min-size popular matchings [18].
Hence relaxing stability to popularity allows larger matchings and more generally, matchings
with lower cost (when every edge has a cost) to be feasible.

Several algorithmic and hardness results for popular matchings have been obtained during
the last decade and we refer to [6] for a survey. We know efficient algorithms for only a
few popular matching problems such as the max-size popular matching problem and the
popular edge problem [7, 18, 21]. Many natural optimization problems in popular matchings
such as the min-cost popular matching problem are NP-hard [10]; moreover, this problem is
NP-hard to approximate to any multiplicative factor. Though relaxing stability to popularity
promises matchings with improved optimality, finding these matchings is hard.

The extension complexity of the popular matching polytope of G is 2Ω(m/log m) [9].
Thus formulating the convex hull of edge incidence vectors of matchings M that satisfy
∆(M,N) ≥ 0 for all matchings N is hard. This motivates relaxing popularity, i.e., let us
waive some constraints ∆(M,N) ≥ 0. For what matchings N would it be justified to do so?

Suppose N is “very unpopular” – then N is not a viable alternative and it seems fair to
not give N the power to block other matchings. Forbidding very unpopular matchings from
blocking others is similar in spirit to legal assignments [8] (a relaxation of stable matchings)
where only edges that belong to legal assignments are allowed to block matchings. Thus our
goal is to come up with a filter that tests matchings for a natural relaxation of popularity
and forbid the ones that fail our test to block matchings.

So we seek to identify a subset S of the set of all matchings in G such that:
(a) Every matching outside S fails our test that checks for “mild popularity”.
(b) It is easy to optimize over matchings M that satisfy ∆(M,N) ≥ 0 for all N ∈ S.
(c) For any matching T /∈ S, there is at least one matching N ∈ S such that ∆(T,N) < 0.

▶ Remark 2. Note that property (c) is independent of property (a); the latter says every
matching T /∈ S has to fail our test of mild popularity while the former says any matching
T /∈ S has to be defeated by a matching in S, so we will not have ∆(T,N) ≥ 0 for all N ∈ S.

The unpopularity of a matching T is typically measured by its unpopularity factor [27],
defined as u(T ) = maxN ̸=T ϕ(N,T )/ϕ(T,N). A matching T is popular if and only if u(T ) ≤ 1.
Suppose we define a matching T to be very unpopular if u(T ) > k for some k. Is it easy to
compute a min-cost matching M such that ∆(M,N) ≥ 0 for all matchings N with u(N) ≤ k?

When k = n− 1, it means that no Pareto optimal matching defeats M – observe that
such a matching M has to be popular. So the above problem is NP-hard for k = n− 1. We
show this problem is coNP-hard for k = 1 (see Remark 9). Thus using unpopularity factor
to come up with a test of mild popularity does not look very promising for tractability.

Our main result. Rather than unpopularity factor, we will use popular mixed matchings [26]
to define a natural relaxation of popularity. A mixed matching Π is a probability distribution
or a lottery over matchings, so Π = {(M0, p0), . . . , (Mk, pk)} where M0, . . . ,Mk are matchings,
pi > 0 for all i, and

∑k
i=0 pi = 1. The notion of popularity can be extended to mixed

matchings; the mixed matching Π is popular if ∆(Π, N) =
∑k

i=0 pi · ∆(Mi, N) ≥ 0 for all
matchings N .
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The matchings M0, . . . ,Mk are said to be in the support of Π = {(M0, p0), . . . , (Mk, pk)}.
Let us call a matching M supporting if there exists a popular mixed matching Π whose
support contains M . So every supporting matching participates in some popular lottery over
matchings, thus the “supporting” property is a natural relaxation of popularity – we will use
this property as our condition for mild popularity. We define fairly popular matchings now.

▶ Definition 3. A matching M is fairly popular if ∆(M,N) ≥ 0 ∀ supporting matchings N .

For any matching T that defeats a fairly popular matching M , it is the case that even with
the help of other matchings, T cannot form a popular mixture. Thus it is natural to regard
a non-supporting matching T as being “very unpopular”. So we set the supporting property
as our threshold for mild popularity – thus elections against non-supporting matchings will
not be relevant. In other words, even if ∆(M,T ) < 0 for a non-supporting matching T , the
matching M will continue to be feasible. Intriguingly, waiving the constraints ∆(M,T ) ≥ 0
for non-supporting matchings T makes the resulting polytope easy to describe.

▶ Theorem 4. Given a marriage instance G = (A ∪B,E) with edge costs, a min-cost fairly
popular matching can be computed in polynomial time. Furthermore, the convex hull of edge
incidence vectors of fairly popular matchings has a compact extended formulation.

Key to the above theorem is our characterization of supporting matchings (see Theorem 5).
Any point x ∈ Rm

≥0 such that
∑

e∈δ(v) xe ≤ 1 for each vertex v is a fractional matching
and x is equivalent to a mixed matching (Birkhoff-von Neumann theorem). A fractional
matching x is popular if Π is a popular mixed matching, where Π is any mixed matching that
corresponds to x (see [26]). An edge e is a popular fractional edge if there exists a popular
fractional matching x with xe > 0. Let Ep ⊆ E be the set of popular fractional edges.

Let us call a vertex v stable if v is matched in any (equivalently, every [15]) stable matching
in G. So unstable vertices are those left unmatched in every stable matching.

▶ Theorem 5. Let G = (A ∪B,E) be a marriage instance and let M be a matching in G.
The following three statements are equivalent.
1. M is supporting, i.e., M occurs in the support of some popular mixed matching.
2. No popular mixed matching defeats M , i.e., ∆(Π,M) = 0 ∀ popular mixed matchings Π.
3. M matches all stable vertices and M ⊆ Ep.

▶ Remark 6. Theorem 5 implies that any matching that is non-supporting is defeated by
some popular mixed matching and thus, by some supporting matching (since every popular
mixed matching is a lottery over supporting matchings). So S = {supporting matchings}
satisfies properties (a), (b), and (c) stated earlier. Thus every fairly popular matching is also
supporting.

Observe that the set of popular matchings does not satisfy the property that any matching
outside this set has to be defeated by at least one matching in this set. That is, it is not
the case that every unpopular matching has to lose to one or more popular matchings. For
example, consider the following instance where A = {a0, a1, a2} and B = {b0, b1}.

a0 : b0 ≻ b1 a1 : b0 ≻ b1 a2 : b1

b0 : a0 ≻ a1 b1 : a0 ≻ a1 ≻ a2

Here a0 and b0 are each other’s top choice neighbors and a0’s second choice is b1 and
b0’s second choice is a1 and so on. The above instance has only one popular matching
P = {(a0, b0), (a1, b1)}. The matching M = {(a0, b1), (a1, b0)} is not popular since the
matching N = {(a0, b0), (a2, b1)} is more popular than M ; the vertices a0, b0, a2 prefer N
while a1, b1 prefer M . Observe that the popular matching P is not more popular than M .

STACS 2022
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Interestingly, M is a supporting matching since the mixed matching Π = {(M, 1
2 ), (P, 1

2 )}
is popular. Moreover, M is fairly popular since N is the only matching that defeats M and
observe that N leaves the stable vertex a1 unmatched, hence N is not a supporting matching.

A hardness result. As observed above, it is not the case that every unpopular matching
has to be defeated by some popular matching. This motivates the following question: how
easy is it to decide if there exists a popular matching that defeats a given matching M? This
is a natural question when matching M is already in place and we want to replace M with a
popular matching. An ideal matching would be a popular matching that is more popular
than M , if such a matching exists. Interestingly, we can show a “compactness” result. Note
that G may have more than 2n popular matchings [32].

▶ Proposition 7. There is a set K of at most m popular matchings in G such that any
matching defeated by some popular matching in G has to be defeated by a matching in K.

However, deciding if there is a popular matching that defeats a given matching is hard.

▶ Theorem 8. Given a marriage instance G = (A ∪ B,E) and a matching M in G, it is
NP-complete to decide if there exists any popular matching that is more popular than M .

▶ Remark 9. It was mentioned earlier that it is coNP-hard to compute a min-cost matching
that is not defeated by any popular matching. This hardness follows from Theorem 8 by
setting cost(e) = 0 for each e ∈ M and cost(e) = 1 for any e /∈ M .

For any matching M , if there is a popular matching that defeats M then it is natural to
regard M as a very unpopular matching (as there is a popular matching better than M).
However to define a mildly popular matching as one that is undefeated by popular matchings
would not have been very helpful as we know it is coNP-hard to identify such matchings
(by Theorem 8). A natural strengthening of this property would have been to say that a
matching M is mildly popular if and only if M is undefeated by popular mixed matchings.
This is precisely one of the characterizations of supporting matchings (by Theorem 5).

Related results. The min-cost stable matching problem is very well-studied with several
polynomial time algorithms [11, 12, 13, 20, 33] to solve this problem; furthermore, the stable
matching polytope has a simple and elegant linear size formulation in Rm [29, 31]. It is
known that the popular fractional matching polytope of G is half-integral [19].

A min-cost popular matching in G can be computed in O∗(2n/4) time [25]. The in-
tractability of the min-cost popular matching problem has motivated relaxations such as
quasi-popularity [9] and semi-popularity [25]. A matching M is quasi-popular if u(M) ≤ 2.
Computing a min-cost quasi-popular matching is NP-hard; however a quasi-popular matching
of cost at most that of a min-cost popular matching can be computed in polynomial time [9].
A matching M is semi-popular if ∆(M,N) ≥ 0 for at least half the matchings N in G. A
bicriteria approximation algorithm was given in [25] to find an almost semi-popular matching
whose cost is at most twice the cost of a min-cost popular matching.

Our techniques. The characterization of supporting matchings (given in Section 2) uses
the half-integrality of the popular fractional matching polytope in a marriage instance [19]
along with Hall’s theorem. A technical lemma used here (and proved in the appendix) is
based on the existence of certain helpful stable matchings as shown in [17].

Our characterization of supporting matchings implies that a matching M is fairly popular
if and only if M = ∪CMc, where C is a connected component in the subgraph (A ∪B,Ep)
and every matching Mc in this decomposition has a certain witness or dual certificate. We
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show a surjective mapping from the union of sets of stable matchings in two auxiliary graphs
G′

c and G′′
c to the set of such matchings Mc. Let S ′

c (resp., S ′′
c ) be the stable matching

polytope of G′
c (resp., G′′

c ). The convex hull of S ′
c ∪ S ′′

c is an extension of the convex hull
of edge incidence vectors of such matchings Mc. Using Balas’ theorem [2] to formulate the
convex hull of S ′

c ∪ S ′′
c leads to Theorem 4 proved in Section 3.

The LP-machinery for popular matchings was introduced in [26] and used in [19, 22]
to study popular fractional matchings. The graphs G′

c and G′′
c are inspired by instances

from [7, 23, 24] that solve variants of the popular matching problem by modeling them as
stable matching problems in appropriate graphs. Our novelty is in our characterization of
supporting matchings – this leads to a characterization of fairly popular matchings which
allows us to formulate an extension of the fairly popular matching polytope F with poly(m,n)
many constraints, i.e., we show the polytope F has a compact extended formulation.

Our NP-hardness proof (given in Section 4) is based on the NP-hardness (from [10]) of
deciding if there exists a popular matching that contains a given pair of edges.

2 A Characterization of Supporting Matchings

We prove Theorem 5 in this section. Before we characterize supporting matchings, it will be
useful to recall some properties of popular fractional matchings in a marriage instance G.

A fractional matching x in G is a convex combination of matchings (by Birkhoff-von
Neumann theorem). Recall that x is popular if Π is a popular mixed matching, where Π is
any mixed matching that is equivalent to x. Alternatively, as shown in [26], x is popular if
∆(x,M) ≥ 0 for all matchings M where ∆(x,M) =

∑
u∈A∪B voteu(x,M) and voteu(x,M)

is u’s fractional vote (a value in [−1, 1]) for its assignment in x versus its assignment in M .
Section 4 has more details on comparing a matching M with a fractional matching x.

The popular fractional matching polytope of G is the convex hull of all popular fractional
matchings in G. It was shown in [19] that the popular fractional matching polytope of G is
half-integral. The proof of half-integrality uses the graph H = (AH ∪BH , EH) defined below.

The graph H can be regarded as consisting of two copies of G = (A ∪ B,E) (see
Figure 1). The vertex set AH = A0 ∪B1 and BH = B0 ∪A1, where Ai = {ai : a ∈ A} and
Bi = {bi : b ∈ B} for i = 0, 1. The edge set EH of H is described below.

For every (a, b) ∈ E, there are 2 edges (a0, b0) and (a1, b1) in EH .
For every u ∈ A ∪B, there is a single edge (u0, u1) in EH .

AH BH

A0 B0

A1B1
a1

b0

b1

a0

Figure 1 The vertex set of H has 2 copies u0 and u1 of every vertex u in G.

For any u ∈ A ∪B: if u’s preference order in G is v ≻ v′ ≻ · · · ≻ v′′ then ui’s preference
order (for i = 0, 1) in H is vi ≻ v′

i ≻ · · · ≻ v′′
i ≻ u1−i; so ui’s last choice neighbor is u1−i.

The graph H admits a perfect stable matching, i.e., one that matches all vertices. Let S
be any stable matching in G. Consider the matching S′ in H defined as S0 ∪S1 ∪{(u0, u1) : u
is unmatched in S} where Si = {(ai, bi) : (a, b) ∈ S} for i = 0, 1. It is easy to see that S′ is a
perfect stable matching in H.

STACS 2022
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It was shown in [19, Theorem 2] that if a marriage instance has a perfect stable matching
then its popular fractional matching polytope is integral. Thus the popular fractional
matching polytope of H is integral.

The function f . For any matching N in G, there is a corresponding matching N ′ in H

defined as {(a0, b0), (a1, b1) : (a, b) ∈ N}∪{(u0, u1) : u is unmatched in N}. This map extends
to fractional matchings, so for any fractional matching x in G, there is a corresponding
fractional matching x′ in H . Similarly, there is a map f from the set of fractional matchings
in H to the set of fractional matchings in G: f(y) = x where x(a,b) = (y(a0,b0) + y(a1,b1))/2
for any (a, b) ∈ E. Observe that f(x′) = x where x′ is the fractional matching in H that
corresponds to x in G. If the fractional matching y is popular in H then the fractional
matching f(y) is popular in G since ∆(f(y), N) = ∆(y,N ′)/2 for any matching N in G.

Note that (a, b) ∈ E is a popular fractional edge in G, i.e., (a, b) ∈ Ep, if and only if
(a0, b0) and (a1, b1) are popular fractional edges in H. Since the popular fractional matching
polytope of H is integral, it follows that (a0, b0) and (a1, b1) are popular edges1 in H. Also,
(u0, u1) is a popular edge in H if and only if u is an unstable vertex in G.

Proof of Theorem 5
We need to show the following three statements are equivalent.
1. M is supporting.
2. No popular mixed matching defeats M .
3. M matches all stable vertices and M ⊆ Ep.

Proof of 1⇒2. Let M be a supporting matching. Then there exists a popular mixed
matching Π = {(M0, p0), . . . , (Mk, pk)} where M = Mi for some i. Suppose there is a popular
mixed matching Π′ that defeats M , i.e., ∆(Π′,M) > 0. Because both Π and Π′ are popular
mixed matchings, we have ∆(Π′,Π) =

∑
j pj · ∆(Π′,Mj) = 0. Since ∆(Π′,Mi) > 0 and

∆(Π′,Π) = 0, there has to exist some matching Mj on which Π has support such that
∆(Π′,Mj) < 0. However this contradicts Π′’s popularity, thus 1⇒2.

Proof of 2⇒3. This part needs the following technical lemma. The proof of Lemma 10
uses the existence of certain helpful stable matchings as shown in [17] and is given in the
appendix. Call an edge e unpopular if there exists no popular matching that contains e.

▶ Lemma 10. Any matching in H that contains an unpopular edge is defeated by some
popular matching in H.

Let M be a matching in G such that either M has an edge not in Ep or some stable vertex
is left unmatched in M . So the matching M ′ = {(a0, b0), (a1, b1) : (a, b) ∈ M} ∪ {(u0, u1) : u
is unmatched in M} in H has an edge that is not a popular edge. Then some popular
matching P in H defeats M ′ (by Lemma 10).

Recall the map f from the set of fractional matchings in H to the set of fractional
matchings in G defined earlier in Section 2. Let r = f(P ). The fractional matching r

is popular in G because P is a popular matching in H. Since ∆(P,M ′) > 0, we have
∆(r,M) > 0. The fractional matching r can be regarded as a mixed matching Π; moreover,
Π is popular since r is popular. Thus there is a popular mixed matching Π that is more
popular than M , a contradiction to M satisfying property 2. Thus 2⇒3.

1 An edge e is popular if there is a popular matching that contains e.
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Proof of 3⇒1. Let e = (a, b) ∈ M . Since M ⊆ Ep, by what was discussed earlier in
Section 2, there are popular matchings M0

e and M1
e in H that contain (a0, b0) and (a1, b1),

respectively. For any vertex u left unmatched in M , it has to be the case that u is an unstable
vertex in G. So there is a popular matching Mu in H that contains (u0, u1).

Suppose M = {e1, . . . , eℓ} and let u1, . . . , ut be left unmatched in M . Consider the 2ℓ+ t

matchings M0
e1
, . . . ,M0

eℓ
,M1

e1
, . . . ,M1

eℓ
and Mu1 , . . . ,Mut in H analogous to the matchings

M0
e ,M

1
e , and Mu defined above. Let H ′ be the graph whose edge set is the multiset of edges

present in these 2ℓ+ t matchings, i.e., multiple copies of an edge are present in this edge set
if this edge is present in more than one matching. The graph H ′ is (2ℓ+ t)-regular since each
of these 2ℓ + t matchings is popular and hence, perfect in H (recall that H has a perfect
stable matching and stable matchings are min-size popular matchings).

Observe that M ′ = {(a0, b0), (a1, b1) : (a, b) ∈ M} ∪ {(u0, u1) : u is unmatched in M}
belongs to H ′. Delete M ′ from H ′. Since M ′ is a perfect matching in H ′, the resulting
graph H ′′ = H ′ \M ′ is (2ℓ+ t− 1)-regular. It follows from Hall’s theorem that H ′′ can be
decomposed into 2ℓ+ t− 1 perfect matchings N ′

1, . . . , N
′
2ℓ+t−1. Thus we have:

IM ′ + IN ′
1

+ · · · + IN ′
2ℓ+t−1

= IM0
e1

+ · · · + IM1
eℓ

+ IMu1
+ · · · + IMut

,

where for any matching N , the vector IN is its edge incidence vector.
The 2ℓ + t matchings M0

e1
, . . . ,M1

eℓ
,Mu1 , . . . ,Mut

(on the right hand side above) are
popular in H. Hence the fractional matching q = (IM0

e1
+ · · · + IMut

)/(2ℓ+ t), which can
also be written as (IM ′ + IN ′

1
+ · · · + IN ′

2ℓ+t−1
)/(2ℓ+ t), is popular in H.

So r = f(q) is a popular fractional matching in G. The mixed matching Π =
{(M, 1

2ℓ+t ), . . .} is equivalent to r and it has support on M . Moreover, Π is a popular
mixed matching since r is a popular fractional matching. Thus M is a supporting matching.
Hence 3⇒1. ◀

3 The Fairly Popular Matching Polytope

We prove Theorem 4 in this section. We will see an LP framework for fairly popular matchings
in Section 3.1. A characterization of fairly popular matchings will be given in Section 3.2. In
Sections 3.3 and 3.4, this characterization will be used to solve the min-cost fairly popular
matching problem in polynomial time.

3.1 An LP Framework
Our input instance is G = (A ∪ B,E). Let Ep ⊆ E be the set of popular fractional edges
in G. The set Ep can be computed in linear time by running the popular edge algorithm
(from [7]) in the instance H described in Section 2.

Let Ẽp = Ep ∪ {(u, u) : u is an unstable vertex in G} and let Gp = (A∪B, Ẽp). We know
from Theorem 5 that every perfect matching Ñ in Gp is a supporting matching N augmented
with self-loops at vertices left unmatched in N ; conversely, every supporting matching N
augmented with self-loops at unmatched vertices is a perfect matching Ñ in Gp.

Let M be any matching in G. In order to decide if there exists a supporting matching
that defeats M , the following edge weight function in Gp will be useful. For any (a, b) ∈ Ep:

let wtM (a, b) =


2 if (a, b) is a blocking edge to M ;
−2 if a and b prefer their partners in M to each other;
0 otherwise.

For any unstable vertex u, let wtM (u, u) = 0 if u is left unmatched in M , else wtM (u, u) = −1.
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Consider the following linear program (LP1). For any vertex v, let δp(v) be the set of
edges incident to v in Gp.

maximize
∑

e∈Ẽp

wtM (e) · xe (LP1)

subject to∑
e∈δp(v)

xe = 1 ∀ v ∈ A ∪B and xe ≥ 0 ∀ e ∈ Ẽp.

Since the constraint matrix is totally unimodular, (LP1) is integral. This LP computes a
max-weight perfect matching Ñ in Gp (so N is supporting by Theorem 5) with respect to
the edge weight function wtM . The following claim is easy to see.

▷ Claim 11. For any perfect matching Ñ in Gp, we have wtM (Ñ) = ∆(N,M).

Proof. For any edge e = (a, b) ∈ Ep, observe that wtM (e) = votea(b,M) + voteb(a,M) where
for any vertex v and neighbor v′, votev(v′,M) ∈ {±1, 0} is v’s vote for v′ versus its assignment
in M . So votev(v′,M) = 1 if v prefers v′ to its assignment in M , it is −1 if v prefers its
assignment in M to v′, otherwise it is 0. Similarly, for any unstable vertex v, wtM (v, v) is 0
if M leaves v unmatched, else it is −1.

Hence for any perfect matching Ñ in Gp, observe that wtM (Ñ) is the sum of votes of
all vertices, where each vertex votes for its assignment in N versus its assignment in M . In
other words, wtM (Ñ) = ϕ(N,M) − ϕ(M,N) = ∆(N,M). ◁

It follows from Claim 11 that if the optimal value of (LP1) is positive then there exists a
supporting matching that defeats M ; else ∆(N,M) ≤ 0 for all supporting matchings N , so M
is fairly popular. Note that for any stable matching N in G, we have wtM (Ñ) = ∆(N,M) ≥ 0
(due to N ’s popularity in G). So the optimal value of (LP1) has to be at least 0. Hence M
is fairly popular if and only if the optimal value of (LP1) is 0.

Let U ⊆ A ∪ B be the set of unstable vertices in G. The linear program (LP2) is the
dual LP.

minimize
∑

v∈A∪B

αv (LP2)

subject to

αa + αb ≥ wtM (a, b) ∀ (a, b) ∈ Ep and αu ≥ wtM (u, u) ∀u ∈ U.

So M is fairly popular if and only if the optimal value of (LP2) is 0.

3.2 Witnesses for Fairly Popular Matchings
Let C be any connected component in Gp = (A ∪ B, Ẽp). Since all stable matchings in G

match the stable vertices of C among themselves, the number of stable vertices in CA = C∩A
is the same as the number of stable vertices in CB = C ∩B. Hence there are k stable vertices
in CA if and only if there are k stable vertices in CB .

▶ Lemma 12. A matching M is fairly popular if and only if there exists a feasible solution
α to (LP2) such that for every connected component C in Gp, we have

∑
v∈C αv = 0 and

furthermore,
either αv ∈ {0,±2,±4, . . . , ±2k} for all v ∈ C

or αv ∈ {±1,±3,±5, . . . ,±(2k + 1)} for all v ∈ C,
where 2k is the number of stable vertices in C.
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Proof. Let M be a matching such that there exists a feasible solution α to (LP2) with∑
v∈C αv = 0 for every connected component C in Gp. Then

∑
v∈A∪B αv = 0 and so the

optimal value of (LP2) is 0. Hence M is fairly popular.
Conversely, let M be a fairly popular matching in G and let α be an optimal solution to

(LP2). The constraint matrix of (LP2) is totally unimodular, so we can assume that α ∈ Zn.
Let C be any connected component in Gp. We have wtM (Ñc) ≥ 0 where N is any stable

matching in G and Nc = N ∩ (C × C). Hence
∑

v∈C αv ≥ 0. Moreover,
∑

C

∑
v∈C αv =∑

v∈A∪B αv = 0 since M is fairly popular. Hence it has to be the case that
∑

v∈C αv = 0 for
every connected component C in Gp.

Every edge in Ep belongs to some popular fractional matching in G. Let q be the popular
fractional matching that (a, b) ∈ Ep belongs to, where a and b are vertices in C. We have
∆(q,M) = 0 since q is a popular fractional matching, thus q is an optimal solution to (LP1).
Because α is an optimal solution to (LP2), we have αa + αb = wtM (a, b) by complementary
slackness, i.e., every edge in Gp is tight. So αa + αb = wtM (a, b) ∈ {0,±2} for all (a, b) ∈ Ep.
Hence the α-values of all the vertices in C have the same parity.

Suppose every vertex of C is stable. Then we can update the α-values of vertices in
C as follows for any value t: αa = αa − t for all a ∈ CA and αb = αb + t for all b ∈ CB.
The updated α-values are also a feasible solution to (LP2) since the sum αa + αb for any
(a, b) ∈ Ep (where a and b are in C) is unchanged by this update; moreover, we assumed that
C has no unstable vertex, so there is no constraint αu ≥ wtM (u, u) for any u ∈ C.

Moreover, the sum of α-values of all vertices in C is unchanged by this update since
|CA| = |CB | = k (because C has only stable vertices), so

∑
v∈C αv = 0. Thus we can preserve

optimality and shift α-values so as to make αv = 0 for some v ∈ C. All the edges in Gp

are tight, so the matched partners of vertices with α-value 0 also have α-value 0 and all
neighbors in C of vertices with α-value 0 have their α-values in {0,±2}. Their partners have
α-values in {0,±2} and neighbors of these vertices have α-values in {0,±2,±4} and so on.
Since the number of stable vertices in CA (and also in CB) is k, we can conclude that there
exists an optimal solution α to (LP2) such that αv ∈ {0,±2, . . . ,±2k} for all v ∈ C.

Let us now assume that C has at least one unstable vertex. Consider the matching
Ñ = N ∪ {(u, u) : u ∈ U}, where N is any stable matching in G and U is the set of unstable
vertices in G. The matching Ñ is an optimal solution to (LP1). By complementary slackness,
we have αu = wtM (u, u) for every u ∈ U . Hence αu ∈ {0,−1} for every u ∈ U . Since the
α-values of all the vertices in C have the same parity, we have the following two cases.
Case 1. The α-values of all the vertices in C are even. Then αu = 0 for every u ∈ U ∩C. As

argued above (when C had no unstable vertex), this implies that αv ∈ {0,±2, . . . ,±2k}
for all v ∈ C.

Case 2: The α-values of all the vertices in C are odd. Then αu = −1 for every u ∈ U ∩ C.
An analogous argument to the one above shows that αv ∈ {±1,±3, . . . ,±(2k + 1)} for
all v ∈ C. ◀

A characterization of fairly popular matchings. By Lemma 12, a matching M is fairly
popular if and only if M = ∪CMc where for every connected component C in Gp, there
exists γ (this is the vector α in Lemma 12 restricted to vertices in C) such that:
1.

∑
v∈C γv = 0;

2. γa + γb ≥ wtMc
(a, b) for (a, b) ∈ Ep ∩ (C × C) and γu ≥ wtMc

(u, u) for u ∈ U ∩ C;
3. either γv ∈ {0,±2, . . . ,±2k} for all v ∈ C or γv ∈ {±1,±3, . . . ,±(2k + 1)} for all v ∈ C,

where 2k is the number of stable vertices in C.
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Witnesses. We know that M is fairly popular if and only if for each connected component
C in Gp, there exists γ such that Mc = M ∩ (C×C) and γ satisfy properties 1-3 given above.
Such a vector γ will be called a witness of Mc. Let Gc = (C,Ec) where Ec = Ep ∩ (C × C).

▶ Definition 13. Call a matching Mc in Gc valid if it has a witness, i.e., there exists a
vector γ such that Mc and γ satisfy properties 1-3 given above.

Let Fc be the convex hull of edge incidence vectors of all valid matchings in Gc. By
Lemma 12, Fc is the convex hull of F0

c ∪ F1
c where:

F0
c is the convex hull of edge incidence vectors of valid matchings in Gc with a witness γ

such that γv ∈ {0,±2, . . . ,±2k} for all v ∈ C.
F1

c is the convex hull of edge incidence vectors of valid matchings in Gc with a witness γ
such that γv ∈ {±1,±3, . . . ,±(2k + 1)} for all v ∈ C.

3.3 Two Useful Stable Matching Instances
Let C be any connected component in Gp with |C| ≥ 2. We will now describe instances
G′

c and G′′
c such that the stable matching polytope of G′

c (resp., G′′
c ) is an extension of F0

c

(resp., F1
c ). Let S be the set of stable vertices in G and let |S ∩ C| = 2k.

The instance G′
c = (A′

c ∪ B′
c, E′

c). Every a ∈ S∩CA has 2k+1 copies a−k, . . . , a0, . . . , ak

in A′
c. Recall that U is the set of unstable vertices in G. Every a ∈ U ∩ CA has exactly one

copy a0 in A′
c.

Let B′
c = {b̃ : b ∈ CB} ∪ {d1−k(a), . . . , dk(a) : a ∈ S ∩ CA}, where the set {b̃ : b ∈ CB}

is a copy of CB. Along with vertices in {b̃ : b ∈ CB}, the set B′
c contains 2k dummy

vertices d1−k(a), . . . , dk(a) for each a ∈ S ∩ CA. The purpose of the 2k dummy vertices
d1−k(a), . . . , dk(a) is to ensure that only one of a−k, . . . , a−1, a0, a1, . . . , ak is matched to a
non-dummy neighbor in any stable matching in G′

c.
For any a ∈ S∩CA, the set E′

c has the edges (ai−1, di(a)) and (ai, di(a)) for 1−k ≤ i ≤ k.
For every edge (a, b) in Ec, the following edges are in E′

c. Since vertices in U form an
independent set, note that at least one of a, b has to be in S.
1. If only one of a, b is in S then there is only one edge (a0, b̃) in E′

c.
2. If both a and b are in S then there are 2k + 1 edges (ai, b̃) in E′

c where −k ≤ i ≤ k.

Let a’s preference order among its neighbors in Gc be b1 ≻ · · · ≻ br.

If a ∈ U then the preference order of a0 is b̃1 ≻ · · · ≻ b̃r.
Suppose a ∈ S. The vertex a0’s preference order is d0(a) ≻ b̃1 ≻ · · · ≻ b̃r ≻ d1(a). Note
that all of a’s neighbors in Gc are present in a0’s preference list – this will not be so for
ai, where i ̸= 0. Let t1, . . . , ts be a’s neighbors in Gc that are in S. Let a’s preference
order among these neighbors be t1 ≻ · · · ≻ ts.
a−k’s preference order in G′

c is t̃1 ≻ · · · ≻ t̃s ≻ d1−k(a).
For i ∈ {1 −k, . . . , k− 1} \ {0}: ai’s preference order is di(a) ≻ t̃1 ≻ · · · ≻ t̃s ≻ di+1(a).
ak’s preference order in G′

c is dk(a) ≻ t̃1 ≻ · · · ≻ t̃s.
For any i, the preference order of di(a) is ai−1 ≻ ai.

Consider any b ∈ CB . Let b’s preference order for its neighbors in Gc be a ≻ · · · ≻ z. If
b ∈ U then b̃’s preference order for its neighbors in G′

c is a0 ≻ · · · ≻ z0.
Suppose b ∈ S. Let {a′, . . . , z′} ⊆ {a, . . . , z} be the set of b’s neighbors in Gc that are in

S. Let b’s preference order among these neighbors be a′ ≻ · · · ≻ z′. The preference order of
b̃ in G′

c is:

a′
k ≻ · · · ≻ z′

k︸ ︷︷ ︸
level k neighbors

≻ · · · ≻ a′
1 ≻ · · · ≻ z′

1︸ ︷︷ ︸
level 1 neighbors

≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors

≻ · · · ≻ a′
−k ≻ · · · ≻ z′

−k︸ ︷︷ ︸
level −k neighbors
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So copies of all neighbors of b in Gc are present only in level 0. Note that b̃ prefers
subscript/level i neighbors to level j neighbors for any i > j.

Stable matchings in G′
c. For any valid matching Mc in Gc with a witness γ such that

γv ∈ {0,±2, . . . ,±2k} for all v ∈ C, define M ′
c in G′

c as follows. For every (a, b) ∈ Mc:
include the edge (ai, b̃) in M ′

c where γa = −2i;
for j < i and a ∈ S do: add the edge (aj , dj+1(a)) to M ′

c;
for j > i and a ∈ S do: add the edge (aj , dj(a)) to M ′

c.

We will show in Lemma 14 that M ′
c is a stable matching in G′

c. Conversely, let M ′
c be

any stable matching in G′
c. Let Mc be the preimage of M ′

c, i.e., Mc is obtained by deleting
all edges in M ′

c that are incident to dummy vertices and replacing any edge (ai, b̃) ∈ E′
c with

(a, b) ∈ Ec. Note that Mc is a matching in Gc because all dummy vertices (being top choice
neighbors) have to be matched in any stable matching in G′

c and so at most one of the ai’s
can be matched to a non-dummy neighbor in M ′

c.
We will show in Lemma 14 that Mc is a valid matching in Gc. The proof of Lemma 14

uses ideas from [23, 24] and is given in the appendix.

▶ Lemma 14. Mc is a valid matching in Gc with a witness γ such that γv ∈ {0,±2, . . . ,±2k}
for all v ∈ C if and only if M ′

c is a stable matching in G′
c.

The instance G′′
c = (A′′

c ∪ B′′
c , E′′

c ). Every a ∈ S ∩ CA has 2k + 2 copies a−k, . . . , a−1,
a0, . . . , ak+1 in A′′

c . Every a ∈ U ∩ CA has k + 2 copies a−k, . . . , a−1, a0, a1 in A′′
c . Let

B′′
c = {b̃ : b ∈ CB}∪ {d1−k(a), . . . , dk+1(a) : a ∈ S∩CA}∪{d1−k(a), . . . , d1(a) : a ∈ U ∩CA}.

As before, the set {b̃ : b ∈ CB} is a copy of the set CB . Along with vertices in {b̃ : b ∈ CB},
the set B′′

c contains 2k + 1 dummy vertices for each a ∈ S ∩ CA and k + 1 dummy vertices
for each a ∈ U ∩ CA. For each edge (a, b) ∈ Ec, the following edges are in E′′

c :
1. If a ∈ U (so b ∈ S) then there are k + 2 edges (ai, b̃) in E′′

c where −k ≤ i ≤ 1.
2. If b ∈ U (so a ∈ S) then there are k + 2 edges (ai, b̃) in E′′

c where 0 ≤ i ≤ k + 1.
3. If both a and b are in S then there are 2k + 2 edges (ai, b̃) in E′′

c where −k ≤ i ≤ k + 1.

Let a ∈ CA. The set E′′
c also has the edges (ai−1, di(a)) and (ai, di(a)) for 1−k ≤ i ≤ k+1

if a ∈ S and for 1 − k ≤ i ≤ 1 if a ∈ U . For any i, the preference order of di(a) is ai−1 ≻ ai.
Let a’s preference order among its neighbors in Gc be b1 ≻ · · · ≻ br. Let t1, . . . , ts be

a’s neighbors in Gc that are in S and let t1 ≻ · · · ≻ ts be a’s preference order among these
neighbors.

a−k’s preference order in G′′
c is t̃1 ≻ · · · ≻ t̃s ≻ d1−k(a).

ai’s preference order is di(a) ≻ t̃1 ≻ · · · ≻ t̃s ≻ di+1(a) for 1 − k ≤ i ≤ −1.
If a ∈ U then all of a’s neighbors are in S and a0’s preference order is d0(a) ≻ b̃1 ≻ · · · ≻
b̃r ≻ d1(a) and a1’s preference order is d1(a) ≻ b̃1 ≻ · · · ≻ b̃r.
If a ∈ S then ai’s preference order is di(a) ≻ b̃1 ≻ · · · ≻ b̃r ≻ di+1(a) for 0 ≤ i ≤ k and
ak+1’s preference order is dk+1(a) ≻ b̃1 ≻ · · · ≻ b̃r.

Consider any b ∈ CB . Let b’s preference order for its neighbors in Gc be a ≻ · · · ≻ z. If
b ∈ U then a, . . . , z are in S and b̃’s preference order among its neighbors in G′′

c is:

ak+1 ≻ · · · ≻ zk+1︸ ︷︷ ︸
level k + 1 neighbors

≻ ak ≻ · · · ≻ zk︸ ︷︷ ︸
level k neighbors

≻ · · · ≻ a1 ≻ · · · ≻ z1︸ ︷︷ ︸
level 1 neighbors

≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors
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Suppose b ∈ S. Let a′, . . . , z′ be b’s neighbors in Gc that are in S and let b’s preference order
among these neighbors be a′ ≻ · · · ≻ z′. Then the preference order of b̃ in G′′

c is:

a′
k+1 ≻ · · · ≻ z′

k+1︸ ︷︷ ︸
level k + 1 neighbors

≻ · · · ≻ a′
2 ≻ · · · ≻ z′

2︸ ︷︷ ︸
level 2 neighbors

≻ a1 ≻ · · · ≻ z1︸ ︷︷ ︸
level 1 neighbors

≻ · · · ≻ a−k ≻ · · · ≻ z−k︸ ︷︷ ︸
level −k neighbors

Note that copies of all neighbors of b in Gc are present in level i only for −k ≤ i ≤ 1.

Stable matchings in G′′
c . For any valid matching Mc in Gc with a witness γ such that

γv ∈ {±1,±3, . . . ,±(2k+1)} for all v ∈ C, define M ′′
c in G′′

c as follows. For every (a, b) ∈ Mc:

include the edge (ai, b̃) in M ′′
c where γa = −(2i− 1);

for j < i do: add the edge (aj , dj+1(a)) to M ′′
c ;

for j > i do: add the edge (aj , dj(a)) to M ′′
c .

We will show that M ′′
c is a stable matching in G′′

c . Conversely, let M ′′
c be any stable

matching in G′′
c . As before, let Mc be the preimage of M ′′

c ; observe that Mc is a matching
in Gc. Lemma 15 (proved in the appendix) shows that Mc is a valid matching in Gc.

▶ Lemma 15. Mc is a valid matching in Gc with a witness γ such that γv ∈ {±1,±3, . . . ,
±(2k + 1)} for all v ∈ C if and only if M ′′

c is a stable matching in G′′
c .

3.4 A compact extended formulation
For any vertex v in G′

c, let δ′
c(v) be the set of edges incident to v in G′

c and for any neighbor u
of v, let {w ≻v u} be the set of all neighbors of v in G′

c that v prefers to u. Let T ′
c be the set

of vertices in G′
c matched in any stable matching in this graph. Consider constraints (1)-(3)

in variables ye where e ∈ E′
c and λc (this variable will be defined later).∑

w: w≻ai
b̃

y(ai,w) +
∑

s: s≻b̃ai

y(s,b̃) + y(ai,b̃) ≥ λc ∀(ai, b̃) ∈ E′
c (1)

∑
e∈δ′

c(v)

ye ≤ λc ∀v ∈ A′
c ∪B′

c (2)

∑
e∈δ′

c(v)

ye = λc ∀v ∈ T ′
c and ye ≥ 0 ∀e ∈ E′

c. (3)

Constraints (1)-(3) with 1 replacing λc (wherever λc occurs) describe the stable matching
polytope S ′

c of G′
c (by [29]). The stability constraint for any edge (ai, b̃) in E′

c is given by (1)
with 1 replacing λc. The stability constraint for edge (ai−1, di(a)) (resp., (ai, di(a))) is given
by

∑
e∈δ′

c(v) ye = 1 with v = ai−1 (resp., v = di(a)). Note that both ai−1 and di(a) are in T ′
c.

By Lemma 14, the constraints formulating S ′
c along with y(a,b) =

∑
i y(ai,b̃) for (a, b) ∈ Ec

describe an extension of the convex hull F0
c of the edge incidence vectors of valid matchings

in Gc with a witness γ such that γv ∈ {0,±2, . . . ,±2k} for all v ∈ C.
For any vertex v in G′′

c , let δ′′
c (v) be the set of edges incident to v in G′′

c and for any
neighbor u of v, let {w ≻v u} be the set of all neighbors of v in G′′

c that v prefers to u. Let
T ′′

c be the set of vertices in G′′
c matched in any stable matching in this graph. Consider

constraints (4)-(6) in variables ze where e ∈ E′′
c and λc.∑

w: w≻ai
b̃

z(ai,w) +
∑

s: s≻b̃ai

z(s,b̃) + z(ai,b̃) ≥ 1 − λc ∀(ai, b̃) ∈ E′′
c (4)

∑
e∈δ′′

c (v)

ze ≤ 1 − λc ∀v ∈ A′′
c ∪B′′

c (5)

∑
e∈δ′′

c (v)

ze = 1 − λc ∀v ∈ T ′′
c and ze ≥ 0 ∀e ∈ E′′

c (6)
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Constraints (4)–(6) with 1 replacing 1 − λc (wherever 1 − λc occurs) describe the stable
matching polytope S ′′

c of G′′
c (by [29]). The stability constraint for (ai, b̃) ∈ E′′

c is given by (4)
with 1 replacing 1 − λc; the stability constraint for edge (ai−1, di(a)) (resp., (ai, di(a))) is
given by

∑
e∈δ′′

c (v) ze = 1 with v = ai−1 (resp., v = di(a)). Both ai−1 and di(a) are in T ′′
c .

By Lemma 15, the constraints formulating S ′′
c along with z(a,b) =

∑
i z(ai,b̃) for (a, b) ∈ Ec

describe an extension of the convex hull F1
c of the edge incidence vectors of valid matchings

in Gc with a witness γ such that γv ∈ {±1,±3, . . . ,±(2k + 1)} for all v ∈ C.
We know from Lemma 12 that any valid matching in C has a witness γ where either

(i) γv ∈ {0, . . . ,±2k} for all v ∈ C or (ii) γv ∈ {±1, . . . ,±(2k + 1)} for all v ∈ C. So the
convex hull of F0

c ∪ F1
c is the valid matching polytope Fc of Gc. Consider constraints (7)-(8).

x(a,b) =
∑

i

y(ai,b̃) +
∑

i

z(ai,b̃) ∀(a, b) ∈ Ec (7)

xe = 0 ∀e ∈ (E ∩ (C × C)) \ Ec and 0 ≤ λc ≤ 1 (8)

The summations over i in constraint (7) are over appropriate i, i.e., if a and b are in S

then x(a,b) =
∑k

i=−k y(ai,b̃) +
∑k+1

i=−k z(ai,b̃). If a is in U then x(a,b) = y(a0,b̃) +
∑1

i=−k z(ai,b̃)

and if b is in U then x(a,b) = y(a0,b̃) +
∑k+1

i=0 z(ai,b̃).
Using Balas’ theorem [2] to formulate an extension of the convex hull of F0

c ∪F1
c introduces

the variable λc ∈ [0, 1] and we get constraints (1)-(8) as given above. Thus the polytope
defined by (1)-(8) is an extension of the polytope Fc. Hence Theorem 16 follows.

▶ Theorem 16. The polytope Pc defined by constraints (1)-(8) is an extension of the convex
hull Fc of edge incidence vectors of valid matchings in Gc.

For any two distinct connected components C and C ′ in Gp, the variables in the formu-
lation of Pc and those in the formulation of Pc′ are distinct. By listing the constraints in
the formulation of Pc over all the non-trivial connected components C in Gp (i.e., |C| ≥ 2)
along with xe = 0 for e ∈ E \ ∪CEc (where the union is over all the non-trivial connected
components C in Gp), we obtain a compact extended formulation for the fairly popular
matching polytope of G. Linear programming on this formulation finds a min-cost fairly
popular matching in G in polynomial time. This proves Theorem 4 stated in Section 1.

4 A Hardness Result

We prove Proposition 7 and Theorem 8 in this section. Let MG be the matching polytope
of the bipartite graph G = (A ∪ B,E) where |A ∪ B| = n and |E| = m. The polytope
MG ⊆ Rm is described by the following constraints:∑

e∈δ(v)

xe ≤ 1 ∀v ∈ A ∪B and xe ≥ 0 ∀e ∈ E.

For any vertex v, δ(v) is the set of edges in E incident to v. Any point x ∈ MG is a
fractional matching. Let Ẽ = E ∪ {(v, v) : v ∈ A ∪B} and let G̃ = (A ∪B, Ẽ). That is, G̃
has self-loops (v, v) for all v ∈ A∪B. The interpretation is that every vertex v is its own last
choice neighbor. So we can regard any fractional matching x as a perfect fractional matching
in G̃ by setting x(v,v) = 1 −

∑
e∈δ(v) xe for all vertices v.

For any matching M , recall the edge weight function wtM defined in Section 3. This
was defined in the graph Gp = (A ∪ B, Ẽp) and it easily extends (by the same definition)
to G̃ = (A ∪ B, Ẽ). For any edge e ∈ E, wtM (e) ∈ {0,±2} and for any self-loop (v, v),
wtM (v, v) ∈ {0,−1}. For any fractional matching x:

∆(x,M) = wtM (x) =
∑
e∈Ẽ

wtM (e) · xe.
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As shown in [26], this is exactly the same as defining ∆(x,M) = ∆(Π,M) where Π is
any mixed matching that is equivalent to x. Any popular matching M satisfies ∆(x,M) ≤ 0
for all x ∈ MG. Note that the constraint ∆(x,M) ≤ 0 involves m+ n variables xe for e ∈ Ẽ.
By substituting x(v,v) = 1 −

∑
e∈δ(v) xe for every vertex v, this constraint involves only the

m variables xe for e ∈ E.

▶ Observation 17. Let X ⊆ Rm be the convex hull of the edge incidence vectors of matchings
that are not defeated by any popular matching. The polytope X is a face of MG.

Proof. Every x ∈ MG satisfies ∆(x,N) ≤ 0 for all popular matchings N . So the intersection
of MG with the constraints ∆(x,N) = 0 for all popular matchings N is a face Q of MG.
The polytope Q is integral and every integral point in Q is the edge incidence vector of a
matching not defeated by any popular matching. Moreover, the edge incidence vector of
every matching that is not defeated by any popular matching is in Q. Hence Q = X . ◀

The following constraints in the variables xe for e ∈ E describe the polytope X :

∆(x,N) = 0 ∀ popular matchings N,
∑

e∈δ(v)

xe ≤ 1 ∀ v ∈ A∪B, and xe ≥ 0 ∀ e ∈ E.

There are exponentially many constraints here. However, X is a polytope in Rm and so
at most m of the tight constraints ∆(x,N) = 0 are necessary and the rest are redundant.
Thus there exist at most k ≤ m popular matchings N1, . . . , Nk such that if a matching M
satisfies ∆(M,Ni) = 0 for 1 ≤ i ≤ k then the edge incidence vector of M belongs to X , i.e.,
such a matching M is not defeated by any popular matching. Hence Proposition 7 follows.

The NP-hardness proof. We now prove Theorem 8 which states that in spite of the
compactness result given by Proposition 7, it is NP-complete to decide if there exists a
popular matching that defeats a given matching M . The reduction is from 1-in-3 SAT. This
is the set of 3CNF formulas where each clause has 3 literals, none negated, such that there is
a satisfying assignment that makes exactly one literal true in each clause.

Given such an input formula ψ, to decide if ψ is 1-in-3 satisfiable is NP-complete [30].
Given ψ, as done in [10], we will construct an instance G described below. The graph G has
several gadgets. We are interested in two particular gadgets illustrated in Figure 2. These
are on the 8 vertices: a0, z

′, u0, u
′
0 ∈ A and b0, z, v0, v

′
0 ∈ B.
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Figure 2 The numbers on edges denote preferences: 1 is top choice, 2 is second choice, and 3 is
third choice; ∗ denotes a number > 1. The red edges are present in all stable matchings and the
blue edges are present in all max-size popular matchings in G.

The top choices of z and z′ are u0 and v0, respectively. However (z, u0) and (z′, v0) (the
dashed edges in Figure 2) do not belong to any popular matching. The vertices z, z′ are
adjacent to many vertices in the rest of the graph: we refer to [10] for these details – it is
these vertices in the rest of the graph that represent the given formula ψ.
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Let P be any popular matching in G. It was shown in [10] that P contains either
(a0, b0) or the pair (a0, z), (z′, b0). Also P contains either the pair (u0, v0), (u′

0, v
′
0) or the

pair (u0, v
′
0), (u′

0, v0). No other edge incident to any of these 8 vertices in Figure 2 belongs to
any popular matching in G. The following hardness result [10, Theorem 4.2] will be crucial.

▶ Theorem 18 ([10]). The instance G has a popular matching that contains the three edges
(u0, v

′
0), (u′

0, v0), and (a0, b0) if and only if ψ is 1-in-3 satisfiable.

We will use the above instance G = (A ∪B,E) to show the NP-hardness of deciding if
there exists a popular matching that defeats a given matching M . Let M = M0 ∪M1 where
M1 = {(a0, b0), (u0, z), (z′, v0), (u′

0, v
′
0)} and M0 is any stable matching in the subgraph

induced on (A ∪B) \ S, where S = {a0, b0, z
′, z, u0, v0, u

′
0, v

′
0}.

▶ Lemma 19. There exists a popular matching in G that defeats M if and only if ψ is 1-in-3
satisfiable.

Proof. Let G1 be the subgraph of G induced on S and let G0 be the subgraph induced on
(A ∪B) \ S, where S = {a0, b0, z, z

′, u0, v0, u1, v1}.

The ⇒ direction. Suppose there is a popular matching N that is more popular than M .
No edge between G0 and G1 belongs to any popular matching [10], hence N = N0 ∪ N1,
where Ni is within Gi, for i = 0, 1. Since N is popular in G, the matchings N0 and N1 have
to be popular in G0 and G1, respectively.

We have ∆(N,M) = ∆(N0,M0) + ∆(N1,M1). Since ∆(N,M) > 0 and ∆(N0,M0) = 0
(because M0 and N0 are popular matchings in G0), it follows that ∆(N1,M1) > 0.

The graph G1 has three popular matchings and only one of them defeats M1. This
is the matching {(u0, v

′
0), (u′

0, v0), (a0, b0)} that leaves z, z′ unmatched. It is easy to check
that the other popular matchings in G1 – these are P = {(a0, b0), (u0, v0), (u′

0, v
′
0)} and

P ′ = {(a0, z), (z′, b0), (u0, v
′
0), (u′

0, v0)} – do not defeat M1.
So N1 = {(u0, v

′
0), (u′

0, v0), (a0, b0)}. We have ∆(N1,M1) = 4 − 2 = 2 since u0, v0, u
′
0, v

′
0

prefer N1 to M1 while z, z′ prefer M1 to N1 and a0, b0 are indifferent between N1 and M1.
Since N1 ⊆ N , it follows that N is a popular matching in G that contains (u0, v

′
0), (u′

0, v0),
and (a0, b0). This means that ψ is 1-in-3 satisfiable (by Theorem 18).

The ⇐ direction. Suppose ψ is 1-in-3 satisfiable. Then we know from Theorem 18 that
there is a popular matching P that contains the edges (u0, v

′
0), (u′

0, v0), (a0, b0). We claim
that ∆(P,M) > 0. Let us partition P into P0 ∪ P1 where P1 = {(u0, v

′
0), (u′

0, v0), (a0, b0)}
and P0 = P \ P1. We have ∆(P,M) = ∆(P1,M1) + ∆(P0,M0).

Observe that ∆(P1,M1) = 4 − 2 = 2. Moreover, ∆(P0,M0) = 0 by the popularity of P0
and M0 in G0. So ∆(P,M) = 2, i.e., the popular matching P defeats M . ◀

Lemma 19 shows that it is NP-hard to decide if there exists a popular matching that
defeats a given matching M . This problem is NP-complete since a “yes”-instance M has a
popular matching (which is easy to verify [4, 18]) that defeats it. Thus Theorem 8 stated in
Section 1 follows.

5 Conclusions

We introduced a relaxation of popular matchings called fairly popular matchings in a marriage
instance G = (A ∪B,E). Unlike popular matchings, fairly popular matchings may lose to
other matchings; however any matching N that defeats a fairly popular matching M does

STACS 2022



41:16 Fairly Popular Matchings and Optimality

not belong to the support of any popular mixed matching, thus such a matching N can be
considered to be quite far from being popular. So there is no “viable alternative” that defeats
a fairly popular matching. Hence fairly popular matchings are a meaningful generalization of
popular matchings.

We characterized matchings that belong to the support of popular mixed matchings. We
showed that a matching M belongs to the support of a popular mixed matching if and only if
M is undefeated by popular mixed matchings. We also gave a combinatorial characterization
of such matchings. This allowed us to characterize fairly popular matchings in terms of
witnesses and to use the stable matching machinery to formulate a compact extension of
the fairly popular matching polytope. Thus the min-cost fairly popular matching problem
can be solved in polynomial time. We also showed that it is NP-complete to decide if there
exists a popular matching that is more popular than a given matching M .
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A Appendix: Missing Proofs

We prove Lemma 10 here. Before we prove this lemma, we discuss some preliminaries that
will be used in this proof. Let G̃ = (A ∪B, Ẽ) be the graph G augmented with self-loops at
all vertices. So each vertex v regards itself as its last choice neighbor and any matching M
in G becomes a perfect matching M̃ in G̃ by augmenting M with self-loops at vertices left
unmatched in M .

For any matching M , recall the edge weight function wtM defined at the start of Section 3
in Gp. We now extend this edge weight function to all edges e in G, so wtM (e) ∈ {±2, 0}
where wtM (e) = 2 if e blocks M and so on. For any vertex v, let wtM (v, v) = 0 if v is left
unmatched in M , else wtM (v, v) = −1.

For any matching N in G, we have wtM (Ñ) = ∆(N,M). So M is popular in G if and
only if wtM (Ñ) ≤ 0 for all matchings N . Since wtM (M̃) = 0, the matching M is popular
in G if and only if the optimal value of (LP3) is 0. The linear program (LP4) is the dual LP.

▶ Theorem 20 ([22, 26]). A matching M in G = (A ∪B,E) is popular if and only if there
exists y ∈ {0,±1}n such that

∑
v∈A∪B yv = 0 along with ya +yb ≥ wtM (a, b) for all (a, b) ∈ E

and yv ≥ wtM (v, v) for all v ∈ A ∪B.
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max
∑
e∈Ẽ

wtM (e) · xe (LP3)

s.t.
∑

e∈δ(v)∪{(v,v)}

xe = 1 ∀ v ∈ A ∪B

xe ≥ 0 ∀ e ∈ Ẽ.

min
∑

v∈A∪B

yv (LP4)

s.t. ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E

yv ≥ wtM (v, v) ∀ v ∈ A ∪B.

We will call a vector y, as given in Theorem 20, a dual certificate for popular matching M .
Note that 0 is a dual certificate for any stable matching since a matching M is stable if and
only if wtM (e) ≤ 0 for all edges e.

We need to show in Lemma 10 that any matching in H = (AH ∪BH , EH) (see Figure 1) not
defeated by any popular matching contains only popular edges. Every popular matching in H
is perfect (since H has a perfect stable matching). As shown in [7], in such a case, there is a
surjective map from the set of stable matchings in an auxiliary instance H ′ = (A′

H ∪B′
H , E

′
H)

to the set of popular matchings in H. The graph H ′ is defined as follows:
A′

H = {a, a′ : a ∈ AH}. So every a ∈ AH has two copies a and a′ in A′
H .

B′
H = BH ∪ {d(a) : a ∈ AH}. So for every a ∈ AH , there is a dummy vertex d(a) in B′

H .

The vertex d(a) has only two neighbors a, a′ and d(a) prefers a to a′. Every (a, b) ∈ EH

has two copies (a, b) and (a′, b) in E′
H . For any a ∈ AH , if a’s preference order in H is

b1 ≻ · · · ≻ br then a’s preference order in H ′ is b1 ≻ · · · ≻ br ≻ d(a) and a′’s preference order
in H ′ is d(a) ≻ b1 ≻ · · · ≻ br.

Let b ∈ BH . If b’s preference order in H is a1 ≻ · · · ≻ ak then b’s preference order in H ′

is a′
1 ≻ · · · ≻ a′

k ≻ a1 ≻ · · · ≻ ak, i.e., all its primed neighbors followed by all its unprimed
neighbors, where the order among primed/unprimed neighbors is b’s original order in H.

Let M ′ be any stable matching in H ′. Then M ′ maps to the following matching in H:
M = {(a, b) : (a, b) or (a′, b) is in M ′}.

For each a ∈ AH , note that the stable matching M ′ has to match one of a, a′ to d(a)
since d(a) is the top choice neighbor for a′. The matching M is popular in H since it has
the following witness y ∈ {±1}nH : (where |AH ∪BH | = nH)
1. for a ∈ AH : if (a′, d(a)) ∈ M ′ then ya = 1; else ya = −1.
2. for b ∈ BH : if b’s partner in M ′ is a primed vertex (such as a′) then yb = 1; else yb = −1.
We refer to [7, 19] for the details that y is a feasible solution to (LP2) and

∑
v∈AH ∪BH

yv = 0.

Proof of Lemma 10. Let N be a matching in H that contains an unpopular edge (s, t).
We will now show there is a popular matching in H that defeats N . Call an edge e stable if
there is a stable matching in H that contains e. The following result on stable matchings in
a marriage instance will be useful to us.

▶ Proposition 21 ([17, proof of Lemma 2.5.1]). Suppose (s, t0) and (s, t1) are stable edges
while (s, t) is not a stable edge where t1 ≻s t ≻s t0. Then there is a stable matching M where
both s and t prefer their respective partners in M to each other.

Let tℓ be the partner of s in the AH -optimal stable matching Mℓ in H and let tr be the
partner of s in the BH -optimal stable matching Mr in H.

Case 1. Suppose tℓ ≻s t ≻s tr. Since the edge (s, t) is not stable while (s, tℓ) and (s, tr)
are stable edges, there is a stable matching M in H such that both s and t prefer
their partners in M to each other (by Proposition 21). So wtM (s, t) = −2. This
makes the edge (s, t) slack wrt to the popular matching M and its witness y = 0, i.e.,
wtM (s, t) = −2 < 0 = ys + yt.
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Since y = 0 is a feasible solution to (LP2), wtM (Ñ) =
∑

e∈Ñ wtM (e) <
∑

v yv = 0 (since
wtM (s, t) < ys + yt). Thus ∆(N,M) < 0, i.e., the stable matching M defeats N .

Case 2. Suppose t ≻s tℓ. That is, s prefers t to its most preferred stable partner tℓ in H.
Consider the following two stable matchings in H ′ = (A′

H ∪B′
H , E

′
H):

M ′
r = {(a, b) : (a, b) ∈ Mr} ∪ {(a′, d(a)) : a ∈ AH}

M ′
ℓ = {(a′, b) : (a, b) ∈ Mℓ} ∪ {(a, d(a)) : a ∈ AH}.

The vertex s′ is matched to its top choice neighbor d(s) in M ′
r and it is matched to tℓ in

M ′
ℓ. Recall that d(s) ≻s′ t ≻s′ tℓ. Since (s, t) is not a popular edge in H, the edge (s′, t)

is not stable in H ′. We know that (s′, d(s)) and (s′, tℓ) are stable edges in H ′, hence
there exists a stable matching M ′ in H ′ such that both s′ and t prefer their respective
partners in M ′ to each other (by Proposition 21). Observe that t’s partner in M ′ has to
be a primed neighbor (call it v′) since t cannot prefer an unprimed neighbor to s′. So M ′

contains edges (s′, u) and (v′, t) where s′ and t prefer their respective partners (u and v′)
to each other.
Let the stable matching M ′ in H ′ map to the popular matching M in H ; let y ∈ {±1}nH

be M ’s witness as described earlier. There are two subcases here.
The vertex u = d(s). So M ′ contains (s, b) (for some b ∈ BH) and (v′, t) where t prefers
v′ to s′, i.e., t prefers v to s. The edges (s, b), (v, t) are in M , where wtM (s, t) ≤ 0. We
have ys = yt = 1 (by 1. and 2. stated earlier). Hence wtM (s, t) ≤ 0 < 2 = ys + yt.
The vertex u ̸= d(s). So M ′ contains (s′, u) and (v′, t) where s prefers u to t and
similarly, t prefers v to s. The edges (s, u), (v, t) are in M and wtM (s, t) = −2. We have
ys = −1 and yt = 1 (by 1. and 2. stated earlier). Hence wtM (s, t) = −2 < 0 = ys + yt.

So in both cases, the edge (s, t) is slack wrt M and its witness y. So complementary
slackness (the same argument as given in case 1) implies that ∆(N,M) < 0, i.e., the popular
matching M defeats N .

Case 3. The last case is tr ≻s t. So s prefers its least preferred stable partner to t. If t also
prefers its partner in Mr to s then Mr is a stable matching where both s and t prefer
their respective partners to each other. This implies that Mr defeats N .
Else t prefers s to its partner in Mr, i.e., t prefers s to its most preferred stable partner.
Observe that this is exactly the same as case 2 with the roles of s and t swapped. Thus
an analogous argument shows that H has a popular matching that defeats N .

Proof of Lemma 14. Let Mc be a valid matching in Gc with a witness γ such that
γv ∈ {0,±2, . . . ,±2k} for all v ∈ C. Recall that S (resp., U) is the set of stable (resp.,
unstable) vertices in G. We claim that all vertices in S ∩C are matched in Mc and no vertex
in U ∩ C is matched in Mc.

Consider (LP1) with Mc replacing M and Ẽc = Ẽp ∩ (C ×C) replacing Ẽp. The optimal
value of this LP is 0 since there exists a dual feasible solution γ with

∑
u∈C γu = 0 (recall

that γ obeys properties 1-3). Let N be a stable matching in G and let Nc = N ∩ (C × C).
If Mc leaves a vertex v ∈ S ∩ C unmatched then ∆(Nc,Mc) > 0 (as shown in [18]), a
contradiction to the optimal value of (LP1) being 0. Thus Mc matches all vertices in S ∩ C.
Since the self-loop (u, u) ∈ Ñc for any u ∈ U ∩ C, the constraint γu ≥ wtMc(u, u) is tight
(by complementary slackness). Because wtMc

(u, u) ∈ {0,−1} and γu is even, it follows that
γu = wtMc

(u, u) = 0, i.e., u is left unmatched in Mc.
We need to show there is no blocking edge with respect to M ′

c and this proof is similar to
a proof in [24] on popular perfect matchings. Any dummy vertex di(a) is matched either to
its top choice neighbor ai−1 or to its second choice neighbor ai; in the latter case, its top
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choice neighbor ai−1 is matched to a more preferred neighbor. Thus no blocking edge is
incident to any dummy vertex. Let us now show that no blocking edge is incident to any
other vertex in G′

c. Observe that M̃c is an optimal solution to (LP1), so for any (p, q) ∈ Mc,
we have γp + γq = wtMc(p, q) = 0 (by complementary slackness).

Let a ∈ U ∩ CA and let (a, b) ∈ Ec. We have γa = 0 and γa + γb ≥ wtMc
(a, b) ≥ 0. So

γb ≥ 0. If γb = 0 then wtMc(a, b) = 0, i.e., (z0, b̃) ∈ M ′
c for some neighbor z that b prefers

to a. Else γb > 0 and so (zi, b̃) ∈ M ′
c for some neighbor z with −2i = γz = −γb < 0, so i > 0,

i.e., b̃ is matched to a neighbor in G′
c that it prefers to a0. Hence (a0, b̃) does not block M ′

c.
Let us now show there is no blocking edge incident to aℓ, where a ∈ S∩CA and −k ≤ ℓ ≤ k.

Suppose γa = −2i and (a,w) ∈ Mc. Then (ai, w̃) ∈ M ′
c and all of ai+1, . . . , ak are matched

to their respective top choice neighbors di+1(a), . . . , dk(a). Hence there is no blocking edge
incident to aj for j ≥ i+ 1.

Let (a, b) ∈ Ec. If b ∈ U then γb = 0 and γa + γb ≥ wtMc(a, b) ≥ 0. So γa ≥ 0. If γa = 0
then wtMc

(a, b) = 0, i.e., (a0, w̃) ∈ M ′
c for some neighbor w that a prefers to b. Else γa > 0

which implies that i < 0 and so (a0, d0(a)) ∈ Mc. In either case, a0 prefers its partner in M ′
c

to b̃, so (a0, b̃) does not block M ′
c.

Let b ∈ S. Since γa + γb ≥ wtMc
(a, b) ≥ −2, it follows that γb ≥ 2(i − 1). Thus

(zj , b̃) ∈ M ′
c where j ≥ i − 1. Hence b̃ prefers its partner in M ′

c to all aj , where j ≤ i − 2.
We now show that neither (ai−1, b̃) nor (ai, b̃) blocks M ′

c.
If j ≥ i+1 then b̃ prefers its partner zj in M ′

c to both ai and ai−1. Hence neither (ai−1, b̃)
nor (ai, b̃) blocks M ′

c.
If j = i then γa + γb = −2i+ 2i = 0 ≥ wtMc(a, b). Thus either (ai, b̃) ∈ M ′

c or one of ai, b̃

prefers its partner in M ′
c to the other. Hence neither (ai, b̃) nor (ai−1, b̃) blocks M ′

c in
this case as well.
If j = i− 1 then γa + γb = −2i+ 2(i− 1) = −2 ≥ wtMc

(a, b). So wtMc
(a, b) = −2, i.e.,

both a and b prefer their partners in Mc to each other. Hence b̃ prefers zi−1 to ai−1 and
similarly, ai prefers w̃ to b̃. Thus in this case also neither (ai−1, b̃) nor (ai, b̃) blocks M ′

c.

We prove the converse now. Let N be any stable matching in G and let Nc = N ∩ (C×C).
It is easy to check that N ′

c = {(a0, b̃) : (a, b) ∈ Nc} ∪ {(ai, di+1(a)) : a ∈ S ∩ CA and i < 0}
∪{(ai, di(a)) : a ∈ S ∩ CA and i > 0} is a stable matching in G′

c. The set of vertices left
unmatched in N ′

c is {a0, b̃ : a, b ∈ U ∩C}. Hence the stable matching M ′
c matches all vertices

of G′
c except the vertices a0, b̃, where a, b ∈ U ∩ C.

In order to prove that Mc is valid in Gc, we define γ as follows:
for every vertex u ∈ U ∩ C, let γu = 0;
for every edge (pi, q̃) ∈ M ′

c, let γp = −2i and γq = 2i.

Since −k ≤ i ≤ k, it immediately follows that γv ∈ {0,±2, . . . ,±2k} ∀v ∈ C. For any
u ∈ U ∩ C (each such vertex is unmatched in Mc), we have γu = 0 = wtMc

(u, u). We also
have

∑
v∈C γv =

∑
(p,q)∈Mc

(γp + γq) = 0.
Thus we are left to show the constraints γa + γb ≥ wtMc

(a, b) for all (a, b) ∈ Ec. Then it
will follow that properties 1-3 hold and thus Mc is valid in Gc with γ as a witness. Suppose
γa = −2i and γb = 2j. We need to show that −2i+ 2j ≥ wtMc

(a, b) and this proof is similar
to a proof in [23] on popular critical matchings. Let us consider the following 4 cases:
1. j ≥ i+ 1: So γa + γb ≥ −2i+ 2(i+ 1) = 2 ≥ wtMc

(a, b) since wtMc
(e) ∈ {0,±2} for any

e ∈ E.
2. j = i: Since the edge (ai, b̃) does not block M ′

c, either (ai, b̃) ∈ M ′
c or one of ai, b̃ is

matched to a neighbor preferred to the other. Recall that the preference order of b̃
among level i neighbors in G′

c is exactly as per its preference order in G. Thus either
(a, b) ∈ Mc or one of a, b is matched in Mc to a neighbor preferred to the other. Hence
γa + γb = −2i+ 2i = 0 ≥ wtMc(a, b).
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3. j = i− 1: Observe that a has to be a stable vertex, otherwise i = 0 and the edge (a0, b̃)
would block M ′

c. Since j ≥ −k, we have i = j+ 1 ≥ 1 −k; so there is a vertex di(a) which
(as ai’s top choice) has to be matched in any stable matching in G′

c. Since (ai, w̃) ∈ M ′
c

for some w ∈ B, it follows that (ai−1, di(a)) ∈ M ′
c. So ai−1 is matched to its worst choice

neighbor and because the edge (ai−1, b̃) does not block M ′
c, it follows that (zi−1, b̃) ∈ M ′

c

for some neighbor z that b prefers to a. The vertex b̃ prefers ai to zi−1 since higher level
neighbors are preferred to lower level neighbors. Since the edge (ai, b̃) does not block M ′

c,
it follows that a prefers w to b. Thus both a and b prefer their respective partners in Mc

to each other, so wtMc
(a, b) = −2 = −2i+ 2(i− 1) = γa + γb.

4. j ≤ i− 2: As argued in the above case, a has to be a stable vertex and (ai−1, di(a)) ∈ M ′
c.

So ai−1 is matched to its worst choice neighbor. Either b̃ is unmatched or (zj , b̃) ∈ M ′
c for

some j ≤ i− 2. In either case, M ′
c has a blocking edge – a contradiction to its stability.

Thus we cannot have j ≤ i− 2. ◀

Proof of Lemma 15. The matching Mc has to match all vertices in S∩C, otherwise we have
∆(Nc,Mc) > 0 where N is any stable matching in G and Nc = N ∩ (C × C), contradicting
that there is a feasible solution γ to (LP2)2 with

∑
v∈C γv = 0. Thus M̃c is feasible solution

to (LP1); in fact, it is an optimal solution to (LP1) since wtMc
(M̃c) = ∆(Mc,Mc) = 0. If Mc

leaves a vertex v unmatched then (v, v) ∈ M̃c and so by complementary slackness, we have
γv = wtMc

(v, v) = 0. However all the γ-values are odd. Hence Mc matches all vertices in C.
We need to show that M ′′

c is stable in G′′
c . As argued in the proof of Lemma 14, no

blocking edge can be incident to any dummy vertex. Let us now show that there is no
blocking edge incident to aℓ, where a ∈ CA and ℓ ≥ −k.

Suppose (a,w) ∈ Mc. Let γa = −(2i− 1). Then (ai, w̃) ∈ M ′′
c and (aj , dj(a)) ∈ M ′′

c for
j ≥ i + 1. Since aj is matched to its top choice neighbor dj(a), there is no blocking edge
incident to aj for j ≥ i+ 1.

Let b be any neighbor of a in Gc, i.e., (a, b) ∈ Ec. Then γa + γb ≥ wtMc
(a, b) ≥ −2, so

γb ≥ 2i− 3 = 2(i− 1) − 1. Thus (zj , b̃) ∈ M ′′
c where j ≥ i− 1. Hence b̃ prefers its partner zj

to all aℓ, where ℓ ≤ i− 2. We now show that neither (ai−1, b̃) nor (ai, b̃) blocks M ′′
c .

If j ≥ i + 1 then b̃ prefers its partner zj in M ′′
c to both ai and ai−1. Hence neither

(ai−1, b̃) nor (ai, b̃) blocks M ′
c.

If j = i then γa + γb = −(2i− 1) + (2i− 1) = 0 ≥ wtMc(a, b). Thus either (ai, b̃) ∈ M ′′
c

or one of ai, b̃ prefers its partner in M ′′
c to the other. Hence neither (ai, b̃) nor (ai−1, b̃)

blocks M ′′
c in this case.

If j = i− 1 then wtMc
(a, b) = −2 and so both a and b prefer their partners in Mc to each

other. So b̃ prefers zi−1 to ai−1 and similarly, ai prefers w̃ to b̃. Thus in this case also
neither (ai−1, b̃) nor (ai, b̃) blocks M ′′

c .

We will now prove the converse. We claim that M ′′
c is a perfect matching in G′′

c . Let N
be the max-size popular matching in G computed by the algorithm in [21]; N has a dual
certificate in {0,±1}n where every matched vertex has ±1 in its coordinate. The matching
Nc = N ∩ (C × C) matches all the vertices in C (recall that |C| ≥ 2).

We use N ’s dual certificate restricted to vertices in C (call this β, thus β ∈ {±1}|C|)
to obtain a stable matching N ′′

c in G′′
c . For a ∈ CA, let f(a) = (1 − βa)/2, so f(a) = 0

if βa = 1, else f(a) = 1. Note that f(a) = 1 for every a ∈ U ∩ CA (see [7, 21] for more
details). Let N ′′

c = {(af(a), b̃) : (a, b) ∈ Nc} ∪ {(ai, di+1(a)) : a ∈ CA and i < f(a)}∪
{(ai, di(a)) : a ∈ S ∩ CA and i > f(a)}. The stable matching N ′′

c matches all vertices in G′′
c .

2 This is the LP dual to (LP1) with Mc replacing M and Ẽc = Ẽp ∩ (C × C) replacing Ẽp.
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Hence the stable matching M ′′
c is also a perfect matching in G′′

c . Thus Mc matches all
vertices in C. In order to prove that Mc is a valid matching in Gc, we define γ as follows:

for every edge (pi, q̃) ∈ M ′′
c , let γp = −(2i− 1) and γq = 2i− 1.

Since −k ≤ i ≤ k + 1, we have γv ∈ {±1,±3, . . . ,±(2k + 1)} ∀v ∈ C. We also have∑
v∈C γv =

∑
(p,q)∈Mc

(γp + γq) = 0.
Furthermore, for any a ∈ U ∩ CA, we have (ai, w̃) ∈ M ′′

c where −k ≤ i ≤ 1 for some
neighbor w; thus γa = −(2i− 1) ≥ −1. Similarly, for any b ∈ U ∩ CB , we have (zj , b̃) ∈ M ′′

c

where 0 ≤ j ≤ k + 1 for some neighbor z; thus γb = 2j − 1 ≥ −1. Hence for any u ∈ U ∩ C,
we have γu ≥ −1 = wtMc

(u, u).
Thus we are left to show the constraints γa + γb ≥ wtMc(a, b) for all (a, b) ∈ Ec. Then it

will follow that properties 1-3 hold and thus Mc is valid in Gc with γ as a witness. Suppose
γa = −(2i − 1) and γb = 2j − 1. As done in the proof of Lemma 14, let us consider the
following 4 cases:
1. j ≥ i+ 1: So γa + γb ≥ 2 ≥ wtMc

(a, b) since wtMc
(e) ∈ {0,±2} for any e ∈ E.

2. j = i: Since the edge (ai, b̃) does not block M ′′
c , either (ai, b̃) ∈ M ′′

c or one of ai, b̃ is
matched to a neighbor preferred to the other. Thus either (a, b) ∈ Mc or one of a, b is
matched in Mc to a neighbor preferred to the other. So γa + γb = −(2i− 1) + 2i− 1 =
0 ≥ wtMc

(a, b).
3. j = i − 1: So (ai, w̃) and (zi−1, b̃) are in M ′′

c . The vertex b̃ prefers ai to zi−1 because
higher level neighbors are preferred to lower level neighbors. Since the edge (ai, b̃) does
not block M ′′

c , it follows that ai prefers w̃ to b̃. Observe that (ai−1, d(ai)) ∈ M ′′
c , thus

ai−1 is matched to its worst choice neighbor d(ai). Since the edge (ai−1, b̃) does not block
M ′′

c , it follows that b̃ prefers zi−1 to ai−1. Thus both a and b prefer their respective
partners in Mc to each other, so wtMc(a, b) = −2 = −(2i− 1) + 2(i− 1) − 1 = γa + γb.

4. j ≤ i− 2: We have (zj , b̃) ∈ M ′′
c for some j ≤ i− 2. As argued in the previous case, the

edge (ai−1, d(ai)) ∈ M ′′
c . This means that M ′′

c has a blocking edge, a contradiction to its
stability. Hence this case does not occur. ◀
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We study the following two fixed-cardinality optimization problems (a maximization and a minimiz-
ation variant). For a fixed α between zero and one we are given a graph and two numbers k ∈ N
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In this work, we complete the picture of their parameterized complexity on several types of
sparse graphs that are described by structural parameters. In particular, we provide kernelization
algorithms and kernel lower bounds for these problems. A somewhat surprising consequence of our
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1 Introduction

Fixed-cardinality optimization problems are a well-studied class of graph problems where
one seeks for a given graph G, a vertex set S of size k such that S optimizes some objective
function valG(S) [6, 8, 7, 26]. Prominent examples of these problems are Densest k-
Subgraph [5, 15, 26], Sparsest k-Subgraph [18, 19, 33], Partial Vertex Cover [1, 17,
21], and Max (k,n − k)-Cut [7, 31, 32].

A common thread in these examples is that all these problems are formulated in terms of
the number of edges that have one or two endpoints in S: In the decision version of Densest
k-Subgraph we require that there are at least t edges with both endpoints in S; Clique is
the special case where t =

(
k
2
)
. Conversely, in Sparsest k-Subgraph we require that at
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α

Densest k-Subgraph

Sparsest k-Subgraph

Max Deg Sum

Min Deg Sum

Max PVC

Min PVC

Max (k,n − k)-Cut

Min (k,n − k)-Cut
0 1/3 1/2 1

Figure 1 Problem definition cheat sheet.

most t edges have both endpoints in S and Independent Set is the special case with t = 0.
In Partial Vertex Cover we require that at least t edges have at least one endpoint in S.
Finally, in Max (k,n − k)-Cut we require that at least t edges have exactly one endpoint
in S.

We study the following general problem first defined by Bonnet et al. [3] that contains all
of the above problems as special case.1

Max α-Fixed Cardinality Graph Partitioning (Max α-FCGP)
Input: A graph G, k ∈ N, and t ∈ Q.
Question: Is there a set S of exactly k vertices such that

val(S) := (1 − α) · m(S) + α · m(S, V (G) \ S) ≥ t ?

Here, α ∈ [0, 1], and m(S) denotes the number of edges with two endpoints in S and
m(S, V (G) \ S) denotes the number of edges with exactly one endpoint in S. Naturally, one
may also consider the minimization problem, denoted as Min α-Fixed Cardinality Graph
Partitioning (Min α-FCGP), where we are looking for a set S such that val(S) ≤ t.

The value of α describes how strongly edges with exactly one endpoint in S influence the
value of S relative to edges with two endpoints in S. For α = 1/3, edges with two endpoints
in S count twice as much as edges with one endpoint in S and, thus, every vertex contributes
exactly its degree to the value of S. Hence, in this case, we simply want to find a vertex set
with a largest or smallest degree sum.

More importantly, Max α-FCGP and Min α-FCGP contain all of the above-mentioned
problems as special cases (see Figure 1). For example, Partial Vertex Cover (MaxPVC)
is Max α-FCGP with α = 1/2 as all edges with at least one endpoint in S count the same.
Max (k, n − k)-Cut is Max α-FCGP with α = 1 since edges with both endpoints in S are
ignored. Sparsest k-Subgraph is Min α-FCGP with α = 0 as only the edges with both
endpoints in S count. Consequently, there exist values of α such that Max α-FCGP and
Min α-FCGP are NP-hard and W[1]-hard on general graphs with respect to the natural
parameter k [7, 9, 12, 17]. This hardness makes it interesting to study these problems on
input graphs with special structure and Bonnet et al. [3] and Shachnai and Zehavi [32]
studied this problem on bounded-degree graphs.

We continue this line of research and give a complete picture of the parameterized
complexity of Min α-FCGP and Max α-FCGP on several types of sparse graphs that are
described by structural parameters. In particular, we provide kernelization algorithms and
kernel lower bounds for these problems, see Figure 2 for an overview.

1 On the face of it, the definition of Bonnet et al. [3] seems to be more general as it has separate weight
parameters for the internal and outgoing edges. It can be reduced to our formulation by adapting the
value of t and thus our results also hold for this formulation.



T. Koana, C. Komusiewicz, A. Nichterlein, and F. Sommer 42:3

[2] Prop. 7.3
Prop. 7.4

Thm. 4.11
Thm. 4.11

Prop. 7.2 Prop. 7.1

Thm. 5.1 Thm. 6.6
Thm. 6.3 Cor. 6.2

Thm. 5.1 Thm. 5.12
[23] Thm. 5.12 Thm. 5.2

α = 0 α ∈ (0, 1/3) α ∈ (1/3, 1]
α = 0 α ∈ (0, 1/3) α ∈ (1/3, 1]

Max:
Min:

W[1]-hard wrt. k for constant p

FPT, no kg(p) kernel for any g

kO(p) kernel, no ko(p) kernel
(k + p)O(1) kernel

2p kernel, no (k + p)O(1) kernel

Vertex Cover Number vc Section 7 Max Degree ∆ Section 4

h-index Section 7

degeneracy d Section 6

c-closure Section 5

Parameter p Section with results

Figure 2 Overview over our results. Each box displays the parameterized results (see also
bottom right) with respect to k and the corresponding parameter p for all variants (maximization,
minimization, and all α ∈ [0, 1], see bottom left). Note that the split of the boxes is not proportional
to the corresponding values of α. See Section 2 (paragraph “Graph parameter definitions.”) for the
definitions of the parameters. A line from a box for parameter p to a box above for parameter p′

implies that p ∈ O(p′) on all graphs. Thus, hardness results hold also for all parameters below and
tractability results for all parameters above.

Known results. MaxPVC can be solved in O∗((∆ + 1)k) time where ∆ is the maximum
degree of the input graph [30]. For the degeneracy d, Amini et al. [1] gave an O∗((dk)k)-time
algorithm which was recently improved to an algorithm with running time O∗(2O(dk)) [28].
Bonnet et al. [3] showed that in O∗(∆k) time one can solve Max α-FCGP for all α > 1/3
and Min α-FCGP for all α < 1/3. Bonnet et al. [3] call these two problem cases degrading.
This name reflects the fact that in Max α-FCGP with α > 1/3, adding a vertex v to a set S

increases the value at least as much as adding v to a superset of S.2 This is because here one
edge with both endpoints in S is less valuable than two edges each with one endpoint in S.
In Min α-FCGP this effect is reversed since we aim to minimize val. The other problem
cases are called non-degrading. For non-degrading problems, Bonnet et al. [3] achieved a
running time of O∗((∆k)O(k)) and asked whether they can also be solved in O∗(∆O(k)) time.
This question was answered positively by Shachnai and Zehavi [32], who showed that Max
α-FCGP and Min α-FCGP can be solved in O∗(4k+o(k)∆k) time.

Kernelization has been studied only for special cases. Max (k,n − k)-Cut admits a
polynomial problem kernel when parameterized by t [31]. This also gives a polynomial
kernel for k + ∆ since instances with t > ∆k are trivial no-instances. It is also known
that Sparsest k-Subgraph admits a kernel with γk2 vertices [23]. Here, γ is a parameter
bounded by max(c, d + 1) [16]. In contrast, Densest-k Subgraph is unlikely to admit a
polynomial problem kernel when parameterized by ∆ + k since Clique is a special case.

More broadly, for graph problems that are W[1]-hard for the standard parameter solu-
tion k size, the study of kernelization on sparse input graphs has received much attention in
recent years [10, 11, 25, 29].

2 Note that this matches the definition of submodularity.

STACS 2022



42:4 Covering Many (Or Few) Edges with k Vertices in Sparse Graphs

Independent of our work, a polynomial compression for MaxPVC (the special case of
Max α-FCGP with α = 1/2) of size (dk)O(d) was recently discovered by Panolan and
Yaghoubizade [28].

Our results. We provide a complete picture of the parameterized complexity of Max α-
FCGP and Min α-FCGP for all α with respect to the combination of k and five parameters
describing the graph structure: the maximum degree ∆ of G, the h-index of G, the degeneracy
of G, the c-closure of G, and the vertex cover number vc of G. With the exception of the
c-closure, all parameters are sparseness measures. The c-closure, first described by Fox et
al. [16], measures how strongly a graph adheres to the triadic closure principle. Informally,
the closure of a graph is small whenever all vertices with many common neighbors are also
neighbors of each other. For a formal definition of all parameters refer to Section 2.

Our results are summarized by Figure 2. On a very general level, our main finding suggests
that the degrading problems are much more amenable to FPT algorithms and kernelizations
than their non-degrading counterparts. No such difference is observed when considering
the running time of FPT algorithms for the parameter k + ∆ but it becomes striking in
the context of kernelization and when using secondary parameters that are smaller than ∆.
Given the importance of the distinction between the degrading and non-degrading cases, we
distinguish these subcases of Max α-FCGP and Min α-FCGP by name (Degrading Max
α-FCGP, Non-Degrading Max α-FCGP, Degrading Min α-FCGP, Non-Degrading
Min α-FCGP).

On a technical level, by introducing an annotated version of the problem that keeps track
of removed vertices, we separate and unify arguments that deal with vertices identified as
(not) being part of a solution. In particular, we show that by introducing vertex weights
(called counter) we can deal with vertices whose contribution is substantially below or above
the average contribution that is necessary to reach the threshold t. More precisely, if the
contribution of a vertex v is much above t/k, then we can add v to the solution and if it is
much below t/k, then we can remove v. As a consequence, we can show that the weights can
be bounded in the maximum degree of the annotated instance. This gives the kernels for the
parameter k + ∆.

The main step in the more sophisticated kernelizations for the degeneracy d and the
c-closure is now to decrease the maximum degree of the instance as this allows us to use the
kernel for k + ∆. To decrease the maximum degree, for these parameters, we make use of
Ramsey bounds. More precisely, the Ramsey bounds help to find a large independent set I

such that all vertices outside of I have only a bounded number of neighbors in I. This then
allows to prove by pigeonholing the following for the vertex v of I with the currently worst
contribution to the objective function: No matter what the optimal solution selects outside
of I, there is always some vertex of I \ {v} that gives at least as good a contribution to the
final solution as v. For the parameter c, we also need an additional pigeonhole argument
excluding large cliques in order to apply the Ramsey bound. For the parameter d, we
establish a new constructive Ramsey bound for Ki,j-free graphs that may be of independent
interest.

We remark that when we describe the kernel size for α > 0 (for instance, Proposition 4.2),
the factor 1/α is hidden in the O notation. We would like to emphasize, however, that the
exponents in the kernel size such as O(c) and O(d) do not depend on 1/α. On the other hand,
the lower bounds such as Theorem 4.11 hold indeed for all α in the range corresponding to
the case.
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We believe that this general approach could be useful for other parameterizations that
are not considered in this work. A somewhat surprising consequence of our kernelizations is
that Partial Vertex Cover and Max (k, n − k)-Cut not only behave in the same way
but that the kernels for both problems can also be obtained by the same algorithms.

Due to lack of space, several proofs (marked with (⋆)) are deferred to the full version [22].

2 Preliminaries

For q ∈ N, we write [q] to denote the set {1, 2, . . . , q}. For a graph G, we denote its
vertex set by V (G) and its edge set by E(G). Let X, Y ⊆ V (G) be vertex subsets. We
use G[X] to denote the subgraph induced by X. We let G − X denote the graph obtained
by removing the vertices in X. We denote by NG(X) := {y ∈ V (G) \ X | xy ∈ E(G), x ∈
X} the open neighborhood and by NG[X] := NG(X) ∪ X the closed neighborhood of X.
By EG(X, Y ) := {xy ∈ E(G) | x ∈ X, y ∈ Y } we denote the set of edges between X and Y .
As a shorthand, we set EG(X) := EG(X, X). Furthermore, we denote by mG(X, Y ) :=
|EG(X, Y )| and mG(X) := |EG(X)| the sizes of these edge sets. For all these notations,
when X is a singleton {x} we may write x instead of {x}. Let v ∈ V (G). We denote the
degree of v by degG(v). We drop the subscript ·G when it is clear from context.

Graph parameter definitions. For more information on parameterized complexity, we
refer to the standard monographs [9, 12]. We denote the size of a smallest vertex cover (a
set of vertices that covers all edges) of a graph G by vcG. The maximum and minimum
degree of G are ∆G := maxv∈V (G) degG(v) and δG := minv∈V (G) degG(v), respectively. The
degeneracy of G is dG := maxS⊆V (G) δG[S]. The hG-index of a graph G is the largest integer h

such that G has at least h vertices of degree at least h [14]. We say that G is c-closed
for c := max({0} ∪ {|NG(u) ∩ NG(v)| | uv /∈ E(G)}) + 1 [16].

Ramsey numbers. Ramsey’s theorem states that for every p, q ∈ N, there exists an
integer R(p, q) such that any graph on at least R(p, q) vertices contains either a clique of
size p or an independent set of size q. The numbers R(p, q) are referred to as Ramsey numbers.
Although the precise values of Ramsey numbers are not known, some upper bounds have
been proven. For instance, it holds that R(p, q) ≤

(
p+q−2

p−1
)

(see e.g. [20]). The proof for this
upper bound is constructive. More precisely, given a graph G on at least

(
p+q−2

p−1
)

vertices,
we can find in time nO(1) either a clique of size p or an independent set of size q.

3 A Data Reduction Framework via Annotation

In this section, we introduce an annotated variant which allows easier handling for kerneliza-
tion by giving more options for encoding information in the instances. Moreover, to avoid
repeating certain basic arguments, we provide general data reduction rules and statements
used in the subsequent sections. Finally, we describe how to reduce from the annotated to
the non-annotated problem variants in polynomial time.

In the annotated problem variant, we have additionally as input a (possibly empty)
partial solution T ⊆ V (G) and counter : V → N which encodes for each vertex, the number
of neighbors in the original graph that are guaranteed to be not in a solution. For a
set S ⊆ V (G), we set

counter(S) :=
∑

v∈S counter(v) and
valG(S) := α(m(S, V (G) \ S) + counter(S)) + (1 − α)m(S).
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For v ∈ S we set deg+c(v) := deg(v) + counter(v).

Annotated Max α-FCGP
Input: A graph G, T ⊆ V (G), counter : V (G) → N, k ∈ N, and t ∈ Q.
Question: Is there a vertex set S, T ⊆ S ⊆ V (G), of size k with valG(S) ≥ t (Max)

or valG(S) ≤ t (Min), respectively?

For a partial solution T ⊆ V (G), we define the contribution of a vertex v. Note that our
definition slightly differs from that of Bonnet et al. [3]:

cont(v, T ) := α · (|N(v) \ T | + counter(v)) + (1 − 2α)|N(v) ∩ T |
= α deg+c(v) + (1 − 3α)|N(v) ∩ T |

This definition is chosen so that the value val(S) of a vertex set S computes as follows.

▶ Lemma 3.1 (⋆). Let G be a graph and S := {v1, . . . , vn} ⊆ V (G) a vertex set. Then, it
holds that val(S) =

∑
i∈[|S|] cont(vi, {v1, . . . , vi−1}).

Main reduction rules. Annotations are helpful for data reductions in the following way: If
we identify a vertex v that is (or is not) in a solution, then, we can simplify the instance as
follows using the annotations.

▶ Reduction Rule 3.2 (Inclusion Rule). If there is a solution S with v ∈ S \ T , then add v

to T . If there is a vertex v ∈ T with counter(v) > 0, then reduce t by α · counter(v) and
set counter(v) := 0.

▶ Reduction Rule 3.3 (Exclusion Rule). If there is a solution S with v /∈ S, then for
each u ∈ N(v) increase counter(u) by one and remove v from G.

The reduction rules themselves are simple. The difficulty lies in identifying vertices that
are included in or excluded from some solution. In the respective arguments, we use the
subsequently discussed notion of better vertices.

Better vertices. The following notion captures a situation that frequently appears in our
arguments and allows for simple exchange arguments (see following lemma).

▶ Definition 3.4. A vertex v ∈ V (G) is better than u ∈ V (G) with respect to a vertex set
T ⊆ V (G) if cont(v, T ) ≥ cont(u, T ) for the maximization variant (if cont(v, T ) ≤ cont(u, T )
for the minimization variant).

A vertex v ∈ V (G) is strictly better than u ∈ V (G) if for all T ⊆ V (G) of size at most k

we have cont(v, T ) ≥ cont(u, T ) for the maximization variant (cont(v, T ) ≤ cont(u, T ) for
the minimization variant).

When we simply say that v is better than u, we mean that v is better than u with respect
to the empty set. The following lemma immediately follows from Lemma 3.1.

▶ Lemma 3.5. Let S be a solution of an instance of α-FCGP. Suppose that there are two
vertices v ∈ S and v′ /∈ S such that v′ is better than v with respect to S \ {v} or v′ is strictly
better than v. Then, S′ := (S \ {v}) ∪ {v′} is also a solution.

Proof. We give a proof for the maximization variant; the minimization variant follows
analogously. By Lemma 3.1, we have val(S′) = val(S \ {v}) + cont(v′, S \ {v}) ≥ val(S \
{v}) + cont(v, S \ {v}) = val(S). ◀
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Observe that the contribution of any vertex v differs from α deg+c(v) by at most |(1−3α)k|.
This observation allows us to identify some strictly better vertices in the following. This is
helpful when we wish to apply the second part of Lemma 3.5 on strictly better vertices.

▶ Lemma 3.6 (⋆). Let u, v ∈ V (G). Vertex v is strictly better than u if
(Maximization:) α deg+c(u) ≤ α deg+c(v) − |(1 − 3α)k|.
(Minimization:) α deg+c(u) ≥ α deg+c(v) + |(1 − 3α)k|.

Reduction to the non-annotated problem. The following two lemmas (for maximization and
minimization variant respectively) remove annotations and generate an equivalent instance of
α-FCGP. We remark that the resulting instance size depends on Γ := maxv∈V (G) counter(v)+
1. We obtain an upper bound on Γ in terms of k + ∆ in the next section.

▶ Lemma 3.7. Given an instance I := (G, T, counter, k, t) of Annotated Max α-FCGP
with α ∈ (0, 1], we can compute an equivalent instance I ′ of Max α-FCGP of size O((∆ +
Γ) · |V (G)| + k · |T |) in polynomial time.

Proof. We may assume that G has at least k vertices (otherwise the lemma holds for a trivial
No-instance I ′). We construct an equivalent instance I ′ := (G′, k, t′) of Max α-FCGP. The
graph G′ is obtained from G as follows:
1. Add counter(v) + ⌊1/α⌋ degree-one neighbors to every vertex v ∈ V (G).
2. Additionally, add ℓ := ∆ + Γ + |1/α − 3| · k + ⌊1/α⌋ degree-one neighbors to every vertex

v ∈ T .
By Lv we denote the set of degree-one vertices added to vertex v ∈ V (G) and by L :=⋃

v∈V (G) Lv we denote the set of all newly added leaf vertices. To conclude the construction
of I ′, we set t′ := t + α(ℓ · |T | + ⌊1/α⌋ · k). Since G has at most ∆ · |V (G)| edges and
we add at most O((Γ + 1) · |V (G)| + (∆ + k) · |T |) edges, we see that G′ has at most
O((∆ + Γ) · |V (G)| + k · |T |) edges.

Next, we prove the equivalence between I and I ′. For a solution S of I, its value in G′

is increased by α · ⌊1/α⌋ for every vertex in S and additionally, by α · ℓ for every vertex in T ,
amounting to t + α(ℓ · |T | + ⌊1/α⌋ · k).

Conversely, consider a solution S′ of I. First, we show that there is a solution containing all
vertices of T and no leaf vertex of L using Lemma 3.5. Suppose that for some vertex v ∈ V (G),
one of its degree-one neighbors v′ ∈ Lv is in S′ but not v itself. We then have cont(v′, S′ \
{v}) = α and cont(v, S′ \ {v}) ≥ α, implying that (S′ \ {v′}) ∪ {v} is also a solution by
Lemma 3.5. Thus, in the following we can assume that S′ ∩ Lv = ∅ for every vertex v ∈
V (G) \ S′. If there is a vertex v′ ∈ S′ ∩ Lv for some v ∈ V (G), then by the assumption
that |V (G)| ≥ k, the pigeonhole principle gives us a vertex w ∈ V (G) \ S′ with S′ ∩ Lw = ∅.
Since |Lw| ≥ counter(w) + ⌊1/α⌋ ≥ ⌊1/α⌋, we have cont(w, S′ \ {v′}) ≥ α · ⌊1/α⌋ ≥ α(1/α −
1) = 1−α. We thus have cont(v′, S\{v′}) = 1−α ≤ cont(w, S′\{v′}). Hence, (S′\{v′})∪{w}
is a solution, again by Lemma 3.5. Thus, in the following, we can assume that S′ ∩ L = ∅.

So we may assume that S′ consists only of vertices in G. Suppose that some vertex v ∈ T

is not in S′. For any vertex v′ ∈ S′ \ T , we have deg(v′) ≤ degG(v) + counter(v) + ⌊1/α⌋ ≤
∆ + Γ + ⌊1/α⌋. So we have deg(v′) ≥ ∆ + Γ + |1/α| · k + ⌊1/α⌋ ≥ deg(v) + |1/α − 3| · k.
Applying Lemma 3.6 with counter(v) = counter(v′) = 0, we obtain that v is strictly better
than v′. Now, it follows from Lemma 3.5 that I ′ has a solution S′ such that T ⊆ S′ ⊆ V (G′).
Hence, S′ is also a solution for I. ◀

▶ Lemma 3.8 (⋆). Given an instance I := (G, T, counter, k, t) of Annotated Min α-
FCGP for α ∈ (0, 1], we can compute an equivalent instance I ′ of Min α-FCGP of
size O((∆ + Γ)3 · |V (G)|) in polynomial time.
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4 Parameterization By Maximum Degree

4.1 Polynomial Kernels in Degrading Cases
Recall that in the degrading cases we have α ∈ (1/3, 1] for maximization and α ∈ [0, 1/3) for
minimization. Furthermore, recall that for two vertices u and v, v is said to be better than u

if cont(v, T ) ≥ cont(u, T ) (vice versa for the minimization variant).
For the annotated version we define ∆T

:= maxv∈V (G)\T deg(v). Clearly, ∆T ≤ ∆.

▶ Reduction Rule 4.1 (⋆). Let I be an instance of Annotated Degrading α-FCGP. If
there are more than ∆T k + 1 vertices that are better than v with respect to T , then apply
the Exclusion Rule (Reduction Rule 3.3) to v.

Next, we show that the exhaustive application of Reduction Rule 4.1 yields a polynomial
kernel for Degrading α-FCGP.

▶ Proposition 4.2. Degrading α-FCGP has a kernel of size
O(∆2k) for maximization and α ∈ (1/3, 1], and
O(∆4k) for minimization and α ∈ (0, 1/3).

Proof. Given an instance of Degrading α-FCGP, we transform it into an equivalent
instance of Annotated Degrading α-FCGP and apply Reduction Rule 4.1 exhaustively.
Observe that |V (G)| ≤ ∆T k + 1 ≤ ∆k + 1. Moreover, we have T = ∅ and Γ ≤ ∆ since each
neighbor of a vertex can increase its counter by at most one. By Lemma 3.7 (maximization)
resp. Lemma 3.8 (minimization), we obtain an equivalent instance of α-FCGP of size O(∆2k)
(maximization) resp. O(∆4k) (minimization). ◀

Note that Proposition 4.2 does not cover the case α = 0 for minimization. Note that this
problem is referred to as Sparsest k-Subgraph. We remark that this is complemented by
Proposition 6.4, in which we provide a kernel of size O(d2k). Since d ≤ ∆, this implies also
a kernel of size O(∆2k).

Proposition 4.2 basically shows that given an instance of Degrading α-FCGP, we can
find in polynomial time an equivalent instance of Degrading α-FCGP of size O(∆ + k)O(1).
In the following, we will show that an equivalent instance of Degrading α-FCGP that has
size (∆+k)O(1) can be constructed even if an instance of Annotated Degrading α-FCGP
is given (see Proposition 4.10). Proposition 4.10 plays an important role in kernelizations
in subsequent sections. Essentially, the task of kernelization boils down to bounding the
maximum degree ∆ by Proposition 4.10.

As shown in the proof of Proposition 4.2, the instance size becomes polynomial in k + ∆
by exhaustively applying Reduction Rule 4.1. Recall that in Section 3, we presented a
polynomial-time procedure to remove annotations with an additional polynomial factor in
∆+Γ on the instance size, where Γ denotes the maximum counter. To prove Proposition 4.10,
it remains to bound Γ for Annotated Degrading α-FCGP.

Bounding the largest counter Γ. Throughout the section, let k′ := k − |T | and t′ :=
t − val(T ). First, we identify vertices which are contained in a solution, if one exists.

▶ Definition 4.3. Let I be a Yes-instance of Annotated Degrading α-FCGP. A ver-
tex v ∈ V (G) \ T is called satisfactory if

(Maximization:) cont(v, T ) ≥ t′/k′ + (3α − 1)(k − 1) and α ∈ (1/3, 1].
(Minimization:) cont(v, T ) ≤ t′/k′ − (1 − 3α)(k − 1) and α ∈ (0, 1/3).
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▶ Reduction Rule 4.4 (⋆). Let I be an instance of Annotated Degrading α-FCGP
with α > 0 and let v ∈ V (G)\T be a satisfactory vertex. Apply the Inclusion Rule (Reduction
Rule 3.2) on vertex v.

We henceforth assume that Reduction Rule 4.4 is exhaustively applied on every satisfactory
vertex. Next, we identify vertices which are not contained in any solution.

▶ Definition 4.5. Let I be a Yes-instance of Annotated Degrading α-FCGP. A ver-
tex v ∈ V (G) \ T is called needless if

(Maximization:) cont(v, T ) ≤ t′/k′ − (3α − 1)(k − 1)2 for maximization and α ∈ (1/3, 1].
(Minimization:) cont(v, T ) ≥ t′/k′ + (1 − 3α)(k − 1)2 for minimization and α ∈ (0, 1/3).

▶ Reduction Rule 4.6 (⋆). Let I be an instance of Annotated Degrading α-FCGP
with α > 0 and let v ∈ V (G) \ T be a needless vertex. Apply the Exclusion Rule (Reduction
Rule 3.3) on vertex v.

We henceforth assume that Reduction Rule 4.6 is applied on every needless vertex. The
following reduction rule decreases the counter of each vertex in V (G) \ T . After this rule is
exhaustively applied, we may assume that counter(v) = 0 for at least one vertex v ∈ V (G)\T .
Recall that we already have counter(v) = 0 for every vertex in T .

▶ Reduction Rule 4.7. If counter(v) > 0 for every vertex v ∈ V (G) \ T , then decrease
counter(v) by 1 for every vertex v ∈ V (G) \ T and decrease t by αk′.

Next, we show that after the exhaustive application of Reduction Rule 4.7 the counter of
each vertex is bounded polynomially in terms of ∆ and k.

▶ Lemma 4.8. Let I be a Yes-instance of Annotated Degrading α-FCGP with α > 0.
We have counter(v) ∈ O(∆ + k2) for every vertex v ∈ V (G) \ T .

Proof. First and foremost, observe that there exists at least one vertex u ∈ V (G) \ T with
counter(u) = 0, since otherwise Reduction Rule 4.7 is still applicable. Since Reduction
Rule 3.3 is applied to each needless vertex, we conclude that every vertex in V (G) \ T has
contribution at least t′/k′ − (3α − 1)(k − 1)2 for maximization. Furthermore, since Reduction
Rule 3.2 is applied to each satisfactory vertex, we conclude that every vertex v ∈ V (G) \ T

has contribution at least t′/k′ − (1 − 3α)(k − 1) for minimization. In particular, we have

cont(u, T ) ≥ t′/k′ − (3α − 1)(k − 1)2 for maximization, and
cont(u, T ) ≥ t′/k′ − (1 − 3α)(k − 1) for minimization.

Since also cont(u, T ) = α · deg(u) + (1 − 3α)|N(u) ∩ T | we obtain that

t′/k′ ≤ α · deg(u) + (1 − 3α)|N(u) ∩ T | + (3α − 1)(k − 1)2 for maximization, and (1)
t′/k′ ≥ α · deg(u) + (1 − 3α)[(k − 1) + |N(u) ∩ T |] for minimization. (2)

Moreover, since Reduction Rule 3.2 is applied to each satisfactory vertex, we conclude that
every vertex v ∈ V (G) \ T has contribution at most t′/k′ + (3α − 1)(k − 1) for maximization.
Furthermore, since Reduction Rule 3.3 is applied to each needless vertex, we conclude that
every vertex in V (G) \ T has contribution at most t′/k′ + (1 − 3α)(k − 1)2 for minimization.
This implies that in particular

α · counter(v) ≤ t′/k′ + (3α − 1)(k − 1) for maximization, and. (3)
α · counter(v) ≤ t′/k′ + (1 − 3α)(k − 1)2 for minimization. (4)
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For maximization and α ∈ (1/3, 1] it then follows from Equations (1) and (3) that

counter(v) ≤ deg(u) + 3α − 1
α

[k(k − 1) − |N(v) ∩ T |] ∈ O(∆ + k2).

For minimization and α ∈ (0, 1/3) it then follows from Equations (2) and (4) that

counter(v) ≤ deg(u) + 1 − 3α

α
[k(k − 1) + |N(v) ∩ T |] ∈ O(∆ + k2) for minimization.

This concludes the proof. ◀

Putting everything together. We use the following proposition in our kernels for Degrad-
ing α-FCGP. Therefore, we first transform the instance into an equivalent instance of
Annotated Degrading α-FCGP. Second, we apply our reduction rules. Third, we reduce
back to the unannotated version.

▶ Proposition 4.9 (⋆). Let α > 0. Given an instance (G, T, counter, k, t) of
Annotated Degrading Max α-FCGP, we can compute in polynomial time an equival-
ent Degrading Max α-FCGP instance of size O(|V (G)|2 + |V (G)|k2) ⊆ O(|V (G)|3),
and
Annotated Degrading Min α-FCGP, we can compute in polynomial time an equival-
ent Degrading Min α-FCGP instance of size O(|V (G)| · (|V (G)| + k2)3) ⊆ O(|V (G)|7).

▶ Proposition 4.10. Given an instance (G, T, counter, k, t) of Annotated Degrading α-
FCGP with α > 0, we can compute in polynomial time an equivalent Degrading α-FCGP
instance of size O((∆ + k)O(1)).

Proof. Follows from Lemmas 3.7–3.8, and Proposition 4.2. ◀

4.2 No Polynomial Kernels in Non-Degrading Cases
Note that if α = 0, then Max α-FCGP corresponds to Densest k-Subgraph. It is already
known that Densest k-Subgraph does not admit a polynomial kernel for ∆ + k [26]. We
strengthen and generalize this result: First, we observe that Densest k-Subgraph does
not admit a polynomial kernel for k, even when ∆ = 3. Second, we extend this negative
result to Non-Degrading Max α-FCGP and Non-Degrading Min α-FCGP when ∆ is
a constant.

▶ Theorem 4.11 (⋆). Unless coNP ⊆ NP/poly,
1. Non-Degrading Max α-FCGP on subcubic graphs does not admit a polynomial kernel

for k, and
2. Non-Degrading Min α-FCGP on graphs with constant maximum degree does not

admit a polynomial kernel for k.

5 Parameterization by c-closure

Hardness for the non-degrading case. We start with showing that the Non-Degrading
case is intractable.

▶ Theorem 5.1 (⋆). Non-Degrading Max α-FCGP remains W[1]-hard with respect to
the solution size k even on 2-closed and 2-degenerate graphs.

▶ Theorem 5.2 (⋆). Non-Degrading Min α-FCGP remains W[1]-hard with respect to
the solution size k even on 2-closed graphs.
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A kO(c)-size kernel for the degrading case. In contrast to the non-degrading case, we
develop a kernel of size kO(c) for the degrading case. To this end, we apply a series of
reduction rules to obtain an upper bound of kO(c) on the maximum degree. Then, the kernel
of size kO(c) follows from Proposition 4.10. In order to upper-bound the maximum degree,
we rely on a polynomial Ramsey bound for c-closed graphs [24].

▶ Lemma 5.3 ([24, Lemma 3.1]). Any c-closed graph G on at least Rc(a, b) := (c − 1) ·
(

b−1
2

)
+

(a−1)(b−1)+1 vertices contains a clique of size a or an independent set of size b. Moreover,
a clique of size a or an independent set of size b can be found in polynomial time.

Using a similar approach as Reduction Rule 4.1 (but exploiting the c-closure instead of
the maximum degree) yields the following.

▶ Reduction Rule 5.4. Let I be an instance of Annotated Degrading α-FCGP. Let v ∈
V (G) be some vertex and let Xv ⊆ N(v) be the set of vertices better than v. If |Xv| > (c−1)k,
then apply the Exclusion Rule (Reduction Rule 3.3) to v.

▶ Lemma 5.5. Reduction Rule 5.4 is correct.

Proof. We provide a proof for the maximization version; the minimization version follows
analogously. Let S be a solution. Assume that v ∈ S (we are done otherwise). We show that
there is a vertex v′ ̸= v such that S′ := (S \ {v}) ∪ {v′} constitutes a solution. By Lemma 3.5,
it suffices to show that cont(v′, S \ {v}) ≥ cont(v, S \ {v}). Let S′

v := S \ N [v]. Each vertex
in S′

v is, by definition, nonadjacent to v, and hence it shares at most c−1 neighbors in common
with v. This implies |Xv \N(S′

v)| ≥ |Xv|− (c−1) · |S′
v| > 0 as Xv ⊆ N(v). Thus, there exists

a vertex v′ ∈ Xv \N(S′
v), that is, N(v′)∩S′

v = ∅. Then, we have N(v′)∩ (S \{v}) ⊆ S ∩N(v)
and thus |N(v′)∩ (S \{v})| ≤ |N(v)∩ (S \{v})|. Moreover, we have α deg+c(v′) ≥ α deg+c(v)
(recall that v′ is better than v). Since α ∈ (1/3, 1], it follows that

cont(v′, S \ {v}) = α deg+c(v′) + (1 − 3α)|N(v′) ∩ (S \ {v})|
≥ α deg+c(v) + (1 − 3α)|N(v) ∩ (S \ {v})| = cont(v, S \ {v}).

This concludes the proof. ◀

Note that if there is a clique of size (c − 1)k + 1, then Reduction Rule 5.4 applies to one of
the vertices with the smallest contribution. Thus, applying Reduction Rule 5.4 exhaustively
removes all cliques of size (c − 1)k + 1.

▶ Lemma 5.6. Let v ∈ V (G) be a vertex such that deg(v) ≥ Rc((c − 1)k + 1, (k + 1)kc−2).
Then, we can find in polynomial time a set X of i ∈ [c − 1] vertices and an independent set I

with the following properties:
(i) The set X contains v.
(ii) The set I ⊆

⋂
x∈X N(x) is an independent set of size at least (k + 1)kc−i.

(iii) For every vertex u ∈ V (G) \ X, it holds that |N(u) ∩ I| ≤ (k + 1)kc−i−1.

Proof. Since there is no clique of size (c − 1)k + 1, there is an independent set Iv of
size (k+1)kc−2 in N(v) by Lemma 5.3 (which can be found in polynomial time). Let X be an
inclusion-wise maximal set of i vertices including v such that |

⋂
x∈X N(x)∩ Iv| > (k +1)kc−i.

One of such sets can be found by the following polynomial-time algorithm: We start
with X := {v} and i := 1. We will maintain the invariant that |X| = i. If there exists a
vertex v′ ∈ V (G) \ X with |N(v′) ∩

⋂
x∈X N(x) ∩ Iv| > (k + 1)kc−i−1, then we add v′ to X

and increase i by 1. We keep doing so until there remains no such vertex v′.
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We show that this algorithm terminates for i = |X| ≤ c − 1. Assume to the contrary
that the algorithm continues for i = c − 1. We then have that |N(v′) ∩

⋂
x∈X N(x) ∩ Iv| >

(k + 1)kc−i−1 = k + 1 ≥ 2 for some vertex v′ ∈ V (G) \ X. Since Iv is an independent set, the
set N(v′) ∩

⋂
x∈X N(x) ∩ Iv contains two nonadjacent vertices. Note, however, that these

two vertices have at least |X ∪ {v}| = c common neighbors, contradicting the c-closure of G.
Finally, we show that a set X found by this algorithm and I :=

⋂
x∈X N(x)∩Iv satisfy the

three properties of the lemma. We have |
⋂

x∈X N(x) ∩ Iv| = |N(v′) ∩
⋂

x∈X\{v} N(x) ∩ Iv| >

(k + 1)kc−(i−1)−1 = (k + 1)kc−i, where v′ is the last vertex added to X. Moreover, since X

is inclusion-wise maximal, we have |N(u) ∩ I| = |N(u) ∩
⋂

x∈X N(x) ∩ Iv| ≤ (k + 1)kc−i−1

for every vertex u ∈ V (G) \ X. ◀

▶ Reduction Rule 5.7. Let I be an instance of Annotated Degrading α-FCGP. Let X, I

be as specified in Lemma 5.6 and let v ∈ I be a vertex such that every other vertex in I is
better than v. If k ≥ 2, then apply the Exclusion Rule (Reduction Rule 3.3) to v.

▶ Lemma 5.8. Reduction Rule 5.7 is correct.

Proof. Again, we show the proof for the maximization variant; the minimization variant
follows analogously. For the sake of contradiction, assume that every solution S contains v.
By Lemma 5.6, every vertex u ∈ V (G) \ X has at most (k + 1)c−i neighbors in I. Moreover,
since I is an independent set, we have |I ∩ N [v′]| = 1 for every vertex v′ ∈ I (including v).
For S′ := S \ X, we have

|I \ N [S′]| ≥ |I| − |I ∩ N [v]| − |I ∩ N [S′ \ {v}]|
≥ (k + 1)kc−i − (k − 1)(k + 1)kc−i−1 − 1 = kc−i + kc−i−1 − 1 > 0.

Let v′ be an arbitrary vertex in I \ N [S′]. We show that cont(v′, S \ {v}) ≥ cont(v, S \ {v}).
By Lemma 3.5, this would imply that (S \ {v}) ∪ {v′} is a solution not containing v. Since v

and v′ are both adjacent to all vertices of X and α ∈ (1/3, 1], we have |N(v) ∩ (S \ {v})| >

|X ∩ (S \ {v})|. We thus have

cont(v′, S \ {v}) = α deg+c(v′) + (1 − 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1 − 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1 − 3α)|N(v) ∩ (S \ {v})| = cont(v, S \ {v}).

Here, the first inequality follows from the fact that v′ is better than v. ◀

By applying these reduction rules, we can ensure that ∆ ≤ Rc((c − 1)k + 1, (k + 1)kc−2) ∈
kO(c). Proposition 4.10 leads to the following:

▶ Proposition 5.9. Degrading α-FCGP has a kernel of size kO(c).

Matching lower bounds. Next, we show that the kernels provided in Theorem 5.9 cannot
be improved under standard assumptions.

▶ Proposition 5.10 (⋆). Degrading Max α-FCGP has no kernel of size O(kc−3−ϵ) unless
coNP ⊆ NP/poly.

▶ Proposition 5.11 (⋆). For each α ∈ (0, 1/3), Min α-FCGP does not admit a kernel of
size O(kc−3−ϵ) unless coNP ⊆ NP/poly.
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Note that Min α-FCGP for α = 0 is equivalent to Sparest k-Subgraph which admits
a kernel of size O(c2k3) [23].

Now, Propositions 5.9–5.11 imply the following.

▶ Theorem 5.12. Degrading α-FCGP admits a kernel of size kO(c). For α > 0, Degrad-
ing α-FCGP does not admit a kernel of size ko(c) unless coNP ⊆ NP/poly.

6 Parameterization by Degeneracy

Minimization variant. We start with the minimization variant which turns out to be easier
than the maximization variant. This is most likely because of the following bound on t.

▶ Lemma 6.1 (⋆). In non-trivial instances (G, k, t) of Min α-FCGP we have t ≤ dk.

Shachnai and Zehavi [32] showed that Min α-FCGP with α ∈ (0, 1] admits an FPT-
algorithm with respect to k + t. Hence, we obtain the following.

▶ Corollary 6.2. Min α-FCGP for α > 0 is FPT parameterized by d + k.

Naturally, we may now ask whether this FPT result can be strengthened to a polynomial
kernel. As shown by Theorem 4.11, the non-degrading case of Min α-FCGP does not admit
a polynomial kernel even on graphs with constant maximum degree which implies constant
degeneracy. In contrast, the degrading has a kernel whose size is polynomial in d + k.

▶ Theorem 6.3 (⋆). Degrading Min α-FCGP admits a kernel of size (d + k)O(1).

▶ Proposition 6.4 (⋆). Sparsest k-Subgraph admits a kernel with O(dk) vertices and of
size O(d2k).

Maximization variant. Recall, that MaxPVC is the special case of Max α-FCGP with α =
1/2. Amini et al. [1] showed that MaxPVC can be solved in O∗((dk)k) time. Adapting this
algorithm leads to an FPT-algorithm for α-FCGP with respect to d + k for α ̸= 0:

▶ Proposition 6.5 (⋆). Degrading α-FCGP can be solved in O∗((dk)k) time for α ̸= 0.

The rest of this section is devoted to the proof of the next theorem.

▶ Theorem 6.6. Degrading Max α-FCGP admits a kernel of size kO(d) but, unless coNP
⊆ NP/poly, no kernel of size O(kd−2−ϵ).

In particular, this implies that MaxPVC admits a kernel of size kO(d). We remark that a
compression of size (dk)O(d) was obtained independently by Panolan and Yaghoubizade [28].

A kernel for biclique-free graphs in the degrading case. We next develop a kernel of
size kO(d). In fact, our algorithm works for biclique-free graphs – graphs that do not have a
biclique Ka,b as a subgraph for a ≤ b ∈ N. Note that a d-degenerate graph has no Kd+1,d+1
as a subgraph, since otherwise every vertex in Kd+1,d+1 has at least degree d + 1.

Note that a clique of size a + b contains Ka,b as a subgraph. So given a graph G with no
occurrence of Ka,b on at least

(
a+b+k−2

k−1
)

∈ kO(a+b) vertices, one can find an independent set
of size k in polynomial time (see Section 2). We show that this upper bound on the number
of vertices can be improved: the sum a + b in the exponent can be replaced by min{a, b}.

▶ Lemma 6.7. For a ≤ b ∈ N, let G be a graph that contains no Ka,b as a subgraph. If G

has at least R(k) vertices, then we can find in polynomial time an independent set of size k,
where R(k) ∈ (a + b)O(a) · ka.
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Proof. We first show that if G has at least k + b
(

k
a

)
+

∑
ℓ∈[a−1] R(a + b, ℓ + 1)

(
k
ℓ

)
vertices,

then it contains an independent set of size k. We give an algorithm to find an independent
set of size k in polynomial time later. Let I be a maximum independent set in G. We assume
for contradiction that |I| < k. We prove that there are at most t

(
k
a

)
vertices that have at

least a neighbors in I and that there are at most
∑

ℓ∈[a−1] R(a + b, ℓ + 1) vertices that have
at most a − 1 neighbors in I.

For each subset X ⊆ I of size exactly a, note that there are at most b vertices v such
that N(v) ⊇ X, since otherwise there is a Ka,b in G. It follows that the number of vertices
with at least a neighbors in I is at most t

(|I|
a

)
≤ b

(
k
a

)
. Consider a set X ⊆ I of size ℓ ∈ [a − 1].

Let VX := {v ∈ V (G) \ I | N(v) ∩ I = X}. Then, there is no independent set I ′ of size ℓ + 1
in VX , since otherwise (I \ X) ∪ I ′ is an independent set of size at least |I| + 1, contradicting
the fact that I is an independent set of maximum size. Moreover, there is no clique of size a+b

in VX . Thus, |VX | < R(a + b, ℓ + 1). The number of vertices with at most a − 1 neighbors
in I is then at most

∑
X⊆I,|X|=ℓ∈[a−1] R(a + b, ℓ + 1)

(|I|
ℓ

)
≤

∑
ℓ∈[a−1] R(a + b, ℓ + 1)

(
k
ℓ

)
.

We turn the argument above into a polynomial-time algorithm as follows. Suppose that
we have an independent set I ′ of size smaller than k. As discussed above, there are at
most b ·

(
k
a

)
vertices that have at least s neighbors in I ′. Hence, there is a vertex set X ⊆ I ′

of size ℓ such that |VX | > R(a + b, ℓ + 1). Note that X can be found in polynomial time,
for instance, by counting the number of vertices v′ such that N(v′) ∩ I ′ = N(v) ∩ I ′ for
each vertex v ∈ V (G). We can then find an independent set I ′′ of size ℓ + 1 in X (this
can be done in polynomial time as discussed in Section 2). This way, we end up with an
independent set (I ′ \ X) ∪ I ′′ of size at least |I ′| + 1. Note that this procedure of finding
an independent set of greater size is repeated at most k times, and thus the overall running
time is polynomial. ◀

We remark that for fixed a ≤ b ∈ N, Lemma 6.7 gives us an O(n1−1/a)-approximation
algorithm for Independent Set that runs in nℓ time with a constant ℓ not depending on a

or b. An O(n1−1/a)-approximation algorithm is known on graphs where Ka,b is excluded as
an induced subgraph [4, 13]. However, these algorithms have running time nΩ(a).

We then apply Lemma 6.7 to obtain a lemma analogous to Lemma 5.6.

▶ Lemma 6.8. Let v ∈ V (G) be a vertex such that deg(v) ≥ R(bka−1). Then, we can find
in polynomial time a set X of i ∈ [a − 1] vertices and an independent set I with the following
properties:

(i) The set X contains v.
(ii) The set I ⊆

⋂
x∈X N(x) is an independent set of size at least bka−i + 1.

(iii) For every vertex u ∈ V (G) \ X, it holds that |N(u) ∩ I| ≤ bka−i−1.

Proof. By Lemma 6.7, there is an independent set Iv of size bkb−1 in N(v) (which can be
found in polynomial time). Let X be an inclusion-wise maximal set of i vertices including v

with |
⋂

x∈X N(x) ∩ Iv| > bka−i. Such a set can be found by the following polynomial-time
algorithm: We start with X = {v} and i = 1. We will maintain the invariant that |X| = i.
If there exists a vertex v′ ∈ V (G) \ X with |N(v′) ∩

⋂
x∈X N(x) ∩ Iv| > bka−i−1, then we

add v′ to X and increase i by 1. We keep doing so until there remains no such vertex v′.
We show that this algorithm terminates for i = |X| ≤ a − 1. Assume to the contrary that

the algorithm continues for i = a−1. We then have that |N(v′)∩
⋂

x∈X N(x)∩ Iv| > bka−i−1

for some vertex v′ ∈ V (G) \ X. It follows that the set X ∪ {v′} (which is of size a) has more
than b common neighbors, contradicting the fact that G has no Ka,b as a subgraph.
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Finally, we show that a set X found by this algorithm and I :=
⋂

x∈X N(x)∩Iv satisfy the
three properties of the lemma. We have |I| = |

⋂
x∈X N(x)∩Iv| = |N(v′)∩

⋂
x∈X\{v′} N(x)∩

Iv| > bka−(i−1)−1 = bka−i, where v′ is the last vertex added to X. Moreover, since X is
inclusion-wise maximal, we have |N(u) ∩ I| = |N(u) ∩

⋂
x∈X N(x) ∩ Iv| ≤ bka−i−1 for every

vertex u ∈ V (G) \ X. ◀

▶ Reduction Rule 6.9. Let I be an instance of Annotated Degrading α-FCGP. Let X, I

be as specified in Lemma 6.8 and let v ∈ I be a vertex such that every other vertex in I is
better than v. Then, apply the Exclusion Rule (Reduction Rule 3.3) to v.

▶ Lemma 6.10. Reduction Rule 6.9 is correct.

Proof. We show the proof for the maximization variant; the minimization variant follows
analogously. For the sake of contradiction, assume that every solution S contains v. By
Lemma 6.8, every vertex u ∈ V (G) \ X has at most bka−i neighbors in I. Moreover, since
I is an independent set, we have |I ∩ N [v′]| = 1 for every vertex v′ ∈ I (including v). For
S′ := S \ X, we have

|I \ N [S′]| ≥ |I| − |I ∩ N [v]| − |I ∩ N [S′ \ {v}]|
≥ (bka−i + 1) − (k − 1)bka−i−1 − 1 = bka−i−1 > 0.

Let v′ be an arbitrary vertex in I \ N [S′]. We show that cont(v′, S \ {v}) ≥ cont(v, S \ {v}).
By Lemma 3.5, this would imply that (S \ {v}) ∪ {v′} is a solution not containing v. Since v

and v′ are both adjacent to all vertices of X and α ∈ (1/3, 1], we have

cont(v′, S \ {v}) = α deg+c(v′) + (1 − 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1 − 3α)|X ∩ (S \ {v})|
≥ α deg+c(v) + (1 − 3α)|N(v) ∩ (S \ {v})| = cont(v, S \ {v}).

Here, the first inequality follows from the fact that v′ is better than v. ◀

By applying Reduction Rule 6.9 exhaustively, we end up with an instance with maximum
degree ∆ ≤ R(bka−1). The following proposition then follows from Proposition 4.10 using
the bound in Lemma 6.7:

▶ Proposition 6.11. For any a ≤ b ∈ N, Degrading α-FCGP on graphs that do not
contain Ka,b as a subgraph has a kernel of size (R(bka−1) + k)O(1) ∈ bO(a)kO(a2).

Note that a d-degenerate graph contains no Kd+1,d+1 as a subgraph. We obtain the
following result using the folklore fact that any d-degenerate graph on at least (d + 1)k
vertices has an independent set of size k.

▶ Lemma 6.12 (⋆). Degrading α-FCGP admits a kernel of size kO(d).

Now, we show that significant improvement in Lemma 6.12 is unlikely. This, together
with Lemma 6.12, implies Theorem 6.6.

▶ Proposition 6.13 (⋆). Degrading Max α-FCGP admits no kernel of size O(kd−2−ϵ)
unless coNP ⊆ NP/poly.
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7 Parameterization by vc and h-index

To complete the picture of the parameterized complexity landscape, we consider two paramet-
ers that are larger than the degeneracy of G: the h-index of G and the vertex cover number
of G. We start with the maximization variant and the h-index. As Non-Degrading Max
α-FCGP does not admit a polynomial kernel with respect to k even if ∆ is constant (see
Thm. 4.11), the same holds for the h-index. The degrading case admits a polynomial kernel.

▶ Proposition 7.1 (⋆). Degrading Max α-FCGP admits a kernel of size O(h2k2 + k4).

We complement this with showing fixed-parameter tractability for k + h.

▶ Proposition 7.2 (⋆). Non-Degrading Max α-FCGP is fixed-parameter tractable with
respect to k + h.

For the larger parameter vertex cover number vc, we achieve a kernel for all α > 0.

▶ Proposition 7.3 (⋆). If α ̸= 0, then Max α-FCGP admits a kernel of size O(vc4 + vc · k3).

For α = 0, Max α-FCGP corresponds to Densest k-Subgraph and Clique is one of
its special cases (t =

(
k
2
)
). Since Clique does not admit a polynomial kernel with respect

to vc [2] (and any clique is of size at most vc + 1), Densest k-Subgraph does not admit
a polynomial kernel. However, Densest k-Subgraph can be solved by a straightforward
algorithm in O∗(2vc) time. Thus, Densest k-Subgraph admits a kernel of size O(2vc).

Minimization variant. Note that Degrading Min α-FCGP has a polynomial kernel with
respect to d + k (see Theorem 6.3) and, thus, also with respect to h + k and vc + k. As
Non-Degrading Min α-FCGP does not admit a polynomial kernel with respect to k even
if ∆ is constant (see Thm. 4.11), the same holds for the h-index. It remains to consider
Non-Degrading Min α-FCGP parameterized by vc + k.

▶ Proposition 7.4 (⋆). Min α-FCGP admits a kernel of size O(vc8 + vc · k7) for α > 0 and
of size O(vc2 + vc · k) for α = 0.

8 Conclusion

We provided a systematic parameterized complexity analysis for α-FCGP (see Figure 2).
Although we settled the existence of polynomial kernels with respect to various parameters
combined with the solution size k, several open questions remain. First, our polynomial
kernels are not optimized and thus the polynomials are of high degree. Looking for smaller
kernels is thus an obvious first task. Second, can our positive results for c-closure and
degeneracy be extended to the smaller parameter weak closure [16]? Furthermore, while we
looked at parameters that are small in sparse graphs, can similar results be achieved for dense
graphs as considered e. g. by Lochet et al. [27]? Finally, we believe that an experimental
verification of our data reduction rules would demonstrate their practical usefulness.
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Abstract
We investigate a phenomenon of “one-to-two-player lifting” in infinite-duration two-player games on
graphs with zero-sum objectives. More specifically, let C be a class of strategies. It turns out that in
many cases, to show that all two-player games on graphs with a given payoff function are determined
in C, it is sufficient to do so for one-player games. That is, in many cases the determinacy in C can
be “lifted” from one-player games to two-player games. Namely, Gimbert and Zielonka (CONCUR
2005) have shown this for the class of positional strategies. Recently, Bouyer et al. (CONCUR 2020)
have extended this to the classes of arena-independent finite-memory strategies. Informally, these
are finite-memory strategies that use the same way of storing memory in all game graphs.

In this paper, we put the lifting technique into the context of memory complexity. The memory
complexity of a payoff function measures, how many states of memory we need to play optimally in
game graphs with up to n nodes, depending on n. We address the following question. Assume that
we know the memory complexity of our payoff function in one-player games. Then what can be said
about its memory complexity in two-player games? In particular, when is it finite?

In this paper, we answer this questions for strategies with “chromatic” memory. These are
strategies that only accumulate sequences of colors of edges in their memory. We obtain the following
results.

Assume that the chromatic memory complexity in one-player games is sublinear in n on some
infinite subsequence. Then the chromatic memory complexity in two-player games is finite.
We provide an example in which (a) the chromatic memory complexity in one-player games is
linear in n; (b) the memory complexity in two-player games is infinite.

Thus, we obtain the exact barrier for the one-to-two-player lifting theorems in the setting of
chromatic finite-memory strategies. Previous results only cover payoff functions with constant
chromatic memory complexity.
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1 Introduction

We study two-player infinite-duration games on graphs. These games are of interest in many
areas of computer science, ranging from purely theoretical disciplines, such as decidability of
logical theories [22, 23], to more practically-oriented ones, such as controller synthesis [15].

These games are played as follows. There is a finite directed graph with a token. We will
call this graph arena. Initially, the token is placed in one of the nodes of the arena. In each
turn, one of the two players takes the token and moves it to some other node. A restriction
is that there must be an edge to the new location of the token. For each node of the arena, it
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43:2 One-To-Two-Player Lifting for Mildly Growing Memory

is fixed in advance which of the players is the one to move the token in this node. The game
proceeds for infinitely many turns. The outcome of the game is decided by the resulting
trajectory of the token (it forms an infinite path in the arena).

We restrict ourselves to zero-sum games. Correspondingly, the players will be called Max
and Min from now on. In a zero-sum game, objectives of the players are defined through
a payoff function – a function of the form φ : Cω → W, where C is a set of colors, and
(W,≤) is an arbitrary linearly ordered set. Next, we assume that arenas are edge-colored
by elements of C. To compute the outcome of a play (which will be an element of W), we
take the trajectory of the token in this play, then consider the infinite sequence of colors
γ ∈ Cω written on the edges of the trajectory, and, finally, apply φ to γ. The aim of Max is
to maximize φ(γ), while the aim of Min is to minimize it (with respect to the ordering of W).

As usually, a pair of strategies of the players in which the first strategy is the best response
to the second one, and vice versa, is called an equilibrium. Next, a strategy which belongs to
some equilibrium is called optimal. Now, a payoff function is called determined if in every
arena there exists an equilibrium with respect to this payoff function.

We will study determinacy with respect to restricted classes of strategies. Namely, if C is
a class of strategies, then we say that a payoff function is determined in C if the following
holds: in every arena there is an equilibrium for this payoff function in which both strategies
are from C. The smaller is C, the stronger is this requirement.

One of the main research directions in the area of games of graphs is strategy complexity.
Its goal, broadly speaking, is to find out, for a payoff function φ of our interest, what is the
“simplest” class of strategies C in which φ is determined. This is highly relevant when our task
is to actually implement in practice one of the optimal strategies for φ. For instance, this is
the case when we want to produce a device whose performance is measured by φ. If this
device is meant to act in the environment, then the execution of this device can be modeled
as a game – between the controller of the device and the environment. In this framework, the
controller realizes one of the strategies in this game. Ideally, we want an optimal performance
w.r.t. φ at the lowest cost (in terms of the resources we need to implement the controller).
The lower is strategy complexity of φ, the easier is this task.

Classically, there are two classes of strategies that are often considered in this context.
One is the class of positional strategies and the other is the class of finite-memory strategies.

Let us first consider positional strategies. A strategy is positional if, for every node v of
the arena, it always makes the same move when the token is in v, no matter what was the
path of the token to this node. Sometimes these strategies are called memory-less – they do
not need to “remember” anything about the previous development of the game. For brevity,
we call payoff functions that are determined in the class of positional strategies positionally
determined. Classical examples of games with positionally determined payoff functions are
Parity Games, Mean-Payoff Games and Discounted Games [21, 10, 24].

These games, especially Parity Games, had a tremendous impact on such areas as
verification, model checking and program analysis [11, 12, 1]. However, say, in controller
synthesis, it is often required to consider more complex games, namely, those for which
positional strategies do not suffice. This brings us to a more general class of strategies – the
class of finite-memory strategies.

Unlike positional strategies, finite-memory strategies can store some information about
the previous development of the game. The point is that during the whole play, which is
infinitely long, the amount of this information should never exceed some constant.

The storage of information in finite-memory strategies is carried out by memory skeletons.
A memory skeleton M is a deterministic finite automaton whose input alphabet is the set of
colors. Now, an M-strategy is a strategy which, informally, stores information according
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to the memory skeleton M. To understand how it works, imagine that during the game,
each time the token is shifted along some edge, the color of this edge is fed to M. Then,
at every moment, the current state of M represents the current content of the memory.
Correspondingly, the moves of an M-strategy depend solely on the current state of M and
the current node with the token.

A strategy is finite-memory if it is an M-strategy for some memory skeleton M. For
brevity, we call payoff functions that are determined in the class of finite-memory strategies
finite-memory determined.

▶ Remark 1. Finite-memory strategies as defined above are sometimes called “chromatic”.
This is because one can consider a more general definition. Namely, one can allow memory
skeletons to take the whole edge as an input, not only its color. However, as shown by Le
Roux [18], determinacy in general finite-memory strategies is equivalent to determinacy in
chromatic finite-memory strategies. In this paper, we work only with chromatic finite-memory
strategies.

1.1 One-to-two-player lifting
One of the techniques in the area of strategy complexity is called one-to-two-player lifting.
Our paper is devoted to this technique. It relies on the notion of one-player arenas. An
arena is called one-player if for one of the players the following holds: all the nodes of the
arena from which this player is the one to move have exactly one out-going edge. This means
that one of the players is given no choice and has only one way of playing. Correspondingly,
there are two types of one-player arenas – those in which Max has no choice and those in
which Min has no choice.

It turns out that to study determinacy in some class of strategies C, it is sometimes
sufficient to consider only one-player arenas. As was shown by Gimbert and Zielonka [13], this
applies to the class of positional strategies. More specifically, their result states the following.
Assume that a payoff function is such that all one-player arenas have an equilibrium of
two positional strategies1 with respect to this payoff function. Then all arenas, not only
one-player ones, have an equilibrium of two positional strategies with respect to this payoff
function. That is, then this payoff function is positionally determined. In a way, this means
the positional determinacy of one-player games can always be “lifted” to two-player games.

This result has fundamental significance for studying the positional determinacy. This
is because often one-player arenas are considerably easier to analyze than two-player ones.
Indeed, assume we have an arena in which, say, Min has no choice. A question of whether
such an arena has a positional equilibrium reduces to the following question. Is there a
“lasso” (a simple path to a simple cycle over which we rotate infinitely many times) which
maximizes our payoff function over all infinite paths? Often this can be figured out with a
simple graph reasoning. For instance, this is fairly easy for Parity Games and Mean Payoff
Games. Thus, through the lifting theorem of Gimbert and Zielonka one gets simple proofs
of positional determinacy of these games. In turn, proofs that existed prior to the paper of
Gimbert and Zielonka were highly non-trivial.

Given such a success in the case of positional strategies, it is temping to extend this
to larger classes of strategies. This was recently investigated for the class of finite-memory
strategies by Bouyer et al. in [4]. It turns out that the situation is quite different for this

1 Note that in one-player arenas, one of the players has just one strategy (and this strategy is positional).
So this requirement means that the other player has a positional strategy which is at least as good
against the unique strategy of the opponent as any other strategy.
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class. More specifically, Bouyer et al. have constructed a payoff function such that (a) all
one-player arenas have an equilibrium of two finite-memory strategies with respect to this
payoff function (b) there is an arena (in fact, with just 2 nodes) which is not one-player and
which has no equilibrium of two finite-memory strategies with respect to this payoff function.

Thus, the class of positional strategies admits one-to-two-player lifting and the class of
finite-memory strategies does not. Bouyer et al. suggested to study intermediate classes.
Namely, their approach was as follows. By definition, the class of finite-memory strategies
is the union of the classes of M-strategies over all memory skeletons M. Let us now fix a
memory skeleton M and consider the class of M-strategies for this specific M. Bouyer et
al. show that for every M this class admits one-to-two-player lifting.

More precisely, the lifting theorem of Bouyer et al. states that for any memory skeleton
M the following holds. Assume that a payoff function is such that all one-player arenas have
an equilibrium of two M-strategies. Then the same holds for all arenas, with exactly this
memory skeleton M. That is, then this payoff function is determined in M-strategies.

Observe that positional strategies are exactly M-strategies if the memory skeleton M
has just one state. Thus, the lifting theorem Bouyer et al. includes the lifting theorem of
Gimbert and Zielonka as a special case.

Bouyer et al. call payoff functions to which one can apply their lifting theorem arena-
independent finite-memory determined. That is, a payoff function φ is arena-independent
finite-memory determined if there exists a memory skeleton M such that φ is determined in
M-strategies.

In the literature there is a number of games with arena-independent finite-memory determ-
ined payoff functions. For example, one can list games with ω-regular winning conditions [7]
and bounded multidimensional energy games [3]. In turn, unbounded multidimensional
energy games are finite-memory determined but not arena-independently [9].

1.2 Our results

The aim of this work is to extend the lifting technique beyond the class of arena-independent
finite-memory determined payoff functions.

For payoff functions beyond this class, there is no single memory M skeleton which suffices
for all arenas (here “suffices” means the existence of an equilibrium of two M-strategies).
Instead, larger arenas require larger memory skeletons. This motivates a notion of the
memory complexity of a payoff function. It can be defined as follows. For every n consider
the minimal memory skeleton which is sufficient for all arenas with up to n nodes (w.r.t. our
payoff function). Let the size of this memory skeleton (that is, the number of its states)
be Sn. Then we call the function n 7→ Sn the memory complexity of our payoff function.
Observe that arena-independent finite-memory determined payoff functions have memory
complexity O(1).

The memory complexity is the decisive factor in practice – if it grows too quickly, we might
have no resources to implement optimal strategies for our payoff function. This complexity
measure was studied for a number of payoff functions in [8, 9]

We initiate the study of the memory complexity in the context of one-to-two-player lifting.
More specifically, we address the following question. Assume that we know the memory
complexity of our payoff function in one-player arenas. Then what can be said about its
memory complexity in all arenas? Thus, our approach differs from the approach of Bouyer
et al. in the following regard. Instead of lifting determinacy in some fixed class of strategies
from one-player arenas to all arenas, we lift bounds on the memory complexity.
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To formulate our results, we introduce the following notation. Let Z+ denote the set of
positive integers, and let f : Z+ → Z+ be a function. Then by FMD(f) we denote the class
of all payoff functions φ such that for all n ∈ Z+ there exists a memory skeleton M with
at most f(n) states such that every arena with at most n nodes has an equilibrium of two
M-strategies with respect to φ. In other words, FMD(f) is the class of all payoff function
with memory complexity at most f . We also introduce similar notation for one-player arenas.
Namely, we let 1playerFMD(f) be the class of all payoff functions φ such that for all n ∈ Z+

there exists a memory skeleton M with at most f(n) states such that every one-player arena
with at most n nodes has an equilibrium of two M-strategies with respect to φ. Again,
1playerFMD(f) is the class of payoff functions whose memory complexity in one-player arenas
is at most f . Obviously, FMD(f) ⊆ 1playerFMD(f). Additionally, we let FMD stand for the
class of all finite-memory determined payoffs. Finally, let 1playerFMD be the class of all
payoff functions φ such that every one-player arena has an equilibrium of two finite-memory
strategies w.r.t. φ.

In this notation, the question we address in this paper can be formulated as follows: for
which functions f and g do we have 1playerFMD(f) ⊆ FMD(g)?

▶ Remark 2. One could consider an alternative definition of FMD(f), in which different arenas
of size up to n may be mapped to different memory skeletons of size f(n). Unfortunately, it
is not clear how to extend results of this paper to this setting.

Before presenting our results, let us express previous ones in this notation. For technical
convenience, we assume from now on that the set C of colors is finite. This is not an essential
restriction, as any arena involves only finitely many colors. Hence, if C is infinite, one can
study, separately all finite subsets C ′ ⊆ C, arenas that involve colors only from C ′.

First, let us understand what payoff functions are included2 in FMD(1). By definition,
these are payoff functions such that for every n there is a memory skeleton M with 1 state
such that all arenas with up to n nodes are determined in M-strategies – or, equivalently, in
positional strategies. Thus, FMD(1) is exactly the class of positionally determined payoff
functions. Observe then that the lifting theorem of Gimbert and Zielonka can be stated as
the equality 1playerFMD(1) = FMD(1).

In fact, the lifting theorem of Bouyer et al. asserts that, more generally, for any constant
k ∈ Z+ we have 1playerFMD(k) = FMD(k). Indeed, take any φ ∈ 1playerFMD(k). Our goal is
to show that φ ∈ FMD(k). By definition, for every n there exists a memory skeleton M with
at most k states such that all one-player arenas with at most n nodes have an equilibrium
of two M-strategies w.r.t. φ. A problem is that these M may be different for different n.
However, since the set C of colors is finite, there are only finitely many memory skeletons
with up to k states. One of them works for infinitely many n – and, hence, for all one-player
arenas. Due to the lifting theorem of Bouyer et al., the same memory skeleton works for all
arenas. Thus, since this memory skeleton has at most k states, we have φ ∈ FMD(k).

Let us note that the class of arena-independent finite-memory determined payoffs is the
class FMD(O(1)) =

⋃
k∈Z+ FMD(k).

2 Here, formally, by FMD(1) we mean FMD(f) for the function f : Z+ → Z+ such that f(n) = 1 for all
n ∈ Z+. More generally, if there is some expression in n defining a function f : Z+ → Z+, we will use
FMD of this expression instead of FMD(f). For example, if f(n) = 2n2 + 2 for all n ∈ Z+, then we will
write FMD(2n2 + 2) instead of FMD(f).
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Finally, since lifting does not hold for the whole class of finite-memory strategies, we have
1playerFMD ̸= FMD. In fact, this means that for some function f we have 1playerFMD(f) ⊈
FMD. This is because

FMD =
⋃
f

FMD(f), 1playerFMD =
⋃
f

1playerFMD(f)

over all f : Z+ → Z+. Why is it so? For example, let us show this for FMD. We have to
show that for any φ ∈ FMD and for every n there exists a memory skeleton M such that all
arenas with up to n nodes have an equilibrium of two M-strategies (w.r.t φ). A point is
that, since C is finite, for every n the number of such arenas is also finite (w.l.o.g. we may
assume that between each pair of nodes there are at most |C| edges). In each of these arenas,
fix a pair of finite-memory strategies forming an equilibrium (this is possible since φ ∈ FMD).
This gives a finite set of finite-memory strategies such that every arena with up to n nodes is
determined in strategies from this set. It remains to set M to be the product of the memory
skeletons of these strategies. Then all these strategies will be M-strategies.

We proceed to our main result. Let Ω(n) denote the set of functions f : Z+ → Z+ for
which there exists C > 0 such that f(n) ≥ Cn for all n ∈ Z+. We obtain the following lifting
theorem:

▶ Theorem 3. Consider any function f : Z+ → Z+, f /∈ Ω(n). Define g : Z+ → Z+, g(n) =
f

(
min

{
m | f(m)

m+1 ≤ 1
2n

})
. Then 1playerFMD(f) ⊆ FMD(g).

First, why is the function g well-defined? Since f /∈ Ω(n), the fraction f(m)/m gets arbitrarily
close to 0 for some m. Hence, the minimum in the definition of g is always over a non-empty
set.

Now consider the case when, as in the lifting theorem of Bouyer et al., the function
f is constant, that is f(n) = k for some constant k ∈ Z+ and for all n ∈ Z+. Then
we have g(n) = k for all n ∈ Z+ as well. That is, our main results implies the equality
1playerFMD(k) = FMD(k), and this equality is the lifting theorem of Bouyer et al.

It is instructive to consider an example when f /∈ Ω(n) and is super-constant. Say, assume
that f(n) = O(nγ) for some γ < 1. It is easy to see that then g(n) = O(nγ/(1−γ)). Now
there is a gap between memory complexity in one-player arenas and in all arenas. The closer
γ is to 1, the larger is this gap.

When γ gets equal to 1, Theorem 3 becomes inapplicable. We demonstrate that this is
not due to the weakness of our technique.

▶ Theorem 4. 1playerFMD(2n+ 2) ⊈ FMD.

This result shows the sharpness of Theorem 3. Namely, in order to obtain at least
some bound on the memory complexity in all arenas, the memory complexity in one-player
arenas should be a function not from Ω(n). In other words, it should be sublinear on some
infinite subsequence. In turn, when it is already just linear, we might have no finite-memory
determinacy.

Thus, our paper pushes the technique of one-to-two-player lifting to its limit. Unfortu-
nately, this limit turns out to be very low. We are not aware of a payoff function which
has been considered in the literature and to which one can apply Theorem 3, but which is
not arena-independent finite-memory determined. For example, let us consider unbounded
multidimensional energy games – as we have indicated, they are finite-memory determined
but not arena-independently. As shown in [16], these games are in FMD(nO(1)). Here the
constant in O(1) depends on the dimension and the maximum of the norms of the weights.
In any case, this bound is not sufficient for Theorem 3.
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Still, we provide an example of a payoff function to which our lifting theorem is applicable
and the lifting theorem of Bouyer et al. is not.

▶ Theorem 5. There exists a function f : Z+ → Z+, f /∈ Ω(n) and a payoff function from
1playerFMD(f) which is not arena-independent finite-memory determined.

1.3 Other related works and concluding remarks
First, the exact analogs of the theorems of Gimbert and Zielonka and Bouyer et al. for
stochastic games were obtained in other works of these authors [14, 5]. We find it plausible
that our result can be lifted to stochastic games as well. Le Roux and Pauly [19] obtained
a two-to-many-players lifting theorem. Namely, they show that, under some conditions,
two-player finite-memory determinacy implies that all multiplayer games have finite-memory
Nash equilibrium. A different approach to study finite-memory determinacy can be found
in [20].

A natural open question is to extend lifting theorems to strategies with non-chromatic
finite memory. As we mentioned, Le Roux [18] has shown that non-chromatic finite memory
can always be replaced by the chromatic one. Unfortunately, this transformation is rather
costly – the size of the memory grows exponentially in the number of nodes. So even the
following modest question seems to be open: is there a payoff function which has constant
non-chromatic memory complexity in one-player games but is not finite-memory determined
in two-player games?

Organization of the paper. In Section 2 we give preliminaries. In Section 3 we give brief
overviews of the proofs of our results. The full proof of Theorem 3 is given in the Appendix B.
The full proofs of Theorems 4 and 5 can be found in the arXiv version of this paper [17].

2 Preliminaries

Notation. We denote the set of positive integer numbers by Z+. Given a set A, by A∗

and Aω we denote the sets of finite and, respectively, infinite sequences of elements of A.
The length of a sequence x ∈ A∗ ∪Aω is denoted by |x|. We write A = B ⊔ C for three sets
A,B,C if A = B ∪ C and B ∩ C = ∅. Function composition is denoted by ◦.

2.1 Arenas
Following previous papers [13, 14, 4, 5], we call graphs on which our games are played arenas.
We start with some notation regarding arenas. First, take an arbitrary finite set C. We will
refer to the elements of C as colors. Informally, an arena is just a directed graph with edges
colored by elements of C and with nodes partitioned into two sets.

▶ Definition 6. A tuple A = ⟨V, VMax, VMin, E, source, target, col⟩, where
V, VMax, VMin, E are four finite sets with V = VMax ⊔ VMin;
source, target, col are functions of the form source : E → V, target : E → V, col : E → C;

is called an arena if for every v ∈ V there exists e ∈ E with v = source(e).

Elements of V will be called nodes of A and elements of E will be called edges of A. We
understand e ∈ E as a directed edge from the node source(e) to the node target(e). There
might be parallel edges and loops. Additionally, every edge e of A is labeled by the color
col(e) ∈ C. Nodes from VMax will be called nodes of Max and nodes from VMin will be called

STACS 2022



43:8 One-To-Two-Player Lifting for Mildly Growing Memory

nodes of Min. The out-degree of a node v ∈ V is |{e ∈ E | source(e) = v}|. By definition,
every node in every arena has positive out-degree. An arena is called one-player if either
all nodes of Max have out-degree 1 or all nodes of Min have out-degree 1.

Fix an arena A = ⟨V, VMax, VMin, E, source, target, col⟩. We extend the function col
(which determines the coloring of the edges) to arbitrary sequences of edges by setting:
col(e1e2e3 . . .) = col(e1)col(e2)col(e3) . . . for e1, e2, e3, . . . ∈ E.

A non-empty sequence of edges h = e1e2e3 . . . ∈ E∗ ∪ Eω is called a path if for every
1 ≤ n < |h| we have target(en) = source(en+1). We define source(h) = source(e1). When h is
finite, we define target(h) = target(e|h|). In addition, for every v ∈ V we consider a 0-length
path λv identified with v, for which we set source(λv) = target(λv) = v. For every v ∈ V we
define col(λv) as the empty string.

2.2 Infinite-duration games on arenas

An arena A = ⟨V, VMax, VMin, E, source, target, col⟩ induces an infinite-duration two-player
game in the following way. First, we call players of this game Max and Min. Informally,
Max and Min interact by gradually constructing a longer and longer path in A. In each turn
one of the players extends a current path by some edge from its endpoint. Which of the two
players is the one to move is determined by whether this endpoint belongs to VMax or to
VMin.

Formally, positions in the game are finite paths in A. By definition, target(h) ∈ VMax
for a finite path h means that Max is the one to move in the position h; respectively,
target(h) ∈ VMin means that Min is the one to move in the position h. A set of moves
available in a position h is the set {e ∈ E | source(e) = target(h)}. Making a move e ∈ E in
a position h = e1e2 . . . e|h| brings to a position he = e1e2 . . . e|h|e.

We stress that no position is designated as the initial one. We assume that the game can
start in any position of the form λv, v ∈ V , at our choice.

Next we proceed to a notion of strategies. Namely, a strategy of Max is a function
σ : {h | h is a finite path in A with target(h) ∈ VMax} → E such that for every h from the
domain of σ we have source(σ(h)) = target(h). Respectively, a strategy of Min is a function
τ : {h | h is a finite path in A with target(h) ∈ VMin} → E such that for every h from the
domain of τ we have source(τ(h)) = target(h).

Observe that if A is one-player, then one of the players has exactly one strategy. For
technical consistency we assume that even when one of the players owns all the nodes of A,
the other player still has one “empty” strategy.

A strategy induces a set of positions consistent with it (those that can be reached in
a play against this strategy). Formally, a finite path h = e1e2 . . . e|h| is consistent with a
strategy σ of Max if the following conditions hold:

source(h) ∈ VMax =⇒ σ(λsource(h)) = e1;
for every 1 ≤ i < |h| we have target(e1e2 . . . ei) ∈ VMax =⇒ σ(e1e2 . . . ei) = ei+1.

Consistency with the strategies of Min is defined similarly. Further, the notion of consistency
can be extended to infinite paths. Namely, given a strategy, an infinite path is consistent
with it if all finite prefixes of this path are.

For v ∈ V and for a strategy S of one of the players Cons(v,S) denotes the set of all
finite and infinite paths that start at v and are consistent with S. For any strategy σ

of Max, strategy τ of Min and v ∈ V , there is a unique infinite path in the intersection
Cons(v, σ) ∩ Cons(v, τ). We denote this path by h(v, σ, τ) and call it the play of σ and τ

from v.
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2.3 Payoff functions and equilibria
We consider only zero-sum games; correspondingly, in our framework objectives of the
players are always given by a payoff function. A payoff function is any function of the form
φ : Cω → W , where (W,≤) is a linearly ordered set. Informally, the aim of Max is to play in
a way which maximizes the payoff function (with respect to the ordering of W) while the
aim of Min is the opposite one. Technically, to get the value of the payoff function on a play
(which is an infinite path in the underlying arena) we first apply the function col to this
play; this gives us an infinite sequence of colors; in conclusion, we apply φ to the sequence of
colors.

Any payoff function in a standard way induces a notion of an equilibrium of two strategies
of the players (with respect to this payoff function). Let us first introduce a notion of an
optimal response. Namely, take a strategy σ of Max and a strategy τ of Min. We say that σ
is a uniformly optimal response to τ if for all v ∈ V and for all infinite h ∈ Cons(v, τ ) we
have φ ◦ col

(
h(v, σ, τ)

)
≥ φ ◦ col(h). The inequality here, of course, is with respect to the

ordering of W . Similarly, we call τ a uniformly optimal response to σ if for all v ∈ V and
for all infinite h ∈ Cons(v, σ) we have φ ◦ col

(
h(v, σ, τ)

)
≤ φ ◦ col(h). Next, we call a pair

(σ, τ) a uniform equilibrium if σ and τ are uniformly optimal responses to each other.

▶ Lemma 7. For any arena A and for any payoff function φ, the set uniform equilibria in
A w.r.t. φ is a Cartesian product.

Proof. See Appendix A. ◀

Strategies which belong to some uniform equilibrium will be called uniformly optimal.
▶ Remark 8. Each payoff function induces a total preoder on Cω. Two payoff functions that
induce the same preorder have the same set of equilibria. Due to this reason, previous papers
in this line of work [13, 14, 4, 5] do not consider payoff functions at all. Instead, they directly
consider total preorders on Cω, to which they refer as preference relations. We prefer to use
a terminology of payoff functions, as it is more standard. Of course, this does not make our
results less general – any preference relation is induced by some payoff function.

2.4 Positional strategies and finite-memory strategies
Positional strategies. A strategy S of one of the players is called positional if for any two
positions h1, h2 from its domain we have target(h1) = target(h2) =⇒ S(h1) = S(h2). In
other words, S(h) depends solely on target(h). It makes convenient to consider positional
strategies as functions on the set of nodes of the corresponding players (rather than on the
set of the positions of this player). I.e., positional strategies of Max can be identified with
functions of the form σ : VMax → E such that source(σ(v)) = v for all v ∈ VMax. Similarly,
positional strategies of Min can be identified with functions of the form τ : VMin → E such
that source(τ(v)) = v for all v ∈ VMin.

Let us fix some notation regarding positional strategies. First, every edge e ∈ E is a path
(of length 1) and hence also a position in the game induced by A. If S is a positional strategy
of one of the players, we let ES be the set of edges that are consistent with S. Observe the
following feature of positional strategies: the set of paths (positions) that are consistent with
a positional strategy S is exactly the set of paths that consist only of edges from ES .

Given a positional strategy S of one of the players, by AS we denote the arena AS =
⟨V, VMax, VMin, ES , source, target, col⟩. That is, AS is obtained from A by deleting all edges
that are inconsistent with S. Observe that the arena AS is one-player; each node of the
player who plays S has exactly one out-going edge in AS .
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Instead of saying “an equilibrium of two positional strategies” we will simply say “a posi-
tional equilibrium”.

Finite-memory strategies. A memory skeleton is a deterministic finite automaton M =
⟨M,minit ∈ M, δ : M × C → M⟩ whose input alphabet is the set C of colors. Here M is the
set of states of M, the state minit ∈ M is a designated initial state, and δ is the transition
function of M. By |M| we denote the number of states of a memory skeleton M. Given
m ∈ M , we extend δ(m, ·) to finite sequences of elements of C in a standard way. Now, a
strategy S of one of the players is called an M-strategy if for any two positions h1 and h2
from the domain of S it holds that[

target(h1) = target(h2) and δ(minit, col(h1)) = δ(minit, col(h2))
]

=⇒ S(h1) = S(h2).

In other words, S(h) depends solely on target(h) (the node with the token in the position
h) and δ(minit, col(h)) (the state into which M comes after reading the sequence of colors
along h).

A strategy S of one of the players is called a finite-memory strategy if it is an M-strategy
for some memory skeleton M. Instead of saying “an equilibrium of two finite-memory
strategies” or “an equilibrium of two M-strategies” we will simply say “a finite-memory
equilibrium” and “an M-strategy equilibrium”.

2.5 Determinacy and memory complexity
▶ Definition 9. Let C be a class of strategies. We say that a payoff function φ is determined
in C if every arena has a uniform equilibrium of two strategies from C w.r.t. φ. In particular,

if C is the class of positional strategies, then we call φ positionally determined.
if C is the class of finite-memory strategies, then we call φ finite-memory determined.
if C is the class of M-strategies for some memory skeleton M, then we call φ arena-
independent finite-memory determined.

For our results it is important that we require equilibria to be uniform in these definitions.
That is, it is important to have a single pair of strategies from C which is an equilibrium no
matter in which node the game starts. As far as we know, this is the case for all positionally
and finite-memory determined payoff functions that have been considered in the literature.

Next we provide definitions regarding the memory complexity.

▶ Definition 10. Let FMD denote the class of functions φ : Cω → W such that C is a finite
set, W is linearly ordered and φ is finite-memory determined. Let 1playerFMD denote the
class of functions φ : Cω → W such that C is a finite set, W is a linearly ordered set and
such that the following holds: every one-player arena (with edges colored by elements of C)
has a uniform finite-memory equilibrium w.r.t. φ.

Next, consider any function f : Z+ → Z+. Let FMD(f) denote the class of functions
φ : Cω → W such that C is a finite set, W is a linearly ordered set and such that the following
holds: for all n ∈ Z+ there exists a memory skeleton M over the set C with |M| ≤ f(n)
such that all arenas (with edges colored by elements of C) with at most n nodes have a
uniform M-strategy equilibrium w.r.t. φ. Similarly, let 1playerFMD(f) denote the class of
functions φ : Cω → W such that C is a finite set, W is a linearly ordered set and such that
the following holds: for all n ∈ Z+ there exists a memory skeleton M over the set C with
|M| ≤ f(n) such that all one-player arenas (with edges colored by elements of C) with at
most n nodes have a uniform M-strategy equilibrium w.r.t. φ.
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3 Overviews of the Proofs

3.1 Theorem 3

First, let us give the exact statement of the lifting theorem of Bouyer et al.

▶ Theorem 11 ([4]). For any payoff function φ and for any memory skeleton M the following
holds. Assume that all one-player arenas have a uniform M-strategy equilibrium w.r.t. φ.
Then all arenas have a uniform M-strategy equilibrium w.r.t. φ.

Our main technical contribution is the following strengthening of Theorem 11.

▶ Theorem 12. For any payoff function φ and for any n ∈ Z+ the following holds. Let M
be a memory skeleton such that all one-player arenas with at most 2n · |M| − 1 nodes have
a uniform M-strategy equilibrium w.r.t. φ. Then all arenas with at most n nodes have a
uniform M-strategy equilibrium w.r.t. φ.

Derivation of Theorem 3 from Theorem 12. Take any φ ∈ 1playerFMD(f). Our goal is to
show that φ ∈ FMD(g), where g is as in Theorem 3. That is, our goal is to establish for
every n ∈ Z+ a memory skeleton M with at most g(n) states such that all arenas with at
most n nodes have a uniform M-strategy equilibrium.

Take any n ∈ Z+. By definition, g(n) = f(m) for some m ∈ Z such that f(m)
m+1 ≤ 1

2n .
Since φ ∈ 1playerFMD(f), there exists a memory skeleton M with at most f(m) states such
that all one-player arenas with at most m nodes have a uniform M-strategy equilibrium.
Now, since f(m)

m+1 ≤ 1
2n , we have m ≥ 2n · f(m) − 1 ≥ 2n · |M| − 1. By Theorem 12, this

means that all arenas with at most n nodes have a uniform M-strategy equilibrium. Since
M has at most f(m) = g(n) states, we are done. ◀

Before discussing our technique, let us briefly overview how Bouyer et al. establish
Theorem 11. They start by defining “M-monotone payoff functions” and “M-selective payoff
functions”. Then they show that any payoff function which is M-monotone and M-selective
is determined in M-strategies. Finally, they show that for any non-M-monotone and for
any non-M-selective payoff function there exists a one-player arena which has no uniform
M-strategy equilibrium w.r.t. this payoff function. This also gives a characterization of M-
determinacy: a payoff function is determined in M-strategies if and only if it is M-monotone
and M-selective.

In this paper, we obtain Theorem 12 (and, thus, Theorem 11) more directly. For the sake
of simplicity, in Section 4 we prove it in a special case when M is a memory skeleton with
just one state. In this special case, M-strategies are positional strategies.

▶ Proposition 13 (Special case of Theorem 12). For any payoff function φ and for any
N ∈ Z+ the following holds. Assume that all one-player arenas with at most 2N − 1 nodes
have a uniform positional equilibrium w.r.t. φ. Then all arenas with at most N nodes have a
uniform positional equilibrium w.r.t. φ.

As all papers in this line of works, we build upon the inductive technique first invented
by Gimbert and Zielonka [13]. Our contribution here is a more direct exposition of this
technique, with the emphasis on the size of arenas.
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We extend Proposition 13 to all memory skeletons3 in two steps. We first prove an
analogue of Proposition 13 for so-called M-trivial arenas. Informally, these are arenas
where states of M are “hardwired” into nodes. In such arenas, M-strategies degenerate to
positional strategies. We show that Proposition 13 is true even when only M-trivial arenas
are taken into account (in the assumption and in the conclusion).

We then derive Theorem 12 from this using the product arena construction [2, Chapter 2].
Take any (two-player) arena A with up to n nodes. We have to derive the existence of an
M-strategy equilibrium in A from the assumption of Theorem 12. It is a classical observation
that M-strategies in A can be viewed as positional strategies in the product arena M × A.
This product arena is obtained by first pairing states of M with nodes of A, and then by
drawing edges of A in all possible ways that are consistent with the transition function
of M. Now we only have to establish a positional equilibrium in M × A. This arena is
M-trivial, so we use Proposition 13 for M-trivial arenas and N = n · |M|. The size of
M × A is the product of the sizes of M and A, so it does not exceed N . It remains to
show that all one-player M-trivial arenas with up to 2N − 1 = 2n · |M| − 1 nodes have a
positional equilibrium. Indeed, by the assumption of Theorem 12, all one-player arenas (not
only M-trivial) of this size have an M-strategy equilibrium. But in M-trivial arenas these
M-strategy equilibria are automatically positional.

The full proof of Theorem 12 is given in Appendix B.

3.2 Theorem 4
Let the set of colors be C = {−1, 1}. We define a payoff function ψ : Cω → {0, 1} as follows.
We set ψ(c1c2c3 . . .) = 1 if and only if either

(
limn→∞

∑n
i=1 ci = +∞

)
or

( ∑n
i=1 ci =

0 for infinitely many n
)
. We assume the standard ordering on {0, 1} = ψ(Cω), so that 1 is

interpreted as victory of Max and 0 is interpreted as victory of Min.
We show that ψ ∈ 1playerFMD(2n+ 2) \ FMD. In fact, this payoff function was defined by

Bouyer et al. in [4, Section 3.4]. They have shown that this payoff function is finite-memory
determined in one-player arenas but not in two-player arenas. So our contribution here is an
upper bound ψ ∈ 1playerFMD(2n+ 2) on its memory complexity in one-player arenas. In
other words, for every n we provide a memory skeleton Mn with 2n + 2 states such that
every one-player arena A with up to n nodes has a uniform Mn-strategy equilibrium. Let
us describe the main ideas needed to obtain this upper bound. In this overview, we only
consider those one-player arenas where all nodes of Min have out-degree 1. We use similar
ideas for one-player arenas of the opposite type (but they require a bit more care).

It will be more convenient to refer to the elements of C as weights rather than as colors.
Correspondingly, by the weight of a path we will mean the sum of the weights of its edges.
Further, we will call a path positive if its weight is positive. We define negative and zero
paths similarly.

Take an arena with up to n nodes where all nodes of Min have out-degree 1 (that is,
essentially Max is the one to move everywhere). First, we can remove all the nodes from
where one can reach a positive cycle. Indeed, Max has a positional winning strategy from
these nodes (Max can go to the closest simple positive cycle, and then start rotating over it
forever). Here it is important that our arena is one-player. Two-player arenas might have
positive cycles, but Max might be unable to stay on them.

3 Our technique in this part is rather similar to a technique from a recent paper of Bouyer et al. [5]
(see the arXiv version [6] of their paper for more details). In this paper, they give a direct proof of an
analogue of Theorem 11 for stochastic games.
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Now the only way Max can win is by making the sum of the weights equal to 0 infinitely
many times. As a first attempt, consider an “illegal” memory skeleton M∞, which simply
stores the sum of the weights along the current play. It is illegal since the sum of the weights
can be arbitrarily large, so M∞ will have infinitely many states. Still, our winning condition
for Max can be reformulated in terms of M∞. Indeed, Max just has to bring M∞ into a
state “the current sum is 0” infinitely many times. Notice that this is a parity condition
in the product of our initial arena and the memory skeleton M∞. Since parity games are
positionally determined [23], we have a uniform positional equilibrium in the product arena,
and this gives a uniform M∞-strategy equilibrium in the initial arena.

To turn this idea into a proof, we “truncate” M∞. For arenas with up to n nodes we
consider a memory skeleton Mn, which stores the current sum of the weights while its
absolute value is at most n; if it exceeds n, our memory skeleton comes into a special invalid
state. Observe that such memory skeleton requires just 2n+ 2 states.

We now make use of the fact that w.l.o.g our arena has no positive cycles. Since our
weights are ±1, there is no path of weight larger than n. Indeed, any path can be decomposed
into cycles and a simple path. The contribution of cycles is non-negative, and the contribution
of a simple path is at most n, just because its length is at most n. So the current sum of the
weights can never become larger than n. It can become smaller than −n, and in this case
Max looses (he can never make it equal to 0 again). So the goal of Max is, first, to avoid
a state “the current sum exceeded n in the absolute value”, and second, to reach a state
“the current sum is 0” infinitely many times. This is a parity condition in the product of
our initial arena and the memory skeleton Mn. Therefore, we get a uniform Mn-strategy
equilibrium in our initial arena.

3.3 Theorem 5

Let the set of colors be C = {0, 1}. Fix a set T ⊆ Z+. Define a payoff function φ : {0, 1}ω →
{0, 1} by setting φ(α) = 1 for α = α1α2α3 . . . ∈ {0, 1}ω if and only if at least one of the
following two conditions holds:

α contains only finitely many 0’s;
for some t ∈ T , the sequence α contains the word 01t0.

We show that, under some condition on T , the payoff function φ is not arena-independent
finite-memory determined, but belongs to 1playerFMD(f) for some f : Z+ → Z+, f /∈ Ω(n).
This condition is called isolation. Roughly speaking, it requires that there are infinitely many
elements in T such that far to the left and to the right of them there are no other elements
of T . More precisely, T ⊆ Z+ is isolated if there are infinitely many k ∈ T such that l /∈ T

for all k/2 < l < k4, l ̸= k. We call such k isolated elements of T .
From now on, we fix any isolated set T , for example, T = {24n | n ∈ Z+}. To show that

φ ∈ 1playerFMD(f) for some f : Z+ → Z+, f /∈ Ω(n), we construct, for every k, the following
memory skeleton Mk. It simply counts the number of 1’s after the last 0. If this number
exceeds k, it stops counting (it just remembers a fact that there are more than k ones after
the last 0). Now, when our memory skeleton receives a 0, there are two cases. If the current
value of the counter is some number from T ∩ [1, k], then Mk transits into a special “winning
state”, and stays in it forever. Otherwise, it resets the counter to 0 and starts counting again.

Note that Mk can be realized with k+O(1) states. We show that if k is an isolated element
of T , then all arenas (even two-player) with up to k2 nodes have a uniform Mk-strategy
equilibrium. This will show that φ ∈ FMD(f) for some function f such that f(n) ≤ 2

√
n for

infinitely many n.
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Consider any arena with up to k2 nodes. We define an auxiliary game in which Max wins
if either Mk was brought to the “winning state” or there were just finitely many 0’s in the
play. Note that if Max wins in the auxiliary game, then Max wins w.r.t. φ. The auxiliary
game, however, is not entirely equivalent to φ, because a play can be winning for Min in the
auxiliary game but loosing for Min w.r.t. φ (if this play contains 01t0 for some t ∈ T, t > k).
Still, it holds that if Min can win in the auxiliary game, then Min can also win w.r.t. φ. To
prove this claim, we notice that the auxiliary game is a parity game in the product of our
initial arena and the memory skeleton Mk. So if Min can win in it, then Min can do so via
some positional strategy τ in the product arena. We observe that τ is also winning w.r.t. φ.
Indeed, otherwise there is a play against τ which contains 01t0 for some t ∈ T, t > k. Since
k is an isolated element of T , we have t ≥ k4. Therefore, as the size of the product arena
is (k +O(1)) · k2 < k4, there must be a cycle which is consistent with τ and which consists
entirely of 1’s. But then Max can win against τ in the auxiliary game, contradiction.

As we pointed out, the auxiliary game is a parity game in the product of our arena with
Mk. Thus, it has a positional equilibrium there. This positional equilibrium translates into
an Mk-strategy equilibrium in the initial arena. Finally, as shown in the previous paragraph,
any equilibrium in the auxiliary game is also an equilibrium w.r.t. φ.

Showing that φ is not arena-independent finite-memory determined is much easier. Take
an isolated element k ∈ T . The idea is to construct an arena with a node which “cuts” the
word 01k0 in Ω(k) different ways near the middle. Due to isolation, the only way for Max to
win in this arena is to go through one of the cuts. However, Min can choose any of the cuts,
so Max needs Ω(k) states to distinguish between different cuts. Since k can be arbitrarily
large, this shows that no single memory skeleton can be sufficient for φ in all arenas.

4 Proof of Proposition 13

The proof is by induction on the number of edges of an arena. More precisely, we are proving
by induction on m the following claim: for every m every arena with m edges and at most
N nodes has a uniform positional equilibrium.

The induction base (m = 1) is trivial (any arena with one edge is one-player and has
exactly one node, so we can just refer to the assumption of the lemma). We proceed to
the induction step. Take an arena A = ⟨V, VMax, VMin, E, source, target, col⟩ with at most N
nodes and assume that all arenas with at most N nodes and with fewer edges than A have a
uniform positional equilibrium. We prove the same for A. Since the set of uniform equilibria
is a Cartesian product by Lemma 7, it is enough to establish the following two claims:

(a) in A there exists a uniform equilibrium including a positional strategy of Max;
(b) in A there exists a uniform equilibrium including a positional strategy of Min.

We only show (a), a proof of (b) is similar.
We may assume that A is not one-player (otherwise we are done due to the assumptions

of the lemma). Hence there exists a node w ∈ VMax with out-degree at least 2. Partition the
set E(w) = {e ∈ E | source(e) = w} into two non-empty disjoint subsets E1(w) and E2(w).
Define two new arenas A1 and A2. The arena A1 is obtained from A by deleting edges from
the set E2(w). Similarly, the arena A2 is obtained from A by deleting edges from the set
E1(w). So in Ai for i = 1, 2 the set of edges with the source in w is Ei(w).

Both A1 and A2 have fewer edges than A. So both these arenas have a uniform positional
equilibrium. Let (σi, τi) be a uniform positional equilibrium in Ai for i = 1, 2. We will first
define two auxiliary strategies τ12 and τ21 of Min; then we will show that either (σ1, τ12) or
(σ2, τ21) is a uniform equilibrium in A. After that (a) will be proved.
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Strategies τ12 and τ21 will not be positional. In a sense, they are combinations of τ1
and τ2. In both strategies Min has a counter I which can only take two values, 1 and 2. The
counter I indicates to Min which of the strategies τ1 or τ2 to use. I.e., whenever Min should
make a move from a node v ∈ VMin, he uses an edge τI(v). The value of I changes each time
in the node w Max uses an edge not from a set EI(w). It only remains to specify the initial
value of I. There are two ways to do this, one will give us strategy τ12, and the other will
give τ21. More specifically, in τ12 the initial value of I is 1 and in τ21 the initial value of I
is 2.

It is not hard to see that τ12 is a uniformly optimal response to σ1 and τ21 is a uniformly
optimal response to σ2. For instance, let us show this for τ12 and σ1. By definition, τ1 is a
uniformly optimal response to σ1 in the arena A1, and hence also in the arena A (because
any play against σ takes place inside A1). It remains to notice that τ12 plays exactly as
τ1 against σ1. Indeed, σ1 never uses edges from E2(w), so the counter I always equals 1
against σ1.

It remains to show that either σ1 is a uniformly optimal response to τ12 or σ2 is a
uniformly optimal response to τ21 (in the arena A). We derive it from the assumption of the
lemma applied to an auxiliary one-player arena B with at most 2N − 1 nodes.

Namely, we define B as follows. Recall that in our notation (A1)τ1 and (A2)τ2 stand
for two arenas obtained from, respectively, A1 and A2 by throwing away edges that are
inconsistent with, respectively, τ1 and τ2. Consider an arena consisting of two “independent”
parts one of which coincides with (A1)τ1 and the other with (A2)τ2 (“independent” means
that there are no edges between the parts). From each part take a node corresponding
to the node w. Then merge these two nodes into a single one. The resulting arena with
2|V | − 1 ≤ 2N − 1 nodes will be B.

w

(A1)τ1 (A2)τ2

E1(w) E2(w)

Figure 1 Arena B.

For each node of A there are two “copies” of it in B – one from (A1)τ1 and the other
from (A2)τ2 . We will call copies of the first kind left copies and copies of the second kind
right copies. Note that the left and the right copy of w is the same node in B. Any other
node of A has two distinct copies. Now, by the prototype of a node v′ of B we mean a node
v of A of which v′ is a copy.

Note that in B all nodes of Min have out-degree 1 (because they do so inside (A1)τ1 and
(A2)τ2 , and the only node of B which was obtained by merging two nodes is a node of Max).
Thus, B is a one-player arena.

An important feature of B is that it can “emulate” any play against τ12 and τ21 in A.
Formally,

▶ Lemma 14. For any infinite path h in A which is consistent with τ12 there exists an
infinite path h′ in B with col(h′) = col(h) and with the source in the left copy of source(h).
Similarly, for any infinite path h in A which is consistent with τ21 there exists an infinite
path h′ in B with col(h′) = col(h) and with the source in the right copy of source(h).
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Proof. We only give an argument for τ12, the argument for τ21 is similar. We construct h′

from the left copy of source(h) by always moving in the same “local direction” as h. There
will be no problem with that for the nodes of Max because they have the same set of out-going
edges in B as their prototypes have in A. Now, for the nodes of Min we should be more
accurate. The path h is consistent with τ12, so from the nodes of Min it applies either τ1 or
τ2. Now, in B strategy τ1 is available only in the left ellipse of Figure 1, and τ2 is available
only in the right ellipse. So each time h wants to apply τ1, the path h′ should be in the left
ellipse. Similarly, each time h wants to apply τ2, the path h′ should be in the right ellipse.
Initially, until its counter changes, τ12 applies τ1, and correspondingly h′ starts in the left
ellipse. Now, each time τ12 switches to τ2, it does so because Max used an edge from E2(w)
in w. Correspondingly, h′ enters the right ellipse at this moment. Similarly, whenever τ12
switches back to τ1, the path h′ returns to the left ellipse. ◀

Note that in B Min has exactly one strategy. We denote it by T . The arena B is
one-player and has at most 2N − 1 nodes, so by the assumption of the lemma there is a
uniform positional equilibrium (Σ̂, T ) in it. We claim the following:

if Σ̂ applies an edge from E1(w) in w, then σ1 is a uniformly optimal response to τ12
in A;
if Σ̂ applies an edge from E2(w) in w, then σ2 is a uniformly optimal response to τ21
in A.

We only show the first claim, the proof of the second one is analogous. Consider a restriction
of Σ̂ to the left ellipse of B. This defines a positional strategy σ̂ of Max in A. Note that in each
node of A the strategy σ1 is at least as good against τ12 as σ̂. Indeed, σ1(w), σ̂(w) ∈ E1(w).
Hence σ1, σ̂ are strategies in the arena A1, where σ1 is a uniformly optimal response to τ1.
It remains to notice that τ12 plays exactly as τ1 against σ1 and σ̂ since these two strategies
of Max never use edges from E2(w).

Therefore, it is enough to show that σ̂ is a uniformly optimal response to τ12 in A. Take
any node v ∈ V and any play h against τ12 from v. Our goal is to show that the play of
σ̂ and τ12 from v is at least as good from the Max’s perspective as h. Now, by Lemma 14
some infinite path h′ from the left copy of v is colored exactly as h. On the other hand, the
play of Σ̂ and T from the left copy of v is at least as good for Max as h′ (and hence as h).
This is because h′ is consistent with T (as there are simply no other strategies of Min in
B) and because (Σ̂, T ) is an equilibrium. It remains to note that the play of Σ̂ and T from
the left copy of v is colored exactly as the play of σ̂ and τ12 from v. Indeed, as we have
already observed, τ12 plays exactly as τ1 against σ̂. On the other hand, the play of Σ̂ and T
can never leave the left ellipse as Σ̂ points to the left in w. Moreover, restrictions of these
strategies to the left ellipse coincide with σ̂ and τ1; for Σ̂ this is just by definition and for T
this is because the left ellipse coincides with the arena (A1)τ1 .

References
1 Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso Padoan. Fixpoint

games on continuous lattices. Proceedings of the ACM on Programming Languages, 3(POPL):1–
29, 2019.

2 Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox. A book of lecture notes,
available at https://www.mimuw.edu.pl/∼bojan/upload/reduced-may-25.pdf, 2018.

3 Patricia Bouyer, Uli Fahrenberg, Kim G Larsen, Nicolas Markey, and Jiří Srba. Infinite runs
in weighted timed automata with energy constraints. In International Conference on Formal
Modeling and Analysis of Timed Systems, pages 33–47. Springer, 2008.



A. Kozachinskiy 43:17

4 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vand-
enhove. Games where you can play optimally with arena-independent finite memory. In 31st
International Conference on Concurrency Theory (CONCUR 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

5 Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-
Independent Finite-Memory Determinacy in Stochastic Games. In Serge Haddad and Daniele
Varacca, editors, 32nd International Conference on Concurrency Theory (CONCUR 2021),
volume 203 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:18,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.CONCUR.2021.26.

6 Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-
independent finite-memory determinacy in stochastic games. arXiv preprint, 2021. arXiv:
2102.10104.

7 J Richard Büchi and Lawrence H Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

8 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theoretical Computer
Science, 458:49–60, 2012.

9 Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta informatica, 51(3-4):129–163, 2014.

10 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Interna-
tional Journal of Game Theory, 8(2):109–113, 1979.

11 E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In
FoCS, volume 91, pages 368–377. Citeseer, 1991.

12 E Allen Emerson, Charanjit S Jutla, and A Prasad Sistla. On model-checking for fragments
of µ-calculus. In International Conference on Computer Aided Verification, pages 385–396.
Springer, 1993.

13 Hugo Gimbert and Wiesław Zielonka. Games where you can play optimally without any
memory. In International Conference on Concurrency Theory, pages 428–442. Springer, 2005.

14 Hugo Gimbert and Wieslaw Zielonka. Pure and stationary optimal strategies in perfect-
information stochastic games with global preferences. arXiv preprint, 2016. arXiv:1611.08487.

15 Erich Gradel and Wolfgang Thomas. Automata, logics, and infinite games: a guide to current
research, volume 2500. Springer Science & Business Media, 2002.

16 Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz. Fixed-dimensional energy games
are in pseudo-polynomial time. In International Colloquium on Automata, Languages, and
Programming, pages 260–272. Springer, 2015.

17 Alexander Kozachinskiy. One-to-two-player lifting for mildly growing memory. arXiv preprint,
2021. arXiv:2104.13888.

18 Stéphane Le Roux. Time-aware uniformization of winning strategies. In Conference on
Computability in Europe, pages 193–204. Springer, 2020.

19 Stéphane Le Roux and Arno Pauly. Extending finite-memory determinacy to multi-player
games. Information and Computation, 261:676–694, 2018.

20 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by
boolean combination of winning conditions. In 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, 2018.

21 A Mostowski. Games with forbidden positions. Technical report, Preprint No. 78, Uniwersytet
Gdanski, Instytyt Matematyki, 1991.

22 An A Muchnik. Games on infinite trees and automata with dead-ends: a new proof for
the decidability of the monadic second order theory of two successors. Bulletin-European
Association For Theoretical Computer Science, 48:219–219, 1992.

23 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

24 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1-2):343–359, 1996.

STACS 2022

https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
http://arxiv.org/abs/2102.10104
http://arxiv.org/abs/2102.10104
http://arxiv.org/abs/1611.08487
http://arxiv.org/abs/2104.13888


43:18 One-To-Two-Player Lifting for Mildly Growing Memory

A Uniform equilibria and T -wise equilibria

For the proof of Theorem 12 we need to generalize the notion of a uniform equilibrium. Take
any arena A = ⟨V, VMax, VMin, E, source, target, col⟩ and any payoff function φ : Cω → W.
Fix a subset T ⊆ V , a strategy σ of Max and a strategy τ of Min. We say that σ is a T -wise
optimal response to τ w.r.t. φ if for all v ∈ T and for all infinite h ∈ Cons(v, τ) we have
φ◦col

(
h(v, σ, τ )

)
≥ φ◦col(h). Similarly, we call τ a T -wise optimal response to σ w.r.t. φ

if for all v ∈ T and for all infinite h ∈ Cons(v, σ) we have φ ◦ col
(
h(v, σ, τ)

)
≤ φ ◦ col(h).

Finally, we call a pair (σ, τ) a T -wise equilibrium w.r.t. φ if σ and τ are T -wise optimal
responses to each other.

When T = V is the whole set of nodes, then T -wise equilibria are uniform equilibria, and
vice versa. Thus, the following lemma generalizes Lemma 7.

▶ Lemma 15. For any arena A = ⟨V, VMax, VMin, E, source, target, col⟩, for any payoff
function φ, and for any subset T ⊆ V , the set of T -wise equilibria in A w.r.t. φ is a
Cartesian product.

Proof. It is sufficient to show the following: if (σ1, τ1) and (σ2, τ2) are T -wise equilibria,
then so is (σ1, τ2). That is, our goal is to show that σ1 is a T -wise optimal response to τ2,
and that τ2 is a T -wise optimal response to σ1. We only prove the first claim, the second
one can be proved similarly. Take any v ∈ T and any infinite h ∈ Cons(v, τ2). We have
to show that φ ◦ col

(
h(v, σ1, τ2)

)
≥ φ ◦ col(h). We first show that φ ◦ col

(
h(v, σ1, τ2)

)
=

φ ◦ col
(
h(v, σ1, τ1)

)
= φ ◦ col

(
h(v, σ2, τ2)

)
. Indeed,

φ ◦ col
(
h(v, σ1, τ1)

)
≥ φ ◦ col

(
h(v, σ2, τ1)

)
≥ φ ◦ col

(
h(v, σ2, τ2)

)
≥ φ ◦ col

(
h(v, σ1, τ2)

)
≥ φ ◦ col

(
h(v, σ1, τ1)

)
.

The first inequality here holds because σ1 is a T -wise optimal response to τ1. The second
inequality here holds because τ2 is a T -wise optimal response to σ2. The third inequality
here holds because σ2 is a T -wise optimal response to τ2. The fourth inequality here holds
because τ1 is a T -wise optimal response to σ1.

As we have shown, φ◦col
(
h(v, σ1, τ2)

)
= φ◦col

(
h(v, σ2, τ2)

)
. In turn, since h ∈ Cons(v, τ2),

and since σ2 is a T -wise optimal response to τ2, we have that φ◦ col
(
h(v, σ2, τ2)

)
≥ φ◦ col(h).

Therefore, we get φ ◦ col
(
h(v, σ1, τ2)

)
≥ φ ◦ col(h). ◀

B Proof of Theorem 12

We reduce Theorem 12 to a statement about positional strategies (namely, to Lemma 20
below). First we need a classical concept of product arenas.

▶ Definition 16 (Product arenas). Let M = ⟨M,minit, δ : M×C → M⟩ be a memory skeleton
and A = ⟨V, VMax, VMin, E, source, target, col⟩ be an arena. Then M × A stands for an arena,
where

the set of nodes is M × V ;
the set of Max’s nodes is M × VMax;
the set of Min’s nodes is M × VMin;
the set of edges is M × E;
the source function is defined as follows: source((m, e)) = (m, source(e));
the target function is defined as follows: target((m, e)) =

(
δ(m, col(e)), target(e)

)
;

the coloring function is defined as follows: col((m, e)) = col(e).
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The following is a standard observation that product arenas reduce finite-memory de-
terminacy to positional determinacy.

▶ Observation 17. Let M = ⟨M,minit, δ : M × C → M⟩ be a memory skeleton and
A = ⟨V, VMax, VMin, E, source, target, col⟩ be an arena. Then for every S ⊆ V the following
holds: if M × A has an ({minit} × S)-wise positional equilibrium, then A has an S-wise
M-strategy equilibrium.

Its full proof can be found in the arXiv version of this paper [17].
Next we introduce one more concept which we need for the reduction, namely, one of

M-triviality.

▶ Definition 18. Let M = ⟨M,minit, δ : M × C → M⟩ be a memory skeleton. A pair (A, f)
of an arena A = ⟨V, VMax, VMin, E, source, target, col⟩ and a function f : V → M is called
M-trivial if for every e ∈ E it holds that δ

(
f(source(e)), col(e)

)
= f(target(e)).

Informally, f is a mapping from A to the transition graph of M which takes into account
the colors of the edges. Of course, there are arenas that belong to no M-trivial pair. We
observe that M-strategies, in a sense, degenerate to positional ones in M-trivial pairs.

▶ Observation 19. Let M = ⟨M,minit, δ : M × C → M⟩ be a memory skeleton. Then for
every M-trivial pair (A, f) the following holds: if A has a uniform M-strategy equilibrium,
then A has an f−1(minit)-wise positional equilibrium.

Proof. Note that for any finite path h in A we have:

δ(f(source(h)), col(h)) = f(target(h)).

Indeed, this holds by definition as long as h is a single edge; for longer h this can be easily
proved by induction on |h|.

To show the observation, we simply show that any M-strategy coincides with some
positional one on all plays that start in the nodes of f−1(minit). Indeed, a move of an
M-strategy in a position h depends solely on target(h) and δ(minit, col(h)). However,
δ(minit, col(h)) = δ

(
f(source(h)), col(h)

)
= f(target(h)) for all h with source(h) ∈ f−1(minit).

In other words, for all such h a move of an M-strategy in h is a function only of target(h),
as required. ◀

We are ready to formulate a statement about positional strategies to which we reduce
Theorem 12.

▶ Lemma 20. Let M = ⟨M,minit, δ : M ×C → M⟩ be a memory skeleton. Assume that for
every M-trivial pair (A, f) such that A is one-player and has at most 2N − 1 nodes there
exists an f−1(minit)-wise positional equilibrium in A.

Then for every M-trivial pair (A, f) such that A has at most N nodes there exists an
f−1(minit)-wise positional equilibrium in A.

Derivation of Theorem 12 from Lemma 20. Let A = ⟨V, VMax, VMin, E, source, target, col⟩
be an arena with at most n nodes. Our goal is to show that A has a uniform M-strategy
equilibrium. By Observation 17, it is sufficient to show that the arena M × A has an
{minit} × V -wise positional equilibrium. It is easy to see that a pair (M × A, f), where

f : M × V → M, f((m, v)) = m,

STACS 2022
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is an M-trivial pair, by definition of M × A. Observe that {minit} × V = f−1(minit), so we
only have to show that M × A has an f−1(minit)-wise positional equilibrium. Since M × A
has at most |M| · n nodes, it remains to explain why the assumption of Lemma 20 holds for
N = |M| · n.

By the assumption of Theorem 12 all one-player arenas with at most 2|M|·n−1 = 2N−1
nodes have a uniform M-strategy equilibrium. In particular, this applies to any one-player
arena A′ with at most 2N−1 nodes belonging to some M-trivial pair (A′, f). By Observation
19 this means that all such A′ have a f−1(minit)-wise positional equilibrium, as required. ◀

Proof of Lemma 20. We use the same technique and terminology as in Section 4. We are
now proving by induction on m the following claim: for every m and for every M-trivial
pair (A, f) such that A has m edges and at most N nodes there exists an f−1(minit)-wise
positional equilibrium in A.

Induction base (m = 1) again requires no argument, and we proceed to the induction step.
Consider any M-trivial pair (A, f), where A = ⟨V, VMax, VMin, E, source, target, col⟩ has at
most N nodes. Our goal is to show that A has an f−1(minit)-wise positional equilibrium,
provided that an analogous claim is already proved for all M-trivial pairs (A′, f ′) in which
A′ has at most N nodes and fewer edges than A. Since the set of f−1(minit)-wise equilibria
is a Cartesian product by Lemma 15, it is enough to establish the following two claims:
(a) in A there exists an f−1(minit)-wise equilibrium including a positional strategy of Max;
(b) in A there exists an f−1(minit)-wise equilibrium including a positional strategy of Min.

We only show (a), a proof of (b) is similar. As before, we may assume that A is not
one-player so that there exists a node w ∈ VMax with out-degree at least 2. We partition
the set of its out-going edges into two disjoint non-empty sets E1(w) and E2(w). Then we
define arenas A1 and A2 exactly as in Section 4. Since (A, f) is an M-trivial pair, then so
are pairs (A1, f) and (A2, f). Indeed, A1 and A2 were obtained by simply throwing away
some edges of A. The remaining edges satisfy the definition of M-triviality with respect to
f just because they do so inside A.

Note that A1 and A2 both have fewer edges than A and at most as many nodes. So by the
induction hypothesis both these arenas have an f−1(minit)-wise positional equilibrium. Let
(σ1, τ1) be an f−1(minit)-wise positional equilibrium in A1 and (σ2, τ2) be an f−1(minit)-wise
positional equilibrium in A2. Next, we define two auxiliary strategies τ12 and τ21 of Min
exactly as in Section 4. Our goal is to show that either (σ1, τ12) is an f−1(minit)-wise
equilibrium in A or (σ2, τ21) is an f−1(minit)-wise equilibrium in A.

By the same argument as in Section 4, we have that τ12 is an f−1(minit)-wise optimal
response to σ1 and τ21 is an f−1(minit)-wise optimal response to σ2. The main challenge is
to show the opposite for at least one of the pairs (σ1, τ12) and (σ2, τ21).

For that we define a one-player arena B exactly as in Section 4 (see Figure 1). It has
2|V | − 1 ≤ 2N − 1 nodes. We will apply the assumption of Lemma 20 to B. More precisely,
this will be done for some M-trivial pair which includes B. For that we define the following
mapping g from the set of nodes of B to the set of states of M. Namely, if v′ is a node of B,
we set g(v′) = f(v), where v is the prototype of v′. Observe that (B, g) is an M-trivial pair.
Indeed any edge of B is between two nodes whose prototypes are connected in A by an edge
of the same color. Thus, by the assumption of Lemma 20, the arena B has a g−1(minit)-wise
positional equilibrium (Σ̂, T ) (as before, in B there are no strategies of Min other than T ).
It is sufficient to establish the following two claims:
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if Σ̂ applies an edge from E1(w) in w, then σ1 is an f−1(minit)-wise optimal response to
τ12 in A;
if Σ̂ applies an edge from E2(w) in w, then σ2 is an f−1(minit)-wise optimal response to
τ21 in A.

A key observation here is that g−1(minit) is the union of the left copies of the nodes from
f−1(minit) and the right copies of the nodes of f−1(minit). In fact, for a proof of the first
claim we only need a fact that g−1(minit) includes all the left copies of the nodes from
f−1(minit). Correspondingly, only the right copies of f−1(minit) are relevant for a proof of
the second claim.

We only show the first claim, the second one can be proved similarly. As in Section 4, the
argument is carried out through a positional strategy σ̂ of Max in A obtained by restricting
Σ̂ to the left ellipse. First we observe that in any node from f−1(minit) the strategy σ1 is at
least as good against τ12 as σ̂. Indeed, both σ1 and σ̂ are strategies in A1 whereas σ1 is an
f−1(minit)-wise optimal response to τ1 in A1 by definition. On the other hand, τ12 plays
against σ1 and σ̂ exactly as τ1.

It remains to show that σ̂ is an optimal response to τ12 in any node from f−1(minit).
This can be done by exactly the same argument as in the last paragraph of Section 4. A
difference is that now we have a weaker assumption about Σ̂; namely, we only know that
Σ̂ is optimal in the nodes from g−1(minit) (while before it was optimal everywhere in B).
Correspondingly, we are proving a weaker statement. Namely, instead of proving that σ̂ is
an optimal response to τ12 everywhere in A, we are only proving this for all v ∈ f−1(minit).
It can be checked that in the argument for a specific v we only require optimality of Σ̂ in the
left copy of v; so if v ∈ f−1(minit), then its left copy is in g−1(minit) so that the argument
still works. ◀
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bounds. In the last few years there has been some work (e.g. [9], [10, 7]) aimed at developing
an analogue of the Natural Proofs framework for algebraic circuit lower bounds. A crucial
notion in this context is that of an equation for a class of polynomials which we now define.

For a class C of polynomials, an equation for C is a family of nonzero polynomials such
that it vanishes on the coefficient vector of polynomials in C.1 Informally, an algebraic natural
proof for a class C is a family of equations for C which can be computed by algebraic circuits
of size and degree polynomially bounded in their number of variables. Thus, a lower bound
for C can be proved by exhibiting an explicit polynomial on which an equation for C does
not vanish.

Many of the known algebraic circuit lower bounds fit into this framework of algebraically
natural proofs as observed by several authors [1, 9, 7, 10], thereby motivating the question of
understanding whether techniques in this framework can yield strong algebraic circuit lower
bounds; in particular, whether such techniques are sufficient to separate VNP from VP. In
a recent breakthrough, Limaye, Srikanth and Tavenas [13] proved super-polynomial lower
bounds against constant depth arithmetic circuits over fields of characteristic zero or large.
It is not difficult to observe that this lower bound fits well into the natural proofs framework
as it uses a complexity measure that is based on the rank of certain matrices to prove lower
bounds. Thus, in the natural proofs framework, the first step towards a lower bound for VP
is to understand whether VP has a family of equations which itself is in VP, that is its degree
and its algebraic circuit size are polynomially bounded in the number of the variables. The
next step, of course, would be to show the existence of a polynomial family in VNP which
does not satisfy this family of equations. This work is motivated by the first step of this
framework, that is the question of understanding whether natural and seemingly rich circuit
classes like VP and VNP can have efficiently constructible equations. We briefly discuss prior
work on this problem, before describing our results.

1.1 Complexity of Equations for classes of polynomials
In one of the first results on this problem, Forbes, Shpilka and Volk [7] and Grochow,
Kumar, Saks and Saraf [10] observe that the class VP does not have efficiently constructible
equations if we were to believe that there are hitting set generators for algebraic circuits with
sufficiently succinct descriptions. However, unlike the results of Razborov and Rudich [15],
the plausibility of the pseudorandomness assumption in [7, 10] is not very well understood.
The question of understanding the complexity of equations for VP, or in general any natural
class of algebraic circuits, continues to remain open.

In a recent work of Chatterjee, Kumar, Ramya, Saptharishi and Tengse [4], it was shown
that if we focus on the subclass of VP (in fact, even VNP) consisting of polynomial families
with bounded integer coefficients, then we indeed have efficiently computable equations.
More formally, the main result in [4] was the following.

▶ Theorem 1 ([4]). For every constant c > 0, there is a polynomial family {PN,c} ∈ VPQ
2

such that for all large n and N =
(

n+nc

n

)
, the following are true.

For every family {fn} ∈ VNPQ, where fn is an n-variate polynomial of degree at most nc

and coefficients in {−1, 0, 1}, we have

PN,c(−−→coeff(fn)) = 0 .

1 Strictly speaking, these notions need us to work with families of polynomials, even though we sometimes
drop the word family for ease of exposition.

2 For a field F, VPF denotes the class VP where the coefficients of the polynomials are from the field F.
Similarly, VNPF denotes the class VNP where the coefficients of the polynomials are from the field F.



M. Kumar, C. Ramya, R. Saptharishi, and A. Tengse 44:3

There exists a family {hn} of n-variate polynomials and degree at most nc with coefficients
in {−1, 0, 1} such that

PN,c(−−→coeff(hn)) ̸= 0 .

Here, −−→coeff(f) denotes the coefficient vector of a polynomial f .

Many of the natural and well studied polynomial families like the Determinant, the
Permanent, Iterated Matrix Multiplication, etc., have this property of bounded coefficients,
and in fact the above result even holds when the coefficients are as large as poly(N). Thus,
Theorem 1 could be interpreted as some evidence that perhaps we could still hope to prove
lower bounds for one of these polynomial families via proofs which are algebraically natural.
Extending Theorem 1 to obtain efficiently constructible equations for all of VP (or even for
slightly weaker models like formulas or constant depth algebraic circuits) is an extremely
interesting open question. In fact, even a conditional resolution of this problem in either
direction, be it showing that the bounded coefficients condition in Theorem 1 can be removed,
or showing that there are no such equations, would be extremely interesting and would
provide much needed insight into whether or not there is a natural-proofs-like barrier for
algebraic circuit lower bounds.

1.2 Our results
In this paper, we show that assuming the Permanent is hard, the constraint of bounded
coefficients in Theorem 1 is necessary for efficient equations for VNP. More formally, we
show the following theorem.

▶ Theorem 2 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose,
for an m large enough, we have that Permm requires circuits of size 2mε .

Then, for n = mε/4, any d ≤ n and N =
(

n+d
n

)
, we have that every nonzero polynomial

P (x1, . . . , xN ) that vanishes on all coefficient vectors of polynomials in VNPC(n, d) has size
at least 20.1n4−3n.

▶ Remark. Our proof of the above theorem easily extends to any field of characteristic zero.
We shall just work with the complex numbers for better readability.

Extending the result in Theorem 2 to hardness of equations for VP, even under the
assumption that Permanent is sufficiently hard, is an extremely interesting open question.
Such an extension would answer the main question investigated in [7, 10] and show a natural-
proofs-like barrier for a fairly general family of lower bound proof techniques in algebraic
complexity. Our proof of Theorem 2 however crucially relies on some of the properties of
VNP and does not appear to extend to VP.

Although the proof of the above theorem is quite elementary, the main message (in our
opinion) is that we do not3 have compelling evidence to rule out, or accept, the efficacy of
algebraic natural proofs towards proving strong lower bounds for rich classes of algebraic
circuits.

1.3 An overview of the proof
As was observed in [7, 10], a lower bound for equations for a class of polynomials is
equivalent to showing the existence of succinctly describable hitting sets for this class. For
our proof we show that, assuming that the permanent is sufficiently hard, the coefficient

3 Or rather, the results of [4] and the above theorem seem to provide some evidence for both sides!
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vectors of polynomials in VNP form a hitting set for the class VP. The connection between
hardness and randomness in algebraic complexity is well known via a result of Kabanets and
Impagliazzo [11], and we use this connection, along with some additional ideas for our proof.
We briefly describe a high level sketch of our proof in a bit more detail now.

Kabanets and Impagliazzo [11] showed that using any explicit polynomial family {fn}
that is sufficiently hard, one can construct a hitting set generator for VP, that is, we can
construct a polynomial map Genf : Fk → Ft that “fools” any small algebraic circuit C

on t variables in the sense that C(y1, y2, . . . , yt) is nonzero if and only if the k-variate
polynomial C ◦ Genf is nonzero. In a typical invocation of this result, the parameter k is
much smaller than t (typically k = poly log t). Thus, this gives a reduction from the question
of polynomial identity testing for t-variate polynomials to polynomial identity testing for
k-variate polynomials. Another related way of interpreting this connection is that if {fn}
is sufficiently hard then Genf is a polynomial map whose image does not have an equation
with small circuit size. Thus, assuming the hardness of the Permanent, this immediately
gives us a polynomial map (with appropriate parameters) such that its image does not have
an efficiently constructible equation.

For the proof of Theorem 2, we show that the points in the image of the map GenPerm, can
be viewed as the coefficient vectors of polynomials in VNP, or, equivalently in the terminology
in [7, 10], that the Kabanets-Impagliazzo hitting set generator is VNP-succinct. To this
end, we work with a specific instantiation of the construction of the Kabanets-Impagliazzo
generator where the underlying construction of combinatorial designs is based on Reed-
Solomon codes. Although this is perhaps the most well known construction of combinatorial
designs, there are other (and in some parameters, better) constructions known. However, our
proof relies on the properties of this particular construction to obtain the succinct description.
Our final proof is fairly short and elementary, and is based on extremely simple algebraic
ideas and making generous use of the fact that we are trying to prove a lower bound for
equations for VNP and not VP.

Proof Idea

Let us assume that for some constant ε > 0 and for all4 m ∈ N, Permm requires circuits of
size 2mε . Kabanets and Impagliazzo [11] showed that, for every combinatorial design D (a
collection of subsets of a universe with small pairwise intersection) of appropriate parameters,
the map

GenPerm(z) = (Perm(zS) : S ∈ D)

where zS denotes the variables of in z restricted to the indices in S, is a hitting set generator
for circuits of size 2o(mε). Our main goal is to construct a polynomial F (y, z) in VNP such
that

F (y, z) =
∑
S∈D

monS(y) · Perm(zS) (1.1)

By choosing parameters carefully, this would immediately imply that any equation on N -
variables, for N =

(
n+d

d

)
, that vanishes on the coefficient vector of polynomials in VNP(n, d)

(which are n-variate polynomials in VNP of degree at most d) requires size super-polynomial
in N .

4 To be more precise, we should work with this condition for “infinitely often” m ∈ N and obtain that VNP
does not have efficient equations infinitely often. We avoid this technicality for the sake of simplicity
and the proof continues to hold for the more precise version with suitable additional care.
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To show that the polynomial F (y, z) in Equation 1.1 is in VNP, we use a specific
combinatorial design. For the combinatorial design D obtained via Reed-Solomon codes,
every set in the design can be interpreted as a univariate polynomial g of appropriate degree
over a finite field. The degree of g (say δ) and size of the finite field (say p) are related to
the parameters of the design D. Now,

F (y, z) =
∑

g∈Fp[v]
deg(g)≤δ

(
δ∏

i=0
ygi

i

)
· Perm(zS(g)), (1.2)

where (g0, . . . , gδ) is the coefficient vector of the univariate polynomial g. Expressing F (y, z)

in Equation 1.2 as a polynomial in VNP requires us to implement the product
(

δ∏
i=0

ygi

i

)
as a

polynomial when given the binary representation of coefficients g0, . . . , gδ via a binary vector
t of appropriate length (say r). This is done via the polynomial Mon(t, y) in Subsection 3.1
in a straightforward manner. Furthermore, we want to algebraically implement the selection
zS for a set S in the combinatorial design when given the polynomial g corresponding to S.
This is implemented via the polynomial RS-Design(t, z) in Subsection 3.2. Finally, we have

F (y, z) =
∑

t∈{0,1}r

Mon(t, y) · Perm(RS-Design(t, z))

which is clearly in VNP as Permp is in VNP and polynomials Mon(t, y) and RS-Design(t, z)
are efficiently computable. We refer the reader to Section 3 for complete details.

Related results

The concept of algebraically natural proofs was first studied in the works of Forbes, Shpilka
and Volk [7] and Grochow, Kumar, Saks and Saraf [10] who showed that constructing efficient
equations for a class directly contradicts a corresponding succinct derandomization of the
polynomial identity testing problem. In fact, Forbes, Shpilka and Volk [7] unconditionally
ruled out equations for depth-three multilinear formulas computable by certain structured
classes of algebraic circuits using this connection. However, this does not imply anything
about complexity of equations for general classes of algebraic circuits such as VP and VNP.
In the context of proving algebraic circuit lower bounds, Efremenko, Garg, Oliveira and
Wigderson [6] and Garg, Makam, Oliveira and Wigderson [8] explore limitations of proving
algebraic circuit lower bounds via rank based methods. However, these results are not directly
concerned with the complexity of equations for circuit classes.

Recently, Bläser, Ikenmeyer, Jindal and Lysikov [2] studied the complexity of equations
in a slightly different context. They studied a problem called “matrix completion rank”, a
measure for tensors that is NP-hard to compute. Assuming coNP ⊈ ∃BPP, they construct
an explicit tensor of large (border) completion rank such that any efficient equation for
the class of tensors of small completion rank must necessarily also vanish on this tensor of
large completion rank. That is, efficient equations cannot certify that this specific tensor
has large (border) completion rank. Subsequently, this result was generalized to min-rank
or slice-rank [3]. The set-up in these papers is different from the that in our paper, and
that of [10, 7]. One way to interpret this difference is that [2] shows that “variety of small
completion rank tensors” cannot be “cut out” by efficient equations, whereas the set-up
of [10, 7] and our paper would ask if every equation for this variety requires large complexity.
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In the context of equations for varieties in algebraic complexity, Kumar and Volk [12]
proved polynomial degree bounds on the equations of the Zariski closure of the set of non-rigid
matrices as well as small linear circuits over all large enough fields.

2 Preliminaries

2.1 Notation
We use [n] to denote the set {1, . . . , n} and JnK to denote the set {0, 1, . . . , n}. We also
use N≥0 to denote the set of non-negative integers.
We use boldface letters such as x, y to denote tuples, typically of variables. When
necessary, we adorn them with a subscript such as y[n] to denote the length of the tuple.
We also use xe to denote the monomial

∏
xei

i . We write x≤d for the set of all monomials
of degree at most d in x, and F[x]≤d for the set of polynomials in x over the field F of
degree at most d.
As usual, we identify the elements of Fp with {0, 1, . . . , p − 1} and think of JnK as a subset
of Fp in the natural way for any n < p.

2.2 Some basic definitions
Circuit classes
▶ Definition 3 (Algebraic circuits). An algebraic circuit is specified by a directed acyclic graph,
with leaves (indegree zero; also called inputs) labelled by field constants or variables, and
internal nodes labelled by + or ×. The nodes with outdegree zero are called the outputs of the
circuit. Computation proceeds in the natural way, where inductively each + gate computes
the sum of its children and each × gate computes the product of its children.

The size of the circuit is defined as the number of nodes in the underlying graph.

▶ Definition 4 (VP and VNP). A family of polynomials {fn}, where fn is n-variate, is said
to be in VP if deg(fn) and the algebraic circuit complexity of fn are bounded by a polynomial
function of n. That is, there is a constant c ≥ 0 such that for all large enough n we have
deg(fn), size(fn) ≤ nc.

A family of polynomials {fn} is said to be in VNP if there is a family
{

gn(x[n], y[m])
}

∈ VP
such that m is bounded by a polynomial function of n and

fn(x) =
∑

y∈{0,1}m

gn(x, y).

For some n, d ∈ N, let Cn,d be a class of n-variate polynomials of total degree at most
d. That is, Cn,d ⊆ F[x]≤d. Similarly, we will use VP(n, d) and VNP(n, d) to denote the
intersection of VP and VNP respectively, with F[x[n]]≤d.

Equations and succinct hitting sets
▶ Definition 5 (Equations for a class). For N =

(
n+d

n

)
, a nonzero polynomial PN (Z) is called

an equation for Cn,d if for all f(x) ∈ Cn,d, we have that PN (−−→coeff(f)) = 0, where −−→coeff(f) is
the coefficient vector of f .

Alternatively, we also say that a polynomial PN (Z) vanishes on the coefficient vectors of
polynomials in class C if PN (−−→coeff(f)) = 0 for all f ∈ C.
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▶ Definition 6 (Hitting Set Generator (HSG)). A polynomial map G : Fℓ → Fn given by
G(z1, . . . , zℓ) = (g1(z), . . . , gn(z)) is said to be a hitting set generator (HSG) for a class
C ⊆ F[x] of polynomials if for all nonzero P ∈ C, P ◦ G = P (g1, . . . , gn) ̸≡ 0.

We review the definition of succinct hitting sets introduced [10, 7].

▶ Definition 7 (Succinct Hitting Sets for a class of polynomials [10, 7]). For N =
(

n+d
n

)
, we

say that a class of N -variate polynomials DN has Cn,d-succinct hitting sets if for all nonzero
PN (Z) ∈ DN , there exists some f ∈ Cn,d such that PN (−−→coeff(f)) ̸= 0.

Hardness to randomness connection
For our proofs, we will need the following notion of combinatorial designs, which is a collection
of subsets of a universe with small pairwise intersection.

▶ Definition 8 (Combinatorial designs). A family of sets {S1, . . . , SN } ⊆ [ℓ] is said to be an
(ℓ, m, n)-design if

|Si| = m for each i ∈ [N ]
|Si ∩ Sj | < n for any i ̸= j.

Kabanets and Impagliazzo [11] obtain hitting set generators from polynomials that are
hard to compute for algebraic circuits. The following lemma is crucial to the proof of our
main theorem.
▶ Lemma 2.1 (HSG from Hardness [11]). Let {S1, . . . , SN } be an (ℓ, m, n)-design and f(xm)
be an m-variate, individual degree d polynomial that requires circuits of size s. Then for fresh
variables yℓ, the polynomial map KI-gen(N,ℓ,m,n)(f) : Fℓ → FN given by

(f(yS1), . . . , f(ySN
)) (2.2)

is a hitting set generator for all circuits of size at most
(

s0.1

N(d+1)n

)
.

3 Proof of the main theorem

Notation
1. For a vector t = (t1, . . . , tr), we will use the short-hand t

(a)
i,j to denote the variable

t(i·a+j+1). This would be convenient when we consider the coordinates of t as blocks of
length a.

2. For integers a, p, we shall use Mod(a, p) to denote the unique integer ap ∈ [0, p − 1] such
that ap = a mod p.

As mentioned in the overview, the strategy is to convert the hitting set generator given
in (2.2) into a succinct hitting set generator. Therefore, we would like to associate the
coordinates of (2.2) into coefficients of a suitable polynomial. That is, we would like to build
a polynomial in VNP of the form

g(y1, . . . , yℓ, z1, . . . , zt) =
∑

m∈y≤d

m · f(zSm)

with the monomials m ∈ y≤d suitably indexing into the sets of the combinatorial design.
The above expression already resembles a VNP-definition and with a little care this can be
made effective. We will first show that the different components of the above expression can
be made succinct using the following constructions.
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3.1 Building monomials from exponent vectors
For n, r ∈ N, let a = ⌊r/n⌋, and define Monr,n(t, y) as follows.

Monr,n(t1, . . . , tr, y1, . . . , yn) =
n−1∏
i=0

a−1∏
j=0

(
t
(a)
i,j y2j

i+1 + (1 − t
(a)
i,j )
)

The following observation is now immediate from the definition above.

▶ Observation 9. For any (e1, . . . , en) ∈ JdKn, we have

Monr,n(Bin(e1), . . . , Bin(en), y1, . . . , yn) = ye1
1 · · · yen

n ,

where Bin(e) is the tuple corresponding to the binary representation of e, and r = n ·
⌈log2 (d + 1)⌉. Furthermore, the polynomial Monr,n is computable by an algebraic circuit of
size poly(n, r).

3.2 Indexing Combinatorial Designs Algebraically
Next, we need to effectively compute the hard polynomial f on sets of variables in a
combinatorial design, indexed by the respective monomials. We will need to simulate some
computations modulo a fixed prime p. The following claim will be helpful for that purpose.

▷ Claim 10. For any i, b, p ∈ N≥0 with i ≤ p, there exists a unique univariate polynomial
Qi,b,p(v) ∈ Q[v] of degree at most b such that

Qi,b,p(a) =
{

1 if 0 ≤ a < b and a ≡ i (modp),
0 if 0 ≤ a < b and a ̸≡ i (modp).

Proof. We can define a unique univariate polynomial Qi,b,p(v) satisfying the conditions of
the claim via interpolation to make a unique univariate polynomial take a value of 0 or 1
according to the conditions of the claim. Since, there are b conditions, there always exists
such a polynomial of degree at most b. ◁

For any n, b, p ∈ N≥0 with n ≤ p, define

Seln,b,p(u1, . . . , un, v) ≜
n∑

i=1
ui · Qi,b,p(v).

▶ Observation 11. For any n, b, p ∈ N≥0 with n ≤ p, for any 0 ≤ a < b, we have that

Seln,b,p(u1, . . . , un, a) = uMod(a,p) = ua mod p

The degree of Seln,b,p is at most (b + 1) and can be computed by an algebraic circuit of size
poly(b).

Proof. From the definition of the univariate polynomial Qi,b,p(v) of degree b in Claim 10,
Qi,b,p(a) outputs 1 if and only if i = a mod p. Hence, Seln,b,p(u1, . . . , un, a) is ua mod p and
is of degree at most (b + 1). ◀

And finally, we choose a specific combinatorial design to instantiate Lemma 2.1.
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3.3 Reed-Solomon-based combinatorial designs
For any prime p and any choice of a ≤ p, the following is an explicit construction of a
(p2, p, a)-combinatorial design of size pa, defined as follows:

For every univariate polynomial g(t) ∈ Fp[t] of degree less than a, we add the set
Sg = {(i, g(i)) : i ∈ Fp} ⊆ Fp × Fp to the collection.

Since any two distinct univariate polynomials of degree less than a can agree on at most a

points, it follows that the above is indeed a (p2, p, a)-design.

The advantage of this specific construction is that it can be made succinct as follows.
For r = a · ⌊log2 p⌋, let t1, . . . , tr be variables taking values in {0, 1}. The values assigned to
t-variables can be interpreted as a univariate over Fp of degree < a by considering t ∈ {0, 1}r

as a matrix with a rows and ⌊log2 p⌋ columns each 5. The binary vector in each row represents
an element in Fp. We illustrate this with an example.

t =

1 1 1
0 1 0
0 0 1
1 0 0
0 1 1



 −→

7
2
1
4
3



 ∼= g(v)

For p = 11, a = 5, g(v) = 7 + 2v + v2 + 4v3 + 2v4 ∈ F11[v],

t is a 5 × 3 matrix that encodes the coefficients of g(v).

Let z denote the p2 variables
{

z1, . . . , zp2
}

, put in into a p × p matrix. Let S be a set in
the Reed-Solomon-based (p2, p, a)-combinatorial design. We want to implement the selection
zS algebraically. In the following, we design a vector of polynomials that outputs the vector of
variables

(
z

(p)
0,g(0) mod p, . . . , z

(p)
p−1,g(p−1) mod p

)
. Note that as mentioned above the polynomial

g can be specified via variables t1, . . . , tr. That is,

RS-Designp,a(t1, . . . , tr, z1, . . . , zp2) ∈ (F[t, z])p , for r = a · ⌊log2 p⌋,

RS-Designp,a(t1, . . . , tr, z1, . . . , zp2)i+1 = Selp,p3,p

(
z

(p)
i,0 , . . . , z

(p)
i,p−1, Ri,a,p(t)

)
, ∀i ∈ Fp,

where Ri,a,p(t) =
a−1∑
j=0

ℓp−1∑
k=0

t
(ℓp)
j,k · 2k

 · Mod(ij , p)

 ,

with ℓp = ⌊log2 p⌋ .

▶ Observation 12. For any prime p, a ≤ p, and t ∈ {0, 1}r for r = a · ⌊log2 p⌋, we have

RS-Designp,a(t, z) =
(
zi,g(i) : i ∈ Fp

)
,

where g(v) ∈ Fp[v] is the univariate whose coefficient vector is represented by the bit-vector
t. Furthermore, the polynomial RS-Designp,a is computable by an algebraic circuit of size
poly(p).

5 Working with ⌊log2 p⌋ bits (as opposed to ⌈log2 p⌉) makes the proofs much simpler, and does not affect
the size of the design by much.
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Proof. Fix some t ∈ {0, 1}r. From the definition of Ri,a,p(t), it is clear that Ri,a,p(t) returns
an integer α such that g(i) = α mod p where t encodes the coefficients of the polynomial g(t)
in binary. Furthermore, since Mod(ij , p) is the unique integer c ∈ [0, p − 1] with c = ij mod p,
it also follows that Ri,a,p(t) is an integer in the range [0, p3]. Hence,

Selp,p3,p

(
z

(p)
i,0 , . . . , z

(p)
i,p−1, Ri,a,p(t)

)
= zi,g(i)

as claimed. ◀

3.4 The VNP-Succinct-KI generator
We are now ready to show the VNP-succinctness of the Kabanets-Impagliazzo hitting set
generator when using a hard polynomial from VNP and a Reed-Solomon-based combinatorial
design.

For a prime p and for the largest number m such that m2 ≤ p, we will use Perm[p] ∈ F[y[p]]
to denote Permm applied to the first m2 variables of y.

We now define the polynomial Fn,a,p(y[n], z[p2]) as follows.

Fn,a,p(y1, . . . , yn, z1, . . . , zp2) =
∑

t∈{0,1}r

Monr,n(t, y) · Perm[p](RS-Designp,a(t, z)) (3.1)

where r = a · ⌊log2 p⌋

It is evident from the above definition that the polynomial Fn,a,p(y, z) is in VNP for any p

that is poly(n), when seen as a polynomial in y-variables with coefficients from C[z].
From the construction, we have that

Fn,a,p(y1, . . . , yn, z1, . . . zp2) =
∑

e
ye · Perm[p](zSe),

where {Se} is an appropriate ordering of the Reed-Solomon-based (p2, p, a)-combinatorial
design of size pa, described in Subsection 3.3. Note that we define the polynomial Fn,a,p(y, z)
with three parameters n, a, p although for our purposes we will only use a = n.

3.5 Putting it all together
We are now ready to show that if the Permanent polynomial is exponentially hard, then any
polynomial P that vanishes on the coefficient vectors of all polynomials in the class VNP
requires super-polynomial size to compute it.

▶ Theorem 2 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose,
for an m large enough, we have that Permm requires circuits of size 2mε .

Then, for n = mε/4, any d ≤ n and N =
(

n+d
n

)
, we have that every nonzero polynomial

P (x1, . . . , xN ) that vanishes on all coefficient vectors of polynomials in VNPC(n, d) has size
at least 20.1n4−3n.

Proof. Let p be the smallest prime larger than m2; we know that p ≤ 2m2. We will again
use Perm[p] ∈ F[y[p]] to denote Permm acting on the first m2 variables of y. Therefore, if
Permm requires size 2mε then so does Perm[p].
Consider the polynomial Fn,n,p(y[n], z[p2]) ∈ VNP defined in (3.1), which we interpret as a
polynomial in y with coefficients in C[z]. The individual degree in y is at least d, and at
most p.
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Let F ≤d
n,n,p(y[n], z[p2]) denote the polynomial obtained from Fn,n,p by discarding all terms

whose total degree in y exceeds d. By standard homogenisation arguments, it follows that
F ≤d

n,n,p ∈ VNP as well. Therefore,

F ≤d
n,n,p(y, z) =

∑
deg(ye)≤d

ye · Perm[p](zSe),

where Se, for various e, is an appropriate indexing into a (p2, p, n)-combinatorial design of
size N . Since the individual degree in y of Fn,n,p was at least d, every coefficient of F ≤d

n,n,p is
Perm[p](zS) for some S in the combinatorial design. In other words, the coefficient vector of
F ≤d

n,n,p is precisely KI-genN,p2,p,n(Perm[p]).
Suppose P (x1, . . . , xN ) is a nonzero equation for VNP(n, d), then in particular it should

be zero on the coefficient vector of F ≤d
n,n,p(y, a) ∈ VNP for any a ∈ Cp2 . By the Polynomial

Identity Lemma [14, 5, 17, 16], this implies that P must be zero on the coefficient vector of
F ≤d

n,n,p(y, z) ∈ (C[z])[y], where coefficients are formal polynomials in C[z]. Since the coefficient
vector of F ≤d

n,n,p(y, z) is just KI-genN,p2,p,n(Perm[p]), the contrapositive of Lemma 2.1 gives
that

size(P ) >
size(Perm[p])0.1

N · 2n
>

size(Permm)0.1

N · 2n

=⇒ size(P ) >
20.1mε

N · 2n

Since N =
(

n+d
n

)
≤ 22n, it follows that size(P ) is at least at least 20.1n4−3n. ◀

Concluding that VNP has no efficient equations

Note that for a family {PN } to be a family of equations for a class C, we want that for all
large enough n, the corresponding polynomial PN should vanish on the coefficient vectors of
all n-variate polynomials in C. This condition is particularly important if we want to use
equations for C to prove lower bounds against it, since a family of polynomials {fn} is said
to be computable in size s(n) if size(fn) ≤ s(n) for all large enough n.

Theorem 2 shows that, for m large enough, if there is a constant ε > 0 such that
size(Permm) ≥ 2mε , then for n = mε/4 and any d ≤ n, the coefficient vectors of polynomials
in VNP(n, d) form a hitting set for all N -variate polynomials (where N =

(
n+d

d

)
) of degree

poly(N) that are computable by circuits of size poly(N). Now suppose the Permanent family
is 2mε-hard for a constant ε > 0, which means that Permm is 2mε-hard for infinitely many
m ∈ N. Then using Theorem 2, we can conclude that for any family {PN } ∈ VP, we must
have for infinitely many n that PN (−−→coeff(fn)) ̸= 0 for some fn ∈ VNP, which then shows
that {PN } is not a family of equations for VNP.

4 Discussion and Open Problems

In the context of proving circuit lower bounds, and in relation to the notion of algebraically
natural proofs, an interesting question that emerges from the recent work of Chatterjee,
Kumar, Ramya, Saptharishi, Tengse [4] (stated in Theorem 1) is whether the condition of
“small coefficients” is necessary for efficiently constructible equations to exist, especially for
the class VP. While this question remains open for VP, our result shows that this additional
restriction on the coefficients is essentially vital for the existence of efficiently constructible
equations for the class VNP, and therefore provides strong evidence against the existence of
efficient equations for VNP.
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In light of Theorem 1 and Theorem 2 for VNP, one could make a case that equations
for VP might also incur a super-polynomial blow up, without the restriction on coefficients.
On the other hand, it could also be argued that an analogue of Theorem 2 may not be true
for VP, since our proof crucially uses the fact that VNP is “closed under exponential sums”.
In fact, our proof essentially algebrizes the intuition that coefficient vectors of polynomials
in VNP “look random” to a polynomial in VP, provided that VNP was exponentially more
powerful than VP.

Thus, along with the previously known results on efficient equations for polynomials in
VP with bounded coefficients, our result highlights that the existence of such equations for
VP in general continues to remain an intriguing mystery.

Open Problems
We now conclude with some possible directions for extending our results.

Perhaps the most interesting question here is to prove an analogue of Theorem 2 for
equations for VP. This would provide concrete evidence for the possibility that we
cannot hope to prove very strong lower bounds for algebraic circuits using proofs which
proceed via efficiently constructible equations, from a fairly standard complexity theoretic
assumption.
At the moment, we cannot rule out the possibility of there being efficient equations for
VP in general; it may be possible that the bounded coefficients condition in Theorem 1
can be removed. In particular, the question of proving upper bounds on the complexity
of equations for VP is also extremely interesting, even if one proves such upper bounds
under some reasonable complexity theoretic assumptions. A first step perhaps would be
to prove upper bounds on the complexity of potentially simpler models, like formulas,
algebraic branching programs or constant depth circuits. From the works of Forbes,
Shpilka and Volk [7], we know that such equations for structured subclasses of VP (like
depth-3 multilinear circuits) cannot be too simple (such as sparse polynomials, depth-3
powering circuits, etc.). Can we prove a non-trivial upper bound for equations for these
structured classes within VP?
Another question of interest would be to understand if the hardness assumption in The-
orem 2 can be weakened further. For instance, is it true that VNP does not have efficiently
constructible equations if VP ̸= VNP, or if Permn requires circuits of size npoly log(n)?
The current proof seems to need an exponential lower bound for the Permanent.
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Determining a Slater Winner Is Complete for
Parallel Access to NP
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Abstract
We consider the complexity of deciding the winner of an election under the Slater rule. In this
setting we are given a tournament T = (V, A), where the vertices of V represent candidates and the
direction of each arc indicates which of the two endpoints is preferable for the majority of voters.
The Slater score of a vertex v ∈ V is defined as the minimum number of arcs that need to be reversed
so that T becomes acyclic and v becomes the winner. We say that v is a Slater winner in T if v has
minimum Slater score in T .

Deciding if a vertex is a Slater winner in a tournament has long been known to be NP-hard.
However, the best known complexity upper bound for this problem is the class Θp

2, which corresponds
to polynomial-time Turing machines with parallel access to an NP oracle. In this paper we close
this gap by showing that the problem is Θp

2-complete, and that this hardness applies to instances
constructible by aggregating the preferences of 7 voters.
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1 Introduction

Voting rules, which are a topic of central interest in computational social choice, are schemes
which allow us to aggregate the preferences of a set of voters among a set of candidates, in
order to select a single winner who is most compatible with the voters’ wishes. The main
challenge of this area is that, even if the preferences of each voter are internally consistent
(that is, each voter has a complete ranking of all candidates), it is easy to run into situations
such as the famous Condorcet paradox where collective preferences are cyclic and hence no
clear winner exists. Many rules have therefore been proposed to deal with this situation and
select a winner who is as acceptable as possible to as many voters as possible.

In this paper we investigate the computational complexity of a classical and very natural
such voting scheme that is often referred to as the Slater rule. Intuitively, the idea of the
Slater rule is the following: we consider every possible pair of candidates in our pool a, b and
check whether the majority of voters prefers a or b. This allows us to construct a tournament
T that depicts the results of each pariwise matchup between candidates. If T is transitive
(that is, acyclic), then picking a winner is easy. If not, the Slater rule is that we should
select as the winner a candidate who is the winner of a transitive tournament T ′ that is
at minimum edit distance from T . In other words, a candidate c is a Slater winner if the
number of pairwise matchups that we need to ignore to make c a clear winner is minimized.

More formally, the problem we consider is defined as follows. We are given a set V of n

candidates and the preferences of m voters, where each voter’s preferences are given as a
total ordering of V . We determine a pair-wise relation on V as follows: for a, b ∈ V we say
that a wins against b if the majority of voters prefers candidate a over candidate b. In this
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way, assuming that there are no ties (which is guaranteed if the number of voters is odd), we
can construct a tournament T = (V, A), where we have the arc b → a (that is (b, a) ∈ A) if a

wins against b. In this setting, the Slater score of a candidate c is the minimum number of
arcs of T that need to be reversed so that T becomes transitive (acyclic) with c being placed
last (that is, with c being a sink). The Slater winner of a tournament is a candidate with
minimum Slater score. Intuitively, a candidate c is a Slater winner if there exists a linear
ordering ≺ of the candidates that ranks c as the winner and is as compatible as possible with
the voters’ aggregated preferences, in the sense that the edit distance between ≺ and T is
minimum.

The notion of Slater winner is very well-studied and can be seen as a special case of
Kemeny voting. Indeed, in Kemeny voting we construct a weighted tournament where the
weight of the arc b → a denotes the margin of victory of a over b. In this sense, the Slater
system corresponds to a version of Kemeny voting where we only retain as information
which of the two candidates would win a head-to-head match-up, but ignore the margin of
victory. In other words, Slater voting is the special case of Kemeny voting where the arcs are
unweighted. For more information about these and other related voting systems, we refer
the reader to [5].

The main question we are interested in in this paper is the computational complexity
of determining if a vertex v of a tournament is a Slater winner. It has long been known
that this question is at least NP-hard [15]. Indeed, it is not hard to see that if we had an
oracle for the Slater problem we would be able to produce in polynomial time an ordering of
any tournament in a way that minimizes the number of inversed arcs. This would solve the
Feedback Arc Set problem, which is known to be NP-complete on tournaments [1, 2, 7, 9].
On the other hand, membership of this problem in NP is not obvious. The best currently
known upper bound on its complexity is the class Θp

2, shown by Hudry [8, 15].
The class Θp

2 seems like a natural home for the Slater problem. As a reminder, this class
captures as a model of computation Turing machines that run in polynomial time and which
are allowed to use an NP oracle either a polynomial number of times non-adaptively (that is,
with questions not being allowed to depend on previous answers), or a logarithmic number of
times adaptively. Hence, this class is often called “Parallel Access to NP” and written as PNP

|| .
Intuitively, solving the Slater problem requires us to calculate exactly a value that is NP-hard
to compute (the minimum feedback arc set of a tournament). This can be done either by
asking polynomially many non-adaptive NP queries to an oracle (for each k = 1, 2, . . . we ask
if the feedback arc set has size at most k), or a logarithmic number of adaptive queries (where
we essentially perform binary search). It has therefore been conjectured that determining if a
candidate is a Slater winner is not just NP-hard, but Θp

2-complete [4, 5, 15]. We recall that
Θp

2 is strongly suspected to be a much larger class than NP – indeed, because Θp
2 contains

all of the so-called Boolean hierarchy of classes, it is known that if it were the case that
Θp

2 = NP , then the polynomial hierarchy would collapse [6]. Hence, the difference between
the known upper and lower bounds on the complexity of determining a Slater winner is not
trivial.

The result we present in this paper settles this problem. We confirm the conjecture that
determining the Slater winner of a tournament is indeed Θp

2-complete. This places Slater
voting in the same class as related voting schemes, such as Kemeny [14], Dodgson [12], and
Young [16]. It also places it in the same class as the Slater rule used in [11] for a more general
judgment aggregation problem. We prove this result by modifying the reduction of Conitzer
[9], which showed that Feedback Arc Set on tournaments is NP-complete. The main
difference is that, rather than reducing from SAT, we need to reduce from a Θp

2-complete
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variant, where we are looking for a maximum weight satisfying assignment that sets a certain
variable to True. This forces us to significantly complicate the reduction because we need to
encode in the objective function not only the number of satisfied clauses but also the weight
of the corresponding assignment.

Having settled the worst-case complexity of the problem in general, we go on to consider
a related question: what is the minimum number of voters for which determining a Slater
winner is Θp

2-complete? The motivation behind this question is that, even though any
tournament can be constructed by aggregating the preferences of a large enough number
of voters1, if the number of voters is limited, some tournaments can never arise. Hence
the problem may conceivably be easier if the number of voters is bounded. In the case of
the Slater rule, Bachmeier et al.[3] have shown that determining the Slater winner remains
NP-hard for 7 voters. By reusing and slightly adjusting their arguments we improve their
complexity lower bound to Θp

2-completeness for 7 voters.

2 Definitions and Preliminaries

A tournament is a directed graph G = (V, A) such that for all x, y ∈ V , exactly one of the
arcs (x, y), (y, x) appears in A. A feedback arc set (fas) of a digraph G = (V, A) is a set of
arcs A′ ⊆ A such that deleting A′ from G results in an acyclic digraph. If G is a tournament
and A′ is a fas of G, then the tournament obtained from G by reversing the direction of all
arcs of A′ is acyclic (or transitive). We will say that a total ordering ≺ of the vertices of a
digraph G = (V, A) implies the fas S = {(x, y) | (x, y) ∈ A, y ≺ x} (in the sense that S is
the set of arcs that disagree with the ordering). We will say that an ordering of V is optimal
if the fas it implies has minimum size.

Given a digraph G = (V, A) and v ∈ V , we say that v is a Slater winner if for some k ≥ 0
the following hold: (i) there exists a fas S ⊆ A of G, such that v is a sink of G − S and
|S| = k (ii) every fas of G has size at least k. If v is a Slater winner in G = (V, A), then a
winning ordering for v is a linear ordering of V that places v last and implies a fas of G of
minimum size.

In a digraph G = (V, E), a set M ⊆ V is a module if the following holds: for all x, y ∈ M

and z ̸∈ M we have (x, z) ∈ E ↔ (y, z) ∈ E and (z, x) ∈ E ↔ (z, y) ∈ E. In other words,
every vertex outside M that has an arc to (respectively from) a vertex of M , has arcs to
(respectively from) all of M . The following lemma, given by Conitzer [9] with slightly different
terminology, states that the vertices of a module can, without loss of generality, always be
ordered together. We say that the vertices of a set S are contiguous in an ordering ≺ if there
are no x, y ∈ S, z ̸∈ S such that x ≺ z ≺ y.

▶ Lemma 1. Let G = (V, A) be a digraph, v ∈ V a vertex, and suppose we have a partition
of V into k non-empty modules V = M1 ⊎ M2 ⊎ . . . ⊎ Mk. If v is a Slater winner of G,
then there exists a winning ordering for v such that for all i ∈ [k], the vertices of Mi are
contiguous.

Proof. Suppose k > 1 (otherwise the claim is trivial) and consider an ordering ≺ that is
winning for v. We will say that a set of vertices S ⊆ V is a block of ≺ if (i) S ⊆ Mi for
some i ∈ {1, . . . , k}; (ii) S is contiguous; (iii) S is maximal, that is, adding any vertex to S

violates one of the two preceding properties.

1 This is a classical result known in the literature as McGarvey’s theorem.
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If the number of blocks is equal to k we are done, as each block is equal to a module so
we have an ordering where each module is contiguous. If we have at least k + 1 blocks, we
will explain how to edit the ordering so that it remains winning for v, it implies a fas of the
same size, and the number of blocks decreases. Repeating this process until we have k blocks
completes the proof.

Consider two vertices x, y, with x ≺ y, which belong to the same module, say x, y ∈ M1,
but in distinct blocks. Among all such pairs, select x, y so that their distance in the ordering,
that is, the size of the set Z = {z | x ≺ z ≺ y} is minimized. Let X, Y be the blocks that
contain x, y respectively. Note that by the selection of x, y we have that x is the last vertex
of X, y is the first vertex of Y , X ∪ Y ⊆ M1, and M1 ∩ Z = ∅.

Let dZ
out(x) (respectively dZ

in(x)) be the out-degree (respectively in-degree) of x towards
the set Z. Because M1 is a module, all vertices of M1 have the same in-degree and out-degree
towards Z, and in particular, dZ

out(x) = dZ
out(y) and dZ

in(x) = dZ
in(y). Now, if dZ

in(x) > dZ
out(x),

we can obtain an ordering that implies a smaller fas by placing x immediately after the last
vertex of Z. This would contradict the optimality of ≺, so it must be impossible. Similarly,
if dZ

in(x) < dZ
out(x), we have dZ

in(y) < dZ
out(y), and we can obtain a strictly better ordering

by placing y immediately before the first vertex of Z, contradiction. We conclude that
dZ

in(x) = dZ
in(y). Therefore, moving all the vertices of X so that they appear immediately

after the last vertex of Z produces an ordering which is equally good as the current one, is
still winning for v, and has a smaller number of blocks. ◀

2.1 Complexity
We recall the class Θp

2 which is known to have several equivalent characterizations, including
PNP[log n] (P with the right to make O(log n) queries to an NP oracle), LNP (logarithmic-space
Turing machines with access to an NP oracle), and PNP

|| (P with parallel non-adaptive access
to an NP oracle). We refer the reader to [13] for more information on this class. In [17] it
was shown that the following problem is Θp

2-complete: given a graph G, is the maximum
clique size ω(G) odd? In [10] it is mentioned that the following problem, called Max Model,
is Θp

2-complete: given a satisfiable CNF formula ϕ containing a special variable x, is there a
satisfying assignment of ϕ that sets x to True and has maximum Hamming weight (among
all satisfying assignments), where the Hamming weight of an assignment is the number of
variables it sets to True.

We will use as a starting point for our reduction a variant of Max Model which we show
is Θp

2-complete below. The main difference between this variant and the standard version is
that we assume that the given formula is satisfied by the assignment that sets all variables
to False.

▶ Lemma 2. The following problem is Θp
2-complete. Given a 3-CNF formula ϕ containing a

distinguished variable x, such that ϕ is satisfied by the all-False assignment, decide if there
exists a satisfying assignment for ϕ that sets x to True and has maximum weight among all
satisfying assignments.

Proof. We start with a graph G = (V, E) for which the question is if the maximum
independent set has odd size (clearly this is equivalent to the question of deciding if the
maximum clique has odd size by taking the complement of G, so our starting problem is
Θp

2-complete [17]). Let |V | = n and suppose V = {v1, . . . , vn}. We construct a formula
ϕ as follows: for each i ∈ {1, . . . , n} we build (n + 1) variables x1

i , . . . , xn+1
i and for each

j, k ∈ {1, . . . , n + 1} we add the clause (xj
i → xk

i ); for each (vi1 , vi2) ∈ E, for each j, k ∈
{1, . . . , n+1} we add the clause (¬xj

i1
∨¬xk

i2
); we construct n variables y1, . . . , yn and clauses



M. Lampis 45:5

that represent the constraints (y1 = x1
1), and for each i ∈ {2, . . . , n}, (yi = yi−1 ⊕ x1

i ). We
set yn as the distinguished variable of ϕ. The formula construction can clearly be carried out
in polynomial time, and no clause has size more than three. Furthermore, setting everything
to False satisfies all clauses. Intuitively, for each vertex we have constructed n + 1 variables
that will be set to True if we take this vertex in the independent set. The first set of clauses
ensures that we make a consistent choice among the copies; the second set that we indeed
select an independent set; and the third calculates the parity of its size.

We now observe that independent sets S of G naturally correspond to satisfying assign-
ments of ϕ. In particular, given an independent set S ⊆ V we can construct an assignment
by setting, for all i, j, xj

i to True if and only if vi ∈ S; we then complete the assignment by
giving appropriate values to the yi variables so that the parity constraints are satisfied. For
the converse direction, we can extract an independent set S from a satisfying assignment
by setting vi ∈ S if and only if the assignment sets x1

i to True. We observe the yn is set to
True in a satisfying assignment if and only if the corresponding independent set has odd size
(indeed, for each i, yi is set to True if the intersection of the independent set with the first i

vertices has odd size).
Suppose now that there exists an independent set S of maximum size k and that k is

odd. Then, there exists a satisfying assignment of maximum weight that sets yn to True.
Indeed, suppose for contradiction that the maximum satisfying assignment σ sets yn to
False. Then, the corresponding independent set S′ must have even size k′. Since k is
odd and S is a maximum independent set, k′ < k. But then, the weight of σ is at most
k′(n + 1) + n < k(n + 1). However, the assignment corresponding to S has weight at least
k(n + 1), contradiction.

For the converse direction, suppose there exists a satisfying assignment σ of maximum
weight that sets yn to True. The corresponding independent set S has odd size, say |S| = k.
If there exists a maximum independent set S′ that has even size k′, then k′ > k. However,
the corresponding truth assignment σ′ would have weight at least k′(n + 1) > k(n + 1) + n.
Since σ has weight at most k(n + 1) + n we get a contradiction to the optimality of σ.

We conclude that there is a satisfying assignment to ϕ of maximum weight that sets yn

to True if and only if the maximum independent set of G has odd size. ◀

3 Reduction to Slater

This section presents the main result of the paper, stated in Theorem 3. The theorem is
based on a reduction from the problem of Lemma 2 to the problem of deciding if a vertex of
a tournament is a Slater winner. Before we dive into the proof, let us give some high level
intuition (we also invite the reader to take a look at Figure 1).

We will build a tournament to represent a CNF formula ϕ with n variables and m clauses
by constructing n groups of “large” modules (Ai, Bi, Ci, Di, Ei, Fi, for i ∈ {1, . . . , n}) and m

“small” modules Tj for j ∈ {1, . . . , m}. The internal structure of the modules will be irrelevant
and we only care about their ordering, which we may assume to be contiguous thanks to
Lemma 1. We will make sure to adjust the sizes of the modules and their connections so
that we have the following properties:
1. In any reasonable ordering, all six large modules representing variable xi come before

the six modules representing xi+1. This will naturally order the large modules into n

sections.
2. Inside a section, any reasonable ordering will place Ai, Bi, Ci first. Then, if the remaining

modules are ordered Di ≺ Ei ≺ Fi, this encodes that xi is set to True.

STACS 2022
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Ai

Bi

Ci

Di

Ei

Fi

Tj

(a) xi does not appear in cj .

Ai

Bi

Ci

Di

Ei

Fi

Tj

(b) xi ∈ cj .

Ai

Bi

Ci

Di

Ei

Fi

Tj

(c) ¬xi ∈ cj .

Figure 1 Gadgets of the reduction of Theorem 3. On the left of each figure the six large modules
Ai, Bi, Ci, Di, Ei, Fi represent the variable xi. Missing (thick) arcs go downwards, so the ordering
is forced except for the last three modules. The depicted ordering Di ≺ Ei ≺ Fi encodes that xi

is True. In the three figures we depict the connections between the six modules and the small
module Tj representing clause cj depending on whether xi appears in cj . In the first case placing Tj

anywhere costs at least three arcs. In the second case, placing Tj after Ei costs two arcs, because
setting xi to True satisfies cj . In the last case, a similarly advantageous placement could be obtained
by using the ordering Ei ≺ Fi ≺ Di (which encodes that xi is False) and putting Tj before Di.

3. Connections between Tj and variable modules will be such that if Tj is placed completely
before or completely after the section of a variable xi, then the cost is the same. However,
the cost may be lower if Tj is placed inside the section of xi. In that case, we must check
if xi appears in the clause cj in the original formula and the ordering of the section of xi

encodes an assignment to xi that satisfies cj .
4. Variable modules are so large that the ordering must always encode a satisfying assignment

to the formula (which exists by assumption). The ordering of Tj modules among themselves
is irrelevant.

5. In order to encode the weight of a satisfying assignment, we make Ei modules slightly
larger (we add 2 extra vertices). Then, the ordering Di ≺ Ei ≺ Fi, which encodes that
xi is True, is better than other orderings that encode satisfying assignments. Hence, the
optimal ordering will represent a satisfying assignment to ϕ with maximum weight.

6. Finally, in order to encode that there is a special variable xn which must be set to
True, we add one extra vertex to En. This makes sure that setting xn to True is more
advantageous than setting any other variable to True, but not more advantageous than
setting two other variables to True.

Armed with the intuition of the previous list, we are now ready to present all the details
of our reduction.

▶ Theorem 3. The following problem is Θp
2-complete: given a tournament T = (V, A) and a

vertex v ∈ V , decide if v is a Slater winner.

Proof. We perform a reduction heavily inspired by the reduction of [9] proving that computing
the minimum fas of a tournament is NP-complete, though we include a minor modification
proposed by Bachmeier et al. [3] which will later allow us to show that our instances are
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realizable using seven voters. The main complication compared to the reductions of [9, 3] is
that we now need to encode the CNF formula in a way that satisfying assignments of larger
weight correspond to orderings with better objective value.

We start with a formula ϕ, as given in Lemma 2. Let x1, . . . , xn be the variables of ϕ

and suppose that the question is whether there exists a satisfying assignment of maximum
weight that sets xn to True. Recall that by assumption the all-False assignment satisfies ϕ.
Let m be the number of clauses of ϕ.

We define two numbers s1, s2 which satisfy the following properties:

s2
1 > (3n − 1)ms1s2 + 3ns1 + m2s2

2 + 9m(n − 1)s2 (1)
s1s2 > 3ns1 + m2s2

2 + 9m(n − 1)s2 (2)
s1 > m2s2

2 + 9m(n − 1)s2 (3)

For concreteness, set s2 = (n + m)5 and s1 = s5
2 = (n + m)25 and the above inequalities

are easily satisfied when n + m is sufficiently large. Importantly, s1, s2 are polynomially
bounded in n + m. Intuitively, the idea is that s1, s2 are two very large numbers, and s1 is
significantly larger. We will construct modules of size (roughly) s1 or s2, and the values are
chosen so that arcs between large modules will be very important, arcs between large and
small modules quite important, and arcs between small modules almost irrelevant.

We now construct our tournament as follows: for each i ∈ {1, . . . , n} we construct
6 modules, call them Ai, Bi, Ci, Di, Ei, Fi. Modules Ai, Bi, Ci, Di, Fi have size s1, while
modules Ei have size s1 + 2 if i < n, and the size of En is s1 + 3. Internally, each of these
modules induces a transitive tournament. For i < j we add all arcs from Ai ∪ Bi ∪ Ci ∪
Di ∪ Ei ∪ Fi to Aj ∪ Bj ∪ Cj ∪ Dj ∪ Ej ∪ Fj . For each i ∈ {1, . . . , n} we add all possible
arcs (i) from Ai to Bi ∪ Ci ∪ Di ∪ Ei ∪ Fi (ii) from Bi to Ci ∪ Di ∪ Ei ∪ Fi (iii) from Ci to
Di ∪ Ei ∪ Fi (iv) from Di to Ei (v) from Ei to Fi (vi) from Fi to Di. The graph we have
constructed so far is a tournament with n sections, each made up of 6 modules. Each such
section represents a variable xi and the sections are linearly ordered. The structure inside
each section is essentially the transitive closure of Ai → Bi → Ci → Di → Ei → Fi with the
exception that arcs between Di and Fi are heading towards Di.

We now complete the construction by adding to the current tournament some vertices
that represent the clauses of ϕ. In particular, for each j ∈ {1, . . . , m} we construct a module
Tj of size s2 to represent the j-th clause of ϕ. Internally, Tj is a transitive tournament.
For j, j′ ∈ {1, . . . , m}, the arcs between Tj and Tj′ are set in an arbitrary direction. What
remains is to explain how the arcs between Tj and the modules representing the variables
are set so as to encode the incidence of variables with clauses. For each i ∈ {1, . . . , n} and
j ∈ {1, . . . , m} we do the following:
1. If xi does not appear in the j-th clause we add all arcs from Tj to Ai ∪ Bi ∪ Ci and all

arcs from Di ∪ Ei ∪ Fi to Tj .
2. If xi appears positive in the j-th clause we add all arcs from Tj to Ai ∪ Bi ∪ Fi and all

arcs from Ci ∪ Di ∪ Ei.
3. If xi appears negative in the j-th clause we add all arcs from Tj to Ai ∪ Ci ∪ Di and all

arcs from Bi ∪ Ei ∪ Fi.

This completes the construction and the question we want to answer is whether the last
vertex (that is, the sink) of the transitive tournament induced by Fn is a Slater winner of
the whole graph.

We need to prove that the designated vertex is a Slater winner if and only if there
is a satisfying assignment for ϕ with maximum weight that sets xn to True. We will do
this by establishing some properties regarding any optimal ordering of the constructed
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tournament, showing that such an ordering must always have a structure which implies a
satisfying assignment of ϕ with maximum weight. We will rely heavily on Lemma 1, since
the tournament we have constructed can be decomposed into 6n + m modules, namely,
Ai, Bi, Ci, Di, Ei, and Fi, for i ∈ {1, . . . , n}, and Tj , for j ∈ {1, . . . , m}. We therefore assume
without loss of generality that these sets are placed contiguously in an optimal ordering.

Let us first argue that any optimal ordering must have some desirable structure which
necessarily encodes a satisfying assignment for ϕ. To do this it will be helpful to start
with a baseline ordering and calculate its implied fas, as then any ordering which implies
a larger fas will be necessarily suboptimal. Consider the ordering which is defined as
Ai ≺ Bi ≺ Ci ≺ Ei ≺ Fi ≺ Di for each i ∈ {1, . . . , n} and which sets Di ≺ Ai+1, where
each module is internally ordered in the optimal way. We insert into this ordering of the
modules that represent variables, the modules Tj as follows: for each j ∈ {1, . . . , m}, we find
a variable xi that appears negative in the j-th clause (such a variable must exist, since ϕ is
satisfied by the all-False assignment), and place all of Tj between Fi and Di. If for some pair
Tj , Tj′ their relative ordering is not yet fully specified, we order them in some arbitrary way.

The arcs incompatible with the above ordering are (i) the at most ns1(s1 + 3) arcs going
from a module Di to a module Ei (ii) for each Tj that was placed between Fi and Di we
have 2s1s2 arcs (towards Ai ∪ Ci), as well as at most 3(s1 + 3)s2 arcs to each other group
Ai′ ∪ Bi′ ∪ Ci′ ∪ Di′ ∪ Ei′ ∪ Fi′ , for i′ ̸= i (iii) the total number of arcs between modules Tj

is at most m2s2
2. Therefore, we have that the fas implied by this ordering has size at most

B ≤ ns1(s1 + 3) + m(2s1s2 + 3(n − 1)(s1 + 3)s2) + m2s2
2 =

= ns2
1 + (3n − 1)ms1s2 + 3ns1 + m2s2

2 + 9m(n − 1)s2

In the remainder we will therefore only consider orderings which imply a fas of size at most
B, as other orderings are suboptimal. This allows us to draw some conclusions regarding the
structure of an optimal ordering. First, observe that for each i ∈ {1, . . . , n}, any ordering of
Di ∪ Ei ∪ Fi will contribute at least s2

1 arcs to the fas. Using inequality (1), we have that
there are at most n pairs of “large” modules (that is, modules of size at least s1) which are
incorrectly ordered, that is, ordered so that all arcs between the modules are included in the
fas. Indeed, if there are n + 1 such pairs, the fas will have size at least (n + 1)s2

1 > B. We
conclude that regarding the 6n large modules we must have the following ordering:
1. For each i < j, we have that all vertices of Ai ∪ Bi ∪ Ci ∪ Di ∪ Ei ∪ Fi (the section that

represents the variable xi) are before all vertices of Aj ∪ Bj ∪ Cj ∪ Dj ∪ Ej ∪ Fj (the
section that represents the variable xj).

2. For each i ∈ {1, . . . , n}, we have Ai ≺ Bi ≺ Ci and all vertices of Ai ∪ Bi ∪ Ci are before
Di ∪ Ei ∪ Fi.

3. For each i ∈ {1, . . . , n} we have Di ≺ Ei ≺ Fi, or Ei ≺ Fi ≺ Di, or Fi ≺ Di ≺ Ei.

We would now like to construct a correspondence between assignments to ϕ and orderings
of the tournament that respect the above conditions. On the one hand, if we are given an
assignment σ we construct an ordering of the variable sections as above and for each i, if σ

set xi to True we set Di ≺ Ei ≺ Fi, otherwise we set Ei ≺ Fi ≺ Di. In the converse direction,
given an ordering that respects the above conditions (which any optimal ordering must do),
we extract an assignment by setting, for each i, xi to True if and only if Di ≺ Ei ≺ Fi.

We now argue that the assignment corresponding to an optimal ordering must also be
satisfying for ϕ, as otherwise the fas will have size strictly larger than B, contradicting
the optimality of the ordering. For the sake of contradiction, suppose we have an optimal
ordering which corresponds to an assignment falsifying a clause. As argued above, there
are at least ns2

1 arcs in the fas contributed by the ordering of the large modules, so we
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concentrate on the modules Tj representing clauses. A module Tj representing any clause
must be incident on at least (3n − 1)s1s2 arcs of the fas connecting it to large modules. To
see this, consider the following: we will say that Tj is in the interior of section i, if Ai ≺ Tj

and Tj is placed before one of Di, Ei, or Fi. Tj can be in the interior of at most one section
i, so for each i′ ≠ i we observe that at least 3s1s2 arcs incident on Tj and modules of the
group i′ are in the fas. This gives 3(n − 1)s1s2 arcs. In addition, no matter where we place
Tj in the interior of section i, at least a further 2s1s2 arcs of the fas are obtained: if Tj is
after Ci, then we get the arcs to Ai ∪ Bi or the arcs to Ai ∪ Ci; if Tj is between Ai and
Ci, we get the arcs to Ai and at least 2s1s2 arcs from Di ∪ Ei ∪ Fi. Hence, we get at least
(3n − 1)s1s2 arcs in the fas for each Tj .

Furthermore, suppose that the assignment corresponding to the ordering does not satisfy
the j-th clause. Then, we claim that at least 3ns1s2 arcs connecting Tj to large modules
are included in the fas. Indeed, if Tj is in the interior of section i, it can either be before or
after Ci. If it is before Ci, as we observed in the previous paragraph, we always have at least
3s1s2 arcs in the fas between Tj and the large modules of section i. If Tj is placed after Ci,
we have the following cases: (i) if xi does not appear in the clause, then at least 3s1s2 arcs
between Tj and the large modules of section i are in the fas (ii) if xi appears positive in the
j-th clause, we know that Fi is not placed last in section i (otherwise the assignment would
satisfy the j-th clause), so wherever we place Tj , at least 3s1s2 arcs are included in the fas
(iii) similarly if xi appears negative, since the assignment does not satisfy the clause, Fi is
last, so again at least 3s1s2 arcs are included in the fas.

From the above calculations, if the assignment that corresponds to an ordering falsifies a
clause, the fas has size at least ns2

1+(m−1)(3n−1)s1s2+3ns1s2 = ns2
1+(3n−1)ms1s2+s1s2 >

B, where we used inequality (2). We conclude that an optimal ordering must correspond to
a satisfying assignment.

We now need to argue that the assignment corresponding to an optimal ordering of the
tournament must be a satisfying assignment of maximum weight. Suppose for contradiction
that the assignment corresponding to an optimal ordering, call it σ1, sets k variables to True,
but there exists another satisfying assignment, call it σ2, that sets at least k + 1 variables to
True. We will show that starting from σ2 we can obtain a better ordering of the tournament,
contradicting the optimality of the original ordering.

We claim that the ordering from which we extracted σ1 includes at least ns2
1 + (3n −

1)ms1s2 +2(n−k)s1 arcs in the fas. This is because in the section corresponding to the n−k

variables that σ1 sets to False, either the arcs from Ei to Fi, or the arcs from Di to Ei are in
the fas (since Fi is not placed last in the section), and these are at least s1(s1 + 2) = s2

1 + 2s1
arcs.

We construct an ordering from σ2 as follows: we order the variable section in the normal
way and inside each section, if σ2(xi) = True we use the ordering Di ≺ Ei ≺ Fi, otherwise
we use the ordering Ei ≺ Fi ≺ Di. For each Tj , we find a variable xi that satisfies the j-th
clause and place Tj in section i immediately before the last module of this section. If for j, j′

the order of Tj , Tj′ is not implied by the above, we set it arbitrarily. The fas implied by this
ordering has size at most

B′ ≤ ns2
1 + 2(n − k − 1)s1 + s1 + m(2s1s2 + 3(n − 1)(s1 + 3)s2) + m2s2

2 =
= ns2

1 + 2(n − k)s1 + (3n − 1)ms1s2 − s1 + m2s2
2 + 9m(n − 1)s2

Here, the calculations for the terms m(2s1s2 + 3(n − 1)(s1 + 3)s2) + m2s2
2 are the same

as in the calculation of B; the term 2(n − k − 1)s1 takes into account that there are n − k − 1
sections that correspond to variables set to False; and the s1 term is due to the fact that
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xn may be one of the variables set to False and En has size s1 + 3 and not s1 + 2. Using
inequality (3) we have that −s1 +m2s2

2 +9m(n−1)s2 < 0, so the ordering we have constructed
from σ2 is better than the one from which we extracted σ1, contradiction.

At this point we are almost done because we have argued that an optimal ordering of
the tournament corresponds to a satisfying assignment of maximum weight and furthermore,
since the correspondence sets xn to True if and only if Fn is the last module in the ordering,
the sink of Fn will be last in the ordering if and only if the assignment sets xn to True.
However, ϕ could have several satisfying assignments of the same weight, and since we
have set arcs between Tj modules arbitrarily, it could be the case that a maximum weight
assignment that sets xn to False results in a better ordering, making another vertex the
Slater winner. This is the reason why we have set En to be slightly larger than all other
modules Ei, so that setting xn to True is always slightly more advantageous than setting
any other variable to True.

Concretely, we argue the following: any optimal ordering of the tournament corresponds
to a satisfying assignment of ϕ with maximum weight; and furthermore if a satisfying
assignment of ϕ with maximum weight sets xn to True, then any optimal ordering places
Fn last. We need to argue the second claim, so suppose for contradiction that an optimal
ordering does not place Fn last and that the assignment that corresponds to this ordering is
σ1. Furthermore, suppose that there exists a satisfying assignment σ2 of maximum weight
that sets xn to True. Say that both σ1, σ2 set k variables to True.

We first observe that the ordering from which we extracted σ1 implies a fas of size at least
ns2

1 + 2(n − k)s1 + s1 + (3n − 1)ms1s2. This is because there are (n − k − 1) sections where
the fas contains s1(s1 + 2) arcs incident on a module Ei, k sections where the fas contains s2

1
arcs incident from Fi to Di, and in the section corresponding to xn the fas contains s1(s1 + 3)
arcs, incident on En.

On the other hand, if we construct an ordering from σ2 in the same way as we did
previously, the fas obtained will have size at most

B′′ ≤ ns2
1 + 2(n − k)s1 + m(2s1s2 + 3(n − 1)(s1 + 3)s2) + m2s2

2 =
= ns2

1 + 2(n − k)s1 + (3n − 1)ms1s2 + m2s2
2 + 9m(n − 1)s2

Again, using inequality (3) which states that s1 > m2s2
2 + 9m(n − 1)s2 we conclude that

the new ordering is better, contradicting the optimality of the original ordering.
We now summarize our arguments: we have shown that any optimal ordering of the

tournament always corresponds to a maximum weight satisfying assignmet of ϕ and further-
more, it corresponds to a maximum weight satisfying assignment that sets xn to True if
this is possible; furthermore, if an optimal ordering corresponds to an assignment that sets
xn to True then the last vertex of Fn is a Slater winner. We therefore have two cases: if
the last vertex of Fn is a Slater winner, then since optimal orderings give rise to satisfying
assignments of maximum weight, there is a maximum weight satisfying assignment of ϕ

setting xn to True; if the last vertex of Fn is not a Slater winner, then the maximum weight
satisfying assignment we extract from an optimal ordering sets xn to False, and there is no
satisfying assignment of the same weight setting xn to True. We conclude that determining
if a vertex is a Slater winner is equivalent to deciding if ϕ has a maximum weight satisfying
assignment setting xn to True, and is therefore Θp

2-complete. ◀

4 Hardness for 7 Voters

In this section we show that the tournaments constructed in Theorem 3 correspond to
instances that could result from the aggregation of the preferences of 7 voters and as a result
the problem of determining a Slater winner remains Θp

2-complete even for 7 voters. Our
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approach follows along the lines of the arguments of Bachmeier et al. [3] who proved that
determining the Slater winner is NP-hard for 7 voters. Indeed, the proof of [3] consists of an
analysis (and tweak) of the construction of Conitzer [9] which establishes that the instances
of the reduction can be built by aggregating 7 voter profiles. Since our reduction is very
similar to Conitzer’s, we essentially only need to adjust the arguments of Bachmeier et al. to
obtain Θp

2-completeness.
Our first step is to slightly restrict the Θp

2-complete problem that is the starting point of
our reduction. We present the following strengthening of Lemma 2, which is similar to the
problem used as a starting point in the reduction of [3].

▶ Lemma 4. The problem given in Lemma 2 remains Θp
2-complete under the following

additional restrictions: (i) we are given a partition of the clauses of ϕ in two sets L, R and
each variable appears in at most one clause of L and in at most two clauses of R (ii) each
literal appears at most once in a clause of R.

Proof. Given a formula ϕ as in Lemma 2 we construct a new formula ϕ′ as follows. Let
x1, x2, . . . , xn be the variables of ϕ and m be the number of its clauses. For each xi,
i ∈ {1, . . . , n} we construct m variables, call them y1

i , y2
i , . . . , ym

i . For each i ∈ {1, . . . , n}, for
j ∈ {1, . . . , m − 1} we construct the clause (¬yj

i ∨ yj+1
i ), as well as the clause (¬ym

i ∨ y1
i ).

Let R be the set of clauses constructed so far and note that each literal appears at most once
and each variable at most twice in these clauses. Intuitively, the clauses of R ensure that for
each i, all variables in the set {y1

i , y2
i , . . . , ym

i } must receive the same value in a satisfying
assignment.

Now, we consider the clauses of ϕ one by one. If the j-th clause contains the variable xi,
we replace it by the variable yj

i . Doing this for all clauses of ϕ we obtain a set of clauses,
call it L, where each variable appears at most once (assuming without loss of generality that
clauses of ϕ have no repeated literals).

If xn was the designated variable of ϕ we set y1
n as the designated variable of ϕ′. It is

now not hard to make a correspondence between satisfying assignments of ϕ and ϕ′ (xi is set
to True if all yj

i are set to True) in a way that preserves weights (the weight of an assignment
to ϕ′ is m times the weight of the corresponding assignment for ϕ). Hence, determining if a
maximum weight satisfying assignment to ϕ′ sets y1

n to True is Θp
2-complete. Observe also

that ϕ′ is satisfied by the all-False assignment. ◀

We now obtain the result of this section by starting the reduction of Theorem 3 from the
problem of Lemma 4. In the statement of the theorem below, when we say that a tournament
T = (V, A) can be obtained from 7 voters, we mean that there exist 7 total orderings of V

such that for all (a, b) ∈ A we have that a ≺ b in at least 4 of the orderings.

▶ Theorem 5. Determining if a vertex of a tournament is a Slater winner remains Θp
2-

complete even for tournaments that can be obtained from 7 voters.

Proof. We perform the same reduction as in Theorem 3 except we start from the special
case given in Lemma 4. What remains is to show that the instance we construct can result
from aggregating 7 orderings. Recall that our tournament contains 6n modules representing
the variables, called Ai, Bi, Ci, Di, Ei, Fi, for i ∈ {1, . . . , n} and m modules representing the
clauses, called Tj , for j ∈ {1, . . . , m}. Since modules are internally transitive, we will assume
that the 7 voters have preferences which agree with the directions of the arcs inside the
modules and hence we focus on the arcs between modules. Recall that in the reduction of
Theorem 3, arcs between modules Tj are set arbitrarily. To ease presentation, assume that
when j < j′ we have the arcs Tj → Tj′ .
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The first voter has preferences A1 ≺ B1 ≺ C1 ≺ D1 ≺ E1 ≺ F1 ≺ A2 . . . ≺ Fn ≺ T1 ≺
T2 ≺ . . . ≺ Tm. In other words, the first voter orders all the variable modules before all the
clause modules, orders variable groups according to their index, and inside each variable
group she has the ordering Ai ≺ Bi ≺ Ci ≺ Di ≺ Ei ≺ Fi.

We now add two voters with the intent of constucting all the arcs of the set

X0 =

⋃
j

Tj ×
⋃

i

(Ai ∪ Bi ∪ Ci)

 ∪
⋃

i

(Fi × Di)

The first of these voters has ordering (E1 ≺ E2 ≺ . . . ≺ En) ≺ (F1 ≺ D1 ≺ F2 ≺ D2 ≺
. . . ≺ Fn ≺ Dn) ≺ (T1 ≺ T2 ≺ . . . ≺ Tm) ≺ (A1 ≺ B1 ≺ C1 ≺ A2 ≺ B2 ≺ C2 ≺ . . . ≺ An ≺
Bn ≺ Cn). The second of these voters has ordering (Tm ≺ Tm−1 ≺ . . . ≺ T1) ≺ (Cn ≺ Bn ≺
An ≺ Cn−1 ≺ Bn−1 ≺ An−1 ≺ . . . ≺ C1 ≺ B1 ≺ A1) ≺ (Fn ≺ Dn ≺ Fn−1 ≺ Dn−1 ≺ . . . ≺
F1 ≺ D1) ≺ (En ≺ En−1 ≺ . . . ≺ E1). Note that these two voters agree that all modules of⋃

j Tj come before all modules of ∪i(Ai ∪ Bi ∪ Ci) and that for each i we have Fi ≺ Di, but
disagree on every other pair of modules, hence the two voters together induce exactly the set
of arcs X0 cited above.

If we now consider the three voters we have so far, we observe that much of our construction
is already induced:
1. For i < i′ we have arcs from Ai ∪ Bi ∪ Ci ∪ Di ∪ Ei ∪ Fi to Ai′ ∪ Bi′ ∪ Ci′ ∪ Di′ ∪ Ei′ ∪ Fi′

because of the preferences of the first voter, as the other two voters disagree on these
arcs.

2. For each i ∈ {1, . . . , n}, inside the group Ai ∪ Bi ∪ Ci ∪ Di ∪ Ei ∪ Fi, we have arcs that
agree with the ordering Ai ≺ Bi ≺ Ci ≺ Di ≺ Ei ≺ Fi, except that we have arcs from Fi

to Di. This is because the second and third voter agree that Fi ≺ Di, but disagree on
every other pair (hence the preferences of the first voter prevail for the other pairs).

3. For each j < j′ we have arcs from Tj to Tj′ , due to the preferences of the first voter, as
the other two disagree.

4. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , m} we have arcs from Tj to Ai ∪ Bi ∪ Ci, because
the second and third voter agree that Tj ≺ (Ai ∪Bi ∪Ci) (though the first voter disagrees).

5. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , m} we have arcs from Di ∪ Ei ∪ Fi to Tj , because
the second and third voter disagree on these pairs, so the preferences of the first voter
break the tie.

We therefore have that the tournament that follows from aggregating the preferences of
the first three voters almost corresponds to the one we want to construct, except that for
each i ∈ {1, . . . , n} and j ∈ {1, . . . , m} the arcs between Tj and Ai ∪ Bi ∪ Ci ∪ Di ∪ Ei ∪ Fi

correspond to the arcs we would want if xi did not appear in the j-th clause (in other words,
the three voters we have so far induce the general structure of the construction, but do not
encode which variable appears in which clause). Furthermore, if we look at the relationship
between any two modules so far, the margin of victory is always exactly one (that is, there
do not exist two modules X, Y such that all three voters agree that X ≺ Y ).

Hence, what remains is to use the four remaining voters to “fix” this, so that if xi appears
(positive or negative) in the j-th clause, we have the arcs prescribed in the reduction of
Theorem 3. We will achieve this by giving two pairs of voters. Each pair of voters will
disagree on all pairs of modules except a specific set of arcs that we want to fix. Hence,
adding the pair of voters to the electorate will repair the arcs in question (since the current
margin of victory for all arcs is one), while leaving everything else unchanged.
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Recall that the clause set is given to us partitioned into two sets R, L so that each variable
appears in at most one clause of L and each literal in at most one clause of R. We will use
the slightly weaker property that each literal appears at most once in each of L, R. Abusing
notation we will write j ∈ R if the j-th clause is in R (similarly for j ∈ L). We will also
write xi ∈ cj (respectively ¬xi ∈ cj) if xi appears positive (respectively negative) in the j-th
clause.

Consider now the following two sets of arcs:

X1 =

(⋃
j∈R

∪i:xi∈cj (Tj × Fi) ∪ ∪i:¬xi∈cj (Tj × Di)

)
∪

(⋃
j∈L

∪i:xi∈cj (Ci × Tj) ∪ ∪i:¬xi∈cj (Bi × Tj)

)

X2 =

(⋃
j∈L

∪i:xi∈cj (Tj × Fi) ∪ ∪i:¬xi∈cj (Tj × Di)

)
∪

(⋃
j∈R

∪i:xi∈cj (Ci × Tj) ∪ ∪i:¬xi∈cj (Bi × Tj)

)

Our plan is to give a pair of voters whose preferences induce the arcs of X1 and another
pair whose preferences induce the arcs of X2. Here when we say that two voters induce a set
of arcs X we mean that for each (a, b) ∈ X both voters have a ≺ b and for each (a, b) ̸∈ X

one voter has a ≺ b and the other has b ≺ a. Before we proceed we observe that if X1, X2 are
inducible by a pair of voters each, then adding these four voters to the three voters we have
described so far produces the tournament of Theorem 3. Indeed, suppose that xi appears
positive in clause cj and j ∈ R. Then, if we consider the arcs in the tournament induced by
the first three voters, we need to inverse the arcs between Tj and Fi (which currently point
Fi → Tj), and the arcs between Tj and Ci (which currently point Tj → Ci). But the arcs
between Tj and Fi are inversed thanks to X1, while the arcs between Tj and Ci are inversed
thanks to X2, where we use the fact that X1, X2 represent the consensus of two voters, while
the margin of victory for any arc induced by the first three voters is one. Similar arguments
apply if xi appears negative in cj , or j ∈ L. Hence, if a pair of voters induces X1 and another
induces X2, taking the union of these four voters with the three voters we have described
produces the tournament of Theorem 3 and completes the proof.

We now recall that it was shown in [3] that X1, X2 are inducible by two voters each,
since these sets of arcs are unions of stars (if we contract each module to a vertex). Let us
explain in more detail how to represent X1 as the union of the preferences of two voters (the
arguments for X2 are essentially identical). We will make use of the fact that each literal
appears at most once in L and at most once in R.

We will say that a module from a variable group is “active” if it is incident on an arc of X1.
In particular, modules Ai, Ei, for i ∈ {1, . . . , n} are not active, and neither are modules Fi

such that xi does not appear positive in R (and similarly for Bi, Ci, Di). We will concentrate
on the ordering of active modules because if we find two voter profiles that order these
modules in a way that induces X1, we can add an arbitrary ordering of the inactive modules
in the beginning of the preferences of the first voter, and the opposite of that ordering at
the end of the preferences of the second voter. This will have as effect that the two voters
disagree on any pair that involves an element of an inactive module, as desired.

We now observe that for each active module M from
⋃

i Bi ∪ Ci ∪ Di ∪ Fi, there exists
exactly one Tj such that M has arcs to Tj in X1. This is because every literal appears in
at most one clause of R and at most one clause of L. Now, we construct two voter profiles
as follows: one voter orders the Tj modules in increasing order of index and the other in
decreasing order. For each active module Di or Fi, we insert the module immediately after
the Tj from which the module receives arcs in X1 in both orderings; for active modules Bi

or Ci we insert them immediately before the Tj towards which the module has arcs in both
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orderings. Note that this does not fully specify the ordering, as if two variables xi, xi′ appear
in cj and j ∈ R, then we need to place Fi and Fi′ immediately after Tj . We resolve such
conflicts by using an arbitrary ordering of the active modules for the first voter and the
opposite of that ordering for the second voter, that is, all modules which are supposed to
appear immediately after Tj are sorted in one way for the first voter and in the opposite
way for the second voter. We now observe that with this ordering for every active module
the two voters agree about the arcs connecting the module to its neighboring Tj , while we
obtain no other arcs between the module and any other Tj′ or any other active module. We
therefore have two voters whose preferences induce X1. ◀
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Abstract
Petri nets, equivalently presentable as vector addition systems with states, are an established model
of concurrency with widespread applications. The reachability problem, where we ask whether from
a given initial configuration there exists a sequence of valid execution steps reaching a given final
configuration, is the central algorithmic problem for this model. The complexity of the problem
has remained, until recently, one of the hardest open questions in verification of concurrent systems.
A first upper bound has been provided only in 2015 by Leroux and Schmitz, then refined by the
same authors to non-primitive recursive Ackermannian upper bound in 2019. The exponential space
lower bound, shown by Lipton already in 1976, remained the only known for over 40 years until a
breakthrough non-elementary lower bound by Czerwiński, Lasota, Lazic, Leroux and Mazowiecki
in 2019. Finally, a matching Ackermannian lower bound announced this year by Czerwiński and
Orlikowski, and independently by Leroux, established the complexity of the problem.

Our primary contribution is an improvement of the former construction, making it conceptually
simpler and more direct. On the way we improve the lower bound for vector addition systems with
states in fixed dimension (or, equivalently, Petri nets with fixed number of places): while Czerwiński
and Orlikowski prove Fk-hardness (hardness for kth level in Grzegorczyk Hierarchy) in dimension
6k, our simplified construction yields Fk-hardness already in dimension 3k + 2.
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1 Introduction

Petri nets [41] are an established model of concurrency with extensive and diverse applications
in various fields, including modelling and analysis of hardware [6, 27], software [18, 5, 22]
and database [4] systems, as well as chemical [1], biological [2] and business [45, 35] processes
(the references on applications are illustrative). The model admits various alternative but
essentially equivalent presentations, most notably vector addition systems (VAS) [24], and
vector addition systems with states (VASS) [19, Sec.5], [21]. The central algorithmic question
for this model is the reachability problem that asks whether from a given initial configuration
there exists a sequence of valid execution steps reaching a given final configuration. Each
of the alternative presentations admits its own formulation of the reachability problem, all
of them being equivalent due to straightforward polynomial-time translations that preserve
reachability, see e.g. Schmitz’s survey [44, Section 2.1]. For instance, in terms of VAS, the
problem is stated as follows: given a finite set T of integer vectors in d-dimensional space
and two d-dimensional vectors v and w of nonnegative integers, does there exist a walk from
v to w such that it stays within the nonnegative orthant, and every step modifies the current
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position by adding some vector from T ? The model of VASS is a natural extension of VAS
with finite control, where v is additionally equipped with an initial control state, w with a
final one, and each vector in T is additionally equipped with a source-target pair of control
states.

We recall, following [44, 9, 10, 11], that importance of the Petri nets reachability problem
is widespread, as many diverse problems from formal languages [8], logic [23, 14, 13, 7],
concurrent systems [17, 16], process calculi [40], linear algebra [20] and other areas (the
references are again illustrative) are known to admit reductions from the VASS reachability
problem; for more such problems and a wider discussion, we refer to [44].

Brief history of the problem. The complexity of the Petri nets reachability problem has
remained unsettled over the past half century. Concerning the decidability status, after an
incomplete proof by Sacerdote and Tenney in 1970s [42], decidability of the problem was
established by Mayr [38, 39] in 1981, whose proof was then simplified by Kosaraju [25], and
then further refined by Lambert in the 1990s [26]. A different approach, based on inductive
invariants, has emerged from a series of papers by Leroux a decade ago [28, 29, 30].

Concerning upper complexity bounds, the first such bound has been shown only in 2015
by Leroux and Schmitz [33], consequently improved to the Ackermannian upper bound [34].

Concerning lower complexity bounds, Lipton’s landmark exponential space lower bound
from 70ies [36] has remained the state of the art for over 40 years until a breakthrough
non-elementary lower bound by Czerwiński, Lasota, Lazic, Leroux and Mazowiecki in 2019 [9]
(see also [10]): hardness of the reachability problem for the class Tower of all decision
problems that are solvable in time or space bounded by a tower of exponentials whose height
is an elementary function of input size. A further refinement of Tower-hardness, in terms of
fine-grained complexity classes closed under polynomial-time reductions, has been reported by
Czerwiński, Lasota and Orlikowski [11]. Finally, a matching Ackermannian lower bound has
been announced recently, independently by Czerwiński and Orlikowski [12], and by Leroux [31]
(the two constructions underlying the proofs seem to be significantly different). These results
finally close the long standing complexity gap, and yield Ackermann-completness of the
Petri nets reachability problem. The techniques used in [12] and [31] substantially differ.

Our contribution. We provide an improvement of the construction of [12]. As our main
contribution, we make the construction conceptually simpler and more direct (the idea of
improvement is discussed at the end of Section 2, and the central ingredient of our construction
is presented in Section 4). Moreover, on the way we improve the parametric lower bound
with respect to the dimension of vector addition systems with states (or, equivalently, the
number of places of Petri nets1). For formulating the result we refer to the complexity classes
Fα corresponding to the Grzegorczyk hierarchy of fast-growing functions [37, 43], indexed by
ordinals α = 0, 1, 2, . . . , ω; for instance, the class F3 is Tower (class of all decision problems
that are solvable in time or space bounded by a tower of exponentials, closed under elementary
reductions) and Fω is Ackermann (class of all decision problems that are solvable in time
or space bounded by the Ackermann function, closed under primitive-recursive reductions).
Results of [12, 31] can be stated in parametric terms as follows: the former shows Fk-hardness
of the reachability problem for VASS in dimension 6k, while the latter one shows Fk-hardness

1 We remark that a Petri net corresponding to a VASS of dimension d has d + 3 places, due to 3 extra
places for encoding the control states of VASS [21]. Likewise, a VAS corresponding to a VASS of
dimension d has dimension d + 3.
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for VASS in dimension 4k + 5. Our simplified construction yields a better lower bound:
Fk-hardness already in dimension 3k + 2. This improvement is a step towards establishing
the tight dimension-parametric complexity of the problem, as the best known upper bound is
Fk-membership in dimension k − 4 [34]. As a next step, an improvement of the construction
of [31] to dimension 2k + 4 has been recently reported in [32].

2 The reachability problem

In this section we define the reachability problem and explain our contribution. Following [9,
10, 11, 12, 31], we work with a convenient presentation of VASS as counter programs without
zero tests, where the dimension of a VASS corresponds to the number of counters of a
program.

Counter programs. A counter program (or simply a program) is a sequence of (line-
numbered) commands, each of which is of one of the following types:

x += 1 (increment counter x)
x −= 1 (decrement counter x)
goto L or L′ (nondeterministically jump to either line L or line L′)
zero? x (zero test: continue if counter x equals 0)

Counters are only allowed to have nonnegative values. We are particularly interested in
counter programs without zero tests, i.e., ones that use no zero test command. Whenever we
use zero tests in the sequel, it is always in view of faithfully simulating them by programs
without zero tests.

Convention: In the sequel, unless specified explicitly, counter programs are implicitly
assumed to be without zero tests.

▶ Example 1. We write x += m (resp. x −= m) as a shorthand for for m consecutive
increments (resp. decrements) of x. As an illustration, consider the program with three
counters C = {x, y, z} (on the left), and its more readable presentation using a syntactic
sugar loop (on the right):

1: goto 2 or 6
2: x −= 1
3: y += 1
4: z += 2
5: goto 1 or 1
6: z += 1

1: loop
2: x −= 1
3: y += 1
4: z += 2
5: z += 1

The program repeats the block of commands in lines 2–4 some number of times chosen
nondeterministically (possibly zero, although not infinite because x is decreasing, and hence
its initial value bounds the number of iterations) and then increments z. In the sequel we
conveniently use loop construct instead of explicit goto commands. (A dummy command is
implicitly added after a loop in case it appears at the very end of a program.)

We emphasise that counters are only permitted to have nonnegative values. In the
program above, that is why the decrement in line 2 works also as a non-zero test.

Consider a program with counters C. By NC we denote the set of all valuations of counters.
Given an initial valuation of counters, a run (or execution) of a counter program is a finite
sequence of executions of commands, as expected. A run which has successfully finished we
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call complete; otherwise, the run is partial. Observe that, due to a decrement that would
cause a counter to become negative, a partial run may fail to continue because it is blocked
from further execution. Moreover, due to nondeterminism of goto, a program may have
various runs from the same initial valuation.

Two programs P, Q may be composed by concatenating them, written P Q. We silently
assume the appropriate re-numbering of lines referred to by goto command in Q.

The reachability problem. Given a subset R ⊆ NC of valuations, by a run from R we mean
any run whose initial valuation belongs to R. A complete run is called X-zeroing, for a subset
X ⊆ C of counters, if it ends with x = 0 for all x ∈ X. When X = {x} and/or R = {r} are
a singleton we write simply “x-zeroing” and/or “from r”. For instance, the program from
Example 1 has exactly one x-zeroing run from the valuation x = 10, y = z = 0, where the
final values of counters are x = 0, y = 10, z = 21.

By 0 we denote the valuation where all counters are 0. Following [9, 10, 11, 12, 31],
we investigate the complexity of the following variant of the reachability problem (with a
partially specified final valuation of counters):

Reachability problem
Input A program P without zero tests, and a subset X of its counters.
Question Does P have an X-zeroing run from the zero valuation 0?

Since counter programs without zero tests can be seen as presentations of VASS, the
above decision problem translates to a variant of the reachability problem for the latter
model, where all components of the initial vector are 0, and the specified components of
the final vector are required to be 0. This variant polynomially reduces to the classical
one where all components of the final vector are fully specified (say, required to be 0), and
the reduction preserves dimension. According to the encoding of VASS as Petri nets, the
problem translates to the submarking reachability problem for the latter model, where all
places (except for those encoding the control states) are initially empty, and the specified
places are required to be finally empty. Finally, the submarking reachability problem is
polynomially equivalent to a variant where the final content of all places is fully specified.

Fast-growing hierarchy. For a positive integer k, let Nk = {k, 2k, 3k, . . .} ⊆ N denote
positive multiplicities of k. We define the complexity classes Fi corresponding to the ith level
in the Grzegorczyk Hierarchy [43, Sect. 2.3, 4.1]. The standard family of approximations
Ai : N1 → N1 of Ackermann function, for i ∈ N1, can be defined as follows:

A1(n) = 2n, Ai+1(n) = Ai ◦ Ai ◦ . . . ◦ Ai︸ ︷︷ ︸
n

(1) = An
i (1).

In particular, A2(n) = 2n and Ai(1) = 2 for all i ∈ N1. Using functions Ai, we define the
complexity classes Fi, indexed by i ∈ N1, of problems solvable in deterministic time Ai(p(n)),
where p : N1 → N1 ranges over functions computable in deterministic time Am

i−1(n), for some
m ∈ N1:

Fi =
⋃

p∈FFi−1

DTime(Ai(p(n))), where FF i =
⋃

m∈N1

FDTime(Am
i (n)).

Intuitively speaking, the class Fi contains all problems solvable in time Ai(n), and is closed
under reductions computable in time of lower order Am

i−1(n), for some fixed m ∈ N1. In
particular, F3 = Tower (problems solvable in a tower of exponentials of time or space,
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whose height is an elementary function of input size). The classes Fk are robust with respect
to the choice of fast-growing function hierarchy (see [43, Sect.4.1]). For k ≥ 3, instead of
deterministic time, one could equivalently take nondeterministic time, or space.

Dimension-parametric lower bound. As the main result we prove Fk-hardness for programs
with the fixed number 3k + 2 of counters:

▶ Theorem 2. Let k ≥ 3. The reachabilty problem for programs with 3k + 2 counters is
Fk-hard.

The proof is in Section 6. The result can be compared to Fk-hardness shown in [12]
for 6k counters, and in [31] for 4k + 5 counters. Like the cited results, Theorem 2 implies
Ackermann-hardness for unrestricted number of counters which, together with Ackermann
upper bound of [34], yields Ackermann-completness of the reachability problem.

Idea of simplification. Czerwiński and Orlikowski [12] use the ratio technique introduced
previously in [9]. Speaking slightly informally, suppose some three counters b, c, d satisfy
initially

b = B, c > 0, d = b · c, (1)

for some fixed positive integer B ∈ N. Furthermore, suppose that the initial values of c and
d may be arbitrary, in a nondeterministic way, as long as they satisfy the latter equality
in (1); they are hence unbounded. Under these assumptions, the ratio technique of [9] allows
one to correctly simulate unboundedly many zero tests (in fact, the number of simulated
zero tests corresponds to the initial value of c which may be arbitrarily large) on counters
bounded by B, at the price of using some auxiliary counters.

As our technical contribution, we improve and simplify the ratio technique. The core
idea underlying our simplification is, intuitively speaking, to swap the roles of counters b and
c: we observe that the above-defined assumption (1) allows us to correctly simulate exactly
B/2 zero tests (for B even) on unbounded counters (in fact, on counters bounded by the
initial value of c which may be arbitrarily large), without any auxiliary counters. This novel
approach is presented in detail in Section 4.

3 Multipliers

Following the lines of [9, 10, 12], we rely on a concept of multiplier.

Sets computed by programs. Consider a program P with counters C, a set of counters
X ⊆ C and R ⊆ NC. We define the set X-computed by P from R as the set of all valuations
of counters at the end of all X-zeroing (and hence forcedly complete) runs of P from R.
Formally, denoting by RunsP(R, X) the set of all X-zeroing runs of P from R, and by fin(π)
the final counter valuation of a complete run π of P, the set X-computed by P from R is

CompP(R, X) = {fin(π) | π ∈ RunsP(R, X)}.

We omit X when it is irrelevant. As before, when X = {x} and/or R = {r} are a singleton
we write simply ’x-computed’ and/or ’from r’.

▶ Example 3. The program in Example 1 above, x-computes from the set of all valuations
satisfying y = z = 0 (no constraint for x), the set of all valuations satisfying x = 0 (trivially)
and z = 2y + 1.
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Likewise, for a fixed integer m ∈ N and a program P with zero tests, we define the set
X-computed by P from R using m zero tests, by restricting the above definition to runs
π ∈ RunsP(R, X) that do exactly m zero tests. This finer variant of the definition will be
used in the next section.

Multipliers. Let b, c, d ∈ C be some three distinguished counters, and B ∈ N4. We define the
subset Ratio(B, b, c, d, C) ⊆ NC, called informally the ratio of B, consisting of all valuations
that satisfy the three conditions (1) and assign 0 to all other counters x ∈ C \ {b, c, d}.

▶ Definition 4. A program M (with no zero tests) with counters C that z-computes from the
zero valuation 0 the set Ratio(B, b, c, d, C), for some four of its counters z, b, c, d ∈ C, we
call B-multiplier. In formula: CompM(0, z) = Ratio(B, b, c, d, C).

▶ Example 5. As a simple example, for every fixed B ∈ N4, the following program is a
B-multiplier of size O(B) (several commands are written in one line to save space). Counter
z is not used at all.

Program MB(b, c, d):
1: b += B d += B c += 1
2: loop
3: d += B c += 1

Directly from the definition we derive the following fundamental property of multipliers, to
be used in the proofs in Sections 5 and 6:

▷ Claim 6. Let M be a B-multiplier with counters C as in Definition 4, let P be a counter
program with counters C \ {z}, and let Y ⊆ C. Then the set Y-computed by P from
Ratio(B, b, c, d, C) is equal to the set ({z} ∪ Y)-computed by the composed program M P
from 0:

CompP(Ratio(B, b, c, d, C), Y) = CompM P(0, {z} ∪ Y).

Proof. The claim is a special case of the following general composition rule: for two programs
P and Q, if CompP(A, X) = B and Q does not use counters X, then CompP Q(A, X ∪ Y) =
CompQ(B, Y). Indeed, under the above assumptions (X ∪ Y)-zeroing runs of P Q from A

are in mutual correspondence with Y-zeroing runs of Q from B. ◁

Computing multipliers. For technical convenience we prefer to rely on the following family
of functions Fi : N4 → N4, indexed by i ∈ N1, closely related to functions Ai (cf. Claim 7
below):

F1(n) = 2n, Fi+1 = F̃i where F̃ (n) = F ◦ F ◦ . . . ◦ F︸ ︷︷ ︸
n/4

(4). (2)

By induction on i one easily shows that Fi is a linear re-scaling of Ai:

▷ Claim 7. Fi(4 · n) = 4 · Ai(n), for i, n ∈ N1.

Proof. As F1(n) = 2n and A1(n) = 2n, the claim holds for i = 1. Assuming the claim for
i ∈ N1, by n-fold application thereof we derive the required equality for i + 1:

Fi+1(4 · n) = Fi ◦ . . . ◦ Fi︸ ︷︷ ︸
n

(4) = 4 · Ai ◦ . . . ◦ Ai︸ ︷︷ ︸
n

(1) = 4 · Ai+1(n). ◁



S. Lasota 46:7

As a technical core of the proof of Theorem 2, combining our simplification with the lines
of [12], we provide an effective construction of B-multipliers with 3k + 2 counters, where
B = Fk(n), of size polynomial in k and n.

▶ Theorem 8. Given k ∈ N1 and n ∈ N4 one can compute, in time polynomial in k and n,
an Fk(n)-multiplier with 3k + 2 counters.

The proof is in Section 5.

4 Bounded number of zero tests

In this section we provide a novel construction that enables simulating a bounded number m

of zero tests (cf. Lemma 12) at the cost of introducing additional 3 counters initialised to the
ratio of B = 2(m + 1). This construction is a core ingredient of the proofs of Theorems 2
and 8.

Whenever analysing a single run of a program, we denote by x the initial value of a
counter x, and by x the final value thereof.

Maximal iteration. In the sequel we intensively use loops of the following form that,
intuitively, flush the value from counter f to e, decreasing simultaneously counter d (and
possibly execute some further commands):

1: loop
2: f −= 1 e += 1 d −= 1 . . .

(3)

Assuming d ≥ f, we observe that the amount d − d by which d is decreased as an effect of
execution (we use the word execution as a synonym to complete run) of the above loop may
be any value between 0 and f. Furthermore, assuming d ≥ e + f, the equality d − d = e + f
holds if and only if

e = 0 = f. (4)

This simple observation will play a crucial role in the sequel, and deserves a definition:

▶ Definition 9. Whenever an execution of a loop of the form (3) satisfies the two equalities (4)
we call this execution maximally iterated.

The construction. Let P be a counter program with counters C, and assume that P uses
zero tests only on two its counters x, y ∈ C (the construction easily extends to programs with
an arbitrary number of zero-tested counters). We add to P three fresh counters b, c, d (let
C∗ = C ∪ {b, c, d}), and transform P into a program P∗ without zero tests that, assuming its
initial valuation of counters belongs to Ratio(2(m + 1), b, c, d, C∗) for some m ∈ N, simulates
correctly m zero tests (jointly) on counters x, y, as long as their sum is bounded by the initial
value of c (cf. Lemma 12).

The transformation proceeds in three steps. First, we accompany every increment
(decrement) on x with a decrement (increment) of c, and likewise we do for y:

command replaced by
x += 1 x += 1 c −= 1
x −= 1 x −= 1 c += 1

command replaced by
y += 1 y += 1 c −= 1
y −= 1 y −= 1 c += 1
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In the resulting program P counters x, y are, intuitively speaking, put on a shared ’budget’
c. Assuming x and y initially 0, this clearly enforces x + y to not exceed the initial value of c,
and the sum s = c + x + y to remain invariant.

As the second step, we replace in P every zero? x command by the following macro:
Zero? x:

1: loop
2: y −= 1 x += 1 d −= 1
3: loop
4: c −= 1 y += 1 d −= 1
5: loop
6: y −= 1 c += 1 d −= 1
7: loop
8: x −= 1 y += 1 d −= 1
9: b −= 2

Likewise we replace every zero? y command by an analogous macro Zero? y obtained from
Zero? x by swapping x and y. This yields the program P̂ without zero tests. We note that
each of the two Zero? macros preserves the sum s = c + x + y, and decrements the counter b
by 2. Furthermore, each of the two Zero? macros decrements d by at most 2s (cf. Claim 10
below), and hence the macros preserve the inequality d ≥ b · s (recall that d = b · s holds
initially).

As the final step we adjoint at the end of P̂ the following program Set-c-to-zero, thus
obtaining the transformed program P∗:

Set-c-to-zero:
1: loop
2: c −= 1 d −= 2
3: Zero? c

The macro Zero? c is obtained from Zero? x by swapping x and c. We note that an execution
of Set-c-to-zero may decrease the sum c + x + y (but Zero? c preserves it).

Correctness. Recall that P̂ preserves the sum c + x + y; we denote by s the value of this
sum. An execution of Zero? x is called maximally iterated if all four loops are so. Observe
that every such execution is forcedly correct, i.e. satisfies:

x = x = 0, y = y, c = c. (5)

(Likewise in case of Zero? y and Zero? c.) The idea behind Zero? x is to flush from y to
a zero-tested counter x and back, but also flush from c to y and back, in an appropriately
nested way that guarantees that the amount d − d by which d is decreased equals 2s exactly
in maximally iterated executions:

▷ Claim 10. Consider an execution of Zero? x (resp. Zero? y) macro, assuming d ≥ 2s.
Then 0 ≤ d − d ≤ 2s. Furthermore, the equality d − d = 2s holds if and only if the execution
is maximally iterated.

Proof. Consider an execution of Zero? x, assuming d ≥ 2s, and let ẏ denote the value of y
at the exit from the first loop. The amount by which d is decreased in the two loops in lines
1–2 and 7–8 is at most

∆1 = 2(y − ẏ) + x.
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Furthermore, the amount by which d is decreased in the two loops in lines 3–6 is at most

∆2 = 2c + ẏ.

The sum ∆1 + ∆2 clearly satisfies ∆1 + ∆2 ≤ 2s = 2(c + x + y). It equals 2s if and only if
∆1 = 2y and ∆2 = 2c, i.e., exactly when all four loops are maximally iterated. ◁

In consequence, as b is decreased by 2, if the invariant d = b · s is preserved by an execution
of Zero? x (resp. Zero? y) then the zero test is forcedly correct. Furthermore notice that
once the invariant is violated, i.e., d > b · s, due to the first part of Claim 10 the invariant can
not be recovered later. These observations lead to the correctness claim stated in Lemma 12.

In the proof of Lemma 12 we will also need the following corollary of Claim 10, where s

denotes, as before, the sum c + x + y at the start of Set-c-to-zero(c):

▷ Claim 11. Consider an execution of Set-c-to-zero(c), assuming d ≥ 2s. Then 0 ≤
d − d ≤ 2s. Furthermore, the equality d − d = 2s holds if and only if the Zero? c macro is
maximally iterated.

Proof. Consider an execution of Set-c-to-zero(c) and denote by ṡ the value of c + x + y
just before entering Zero? c. Thus d decrease by 2(s − ṡ) before entering Zero? c. Moreover,
due to Claim 10, the macro Zero? c decreases d by at most 2ṡ, and furthermore the macro
decreases d by exactly 2ṡ if and only if it is maximally iterated. These observations imply
the claim. ◁

Recall that C∗ = C ∪ {b, c, d}. We define the C∗-extension of a counter valuation v ∈ NC

as the extension of v where b, c and d are all set to 0. The C∗-extension of a set R ⊆ NC is
defined as the set of C∗-extensions of all valuations in R.

▶ Lemma 12. The following sets are equal (as subsets of NC∗):
the C∗-extension of the set computed by P from 0 using m zero tests.
the set d-computed by P∗ from Ratio(2(m + 1), b, c, d, C∗).

Proof. For the inclusion of the former set in the latter, we show that for each complete run π

of P from 0 that does m zero tests on x, y, there is a corresponding d-zeroing run of P∗ from
Ratio(2(m + 1), b, c, d, C∗), for any initial value c at least as large as the maximal value of
the sum x + y along π. The run iterates maximally Zero? x and Zero? y macros, decrements
c to 0 in line 2 in Set-c-to-zero(c), and then iterates maximally Zero? c. Thus the final
counter valuation of the run is the C∗-extension of the final counter valuation of π.

For the converse direction, consider a d-zeroing run π of P∗ from Ratio(2(m +
1), b, c, d, C∗). The initial counter valuation satisfies the equalities b = 2(m + 1) and
d = 2(m + 1) · s. Each execution of Zero? x or Zero? y or Set-c-to-zero(c) decreases b
by 2, and d by at most 2s (by the first part of Claims 10 and Claim 11). Therefore, since b
and d are not affected elsewhere and d = 0 finally, we deduce:

▷ Claim 13. Each execution of Zero? x, Zero? y or Zero? c in π decreases d by exactly 2s.

▷ Claim 14. There are exactly m executions of Zero? x or Zero? y in π.

▷ Claim 15. Finally, b = 0.

By Claim 13 and the second part of Claim 10 we derive:

▷ Claim 16. Each execution of Zero? x in π is correct, i.e. satisfies the equalities (5).
Likewise for Zero? y.
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Analogously, by Claim 13 and the second part of Claim 11 we derive:

▷ Claim 17. Finally, c = 0.

Due to Claims 14 and 16, once we project away from π the counters b, c, d, we obtain
a complete run of P from 0 that does exactly m zero tests, as required. Finally, due to
Claims 15 and 17, the C∗-extension of the final counter valuation of the obtained run is
exactly the final counter valuation of π. ◀

5 Computing a large multiplier (Proof of Theorem 8)

The proof proceeds by combining the concept of amplifier lifting of [12] with the program
transformation of Section 4.

Amplifiers. Let F : N4 → N4 be a monotone function satisfying F (n) ≥ n for n ∈ N4.
Informally speaking, an F -amplifier is a program without zero tests that computes the ratio
of F (B) from the ratio of B, for every B ∈ N4.

▶ Definition 18. Consider a program P with counters C without zero tests and distinguished
three input counters b, c, d ∈ C and three output counters b′, c′, d′ ∈ C. The program is
called F -amplifier if for every B ∈ N4, it d-computes from Ratio(B, b, c, d, C) the set
Ratio(F (B), b′, c′, d′, C).

We note that no condition is imposed on d-zeroing runs from counter valuations not belonging
to any set Ratio(B, b, c, d, C). As an example, consider the following program Lℓ, for ℓ ∈ N1,
with input counters b, c, d and output counters b′, c′, d′:

Program Lℓ(b, c, d, b′, c′, d′):
1: loop
2: loop
3: c −= 1 c′ += 1 d −= 1 d′ += ℓ

4: loop
5: c′ −= 1 c += 1 d −= 1 d′ += ℓ

6: b −= 2 b′ += 2ℓ

7: loop
8: c −= 1 c′ += 1 d −= 2 d′ += 2ℓ

9: b −= 2 b′ += 2ℓ

▷ Claim 19. The above program is an Lℓ-amplifier, where Lℓ : N4 → N4 = (x 7→ ℓ · x).

Proof sketch. Writing counter valuations as vectors (b, c, d, b′, c′, d′), one shows that the
program d-computes, from the set containing just one counter valuation (B, c, d, 0, 0, 0), the
set containing one counter valuation (0, 0, 0, ℓ · B, c, ℓ · d). Indeed, as d = 0 finally, each of
the two inner loops in lines 2–5, as well as the last loop in lines 7–8, is forcedly maximally
iterated. ◁

Putting ℓ = 1 we get an identity-amplifier L1(b, c, d, b′, c′, d′).
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Amplifier lifting. Recall the definition (2) of functions Fi; in particular F1 = L2. Let P be a
program with counters C, without zero tests, with distinguished input counters b1, c1, d1 ∈ C
and output counters b2, c2, d2 ∈ C. We describe a transformation of the program P to a
program P̃, also without zero tests, such that assuming that P is an F -amplifier for some
function F : N4 → N4, the program P̃ is an F̃ -amplifier. The program P̃ uses, except for the
counters of P, three fresh counters b, c, d. Thus counters of P̃ are C∗ = C ∪ {b, c, d}. We let
input counters of P̃ be b, c, d, and its output counters be b2, c2, d2.

In the transformation we use the identity-amplifier L = L1(b2, c2, d2, b1, c1, d1) with input
counters b2, c2, d2 and output counters b1, c1, d1, and the 4-multiplier M = M4(b1, c1, d1) of
Example 5, both without zero tests. For defining the program P̃ we apply the transformation
of Section 4 (with counters d1 and d2 in place of x and y) to the following program Q built
using P, L and M:

Program Q:
1: M
2: loop
3: P
4: zero? d1
5: L
6: zero? d2

7: P
8: zero? d1

Program P̃:
1: M
2: loop
3: P
4: Zero? d1
5: L
6: Zero? d2

7: P
8: Zero? d1
9: Set-c-to-zero

Formally, P̃ = Q∗. Intuitively speaking, the program Q directly implements the computation
of F̃ according to the definition: with 2ℓ + 1 zero tests it computes, from 0, the ratio of
F ℓ+1(4). Note that counters of Q are C while counters of P̃ are C∗. Lemma 20 states the
crucial amplifier-lifting property of the program transformation P 7→ P̃.

▶ Lemma 20. If P is an F -amplifier, then P̃ is an F̃ -amplifier.

Proof. Let P be an F -amplifier. Thus for every B ∈ N4,
CompP(Ratio(B, b1, c1, d1, C), d1) = Ratio(F (B), b2, c2, d2, C). The program L, being an
identity-amplifier, d2-computes from Ratio(B, b2, c2, d2, C) the set Ratio(B, b1, c1, d1, C).
Let B = 4(ℓ + 1) ∈ N4 for an arbitrary ℓ ∈ N. As P is an F -amplifier and L is an
identity-amplifier, we deduce:

▷ Claim 21. Q computes from 0 using 2ℓ + 1 zero tests the set Ratio(F ℓ+1(4), b2, c2, d2, C).

As P̃ = Q∗, by Lemma 12 we deduce:

▷ Claim 22. CompP̃(Ratio(4(ℓ + 1), b, c, d, C∗), d) = Ratio(F ℓ+1(4), b2, c2, d2, C).

As B ∈ N4 was chosen arbitrarily and F̃ (B) = F ℓ+1(4), the last claim says that P̃ is an
F̃ -amplifier. ◀

▶ Remark 23. The program P appears twice in the body of P̃. This doubling can be easily
avoided by re-structuring the loop using explicit goto commands. In this way, the size of P̃
becomes larger than the size of P only by a constant.

Proof of Theorem 8. We rely on Lemma 20. Given k ∈ N1 and n ∈ N4 we compute, in
time linear in k, the Fk-amplifier Ak with 3k + 3 counters C, by (k − 1)-fold application of
the amplifier lifting transformation P 7→ P̃ described above, starting from the F1-amplifier
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L2 of Claim 19. The construction is linear in k due to Remark 23. Let b, c, d ∈ C be
input counters of Ak. Relying on Claim 6 in Section 3, the Fk(n)-multiplier is obtained by
pre-composing Ak with an n-multiplier (e.g. Mn(b, c, d) from Section 2) that outputs the
set Ratio(n, b, c, d, C). The whole construction is thus linear in n.

Finally we observe that the counter b is bounded by n and hence can be eliminated: we
encode its values in control locations, by cloning the program into n + 1 copies, where ith
(for i = 0, . . . , n) copy corresponds to the value b = i. The resulting program has 3k + 2
counters. ◀

6 Hardness of the reachability problem (Proof of Theorem 2)

Relying on Lemma 12 and Theorem 8, we prove in this section Theorem 2. Fix k ≥ 3. The
proof proceeds by a polynomial-time reduction from the following Fk-hard problem:

Fk-bounded halting problem
Input A program P of size n (w.l.o.g. assume n ∈ N4) with 2 zero-tested counters.
Question Does P have a complete run from 0 that does at most (Fk(n) − 1)/2 zero

tests?

▷ Claim 24. The above problem is Fk-hard.

Proof. Indeed, the standard Fk-hard halting problem (does a program P with arbitrarily
many zero-tested counters x1, . . . , xℓ have a complete run that does at most (Fk(n) − 1)/2
steps?) reduces polynomially to the above one using the standard simulation of arbitrarily
many zero-tested counters by 2 such counters y1, y2. The simulation stores the values of all
counters x1, . . . , xℓ on one of y1, y2 (e.g., using Gödel encoding), and the simulation of each
command involves flushing the value of that counter to the other, followed by the zero test.
Thus a bound on time of computation is translated to the same bound on the number of
zero tests. ◁

Given P as above with two counters x, y, we transform it to a counter program P ′ with
3k + 2 counters C but without zero tests, such that P has a complete run from 0 that does
at most m = (Fk(n) − 1)/2 zero tests if and only if P ′ has a {d, z}-zeroing run from 0 (for
some d, z ∈ C).

First, we post-compose P with a simple program L that first decrements x nondetermin-
istically many times, and then zero tests it nondeterministically many times:

1: loop
2: x −= 1
3: loop
4: zero? x

Thus P has a complete run that does at most m zero tests if and only if the composed program
P L has a complete run that does exactly m zero tests. We will apply the transformation
of Section 4 to the composed program P L. Let b, c, d be the three counters added in the
course of the transformation.

Second, using Theorem 8 we compute a 2(m + 1)-multiplier M (recall that 2(m + 1) =
Fk(n)) with 3k + 2 counters C that z-computes from 0 the set Ratio(2(m + 1), b, c, d, C),
for some counter z different than x, y. Thus z, b, c, d ∈ C.

Finally, we define P ′ as a composition of M with the transformed program (P L)∗, and
get the required equivalence:
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▷ Claim 25. The following conditions are equivalent:
P has a complete run from 0 that does at most m zero tests;
P L has a complete run from 0 that does exactly m zero tests;
(P L)∗ has a d-zeroing run from Ratio(2(m + 1), b, c, d, C);
P ′ = M (P L)∗ has a {z, d}-zeroing run from 0.

The second and the third point are equivalent due to Lemma 12, while the equivalence of
the third and the last point follows by Claim 6 in Section 3.

The program P ′ has 3k + 4 counters (3k + 2 counters of M plus x, y) but, since k ≥ 3,
this number can be decreased back to 3k + 2, by re-using some of 3k − 2 counters from
C′ = C − {b, c, d, z} in place of x, y. The latter equivalence in Claim 25 remains true, as
z-zeroing runs of M from 0 are necessarily C′-zeroing too, by the definition of multipliers.

This completes the proof of Theorem 2.

7 Final remarks

Primarily, we propose a conceptual simplification of the Ackermann-hardness construction
of [12].

As a secondary achievement, we improve the dimension-parametric lower bound for the
VASS (Petri nets) reachability problem: compared to Fk-hardness in dimension 6k [12] and
4k + 5 [31], respectively, we obtain Fk-hardness already in dimension 3k + 2. (We believe
that by combining with the insights of [12] one can further optimise our construction and
lower the dimension by a small constant.) The dimension 4k + 5 of [31] has been recently
further improved to 2k + 4 [32], thus beating ours.

The best known upper bound places the VASS reachability problem in dimension k − 4
is in Fk [34]. Establishing exact parametric complexity of the problem, i.e., closing the gap
between dimensions k − 4 and 2k + 4, arises therefore as an intriguing open problem.

Finally we remind that except for dimension 1 and 2, where the reachability problem
seems to be well understood [3, 15], we know no additional complexity bounds for small fixed
dimensions k except for the lower bound derived from dimension 2, and the generic Fk+4
upper bound of [34].
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Abstract
We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical
machines in the presence of a uniform communication delay. Such precedence-constrained jobs can
be modeled as a directed acyclic graph, G = (V, E). In this setting, if two precedence-constrained
jobs u and v, with v dependent on u (u ≺ v), are scheduled on different machines, then v must start
at least ρ time units after u completes. The scheduling objective is to minimize makespan, i.e. the
total time from when the first job starts to when the last job finishes. The focus of this paper is
to provide an efficient approximation algorithm with near-linear running time. We build on the
algorithm of Lepere and Rapine [STACS 2002] for this problem to give an O

( ln ρ
ln ln ρ

)
-approximation

algorithm that runs in Õ(|V | + |E|) time.
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1 Introduction

The problem of efficiently scheduling a set of jobs over a number of machines is a fundamental
optimization problem in computer science that becomes ever more relevant as computational
workloads become larger and more complex. Furthermore, in real-world data centers, there
exists non-trivial communication delay when data is transferred between different machines.
There is a variety of very recent literature devoted to the theoretical study of this topic
[10, 11, 21]. However, all such literature to date focuses on obtaining algorithms with good
approximation factors for the schedule length, but these algorithms require ω(n2) time (and
potentially polynomially more) to compute the schedule. In this paper, we instead focus
on efficient, near-linear time algorithms for scheduling while maintaining an approximation
factor equal to that obtained by the best-known algorithm for our setting [19].

Even simplistic formulations of the scheduling problem (e.g. precedence-constrained jobs
with unit length to be scheduled on M machines) are typically NP-hard, and there is a
rich body of literature on designing good approximation algorithms for the many variations
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of multiprocessor scheduling (refer to [6] for a comprehensive history of such problems).
Motivated by a desire to better understand the computational complexity of scheduling
problems and to tackle rapidly growing input sizes, we ask the following research question:

How computationally expensive is it to perform approximately-optimal scheduling?

In this paper, we focus on the classical problem of multiprocessor scheduling with
communication delays on identical machines where all jobs have unit size. The jobs that
need to be scheduled have data dependencies between them, where the output of one job acts
as the input to another. These dependencies are represented using a directed acyclic graph
(DAG) G = (V,E) where each vertex v ∈ V corresponds to a job and an edge (u, v) ∈ E
indicates that job u must be scheduled before v. In our multiprocessor environment, if these
two jobs are scheduled on different machines, then some additional time must be spent to
transfer data between them. We consider the problem with uniform communication delay; in
this setting, a uniform delay of ρ is incurred for transferring data between any two machines.
Thus for any edge (u, v) ∈ E, if the jobs u and v are scheduled on different machines, then v

must be scheduled at least ρ units of time after u finishes. Since the communication delay ρ
may be large, it may actually be more efficient for a machine to recompute some jobs rather
than wait for the results to be communicated. Such duplication of work can reduce schedule
length by up to a logarithmic factor [21] and has been shown to be effective in minimizing
latency in schedulers for grid computing and cloud environments [5, 7]. Our scheduling
objective is to minimize the makespan of the schedule, i.e., the completion time of the last
job. In the standard three field notation for scheduling problems, this problem is denoted
“P | duplication, prec, pj = 1, c | Cmax”, where c indicates uniform communication delay.

This problem was studied by Lepere and Rapine, who devised an O(ln ρ/ ln ln ρ)-
approximation algorithm for it [19], under the assumption that the optimal solution takes at
least ρ time. However, their analysis was primarily concerned with getting a good quality
solution and less with optimizing the running time of their polynomial-time algorithm. A
naïve implementation of their algorithm takes roughly O(mρ+ n lnM) time, where n and m
are the numbers of vertices and edges in the DAG, respectively, and M is the number of
machines. This runtime is based on two bottlenecks, (i) the computation of ancestor sets,
which can be done in O(mρ) time via propagating in topological order plus merging and (ii)
list scheduling, which can be done in O(n lnM) time by using a priority queue to look up
the least loaded machine when scheduling a set of jobs.

However, with growing input sizes, it is highly desirable to obtain a scheduling algorithm
whose running time is linear in the size of the input. Our primary contribution is to design a
near-linear time randomized approximation algorithm while preserving the approximation
ratio of the Lepere-Rapine algorithm:

▶ Theorem 1. There is an O(ln ρ/ ln ln ρ)-approximation algorithm for scheduling jobs with
precedence constraints on a set of identical machines in the presence of a uniform communic-
ation delay that runs in O

(
n lnM + m ln3 n ln ρ

ln ln ρ

)
time, with high probability, assuming that

the optimal solution has cost at least ρ.

Of course, this is tight, up to log factors, because any algorithm for this problem must
respect the precedence constraints, which require Ω(n+m) time to read in. In the settings
where our algorithm is more efficient than Lepere-Rapine, the approximation factor of
the algorithm is still very small (near-constant in the cases where ρ = poly log n), yet our
algorithm achieves a better runtime while maintaining the same approximation compared to
the previous best-known algorithm for the problem.
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1.1 Related Work
Algorithms for scheduling problems under different models have been studied for decades,
and there is a rich literature on the topic (refer to [6] for a comprehensive look). Here we
review work on theoretical aspects of scheduling with communication delay, which is most
relevant to our results.

Without duplication, scheduling a DAG of unit-length jobs with unit communication
delay was shown to be NP-hard by Rayward-Smith [29], who also gave a 3-approximation
for this problem. Munier and König gave a 4/3-approximation for an unbounded number
of machines [24], and Hanen and Munier gave a 7/3-approximation for a bounded number
of machines [15]. Hardness of approximation results were shown in [3, 16, 28]. In recent
results, Kulkarni et al. [18] gave a quasi-polynomial time approximation scheme for a constant
number of machines and a constant communication delay, whereas Davies et al. [10] gave
an O(log ρ logM) approximation for general delay and number of machines. Even more
recently, Davies et al. [11] presented a O(log4 n)-approximation algorithm for the problem
of minimizing the weighted sum of completion times on related machines in the presence
of communication delays. They also obtained a O(log3 n)-approximation algorithm under
the same model but for the problem of minimizing makespan under communication delay.
Notably, none of the aforementioned algorithms consider duplication and the most recent
algorithms have running times that are large polynomials.

Allowing the duplication of jobs was first studied by Papadimitriou and Yannakakis [27],
who obtained a 2-approximation algorithm for scheduling a DAG of identical jobs on an
unlimited number of identical machines. A number of papers have improved the results for
this setting [1, 9, 26]. With a finite number of machines, Munier and Hanen [23] proposed
a 2-approximation algorithm for the case of unit communication delay, and Munier [22]
gave a constant approximation for the case of tree precedence graphs. For a general DAG
and a fixed delay ρ, Lepere and Rapine [19] gave an algorithm that finds a solution of cost
O(log ρ/ log log ρ) · (OPT + ρ), which is a true approximation if one assumes that OPT ≥ ρ.
This is the main result that our paper builds on. It applies to a set of identical machines and
a set of jobs with unit processing times. Recently, an O(logM log ρ/ log log ρ) approximation
has been obtained for a more general setting of M machines that run at different speeds
and jobs of different lengths by Maiti et al. [21], also under the assumption that OPT ≥ ρ.
However, the running time of this algorithm is a large polynomial (ω(n2)), as it requires
solving an LP with Ω(Mn2) variables.

Our results so far only apply to scheduling with duplication. In Maiti et al. [21], a
polynomial-time reduction is presented that transforms a schedule with duplication into one
without duplication (with a polylogarithmic increase in makespan). However, this reduction
involves constructing an auxiliary graph of possibly Ω(ρ2) size, and thus does not lend itself
easily to a near-linear time algorithm. It would be interesting to see if a near-linear time
reduction could be found.

1.2 Technical Contributions
A naïve implementation of the Lepere-Rapine algorithm is bottlenecked by the need to
determine the set of all ancestors of a vertex v in the graph, as well as the intersection of this
set with a set of already scheduled vertices. Since the ancestor sets may significantly overlap
with each other, trying to compute them explicitly (e.g., using DFS to write them down)
results in superlinear work. We use a variety of technical ideas to only compute the essential
size information that the algorithm needs to make decisions about these ancestor sets.
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Size estimation via sketching. We use streaming techniques to quickly estimate the
sizes of all ancestor sets simultaneously. It costs O((|V |+ |E|) log2 n) time to make such
an estimate once, so we are careful to do so sparingly.
Work charging argument. Since we cannot compute our size estimates too often, we
still need to perform some DFS for ancestor sets. We control the amount of work spent
doing so by carefully charging the edges searched to the edges we manage to schedule.
Sampling and pruning. Because we cannot brute-force search all ancestor sets, we
randomly sample vertices, using a consecutive run of unscheduleable vertices as evidence
that many vertices are not schedulable. This allows us to pay for an expensive size-
estimator computation to prune many ancestor sets simultaneously.

1.3 Organization
The main contribution of this paper is our algorithm for scheduling small subgraphs in
near-linear time. We provide a detailed description and analysis of this algorithm in Section 5.
Then, we proceed with our algorithm for scheduling general graphs in Section 6. Due to
space constraints we defer all proofs of our analysis to the Appendix.

2 Problem Definition and Preliminaries

An instance of scheduling with communication delay is specified by a directed acyclic graph
G = (V,E), a quantity M ≥ 1 of identical machines, and an integer communication delay
ρ > 1. We assume that time is slotted and let T = {1, 2, . . .} denote the set of integer times.
Each vertex v ∈ V corresponds to a job with processing time 1 and a directed edge (u, v) ∈ E
represents the precedence constraint that job v depends on job u. In total, there are n = |V |
vertices (representing jobs) and m = |E| precedence constraints. The parameter ρ indicates
the amount of time required to communicate the result of a job computed on one machine to
another. In other words, a job v can be scheduled on a machine at time t only if all jobs
u with (u, v) ∈ E have either completed on the same machine before time t or on another
machine before time t− ρ. We allow for a job to be duplicated, i.e., copies of the same vertex
v ∈ V may be processed on different machines. Let M be the set of machines available to
schedule the jobs. A schedule σ is represented by a set of triples {(m, v, t)} ⊂ M× V × T
where each triple represents that job v is scheduled on machine m at time t. The goal is to
obtain a feasible schedule that minimizes the makespan, i.e., the completion time of the last
job. Let OPT denote the makespan of an optimal schedule. Since ρ represents the amount
of time required to communicate between machines, and in practice, any schedule must
communicate the results of the computation, we assume that OPT ≥ ρ as is standard in
literature [19, 21].

We now set up some notation to help us better discuss dependencies arising from the
precedence constraints of G. For any vertex v ∈ V , let Pred(v) ≜ {u ∈ V | (u, v) ∈ E} be the
set of (immediate) predecessors of v in the graph G, and similarly let Succ(v) ≜ {w ∈ V |
(v, w) ∈ E} be the set of (immediate) successors. For H = (VH , EH), a subgraph of G, we use
AH(v) ≜ {u ∈ VH | ∃ a directed path from u to v in H} ∪ {v} to denote the set of (indirect)
ancestors of v, including v itself. Similarly, for S ⊆ V , we use AH(S) ≜

⋃
v∈S AH(v) to

denote the indirect ancestors of the entire set S. We use EH(S) to denote the edges of the
subgraph induced by AH(S). We drop the subscript H when the subgraph H is clear from
context. Throughout, we use the phrase with high probability to indicate with probability at
least 1− 1

nc for any constant c ≥ 1.
For convenience, we summarize the notation we use throughout the paper in Table 1.
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Table 1 Table of Symbols.

Symbol Meaning

G = (V, E) main input graph
n = |V |, m = |E| number of vertices / edges
H = (VH , EH) subgraph to be scheduled in each phase

ρ communication delay
u, v vertices

AH(v) set of ancestors of vertex v in graph H including v

AH(S) AH(S) =
⋃

v∈S
AH(v) in graph H

EH(v) [resp., EH(S)] edges induced by AH(v) [resp., AH(S)] in graph H

âH(v), êH(v) estimated size of AH(v) and EH(v)
M number of machines
γ threshold for fresh vs. stale vertices

3 Technical Overview

We start by reviewing the algorithm of Lepere and Rapine [19], shown in Algorithm 1, as
our algorithm follows a similar outline. Then we describe the technical improvements of our
algorithm to achieve near-linear running time.

Algorithm 1 Outline of Lepere Rapine Scheduling Algorithm [19].

1 while G is non-empty do
2 Let H be a subgraph of G induced by vertices with at most ρ+ 1 ancestors
3 while H is non-empty do
4 for each vertex v in H do
5 if greater than γ fraction of AH(v) is unscheduled then
6 Add AH(v), in topological order, to a machine with earliest end time

7 Insert a delay until C + ρ on all machines, where C is the latest end time
8 Remove scheduled vertices from H

9 Delete vertices in H from G

Description of Lepere-Rapine [19]. The outer loop (Algorithm 1) iteratively finds small
subgraphs of G which consist of vertices that have height at most ρ + 1. We show in this
paper that instead of considering their definition of height, it is sufficient in our algorithm to
consider small subgraphs to be those with at most 2ρ ancestors. We call one iteration of this
loop a phase. Within the phase, H is fully scheduled, after which the algorithm goes on to
the next “slice” of G. However, H is not scheduled all at once, but instead each iteration
of the inner while loop (Algorithm 1) schedules a subset of H, which we call a batch. To
determine which vertices of H make it into a batch, the algorithm checks the fraction of
ancestors of each vertex that have already been scheduled in the same batch. If this fraction
for a vertex v is low (we call v fresh in that case), then its ancestor set AH(v) is list-scheduled
as a unit, i.e. ancestor jobs are duplicated, topologically sorted, and placed on one machine.
If the fraction of scheduled ancestors is high (in which case we call v stale), v is skipped in
this iteration. We skip v to avoid excessive duplication that would create too much load on
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	𝑎 	𝑐

(c) Remove scheduled vertices from the graph. Add a ρ com-
munication delay to the schedule after the previously scheduled
jobs. Find a new small subgraph and schedule it.

Figure 1 Overview of the Lepere-Rapine algorithm for scheduling general graphs.

the machines. After each batch is placed on the machines, a delay of ρ is added to the end
of the schedule to allow all the results to propagate. This allows the scheduled jobs to be
deleted from H. This algorithm is illustrated pictorially in Figure 1.

Runtime Challenges with Lepere-Rapine. Naively, both finding the small subgraphs as
well as determining each batch takes Ω(nρ2) time. Determining which nodes belong in the
current small subgraph is a matter of whether their ancestor counts are more than ρ or at
most ρ. A standard procedure would be to apply DFS and merge ancestor sets, but that
can easily run in Ω(ρ2) time per node (a node may have Ω(ρ) direct parents, each with an
ancestor size of Ω(ρ) that needs to get merged in).

The other technical hurdle is in determining the batches to schedule. We would like to
schedule vertices whose ancestors do not overlap too much. To illustrate the difficulty of
applying sketching-based methods (e.g. min-hash), consider the following example. Suppose
that ρ2 elements have already been scheduled in this batch. Now, we want to find the number
of ancestors of vertex v, A(v), that intersect with the currently scheduled batch, where
|A(v)| ≤ ρ by construction. By the lower bound given in [25], even estimating (up to 1± ϵ
relative error with constant probability) the size of this intersection would require sketches
of size at least ε−2(ρ2/ρ) = ε−2ρ. Using such ρ-sized sketches over all batches and all small
subgraphs require Ω(nρ) time in total.

Since ρ may be super-logarithmic, these naive implementations don’t quite meet our goal
of a near-linear time algorithm. To summarize, the two main technical challenges for our
setting are the following:
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▶ Challenge 1. We must be able to find the small subgraphs in near-linear time.

▶ Challenge 2. We must be able to find the vertices to add to each batch B in near-linear
time.

We solve Challenge 1 by relaxing the definition of small subgraph and using count-distinct
estimators (discussed in Section 4). The majority of our paper focuses on solving Challenge 2
which requires several new techniques for the problem outlined in the rest of this section
(Section 3.1 and Section 3.2). The below procedures run on a small subgraph, H = (VH , EH),
where the number of ancestors of each vertex is bounded by 2ρ. Note the factor of 2
results from our count-distinct estimator. This is described in Section 5. Our algorithm for
scheduling small subgraphs is shown pictorially in Figure 2.

3.1 Sampling Vertices to Add to the Batch
We first partition the set of unscheduled vertices in VH into buckets based on the estimated
number of edges in the subgraph induced by their ancestors. (We place vertex v – if it has
no ancestors – into the bucket with the smallest index.) We partition by edges instead of
vertices because the number of edges in the induced subgraph of the ancestors affects our
running time. More formally, let Si be the set of vertices not yet scheduled in iteration i

(Algorithm 1, Algorithm 1). We partition Si into k = O(log ρ) buckets K1, . . . ,Kk such that
bucket Kj contains all vertices w ∈ Si where ê(w) ∈ [2j , 2j+1); ê(w) denotes the estimated
number of edges in the subgraph induced by ancestors of w.

From each bucket Kj , in decreasing order of j, we sample vertices, sequentially, without
replacement. For each sampled vertex v, we enumerate its ancestors and determine how
many are in the current batch B. If at least a γ-fraction of the vertices are not in B and at
least a γ-fraction of the edges (with both endpoints in B) in the induced subgraph GHi(v)
are not in B, then add v and all its ancestors to B. We call such a vertex v fresh. Otherwise,
we do not add v to B and label this vertex as stale. For our algorithms, we set γ = 1√

ρ to
minimize the approximation factor but γ can be set to any value γ < 1/2. Lepere-Rapine did
not consider edges in their algorithm because the number of edges in the induced subgraph
does not affect the schedule length; however, considering edges is crucial for our algorithm to
run in near-linear time.

For each bucket sequentially, we sample vertices uniformly at random, until we have
sampled O(log n) consecutive vertices that are stale (or we have run out of vertices and the
bucket is empty). Then, the key intuition is that for every v that we add to B, we can afford
to charge the cost of enumerating the ancestor set for O(log n) additional vertices in the same
bucket as well as O(log n) additional vertices in each bucket with smaller j to it. Because we
are looking at buckets with decreasing indices, we can charge the additional vertices found in
future buckets to the most recently found fresh vertex.

3.2 Pruning All Stale Vertices from Buckets
After we have performed the sampling procedure, we are still not done. Our goal is to make
sure that all vertices which are not included in B are approximately stale. This means that
we must remove the stale vertices so that we can perform our sampling procedure again in
a smaller sample space in order to find additional fresh vertices. To accomplish this, we
perform a pruning procedure involving re-estimating the ancestor sets consisting of vertices
that have not been added to the batch. Using these estimates, we remove all stale vertices
from our buckets. Note that we do not rebucket the vertices because none of the ancestor
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sets of the vertices changed sizes. Then, we perform our sampling procedure above (again) to
find more fresh vertices. The key is that since we removed all stale vertices, the first sampled
vertex from the non-empty bucket with the largest index is fresh.

We perform the above sampling and pruning procedures until each bucket is empty. Then,
we schedule the batch and remove all scheduled vertices from H and proceed again with the
procedure until the graph is empty. We perform a standard simple greedy list scheduling
algorithm (Appendix B) on our batch on M machines.

	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

(a) Input small subgraph.

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒

0 ancestor edges 1 ancestor edge 3-4 ancestor edges

(b) Vertices are bucketed according to the
estimate of the number of edges in the
induced subgraph of its ancestors.

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒	𝑎 	𝑐	𝑎 	𝑐	𝑎 	𝑒

	𝑎 	𝑒
𝑆
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(c) Vertices are uniformly at random sampled from buckets. Then, vertices
which have sufficiently many ancestors and ancestor edges not in S are
added to S.

	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

(d) Vertices which are in S or have a large
proportion of ancestors or ancestor edges
in S are pruned from buckets. b and d are
pruned in this example.

	𝑎

	𝑒	𝑎 	𝑐

(e) Vertices in S and all ancest-
ors are scheduled by duplicating
ancestors and list scheduling.

Figure 2 Overview of our scheduling small subgraphs algorithm. We choose γ = 2/3 here for
illustration purposes but in our algorithms γ < 1/2.

4 Estimating Number of Ancestors

Let G̃ = (Ṽ , Ẽ) be an arbitrary directed, acyclic graph. We first present our algorithm to
estimate the number of ancestors of any vertex v ∈ Ṽ . Consider any vertex v ∈ Ṽ and
let p1, p2, . . . pℓ be the predecessors of v in G̃. Then we have AG̃(v) = ∪ℓi=1AG̃(pi) ∪ {v}
and hence |AG̃(v)| is the number of distinct elements in the multiset ∪ℓi=1AG̃(pi) ∪ {v}. In
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order to estimate |AG̃(v)| efficiently, we use a procedure to estimate the number of distinct
elements in a data stream. This problem, known as the count-distinct problem, is well studied
and many efficient estimators exist [2, 4, 30, 12, 17]. Since we need to estimate |AG̃(v)|
for all vertices v ∈ Ṽ in near-linear time, we require an additional mergeable property to
ensure that we can efficiently obtain an estimate for |AG̃(v)| from the estimates of the parent
ancestor set sizes {|AG̃(p1)|, . . . , |AG̃(pℓ)|}.

We formally define the notion of a count-distinct estimator and the mergeable property.

▶ Definition 2. For any multiset S, let |S| denote the number of distinct elements in S. We
say T is an (ε, δ,D)-CountDistinctEstimator for S if it uses space D and returns a value ŝ
such that (1− ε)|S| ≤ ŝ ≤ (1 + ε)|S| with probability at least (1− δ).

▶ Definition 3 (Mergeable Property). An (ε, δ,D)-CountDistinctEstimator exhibits the merge-
able property if estimator T1 for multiset S1 and estimator T2 for multiset S2 can be merged
in O(D) time using O(D) space into an (ε, δ,D)-estimator for S1 ∪ S2.

We note that the count-distinct estimator in [4] satisfies the mergeable property and
suffices for our purposes. We include a description of the procedure and a proof of the
mergeable property in Appendix A.

▶ Lemma 4 ([4]). For any constant ε > 0 and d ≥ 1, there exists an
(
ε, 1
nd
, O

( 1
ε2 log2 n

))
-

CountDistinctEstimator that satisfies the mergeable property where n denotes an upper bound
on the number of distinct elements.

Given such an estimator, one can readily estimate the number of ancestors of each vertex
v ∈ Ṽ in near-linear time by traversing the vertices of the graph in topological order. An
estimator for vertex v can be obtained by merging the estimators for each predecessor of
v. Similarly, we can also estimate the number of edges |E(v)| in the subgraph induced
by ancestors of any vertex v in near-linear time. We defer a detailed description of these
procedures to Algorithm 7 in Appendix A and Algorithm 9 in our full paper [20].

▶ Lemma 5. Given any input graph G̃ = (Ṽ , Ẽ) and constants ε > 0, d ≥ 1, there exists an
algorithm that runs in O

(
(|Ṽ |+ |Ẽ|) log2 n

)
time and returns estimates â(v) and ê(v) for

each v ∈ Ṽ such that (1 − ε)|AG̃(v)| ≤ â(v) ≤ (1 + ε)|AG̃(v)| and (1 − ε)|EG̃(v)| ≤ ê(v) ≤
(1 + ε)|EG̃(v)| with probability at least 1− 1

nd
.

Proof. Lemma 15 provides us with our desired approximation. Now, all that remains to
show is that Algorithm 7 and Algorithm 9 in our full paper [20] runs within our desired time
bounds. Algorithm 7 visits each vertex exactly once. For each vertex, it merges the estimators
of each of its immediate predecessors. By Lemma 16, each merge takes O

( 1
ε2 log2 n

)
time.

Because we visit each vertex exactly once, we also visit each predecessor edge exactly once.
This means that in total we perform O

(
m
ε2 log2 n

)
merges. Since ε is constant, this algorithm

requires O(m log2 n) time. The same proof follows for Algorithm 9 in our full paper [20]. ◀

Throughout the remaining parts of the paper, we assume that ε = 1/3 in our estimation
procedures and do not explicitly give our results in terms of ε.

5 Scheduling Small Subgraphs in Near-Linear Time

Here, we consider subgraphs H = (V,E) such that every vertex in the graph has a bounded
number of ancestors and obtain a schedule for such small subgraphs in near-linear time.
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47:10 Scheduling with Communication Delay in Near-Linear Time

▶ Definition 6. A small subgraph is a graph H = (VH , EH) where each vertex v ∈ VH has
at most 2ρ ancestors.

Our main algorithm schedules a small graph in batches using Algorithm 3. After scheduling
a batch of vertices, we insert a communication delay of ρ time units so that results of the
computation from the previous batch are shared with all machines (similar to Lepere-Rapine).
Then, we remove all vertices that we scheduled and compute the next batch from the smaller
graph. We present this algorithm in Algorithm 2.

Algorithm 2 ScheduleSmallSubgraph(H, γ).

Result: A schedule of small subgraph H on M processors.
Input: H = (VH , EH) where |AH(v)| ≤ 2ρ for all v ∈ VH and parameter

0 < γ < 1/2.
1 while H ̸= ∅ do
2 B ← FindBatch(H, γ). [Algorithm 3]
3 List schedule A(v) using the M processors for all v ∈ B. (Appendix B)
4 Insert communication delay of ρ time units into the schedule.
5 Remove each v ∈ A(B) and all edges adjacent to v from H.
6 end

Our algorithm for scheduling small subgraphs relies on two key building blocks – estimating
the sizes of the ancestor sets (and ancestor edges) of each vertex (Section 4), and using
these estimates to find a batch of vertices that can be scheduled without any communication
(possibly by duplicating some vertices). We show how to find a batch in Section 5.1.

5.1 Batching Algorithm
Recall that the plan is for our algorithm to schedule a small subgraph by successively
scheduling maximal subsets of vertices in the graph whose ancestors do not overlap too
much; we call such a set of vertices a batch. After scheduling each batch, we remove all the
scheduled vertices from the graph and iterate on the remaining subgraph.

A detailed description of this procedure is given in Algorithm 3. For each vertex v ∈ VH ,
let â(v) and ê(v) denote the estimated sizes of AH(v) and EH(v) respectively (henceforth
referred to as A(v) and E(v)). Then the i-th bucket, Ki, is defined as Ki = {v ∈ VH |
2i ≤ ê(v) < 2i+1}. Since every node v ∈ VH has at most O(ρ) ancestors, there are only
k = O(log ρ) such buckets. Recall that from Lemma 5, this estimation can be performed
in near-linear time. The algorithm maintains a batch B of vertices that is initially empty.
For each non-empty bucket Ki (processed in decreasing order of size), we repeatedly sample
nodes uniformly at random from the bucket (without replacement).

For each sampled node v ∈ Ki, we explicitly enumerate the ancestor sets A(v) and E(v)
and also compute A(v) \ A(B) and E(v) \ E(B). Since we can maintain the ancestor sets of
the current batch B in a hash table, this enumeration takes O(|E(v)|) time. A sampled node
v is said to be fresh if |A(v) \ A(B)| > γ|A(v)| and |E(v) \ E(B)| > γ|E(v)|; and said to be
stale otherwise. The algorithm adds all fresh nodes to the batch B and continues sampling
from the bucket until it samples Θ(log n) consecutive stale nodes. Once all the buckets have
been processed, we prune the buckets to remove all stale nodes and then repeat the sampling
procedure until all buckets are empty.

A bucket Ki is reduced when 1) a vertex, v, in it is added to B, 2) a sampled vertex v is
stale and 3) during the pruning process. No vertex remains unscheduled because either a
vertex v is scheduled in the current batch or it is stale. For all stale vertices, in Algorithm 2,
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we remove all the scheduled ancestors of these stale vertices (so the vertices become fresh
again). We repeat the procedure given in Algorithm 3 (Algorithm 2 of Algorithm 2) until
the entire graph is scheduled (Algorithm 2 of Algorithm 2) so that all vertices are eventually
scheduled. The pruning procedure is presented in Algorithm 4. In this step, we again
estimate the sizes of ancestor sets of all vertices in the graph H \A(B) to determine whether
a vertex is stale.

Algorithm 3 FindBatch(H, γ).

Result: Returns batch B, the batch of vertices to schedule.
Input: A subgraph H = (VH , EH) such that |AH(v)| ≤ 2ρ for all v ∈ VH ;

0 < γ < 1/2.
1 Let N = Θ(log n).
2 Initially, B ← ∅ and all nodes are unmarked.
3 Obtain estimates â(v) and ê(v) for all v ∈ VH .
4 Let bucket Ki = {v ∈ VH : 2i ≤ ê(v) < 2i+1}.
5 while at least one bucket is non-empty do
6 for i = k to 1 do
7 Let s = 0.
8 while s < N and |Ki| > 0 do
9 Let v be a uniformly sampled node in bucket Ki.

10 Find A(v) and A(v) \ A(B) as well as E(v) and E(v) \ E(B).
11 if |A(v) \ A(B)| > γ|A(v)| and |E(v) \ E(B)| > γ|E(v)| then
12 Mark v as fresh, add v and its ancestors to B.
13 Set s = 0.
14 else
15 Mark v as stale. s = s+ 1.
16 Remove v from Ki.

17 K1, . . . ,Kk ← Prune(H, B, K1, . . . , Kk) [Algorithm 4].
18 Return B.

5.2 Analysis
We first provide two key properties of the batch B of vertices found by Algorithm 3 that are
crucial for our final approximation factor and then analyze the running time of the algorithm.
Due to space constraints, some proofs are relegated to Appendix C.

Quality of the Schedule. We show that B comprises of vertices whose ancestor sets do not
overlap significantly, and further that it is the “maximal” such set.

▶ Lemma 7. The batch B returned by Algorithm 3 satisfies |A(B)| > γ
∑
v∈B |A(v)| and

|E(B)| > γ
∑
v∈B |E(v)|.

Proof. Let B(ℓ) ⊆ B denote the set containing the first ℓ vertices added to B by the algorithm.
We prove the lemma via induction. In the base case, B(1) consists of a single vertex and
trivially satisfies the claim. Now suppose that the claim is true for some ℓ ≥ 1 and let v be the
(ℓ+1)-th vertex to be added to B. By Algorithm 3 of Algorithm 3, we add a vertex v into B(ℓ)

if and only if |A(v)\A(B(ℓ))| > γ|A(v)| and |E(v)\E(B(ℓ))| > γ|E(v)|. Furthermore, since we
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Algorithm 4 Prune(H, B, K1, . . . , Kk).

Result: New buckets K1, . . . ,Kk.
Input: A graph H = (V,E), a batch B ⊆ V , and buckets K1, . . . ,Kk.

1 Obtain estimates âH(v) and êH(v) for all nodes v ∈ ∪ki=1Ki in the graph H.
2 Let H ′ ← H \ A(B)
3 Obtain estimates âH′(v) and êH′(v) for all nodes v ∈ ∪ki=1Ki in the graph H ′.
4 for i = k to 1 do
5 for each node v in bucket Ki do

6 X ← âH′(v)
âH(v) .

7 Y ← êH′(v)
êH(v) .

8 if X ≤ 2γ or Y ≤ 2γ then
9 Remove v from Ki.

10 Return the new buckets K1, . . . ,Kk.

enumerate A(v) via DFS, our calculation of the cardinality of each of these sets is exact. We
now have, |A(B(ℓ+1))| = |A(B(ℓ))|+ |A(v) \ A(B)| > |A(B(ℓ))|+ γ|A(v)|. By the induction
hypothesis, we now have |A(B(ℓ+1))| > γ

∑
w∈B(ℓ) A(w) + γA(v) = γ

∑
w∈B(ℓ+1) A(w). The

same proof also holds for E(B) and the lemma follows. ◀

▶ Lemma 8. If a vertex w was not added to B, it is pruned by Algorithm 4, with high
probability. If a vertex v is pruned by Algorithm 4, then |A(v) \ A(B)| ≤ 4γ|A(v)| or
|E(v) \ E(B)| ≤ 4γ|E(v)|, with high probability.

Proof. We first prove that any vertex v that is not added to B must be removed from its
bucket by Algorithm 4. Any vertex not added to B must have |A(v) \ A(B)| ≤ γ|A(v)|.
By Lemma 5, âH′(v) ≤ 4/3|A(v)\A(B)| and âH(v) ≥ 2/3|A(v)|, with high probability. This
must mean that âH′ (v)

âH(v) ≤
4/3|A(v)\A(B)|

2/3|A(v)| ≤ 4/3γ|A(v)|
2/3|A(v)| ≤ 2γ. Thus, v will be pruned. The

same proof holds for êH′(v).
We now prove that the pruning procedure successfully prunes vertices with not too

many unique ancestors. In Algorithm 4, by Lemma 5 (setting ϵ = 1/3), we have with high
probability, âH′(v) ≥ 2/3|AH′(v)|. Similarly, with high probability, âH(v) ≤ 4/3|AH(v)|.
This means X = âH′ (v)

âH(v) ≥
2/3|AH′ (v)|
4/3|AH(v)| = 1

2

(
|AH′ (v)|
|AH(v)|

)
. By the same argument, we also have

Y = êH′ (v)
êH(v) ≥

1
2

(
|EH′ (v)|
|EH(v)|

)
with high probability.

By Algorithm 4 of Algorithm 4, when we remove a vertex v we have either X ≤ 2γ or
Y ≤ 2γ. By the above, X,Y ≥ 1

2 (4γ) = 2γ. Thus, the largest that
(

|AH′ (v)|
|AH(v)|

)
or

(
|EH′ (v)|
|EH(v)|

)
can be while still being pruned is 4γ. Thus, with high probability, we have either |AH′ (v)|

|AH(v)| ≤ 4γ
or |EH′ (v)|

|EH(v)| ≤ 4γ. Since AH′(v) = A(v) \ A(B), the claim follows. ◀

The above two lemmas tell us that there are enough unique elements in each batch B, any
vertex not added to B will be pruned w.h.p., and the pruning procedure only prunes vertices
with a large enough overlap with B w.h.p. This allows us to show the following lemma on
the length of the schedule produced by Algorithm 2 for small subgraph H. We first show
that we only call Algorithm 3 at most O

(
log1/γ(ρ)

)
times from Algorithm 2 of Algorithm 2.
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▶ Lemma 9. The number of batches needed to be scheduled before all vertices in H are
scheduled is at most 4 log1/4γ(2ρ), with high probability.

Proof. By Lemma 8, each vertex v we do not schedule in a batch B has at least (1−4γ)|A(v)|
vertices in A(B) or at least (1− 4γ)|E(v)| edges in E(B). Since we assumed that all vertices
in H have ≤ 2ρ ancestors, this means that v can only remain unscheduled for at most
2 log1/4γ(4ρ2) batches until A(v) and E(v) both become empty (Gv can have at most 4ρ2

edges). ◀

Using Lemma 9, we can prove the length of the schedule for H using Algorithm 2. The
proof of this lemma is similar to the proof of schedule length of small subgraphs in [19].

▶ Lemma 10. With high probability, the schedule obtained from Algorithm 2 has size at most
|VH |
γM + 12ρ log1/4γ(2ρ) on M processors.

Proof. By definition of the input, each A(v) for v ∈ VH has at most 2ρ elements. Recall
that we schedule all elements in each batch B by duplicating the common shared ancestors
such that we obtain a set of independent ancestor sets to schedule. Then, we use a standard
list scheduling algorithm to schedule these lists; see Appendix B for a classic list scheduling
algorithm. Each vertex in H gets scheduled in exactly one batch since we remove all scheduled
vertices from the subgraph used to compute the next batch. Let B1, B2, . . . , Bk denote the
batches scheduled by Algorithm 2. Let Hi be the subgraph obtained from H by removing
batches B0, . . . , Bi−1 and adjacent edges. (B0 is empty.) By Lemma 7, with high probability,
for each batch Bi, we have

∑
v∈Bi |AHi(v)| ≤ 1

γ |AHi(Bi)|. Let Zi = 1
γ |AHi(Bi)|.

Graham’s list scheduling algorithm [13] for independent jobs is known to produce a
schedule whose length is at most the total length of jobs divided by the number of machines,
plus the length of the longest job. In our case, we treat each ancestor set as one big
independent job, and thus for each batch Bi, this bound becomes Zi/M + 2ρ.

Finally Algorithm 2 inserts an idle time of ρ between two successive batches. The total
length of the schedule is thus upper bounded by (where k is the number of batches):

k∑
i=1

(
Zi
M

+ 2ρ+ ρ

)
≤ 3ρ · 4 log1/4γ(2ρ)

k∑
i=1

Zi
M

(by Lemma 9)

≤ 3ρ · 4 log1/4γ(2ρ) + 1
γM
·
k∑
i=1
|AHi(Bi)|

= |VH |
γM

+ 12ρ log1/4γ(2ρ) ◀

Running Time. In order to analyze the running time of Algorithm 3, we need a couple of
technical lemmas. The key observation is that although computing the ancestor sets A(v)
and E(v) (in Algorithm 3) of a vertex v takes O(|E(v)|) time in the worst case, we can bound
the total amount of time spent computing these ancestor sets by the size of the ancestor sets
scheduled in the batch. There are two main components to the analysis. First, we show that
after every iteration of the pruning step, the number of vertices in each bucket reduces by
at least a constant fraction and hence the sampling procedure is repeated at most O(lnn)
times per batch. Secondly, we use a charging argument to upper bound the amount of time
spent enumerating the ancestor sets of sampled vertices.
Finding Stale Vertices. We first argue that with high probability, there are at most O(lnn)
iterations of the while loop in Algorithm 3 of Algorithm 3. Intuitively, in each iteration of the
while loop, the number of vertices in any bucket Ki reduces by at least a constant fraction.
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▶ Lemma 11. We perform O(lnn) iterations of sampling and pruning, with high probability,
before all buckets are empty. In other words, with high probability, Algorithm 3 of Algorithm 3
runs for O(lnn) iterations.

Proof. We prove the lemma for one bucket Ki and by the union bound, the lemma holds
for all buckets. First, any sampled vertex which is fresh is added to B. Furthermore, we
showed in Lemma 8 that any vertex which is stale is removed from Ki by Algorithm 4. Since
the estimates â(v) and ê(v) are within a 1

3 -factor of |A(v)| and |E(v)|, respectively, we can
upper bound âH′ (v)

âH(v) ≤ 2 · |A(v)\A(B)|
|A(v)| (same holds for ê(v)). If a vertex v is stale, then with

high probability, we have either âH′ (v)
âH(v) ≤

2|A(v)\A(B)|
|A(v)| ≤ 2γ or êH′ (v)

êH(v) ≤ 2γ, and it is removed
by Algorithm 4 of Algorithm 4. Since any fresh vertices that are sampled gets added into B
and all stale vertices are pruned at the end of each iteration, it only remains to show a large
enough number of stale vertices are pruned.

Lemma 17 guarantees that, with high probability, at least (1−ψ)-fraction of the vertices in
Ki are stale for any constant ψ ∈ (0, 1). Then, Algorithm 4 removes at least (1−ψ)|Ki| vertices
in Ki in each iteration. The number of iterations needed is then log1/(1−ψ)(|Ki|) = O(lnn).

Since there exists O(log ρ) buckets and O(m) estimates, we can take the union bound on
the probability of success over all buckets and estimates. We obtain, with high probability,
O(log n) iterations are necessary before all buckets are empty. ◀

Charging the Cost of Examining Stale Sets. Here we describe our charging argument that
allows us to explictly enumerate the ancestor set of each sampled vertex. Computing the
ancestor set of a vertex v takes time O(|E(v)|) using DFS. Since a fresh vertex gets added to
the batch, the cost of computing the ancestor set of a fresh vertex can be easily bounded by
the set of edges in E(B), achieving a total cost, specifically, of O

(
1
γ |E(B)|

)
. Our charging

argument allows us to bound the cost of computing ancestor sets of sampled stale vertices
by charging it to the most recently sampled fresh vertex. Using the above, we provide the
runtime of Algorithm 3 below and then the runtime of Algorithm 2.

▶ Lemma 12. Algorithm 3 runs in O
(

1
γ |EH(B)| ln ρ lnn+ |EH | ln3 n

)
time, with high

probability.

Proof. The runtime of Algorithm 3 consists of three parts: the time to sample and enumerate
ancestor sets, the time to prune stale vertices, and the time to list schedule all vertices in B.

By Lemma 18, the time it takes to enumerate all sampled ancestor sets is
O

(
1
γ |E(B)| log ρ log n

)
over all iterations of the loops on Algorithm 3 and Algorithm 3

of Algorithm 3.
The time it takes to run Algorithm 4 is O(|EH | ln2 n) since obtaining the estimates for

each node (by Lemma 5), creating graph H ′, and calculating X and Y for each node in the
bucket can be done in that time. By Lemma 11, we perform O(lnn) iterations of pruning,
with high probability. Thus, the total time to prune the graph is O(|EH | ln3 n). ◀

▶ Lemma 13. Given a graph H = (VH , EH) where |A(v)| ≤ 2ρ for each v ∈ VH and
parameter γ ∈ (0, 1/2), the time it takes to compute the schedule of H using Algorithm 2 is,
with high probability, O

(
1
γ |EH | ln ρ lnn+ |EH | ln1/4γ ρ ln3 n+ |VH | lnM

)
.

Proof. By Lemma 9, we perform O(log1/4γ ρ) calls to Algorithm 3. Each call to Algorithm 3
requires O

(
1
γ |EH(B)| ln ρ lnn+ |EH | ln3 n

)
time by Lemma 12. However, we know that each

vertex (and edges adjacent to it) is scheduled in exactly one batch.
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For each batch B, our greedy list scheduling procedure schedules each A(v) for v ∈ B
greedily and independently by duplicating vertices that appear in more than one ancestor
set. Thus, enumerating all the ancestor sets require O

(
1
γ |E(B)|

)
time by Lemma 7. When

M > |B|, we easily schedule each list on a separate machine in O
(

1
γ |E(B)|

)
time. Otherwise,

to schedule the lists, we maintain a priority queue of the machine finishing times. For each
list, we greedily assign it to the machine that has the smallest finishing time. We can perform
this procedure using O(M lnM) time. Since M ≤ |B|, this results in O(|B| ln |B|) time to
assign ancestor sets to machines.

Thus, the total runtime of all calls to Algorithm 3 is

log1/4γ ρ∑
i=1

O

(
1
γ
|EH(Bi)| ln ρ lnn+ |EH | ln3 n+ 1

γ
|E(Bi)|+ |B| ln |B|

)
= O

(
1
γ
|EH | ln ρ lnn+ |EH | ln1/4γ ρ ln3 n

)
.

Then, the time it takes to perform Algorithm 2 of Algorithm 2 is O(1) per iteration.
Scheduling vertices with no adjacent edges requires |B| ln |B| = O(|VH | lnM) time. Finally,
the time it takes to remove each v ∈ A(B) and all edges adjacent to v from H for each batch
B is O(|VH |+ |EH |). Doing this for O(ln1/4γ ρ) iterations results in O(|VH |+ |EH | ln1/4γ ρ)
time. ◀

6 Scheduling General Graphs

We now present our main scheduling algorithm for scheduling any DAG G = (V,E) (the
full pseudocode is included in Appendix C in our full paper [20]). This algorithm also uses
as a subroutine the procedure for estimating the number of ancestors of each vertex in G

as described in Section 4. We use the estimates to compute the small subgraphs which we
pass into Algorithm 2 to schedule. We produce the small subgraphs by setting the cutoff for
the estimates to be 4

3ρ. This produces small graphs where the number of ancestors of each
vertex is upper bounded by 2ρ, with high probability. We present a simplified algorithm
below in Algorithm 5. The full pseudocode for our main algorithm is given in Algorithm 10
in our full paper [20].

Algorithm 5 ScheduleGeneralGraph(G).

Result: A schedule of the input graph G = (V,E) on M processors.
Input: A directed acyclic task graph G = (V,E).

1 Let H ← ∅ represent a list of small subgraphs that we will build.
2 while G is not empty do
3 Let VH be the set of vertices in G where â(v) ≤ 4

3ρ for each v ∈ VH .
4 Compute edge set EH to be all edges induced by VH .
5 Add H = (VH , EH) to H.
6 Remove VH and all incident edges from G.
7 end
8 for H ∈ H in the order they were added do
9 Call ScheduleSmallSubgraph(H) to obtain a schedule of H. [Algorithm 2]

10 end
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Quality of the Schedule and Running Time. Let OPT be the length of the optimal schedule.
We first give two bounds on OPT, and then relate them to the length of the schedule found
by our algorithm. A detailed set of proofs is provided in Appendix C.2.

Our main algorithm, Algorithm 5, partitions the vertices of G into small subgraphs H ∈ H.
It does so based on estimates of ancestor set sizes. We first lower bound OPT by working
with exact ancestor set sizes. Since the schedule produced by our algorithm cannot have
length smaller than OPT, this process also provides a lower bound on our schedule length.
Then, we show that Algorithm 5 does not output more small subgraphs than the number of
subgraphs produced by working with exact ancestor set sizes, with high probability.

The crucial fact in obtaining our final runtime is that producing the estimates of the
number of ancestors of each vertex requires Õ(|V | + |E|) time in total over the course of
finding all small subgraphs. Together, these facts allow us to obtain Theorem 14.

▶ Theorem 14. On input graph G = (V,E), Algorithm 5 produces a schedule of length at
most O

(
ln ρ

ln ln ρ · (OPT + ρ)
)

and runs in time O
(
n lnM + m ln3 n ln ρ

ln ln ρ

)
, with high probability.

Proof. By Lemma 21, Algorithm 3 is called at most L times. Then, since each vertex is in
at most one small subgraph (and hence each edge is in at most one small subgraph), the
total runtime for all the calls (by Lemma 13) is

L∑
i=1

O

(
1
γ
|EHi | ln ρ lnn+ |EHi | ln1/4γ ρ ln3 n+ |VHi | lnM

)
= O

(
1
γ
|E| ln ρ lnn+ |E| ln1/4γ ρ ln3 n+ |V | lnM

)
.

Furthermore, each iteration of Algorithm 5 requires estimating â(v) for a set of vertices
v, adding v to H, and checking all successors of v. First, we show that â(v) is computed at
most twice for each vertex in V , and then, we show that the rest of the steps are efficient.

Each vertex contained in the queue, Q, in Algorithm 3, either does not have any ancestors,
or all of its ancestors are in H (the current subgraph). If a vertex v ∈ Q was not added to
H during iteration i, then it must have at least one ancestor in iteration i and no ancestors
in iteration i+ 1. Since v has no ancestors in iteration i+ 1, it must be added to Hi+1. The
time it takes to compute the estimate for one vertex is O(ln2 n). Thus, the total time it takes
to compute the estimate of the number of ancestors of all vertices is O

(
m ln2 n

)
. Adding v

to H and checking all successors can be done in O(m) time in total across all vertices and
subgraphs. Finally removing each v ∈ H from G can be done in O(m) time in total for all v.

As earlier, we use γ =
√

ln ρ, so the total runtime summing the above can be up-
per bounded by O

(
n lnM + m ln3 n ln ρ

ln ln ρ

)
. Thus, the algorithm produces a schedule of

length O
(

ln ρ
ln ln ρ · (OPT + ρ)

)
(by Theorem 22) and the total runtime of the algorithm

is O
(
n lnM + m ln3 n ln ρ

ln ln ρ

)
, with high probability. ◀

Theorem 14 gives the main result of our paper stated informally in Theorem 1 of the
introduction.
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CountDistinctEstimator.insert(DS, x): Insert hi(x) into Ti ∈ TS for each i ∈ [d log n].
If Ti has size greater than t, delete the largest element of Ti.
CountDistinctEstimator.merge(DS1 , DS2): Here we assume that the same set of hash
functions are used for both DS1 and DS2 . For each pair of T1,i ∈ TS1 and T2,i ∈ TS2 for
hash function hi, build a new tree Ti by taking the t smallest elements from T1,i ∪ T2,i.
CountDistinctEstimator.estimateCardinality(DS): Let ℓ be the median value of the
largest values of the trees Ti ∈ TS . Return tN/ℓ.

Algorithm 6 Initialize New CountDistinctEstimator.

Input: DS , TS , t, hi ∈ H are as defined above for multiset S. Let n = |S|.
1 CountDistinctEstimator.insert(DS, x):
2 for Ti ∈ TS do
3 Compute hi(x).
4 if Ti has less than t elements or hi(x) is smaller than the largest value in Ti

then
5 Insert hi(x) into Ti.
6 end
7 if Ti has more than t elements then
8 Remove the largest element in Ti.
9 end

10 end
11 CountDistinctEstimator.merge(DS1 , DS2):
12 for T1,i ∈ TS1 , T2,i ∈ TS2 do
13 Perform inorder traversal of T1,i and T2,i to obtain non-decreasing lists of

elements, L1,i and L2,i.
14 Merge L1,i and L2,i to obtain a new non-decreasing list of elements, L.
15 Build a new balanced binary tree from the first t elements of L.
16 end
17 CountDistinctEstimator.estimateCardinality(DS):
18 for Ti ∈ TS do
19 Insert largest element of Ti into list L.
20 end
21 Sort L.
22 Let ℓ be the median of L.
23 Return tn3/ℓ.

The estimator provided in Bar-Yossef et al. [4] satisfies the following lemmas as proven
in [8] (specifically it is proven that the estimator is unbiased):

▶ Lemma 15 ([4]). The Bar-Yossef et al. [4] estimator is an
(
ε, 1
nd
, O

( 1
ε2 log2 n

))
-estimator

for the count-distinct problem.

▶ Lemma 16. Furthermore, the insert, merge, and estimate cardinality functions of the
Bar-Yossef et al. [4] estimator can be implemented in O

( 1
ε2 log2 n

)
time.

Proof. CountDistinctEstimator.insert requires O(log t) time to insert hi(x) and O(log t)
time to remove the largest element. Thus, this method requires O

(
log

( 1
ε

))
= O

( 1
ε2

)
time.

CountDistinctEstimator.merge requires O(t) = O
( 1
ε2

)
time to merge T1,i and T2,i and also

O(t) time to build the new tree. Finally, CountDistinctEstimator.estimateCardinality
requires O(log n) time to create the list L and O(log n log log n) time to sort and find the
median. ◀
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Estimating the Number of Ancestors and Edges. Using the count-distinct estimator
described above, we can provide our full algorithms for estimating the number of ancestors
and the number of edges in the induced subgraph of every vertex in a given input graph.

Our complete algorithm for estimating the number of ancestors â(v) of every vertex in
an input graph is given in Algorithm 7. Our algorithm for finding ê(v) for every vertex in
the input graph is given in Algorithm 9 in our full paper [20].

Algorithm 7 Estimate Number of Ancestors.

Result: Estimate âH(v) such that (1− ϵ)|AH(v)| ≤ âH(v) ≤ (1 + ϵ)|AH(v)|, ∀v ∈ V .
1 Input: A graph H = (V,E).
2 Topologically sort all the vertices in H.
3 for vertex w in the topological order of vertices in H do
4 Let Pred(w) be the set of predecessors of w.
5 Let Dw ← New

(
ε, 1
nd
, O

( 1
ε2 log2 n

))
-CountDistinctEstimator for w.

6 CountDistinctEstimator.insert(Dw, w)
7 for v ∈ Pred(w) do
8 Dw = CountDistinctEstimator.merge(Dw,Dv).
9 end

10 âH(w) = CountDistinctEstimator.estimateCardinality(Dw)
11 end

B List Scheduling

Here we provide a brief description of the classic Graham list scheduling algorithm [14]. For
our purposes, we are given a set of vertices and their ancestors. We duplicate the ancestors
for each vertex v so that each vertex and its ancestors is scheduled as a single unit with job
size equal to the number of ancestors of v. Then, we perform the following greedy procedure:
for each vertex v, we sequentially assign v to the machine Mi ∈M with smallest load (i.e.
load is defined by the jobs lengths of all jobs assigned to it). We can maintain loads of the
machines in a heap to determine the machine with the lowest load at any time. To schedule
n jobs using this procedure requires O(n lnM) time.

C Deferred Proofs

In this section, we include all of the proofs deferred from the main text.

C.1 Runtime of Scheduling Small Subgraphs
▶ Lemma 17. For any constant d ≥ 1 and ψ > 0, there is a constant c ≥ 1 such that, with
probability at least 1− 1

nd
, at most a ψ-fraction of remaining nodes in each bucket are fresh

after sampling c lnn stale vertices consecutively.

Proof. The main approach behind the proof is that we show that for any bucket where a
constant fraction ψ of the vertices in the bucket are fresh, for any c lnn consecutively sampled
vertices, we expect to see ψc lnn fresh vertices. Furthermore, we show a concentration bound
around this expected number of vertices using the Chernoff bound. Thus, we can conclude
that if we see c lnn stale vertices consecutively (with no good vertices), then with high
probability, at most a small constant fraction of the remaining nodes in the bucket is fresh.
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Algorithm 3 samples the vertices in each bucket Ki consecutively, uniformly at random
without replacement, until a new fresh vertex is found or at least c lnn stale vertices are
sampled consecutively. Let F be the set of fresh and stale vertices sampled (and removed)
so far from bucket Ki up to the most recent time a fresh vertex was sampled from Ki (i.e.
F includes all vertices sampled including and up to the most recent fresh vertex sampled
from Ki). Let ψ be some fraction 0 < ψ < 1. Suppose at most a ψ-fraction of the vertices in
bucket Ki are fresh after removing the previously sampled F vertices. Such an ψ exists for
every bucket with at least one fresh vertex and one stale vertex after doing such removals.
(In the case when all vertices in the bucket are fresh, all vertices from that bucket will be
sampled and added to B. If all vertices in the bucket are stale, then c lnn stale vertices will
be sampled immediately.)

From here on out, we assume the bucket Ki only contains the remaining vertices after the
previously sampled F vertices were removed. We assume the number of remaining vertices
in Ki is more than c lnn. The probability that each of the next sampled vertices is a fresh
vertex is at least ψ. The expected number of fresh vertices in the c lnn samples from Ki is
lower bounded by:

c lnn∑
i=1

(
i ·

(
c lnn
i

)
ψi(1− ψ)c lnn−i

)
= ψc lnn.

Suppose for our analysis that we only remove stale vertices when we sample them (and
not fresh vertices). The above is a lower bound, in this setting, on the expected number
of sampled fresh vertices from Ki since ψ is the fraction of fresh vertices after removing F ;
if we remove more stale vertices, the fraction of fresh vertices cannot decrease so ψ upper
bounds the fraction of fresh vertices in Ki as we remove more stale vertices. This assumption
is the same as our algorithm when all c lnn sampled vertices are stale.

By the Chernoff bound, the probability that we sample less than (1 − ε)ψc lnn fresh
vertices is less than exp

(
− ε

2ψc lnn
2

)
. When c > 1

(1−ε)ψ , (1− ε)ψc lnn ≥ 1 for any 0 < ε < 1
and 0 < ψ < 1. Then, the probability that no fresh vertices are sampled is less than
exp

(
− ε

2ψc lnn
2

)
= n

−ε2ψc
2 . It is easy to consider the case for constant ψ ∈ (0, 1). If ψ = o(1),

then there exists a constant ϕ for which at most a ϕ-fraction of the vertices in Ki are fresh.
If ψ = ω(1), then the probability becomes super-polynomially small. We can sample c lnn
vertices for large enough constant c ≥ 6d

ε2ψ such that with probability at least 1− 1
nd

for any
constant d ≥ 1, there exists less than ψ-fraction of vertices in the bucket that are fresh if the
next c lnn sampled vertices are stale. The factor of 6 in the bound c ≥ 6d

ε2ψ is useful when
we take the union bound over multiple trials (at most O(n2)) for all buckets used during the
course of this algorithm. ◀

▶ Lemma 18. With high probability, the total runtime of enumerating the ancestor sets of all
sampled vertices in Algorithm 3 is O

(
1
γ |E(B)| ln ρ lnn

)
. In other words, the total runtime

of performing all iterations of Algorithm 3 of Algorithm 3 is O
(

1
γ |E(B)| ln ρ lnn

)
, with high

probability.

Proof. First, we calculate the runtime of enumerating the ancestor sets of each element of B.
By Lemma 7, |E(B)| ≥ γ

∑
v∈B |E(v)|. Hence, the amount of time to enumerate all ancestor

sets of every vertex in B is at most 1
γ |E(B)|.

We employ the following charging scheme to calculate the total time necessary to enumerate
the ancestor sets of all sampled stale vertices. Let u be the most recent vertex added to
B from some bucket Ki. We charge the cost of enumerating the ancestor sets of all stale
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vertices sampled after u to the cost of enumerating the ancestor set of u. Since we sample at
most O(log n) consecutive stale vertices from each bucket before moving to the next bucket,
u gets charged with at most the work of enumerating O(log ρ log n) vertices from the same
or smaller buckets. With high probability, the largest ancestor set in bucket Ki has a size at
most four times the smallest ancestor set size. Since we sample vertices in decreasing bucket
size, we charge at most O(|E(v)| log ρ log n) work to v.

By our bound on the cost of enumerating all ancestor sets of vertices in B, the additional
charged cost results in a total cost of

∑
v∈B |E(v)|·O(log ρ log n) = O( 1

γ |E(B)| log ρ log n). ◀

C.2 Quality of the Schedule Produced by the Main Algorithm
Assuming we are working with exact ancestor set sizes, we would wind up with vertex
sets V1 ≜ {v ∈ V : |A(v)| ≤ ρ} and, inductively, for i > 1, Vi ≜ {v ∈ V \

⋃i−1
j=1 Vj :

|A(v) \
⋃i−1
j=1 Vj | ≤ ρ}. Let L be the maximum index such that VL is nonempty.

The following lemma follows a similar argument as that found in Lepere-Rapine [19]
(although we have simplified the analysis). We repeat it here for completeness.

▶ Lemma 19. OPT ≥ (L− 1)ρ.

Proof. We show by induction on i that in any valid schedule, there exists a job v ∈ Vi that
cannot start earlier than time (i − 1)ρ. Given that, the job in VL starts at time at least
(L− 1)ρ in OPT, proving the lemma.

The base case of i = 1 is trivial. For the induction step, consider a job v ∈ Vi+1. This job
has at least ρ ancestors in Vi (call this set A = A(v) ∩ Vi), since if it had less, v would be
in Vi itself. All jobs in A start no earlier than (i− 1)ρ by the induction hypothesis. There
are two cases. If all of the jobs in A are executed on the same machine as v, then it would
take at least ρ units of time for them to finish before v can start. If at least one job in A is
executed on a different machine than v, then it would take ρ units of time to communicate
the result. In either case, v would start later than the first job in A by at least ρ, and thus
no earlier than i · ρ. ◀

▶ Lemma 20. OPT ≥ |V |/M .

Proof. Every job has to be scheduled on at least one machine, and the makespan is at least
the average load on any machine. ◀

We show that our general algorithm only calls the schedule small subgraph procedure at
most L times, w.h.p.

▶ Lemma 21. With high probability, Algorithm 5 calls Algorithm 2 at most L times on input
graph G = (V,E).

Proof. By construction, the Vi’s are inductively defined by stripping all vertices with
ancestor sets at most ρ in size. With high probability, our estimates â(v) are at most
4
3 |A(v)|. Algorithm 5 only takes vertex v into the subgraph H if â(v) ≤ 4

3ρ. By Lemma 5,
2
3 |A(v)| ≤ â(v) ≤ 4

3 |A(v)|. Then, |A(v)| ≤ 3
2 â(v) ≤ 3

2 ·
4
3ρ = 2ρ. Furthermore, since

|A(v)| ≥ 3
4 · â(v), if â(v) = 4

3ρ, then |A(v)| ≥ ρ. Hence, all vertices with height ρ are added
into H, with high probability. Taken together, this means that all vertices of Vi (even
if their ancestor sets are maximally overestimated) are contained in the small graphs H
produced by iterations one through i of Algorithm 5 of Algorithm 5 Since VL was chosen to
be the last non-empty set, we know our algorithm runs for at most L iterations, with high
probability. ◀
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▶ Theorem 22. Algorithm 5 produces a schedule of length at most O
(

ln ρ
ln ln ρ

)
· (OPT + ρ).

Proof. In Algorithm 2, by Lemma 10, the schedule length obtained from any small subgraph
H is |VH |

γM + 12ρ log1/4γ(2ρ).
Let H be the set of all small subgraphs Algorithm 5 sends to Algorithm 2 to be scheduled.

By Lemma 21, there are at most L of them. Each vertex trivially appears in at most one
subgraph. Then the total length of our schedule is given by∑

H∈H

(
|VH |
γM

+ 12ρ log1/4γ(2ρ)
)

=
∑
H∈H

|VH |
γM

+
∑
H∈H

12ρ log1/4γ(2ρ)

≤ |V |
γM

+ L
(

12ρ log1/4γ(2ρ)
)
.

By Lemmas 19 and 20, this last quantity is upper bounded by

OPT ·
(

1
γ

+ 12 log1/4γ(2ρ)
)

+ ρ · 12 log1/4γ(2ρ)

Setting γ = 1/
√

ln ρ gives our bound of (OPT + ρ) ·O( ln ρ
ln ln ρ ). ◀
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Abstract

The point-to-set principle of J. Lutz and N. Lutz (2018) has recently enabled the theory of computing
to be used to answer open questions about fractal geometry in Euclidean spaces Rn. These are
classical questions, meaning that their statements do not involve computation or related aspects of
logic.

In this paper we extend the reach of the point-to-set principle from Euclidean spaces to arbitrary
separable metric spaces X. We first extend two fractal dimensions – computability-theoretic versions
of classical Hausdorff and packing dimensions that assign dimensions dim(x) and Dim(x) to individual
points x ∈ X – to arbitrary separable metric spaces and to arbitrary gauge families. Our first two
main results then extend the point-to-set principle to arbitrary separable metric spaces and to a
large class of gauge families.

We demonstrate the power of our extended point-to-set principle by using it to prove new
theorems about classical fractal dimensions in hyperspaces. (For a concrete computational example,
the stages E0, E1, E2, . . . used to construct a self-similar fractal E in the plane are elements of the
hyperspace of the plane, and they converge to E in the hyperspace.) Our third main result, proven
via our extended point-to-set principle, states that, under a wide variety of gauge families, the
classical packing dimension agrees with the classical upper Minkowski dimension on all hyperspaces
of compact sets. We use this theorem to give, for all sets E that are analytic, i.e., Σ1

1, a tight bound
on the packing dimension of the hyperspace of E in terms of the packing dimension of E itself.
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48:2 Extending the Reach of the Point-To-Set Principle

1 Introduction

It is rare for the theory of computing to be used to answer open mathematical questions –
especially questions in continuous mathematics – whose statements do not involve computation
or related aspects of logic.1 The point-to-set principle [22], described below, has enabled
several recent developments that do exactly this. This principle has been used to obtain
strengthened lower bounds on the Hausdorff dimensions of generalized Furstenberg sets [27],
extend the fractal intersection formula for Hausdorff dimension from Borel sets to arbitrary
sets [25], and prove that Marstrand’s projection theorem for Hausdorff dimension holds for any
set E whose Hausdorff and packing dimensions coincide, whether or not E is analytic [26].2
(See [5, 6, 23, 24] for reviews of these developments.) More recently, the point-to-set principle
has been used to prove that V = L implies that the maximal thin co-analytic set has
Hausdorff dimension 1 [40] and that the Continuum Hypothesis implies that every s ∈ (0, 1]
is the Hausdorff dimension of a Hamel basis of the vector space R over the field Q [21].
These applications of the point-to-set principle all concern fractal geometry in Euclidean
spaces Rn.3

This paper extends the reach of the point-to-set principle beyond Euclidean spaces. To
explain this, we first review the point-to-set principle to date. (All quantities defined in
this intuitive discussion are defined precisely later in the paper.) The two best-behaved
classical fractal dimensions, Hausdorff dimension and packing dimension, assign to every
subset E of a Euclidean space Rn dimensions dimH(E) and dimP(E), respectively. When E

is a “smooth” set that intuitively has some integral dimension between 0 and n, the Hausdorff
and packing dimensions agree with this intuition, but more complex sets E may have any
real-valued dimensions satisfying 0 ≤ dimH(E) ≤ dimP(E) ≤ n. Hausdorff and packing
dimensions have many applications in information theory, dynamical systems, and other
areas of science [2, 7, 14, 35].

Early in this century, algorithmic versions of Hausdorff and packing dimensions were
developed to quantify the information densities of various types of data. The computational
resources allotted to these algorithmic dimensions range from finite-state to computable
enumerability and beyond, but the point-to-set principle concerns the computably enumerable
algorithmic dimensions introduced in [20, 1].4 These assign to each individual point x in a
Euclidean space Rn an algorithmic dimension dim(x) and a strong algorithmic dimension
Dim(x). The point-to-set principle of [22] is a complete characterization of the classical
Hausdorff and packing dimensions in terms of oracle relativizations of these very non-classical
dimensions of individual points. Specifically, the point-to-set principle says that, for every
set E in a Euclidean space Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x) (1.1)

1 We use the adjective “classical” for theorems and questions whose statements do not involve computability
or logic, regardless of when they were proven or formulated. A “classical” theorem can thus be very
new.

2 These very non-classical proofs of new classical theorems have provoked new work in the fractal geometry
community. Orponen [34] has very recently used a discretized potential-theoretic method of Kaufman [16]
and tools of Katz and Tao [15] to give a new, classical proof of the two main theorems of [26].

3 Applications of the theory of computing – specifically Kolmogorov complexity – to discrete mathematics
are more numerous and are surveyed in [19]. Other applications to continuous mathematics, not
involving the point-to-set principle, include theorems in descriptive set theory [32, 12, 17], Riemannian
moduli space [43], and Banach spaces [18].

4 These have also been called “constructive” dimensions and “effective” dimensions by various authors.
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and

dimP(E) = min
A⊆N

sup
x∈E

DimA(x), (1.2)

where the dimensions on the right are relative to the oracle A. The point-to-set principle
is so named because it enables one to use a lower bound on the relativized algorithmic
dimension of a single, judiciously chosen point in a set E to prove a lower bound on the
classical dimension of the set E.

The classical Hausdorff and packing dimensions work not only in Euclidean spaces, but
in arbitrary metric spaces. In contrast, nearly all work on algorithmic dimensions to date
(the exception being [29]) has been in Euclidean spaces or in spaces of infinite sequences
over finite alphabets. Our objective here is to significantly reduce this gap by extending the
theory of algorithmic dimensions, along with the point-to-set principle, to arbitrary separable
metric spaces. (A metric space X is separable if it has a countable subset D that is dense in
the sense that every point in X has points in D arbitrarily close to it.)

In parallel with extending algorithmic dimensions to separable metric spaces, we also
extend them to arbitrary gauge families. It was already explicit in Hausdorff’s original
paper [8] that his dimension could be defined via various “lenses” that we now call gauge
functions. In fact, one often uses, as we do here, a gauge family φ, which is a one-parameter
family of gauge functions φs for s ∈ (0,∞). For each separable metric space X, each
gauge family φ, and each set E ⊆ X, the classical φ-gauged Hausdorff dimension dimφ

H(E)
and φ-gauged packing dimension dimφ

P(E) are thus well-defined. In this paper, for each
separable metric space X, each gauge family φ, and each point x ∈ X, we define the φ-gauged
algorithmic dimension dimφ(x) and the φ-gauged strong algorithmic dimension Dimφ(x)
of the point x. We should mention here that there is a particular gauge family θ that
gives the “un-gauged” dimensions in the sense that the identities dimθ

H(E) = dimH(E),
dimθ

P(E) = dimP(E), dimθ(x) = dim(x), and Dimθ(x) = Dim(x) always hold.
Our first two main results (Theorems 4.1 and 4.2) extend the point-to-set principle to

arbitrary separable metric spaces and a wide variety of gauge families, proving that, for every
separable metric space X, every gauge family φ satisfying mild asymptotic constraints, and
every set E ⊆ X,

dimφ
H(E) = min

A⊆N
sup
x∈E

dimφ,A(x) (1.3)

and

dimφ
P(E) = min

A⊆N
sup
x∈E

Dimφ,A(x). (1.4)

Various nontrivial modifications to both machinery and proofs are necessary in getting
from (1.1) and (1.2) to (1.3) and (1.4).

As an illustration of the power of our approach, we investigate the dimensions of hyper-
spaces. The hyperspace K(X) of a metric space X is the set of all nonempty compact subsets
of X, equipped with the Hausdorff metric [44]. (For example, the “stages” E0, E1, E2, . . .

of a self-similar fractal E ⊆ Rn converge to E in the hyperspace Rn.) The hyperspace of
a separable metric space is itself a separable metric space, and the hyperspace is typically
infinite-dimensional, even when the underlying metric space is finite-dimensional. One use
of gauge families is reducing such infinite dimensions to enable quantitative comparisons.
For example, McClure [30] defined, for each gauge family φ, a jump φ̃ (our notation) that is
also a gauge family, and he proved [31] for every self-similar subset E of a separable metric
space X,
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48:4 Extending the Reach of the Point-To-Set Principle

dimθ̃
H(K(E)) = dimH(E),

where θ is the above-mentioned “un-gauged” gauge family.
Here we prove a hyperspace dimension theorem for the upper and lower Minkowski (i.e.,

box-counting) dimensions dimM and dimM. This states that, for every separable metric
space X, every gauge family φ, and every E ⊆ X,

dimφ̃
M(K(E)) = dimφ

M(E) (1.5)

and

dimφ̃

M(K(E)) = dimφ

M(E). (1.6)

We note that it is implicit in [30] that these identities hold for totally bounded sets E and
gauge families φ satisfying a doubling condition.

Our third main result (Theorem 5.2) says that, for every separable metric space X, every
“well-behaved” gauge family φ, and every compact set E ⊆ X,

dimφ̃
P(K(E)) = dimφ̃

M(K(E)). (1.7)

Our proof of this result makes essential use of (1.6) and the point-to-set principle (1.4).
Finally, we use the point-to-set principle (1.4), the identities (1.6) and (1.7), and some

additional machinery to prove the hyperspace packing dimension theorem (Theorem 5.4),
which says that, for every separable metric space X, every well-behaved gauge family φ, and
every analytic (i.e., Σ1

1, an analog of NP that Sipser famously investigated [37, 38, 39]) set
E ⊆ X,

dimφ̃
P(K(E)) ≥ dimφ

P(E). (1.8)

It is implicit in [30] that (1.8) holds for all σ-compact sets E.
At the time of this writing it is an open question whether there is an analogous hyperspace

dimension theorem for Hausdorff dimension.
David Hilbert famously wrote the following [10].

The final test of every new theory is its success in answering preexistent questions
that the theory was not specifically created to answer.

The theory of algorithmic dimensions passed Hilbert’s final test when the point-to-set principle
gave us the results in the first paragraph of this introduction. We hope that the machinery
developed here will lead to further such successes in the wider arena of separable metric
spaces.

2 Gauged Classical Dimensions

We review the definitions of gauged Hausdorff, packing, and Minkowski dimensions. We refer
the reader to [7, 28] for a complete introduction and motivation.

Let (X, ρ) be a metric space where ρ is the metric. (From now on we will omit ρ when
referring to the space (X, ρ).) X is separable if there exists a countable set D ⊆ X that is
dense in X, meaning that for every x ∈ X and δ > 0, there is a d ∈ D such that ρ(x, d) < δ.
The diameter of a set E ⊆ X is diam(E) = sup {ρ(x, y) |x, y ∈ E }; notice that the diameter
of a set can be infinite. A cover of E ⊆ X is a collection U ⊆ P(X) such that E ⊆

⋃
U∈U U ,

and a δ-cover of E is a cover U of E such that diam(U) ≤ δ for all U ∈ U .
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▶ Definition (gauge functions and families). A gauge function is a continuous,5 nondecreasing
function from [0,∞) to [0,∞) that vanishes only at 0 [8, 36]. A gauge family is a one-
parameter family φ = {φs | s ∈ (0,∞)} of gauge functions φs satisfying

φs(δ) = o(φt(δ)) as δ → 0+

whenever s > t.

The canonical gauge family is θ = {θs | s ∈ (0,∞)}, defined by θs(δ) = δs. “Un-gauged”
or “ordinary” Hausdorff, packing, and Minkowski dimensions are special cases of the following
definitions, using φ = θ.

Some of our gauged dimension results will require the existence of a “precision family”
for the gauge family.

▶ Definition (precision family). A precision sequence for a gauge function φ is a function
α : N → Q+ that vanishes as r → ∞ and satisfies φ(α(r)) = O(φ(α(r + 1))) as r → ∞.
A precision family for a gauge family φ = {φs | s ∈ (0,∞)} is a one-parameter family
α = {αs | s ∈ (0,∞)} of precision sequences satisfying

∑
r∈N

φt(αs(r))
φs(αs(r))

< ∞

whenever s < t.

▶ Observation 2.1. αs(r) = 2−sr is a precision family for the canonical gauge family θ.

▶ Definition (gauged Hausdorff measure and dimension). For every metric space X, set E ⊆ X,
and gauge function φ, the φ-gauged Hausdorff measure of E is

Hφ(E) = lim
δ→0+

inf
{ ∑
U∈U

φ(diam(U))

∣∣∣∣∣ U is a countable δ-cover of E
}
.

For every gauge family φ = {φs | s ∈ (0,∞)}, the φ-gauged Hausdorff dimension of E is

dimφ
H(E) = inf {s ∈ (0,∞) |Hφs(E) = 0} .

▶ Definition (gauged packing measure and dimension). For every metric space X, set E ⊆ X,
and δ ∈ (0,∞), let Vδ(E) be the set of all countable collections of disjoint open balls with
centers in E and diameters at most δ. For every gauge function φ and δ > 0, define the
quantity

Pφδ (E) = sup
U∈Vδ(E)

∑
U∈U

φ(diam(U)).

Then the φ-gauged packing pre-measure of E is

Pφ0 (E) = lim
δ→0+

Pφδ (E),

5 Some authors require only that the function is right-continuous when working with Hausdorff dimension
and left-continuous when working with packing dimension. Indeed, left continuity is sufficient for our
hyperspace packing dimension theorem.
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48:6 Extending the Reach of the Point-To-Set Principle

and the φ-gauged packing measure of E is

Pφ(E) = inf
{ ∑
U∈U

Pφ0 (U)

∣∣∣∣∣ U is a countable cover of E
}
.

For every gauge family φ = {φs | s ∈ (0,∞)}, the φ-gauged packing dimension of E is

dimφ
P(E) = inf {s ∈ (0,∞) |Pφs(E) = 0} .

▶ Definition (gauged Minkowski dimensions). For every metric space X, E ⊆ X, and
δ ∈ (0,∞), let

N(E, δ) = min
{

|F |

∣∣∣∣∣F ⊆ X and E ⊆
⋃
x∈F

Bδ(x)
}
,

where Bδ(x) is the open ball of radius δ centered at x. Then for every gauge family
φ = {φs}s∈(0,∞) the φ-gauged lower and upper Minkowski dimension of E are

dimφ
M(E) = inf

{
s

∣∣∣∣ lim inf
δ→0+

N(E, δ)φs(δ) = 0
}

and

dimφ

M(E) = inf
{
s

∣∣∣∣ lim sup
δ→0+

N(E, δ)φs(δ) = 0
}
,

respectively.

When X is separable, it is sometimes useful to require that the balls covering E have
centers in the countable dense set D. For all E ⊆ X and δ ∈ (0,∞), let

N̂(E, δ) = min
{

|F |

∣∣∣∣∣F ⊆ D and E ⊆
⋃
x∈F

Bδ(x)
}
.

▶ Observation 2.2. If X is a separable metric space and φ = {φs}s∈(0,∞) is a gauge family,
then for all E ⊆ X,

1. dimφ
M(E) = inf

{
s

∣∣∣∣ lim inf
δ→0+

N̂(E, δ)φs(δ) = 0
}

.

2. dimφ

M(E) = inf
{
s

∣∣∣∣ lim sup
δ→0+

N̂(E, δ)φs(δ) = 0
}

.

The following relationship between upper Minkowski dimension and packing dimension
was previously known to hold for the canonical gauge family θ, a result that is essentially
due to Tricot [42]. Our proof of this gauged generalization, is adapted from the presentation
by Bishop and Peres [3] of the un-gauged proof.

▶ Lemma 2.3 (generalizing Tricot [42]). Let X be any metric space, E ⊆ X, and φ a gauge
family.
1. If φt(2δ) = O(φs(δ)) as δ → 0+ for all s < t, then

dimφ
P(E) ≥ inf

{
sup
i∈N

dimφ

M(Ei)

∣∣∣∣∣E ⊆
⋃
i∈N

Ei

}
.

2. If there is a precision family for φ, then

dimφ
P(E) ≤ inf

{
sup
i∈N

dimφ

M(Ei)

∣∣∣∣∣E ⊆
⋃
i∈N

Ei

}
.
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3 Gauged Algorithmic Dimensions

In this section we formulate algorithmic dimensions in arbitrary separable metric spaces and
with arbitrary gauge families.

For the rest of this paper, let X = (X, ρ) be a separable metric space, and fix a function
f : {0, 1}∗ → X such that the set D = range(f) is dense in X. The metric space X is
computable if there is a computable function g : ({0, 1}∗)2 × Q+ → Q that approximates ρ
on D in the sense that, for all v, w ∈ {0, 1}∗ and δ ∈ Q+.

|g(v, w, δ) − ρ(f(v), f(w))| ≤ δ.

Our results here hold for all separable metric spaces, whether or not they are computable,
but our methods make explicit use of the function f .

Following standard practice [33, 4, 19], fix a universal oracle Turing machine U , and
define the (plain) Kolmogorov complexity of a string w ∈ {0, 1}∗ relative to an oracle A ⊆ N
to be

CA(w) = min
{

|π|
∣∣π ∈ {0, 1}∗ and UA(π) = w

}
,

i.e., the minimum number of bits required to cause U to output w when it has access to the
oracle A. The (plain) Kolmogorov complexity of w is then C(w) = C∅(w).

We define the (plain) Kolmogorov complexity of a point q ∈ D to be

C(q) = min {C(w) |w ∈ {0, 1}∗ and f(w) = q } ,

noting that this depends on the enumeration f of D that we have fixed.
The Kolmogorov complexity of a point x ∈ X at precision δ ∈ (0,∞) is

Cδ(x) = min {C(q) | q ∈ D and ρ(q, x) < δ } .

The algorithmic dimension of a point x ∈ X is

dim(x) = lim inf
δ→0+

Cδ(x)
log(1/δ) , (3.1)

and the strong algorithmic dimension of x is

Dim(x) = lim sup
δ→0+

Cδ(x)
log(1/δ) . (3.2)

These two dimensions6 have been extensively investigated in the special cases where X is
a Euclidean space Rn or a sequence space Σω [23, 4].

Having generalized algorithmic dimensions to arbitrary separable metric spaces, we now
generalize them to arbitrary gauge families.

Let φ = {φs | s ∈ (0,∞)} be a gauge family. Then, the φ-gauged algorithmic dimension
of a point x ∈ X is

dimφ(x) = inf
{
s

∣∣∣∣ lim inf
δ→0+

2Cδ(x)φs(δ) = 0
}
, (3.3)

6 The definitions given here differ slightly from the standard formulation in which prefix Kolmogorov
complexity is used instead of plain Kolmogorov complexity and the precision parameter δ belongs to
{2−r | r ∈ N}. The present formulation is equivalent to the standard one for un-gaugued dimensions
and facilitates our generalization to gauged algorithmic dimensions. In particular, plain Kolmogorov
complexity is only needed to accommodate gauge functions φ in which the convergence of φ to 0 as
δ → 0+ is very slow.
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and the φ-gauged strong algorithmic dimension of x is

Dimφ(x) = inf
{
s

∣∣∣∣ lim sup
δ→0+

2Cδ(x)φs(δ) = 0
}
, (3.4)

Gauged algorithmic dimensions dimφ(x) have been investigated by Staiger [41] in the
special case where X is a sequence space Σω.

A routine inspection of (3.1)–(3.4) verifies the following.

▶ Observation 3.1. For all x ∈ X, dimθ(x) = dim(x) and Dimθ(x) = Dim(x), where θ is
the canonical gauge family given by θs(δ) = δs.

A specific investigation of algorithmic (or classical) dimensions might call for a particular
gauge function or family for one of two reasons. First, many gauge functions may assign the
same dimension to an object under consideration (because they converge to 0 at somewhat
similar rates as δ → 0+) but additional considerations may identify one of these as being the
most precisely tuned to the phenomenon of interest. Finding such a gauge function is called
finding the “exact dimension” of the object under investigation. This sort of calibration has
been studied extensively for classical dimensions [7, 36] and by Staiger [41] for algorithmic
dimension.

The second reason, and the reason of interest to us here, why specific investigations might
call for particular gauge families is that a given gauge family φ may be so completely out of
tune with the phenomenon under investigation that the φ-gauged dimensions of the objects
of interest are either all minimum (all 0) or else all maximum (all the same dimension as the
space X itself). In such a circumstance, a gauge family that converges to 0 more quickly
or slowly than φ may yield more informative dimensions. Several such circumstances were
investigated in a complexity-theoretic setting by Hitchcock, J. Lutz, and Mayordomo [11].

The following routine observation indicates the direction in which one adjusts a gauge
family’s convergence to 0 in order to adjust the resulting gauged dimensions upward or
downward.

▶ Observation 3.2. If φ and ψ are gauge families with φs(δ) = o(ψs(δ)) as δ → 0+ for all
s ∈ (0,∞), then, for all x ∈ X, dimφ(x) ≤ dimψ(x) and Dimφ(x) ≤ Dimψ(x).

We now define an operation on gauge families that is implicit in earlier work [30] and is
explicitly used in the results of Section 5.

▶ Definition (jump). The jump of a gauge family φ is the family φ̃ given φ̃s(δ) = 2−1/φs(δ).

▶ Observation 3.3. The jump of a gauge family is a gauge family.

We now note that the jump of a gauge family always converges to 0 more quickly than
the original gauge family.

▶ Lemma 3.4. For all gauge families φ and all s ∈ (0,∞), φ̃s(δ) = o(φs(δ)) as δ → 0+.

Observation 3.3 and Lemma 3.4 immediately imply the following.

▶ Corollary 3.5. For all gauge families φ and all x ∈ X, dimφ̃(x) ≤ dimφ(x) and Dimφ̃(x) ≤
Dimφ(x).

The definitions and results of this section relativize to arbitrary oracles A ⊆ N in the
obvious manner, so the Kolmogorov complexities CA(q) and CA

δ (x) and the dimensions
dimA(x), DimA(x), dimφ,A(x), and Dimφ,A(x) are all well-defined and behave as indicated.
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▶ Observation 3.6. For all gauge families φ, all x ∈ X, and all s > 0,

log
(
2Cδ(x)φ̃s(δ)

)
= Cδ(x)φs(δ) − 1

φs(δ)
.

The φ̃-gauged algorithmic dimensions admit the following characterizations, the second
of which is used in the proof of our hyperspace packing dimension theorem.

▶ Theorem 3.7. For all gauge families φ and all x ∈ X, the following identities hold.

1. dimφ̃(x) = inf
{
s

∣∣∣∣ lim inf
δ→0+

Cδ(x)φs(δ) = 0
}

.

2. Dimφ̃(x) = inf
{
s

∣∣∣∣ lim sup
δ→0+

Cδ(x)φs(δ) = 0
}

.

4 The General Point-to-Set Principle

We now show that the point-to-set principle of J. Lutz and N. Lutz [22] holds in arbitrary
separable metric spaces and for gauged dimensions. The proofs of these theorems are more
delicate and involved than those in [22]. This is partially due to the fact that the metric
spaces here need not be finite-dimensional, and to the weak restrictions we place on the
gauge family.

▶ Theorem 4.1 (general point-to-set principle for Hausdorff dimension). For every separable
metric space X, every gauge family φ, and every set E ⊆ X,

dimφ
H(E) ≥ min

A⊆N
sup
x∈E

dimφ,A(x).

Equality holds if there is a precision family for φ.

▶ Theorem 4.2 (general point-to-set principle for packing dimension). Let X be any separable
metric space, E ⊆ X, and φ a gauge family.
1. If φt(2δ) = O(φs(δ)) and φs(δ) = O(1/ log log(1/δ)) as δ → 0+ for all s < t, then

dimφ
P(E) ≥ min

A⊆N
sup
x∈E

Dimφ,A(x).

2. If there is a precision family for φ, then

dimφ
P(E) ≤ min

A⊆N
sup
x∈E

Dimφ,A(x).

Proof of Theorem 4.2.
1. Assume that φt(2δ) = O (φs(δ)) and φs(δ) = O(1/ log log(1/δ)) hold for all s < t. It

suffices to show that there exists A ⊆ N such that, for all x ∈ E,

Dimφ,A(x) ≤ dimφ
P(E). (4.1)

Let s > t > u > dimφ
P(E). Since u > dimφ

P(E), Lemma 2.3 and our hypothesis on φ tell
us that there is a cover {Ei}i∈Z+ of E such that, for all i ∈ Z+,

dimφ

M(Ei) ≤ u. (4.2)

For each i ∈ Z+ and δ ∈ Q ∩ (0, 1), let F (i, δ) ⊆ D satisfy

|F (i, δ)| = N̂(Ei, δ)
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and

Ei ⊆
⋃

d∈F (i,δ)

Bδ(d).

Define h : Z+ × Q ∩ (0, 1) → ({0, 1}∗)∗ by

h(i, δ) =
(
wi,δ,1, . . . , wi,δ,N̂(Ei,δ)

)
,

where, recalling that f is the function mapping bit strings onto the dense set D,

F (i, δ) =
{
f

(
wi,δ,1

)
, . . . , f

(
wi,δ,N̂(Ei,δ)

)}
.

Let A be an oracle encoding h.
To prove (4.1), let x ∈ E. It suffices to show that

lim
δ→0+

2CA
δ (x)φs(δ) = 0.

For this, let ε > 0. It suffices to show that, for all sufficiently small δ ∈ Q+,

CAδ (x) < log ε

φs(δ)
. (4.3)

For each δ ∈ Q∩ (0, 1), let r(δ) =
⌈
log 1

δ

⌉
and δ′ = 2−r(δ), so that δ

2 < δ′ ≤ δ. Since s > t,
our hypothesis on φ tells us that there is a constant a > 0 such that, for all sufficiently
small δ ∈ Q+,

1
φt(δ′) ≤ a

φs(2δ′) ≤ a

φs(δ)
. (4.4)

Since t > u, (4.2) tells us that, for all i ∈ N,

lim
δ→0+

N̂(Ei, δ)φt(δ) = 0.

Hence, for all i ∈ N and all sufficiently small δ ∈ Q+,

N̂(Ei, δ)φt(δ) <
ε

2a. (4.5)

In particular, then, (4.4) and (4.5) tell us that, for all sufficiently small δ ∈ Q+,

N̂(Ei, δ′) ≤ ε

2aφt(δ′) ≤ ε

2φs(δ)
. (4.6)

For each i, k ∈ Z+ and δ ∈ Q ∩ (0, 1), let π ∈ {0, 1}∗ be a string that encodes i, r(δ), and
k, with

|π| = log k +O(log i+ log r(δ)).

Let M be an oracle Turing machine that, with oracle A and program π, outputs the
string wi,δ′,k that is the kth component of h(i, δ′) (if there is one), where δ′ = 2−r(δ). Let
cM be an optimality constant for M .
To see that (4.3) holds, choose i ∈ Z+ such that x ∈ Ei, and let δ ∈ Q ∩ (0, 1). Let
δ′ = 2−r(δ), and choose k ∈

{
1, . . . , N̂(Ei, δ′)

}
such that x ∈ Bδ′

(
f

(
wi,δ′,k

))
. Then

f
(
wi,δ′,k

)
∈ D ∩Bδ′(x) ⊆ D ∩Bδ(x),
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so (4.6) gives, for all sufficiently small δ ∈ Q+,

CAδ (x) ≤ CA
(
wi,δ′,k

)
≤ CAM

(
wi,δ′,k

)
+ cM

≤ |π| + cM

≤ log k + cM +O(log i+ log r(δ))

≤ log N̂(Ei, δ′) +O(log i+ log r(δ))

≤ log ε

2φs(δ)
+O(log i+ log r(δ)).

Since i is a constant and, by our assumption, log r(δ) ≤ log(log(1/δ) + 1) = O(1/φt(δ)) =
o(1/φs(δ)), the second term vanishes as δ → 0+, affirming (4.3).

2. Let s > t > supx∈E Dimφ,A(x). Then for each x ∈ E and all sufficiently small δ ∈ Q+,
CAδ (x) < log(1/φt(δ)). For all δ ∈ Q+, let

Uδ =
{
Bδ(f(w))

∣∣ CA(w) ≤ log(1/φt(δ))
}
,

and for each i ∈ N, let

Ei = {x | ∀δ < 1/i, x ∈ Uδ} .

Then E ⊆
⋃
i∈NEi. For each δ < 1/i, N(Ei, δ) < 2/φt(δ), so N(Ei, δ)φs(δ) = o(1), and

therefore dimφ

M(Ei) ≤ s. Assuming that there is a precision family for φ, the result
follows by Lemma 2.3. ◀

5 Hyperspace Dimension Theorems

This section presents our main theorems.
As before, let X = (X, ρ) be a separable metric space. The hyperspace of X is the metric

space K(X) = (K(X), ρH), where K(X) is the set of all nonempty compact subsets of X and
ρH is the Hausdorff metric [9] on K(X) defined by

ρH(E,F ) = max
{

sup
x∈E

ρ(x, F ), sup
y∈F

ρ(E, y)
}
,

where ρ(x, F ) = infy∈F ρ(x, y) and ρ(E, y) = infx∈E ρ(x, y).
Let f : {0, 1}∗ → X and D = range(f) be fixed as at the beginning of section 3, so that

D is dense in X. Let D be the set of all nonempty, finite subsets of D. It is well known and
easy to show that D is a countable dense subset of K(X), and it is routine to define from f

a function f̃ : {0, 1}∗ → K(X) such that range(f̃) = D. Thus K(X) is a separable metric
space, and the results in section 4 hold for K(X).

It is important to note the distinction between the classical Hausdorff and packing
dimensions dimH(E) and dimP(E) of a nonempty compact subset E of X and the algorithmic
dimensions dim(E) and Dim(E) of this same set when it is regarded as a point in K(X).

Our first hyperspace dimension theorem applies to lower and upper Minkowski dimensions.
This theorem, which is proven using a counting argument, is very general, placing no
restrictions on the gauge family φ or the separable metric space X.

▶ Theorem 5.1 (hyperspace Minkowski dimension theorem). For every gauge family φ and
every E ⊆ X,

dimφ̃
M(K(E)) = dimφ

M(E) and dimφ̃

M(K(E)) = dimφ

M(E).

STACS 2022
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Our third main result is the surprising fact that in a hyperspace, packing dimension and
upper Minkowski dimension are equivalent for compact sets.

▶ Theorem 5.2. For every separable metric space X, every compact set E ⊆ X, and every
gauge family φ such that φt(2δ) = O(φs(δ)) and φs(δ) = O(1/ log log(1/δ)) as δ → 0+ for
all s < t and there is a precision family for φ,

dimφ̃
P(K(E)) = dimφ̃

M(K(E)).

The point-to-set principle is central to our proof of this theorem: We recursively construct
a single compact set L ⊆ E (i.e., a single point in the hyperspace K(E)) that has high
Kolmogorov complexity at infinitely many precisions, relative to an appropriate oracle A. We
then invoke Theorem 3.7 to show that this L has high φ-gauged strong algorithmic dimension
relative to A. By the point-to-set principle, then, K(E) has high packing dimension.

▶ Observation 5.3. The conclusion of Theorem 5.2 does not hold for arbitrary sets E.

Proof. Let E = {1/n : n ∈ N}. Then dimθ

M(E) = 1/2, but every compact subset of E is
finite, so K(E) is countable and dimθ̃

P(K(E)) = 0. ◀

▶ Theorem 5.4 (hyperspace packing dimension theorem). If X is a separable metric space,
E ⊆ X is an analytic set, and φ is a gauge family such that φs(2δ) = O(φs(δ)) and
φs(δ) = O(1/ log log(1/δ)) as δ → 0+ for all s ∈ (0,∞) and there is a precision family for φ,
then

dimφ̃
P(K(E)) ≥ dimφ

P(E).

Proof. For compact sets E, Theorem 5.2 and the hyperspace Minkowski dimension theorem
(Theorem 5.1) imply dimφ̃

P(K(E)) = dimφ

M(E).
A result of Joyce and Preiss (Corollary 1 in [13]) states that every analytic set with

positive (possibly infinite) gauged packing measure contains a compact subset with positive
(finite) packing measure in the same gauge. It follows that if E is analytic, then for all ε > 0
there exists a compact subset Eε ⊆ E with dimφ

P(Eε) ≥ dimφ
P(E) − ε. Therefore

dimφ̃
P(K(Eε)) = dimφ

M(Eε)
≥ dimφ

P(Eε)
≥ dimφ

P(E) − ε.

Letting ε → 0 completes the proof. ◀

6 Conclusion

Our results exhibit and amplify the power of the theory of computing to make unexpected
contributions to other areas of the mathematical sciences. We hope and expect to see more
such results in the near future.

We mention three open problems whose solutions may contribute to such progress. First,
at the time of this writing, a hyperspace Hausdorff dimension theorem remains an open
problem. The difficulty in adapting our approach to that problem is that in the proof of
Theorem 5.2, the set L we construct is only guaranteed to have high complexity at infinitely
many precisions. An analogous proof for Hausdorff dimension would require constructing a
set L that has high complexity at all but finitely many precisions.
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Second, it would be useful to identify classes of spaces in which Billingsley-type algorithmic
dimensions – dimensions shaped by probability measures – can be formulated.

Finally, we do not at this time know how to characterize algorithmic dimensions in
separable metric spaces in terms of martingales or more general gales. This is despite the fact
that algorithmic dimensions were first formulated in these terms in sequence spaces [20, 1].
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Abstract
We study the relationship between various one-way communication complexity measures of a
composed function with the analogous decision tree complexity of the outer function. We consider
two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs.
More generally, we show the following when the gadget is Inner Product on 2b input bits for all
b ≥ 2, denoted IP.

If f is a total Boolean function that depends on all of its n input bits, then the bounded-error
one-way quantum communication complexity of f ◦ IP equals Ω(n(b − 1)).
If f is a partial Boolean function, then the deterministic one-way communication complexity of
f ◦ IP is at least Ω(b · D→

dt(f)), where D→
dt(f) denotes non-adaptive decision tree complexity of f .

To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We
then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound.
Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede
and Khachatrian [Adv. Appl. Math.’98], and Frankl and Tokushige [Comb.’99].

It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way
communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f .
In contrast, we show the following when the inner gadget is the AND function on 2 input bits.

There exists a function for which even the quantum non-adaptive AND decision tree complexity
of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND.
However, for symmetric functions f , the non-adaptive AND decision tree complexity of f is at
most quadratic in the (even two-way) communication complexity of f ◦ AND.

In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does
not lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first
bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a
connection between the one-way communication complexity of f and the Möbius sparsity of f , and
then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the
non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior
work on combinatorial group testing; for the sake of completeness, we include a proof of this result.

It is well known that the rank of the communication matrix of a function F is an upper bound
on its deterministic one-way communication complexity. This bound is known to be tight for some
F . However, in our final result we show that this is not the case when F = f ◦ AND. More precisely
we show that for all f , the deterministic one-way communication complexity of F = f ◦ AND is at
most (rank(MF ))(1 − Ω(1)), where MF denotes the communication matrix of F .
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1 Introduction

Composed functions are important objects of study in analysis of Boolean functions and
computational complexity. For Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1}, their composition f ◦g : ({0, 1}m)n → {0, 1} is defined as follows: f ◦g(x1, . . . , xn) :=
f(g(x1), . . . , g(xn)). In other words, f ◦ g is the function obtained by first computing g on
n disjoint inputs of m bits each, and then computing f on the n resultant bits. Composed
functions have been extensively looked at in the complexity theory literature, with respect
to various complexity measures [8, 24, 39, 42, 43, 9, 44, 35, 5, 18, 2, 17, 4].

Of particular interest to us is the case when g is a communication problem (also referred
to as “gadget”). More precisely, let g : {0, 1}b × {0, 1}b → {0, 1} and f : {0, 1}n → {0, 1}
be Boolean functions. Consider the following communication problem: Alice has input
x = (x1, . . . , xn) and Bob has input y = (y1 . . . , yn) where xi, yi ∈ {0, 1}b for all i ∈ [n].
Their goal is to compute f ◦ g((x1, y1), . . . , (xn, yn)) using as little communication as possible.
A natural protocol is the following: Alice and Bob jointly simulate an efficient query algorithm
for f , using an optimal communication protocol for g to answer each query. Lifting theorems
are statements that say this naive protocol is essentially optimal. Such theorems enable us
to prove lower bounds on the rich model of communication complexity by proving feasibly
easier-to-prove lower bounds in the query complexity (decision tree) model. Various lifting
theorems have been proved in the literature [19, 13, 38, 20, 11, 48, 16, 21, 22, 27, 30, 10].

In this work we are interested in the one-way communication complexity of composed
functions. Here, a natural protocol is for Alice and Bob to simulate a non-adaptive decision
tree for the outer function, using an optimal one-way communication protocol for the inner
function. Thus, the one-way communication complexity of f ◦ g is at most the non-adaptive
decision tree complexity of f times the one-way communication complexity of g.

Lifting theorems in the one-way model are less studied than in the two-way model.
Montanaro and Osborne [36] observed that the deterministic one-way communication com-
plexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f . Thus,
non-adaptive parity decision tree complexity lifts “perfectly” to deterministic communication
complexity with the XOR gadget. Kannan et al. [25] showed that under uniformly distributed
inputs, bounded-error non-adaptive parity decision tree complexity lifts to one-way bounded-
error distributional communication complexity with the XOR gadget. Hosseini, Lovett and
Yaroslavtsev [23] showed that randomized non-adaptive parity decision tree complexity lifts
to randomized communication complexity with the XOR gadget in the one-way broadcasting
model with Θ(n) players.
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We explore the tightness of the naive communication upper bound for two different choices
of the gadget g: the Inner Product function, and the two-input AND function. For each
choice of g, we compare the one-way communication complexity of f ◦ g with an appropriate
type of non-adaptive decision tree complexity of f . Below, we motivate and state our results
for each choice of the gadget. Formal definitions of the measures considered in this section
can be found in Section 2 and Appendix A.

Inner Product Gadget

Let Q→
cc,ε(·), R→

cc,ε(·) and D→
cc (·) denote quantum ε-error, randomized ε-error and deterministic

one-way communication complexity, respectively. When we allow the parties to share an
arbitrary input-independent entangled state in the beginning of the protocol, denote the
one-way quantum ε-error communication complexity by Q∗,→

cc,ε (·). Let Q→
dt(·) and D→

dt(·) denote
bounded-error quantum non-adaptive decision tree complexity and deterministic non-adaptive
decision tree complexity, respectively. For an integer b > 0, let IP : {0, 1}b × {0, 1}b → {0, 1}
denote the Inner Product Modulo 2 function, that outputs the parity of the bitwise AND of
two b-bit input strings. Our first result shows that if f is a total function that depends on all of
its input bits, the quantum (and hence, randomized) bounded-error one-way communication
complexity of f ◦ IP is Ω(n(b − 1)). Let Hbin(·) denote the binary entropy function. If
ε = 1/2− Ω(1), then 1−Hbin(ε) = Ω(1).

▶ Theorem 1.1. Let f : {0, 1}n → {0, 1} be a total Boolean function that depends on all
its inputs (i.e., it is not a junta on a strict subset of its inputs), and let ε ∈ (0, 1/2). Let
IP : {0, 1}b × {0, 1}b → {0, 1} denote the Inner Product function on 2b input bits for b ≥ 1.
Then Q→

cc,ε(f ◦ IP) ≥ (1−Hbin(ε))n(b− 1) and Q∗,→
cc,ε (f ◦ IP) ≥ (1−Hbin(ε))n(b− 1)/2.

▶ Remark 1.2. In an earlier manuscript [40], the second author proved a lower bound of
(1 − Hbin(ε))n(b − 1) on a weaker complexity measure, namely R→

cc,ε(F ), via information-
theoretic tools. Kundu [28] subsequently observed that a quantum lower bound can also be
obtained by additionally using Holevo’s theorem. They also suggested to the second author
via private communication that one might be able to recover these bounds using a result of
Klauck [26]. This is indeed the approach we take, and we thank them for suggesting this
and pointing out the reference.

In order to prove Theorem 1.1, we appeal to a result of Klauck [26, Theorem 3], who
showed that the one-way ε-error quantum communication complexity of a function F is at
least (1−Hbin(ε)) · VC(F ), where VC(F ) denotes the VC-dimension of F (see Definition 2.7).
In the case when the parties can share an arbitrary entangled state in the beginning of a
protocol, Klauck showed a lower bound of (1−Hbin(ε)) ·VC(F )/2. We exhibit a set of inputs
that witnesses the fact that VC(f ◦ IP) ≥ n(b−1). Note that Theorem 1.1 is useful only when
b > 1. Indeed, no non-trivial lifting statement is true for b = 1 when f is the AND function
on n bits, since in this case, f ◦ IP = AND2n, whose one-way communication complexity is 1.

Our second result with the Inner Product gadget relates the deterministic one-way
communication complexity of f ◦ IP to the deterministic non-adaptive decision tree complexity
of f , where f is an arbitrary partial Boolean function.

▶ Theorem 1.3. Let S ⊆ {0, 1}n be arbitrary, and f : S → {0, 1} be a partial Boolean
function. Let b ≥ 2 and IP : {0, 1}b × {0, 1}b → {0, 1}. Then D→

cc (f ◦ IP) = Ω(b · D→
dt(f)).

Given a protocol Π, our proof extracts a set of variables of cardinality linear in the complexity
of Π, whose values always determine the value of f . The following claim which follows
directly from a result due to Ahlswede and Khachatrian [1] and independently Frankl and
Tokushige [15], is a crucial ingredient in our proof.

STACS 2022



49:4 One-Way Communication Complexity and Non-Adaptive Decision Trees

▶ Theorem 1.4. Let q ≥ 3 and 1 ≤ d ≤ n/3. Let A ⊆ [q]n be such that for all x(1) =
(x(1)

1 , . . . , x
(1)
n ), x(2) = (x(2)

1 , . . . , x
(2)
n ) ∈ A, |{i ∈ [n] | x(1)

i = x
(2)
i }| ≥ d. Then, |A| < qn− d

10 .

We refer the reader to the full version of our paper [33] for a proof.
▶ Remark 1.5. An analogous lifting theorem for deterministic one-way protocols for total
outer functions follows as a special case of both Theorem 1.1 and Theorem 1.3. However,
the statement admits a simple and direct proof based on a fooling set argument.

Theorem 1.1 and Theorem 1.3 give lower bounds even when the gadget is the Inner
Product function on 4 input bits (and lower bounds do not hold for the Inner Product gadget
with fewer inputs). It is worth mentioning here that prior works that consider lifting theorems
with the Inner Product gadget [11, 48, 10], albeit in the two-way model of communication
complexity, require a super-constant gadget size.

AND Gadget

Interactive communication complexity of functions of the form f ◦ AND have gained a recent
interest [27, 47]. In order to state and motivate our results regarding when the inner gadget
is the 2-bit AND function, we first discuss some known results in the case when the inner
gadget is the 2-bit XOR function.

Consider non-adaptive decision trees, where the trees are allowed to query arbitrary
parities of the input variables. Denote the minimum cost (number of parity queries) of
such a tree computing a Boolean function f , by NAPDT(f). An efficient non-adaptive
parity decision tree for f can easily be simulated to obtain an efficient deterministic one-way
communication protocol for f ◦ XOR. Thus, D→

cc (f ◦ XOR) ≤ NAPDT(f). Montanaro and
Osborne [36] observed that this inequality is, in fact, tight for all Boolean functions. More
precisely,

▷ Claim 1.6 ([36]). For all Boolean functions f : {0, 1}n → {0, 1}, D→
cc (f ◦ XOR) =

NAPDT(f).

If the inner gadget were AND instead of XOR, then the natural analogous decision tree
model to consider would be non-adaptive decision trees that have query access to arbitrary
ANDs of subsets of inputs. Denote the minimum cost (number of AND queries) of such a tree
computing a Boolean function f by NAADT(f). Clearly, D→

cc (f ◦AND) is bounded from above
by NAADT(f), since a non-adaptive AND decision tree can be easily simulated to give a
one-way communication protocol for f ◦AND of the same complexity. Thus, D→

cc (f ◦AND) ≤
NAADT(f). On the other hand, one can show that D→

cc (f ◦ AND) ≥ log(NAADT(f)) (see
Claim 4.3). Thus

log(NAADT(f)) ≤ D→
cc (f ◦ AND) ≤ NAADT(f). (1)

We explore if an analogous statement to Claim 1.6 holds true if the inner function were
AND instead of XOR. That is, is the second inequality in Equation (1) always tight?

We give a negative answer in a very strong sense and exhibit a function for which the
first inequality is tight (up to an additive constant). We show that there is an exponential
separation between these measures even if one allows the decision trees to have quantum
query access to ANDs of subsets of input variables. It is worth noting that, in contrast, if one
is given quantum query access to parities (in place of ANDs) of subsets of input variables,
then one can completely recover an n-bit string using just 1 query [6], rendering this model
trivial. Let QNAADT(f) denote the bounded-error quantum non-adaptive AND decision
tree complexity of f .
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▶ Theorem 1.7. There exists a function f : {0, 1}n → {0, 1} such that QNAADT(f) =
Ω(2D→

cc (f◦AND)).

The function f we use to witness the bound in Theorem 1.7 is a modification of the well-
studied Odd-Max-Bit function, which we denote OMBn. This function outputs 1 if and only
if the maximum index of the input string that contains a 0, is odd (see Definition 2.3). A
⌈log(n+1)⌉-cost one-way communication protocol is easy to show, since Alice can simply send
Bob the maximum index where her input is 0 (if it exists), and Bob can use this along with
his input to conclude the parity of the maximum index where the bitwise AND of their inputs
is 0. A crucial property that we use to show a lower bound of Ω(n) on QNAADT(OMBn) is
that OMBn has large alternating number, that is, there is a monotone path on the Boolean
hypercube from 0n to 1n on which the value of OMBn flips many times.

Theorem 1.7 implies that, in contrast to the lifting theorem with the XOR gadget
(Claim 1.6), the measure of non-adaptive AND decision tree complexity does not lift to
a one-way communication lower bound for f ◦ AND. However we show that a statement
analogous to Claim 1.6 does hold true for symmetric functions f , albeit with a quadratic
factor, even when the measure is two-way communication complexity, denoted Dcc(·).

▶ Theorem 1.8. Let f : {0, 1}n → {0, 1} be a symmetric function. Then NAADT(f) =
O(Dcc(f ◦ AND)2).

In fact we prove a stronger bound in which Dcc(f ◦ AND) above is replaced by
log rank(Mf◦AND), where Mf◦AND denotes the communication matrix of f ◦ AND. That
is, we show that for symmetric functions f ,

NAADT(f) = O(log2 rank(Mf◦AND)). (2)

Since it is well known (Equation (6)) that the communication complexity of a function is
at least as large as the logarithm of the rank of its communication matrix, this implies
Theorem 1.8. There have been multiple works (see, for example, [8, 47, 27] and the references
therein) studying the communication complexity of AND functions in connection with
the log-rank conjecture [31] which states that the communication complexity is bounded
from above by a polynomial in the logarithm of the rank of the communication matrix.
Among other things, Buhrman and de Wolf [8] observed that the log-rank conjecture
holds for symmetric functions composed with AND. In particular, they showed that if f
is symmetric, then Dcc(f ◦ AND) = O(log rank(Mf◦AND))). Most recently, Knop et al. [27]
showed that Dcc(f ◦ AND) = O(poly(log rank(Mf◦AND), log n) for all Boolean functions
f : {0, 1}n → {0, 1}, nearly resolving the log-rank conjecture for AND functions.

While we have a quadratically worse dependence in the RHS of Equation (2) as compared
to the above-mentioned bound for symmetric functions due to Buhrman and de Wolf, our
upper bound is on a complexity measure that can be exponentially larger than communication
complexity in general (Theorem 1.7).

Buhrman and de Wolf showed a lower bound on log rank(Mf◦AND) for symmetric functions
f . An upper bound on NAADT(f) implicitly follows from prior work on group testing [14],
but we provide a self-contained probabilistic proof for completeness. Combining these two
results yields Equation (2), and hence Theorem 1.8.

Suitable analogues of Theorem 1.7 and Theorem 1.8 can be easily seen to hold when
the inner gadget is OR instead of AND. In this case, the relevant decision tree model
is non-adaptive OR decision trees. Interestingly, these decision trees are studied in the
seemingly different context of non-adaptive group testing algorithms. Non-adaptive group
testing is an active area of research (see, for, example, [12] and the references therein), and
has additionally gained significant interest of late in view of the ongoing pandemic (see, for
example, [50]).
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Our final result regarding the AND gadget deals with the relationship between one-way
communication complexity and rank of the underlying communication matrix. It is easy to
show that for functions F : {0, 1}m × {0, 1}n → {0, 1},

log rank(MF ) ≤ D→
cc (F ) ≤ rank(MF ), (3)

where MF denotes the communication matrix of F and is defined by MF (x, y) = F (x, y),
and rank(·) denotes real rank. The first bound can be seen to be tight for functions with
maximal rank, for example the Equality function. The second inequality is tight, for example,
for the Addressing function on (log n+n) input bits (see Definition A.1) where Alice receives
n target bits and Bob receives log n addressing bits. Sanyal [41] showed that the upper
bound can be improved for functions of the form F = f ◦ XOR. More precisely they showed
that for all Boolean functions f : {0, 1}n → {0, 1},

D→
cc (f ◦ XOR) ≤ O

(√
rank(Mf◦XOR) log rank(Mf◦XOR)

)
, (4)

and moreover this bound is tight up to the logarithmic factor on the RHS, when f is the
Addressing function. We show that the same bound does not hold when the XOR gadget is
replaced by AND. We show that (see [33, Corollary A.5]) when f is the Addressing function,
then

D→
cc (f ◦ AND) ≥ rank(Mf◦AND)log3 2 ≈ rank(Mf◦AND)0.63, (5)

Thus it is plausible that the upper bound in terms of rank from Equation (3) might be tight
for some function of the form f ◦ AND. We show that this is not the case.

▶ Theorem 1.9. Let f : {0, 1}n : {0, 1} be a Boolean function. Then,

D→
cc (f ◦ AND) ≤ (rank(Mf◦AND))(1− Ω(1)).

We show that D→
cc (f ◦ AND) is equal to the logarithm of a measure that we define in this

work: the Möbius pattern complexity of f , which is the total number of distinct evaluations of
the monomials in the Möbius expansion of f (see Section 2 for a formal definition of Möbius
expansion).

▶ Definition 1.10 (Möbius pattern complexity). Let f : {0, 1}n → {0, 1} be a Boolean function,
and let f =

∑
S∈Sf

f̃(S)ANDS be its Möbius expansion. For an input x ∈ {0, 1}n, define
the pattern of x to be (ANDS(x))S∈Sf

. Define the Möbius pattern complexity of f , denoted

PatM(f), by PatM(f) :=
∣∣∣{P ∈ {0, 1}Sf : P = (ANDS(x))S∈Sf

for some x ∈ {0, 1}n
}∣∣∣.

When clear from context, we refer to the Möbius pattern complexity of f just as the pattern
complexity of f .

All of our results involving bounds for D→
cc (f ◦AND) use the above-mentioned equivalence

between it and log(PatM(f)) (see Claim 4.1). We unravel interesting mathematical structure
in the Möbius supports of Boolean functions, and use them to bound their pattern complexity.
We hope that pattern complexity will prove useful in future research.

Organization

We introduce the necessary preliminaries in Section 2. In Section 3 we prove our results
regarding the Inner Product gadget (Theorem 1.1 and Theorem 1.3). In Section 4 we prove
our results regarding the AND gadget (Theorem 1.7 and Theorem 1.8). We provide remaining
preliminaries and missing proofs from the main text in the remaining appendices. Due to
space constraints, some proofs are deferred to the full version of our paper [33].
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2 Preliminaries

All logarithms in this paper are taken base 2. We use the notation [n] to denote the set
{1, . . . , n}. We often identify subsets of [n] with their corresponding characteristic vectors
in {0, 1}n. The view we take will be clear from context. Let S ⊆ {0, 1}n be an arbitrary
subset of the Boolean hypercube, and let f : S → {0, 1} be a partial Boolean function. If
S = {0, 1}n, then f is said to be a total Boolean function. When not explicitly mentioned
otherwise, we assume Boolean functions to be total.

▶ Definition 2.1 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hbin(p), is defined
to be the Shannon entropy of a random variable taking two distinct values with probabilities p
and 1− p.

Hbin(p) := p log 1
p

+ (1− p) log 1
1− p .

We now define the Inner Product Modulo 2 function on 2b input bits, denoted IP (we
drop the dependence of IP on b for convenience; the value of b will be clear from context).

▶ Definition 2.2 (Inner Product Modulo 2). For an integer b > 0, define the Inner Product
Modulo 2 function, denoted IP : {0, 1}b × {0, 1}b → {0, 1} by IP(x1, . . . , xb, y1, . . . , yb) =
⊕i∈[b](AND(xi, yi)).

If f is a partial function, so is f ◦ IP.

▶ Definition 2.3 (Odd-Max-Bit). Define the Odd-Max-Bit function,1 denoted OMBn :
{0, 1}n → {0, 1}, by OMBn(x) = 1 if max {i ∈ [n] : xi = 0} is odd, and OMBn(x) = 0
otherwise. Define OMBn(1n) = 0.

Möbius Expansion of Boolean Functions

Every Boolean function f : {0, 1}n → {0, 1} has a unique expansion as f =
∑

S⊆[n] f̃(S)ANDS ,
where ANDS denotes the AND of the input variables in S and each f̃(S) is a real number.
We refer to the functions ANDS as monomials, the expansion as the Möbius expansion of f ,
and the real coefficients f̃(S) as the Möbius coefficients of f . It is known [3] that the Möbius
coefficients can be expressed as f̃(S) =

∑
X⊆S(−1)|S\X|f(X). Define the Möbius support of

f , denoted Sf , to be the set Sf :=
{
S ⊆ [n] : f̃(S) ̸= 0

}
. Define the Möbius sparsity of f ,

denoted spar(f), to be spar(f) := |Sf |.

Decision Trees and Their Variants

For a partial Boolean function f : S→ {0, 1}, the deterministic non-adaptive query complexity
(alternatively the non-adaptive decision tree complexity) D→

dt(f) is the minimum integer
k such that the following is true: there exist k indices i1, . . . , ik ∈ [n], such that for
every Boolean assignment ai1 , . . . , aik

to the input variables xi1 , . . . , xik
, f is constant on

S ∩ {x ∈ {0, 1}n | ∀j = 1, . . . , k, xij = aij}. Equivalently D→
dt(f) is the minimum number of

variables such that f can be expressed as a function of these variables. It is easy to see that
if f is a total function that depends on all input variables, then D→

dt(f) = n.

1 In the literature, OMBn is typically defined with a 1 in the max instead of 0. That function behaves
very differently from our OMBn. For example, it is known that even the weakly unbounded-error
communication complexity of OMBn ◦ AND (under the standard definition of OMBn) is polynomially
large in n [7]. In contrast, it is easy to show that even the deterministic one-way communication
complexity of OMBn ◦ AND equals ⌈log(n + 1)⌉ with our definition (see Theorem 4.8).
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Define the non-adaptive parity decision tree complexity of f : {0, 1}n → {0, 1}, denoted
by NAPDT(f), to be the minimum number of parities such that f can be expressed as
a function of these parities. Define the non-adaptive AND decision tree complexity of
f : {0, 1}n → {0, 1}, denoted by NAADT(f), to be the minimum number of monomials
such that f can be expressed as a function of these monomials. Any set of monomials S
whose evaluations determine f is called an NAADT basis for f . We also require the natural
randomized and quantum analogues of non-adaptive AND decision tree complexity, denoted
RNAADT(·) and QNAADT(·), respectively. Formal definitions of these measures can be found
in Appendix A. We first note some simple observations about the non-adaptive AND decision
tree complexity of Boolean functions.

▷ Claim 2.4. Let f : {0, 1}n → {0, 1} be a Boolean function and let S = {S1, . . . , Sk} be a
NAADT basis for f . Then, every monomial in the Möbius support of f equals

∏
i∈T ANDSi ,

for some T ⊆ [k].

Proof. Since S is an NAADT basis for f , the values of {ANDSi
: i ∈ [k]} determine the value

of f . That is, we can express f as

f =
∑

T ⊆[k]

bT

∏
i∈T

ANDSi

∏
j /∈T

(1− ANDSj ),

for some values of bT ∈ {0, 1}. Expanding this expression only yields monomials that are
products of ANDSi ’s from S. The claim now follows since the Möbius expansion of a Boolean
function is unique. ◁

▷ Claim 2.5. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius sparsity r. Then
log r ≤ NAADT(f) ≤ r.

Proof. The upper bound NAADT(f) ≤ r follows from the fact that knowing the values of all
ANDs in the Möbius support of f immediately yields the value of f by plugging these values
in the Möbius expansion of f . That is, the Möbius support of f acts as an NAADT basis
for f .

For the lower bound, let NAADT(f) = k, and let S = {S1, . . . , Sk} be an NAADT basis
for f . Claim 2.4 implies that every monomial in the Möbius expansion of f is a product of
some of these ANDSi ’s. Thus, the Möbius sparsity of f is at most 2k, yielding the required
lower bound. ◁

Every Boolean function f : {0, 1}n → R can be uniquely written as f =∑
S⊆[n]

f̂(S)(−1)⊕j∈Sxj . This representation is called the Fourier expansion of f and the

real values f̂(S) are called the Fourier coefficients of f . The Fourier sparsity of f is defined to
be number of non-zero Fourier coefficients of f . Sanyal [41] showed the following relationship
between non-adaptive parity decision complexity of a Boolean function and its Fourier
sparsity.

▶ Theorem 2.6 ([41]). Let f : {0, 1}n → {−1, 1} be a Boolean function with Fourier sparsity
r. Then NAPDT(f) = O(

√
r log r).

This theorem is tight up to the logarithmic factor, witnessed by the Addressing function.



N. S. Mande, S. Sanyal, and S. Sherif 49:9

Communication Complexity

The standard model of two-party communication complexity was introduced by Yao [49]. In
this model, there are two parties, say Alice and Bob, each with inputs x, y ∈ {0, 1}n. They
wish to jointly compute a function F (x, y) of their inputs for some function F : U → {0, 1}
that is known to them, where U is a subset of {0, 1}n × {0, 1}n. They use a communication
protocol agreed upon in advance. The cost of the protocol is the number of bits exchanged
in the worst case (over all inputs). Alice and Bob are required to output the correct answer
for all inputs (x, y) ∈ U . The communication complexity of F is the best cost of a protocol
that computes F , and we denote it by Dcc(F ). See, for example, [29], for an introduction to
communication complexity.

In a deterministic one-way communication protocol, Alice sends a message m(x) to Bob.
Then Bob outputs a bit depending on m(x) and y. The complexity of the protocol is the
maximum number of bits a message contains for any input x to Alice. In a randomized
one-way protocol, the parties share some common random bits R. Alice’s message is a
function of x and R. Bob’s output is a function of m(x), y and R. The protocol Π is said
to compute F with error ε ∈ (0, 1/2) if for every (x, y) ∈ U , the probability over R of the
event that Bob’s output equals F (x, y) is at least 1 − ε. The cost of the protocol is the
maximum number of bits contained in Alice’s message for any x and R. In the one-way
quantum model, Alice sends Bob a quantum message, after which Bob performs a projective
measurement and outputs the measurement outcome. Depending on the model of interest,
Alice and Bob may or may not share an arbitrary input-independent entangled state for free.
We refer the reader to [46] for an introduction to quantum communication complexity. As in
the randomized setting, a protocol Π computes F with error ε if Pr[Π(x, y) ̸= f(x, y)] ≤ ε
for all (x, y) ∈ U .

The deterministic (ε-error randomized, ε-error quantum, ε-error quantum with entan-
glement, respectively) one-way communication complexity of F , denoted by D→

cc (·) (R→
cc,ε(·),

Q→
cc,ε(·), Q∗,→

cc,ε (·), respectively), is the minimum cost of any deterministic (ε-error randomized,
ε-error quantum, ε-error quantum with entanglement, respectively) one-way communication
protocol for F .

Total functions F whose domain is {0, 1}n × {0, 1}n induce a communication matrix MF

whose rows and columns are indexed by strings in {0, 1}n, and the (x, y)’th entry equals
F (x, y). It is known that

log rank(MF ) ≤ Dcc(F ) ≤ O(
√

rank(MF ) log rank(MF )), (6)

where rank(·) denotes real rank. The first inequality is well known (see, for instance [29]),
and the second inequality was shown by Lovett [32]. One of the most famous conjectures
in communication complexity is the log-rank conjecture, due to Lovász and Saks [31], that
proposes that the communication complexity of any Boolean function is polylogarithmic in its
rank, i.e. the first inequality in Equation (6) is always tight up to a polynomial dependence.

Buhrman and de Wolf [8] observed that the Möbius sparsity of a Boolean function f

equals the rank of the communication matrix of f ◦ AND. That is, for all Boolean functions
f : {0, 1}n → {0, 1},

spar(f) = rank(Mf◦AND). (7)

In view of the first inequality in Equation (6), this yields

Dcc(f ◦ AND) ≥ log(spar(f)). (8)

We require the definition of the Vapnik-Chervonenkis (VC) dimension [45].
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▶ Definition 2.7 (VC-dimension). Consider a function F : {0, 1}n × {0, 1}n → {0, 1}. A
subset of columns C of MF is said to be shattered if all of the 2|C| patterns of 0’s and 1’s
are attained by some row of MF when restricted to the columns C. The VC-dimension of a
function F : {0, 1}n × {0, 1}n, denoted VC(F ), is the maximum size of a shattered subset of
columns of MF .

Klauck [26] showed that the one-way quantum communication complexity of a function
F is bounded below by the VC-dimension of F .

▶ Theorem 2.8 ([26, Theorem 3]). Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function.
Then, Q→

cc,ε(F ) ≥ (1−Hbin(ε))VC(F ) and Q∗,→
cc,ε (F ) ≥ (1−Hbin(ε))VC(F )/2.

3 Composition with Inner Product

In this section we prove Theorem 1.1 and Theorem 1.3, which are our results regarding the
quantum and deterministic one-way communication complexities, respectively, of functions
composed with a small Inner Product gadget.

Quantum Complexity

Proof of Theorem 1.1. By Theorem 2.8, it suffices to show that VC(f ◦ IP) ≥ n(b − 1).
Since f is a function that depends on all its input variables, the following holds. For
each index i ∈ [n], there exist inputs z(i,0) = z

(i)
1 , . . . , z

(i)
i−1, 0, z

(i)
i+1, . . . , z

(i)
n and z(i,1) =

z
(i)
1 , . . . , z

(i)
i−1, 1, z

(i)
i+1, . . . , z

(i)
n such that f(z(i,0)) = vi and f(z(i,1)) = 1 − vi. That is, z(i,0)

and z(i,1) have different function values, but differ only on the i’th bit.
For each i ∈ [n] and j ∈ {2, 3, . . . , b}, define a string y(i,j) ∈ {0, 1}nb as follows. For all

k ∈ [n] and ℓ ∈ [b],

y
(i,j)
k,ℓ =


z

(i)
k if k ̸= i and ℓ = 1

1 if k = i and ℓ = j

0 otherwise.

That is, for k ̸= i, the k’th block of y(i,j) is (z(i)
k , 0b−1), and the i’th block of y(i,j) is

(0j−1, 1, 0b−j). Consider the set of n(b − 1)-many columns of Mf◦IP, one for each y(i,j).
We now show that this set of columns is shattered. Consider an arbitrary string c =
c1,2, . . . , c1,b, . . . , cn,2, . . . , cn,b ∈ {0, 1}n(b−1). We now show the existence of a row that yields
this string on restriction to the columns described above. Define a string x ∈ {0, 1}nb as
follows. For all i ∈ [n] and j ∈ [b], xi,1 = 1 and

xi,j =
{
ci,j if vi = 0
1− ci,j if vi = 1.

That is, the first element of each block of x is 1, and the remaining part of any block, say
the i’th block, equals either the string ci,2, . . . , ci,b or its bitwise negation, depending on the
value of vi.

To complete the proof, we claim that the row of Mf◦IP corresponding to this string x

equals the string c when restricted to the columns
{
y(i,j)}

i∈[n],j∈{2,3,...,b}. To see this, fix
i ∈ [n] and j ∈ {2, 3, . . . , b} and consider Mf◦IP(x, y(i,j)). Next, for each k ∈ [n] with k ̸= i,
the inner product of the k’th block of x with the k’th block of y equals z(i)

k , since xk,1 = 1
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and the first element of the k’th block of y(i,j) equals z(i)
k , and all other elements of the block

are 0 by definition. In the i’th block of y(i,j), only the j’th element is non-zero, and equals 1
by definition. Moreover, xi,j = ci,j if vi = 0, and equals 1− ci,j otherwise. Hence, the inner
products of the i’th blocks of x and y(i,j) equals ci,j if vi = 0, and equals 1− ci,j otherwise.
Thus, the string obtained on taking the block-wise inner product of x and y(i,j) equals
z

(i)
1 , . . . , z

(i)
i−1, ci,j , z

(i)
i+1, . . . , z

(i)
n if vi = 0 and z(i)

1 , . . . , z
(i)
i−1, 1− ci,j , z

(i)
i+1, . . . , z

(i)
n if vi = 1. By

our definitions of z(i,0), z(i,1) and vi for each i ∈ [n], it follows that the value of f when
applied to either of these inputs equals ci,j . This concludes the proof. ◀

Deterministic Complexity

We now prove Theorem 1.3, which gives a lower bound on the deterministic one-way
communication complexity of f ◦ IP for partial functions f . A crucial ingredient of our proof
is Theorem 1.4. Now we proceed to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let q := 2b − 1 and let Π be an optimal one-way deterministic
protocol for f ◦ IP of complexity D→

cc (f ◦ IP) =: c log q. The theorem is trivially true if
c ≥ n/30 since D→

dt(f) ≤ n. In the remainder of the proof we assume that c < n/30. Π
induces a partition of {0, 1}nb into at most qc parts; each part corresponds to a distinct
message. There are (2b − 1)n = qn inputs (x1, . . . , xn) to Alice such that for each i, xi ̸= 0b.
Let Z be the set of those inputs. Identify Z with [q]n. By the pigeon-hole principle there
exists one part P in the partition induced by Π that contains at least qn−c strings in Z.
We now invoke Theorem 1.4 with d set to 10c. This is applicable since d ≤ n/3 and the
assumption b ≥ 2 implies that q ≥ 3. Theorem 1.4 implies that there are two strings
x(1) = (x(1)

1 , . . . , x
(1)
n ), x(2) = (x(2)

1 , . . . , x
(2)
n ) ∈ P ∩Z such that |{i ∈ [n] | x(1)

i = x
(2)
i }| < 10c.

Let I := {i ∈ [n] | x(1)
i = x

(2)
i }. Let z = (z1, . . . , zn) denote a generic input to f . We

claim that for each Boolean assignment (ai)i∈I to the variables in I, f is constant on
S∩{z : ∀i ∈ I, zi = ai}. This will prove the theorem, since querying the variables {zi | i ∈ I}
determines f ; thus D→

dt(f) ≤ |I| < 10c. Towards a contradiction, assume that there exist
z(1), z(2) ∈ S ∩ {z : ∀i ∈ I, zi = ai} such that f(z(1)) ̸= f(z(2)). We will construct a string
y = (y1, . . . , yn) ∈ {0, 1}nb in the following way:
i ∈ I : Choose yi such that IP(yi, x

(1)
i ) = IP(yi, x

(2)
i ) = ai.

i /∈ I : Choose yi such that IP(yi, x
(1)
i ) = z

(1)
i and IP(yi, x

(2)
i ) = z

(2)
i .

Note that we can always choose a y as above since for each i ∈ [n], x(1)
i , x

(2)
i ≠ 0b, and for each

i /∈ I, x(1)
i ̸= x

(2)
i . By the above construction, f ◦ IP(x(1), y) = f(z(1)) and f ◦ IP(x(2), y) =

f(z(2)). Since by assumption f(z(1)) ̸= f(z(2)), we have that f ◦ IP(x(1), y) ̸= f ◦ IP(x(2), y).
But since Alice sends the same message on inputs x(1) and x(2), Π produces the same output
on (x(1), y) and (x(2), y). This contradicts the correctness of Π. ◀

▶ Remark 3.1. It can be seen that the proof of Theorem 1.3 also works when the inner gadget
g : {0, 1}b1 × {0, 1}b2 → {0, 1} satisfies the following general property: There exists a subset
X of {0, 1}b1 (Alice’s input in the gadget) such that:
|X| ≥ 3,
for all x1 ̸= x2 ∈ X and all b1, b2 ∈ {0, 1}, there exists y ∈ {0, 1}b2 such that g(x1, y) = b1
and g(x2, y) = b2.

This is satisfied, for example, for the Addressing function on {0, 1}log b+b when b ≥ 4 (see
Definition A.1). For g = IPb, the set X equals {0, 1}b \

{
0b

}
.
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4 Composition with AND

We first investigate the relationship between non-adaptive AND decision tree complexity
and Möbius sparsity of Boolean functions. Recall that Claim 2.5 shows that for all Boolean
functions f : {0, 1}n → {0, 1}, log spar(f) ≤ NAADT(f) ≤ spar(f). A natural question to
ask is whether both of the bounds are tight, i.e. are there Boolean functions witnessing
tightness of each bound? The first bound is trivially tight for any Boolean function with
full Möbius sparsity, for example, the NOR function: querying all the input bits (which
is querying n many ANDs) immediately yields the value of the function, and its Möbius
sparsity can be shown to be 2n. One might expect that the upper bound is not tight in
view of Theorem 2.6. The Addressing function witnesses tightness of the quadratic gap in
Theorem 2.6. This gives rise to the natural question of whether an analogous bound holds true
in the Möbius-world: is it true for all Boolean functions f that NAADT(f) = Õ(

√
spar(f))?

Interestingly we show (see [33, Appendix A]) that the Addressing function already gives a
negative answer to this question. In Claim 4.6 we observe that the function OMBn witnesses
tightness of the second inequality in Claim 2.5, that is, NAADT(OMBn) = spar(f) for even
n (and NAADT(OMBn) = spar(f)− 1 for odd n). We then use this same function to prove
Theorem 1.7, which gives a maximal separation between QNAADT(f) and D→

cc (f ◦ AND2).
Finally, we prove Theorem 1.8, which says that NAADT(f) is at most quadratically large in
Dcc(f ◦ AND) for symmetric f .

Pattern Complexity and One-Way Communication Complexity

In this section we observe that the logarithm of the pattern complexity, PatM(f), of a Boolean
function f equals the deterministic one-way communication complexity of f ◦ AND. We
also give bounds on NAADT(f) in terms of PatM(f). As a consequence we also show that
D→

cc (f ◦ AND) ≥ log(NAADT(f)).

▷ Claim 4.1. Let f : {0, 1}n → {0, 1} be a Boolean function. Then D→
cc (f ◦ AND) =

⌈log(PatM(f))⌉.

Proof. Write the Möbius expansion of f as

f =
∑

S∈Sf

f̃(S)ANDS . (9)

Say PatM(f) = k. We first show that D→
cc (f ◦ AND) ≤ ⌈log k⌉ by exhibiting a one-way

protocol of cost ⌈log k⌉. Alice computes the pattern of x and sends Bob the pattern using
⌈log k⌉ bits of communication. Bob now knows the values of {ANDS(x) : S ∈ Sf}. Since
Bob can compute {ANDS(y) : S ∈ Sf} without any communication, he can now compute
the value of f ◦ AND(x, y) using the formula

(f ◦ AND)(x, y) =
∑

S∈Sf

f̃(S)ANDS(x)ANDS(y).

It remains to show that D→
cc (f ◦ AND) ≥ ⌈log k⌉. Let D→

cc (f ◦ AND) = d. Thus there are
at most 2d messages that Alice can send Bob. We show that any two inputs x, x′ ∈ {0, 1}n

for which Alice sends the same message have the same pattern, which would prove 2d ≥ k,
and prove the claim since d must be an integer.
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Let x, x′ be 2 inputs to Alice for which her message to Bob is m. We have

(f ◦ AND)(x, y) =
∑

S∈Sf

f̃(S)ANDS(x)ANDS(y)

(f ◦ AND)(x′, y) =
∑

S∈Sf

f̃(S)ANDS(x′)ANDS(y)

Since m and y completely determine the value of the function, we must have∑
S∈Sf

f̃(S)ANDS(x)ANDS(y) =
∑

S∈Sf

f̃(S)ANDS(x′)ANDS(y) for all y ∈ {0, 1}n.

Define the functions gx, gx′ : {0, 1}n → {0, 1} by

gx(y) =
∑

S∈Sf

f̃(S)ANDS(x)ANDS(y)

gx′(y) =
∑

S∈Sf

f̃(S)ANDS(x′)ANDS(y).

Thus by uniqueness of the Möbius expansion of Boolean functions, gx = gx′ as functions
of y. This implies g̃x(S) = g̃x′(S) for all S ∈ Sf . Since g̃x(S) = f̃(S)ANDS(x) and
g̃x′(S) = f̃(S)ANDS(x′) for all S ∈ Sf ,

ANDS(x) = ANDS(x′) for all S ∈ Sf ,

This shows that the pattern induced by x and the pattern induced by x′ are the same,
concluding the proof. ◁

Next we show that the pattern complexity of f is bounded below by the Möbius sparsity
of f .

▷ Claim 4.2. Let f : {0, 1}n → {0, 1} be a Boolean function. Then PatM(f) ≥ spar(f).

Proof. Recall that Sf denotes the Möbius support of f . For each S ∈ Sf , define the input
xS to be the n-bit characteristic vector of the set S. We now show that each of these inputs
induces a different pattern for f . Let S1 ̸= S2 ∈ Sf , with |S1| ≥ |S2|. Since they are different
sets, there must be an index j ∈ S1 such that j /∈ S2. Note that ANDS1(xS1) = 1. On the
other hand xS2

j = 0 implies ANDS1(xS2) = 0. Hence xS1 and xS2 induce different patterns.
Since spar(f) = |Sf |, this completes the proof. ◁

From Claim 2.5 we know that spar(f) ≥ NAADT(f) and from Claim 4.1 we know that
D→

cc (f ◦ AND) = ⌈log(PatM(f))⌉. Along with Claim 4.2, these imply the following claim.

▷ Claim 4.3. Let f : {0, 1}n → {0, 1} be a Boolean function. Then ⌈log(NAADT(f))⌉ ≤
D→

cc (f ◦ AND) ≤ NAADT(f).

Proof. For the upper bound on D→
cc (f ◦ AND), let S = {S1, . . . , Sk} be an NAADT basis for

f . By Claim 2.4, every monomial in the Möbius support of f is a product of some of these
ANDSi

’s. Since there are at most 2k possible values for {ANDSi
(x) : i ∈ [k]} and since these

completely determine the pattern of x for any given x ∈ {0, 1}n, we have

PatM(f) ≤ 2NAADT(f),

which proves the required upper bound in view of Claim 4.1.
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For the lower bound, we have

D→
cc (f ◦ AND) = ⌈log(PatM(f))⌉ ≥ ⌈log(spar(f))⌉ ≥ ⌈log(NAADT(f))⌉,

where the equality follows from Claim 4.1, the first inequality follows from Claim 4.2 and the
last inequality follows from Claim 2.5. ◁

The pattern complexity of f is trivially at most 2spar(f) since each pattern is a spar(f)-bit
string. Interestingly we show that there is no function for which this bound is tight.

▷ Claim 4.4. Let f : {0, 1}n → {0, 1} be a Boolean function. Then PatM(f) ≤
2(1−Ω(1))spar(f).

We prove Claim 4.4 in Appendix B. Its proof proceeds by analyzing the identity f2 = f

and using it to deduce “dependencies” between monomials in the Möbius support of f . The
analogous relation in the Fourier-world has been nearly determined by Sanyal [41]; their
main result (Theorem 2.6) essentially shows that the Fourier analog of pattern complexity of
a Boolean function is at most exponential in the square root of its Fourier sparsity. This is a
stronger bound than that in Claim 4.4, but the same bound cannot hold in the Möbius-world
since the Addressing function witnesses PatM(ADDRn) ≥ 2spar(ADDRn)log3 2 (see [33, Appendix
A]). Nevertheless we conjecture that a stronger bound than that of Claim 4.4 is possible.

▶ Conjecture 4.5. Let f : {0, 1}n → {0, 1} be a Boolean function. Then PatM(f) ≤
2(spar(f)1−Ω(1)).

Conjecture 4.5 would strengthen Theorem 1.9, showing that D→
cc (f ◦ AND) =

rank(Mf◦AND)1−Ω(1).

Proof of Theorem 1.9. We have

D→
cc (f ◦ AND) = ⌈log(PatM(f))⌉ ≤ (1− Ω(1))spar(f) ≤ (1− Ω(1))rank(Mf◦AND),

where the equality holds by Claim 4.1, the first inequality follows from Claim 4.4 and the
last inequality holds by Equation (7). ◀

Our results regarding the one-way communication complexity of f ◦AND use the Booleanness
of f to bring out mathematical insights about the dependencies of monomials in the Möbius
support of f . These dependencies enable us to establish interesting bounds on the pattern
complexity of f . We hope that pattern complexity will find more use in future research.

Deterministic AND Complexity

We prove in this section that the non-adaptive AND decision tree complexity of OMBn is
maximal whereas the one-way communication complexity of OMBn ◦ AND is small.

▷ Claim 4.6. Let n be a positive integer. Then NAADT(OMBn) = n. Moreover,
spar(OMBn) = n if n is even, and spar(OMBn) = n+ 1 if n is odd.

Proof of Claim 4.6. Write the polynomial representation of OMBn as OMBn(x) =

(1− xn) · 0 + xn(1− xn−1) · 1 + xnxn−1OMBn−2(x1, . . . , xn−2) if n is even, or (10)
(1− xn) · 1 + xn(1− xn−1) · 0 + xnxn−1OMBn−2(x1, . . . , xn−2) if n is odd. (11)
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The Möbius support of OMBn equals {{j, . . . , n} : j ≤ n} ∪ {∅} if n is odd, and
{{j, . . . , n} : j ≤ n} if n is even. Thus spar(OMBn) = n + 1 if n is odd, and equals n
if n is even.

We now show that the NAADT(OMBn) = n. Let S denote a NAADT basis for OMBn. By
Claim 2.4, any monomial in the Möbius expansion of OMBn can be expressed as a product
of some ANDs from S. Thus, {n} must participate in S since it appears in its Möbius
support. Next, since {n− 1, n} appears in the support as well, either {n− 1, n} or {n− 1}
must appear in S. Continuing iteratively, we conclude that for all i ∈ [n], there must exist
a set in S that contains i, but does not contain any j for j < i. This implies that |S| ≥ n.
Equality holds since NAADT(f) ≤ n for any Boolean function f : {0, 1}n → {0, 1}. ◁

Thus OMBn witnesses that non-adaptive AND decision tree complexity can be as large as
sparsity. We remark here that OMBn admits a simple (adaptive) AND-decision tree that
makes O(log n) AND-queries in the worst case. This uses a binary search using AND-queries
to determine the right-most index where a 0 is present. One might expect that a result
similar to Claim 1.6 holds when the inner function is AND instead of XOR. That is, it is
plausible that the deterministic one-way communication complexity of f ◦ AND equals the
non-adaptive AND decision tree complexity of f . We show that this is not true, and exhibit
an exponential separation between D→

cc (OMBn ◦ AND) and NAADT(OMBn).

▷ Claim 4.7. Let n be a positive integer. Then D→
cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉.

Proof. From Equation (10) we have that the Möbius support of OMBn equals the set
S = {{n} , {n− 1, n} , . . . , {n, n− 1, . . . , 1}} if n is an even integer, and equals the set
S = {∅, {n} , {n− 1, n} , . . . , {n, n− 1, . . . , 1}} if n is an odd integer. It is easy to verify that
the only possible Möbius patterns attainable (ignoring the empty set since it always evaluates
to 1) are 1i0n−i, for i ∈ {0, 1, . . . , n}. Moreover, all of these patterns are attainable: the
pattern 1i0n−i is attained by the input string 0n−i1i. Thus PatM(OMBn) = n+ 1. Claim 4.1
implies D→

cc (OMBn ◦ AND) = ⌈log(n+ 1)⌉. ◁

We obtain our main result of this section, which follows from Claim 4.6 and Claim 4.7.

▶ Theorem 4.8. Let n be a positive integer. Then NAADT(OMBn) = n and D→
cc (OMBn ◦

AND) = ⌈log(n+ 1)⌉.

Quantum Complexity

We prove that even the quantum non-adaptive AND decision tree complexity of OMBn is
Ω(n). We refer the reader to Section A for necessary preliminaries of quantum computing.
In view of the small one-way communication complexity of OMBn ◦ AND from Claim 4.7,
Theorem 1.7 then follows.

▶ Theorem 4.9. Let n be a positive integer. Then QNAADT(OMBn) = Ω(n).

Before we prove this theorem, we introduce an auxiliary function and state some properties
of it that are of use to us.

▶ Definition 4.10. Let n be a positive integer. Define the set S ⊂ {0, 1}n to be S ={
x ∈ {0, 1}n : x = 0i1n−i for some i ∈ [n]

}
. Define the partial function OMB′

n : S→ {0, 1}
by OMB′

n(x) = OMBn(x).

▷ Claim 4.11. Let n be a positive integer. Then RNAADT(OMB′
n) = R→

dt(OMB′
n) and

QNAADT(OMB′
n) = Q→

dt(OMB′
n).
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We require the following result, which follows implicitly from a result of Montanaro [34].

▶ Theorem 4.12. Let S ⊆ {0, 1}n, I ⊆ [n] and f : S→ {0, 1} be such that for all i ∈ I there
exists x ∈ S such that f(x⊕ ei) = 1− f(x). Then Q→

dt(f) = Ω(|I|).

We defer the proofs of Claim 4.11 and Theorem 4.12 to the full version of our paper [33,
Section 4.3].

Proof of Theorem 4.9. Clearly QNAADT(OMBn) ≥ QNAADT(OMB′
n). Claim 4.11

implies that QNAADT(OMB′
n) = Q→

dt(OMB′
n). Recall that the domain of OMB′

n

equals S =
{
x ∈ {0, 1}n : x = 0i1n−i for some i ∈ [n]

}
. By definition, OMB′

n(0i1n−i) ̸=
OMB′

n(0i−11n−i+1) for all i ∈ [n]. Thus Theorem 4.12 is applicable with I = [n] and
f = OMB′

n. Combining the above, we have QNAADT(OMBn) ≥ QNAADT(OMB′
n) =

Q→
dt(OMB′

n) = Ω(n). ◀

Proof of Theorem 1.7. It follows from Claim 4.7 and Theorem 4.9. ◀

Symmetric Functions

In this section we show that symmetric functions f admit efficient non-adaptive AND decision
trees in terms of the deterministic (even two-way) communication complexity of f ◦AND. We
require the following bounds on the Möbius sparsity of symmetric functions, due to Buhrman
and de Wolf [8]. For a non-constant symmetric function f : {0, 1}n → {0, 1}, define the
following measure which captures the smallest Hamming weight inputs before which f is not
a constant: switch(f) := min {k : f is a constant on all x such that |x| < n− k}.

▷ Claim 4.13 ([8, Lemma 5]). Let n be sufficiently large, let f : {0, 1}n → {0, 1} be a
symmetric Boolean function, and let k := switch(f). Then log spar(f) ≥ 1

2 log
(∑n

i=n−k

(
n
i

))
.

Upper bounds on the non-adaptive AND decision tree complexity of symmetric functions
follow from known results in the non-adaptive group testing literature. To the best of our
knowledge, the following upper bounds were first shown (formulated differently) by Dyachkov
and Rykov [14]. Also see [12] and the references therein.

▶ Theorem 4.14. Let f : {0, 1}n → {0, 1} be a symmetric Boolean function with switch(f) =
k < n/2. Then NAADT(f) = O

(
log2 (

n
k

))
.

We give a self-contained proof of Theorem 4.14 in Appendix C for clarity and completeness.
We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. If switch(f) ≥ n/2, then Claim 4.13 implies that spar(f) = 2Ω(n).
Equation (8) implies that Dcc(f ◦ AND) = Ω(n). Thus, a trivial NAADT of cost n witnesses
NAADT(f) = O(Dcc(f ◦ AND)) in this case.

Hence, we may assume switch(f) = k < n/2. We have

NAADT(f) = O

(
log2

(
n

k

))
= O(log2(spar(f))) = O(Dcc(f ◦ AND)2),

where the first equality follows from Theorem 4.14, the second from Claim 4.13, and the
third from Equation (8). ◀
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A Preliminaries

▶ Definition A.1. For an integer n ≥ 2 that is a power of 2, define the Addressing function,
denoted ADDRn : {0, 1}log n+n → {0, 1}, by

ADDRn(x, y) = ybin(x),

where bin(x) denotes the integer in [n] whose binary representation is x. We refer to the
x-variables as addressing variables and the y-variables as target variables.

▶ Definition A.2 (Non-adaptive parity decision tree complexity). Define the non-adaptive
parity decision tree complexity of f : {0, 1}n → {0, 1}, denoted by NAPDT(f), to be the
minimum number of parities such that f can be expressed as a function of these parities. In
other words, the non-adaptive parity decision tree complexity of f equals the minimal number
k for which there exists S = {{S1, . . . , Sk} : Si ⊆ [n] for all i ∈ [k]} such that the function
value f(x) is determined by the values {⊕j∈Si

xj : i ∈ [k]} for all x ∈ {0, 1}n.

▶ Definition A.3 (Non-adaptive AND decision tree complexity). Define the non-adaptive AND
decision tree complexity of f : {0, 1}n → {0, 1}, denoted by NAADT(f), to be the minimum
number of monomials such that f can be expressed as a function of these monomials. In
other words, the non-adaptive AND decision tree complexity of f equals the minimal number
k for which there exists S = {{S1, . . . , Sk} : Si ⊆ [n] for all i ∈ [k]} such that the function
value f(x) is determined by the values {ANDSi

(x) : i ∈ [k]} for all x ∈ {0, 1}n. We refer to
such a set S as an NAADT basis for f .
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▶ Definition A.4 (Randomized non-adaptive AND decision tree complexity). A randomized
non-adaptive AND decision tree T computing f is a distribution over non-adaptive AND
decision trees with the property that Pr[T (x) = f(x) ≥ 2/3] for all x ∈ {0, 1}n. The cost
of T is the maximum cost of a non-adaptive AND decision tree in its support. Define the
randomized non-adaptive AND decision tree complexity of f : {0, 1}n → {0, 1}, denoted by
RNAADT(f), to be the minimum cost of a randomized non-adaptive AND decision tree that
computes f .

We refer the reader to [37] for the basics of quantum computing.

▶ Definition A.5 (Quantum non-adaptive AND decision tree complexity). A quantum non-
adaptive AND decision tree of cost c is a query algorithm that works with a state space
|S1, . . . , Sc⟩|b⟩|w⟩, where each Sj ⊆ [n], b ∈ {0, 1}c and the last register captures a workspace
of an arbitrary dimension. It is specified by a starting state |ψ⟩ and a projective measurement
{Π, I −Π}. For an input x ∈ {0, 1}n, the action of the non-adaptive query oracle O⊗c

x is
captured by its action on the basis states, described below.

O⊗c
x |S1, . . . , Sc⟩|b1, . . . , bc⟩|w⟩ 7→ |S1, . . . , Sc⟩|b1 ⊕ ANDS1(x), . . . , bc ⊕ ANDSc

(x)⟩|w⟩.

We use Ox to refer to this oracle since c is already unambiguously determined by the state
space. The algorithm accepts x with probability ∥ΠOx|ψ⟩∥2.

Define the quantum non-adaptive AND decision tree complexity of f : {0, 1}n → {0, 1},
denoted by QNAADT(f), to be the minimum cost of a quantum non-adaptive AND decision
tree that outputs the correct value of f(x) with probability at least 2/3 for all x ∈ {0, 1}n.

The quantum non-adaptive query complexity, denoted Q→
dt , is defined similarly, the only

difference being that the sets S1, . . . , Sc are restricted to be singletons. Montanaro [34]
observed that Q→

dt(f) = Ω(n) for all total Boolean functions f : {0, 1}n → {0, 1} that depend
on all input bits. Our proof of Theorem 4.9 uses ideas from their proof.

B Proof of Claim 4.4

In this section we prove Claim 4.4, restated below.

▷ Claim B.1 (Restatement of Claim 4.4). Let f : {0, 1}n → {0, 1} be a Boolean function.
Then PatM(f) ≤ 2(1−Ω(1))spar(f).

Our proof of Claim 4.4 relies on the following observation about the structure of the
Möbius support of any Boolean function.

▷ Claim B.2. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius support Sf . For
any two distinct sets S, T ∈ Sf there exists a set of “partners” p({S, T}) ⊆ Sf such that

p({S, T}) ̸= {S, T},
|p({S, T})| = 2 if S ∪ T /∈ Sf and |p({S, T})| = 1 if S ∪ T ∈ Sf , and⋃

U∈p({S,T }) U = S ∪ T .

Proof. Let
∑

S∈Sf
f̃(S)ANDS be the Möbius expansion of f . Since f has range {0, 1}, we

know that f = f2. However,

f2 =

 ∑
S∈Sf

f̃(S)ANDS

  ∑
T ∈Sf

f̃(T )ANDT

 =
∑

W ⊆[n]

 ∑
S,T ⊆[n]:S∪T =W

f̃(S)f̃(T )

 ANDW .
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Since the Möbius expansion of f is unique, we can compare the two expansions to see that
for all sets W ⊆ [n],

f̃(W ) =
∑

S,T ⊆[n]:S∪T =W

f̃(S)f̃(T ). (12)

As a consequence we have the following structure. Let S ̸= T ∈ Sf such that S ∪ T /∈ Sf .
Since f̃(S ∪ T ) = 0, the summation corresponding to W = S ∪ T in Equation (12) must have
at least one non-zero summand apart from f̃(S)f̃(T ). Hence there must exist U ̸= V ∈ Sf

such that {S, T} ≠ {U, V } and U ∪ V = S ∪ T . We choose an arbitrary such pair {U, V }
and define p({S, T}) = {U, V }. For S, T ∈ Sf such that S ∪ T ∈ Sf , let p({S, T}) be defined
as {S ∪ T}. It clearly satisfies the necessary conditions. ◁

▶ Observation B.3. Let f : {0, 1}n → {0, 1} be a Boolean function with Möbius support Sf .
For any two distinct sets S, T ∈ Sf , let p({S, T}) ⊆ Sf be as in Claim B.2. Then for any
pattern P ∈ {0, 1}Sf ,

PS · PT =
∏

W ∈p({S,T })

PW .

Proof. Let P be a pattern in {0, 1}Sf . There must exist an x ∈ {0, 1}n such that for all sets
W ∈ Sf , PW = ANDW (x). Since S ∪ T =

⋃
W ∈p({S,T }) W , we have PS ·PT = ANDS∪T (x) =∏

W ∈p({S,T }) PW . ◀

Proof of Claim 4.4. We analyze the pattern complexity of f in iterations. To define these
iterations, we define a sequence of subsets of Sf , described in Algorithm 1.

Algorithm 1 Defining the Iterations.

Initialize T0 ← ∅, i← 0.
while |Ti| ≤ spar(f)− 2 do

Choose S, T with S ̸= T from Sf \ Ti.
Set Ti+1 ← Ti ∪ {S, T} ∪ p({S, T}).
Set i← i+ 1.

end
Set num_iterations← i.
Set Tnum_iterations+1 ← Sf .

For i ∈ {0, . . . , num_iterations + 1}, define the partial patterns

Pi :=
{
P ∈ {0, 1}Ti : P = (ANDS(x))S∈Ti

for some x ∈ {0, 1}n
}
.

We now show that

∀j ∈ {0, . . . , num_iterations} , |Pj | ≤
(

15
16

)j

2|Tj |. (13)

We prove this by induction. Equation (13) is true when j = 0 since both sides are 1. Now
let i > 0 and assume as our induction hypothesis that Equation (13) is true when j = i− 1.
As our inductive step, we will prove that for every partial pattern P ∈ Pi−1, the number of
partial patterns Q ∈ Pi that extend P (in the sense that Q restricted to indices in Ti−1 is
equal to P ) is at most (15/16)2|Ti|−|Ti−1|. Since every partial pattern in Pi is an extension
of a partial pattern in Pi−1, this would imply that |Pi| ≤ (15/16)2|Ti|−|Ti−1||Pi−1|. Along
with our induction hypothesis, this will prove Equation (13) for j = i, and hence for all j.
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To prove the inductive step, consider any partial pattern P ∈ Pi−1. Let S, T be the sets
chosen when constructing Ti from Ti−1. We know from Observation B.3 that any partial
pattern Q ∈ Pi must satisfy QS ·QT =

∏
W ∈p({S,T }) QW . Consider the extension Q′ of P

that sets Q′
W = 1 for all W ∈ p({S, T}) and Q′

W = 0 for all W ∈ {S, T} \ p({S, T}). Clearly
such a Q′ does not satisfy Q′

S · Q′
T =

∏
W ∈p({S,T }) Q

′
W . Hence of the 2|Ti|−|Ti−1| possible

extensions of P , at most 2|Ti|−|Ti−1|− 1 will be in Pi. Since |Ti|− |Ti−1| ≤ 4, we can conclude
that

|Pi| ≤ (2|Ti|−|Ti−1| − 1)|Pi−1| ≤ (15/16)2|Ti|−|Ti−1||Pi−1|.

This proves Equation (13).
Finally, note that the while loop in Algorithm 1 quits when |Ti| ≥ spar(f) − 1. Hence

num_iterations ≥ (spar(f) − 1)/4. If it quits with |Ti| = spar(f), then Equation (13)
implies that PatM(f) ≤ (15/16)(spar(f)−1)/42spar(f) ≤ 1.02 · 20.98spar(f). If it quits with
|Ti| = spar(f)− 1, then each of the partial patterns in Pi can have at most two extensions
to actual patterns of f . Hence even in this case PatM(f) ≤ 2.04 · 20.98spar(f). ◁

In fact with a more careful analysis (see [33, Proof of Claim 4.4]) we obtain an upper
bound of PatM(f) ≤ 2((log 6)/3)spar(f)+1 ≈ 20.86spar(f)+1.

C On Non-Adaptive AND Decision Trees for Symmetric Functions

Recall Theorem 4.14, restated below.

▶ Theorem C.1 (Restatement of Theorem 4.14). Let f : {0, 1}n → {0, 1} be a Boolean
function with switch(f) = k < n/2. Then

NAADT(f) = O

(
log2

(
n

k

))
.

The proof is via the probabilistic method. We construct a random family of O
(
log2 (

n
k

))
many ANDs and argue that with non-zero probability, their evaluations on any input
determine the function’s value.

We require the following intermediate claim.

▷ Claim C.2. Let n be a positive integer, and let 1 ≤ k < n/2 be an integer. Then, there
exists a collection X of O

(
log2 (

n
k

))
many subsets of [n] satisfying the following.

∀i1, . . . , ik+1 ∈ [n], j ∈ [k + 1], ∃X ∈ X such that ij ∈ X, iℓ /∈ X for all ℓ ̸= j. (14)

Proof. Consider a random set X ⊆ [n] chosen as follows: For each index i ∈ [n] independently,
include i in X with probability 1/(2k). Pick w many sets (where w is a parameter that
we fix later) independently using the above sampling process, giving the multiset of sets
X = {X1, . . . , Xw}.

For fixed i1, . . . , ik+1 ∈ [n], j ∈ [k + 1] and t ∈ [w],

Pr
Xt

[ij ∈ Xt and iℓ /∈ Xt for all ℓ ̸= j] = 1
2k ·

(
1− 1

2k

)k

≥ 1
2k · e , (15)

where the last inequality uses the fact that k ≥ 1 and the standard inequality that 1−x ≥ e−2x

for all 0 ≤ x ≤ 1/2. Thus Equation (15) implies that for fixed i1, . . . , ik+1 ∈ [n] and j ∈ [k+1],

Pr
X

[∄X ∈ X : ij ∈ X and iℓ /∈ X for all ℓ ̸= j] ≤
(

1− 1
2k · e

)w

≤ exp(−w/(2ke)). (16)
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By a union bound over these “bad events” for all i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1], we
conclude that

Pr
X

[∀i1, . . . , ik+1 ∈ [n] and j ∈ [k + 1], ∃X ∈ X : ij ∈ X and iℓ /∈ X for all ℓ ̸= j]

≥ 1−
(

n

k + 1

)
· (k + 1) · exp(−w/(2ke)). (17)

We want to choose w such that this probability is greater than 0. Thus we require

1 >
(

n

k + 1

)
· (k + 1) · exp(−w/(2ke))

⇐⇒ exp(w/(2ke)) > (k + 1) ·
(

n

k + 1

)
⇐⇒ w > 2ke

(
log(k + 1) + log

(
n

k + 1

))
.

Since
(

n
j+1

)
≥ n > j + 1 for all j ∈ {1, 2, 3, . . . , n/2} and n > 2, and since log

(
n
j

)
≥

j log(n/j) ≥ j for all j ∈ {1, 2, . . . , n/2}, it suffices to choose

w ≥ 2e log
(
n

k

) (
2 log

(
n

k + 1

))
. (18)

By standard binomial inequalities we have log
(

n
k+1

)
≤ (k + 1) log(ne/(k + 1)), and log

(
n
k

)
>

k log(n/k). Next, since k + 1 ≤ 2k for k ≥ 1 and ne/(k + 1) < n3/k3 for k ∈ {1, 2, . . . , n/2},
Equation (18) implies that it suffices to choose

w ≥ 2e log
(
n

k

) (
12 log

(
n

k

))
.

For this choice of w, the RHS of Equation (17) is strictly positive. This proves the claim.
◁

Proof of Theorem 4.14. Let f be a symmetric function with switch(f) = k < n/2, and let
X be as in Claim C.2 with |X | = O

(
log2 (

n
k

))
. We now show how X yields a NAADT for f .

Without loss of generality assume that f(x) = 0 for all |x| < n− k (if not, output 1 in place
of 0 in the Output step of Algorithm 2 below).

Algorithm 2 NAADT for f.

Input: x ∈ {0, 1}n

1. Let X be as obtained from Claim C.2.
2. Query {ANDX(x) : X ∈ X} to obtain a string Px ∈ {0, 1}|X |.
Output: f(y) if Px = Py for some y with |y| ≥ n− k, and 0 otherwise.

We show below that the following holds: Px ̸= Py for all x ̸= y ∈ {0, 1}n such that
|y| ≥ n− k. This would show correctness of the algorithm as follows:

If Px = Py for some |y| ≥ n−k, then x must equal y by the above. In this case we output
the correct value since we have learned x.
If Px ̸= Py for any |y| ≥ n− k, then |x| < n− k. Since f evaluates to 0 on all such inputs,
we output the correct value in this case.
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Let x ̸= y ∈ {0, 1}n be two strings such that |y| ≥ n− k. Without loss of generality assume
|y| ≥ |x| (else swap the roles of x and y above). Let Ix, Iy ⊆ [n] denote the sets of indices
where x and y take value 0, respectively. By assumption, x ̸= y and |Ix| ≥ |Iy|. Thus there
exists an index ix ∈ Ix \ Iy.

Since |Iy| ≤ k, by Claim C.2 there exists X ∈ X such that ix ∈ X and X ∩ Iy = ∅. Thus,
for this X we have

ANDX(x) = 0, ANDX(y) = 1.

Hence Px ̸= Py, which proves the correctness of the algorithm and yields the theorem. ◀

▶ Remark C.3. The proof above in fact yields a NAADT of cost O
(
log2 (

n
k

))
for any function

f : {0, 1}n → {0, 1} for which f is a constant on inputs of Hamming weight less than n− k
for some k < n/2 (in particular, f need not be symmetric on inputs of larger Hamming
weight).
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The Isolation Lemma of Mulmuley, Vazirani and Vazirani [Combinatorica’87] provides a self-reduction
scheme that allows one to assume that a given instance of a problem has a unique solution, provided a
solution exists at all. Since its introduction, much effort has been dedicated towards derandomization
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In this paper, we study a setting that is more typical for NP-complete problems, and obtain
partial derandomizations in the form of significantly decreasing the number of required random bits.
In particular, motivated by the advances in parameterized algorithms, we focus on problems on
decomposable graphs. For example, for the problem of detecting a Hamiltonian cycle, we build upon
the rank-based approach from [Bodlaender et al., Inf. Comput.’15] and design isolation schemes that
use

O(t log n + log2 n) random bits on graphs of treewidth at most t;
O(

√
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O(n)-random bits on general graphs.
In all these schemes, the weights are bounded exponentially in the number of random bits used.
As a corollary, for every fixed H we obtain an algorithm for detecting a Hamiltonian cycle in an
H-minor-free graph that runs in deterministic time 2O(

√
n) and uses polynomial space; this is the

first algorithm to achieve such complexity guarantees. For problems of more local nature, such as
finding an independent set of maximum size, we obtain isolation schemes on graphs of treedepth at
most d that use O(d) random bits and assign polynomially-bounded weights.
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show that many of the results cannot be significantly improved.
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1 Introduction

Isolation is a procedure that allows to single out a unique solution to a given problem
within a possibly larger solution space, thus effectively reducing the original problem to a
variant where one may assume that if a solution exists, then there is a unique one. The
classic Isolation Lemma of Mulmuley, Vazirani and Vazirani [26] can be used to achieve
this at the cost of allowing randomization. In complexity theory, isolation is used to
show that hard problems are not easier to solve on instances with unique solutions [35].
This idea has found numerous applications ranging from structural results in complexity
theory (e.g. NL/poly ⊆ ⊕L/poly [37] or NL/poly = UL/poly [32]) to the design of parallel
algorithms [26, 22, 17, 34].

Since obtaining a general derandomization of the Isolation Lemma is impossible by
counting arguments [4, 8, 1], it is natural to ask whether the isolation step can be derandomized
for specific problems with explicit representation. In this context, there has recently been an
exciting progress in isolation for perfect matchings [2, 7, 13, 21, 3, 22], which culminated
in an isolation scheme that uses O(log3 n) random bits, implying a quasi-NC algorithm for
detecting a perfect matching [34].

In contrast to this, derandomization of isolation procedures for NP-complete problems
is relatively less studied, and not because of a lack of motivation: Many contemporary
fixed-parameter algorithms rely on the Isolation Lemma [25, 28, 5, 23, 24, 11, 38]. Usually,
the isolation procedure is the only subroutine requiring randomness. Many of the algorithms
mentioned above apply the Isolation Lemma in combination with a decomposition-based
method such as Divide&Conquer or dynamic programming. This motivates us to study the
following:

▶ Main Question. How much randomness is required for isolating problems with decomposable
structure?

More concretely, we focus on graph problems where the underlying graph is decomposable, in
the sense that it can be decomposed using small separators. Examples of such graphs are
planar graphs or graphs of bounded treewidth. It is well-known that for many NP-complete
problems, the nice structure of such graphs can be leveraged to solve these problems faster
than in general graphs. We show that a similar phenomenon occurs when one considers the
amount of randomness needed to isolate a single solution.

The model for isolation schemes. Suppose U is a finite set and ω : U → N is a weight
function. For X ⊆ U we write ω(X) :=

∑
e∈X ω(e). For a set family F ⊆ 2U we say that

ω isolates F if there is exactly one set S ∈ F such that ω(S) is the minimum possible
among the weights of the sets in F . The classic Isolation Lemma of Mulmuley et al. [26]
states that a weight function ω : U → {1, . . . , 2|U |} chosen uniformly at random isolates any
family F ⊆ 2U with probability at least 1

2 . Note that sampling such ω requires O(|U | log |U |)
random bits.

Most of our isolation schemes work in a very restricted model inspired by the discussion
above, which we explain now. Intuitively, the scheme is not aware of the graph or its
decomposition, but is only aware of the vertex count of the graph and the relevant width
parameter, such as the treewidth or treedepth.

Formally, a vertex selection problem is a function P that maps every graph G to a family
P(G) ⊆ 2V (G) consisting of subsets of the vertex set of G. Edge selection problems are
defined analogously: P(G) consists of subsets of E(G). For example, we could define a
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vertex selection problem MIS(·) that maps every graph G to the family MIS(G) comprising
all maximum-size independent sets in G, or an edge selection problem HC(·) that maps every
graph G to the family HC(G) comprising all (edge sets of) Hamiltonian cycles in G. Further,
let C be a class of graphs, that is, a set of graphs that is invariant under isomorphism. For
instance, C could be the class of planar graphs, or the class of graphs of treewidth at most k,
for any fixed k. Then our definition of an isolation scheme reads as follows (here, we write
[n] := {1, . . . , n}):

▶ Definition 1. For a graph class C, we say that a vertex selection problem P admits an
isolation scheme on C with log ℓ random bits and maximum weight W if for every n ∈ N
there exist weight functions ω1, . . . , ωℓ : [n] → [W ] such that for every G ∈ C with vertex set
[n], ωi isolates P(G) for at least half of the indices i ∈ [ℓ].

Isolation schemes for edge selection problems are defined analogously: the weight functions
ω1, . . . , ωℓ have domain [m] and should assign weights to all the edges in m-edge graphs in C,
where the edges are assumed to be enumerated with numbers in [m].

The two main parameters of interest for isolation schemes will be the number of random
bits, which is defined as log ℓ, and the maximum weight, defined as the maximum value
that any of the functions ωi may take. Although Definition 1 only assumes the existence
of suitable weight functions, all the isolation schemes proposed in this paper are extremely
simple and can be used as an effective derandomization tool.

1.1 Our contribution
In the following discussion we restrict attention to Hamiltonian cycles and maximum-size
independent sets for concreteness, that is, to the edge- and vertex-selection problems HC(·)
and MIS(·) described above. However, our techniques have a wider applicability, which
we comment on throughout the presentation. On a very high level, the natural idea that
permeates all our arguments is to reduce the randomness using Divide&Conquer along small
separators: If a separator X splits the given graph G in a balanced way, then the same
random bits can be reused in each part of G − X.

Isolation schemes for Hamiltonian cycles. We first consider the problem of detecting a
Hamiltonian cycle, since it represents an important class of connectivity problems such as
Steiner Tree or k-Path. For these problems, the Isolation Lemma has been particularly
useful in the design of parameterized algorithms [25, 28, 5, 23, 24, 11, 38]. Our first results
concerns general graphs.

▶ Theorem 2. There is an isolation scheme for Hamiltonian cycles in undirected graphs
that uses O(n) random bits and assigns weights upper bounded by 2O(n).

Observe that in an n-vertex graph there can be as many as n! different Hamiltonian cycles.
Hence, the application of the general-usage isolation scheme of Chari et al. [8] would give an
isolation scheme for Hamiltonian cycles in general graphs that uses O(log(n!)) = O(n log n)
random bits. Note that as proved in [8], isolating a family F over a universe of size n requires
Ω(log |F| + log n) random bits in general, hence the shaving of the log n factor reported in
Theorem 2 required a problem-specific insight into the family of Hamiltonian cycles in a
graph. This insight is provided by the rank-based approach, a technique introduced in the
context of detecting Hamiltonian cycles in graphs of bounded treewidth [6]. The fact that
this works is unexpected because all known methods for derandomizing Hamiltonian cycle
require at least exponential space (see [6] for overview).
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Let us note that isolation of Hamiltonian cycles was used by Björklund [5] in his O(1.657n)-
time algorithm for detecting a Hamiltonian cycle in an undirected graph. This algorithm is
randomized due to the usage of the Isolation Lemma, and derandomizing it, even within time
complexity O((2 − ε)n) for any ε > 0, is a major open problem. While the constant hidden
in the O(·) notation used in Theorem 2 is too large to allow exploring the whole space of
random bits within time O((2 − ε)n), in principle we show that the amount of randomness
needed is of the same magnitude as would be required for derandomization of the algorithm
of Björklund.

Next, we show that in the setting of graphs of bounded treewidth the amount of random-
ness can be reduced dramatically, to a polylogarithm in n.

▶ Theorem 3. For every t ∈ N, there is an isolation scheme for Hamiltonian cycles in
graphs of treewidth at most t that uses O(t log n + log2(n)) random bits and assigns weights
upper bounded by 2O(t log n+log2 n).

The proof of Theorem 3 fully exploits the idea of using small separators to save on
randomness. It also uses the rank-based approach to shave off a log t factor in the number of
random bits.

Finally, we use the separator properties of H-minor free graphs to prove the following.

▶ Theorem 4. For every fixed H, there is an isolation scheme for Hamiltonian cycles in
H-minor-free graphs that uses O(

√
n) random bits and assigns weights upper bounded by

2O(
√

n).

Recently, [28] presented a randomized algorithm for detecting a Hamiltonian cycle in a
graph of treedepth at most d that works in time 2O(d) · (W + n)O(1) time and uses polynomial
space; here, W is the maximum weight assigned by isolation scheme1. The only source of
randomness in the algorithm of [28] is the Isolation Lemma. Since H-minor free graphs
have treedepth O(

√
n), we can use the isolation scheme of Theorem 4 to derandomize this

algorithm, thus obtaining the following result.

▶ Theorem 5. For every fixed H, there is a deterministic algorithm for detecting a Hamilto-
nian cycle in an H-minor-free graph that runs in time 2O(

√
n) and uses polynomial space.

To the best of our knowledge, this is the first application of a randomness-efficient isolation
scheme for a full derandomization of an exponential-time algorithm without a significant loss
on complexity guarantees. Further, we are not aware of any previous algorithms that would
simultaneously achieve determinism, running time 2O(

√
n), and polynomial space complexity,

even in the setting of planar graphs2. Finally, let us note that the algorithm of Theorem 5
does not rely on any topological properties of H-minor-free graphs: the existence of balanced
separators of size O(

√
n) is the only property we use.

MSO-definable problems on graphs of bounded treewidth. We observe that the approach
used in the proof of Theorem 3 relies only on finite-state properties of the Hamiltonian
Cycle problem on graphs of bounded treewidth. The range of problems enjoying such
properties is much wider and encompasses all problems definable in CMSO2: the Monadic

1 They did not consider the weighted case, but the statement is implied by a standard extension, see the
full version of this paper [27] for details.

2 Deterministic 2O(
√

n)-time algorithms were previously known, but all of these use exponential space [6,
18].
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Second-Order logic with modular counting predicates. Consequently, we can lift the proof of
Theorem 3 to a generic reasoning that yields an analogous result for every CMSO2-definable
problem. This proves the following (see the full full version of this paper [27] for definitions).

▶ Theorem 6. Let P be a CMSO2-definable edge (or vertex) selection problem. There exists
a computable function f such that for every k ∈ N, P admits an isolation scheme on graphs
of treewidth at most k that uses R := f(k) · log n + O(log2 n) random bits and assigns weights
upper bounded by 2R.

Lower bounds. We show that a significant improvement of the parameters in the isolation
schemes presented above is unlikely. First, a counting argument shows that the log n factor
is necessary.

▶ Theorem 7. There does not exist an isolation scheme for Hamiltonian cycles on graphs of
treewidth at most 4 that uses o(log n) random bits and polynomially bounded weights.

Using similar constructions we also provide analogous Ω(log n) lower bounds for isolating
other families of combinatorial objects related to NP-hard problems, such as maximum
independent sets, minimum Steiner trees, and minimum maximal matchings. These lower
bounds hold even in graphs of bounded treedepth, which is a more restrictive setting than
bounded treewidth.

We also show using existing reductions that a significant improvement over the scheme of
Theorem 2 would imply a surprising partial derandomization of isolation schemes for SAT.

▶ Theorem 8. Suppose there is an isolation scheme for Hamiltonian cycles in undirected
graphs that uses o(n) random bits and polynomially bounded weights. Then there is a
randomized polynomial-time reduction from SAT to Unique SAT that uses o(n) random
bits, where n is the number of variables.

Observe that since an n-vertex graph has treewidth at most n − 1, Theorem 8 also implies
that in Theorem 3 one cannot expect reducing the number of random bits to o(t). However,
we stress that the lower bounds of Theorems 7 and 8 are not completely tight with respect
to the upper bounds of Theorems 2 and 3, because the latter allow superpolynomial weights.
It remains open whether the weights used by the schemes of Theorems 2, 3, and 4 can be
reduced to polynomial.

In the full version of this paper [27] we further discuss consequences of the hypothetical
existence of a polynomial-time reduction from SAT to Unique SAT that would use o(n)
random bits.

Level-aware isolation schemes for independent sets. In the light of the Ω(log n) lower
bound of Theorem 7, we consider a relaxation of the model from Definition 1, where the
graph is provided together with an elimination forest (a decomposition notion suited for
the graph parameter treedepth), and the weight of a vertex may depend both on the vertex’
identifier and its level in the elimination forest. We demonstrate that in this relaxed model,
the Ω(log n) lower bound can be circumvented.

▶ Definition 9. We say that vertex selection problem P admits a level-aware isolation scheme
if for all n, d ∈ N there exist functions ω1, . . . , ωℓ : [n] × [d] → N such that for every graph
G on vertex set [n] and elimination forest F of G of height at most d, at least half of the
functions ω1, . . . , ωℓ isolate P(G). Here, when evaluating ωi on a vertex u ∈ [n], we apply ωi

to u and the index of the level of u in F .
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▶ Theorem 10. For every d ∈ N, there is a level-aware isolation scheme for maximum-size
independent sets in graphs of treedepth at most d that uses O(d) random bits and assigns
weights bounded by O(n6).

In the proof of Theorem 10 we describe an abstract condition, dubbed the exchange
property, which is sufficient for the argument to go through. This property is enjoyed also by
other families of combinatorial objects defined through constraints of local nature, such as
minimum dominating sets or minimum vertex covers. Therefore, we can prove analogous
isolation results for those families as well.

Also, in the full version of this paper [27] we discuss a similar reasoning for edge-selection
problems on the example of maximum matchings, achieving a level-aware isolation scheme
that uses O(d log n) random bits and assigns weights bounded by nO(log n). This provides
another natural class of graphs where isolation-based algorithms for finding a maximum
matching can be derandomized (see [2, 7, 13, 21]).

We summarize our results with Table 1.

Table 1 Summary of our results based on Theorems 2-10.

Problem Random Bits Max Weight Graph Class

Hamiltonian Cycle O(n) 2O(n)

General Graphs
Ω(n) poly(n)

O(
√

n) 2O(
√

n)

H-minor free graphs
Ω(

√
n) poly(n)

O(t log(n) + log2(n)) nO(t+log(n))

Treewidth t graphs
Ω(t + log(n)) poly(n)

CMSO2 f(t) log(n) + O(log2(n)) nf(t)+O(log(n)) Treewidth t graphs

Max Independent Set O(d) poly(n)
Treedepth d graphs

Ω(d) poly(n)

1.2 Organization
In Section 2 we provide preliminaries. Section 3 is dedicated to the formal proof of Theorem 2.
In Appendix A, we formally proof Theorem 3. We finish the main part of the paper with
possible directions for further research in Section 4.

In the full version of this paper [27] we include the formal proofs of Theorem 4, Theorem 5
and the general CMSO2-result of Theorem 6. The full version [27] also includes the lower
bounds from Theorem 7 and Theorem 8, as well as the level-aware isolation schemes for local
vertex (respectively, edge) selection problems.

2 Preliminaries

Notation. For an integer k, we write [k] := {1, . . . , k}. We use standard graph notation:
V (G) and E(G) respectively denote the vertex set and the edge set of a graph G, for
X ⊆ V (G) the closed neighborhood NG[X] is X plus all the neighbors of vertices of X, and
the open neighborhood is NG(X) := NG[X] \ X.
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Hashing modulo primes. The following standard hashing lemma that dates back to the
work of Fredman, Komlós, and Szemerédi [19], will be the main source of randomness in our
isolation schemes.

▶ Lemma 11 (FKS hashing lemma [19]). Let S ⊆ {0, 1, . . . , 2n} be a set of k integers, where
n, k ⩾ 1. Suppose that p is a prime number chosen uniformly at random among prime
numbers in the range {1, . . . , M}, where M ⩾ 2. Then

P [x ̸≡ y mod p for all x, y ∈ S, x ̸= y] ⩾ 1 − nk2
√

M
.

Proof. Let

R :=
∏

x,y∈S,x ̸=y

|x − y|.

Note that R ⩽ 2n·(k
2). This implies that R may have at most n ·

(
k
2
)

different prime divisors.
On the other hand, from the prime number theorem it follows that π(M) ∈ Ω( M

log M ), where
π(M) denotes the number of primes in the range {1, . . . , M}. In fact, using a more precise
estimate of Rosser [33], for M ⩾ 17 we have π(M) ⩾ M

ln M . For 2 ⩽ M ⩽ 17 a direct check
shows that π(M) ⩾

√
M/2. Since M

ln M ⩾
√

M/2 for all M ⩾ 2, we conclude that the
probability that a random prime in the range {1, . . . M} is not among the at most n ·

(
k
2
)

prime divisors of R is at least

1 −
n ·
(

k
2
)

√
M/2

⩾ 1 − nk2
√

M
. ◀

Graph decompositions. A rooted forest is directed acyclic graph F where every node x has
at most one outneighbor, called the parent of x. A root is a node with no parent. If a node y

is reachable from x by a directed path, then we write y ⪯F x and say that y is an ancestor
of x and x is a descendant of y. Note that every vertex is considered its own ancestor and
descendant. For x ∈ V (F ), we write

tailF [x] := {y : y ⪯F x}, subtreeF [x] := {z : z ⪰F x},

tailF (x) := tailF [x] \ {x}, subtreeF (x) := subtreeF [x] \ {x}.

The level of a node x in F , denoted lvlF (x), is the number of its strict ancestors, that is,
|tailF (x)|. Note that roots have level 0. The height of a forest F is the maximum level among
its nodes, plus 1. If the forest F is clear from the context, then we may omit it in the above
notation.

An elimination forest of a graph G is a rooted forest F with V (F ) = V (G) such that
for every edge uv of G, either u is an ancestor of v in F or vice versa. The treedepth
of a graph G is the least possible height of an elimination forest of G. Treedepth as a
graph parameter plays a central role in the structural theory of sparse graphs, see [29,
Chapters 6 and 7]. It also has several applications in parameterized complexity and algorithm
design [9, 15, 20, 28, 30, 31], as well as exhibits interesting combinatorial properties [9, 12, 14]
and connections to descriptive complexity theory [16]. We refer to the introductory sections
of the above works for a wider discussion.

A tree decomposition of a graph G is a pair T = (T, β), where T is an (unrooted) tree
and β : V (T ) → 2V (G) is a function that assigns to each node x ∈ V (T ) its bag β(x) ⊆ V (G)
so that the following two conditions are satisfied:
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for each u ∈ V (G), the set {x : u ∈ β(x)} induces a nonempty and connected subtree of
T ; and

for each uv ∈ E(G), there exists x ∈ V (T ) such that {u, v} ⊆ β(x).
The width of T is maxx∈V (T ) |β(x)| − 1 and the treewidth of G is the minimum possible width
of a tree decomposition of G. It is easy to see that the treedepth of a graph is at least its
treewidth plus one. Conversely, the treewidth is upper bounded by the treedepth times the
logarithm of the vertex count [29].

For surgery on tree decompositions we will use the following definition and standard
lemma.

▶ Definition 12 (Segment of a tree). For an unrooted tree T , a segment of T is a nonempty
and connected subtree I of T such that there are at most two vertices of I that have a neighbor
outside of I. The set of those at most two vertices is the boundary of I, and is denoted by
∂I. The size of I is equal to |E(I)|.

▶ Lemma 13. Let T be an unrooted tree and let I be a segment of T of size ℓ ⩾ 2. Then
there are at most 5 segments I1, . . . , It of T (t ⩽ 5), each of size at most ℓ/2, such that
segments I1, . . . , It have pairwise disjoint edge sets and E(I1) ∪ . . . ∪ E(It) = E(I).

Proof. For each edge xy ∈ E(I), let Iy,x and Ix,y be the connected components of I − xy

that contain x and y, respectively. Let I⃗ be the orientation of I where each edge xy is
oriented towards x if |E(Iy,x)| > |E(Ix,y)| and towards y if |E(Iy,x)| < |E(Ix,y)|; in case
|E(Iy,x)| = |E(Ix,y)|, the edge xy is oriented in any way. Since I has ℓ edges and ℓ + 1 nodes,
there is a node z of I that has outdegree 0 in I⃗. This means that for every neighbor x of z,
we have |E(Iz,x)| ⩽ |E(Ix,z)|, implying |E(Iz,x)| < ℓ/2. Denote Ix := Iz,x and let Îx be Ix

with the edge xz added.
We first argue that I can be edge-partitioned into at most 3 subtrees (not necessarily

segments), each with at most ℓ/2 edges. Consider first the corner case when there exists a
neighbor x of z such that Îx has more than ℓ/2 edges. Then both Ix = Iz,x and Ix,z have
exactly ℓ−1

2 edges each, so we can partition I into Iz,x, Ix,z, and a separate subtree consisting
only of the edge xz. This case being resolved, we can assume that each tree Îx has at most
ℓ/2 edges. Starting with the set of trees T := {Îx : x is a neighbor of z}, iteratively apply
the following procedure: take two trees from T with the smallest edge counts, and replace
them with their union, provided this union has at most ℓ/2 edges. The procedure stops when
this assertion fails to be satisfied. Observe that the procedure can be carried out as long as
|T | ⩾ 4, for then the two trees from T that have the smallest edge counts together include
at most half of the edges of I. Therefore, at the end we obtain the desired edge-partition of
I into at most three subtrees.

All in all, in both cases we edge-partitioned I into at most three subtrees, each having
at most ℓ/2 edges. Since |∂I| ⩽ 2, it is easy to see that all of those subtrees are already
segments (i.e. have boundaries of size at most 2) apart from at most one, say J , which may
have a boundary of size 3. Supposing that J exists, let ∂J = {a, b, c}. Then there exists
a node d of J such that every connected component of J − d contains at most one of the
vertices a, b, c. It is now straightforward to edge-partition J into three trees so that the
boundary of each of them consists of d and one of the vertices a, b, c. Thus, replacing J with
those three segments yields an edge-partition of I into at most 5 segments, each with at most
ℓ/2 edges. ◀
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3 Isolating Hamiltonian cycles

In this section we prove Theorem 2. We begin by defining configurations for Hamiltonian
cycles, which reflect the states of a natural dynamic programming algorithm for detection of
a Hamiltonian cycle in a bounded-treewidth graph. Then we use the rank-based approach to
bound the number of minimum weight compliant edge sets (see Theorem 19). This technical
result captures the essence of the rank-based approach and will be used in all subsections
that follow. Next, we prove Theorem 2 in Section 3.3. In Appendix A we also include the
full proof of Theorem 3.

3.1 Configurations for Hamiltonian cycles
Let us fix a graph G. An edge set S ⊆ E(G) is called a partial solution if every vertex of
G is incident to at most two edges of S and S has no cycles. The following notion of a
configuration describes the behavior of a partial solution with respect to a set of vertices.

▶ Definition 14 (Configurations). For X ⊆ V (G), we define the set of configurations conf(X)
on X as:

{ (V0, V1, V2, M) : (V0, V1, V2) is a partition of X and M is a perfect matching on V1 }.

Given a subgraph H of G, one can view the configurations on X ⊆ V (H) as all possible
different ways that a partial solution may behave on X. A vertex is then in the set Vi if it
is incident to exactly i edges of the partial solution. The matching M on V1 describes the
endpoints of each path in the partial solution. This intuition is formalized in the following
definition.

▶ Definition 15. Let X ⊆ V (G) be a set of vertices of G and let S ⊆ E(G) be a partial
solution. Then define the configuration of S on X as cX(S) := (V0, V1, V2, M) ∈ conf(X),
where

V0 := {v ∈ X : v is not incident to any edge of S},
V1 := {v ∈ X : v is incident to exactly one edge of S},
V2 := {v ∈ X : v is incident to exactly two edges of S},
M := {{u, v} ∈

(
V1
2
)

: there is a path with edges from S connecting u and v}.
We omit X in the notation and write c(S) when X is clear from context.

Note that in the above definition M is indeed a matching, because each v ∈ V1 is connected
to exactly one u ∈ V1 through S, as any partial solution covers each vertex at most twice.
For an example of deriving cX(S) from a partial solution S, see Figure 1.

We can use configurations to tell whether two partial solutions together form a Hamiltonian
cycle. Let H be a subgraph of G and let X ⊆ V (H). Assume that there exists a partial
solution S that visits only vertices from (V (G)\V (H))∪X, where every vertex of V (G)\V (H)
is visited exactly twice. Then we only need to know cX(S) to determine which partial solutions
S′ ⊆ E(H) would combine with S to a Hamiltonian cycle in G. We say that any such partial
solution is compliant with cX(S), as expressed formally in the next definition.

▶ Definition 16 (Compliant partial solution). For a graph H let X ⊆ V (H). A configuration
c = (V0, V1, V2, M) ∈ conf(X) and a partial solution S ⊆ E(H) are compliant if S ∩ M = ∅
and S ∪ M forms a Hamiltonian cycle on V (H) \ V2.

See Figure 2 for an example of a compliant partial solution.
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X X

M

V0

V1

V2

S

cX(S)

Figure 1 Example partial solution S and
its configuration cX(S) = (V0, V1, V2, M) on
a set X.

X V (H)

M

V0

V1

V2

S

Figure 2 Example compliant par-
tial solution S for a configuration c =
(V0, V1, V2, M) ∈ conf(X).

In the sequel we will be trying to argue that some weight function ω is isolating the
family of Hamiltonian cycles in the given graph G with high probability. In all cases this
will be done by induction on larger and larger subgraphs of G, where at each point we argue
that a suitable family of partial solutions is isolated with high probability. The following
definition facilitates this discussion.

▶ Definition 17 (Minimum weight compliant partial solution). Let H be a subgraph of G,
X ⊆ V (H), c ∈ conf(X), and let ω : E(G) → N be a weight function on the edges of G. Then
we define the set Min(ω, H, c) of minimum weight partial solutions compliant with c as the
set of those partial solutions S ⊆ E(H) that

are compliant with c, and
subject to the above, have the smallest possible weight ω(S).

3.2 Rank-based approach
We will use the rank-based approach, introduced by Cygan et al. in [10], as a tool in our
analysis of isolation schemes. Let X be a set of vertices. Then define the compatibility matrix
HX as the matrix with entries indexed by HX [M1, M2] for M1, M2 perfect matchings on X,
where

HX [M1, M2] =
{

1 if M1 ∪ M2 is a simple cycle,
0 otherwise.

Note that HX [M1, M2] has 2O(|X| log |X|) rows and columns. The crux of the rank-based
approach is that in spite of that, this matrix has a small rank over the two-element field F2.

▶ Theorem 18 (Rank-based approach,[10]). For any set X, the rank of HX over F2 is equal
to 2|X|/2−1.

We use Theorem 18 to prove that the total number of minimum weight compliant solutions
is always relatively small, no matter what the weight function is. The following statement
will be reused several times in the sequel. Note that a trivial cardinality argument would
yield an upper bound of the form 2O(|X| log |X|); the point of the rank-based approach is to
reduce this to 2O(|X|).
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▶ Theorem 19. Let G be a graph, X ⊆ V (G), and ω : V (G) → N be a weight function such
that for all c ∈ conf(X), we have |Min(ω, G, c)| ⩽ 1. Then∣∣∣∣∣∣

⋃
c∈conf(X)

Min(ω, G, c)

∣∣∣∣∣∣ ⩽ 2O(|X|).

Proof. Let K :=
⋃

c∈conf(X) Min(ω, G, c) and let C := {c(S) : S ∈ K}.
We first verify that |C| = |K|. By construction, we have |C| ⩽ |K|. Assume for

contradiction that |C| < |K|. Then there are two different partial solutions S1, S2 ∈ K

such that c(S1) = c(S2). By construction and the assumptions, there are two different
configurations d1, d2 ∈ conf(X) such that Min(ω, G, d1) = {S1} and Min(ω, G, d2) = {S2}.
However, since c(S1) = c(S2), it follows that for any configuration d ∈ conf(X), S1 is
compliant with d if and only if S2 is compliant with d. In particular, S1 is compliant with d2
and S2 is compliant with d1. This implies that ω(S1) = ω(S2) and S2 ∈ Min(ω, G, d1) and
S1 ∈ Min(ω, G, d2), a contradiction. Hence |C| = |K|.

Define a matrix Ĥ with both coordinates indexed by conf(X) such that for c, c′ ∈ conf(X),
where c = (V0, V1, V2, M) and c′ = (V ′

0 , V ′
1 , V ′

2 , M ′):

Ĥ[c, c′] =
{

1 if V0 = V ′
2 , V2 = V ′

0 , and M ∪ M ′ is a simple cycle,
0 otherwise.

Notice that if we sort the indices of Ĥ by the partitions (V0, V1, V2), then Ĥ can be seen as a
block diagonal matrix with one block for each partition, and this block is a compatibility
matrix on V1. That is,

Ĥ =
⊕

V0⊎V1⊎V2=X

HV1 ,

where
⊕

denotes the operator of combining several matrices into a single block diagonal
matrix. By Theorem 18, the rank over F2 of each of these blocks is bounded by 2|X|/2−1,
hence the rank over F2 of Ĥ is bounded by 2|X|/2−1 · 3|X| ⩽ 2O(|X|).

Next, we claim that the set of rows of Ĥ corresponding to the configurations of C is
linearly independent over F2. Assume not, hence there is a nonempty set of configurations
D ⊆ C such that∑

d∈D

Ĥ[d, ·] = 0,

where 0 is the all-zero vector (all computations are performed in F2). For each d ∈ D

there is some Sd ∈ K such that d = c(Sd). Let dmax be a configuration of D for which
ω(Sdmax ) is the largest possible. Since dmax ∈ C, we have that Min(ω, G, c) = {Sdmax } for some
c ∈ conf(X) and hence Ĥ[dmax, c] = 1. However, as

∑
d∈D Ĥ[d, ·] = 0, there must be another

d′ ∈ D, d′ ̸= dmax, such that also Ĥ[d′, c] = 1. This means that d′ is compliant with c, which
implies that ω(Sd′) > ω(Sdmax ) by Min(ω, G, c) = {Sdmax }. This contradicts the maximality of
ω(Sdmax ).

We conclude that the set of rows of Ĥ corresponding to C are indeed linearly independent
over F2. Therefore, |K| = |C| is upper bounded by the rank of Ĥ over F2, which is at most
2O(|X|). ◀
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3.3 Hamiltonian cycles in general graphs using O(n) random bits
We now use the tools prepared so far to prove Theorem 2. The goal is to isolate all
Hamiltonian cycles in an undirected graph G = (V, E) using O(n) random bits, where n is
the vertex count. First we give the isolation procedure. Then we analyze the probability of
isolating all Hamiltonian cycles using configurations, compliant partial solutions, and the
rank-based approach (through Theorem 19). Throughout the subsection we assume without
loss of generality that log n is an integer.

As usual with isolation schemes, we assume that the vertex set of the considered graph G

is V = [n]. We will apply induction on specific subgraphs of G called intervals.

▶ Definition 20 (Interval of G). For integers 1 ⩽ s ⩽ t ⩽ n and 1 ⩽ s′ ⩽ t′ ⩽ n, the interval
G⟨s, t, s′, t′⟩ is the graph (V ′, E′), where

V ′ := {s, . . . , t}∪{s′, . . . , t′} and E′ := {uv : u ∈ {s, . . . , t}, v ∈ {s′, . . . , t′}, uv ∈ E}.

By V ⟨s, t, s′, t′⟩ we denote the vertex set V ′ of the interval G⟨s, t, s′, t′⟩.

Note that G⟨s, t, s, t⟩ is just the subgraph of G induced by {s, . . . , t}. On the other hand,
if {s, . . . , t} ∩ {s′, . . . , t′} = ∅, then G⟨s, t, s′, t′⟩ is a bipartite graph, with {s, . . . , t} and
{s′, . . . , t′} being the sides of the bipartition.

Isolation scheme. We first present the isolation scheme. Let id : E(G) → {1, . . . , |E(G)|}
be any bijection that assigns to each edge e ∈ E(G) its unique identifier id(e). Let C be
some large enough constant, to be chosen later. Then independently at random sample
1 + log n primes p0, p1, . . . , plog n so that pi is sampled uniformly among primes in the range
{1, . . . , Mi}, where Mi := 2C(log n+2i). Note that choosing each pi requires C(log n + 2i)
random bits, hence we have used O(n) random bits in total.

Next, we inductively define weights functions ω0, . . . , ωlog n on E(G) as follows:
Set ω0(e) := 2id(e) mod p0 for all e ∈ E(G).
For each e ∈ E(G) and i = 1, . . . , log n, set

ωi(e) := Mi−1n · ωi−1(e) +
(

2id(e) mod pi

)
.

Let ω := ωlog n and observe that ω assigns weights bounded by 2O(n), as required.

Analysis. We will prove the following statement for all 0 ⩽ i ⩽ log n using induction on i.

Induction hypothesis

With probability at least
(
1 − 1

n2

)i+1, for all intervals G⟨s, t, s′, t′⟩ s.t. t − s ⩽ 2i and
t′ −s′ ⩽ 2i and for each configuration c ∈ conf(V ⟨s, t, s′, t′⟩), there is at most one minimum
weight (w.r.t. ωi) compliant partial solution, i.e. |Min(ωi, G⟨s, t, s′, t′⟩, c)| ⩽ 1.

For i = log n, the induction hypothesis gives us that for the complete interval G =
G⟨1, 1, n, n⟩ and for the configuration c = (∅, ∅, V (G), ∅), there is at most one minimum
weight compliant partial solution w.r.t. ω. In other words, w.r.t. ω there is at most
one minimum weight Hamiltonian cycle in G. This happens with probability at least(
1 − 1

n2

)log n+1
⩾ 1 − 1

n . So it remains to perform the induction.
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Base step. For i = 0, we have t−s ⩽ 1 and t′ −s′ ⩽ 1. Hence each such interval G⟨s, t, s′, t′⟩
has at most 4 edges. Let

Y :=
⋃

t−s⩽1
t′−s′⩽1

2E(G⟨s,t,s′,t′⟩)

and for each S ∈ Y , let

xS :=
∑
e∈S

2id(e).

Observe that since the identifiers assigned to the edges are unique, the numbers xS are also
pairwise different. Also, note that |Y | ⩽ 16n2 as there are at most n2 intervals considered,
and for each of them there are at most 16 possible subsets of the at most four edges. Recall
that M0 = 2C(log n+1) and p0 is drawn uniformly at random among the primes in the range
{1, . . . , M0}. Therefore, from Lemma 11 we can conclude that with probability at least(

1 − (n2 + 1)(16n2)2

2(C/2)(log n+1)

)
⩾

(
1 − 1

n2

)
all the numbers {xS : S ∈ Y } have pairwise different remainders modulo p0; here the last
inequality holds for a large enough constant C. Since ω0(S) ≡ xS mod p0, this means that
with probability at least

(
1 − 1

n2

)
, all S ∈ Y receive pairwise different weights with respect

to ω0. Therefore, the induction hypothesis is true for i = 0.

Induction step. Assume the induction hypothesis is true for all intervals G⟨s, t, s′, t′⟩ such
that t − s ⩽ 2i−1 and t′ − s′ ⩽ 2i−1. Let

Y ′ :=
⋃

t−s⩽2i−1

t′−s′⩽2i−1

⋃
c∈conf(V ⟨s,t,s′,t′⟩)

Min(ωi−1, G⟨s, t, s′, t′⟩, c)

be the set of all the minimal partial solutions for those intervals. Further, let

Y := {S1 ∪ S2 ∪ S3 ∪ S4 : S1, S2, S3, S4 ∈ Y ′}

be the set containing all combinations of four such partial solutions. The strategy is as
follows. We first prove in Claim 21 that any relevant minimum weight compliant partial
solution should be in Y . Then Claim 22 says that with hight probability, all partial solutions
S ∈ Y have pairwise different weights with respect to ωi. Hence, proving these two claims
will be sufficient to make the induction hypothesis go through.

▷ Claim 21. Let 1 ⩽ a ⩽ b ⩽ n and 1 ⩽ a′ ⩽ b′ ⩽ n be such that b − a ⩽ 2i and b′ − a′ ⩽ 2i,
and let c ∈ conf(a, b, a′, b′). Then Min(ωi, G⟨a, b, a′, b′⟩, c) ⊆ Y .

Proof. Take any S ∈ Min(ωi, G⟨a, b, a′, b′⟩, c). Let

r = ⌈(a + b)/2⌉ and r′ = ⌈(a′ + b′)/2⌉

and let us select

S1 ⊆ E(G⟨a, r − 1, a′, r′ − 1⟩), S2 ⊆ E(G⟨a, r − 1, r′, b′⟩),
S3 ⊆ E(G⟨r, b, a′, r′ − 1⟩), S4 ⊆ E(G⟨r, b, r′, b′⟩)

so that S1, S2, S3, S4 are disjoint and S = S1 ∪ S2 ∪ S3 ∪ S4. See Figure 3 for an example.
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We argue that S1 ∈ Min(ωi−1, G⟨a, r − 1, a′, r′ − 1⟩, c1) for some c1 ∈ conf(V ⟨a, r −
1, a′, r′ − 1⟩). Let c = (V0, V1, V2, M). Since S ∪ M is a simple cycle that visits all vertices of
V ⟨a, b, a′, b′⟩, we see that R := S2 ∪S3 ∪S4 ∪M is a partial solution in the graph G⟨a, b, a′, b′⟩
with the edges of M added. Letting (V ′

0 , V ′
1 , V ′

2 , M ′) := cV ⟨a,r−1,b,r−1⟩(R), it follows that S1
is compliant with the configuration

c1 := (V ′
0 \ (V2 ∩ V ⟨a, r − 1, b, r − 1⟩)), V ′

1 , V ′
2 ∪ (V2 ∩ V ⟨a, r − 1, b, r − 1⟩), M ′).

Moreover, that S ∈ Min(ωi, G⟨a, b, a′, b′⟩, c) implies that S1 ∈
Min(ωi, G⟨a, r − 1, a′, r′ − 1⟩, c1), for otherwise S1 could be replaced in S with a
smaller-weight partial solution S′

1 that would be still compliant with c1, and this would
turn S into a smaller-weight partial solution S′ = S′

1 ∪ S2 ∪ S3 ∪ S4 that would be still
compliant with c. Finally, by the construction of ωi, S1 ∈ Min(ωi, G⟨a, r − 1, a′, r′ − 1⟩, c1)
entails S1 ∈ Min(ωi−1, G⟨a, r − 1, a′, r′ − 1⟩, c1).

Therefore S1 ∈ Y ′. Analogously we argue that S2, S3, S4 ∈ Y ′, hence we conclude that
S ∈ Y . ◁

a

b

a′

b′

∈ S

a

b

r

r − 1

a′

b′

r′

r′ − 1
∈ S1

∈ S2

∈ S3

∈ S4

Figure 3 Example of splitting a partial solution S ∈ E(G⟨a, b, a′, b′⟩) into four partial solutions
S1, S2, S3, S4, where S1 ⊆ E(G⟨a, r−1, a′, r′−1⟩), S2 ⊆ E(G⟨a, r−1, r′, b′⟩), S3 ⊆ E(G⟨r, b, a′, r′−1⟩)
and S4 ⊆ E(G⟨r, b, r′, b′⟩) with r = ⌈(a + b)/2⌉ and r′ = ⌈(a′ + b′)/2⌉.

▷ Claim 22. The following event happens with probability at least
(
1 − 1

n2

)i+1: for all
different S, S′ ∈ Y , it holds that ωi(S) ̸= ωi(S′).

Proof. For each S ∈ Y , let

xS :=
∑
e∈S

2id(e).

Observe that since identifiers assigned to the edges are unique, the numbers xS are pairwise
different. The induction hypothesis gives us that the following event Ai−1 happens with
probability at least

(
1 − 1

n2

)i: for all 1 ⩽ s ⩽ t ⩽ n and 1 ⩽ s′ ⩽ t′ ⩽ n′ with t − s ⩽ 2i−1

and t′ − s′ ⩽ 2i−1, and all c ∈ conf(V ⟨s, t, s′, t′⟩), we have |Min(ωi−1, G⟨s, t, s′, t′⟩, c)| ⩽ 1.
Assuming now that Ai−1 indeed happens, by Theorem 19 we conclude that for every fixed
choice of s, t, s′, t′ as above, we have∣∣∣∣∣∣

⋃
c∈conf(V ⟨s,t,s′,t′⟩)

Min(ωi−1, G⟨s, t, s′, t′⟩, c)

∣∣∣∣∣∣ ⩽ 2O(2i−1).
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Since there are at most n4 choices of s, t, s′, t′, this implies that

|Y | ⩽ |Y ′|4 ⩽ 2O(2i−1) · n16.

Since Mi = 2C(log n+2i) and pi is drawn uniformly at random among the primes in the range
{1, . . . , Mi}, from Lemma 11 we can conclude that, for large enough C, with probability at
least1 −

(n2 + 1)
(

n162O(2i−1)
)2

2(C/2)(log n+2i)

 ·
(

1 − 1
n2

)i

⩾

(
1 − 1

n2

)i+1
,

all the numbers {xS : S ∈ Y } have pairwise different remainders modulo pi; here, the term
(1 − 1

n2 )i corresponds to the probability that Ai happens. As a consequence, with the same
probability we have that ωi(S) ̸= ωi(S′) for all different S, S′ ∈ Y . ◁

Now the induction step follows directly from combining Claim 21 with Claim 22.

4 Conclusion and directions for further research

In this paper we presented several isolation schemes for NP-complete problems, and we
showed that analogues of decomposition-based methods such as Divide&Conquer can also
be used to design more randomness-efficient isolation schemes. While we provide nearly
matching lower bounds for all our results, at least as far as the number of random bits is
concerned, we still leave open a number of interesting open questions:
1. Can we improve our isolation schemes to have weights that are only polynomial in n,

while not increasing the number of used random bits? Note that in our approach, the use
of large weights is crucial for the application of Lemma 11 that deals with interactions
between different partial solutions in our isolation schemes.3

2. Can we shave off the log factors in the number of used random bits in our results?
While some of the log n factors seem to be inherent in our ideas, there still might be a
little room. For example, Melkebeek and Prakriya [36] presented an isolation scheme for
reachability that uses O(log1.5(n))-random bits. Perhaps with their ideas one can get the
same guarantees for isolating Hamiltonian cycles in constant treewidth graphs.

3. Does the (even more) natural isolation scheme work as well? Many of our isolation
schemes draw several random prime numbers and assign a weight that is obtained by
concatenating the congruence class of the vertex/edge identifier with respect to the
different primes. A more natural, but possibly harder to analyse, scheme would be to
sample a single (larger) prime number and define the weights to be the congruence classes
of the identifiers with respect to that single prime.

4. Our methods allowed us to derandomize polynomial-space algorithms for H-minor free
graphs without significantly increase the running time. Can our methods be used to
derandomize other algorithms likewise?

3 In [8] a similar lemma was used to obtain isolation schemes with polynomial weights, but since the
objects of the set family are not decomposed, the authors did not have this issue of interactions between
different partial solutions.
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A Hamiltonian cycles in graphs of bounded treewidth

We will now use the same approach to give a proof of Theorem 3. More precisely, assume we
are given a graph G of treewidth at most k. Our goal is to isolate the family of Hamiltonian
cycles in G using O(k log n + log2 n) random bits.

The proof follows the same structure as that of Theorem 2. We first describe the isolation
scheme and then analyze the scheme using a tree decomposition T = (T, β) of G of width at
most k. Note that the actual decomposition is not needed for the isolation procedure, and is
only used as a tool in the analysis.

Isolation scheme. We first present the isolation scheme. As before, we assume that
V (G) = [n] and n is a power of 2. Let id : E(G) → {1, . . . , |E(G)|} be any bijection that
assigns to each edge e ∈ E(G) its unique identifier id(e). Let C be some large enough
constant, to be chosen later. Then we independently sample 3 log n primes p1, . . . , p3 log n

so that each pi is sampled uniformly among all primes in the interval {1, . . . , M}, where
M = 2C(k log n). Note that choosing each pi requires C(k + log n) random bits, hence we have
used O(k log n + log2 n) random bits in total, as required.

Next, we inductively define weights functions ω0, . . . , ω3 log n on E(G) as follows:
Set ω0(e) := 0 for all e ∈ E(G).
For each e ∈ E(G) and i = 1, . . . , 3 log n, set

ωi(e) := Mn · ωi−1(e) +
(

2id(e) mod pi

)
.

We let ω := ω3 log n and we observe that ω assigns weights bounded by 2O(k log n+log2 n).

Analysis. Let T = (T, β) be a tree decomposition of G of width at most k. It is well-known
that T can be chosen so that it has at most n nodes. Further, let η := E(G) → V (T ) be
any function that assigns to each edge e of G any node x of T such that e ⊆ β(x). In
the sequel we will assume that η is injective. This can be achieved by adding, for each
node x ∈ V (T ), |η−1(x)| − 1 new nodes with the same bag and adjacent only to x, and
appropriately distributing the images of edges of η−1(x) among the new nodes. Note that
after this modification, the number of nodes of T is bounded by

(
k+1

2
)

· n ⩽ n3.
Compared to the proof of Theorem 2, instead of intervals we will use segments in the

tree T underlying the tree decomposition T. Recall that segments have been defined and
discussed in Section 2. We first observe that there are only few segments.

▷ Claim 23. There are at most n9 segments of T .
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https://doi.org/10.1016/j.ipl.2008.11.004
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Proof. Note that a segment I in T can be uniquely determined by specifying the at most
two vertices of ∂I and any vertex of V (I) \ ∂I, provided there exists any. Since T has at
most n3 nodes, there are at most n9 choices for such a specification. ◁

For a set of nodes Z ⊆ V (T ), we write β(Z) :=
⋃

z∈Z β(z). Further, for a segment I of T

we consider the graph

G⟨I⟩ :=
(
β(V (I)), η−1(V (I))

)
.

Usually when speaking about partial solutions in G⟨I⟩, we consider their configurations on
the vertex subset β(∂I). Note that G⟨T ⟩ = G.

We proceed to the induction. We will prove the following statement for all 0 ⩽ i ⩽ log n.

Induction hypothesis

With probability at least
(
1 − 1

n2

)i, for all segments I of T of size at most 2i and for each
configuration c ∈ conf(β(∂I)), there is at most one minimum weight (w.r.t. ωi) compliant
partial solution in G⟨I⟩, i.e. |Min(ωi, G⟨I⟩, c)| ⩽ 1.

Note that since |V (T )| ⩽ n3, for i = 3 log n the induction hypothesis gives that for
G⟨T ⟩ = G, there is at most one Hamiltonian cycle that has the minimum weight w.r.t. ω

with probability at least
(
1 − 1

n2

)3 log n
⩾
(
1 − 1

n

)
.

Base step. For i = 0, we take segments of size at most 1, i.e. we prove the induction
hypothesis for every segment I of T that has either one or two nodes. More precisely, we have
to prove that (with suitably large probability), for every such segment I and configuration
c ∈ conf(β(∂I)), we have |Min(ω0, G⟨I⟩, c)| ⩽ 1. Note that since I has at most two nodes
and η is injective, the edge set E(G⟨I⟩) consists of at most two edges. Moreover, it cannot
be that two different edge subsets E1, E2 ⊆ E(G⟨I⟩) are simultaneously compliant with the
same configuration c ∈ conf(β(∂I)). It follows that sets Min(ω0, G⟨I⟩, c) have sizes at most 1
always, so the induction hypothesis for i = 0 is true.

Induction step. Assume the induction hypothesis is true for all segments of size at most
2i−1. Let

Y ′ :=
⋃

I : segment of size ⩽2i−1

⋃
c∈conf(β(∂I))

Min(ωi−1, G⟨I⟩, c).

be the set of all minimum weight partial solutions for segments of size at most 2i−1. Further,
let

Y := { S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 : S1, S2, S3, S4, S5 ∈ Y ′ }

be the set comprising all combinations of five such partial solutions.
We first prove with Claim 24 that every relevant minimum weight compliant edge is

contained in Y . Then Claim 25 says that with high probability, all S ∈ Y receive pairwise
different weights with respect to ωi. The induction hypothesis will follow directly from
combining these two claims.

▷ Claim 24. Let I be any segment of size at most 2i and let c ∈ conf(β(∂I)). Then
Min(ωi, G⟨I⟩, c) ⊆ Y .
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Proof. Consider any S ∈ Min(ωi, G⟨I⟩, c). By Lemma 13, there exist segments I1, . . . , It

(t ⩽ 5), each of size at most 2i−1, such that E(I) is the disjoint union of E(I1), . . . , E(It).
For each j ∈ {1, . . . , t} choose Sj ∈ E(G⟨Ij⟩) so that S is the disjoint union of S1, . . . , St.
The same argument as that was used in the proof of Claim 21 shows that there exists
cj ∈ conf(β(∂Ij)) such that Sj ∈ Min(ωi−1, G⟨Ij⟩, cj). Hence Sj ∈ Y ′ for all j ∈ {1, . . . , t},
so it follows that S ∈ Y . ◁

▷ Claim 25. The probability of the following event is at least
(
1 − 1

n2

)i: for all different
S, S′ ∈ Y , it holds that ωi(S) ̸= ωi(S′).

Proof. For each S ∈ Y let us define

xS =
∑
e∈S

2id(e).

Observe that since the identifiers assigned to the edges are unique, the numbers xS are pairwise
different. By the induction hypothesis, the following event Ai−1 happens with probability
at least

(
1 − 1

n2

)i−1: for every segment I of size at most 2i−1 and each configuration
c ∈ conf(β(∂I)), we have |Min(ωi−1, G⟨I⟩, c)| ⩽ 1. By Theorem 19 it follows that provided
Ai−1 happens, for every fixed segment I of size at most 2i−1 we have∣∣∣∣∣∣

⋃
c∈conf(β(∂I))

Min(ωi−1, G⟨I⟩, c)

∣∣∣∣∣∣ ⩽ 2O(|β(∂I)|) ⩽ 2O(k).

By Claim 23 there are at most n9 different segments, hence this implies that

|Y | ⩽ |Y ′|5 ⩽ 2O(k) · n45.

Recall now that M = 2C(k+log n) and pi is drawn uniformly at random among the primes
in the range {1, . . . , M}. Hence, from Lemma 11 we can conclude that, for large enough C,
with probability at least(

1 −
(n2 + 1)

(
2O(k) · n45)2

2(C/2)(k+log n)

)
·
(

1 − 1
n2

)i−1
⩾

(
1 − 1

n2

)i

,

all the numbers in {xS : S ∈ Y } have pairwise different remainders modulo pi. Here, the
factor (1 − 1

n2 )i−1 corresponds to the probability that Ai−1 happens. As a consequence, with
the same probability for all different S, S′ ∈ Y we have ωi(S) ̸= ωi(S′). ◁

The induction step now follows directly from combining Claims 24 and 25.
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1 Introduction

A major trend of natural computing is the study of computational models inspired by
molecular biology that are both theoretically rich and realistic enough to allow in-vitro
implementations. Oritatami systems were introduced in [9, 10] to investigate the computa-
tional power of molecular co-transcriptional folding, in which an RNA sequence (transcript)
folds upon itself into an intricate structure while being synthesized (transcribed). This
phenomenon has proven programmable in-vitro by [12], in which Geary, Rothemund, and
Andersen demonstrated how to encode a rectangular tile-like structure in a transcript and
its folding pathway so that this transcript folds cotranscriptionally along the pathway into
the encoded structure. This RNA Origami architecture has recently been highly automated
by their software ROAD (RNA Origami Automated Design) [8]. ROAD extends the scale
and functional diversity of RNA scaffolds, and is thus a promising direction for the design of
RNA-based computation. DNA tile self-assembly did rely on the cellular automata theory to
build up the abstract Tile Assembly model (aTAM) [24] which in turn allowed to develop
experimental settings simple enough to be implement in vitro, such as the Sierpinski tri-
angle [21]. On the opposite, RNA origami was born first in-vitro and the oritatami system
was created [11] to answer the lack of theoretical framework to design computations for
cotranscriptional-based assembly systems. In this paper, we introduce the turedo model,
implementable in oritatami, which, as opposed to oritatami, is simple enough to program, to
wish for a design equivalent to the Sierpinski triangle experiment for cotranscription-based
in-vitro systems.

An oritatami system consists of a “molecule” (the transcript) made of “beads” that attract
each other. The molecule grows by one bead per step and, at each step, the δ most recently
produced beads are free to move around to look for the position that maximizes the number
of bonds they can make with each other (hence the folding is co-transcriptional). This process
ends up self-assembling a shape incrementally. It is known from [11, 20] that oritatami
systems are Turing universal. They can also build arbitrary shapes [4] modulo a small
universal constant upscaling, as well as specific fractals [17]. However, oritatami systems
remain notably challenging to design. Indeed, the only shapes that can be built by [11, 20]
are space-time diagrams of cyclic tag-systems or 1D cellular automata; and [4] requires to
hardcode the whole shape in the transcript. The new computational model introduced in
this article (turedo) not only abstracts away the technical details of attraction rules and
bead sequence of oritatami, but embraces the geometrical aspects of them, as opposed to the
simulation of classical one-dimensional computational models. We demonstrate that turedos
can be simulated up to upscaling by oritatami systems. Our simulation allows thus to take
full advantage of turedo computations in building shapes, and can be used as a compiler to
design powerful oritatami systems as demonstrated below.

Oritatami systems and Turedos. The classical model of Turing machines has already been
considered in other settings than the one dimensional bi-infinite tape, in particular in higher
dimensions [1]. A popular class of Turing machines in Z2 is that of turmites [16], which are
free to move on the plane but do it by just looking at their current internal state and the
tape content at their current position. In this paper, we introduce a somewhat orthogonal
class of Turing machines on the plane, that we call turedos1, which can look at the tape
content around their position to decide their move (like in [1]), but are constrained to move
only in a self-avoiding way.

1 Inspired by the nicely coined terminology for turmites, as a reference to toredo navalis (shipworms) that
would only grow self-avoiding tunnels in wood if they were infinite.
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Both our models (oritatami and turedos) have two strong constraints: they are sequential
and self-avoiding (i.e. each position of the plane can only be visited once and becomes an
obstruction for future moves). They can be seen as the sequential counterpart of aTAM model
of self-assembly [19, 5] or freezing cellular automata [13, 2, 18]. But they are not just finite
state automata growing a self-avoiding path in a regular way. Their computational power is
in their ability to make moves depending on the configuration of neighboring positions.

Our main result is that oritatami can simulate turedos of lookup radius 1. Our notion
of simulation is strong enough to preserve the geometrical and dynamical features of these
models up to a constant spatio-temporal rescaling: the oritatami reproduces the whole
dynamics of the turedo using macro-cells and a constant spatio-temporal rescaling. This
definition is similar to intrinsic simulations developed for cellular automata [3] or self-assembly
tilings [5]. Theorem 1.1 is proved in section 3.

▶ Theorem 1.1 (Main result 1). There is a universal bead type set B such that for any
turedo T of radius 1 with alphabet of size Q, there is a delay-3 oritatami system based on B
with period Λ = Θ(Q6 log Q) which simulates intrinsically T at space-scale Θ(Q3√log Q) and
time-scale Λ.

Complexity of limit configurations. The Turing universality results in [11, 20] induce
undecidability results of the form: given an oritatami, a seed and a position, determining
whether the position will be visited is undecidable. However, these embeddings are such
that the obtained limit configurations are always computable because the space-time of the
simulated tag system (or cellular automaton) computation is progressively constructed in a
predictable way in a fixed region of oritatami’s space. Precisely, in any limit configuration
c
∞ obtained this way, the map z ↦ c

∞(z) is computable because there is a computable time
bound τ(z) such that if position z is not visited after τ(z) steps of the run, then it will never
be visited (see Lemma 4.1).

The first application of our simulation result is to prove that we can produce uncomputable
limit configurations from finite seeds with oritatami (section 4). This implies that there are
oritatami runs from finite seeds where there is no computable time bound τ(z) on the visit
time of position z.

Results on uncomputable limit configurations were already obtained in the model of
directed aTAM [15]. Nevertheless, the construction used takes full advantage of the massive
parallelism allowed in the aTAM model and cannot be translated into the turedo settings. Our
construction is actually simpler than that of [15] and shows that sequential self-avoiding models
can organize information in the plane in such a way that some regions allow “uncomputable
comebacks”.

▶ Theorem 1.2 (Main result 2). There exists a fixed oritatami with delay 3 and a fixed finite
seed σ such that the produced limit configuration c

∞
σ is uncomputable as a map.

The second application of our simulation result is about (upper) density of occupied
positions in the limit configurations obtained from finite seeds. Density is a natural geometrical
parameter to test the ability of our models to produce complex infinite self-avoiding paths from
finite seeds. We show that such densities are exactly the Π2-computable numbers between 0
and 1 (Theorem 5.3), where Π2-computable means being the limsup of a computable sequence
of rational numbers [25]. In particular turedos and oritatami can produce limit densities
which are not recursively approximable (i.e. not the limit of any computable sequence of
rational numbers). We actually show that the whole spectrum of density can be obtained
in a single turedo by varying the seed (Theorem 5.3). Using our simulation framework, the
following result is shown first for turedos and then for oritatami in Section 5.

STACS 2022
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▶ Theorem 1.3 (Main result 3). For any ϵ > 0, there exists an oritatami of delay 3 such
that for any Π2-computable number d ∈ [0, 1 − ϵ], there is a finite seed σ such that the limit
configuration c

∞
σ reached from it has density of occupied positions exactly d.

Note that the densities that can be produced in the (directed) aTAM model or freezing
cellular automata from finite initial configurations cannot be more complex (see Lemma 5.1).

The organization of the paper is as follows: we first present oritatami and turedo models
and the notion of simulation (section 2); then, we establish our main simulation result
(section 3) and its two applications (sections 4 and 5).

2 Definitions and Models

Oritatami systems. Oritatami systems are embedded in the triangular lattice T = (Z2
,∼),

where (x, y) ∼ (u, v) if and only if (u, v) ∈ ∪ϵ=±1{(x + ϵ, y), (x, y + ϵ), (x + ϵ, y + ϵ)}. Every
position (x, y) in T is mapped in the euclidean plane to x ⋅ #»e +y ⋅ # »sw using the vector
basis #»e = (1, 0) and # »sw = RotateClockwise ( #»e , 120◦) = (− 1

2 ,−
√

3
2 ). We will denote by

#  »nw, #»ne, #»e , #»se, #»w, # »sw the six canonical unit vectors in T. Let B be a finite set of bead types. A
configuration c of a bead type sequence p ∈ B

∗ ∪B
N is a directed self-avoiding path c0c1c2⋯

in T, where for all integer i, the vertex ci of c is labeled by pi and refers to the position in T
of the (i + 1)-th bead in the configuration. A partial configuration of p is a configuration of
a prefix of p.

For any partial configuration c of some sequence p, an elongation of c by k beads (or
k-elongation) is a partial configuration of p of length ∣c∣ + k extending by k positions the
self-avoiding path of c. We denote by Cp the set of all partial configurations of p (the index
p will be omitted whenever it is clear from the context). We denote by c

▷k the set of all
k-elongations of a partial configuration c of sequence p.

An oritatami system O = (p, , δ) is composed of (1) a (possibly infinite) bead type
sequence p, called the transcript, (2) an attraction rule, which is a symmetric relation ⊆ B

2,
and (3) a parameter δ called the delay. O is said to be periodic if p is infinite and periodic.
Periodicity ensures that the “program” p embedded in the oritatami system is finite (does not
hardcode unbounded behavior) and at the same time allows arbitrarily long computation.

We say that two bead types a and b attract each other when a b. Furthermore, given
a (partial) configuration c of a bead type sequence q, we say that there is a bond between
two adjacent positions ci and cj of c in T if qi qj and ∣i − j∣ > 1. The number of bonds of
configuration c of q is denoted by H(c) = ∣{(i, j) ∶ ci ∼ cj , j > i + 1, and qi qj}∣.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay δ.
Informally, the configuration grows from a seed configuration (the input), one bead at a time.
This new bead adopts the position(s) that maximize(s) the potential number of bonds the
configuration can make when elongated by δ beads in total. This dynamics is oblivious as it
keeps no memory of the previously preferred positions [11].

Formally, given an Oritatami system O = (p, , δ) and a seed configuration σ of a seed
bead type sequence s, we denote by Cσ,p the set of all partial configurations of the sequence
s ⋅ p elongating the seed configuration σ. The considered dynamics D ∶ 2Cσ,p → 2Cσ,p maps
every subset S of partial configurations of length ℓ elongating σ of the sequence s ⋅ p to the
subset D(S) of partial configurations of length ℓ + 1 of s ⋅ p as follows:

D(S) = ⋃
c ∈ S

arg max
γ ∈ c

▷1
( max

η ∈ γ
▷(δ−1)

H(η) )

The possible configurations at time t of the oritatami system O are the elongations of the
seed configuration σ by t beads in the set D

t({σ}).
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Figure 1 Oritatami model: From left to right, the growth from bead E12 to bead E18
of a self-supported oritatami glider with delay δ = 3, transcript p = E12 . . . E23 and rule
{E12 E17, E14 E21, E18 E23, E20 E15}. At each step, the set of nascent paths and maximiz-
ing the number of bonds is shown. The nascent beads are highlighted in bold black. The nascent
paths are drawn in bold black until the last bond made and ends in colors when their tail is free to
move (i.e., is not bounded by any bond).

We say that the Oritatami system is deterministic if at each time t, D
t({σ}) is either a

singleton or the empty set. In this case, we denote by c
t the configuration at time t, such

that: c
0
= σ and D

t({σ}) = {ct} for all t > 0; we say that the partial configuration c
t folds

(co-transcriptionally) into the partial configuration c
t+1 deterministically. In this case, at

time t, the (t + 1)-th bead of p is placed at c
t+1, that is at the position that maximises the

number of bonds that can be made in a δ-elongation of c
t. Figure 1 illustrates the folding

steps of a delay-3 oritatami glider.

Turedos: Self-avoiding Turing Machines. A turedo is a Turing machine working on
the plane with a lookup neighborhood (like in [1]), that can only move in a self-avoiding
way. Turedos are embedded in the hexagonal lattice H = (Z2

, ∼̇) whose 6 unit vectors
are NH = { #»n = (1, 1), #  »ne = (1, 0), # »se = (0,−1), #»s = (−1,−1), #  »sw = (−1, 0), #   »nw = (0, 1)}.
Note that H’s underlying grid is rotated by 30◦ with respect to T’s . This choice is motivated
by the main simulation result of the paper where macrocells in oritatami in our figures
appear in the same orientation as the hexagonal cells in turedos. We denote by B(r) the
hexagonal ball of radius r centered on (0, 0), i.e. the set of positions in Z2 that can be
written as a sum of at most r vectors from NH . We also denote by b(r) the size of B(r),
and cz(r) = (u ∈ B(r) ↦ c(z + u)) the restriction of a configuration c to the ball of radius r

centered on z. Finally, we fix a universal blank symbol ⊥ representing unoccupied positions.

▶ Definition 2.1. A turedo is defined by T = (A, Q, q0, r, δ) where A is the tape alpha-
bet, ⊥ ∈ A, Q is the set of head states with initial state q0 ∈ Q, r is the lookup radius,
δ ∶ Q × A

B(r)
→ Q × NH × A ∖ {⊥} is the local transition map.

A tape configuration is an element of A
Z2

. A global state is an element of
ST = A

Z2

× Z2 × Q (tape configuration, position and state of the head). The turedo T
induces a global map FT ∶ ST → ST defined as follows:

FT (c, z, q) = {(c, z, q) if c(z) ≠ ⊥ or c(z + d) ≠ ⊥,

(c′, z + d, q
′) otherwise,

where (q′, d, a) = δ(q, cz(r)) and image configuration c
′ is defined by: c

′(z) = a and
c
′(u) = c(u) for u ≠ z. When the first case occurs, we say that the machine is blocked.

The key point of the above definition (which justifies the qualification of “self-avoiding”)
is that the only way tape configurations can be altered is by turning a blank symbol into a
non-blank symbol, and therefore the head cannot go back to a previously visited position

STACS 2022
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(b) A 3-states Sierpinski triangle. turedo

Figure 2 Two examples of radius-1 turedos. The seed configurations are displayed in yellow.
The path followed by the turedo is highlighted in white. Empty (blank) positions are marked with a
blue dot. (a) The turedo exits to the counterclockwise-most empty cell starting from its entry side.
The states are just cycling in Z0, . . . , Z3. (b) The turedo uses three states L0, L1, R1 to perform a
zigzag sweeping drawing the Sierpinski triangles pattern using the local rule given above.

(except when the machine is blocked in which case the global state is a fixed point). Positions
holding a blank symbol are therefore seen as empty positions where the head can possibly
move to. Two examples of radius-1 turedos are given in Figure 2.

Limit configuration and freezing time. Given an initial global state s ∈ ST for a turedo
of global map FT , let us consider the sequence (ct

, zt, qt) = F
t
T (s) for t ∈ N. By the self-

avoiding property, it holds that for any z ∈ Z2 the sequence of symbols (ct(z))n∈N is ultimately
constant, and, denoting its limit c

∞
s (z), we then have defined a tape configuration c

∞
s ∈ A

Z2

which is called the limit configuration reached by F starting from s. Said differently, using
the standard Cantor topology for tape configurations [14], we have that the sequence of
configurations (ct)t converges to c

∞
s . Moreover, we can associate to the system and the

initial global state s, the freezing time map τs ∶ Z2
→ N such that τs(z) is the minimal t for

which the tape content of cell z at time t is c
∞
s (z) (in particular, τs(z) = 0 if c

∞
s (z) = ⊥).

Programming turedos. Thanks to the freedom allowed in their local maps, turedos are in
general much easier to design than oritatami systems. The basic building block to design
complex turedos is the zigzag sweeping movement which allows us to embed any 1D Turing
machine/cellular automaton computation (see Fig. 2b). They can also be used as thick wires
to transport information from one region to another.

Simulations. Any oritatami with delay δ can be seen as a particular turedo of radius δ + 1:
indeed, an oritatami transition is completely determined by the position in the sequence of
beads, coded as a state of the turedo, and the local configuration in a ball of radius δ + 1.

Our main result proven in the next section is a converse to this observation: any turedo
of radius 1 can be simulated by an oritatami system of delay 3. The general idea is to
reproduce the dynamics up to a linear spatio-temporal scale factor like in similar notions
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already considered for cellular automata or self-assembly tilings [3, 6, 2]. More precisely,
each cell of the simulated system is represented by a macrocell in the simulator system, the
macrocells form a linearly distorted hexagonal lattice, and a constant number of time steps
is allowed for the simulator to reproduce one step of the simulated system. This notion of
simulation is very strict and allows to relate properties of the limit configurations in the
simulated system to the corresponding limit configuration in the simulator. This can be done
without further hypothesis for computability of limit configurations, but can also be done for
the density of non-blank states as soon as the simulation uses macrocells that are filled with
the same high enough density.

3 Delay-3 oritatami systems simulate radius-1 Turedos

This section provides an overview of the design implying main Theorem 1.1. As for the 1D
cellular automaton simulation in [20], our simulation proceeds in three phases: 1) reading
the neighboring letters, 2) preparing for writing the new letter on the boundaries of the
macrocell and 3) exiting to the computed next location. However, we must solve a significant
number of new challenges to adapt to turedos. Turedos are free to move in every direction:
the shape of the macrocells must then be isotropic. Furthermore, as the exit direction has
to be deduced from the symbols read, the reading process must be non-blocking. Thus we
cannot use the reading mechanism in [20], nor the writing flip-flap mechanism which would
block any further return to a previously visited border; we cannot use its hardcoded exit
mechanism either. Moreover, as we need to return to a random side after reading and writing
on all sides, our oritatami system must be able to absorb up to 4 times the side length
before exiting to the new macrocell and starting the next period of the transcript. It follows
that we cannot park unused information on the boundary of the macrocell as in [20], but
need to store information inside the macrocell to avoid increasing the macrocell side length
uncontrollably. Similarly the speedbump module introduced in [20] must be adapted to fit
inside a compact space.

To solve all those issues, we have developed new tools that we believe to be simple, powerful
and generic enough to have their own interest. We also believe that some of them could serve as
a guideline for a first biochemical implementation of computation using RNA co-transcription.
Our current implementation turedo2oritatami uses 1735 bead types. Examples of radius-1
turedos compiled as oritatami as well as a fully functional python compiler can be downloaded
from [23]: https://hub.darcs.net/turedo2oritatami/turedo2oritatami/python. The
resulting .os files are to be run with the oritatami simulator by [22].

Bit-weight encoding of a Turedo. Consider a radius-1 turedo. First, we get rid of its
internal state and orientation by encoding them in the symbols of the tape configuration.
We then encode each symbol of the resulting tape alphabet A as a string of q bits where
q = ⌈log2 #A⌉. The blank symbol ⊥ is encoded by the reserved word 0q. Let Q = 2q. In
the following we assume that the neighboring cells of the current position are numbered
in counterclockwise (CCW) order from 0 to 5 where 5 denotes the cell previously visited
by the turedo. Our simulation assumes that the turedo transition function is a function
F ∶ (2q)6

→ 2q × {0, . . . , 4}, that reads the q bits bi,0, . . . , bi,q−1 encoding the symbol in the
ith CCW neighboring cell for i = 0..5, and outputs the q bits of the symbol to be written

STACS 2022
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Figure 3 Principle of the macrocell operation. The shift of the reading layer at the end of its
folding (and thus of the writing layer) is ∑i∶bit readi=1 wi = w2 + w5.

and the CCW index of the next cell to go to.2 Furthermore, we assume that F is encoded
as a tuple ((wij), Φ) such that F ((bij)) = Φ(∑i,j wijbij) where the 6q bit-weights (wij) are
non-negative integers. All transition function F can be encoded this way using the weights
wij = 2qi+j . We denote by W = ∑i,j wij the sum of the weights of the bits. Encoded this
way, the size of the transition table of F is exactly W + 1 for every bit and the exit direction.

Principle of the macrocell operation. Fig. 3 presents a schematic overview of the key
operations in the macrocell. The transcript consists of five parts:
1. the scaffold of the macrocell folds, on each side of the macrocell, in front of the position

of each bit to be read, “read pockets” (in blue) of size equal to the weight given by the
transition function to that bit; it also builds one “exit pocket” (in orange) per side;

2. the read layer folds counterclockwise and fills the read pockets (outlined in blue) when
it senses a 0, and jumps over it when it senses a 1, pushing the transcript forward by a
shift corresponding to the sum ∆ of the sizes of the pockets sensing a 1 (∆ = w2 + w5 in
the figure);

3. the write layer contains all the transition tables of the simulated turedo, one for each bit
to write on each side, and one for each exit-or-not decision on each side; this layer folds
clockwise, and as it is translated forward by ∆, it folds the ∆th entry of each transition
table at the writing spots (in purple) that trigger the folding of the selected transition
table entries. The shift ∆ accumulated by the read layer allows then to write the output
pattern on each side. It also places a “kicking bead” (in purple) in the exit pocket on the
computed exit side and no-kicking beads in the other using the same shift-principle;

4. the speedbump module (outlined in green) absorbs the shift so that the next layer starts
without any shift regardless of the values read by the read layer;

5. the exit layer folds counterclockwise, following the border until it hits the kick (outlined
in yellow) and folds upon itself to the next macrocell.

Observe that the reading layer needs to “read” the bit from neighboring cells while still
making room for the two next layers to fold between the reading layer and the neighboring
cells. This explains why our oritatami systems has delay 3: it has to read through 3 layers.

This presentation was just an overview of the macrocell. The complete description of the
macrocell is given in Fig. 4. We will now present some of the key tools used in our design.

2 The case of attempting to exit towards the CCW neighboring cell n◦5 from which the turedo came, is
purposely ignored as it would unnecessarily complicate the construction.
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Figure 4 A macrocell for a turedo with q = 3 bits (Q = 8 tape symbols) together with the order
in which layers and modules are used along its boundary as well as snapshots of important modules:
(a)-(e) the read pocket in all possible situations: reading a 0/⊥ (fig. b, d and e) or a 1 (fig. a and c)
from a neighboring cell (fig. a–d) (or not (fig. e)) and through its exit layer (fig. a and b) or directly
from its write layer (fig. c and d) – (f)-(h) all possible situations for the write module: writing a
0 (fig. g and i) or a 1 (fig. f and h), through the exit layer (fig. h and i) or directly (fig. f and g) –
(j) the shift-absorbing speedbump – (k) the exit layer folds along the exit pocket – (l)-(m) the write
layer has placed the kicking bead 76 in the corner that detaches the exit layer from the pocket and
concludes the folding by exiting to the SW. Zoom in for details
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Folding meter and pockets. Our construction relies on two new simple and powerful tools:
a folding meter is a 4n-periodic transcript whose period has 4 equally spaced articulation
points, so that it can either: 1) follow a border if it is strongly attracted to it; 2) fold
upon itself in a compact zig-zag form if the attraction to the border is weak; 3) reveal an
hardcoded structure if the attraction to its surrounding is mild (see Appendix A).
a pocket is a box which triggers the compact folding of a folding meter and which allows to
hide a portion of it in a compact space. The entrance to such a pocket can be conditioned
by the surrounding. For instance, the read folding meter enters a read pocket if and
only if its reading head rq88 or rq36 is not attracted by two beads encoding a 1 in its
neighborhood (see Fig. 4(a–e)), otherwise it folds into an hardcoded glider and exits the
pocket rightaway.

Furthermore, several folding meters can be layered on top of each other in opposite directions
as long as their periods match. Synchronizing and desynchronizing the two layers allow to
trigger the various behaviors as well, by varying the strength of their bonds. For instance, the
write layer folds into spikes encoding 0 or 1 when it passes over the read layer in Fig. 4(f–i)
because its bonds are weaker with the read layer when the latter is desynchronized after
having been sucked into the pitfalls that surround this area. The length n of the each segment
is a priori arbitrary as long as n ⩾ 6. In the present design, n was set to 26 in order to
accommodate all the desired configurations – the most demanding being the glider at the
entrance of a read pocket when reading a 0, and the writing of 0 or 1 over the write module.

Read layer and pocket. Let us illustrate the folding meter/pocket mechanism with the
read pocket used to induce a shift of 2nκ in the transcript every time it reads a 1 with
bit-weight κ. The primary purpose of the read pocket is namely to read a bit (0/1) and
to push forward the read layer by the amount equivalent to its capacity if the read layer
reads a 1. The read layer folds from right to left. When the read layer reaches the entrance
(see Fig. 5a), its “reading head”, the bead rq88, “senses” whether there is a 1 written on
the adjacent macrocell at this location. If there is a 1, encoded by the presence of the pair
of beads 山p62 and 山p64 in Fig. 5a, then the reading head rq88 is momentarily attracted
upwards (making two temporary bonds), which results in placing bead rq86 away from the
border of the read pocket; the read layer gets then too far from the read pocket border
to get attracted to it anymore, and folds into its natural hidden shape: a glider that will
immediately escape from the read pocket (Fig. 5a). Otherwise, if there is a 0, encoded by the
absence of these bead types at the expected location in Fig. 5b, the reading head rq88 gets
attracted downwards inside the pocket by making one bond; the read layer pursues its course
downwards along the border until it reaches the bottom of the pocket which does not attract
it anymore; the read layer prefers then to fold upon itself into a switchback pattern, filling
the pocket completely, until it reaches the other side of the pocket which attracts it again;
the read layer follows this border until it exits the pocket. This results in a shift forward of
the read layer by an amount corresponding to the pocket capacity 2nκ if and only if the bit
written on the adjacent macrocell is 1.

Remark that this novel bit reading method, using a reading head, does not obstruct the
way between adjacent cells unlike the method used in [20]; this allows the write and exit
layers to pass and reach the exit at an arbitrary side. Note that this is the reason why our
simulation uses delay 3.

Note finally that the interactions between the scaffold and the read layer are extremely
simple: the only places where these interactions are carefully designed are at the entrance
and at the end of the pocket (the three areas highlighted in green in Fig. 5), all the other
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51:12 Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

interactions are either “attract-them-all” (the areas highlighted in yellow) or “attract-none-
of-them” (the areas highlighted in blue). This demonstrates the simplicity of the folding
meter/pocket concept.

The read and write blocks. Fig. 6 shows in details the actual oritatami implementation of
the read and write blocks and how write pockets of size equal to the size of the transition
tables are used as interconnected vessels to place the correct entry of the table over each write
module. The write module (responsible for writing 0 or 1 on the sides of the macrocell) and
write pocket (responsible for hiding the unused entries of the transition table) are presented
in details in Appendix B.

Layer interchange. Each layer is heavily interacting with its neighboring layers inside a
macrocell. It follows that unwanted interferences may occur between facing layers from
neighboring macrocells. For this purpose, we use three different variants of bead types in
each layer: one for each half of each side (e.g. Read1 and Read2 for the read layer), plus one
in the middle and the corners which interconnects one to the other and cancel the need for
interactions between them (e.g., Read12 to switch between Read1 and Read2).

Setting up the exit block and computing the macrocell size. As the exit pocket needs to
accommodate the remaining of the exit layer before it exits, it must have room to fold in
a compact shape a folding meter of length up to four macrocell-sides long. Since the exit
pocket belongs to the macrocell side, extending the exit pocket extends the macrocell side as
well: we have thus to solve a fix point problem. Moreover, since a different amount of the
exit layer will fold into each exit pocket depending on its location in the macrocell, we need
a mechanism to make sure that, in all cases, the transcript will exit at the same position
on every macrocell side, without interfering with the fix point resolution above. The latter
problem is solved by using a pair of “loose ropes” of equal length, one on each side, “pulling”
on the exit pocket to adapt its position to the macrocell side (see the two triangles of varying
depth surrounding each of the five exit pockets in Fig. 4). Making the exit pocket deep
enough allows to solve this fix point issue, which concludes the proof overview of Thm. 1.1.

4 Uncomputable Limit Configurations and Freezing Time

A configuration c ∈ A
Z2

is computable if there is a Turing machine which on input z ∈ Z2

computes c(z). We are interested in the computability of limit configurations obtained from
finite initial configurations (i.e. everywhere ⊥ except on a finite region).

As said in the introduction, constructions of Turing universal oritatami systems known so
far [20, 11] do not produce uncomputable limit configurations. The key reason is that they
have a computable escape direction: a direction u ∈ Z2 and a computable non-decreasing
function µ such that µ(t) → ∞ and for any t ∈ N, the position zt of the head after t steps
verifies u ⋅ zt ⩾ µ(t) where “⋅” denotes the scalar product (i.e. the head globally moves
away along the direction u). Such a computable escape direction appears naturally in these
simulations because they are fundamentally simulations of space-time of one-dimensional
systems: they work by growing successive 1D finite configurations and stacking them along a
direction u that corresponds to the time of the simulated system. The simulation never goes
back to previously stacked layers simply because computing one step of the 1D system is
performed using the last stacked 1D configuration only. More generally:
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(a) Sketch of the turedo building an uncomputable limit
configuration.
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(b) Sketch of the turedo building a limit con-
figuration with an arbitrary density d ∈ Π2.

Figure 7 Sketch of the two turedo constructions in sections 4 and 5.

▶ Fact 4.1. For any turedo reaching limit configuration c
∞
s from a finite global state s, the

maps z ↦ c
∞
s (z) and z ↦ τs(z) are Turing-equivalent. Moreover, they are both computable

if the dynamics admits a computable escape direction.

In the next result, we construct a turedo that goes back uncomputably close to the origin
uncomputably often in spite of following a self-avoiding trajectory. Precisely, we prove that
turedos of radius 1 and therefore oritatami are powerful enough to embed any recursively
enumerable set into their limit configurations reached from a finite initial configuration. As
a consequence, both models produce uncomputable limit configurations.

▶ Theorem 4.2. There exists a fixed turedo of radius 1 which, when started from a fixed
global state s with a blank tape configuration, reaches an uncomputable limit configuration
and therefore has an uncomputable freezing time map τs.

Proof sketch. The basic idea, illustrated in Fig. 7a, is to build a turedo which runs a Turing
machine simulation to test all Turing machines for halt in parallel and that, when it finds
that some machine i has halted, interrupts momentarily its computation and goes to write a
flag in a prefabricated area p(i) located at a computable in i position (initially all areas p(i)
are empty). Areas of type p(i) are progressively filled in some uncomputable and unknown
order, but, at the limit, it holds that p(i) contains a flag if and only if the machine i halts.
Therefore the limit configuration is uncomputable because it can solve the halting problem
when used as an oracle.

The key to implementing this idea is the layout of the paths to reach the areas p(i):
when we proceed as shown in Fig. 7a, no more than i paths will go across the area p(i),
i.e. the ones that correspond to the halting Turing machines j with j < i. As a zigzag of
thickness O(j) is enough for the turedo to reach area j, place a flag, and go back, then the
flag in area p(i) (if any) will never be placed higher than O(i2). It follows that these areas
have quadratic size and their ground basis can be set up in advance by the turedo as it
simulates the Turing machines in parallel (in particular, the turedo will start the simulation
of machine i only after the ground basis of area p(i) is set up). Of course, Figure 7a is a
simplification and does not represent all movements of the turedo’s head: in particular, when
moving towards area p(i), the turedo needs to carry on the information i and to bubble up
the ground basis of each area crossed over along the way, and it cannot carry those in its
state set. Using our simulation framework, Theorem 1.2 follows from Theorems 1.1 and 4.2.
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v'1
v'2 λ(z)+M

v1v2 z

Figure 8 The linear map λ between the turedo world and the oritatami world induces a tilt
between the concentric balls in the both worlds. This simulation tilt must be compensated by
providing to the simulated turedo a pair of vectors as an input, so that it fills a proper discretization
of the oritatami world balls when simulated: (left) the shortest radius vectors v

′
1, v

′
2 of a ball in the

oritatami world that can be mapped exactly in the turedo world – (right) when the two corresponding
vectors v1, v2 in the turedo world are supplied to the turedo as an input, the turedo can use them to
build a proper discretization of large enough balls in the oritatami world – (middle) both turedo and
oritatami worlds superposed (the target balls are drawn in purple and the discretized turedo ones in
blue).

5 Characterization of Possible Densities of Limit Configurations

We can define the (upper) density d(c) of non-blank cells in configuration c as follows:

d(c) = lim sup
n

#{z ∈ B(n) ∶ c(z) ≠ ⊥}
b(n) .

This choice is natural and gives a translation-invariant notion, but it is not unique (we could
replace the sequence (B(n))n by another Følner sequence [7]). The problem is that, in a
simulation, the lattice of cells is distorted into a macro-lattice of macro-cells in such a way
that the macro-balls do not have the same shape as genuine balls, as shown in Fig. 8. Said
differently, the reference Følner sequence is distorted into another one and this can change
the density. To circumvent this problem and produce more robust results, we will consider
all possible linearly distorted balls from the start: for any pair v1, v2 ∈ Z2 of non-colinear
vectors, we consider the (upper) density dv1,v2 of non-blank state after distortion of the
lattice by the pair v1 and v2.

We first prove that the computational complexity of dv1,v2(c) is Π2-bounded as soon as c

is produced as the limit of a computable process on finite configurations such that the set of
non-blank positions is monotonically increasing and with diameter growing in a computable
way. This bound applies to turedos but also all systems cited in section 1.

▶ Lemma 5.1 (Densities of any self-assembling systems are Π2). Let c
∞ be the limit config-

uration reached from some finite seed by some system among oritatami, turedos, freezing
cellular automata or directed aTAM. Then for any pair of non-colinear vectors v1, v2, the
upper density dv1,v2(c

∞) is a Π2-computable number.

For non-deterministic systems (both turedos and aTAM), we can state a similar lemma say-
ing that, starting from any finite seed, there is always one orbit converging to a configuration
with Π2 density.

Arbitrarily dense simulation. The next theorem is a stronger version of Theorem 1.1,
enforcing a constant and arbitrarily large density inside each macrocell of the oritatami
simulation of a given turedo. Precisely, if we consider the cell partition of the oritatami

STACS 2022
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Figure 9 Increasing the density by folding a filled hexagon inside the macrocell expanded by 50,
100 and 200 extra 2n-periods on each side. Actual oritatami simulation. Zoom in for details

plane into disjoint identical copies of a macrocell tile M induced by the map λ from the
turedo world to the oritatami world, where each copy λ(z)+ M covers exactly the macrocell
corresponding to the turedo position z (see Fig. 8 ), then:

▶ Theorem 5.2. For any turedo T of radius 1, and for any ϵ > 0, there exists an oritatami
system of delay 3 that simulates T and such that the number of occupied positions in each
macrocell tile λ(z) + M in the oritatami limit configuration is exactly k for all non-⊥
position z of the turedo limit configuration (and 0 for ⊥ position), with k ⩾ (1 − ϵ) ⋅ #M .

This result is obtained by 1) expanding of the macrocell with a straight line of length L in
the middle of each side so that the empty triangles between the macrocells become negligible
and 2) inserting a sequence in the scaffold that folds into a filled hexagon of radius L(1 + α)
inside the space freed inside the macrocell by the expansion. The factor α > 0 is necessary to
account for the increase of the exit pocket induced by the increase of the side length (more
transcript needs to fit into the pocket) (see Fig. 9). Picking L large enough concludes the
proof. The case of density 1 is treated separately by an ad hoc solution.

Arbitrary Π2-density. We conclude with the construction of a turedo of radius 1 that
is able to produce limit configurations with any possible density when starting from the
appropriate finite configuration. By possible density we mean any real number d ∈ [0, 1]
which is Π2-computable [25], i.e. such that there exists a computable sequence of rational
numbers (qn) with d = lim supn qn. The construction is rather technical but the overall idea
is simple (see Fig. 7b): at step n, leave a large annulus empty then densely fill another large
annulus in such a way that the surface ratio between these annuli is qn and that their sizes
are large enough to dominate all the previously constructed annulus in anterior steps. The
exact sequence of annuli is computed by the turedo in a sublinearly growing (hence negligible)
corridor.

▶ Theorem 5.3. There exists a turedo of radius 1 such that for any Π2-computable number
d ∈ [0, 1] and any pair of non-colinear vectors v1, v2, there is a finite initial global state such
that the limit tape configuration c

∞ reached from it verifies: dv1,v2(c
∞) = d.

The Π2-computability limitation is unavoidable as shown in Lemma 5.1, hence our
result is optimal and actually gives a characterization of densities of limit configurations
of continuous sequential self-avoiding systems (resp. turedo, resp. oritatami) started from
finite configurations. Using our simulation framework and Theorem 5.2 we directly deduce
Theorem 1.3.
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11 Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinonsuke Seki. Proving the
Turing universality of oritatami cotranscriptional folding. In ISAAC 2018: Proceedings of the
29th International Symposium on Algorithms and Computation, volume 123 of LIPIcs, pages
23:1–23:13, 2018.

12 Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science, 345:799–804, 2014.

13 E. Goles, N. Ollinger, and G. Theyssier. Introducing freezing cellular automata. In J. Kari,
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A Transcript, Folding meter and Pocket

In our design, the oritatami transcript is periodic, and one period folds into one macrocell.
The period is divided semantically in five parts:

Transcript = Scaffold ⋅ Read ⋅ Write ⋅ Speedbump ⋅ Exit

Scaffold hardcodes the “skeleton” of the macrocell and folds clockwise. Read folds around
the scaffold counterclockwise. It reads the states of the adjacent macrocells, which induces a
shift of the transcript equal to the total weight of the bits read with value 1. Write folds on
top of the Read layer clockwise, and, according to the shift read, writes the bits to be output
on each side and marks the exit side. Speedbump annihilates the shift using a process similar
to [20]. Finally, Exit folds on top of the Write layer counterclockwise until it reaches the “exit
mark” that has been placed by the Write layer.

Each of the Read, Write, Exit layers have the same periodic structure that we call a
folding meter. A n-folding meter is a 4n-periodic transcript with a period R of the form:

R = Rt0, Rt1, Rt2, Rp3, . . . , Rpn−1, Rbn, Rbn+1, Rbn+2, Rqn+3, . . . , Rq2n−1,
Rt2n, Rt2n+1, Rt2n+2, Rp2n+3, . . . , Rp3n−1, Rb3n, Rb3n+1, Rb3n+2, Rq3n+3, . . . , Rq4n−1

where the letters t and b stand for top and bottom. The internal interactions are:

Ri R−i−1, Ri R−i−2,
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Going down

Rn+i Rn−i, and Rn+i Rn−i−1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Going up

for all i. (1)

They ensure that the folding meter will either:
follow a border if all of its beads bind to every bead on the border. Two examples are
the Read layer along the right border in Fig. 5, and the Write layer along the left border
in Fig. 11. This process allows as well to stack several n-folding meters on top of each
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other in opposite direction and that are in-sync, i.e. such that one’s p-parts face other’s
q-parts. As an example, observe the folding of the three layers Read, Write and Exit at
the top right of the write pocket in Fig. 11;
or fold upon itself in the manner of the “folding meter” tool, when reaching the bottom of
a pocket that no longer attract the layer. Two examples are the Read layer in Fig. 5b or
the Write layer in Fig. 11. Indeed, in Fig. 11, the beads rp15..12 do not attract the beads
Wb26..28 which thus fold upwards thanks to the interactions listed in Eq. (1) yielding to
a switchback pattern that continues until the Write layer reaches the right side, to which
the Write layer is attracted and thus resumes following the border.

As the binding between the switchbacks of a n-folding meter are strong, they can flatten
any custom interactions encoded internally in either the p- or the q-beads of an n-folding
meter as long as these interactions are weak, i.e. do not involve more than 3 bonds per bead.
This allows us to hide or expose on-demand specific behaviors when the binding with the
lower layer is weak enough: for instance, in Fig. 10, the binding between the p-parts of the
Write and Read layers is weak enough to let the p-part of the Write layer fold into various
two-spikes patterns encoding 0 or 1 that flatten anywhere else in the macrocell.

In this article, n = 26. Note that each folding meter is essentially 2n-periodic with period
(t, p, b, q). This 2n-period is repeated twice only to prevent unwanted interactions when
in switchback form. This is why everywhere in the paper the true unit of length is 2n,
half-period of the folding meter, and not a full period. Furthermore every bead type Ri in a
folding meter R behaves the same as the beadtype R(i + 2n) = R(i + 52). For this reason,
we will adopt the following notation: given a folding meter R, R i will refer to either bead
types Ri or R(i + 2n); for instance R12 refers to both bead types R12 and R64.

Notations. For any pair of integers x ⩾ 0 and y ⩾ 1:
x.nextMultiple(of: y) = y⌈x/y⌉ is the least multiple of y larger or equal to x

x.complement(to: y) = y⌈x/y⌉−x so that x+x.complement(to: y) = x.nextMultiple(of: y)

B The write block

As seen in Fig. 6, the write block on each side of a macrocell consists in an alternation of
q + 1 write pockets of capacity 2nW beads, and q write modules, one for each of the q bits
to be written. Each write pocket hides the W entries of the (W + 1)-long transition tables
that are unused, while the write module writes the selected entry. Let us start by describing
the write module.

B.1 Write module
Write modules are the places where the oritatami writes the bits output on each side. Every
side of a macrocell is provided with q write modules, each of which is responsible for one of
the q bits to be output. Precisely, this module places two beads of special type (circled in
red in figures) at a designated readable site to write a 1 (Figs. 10a and 10b), or deliberately
out of the site so that they cannot attract the reading head no matter what types they are
to write a 0 (Figs. 10c and 10d).

Depending on whether the module is located before of after the side by which the oritatami
will exit the macrocell, the module will be covered or not by the Exit layer, leading to the
4 possible configurations in total presented in Fig. 10. As the side by which the oritatami
system will exit is known as soon as the states of the neighboring macrocell are read, we can
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(a) Write module – Top variant: the Write layer
writes a 1 by forming two spikes on the top of the
module, with two active beads aligned with the
reading head of the adjacent macrocell.
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(b) Write module – Left variant: the Write layer
prepares for writing a 1 by forming two spikes to
the left of the module so that the two active beads
of the Exit layer get aligned with the reading head
of the facing macrocell.
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(c) Write module – Right variant 1: on a side located
before the exit that will be taken later, the Write
layer writes a 0 by forming two spikes to the right of
the module; as the Exit layer will exit before reaching
this position, the reading positions will stay empty,
which will be interpreted as a 0 by the reading head
of the facing macrocell.
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(d) Write module – Right variant 2: the Write layer
prepares for writing a 0 by forming two spikes to the
right of the module, so that the two active beads of
the Exit layer get misaligned with the reading head
of the facing macrocell.

Figure 10 The four variants of the Write module: (a,b) writing a 1 and (c,d) writing a 0.

use, in the Write layer description, the appropriate variant of the encoding for each bit on
each bit according of the relative position of the module with the exit direction to be taken:

In the case where the Write layer is to be covered, the Write layer folds into two spikes
either to the left (Fig. 10b) or the right (Fig. 10d) of the blue hill at the center of the
module; then, when the Exit layer folds from right to left, the two special bead types ★32
and ★33 in the Exit layer will either be placed at the top of the hill (where they will
attract the reading head) or hidden in the right side of the hill (where they cannot
attract the reading head), which will be interpreted by the facing macrocell as a 1 or a 0
respectively.
Otherwise, the bit 0/1 is encoded directly either by two big spikes bearing the special
attracting bead types 山10 and 山12 at the top of the hill, which will be read as a 1
(Fig. 10a), or by two spikes to the left of the hill leaving the designated site empty, which
will be read as a 0 (Fig. 10c).

In order for the Write layer to adopt these peculiar configurations, we need it to take its
independence from the underlying Read layer. This is accomplished thanks to the two pitfalls
surrounding the write module. Each of them have a capacity of n beads exactly, which
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induces a phase difference of n between the Read and the Write layers, resulting in the p-part
of the Write layer to fold on top of the p-part of Read layer over the write modules. These
two p-parts have specific interactions between them allowing the specific configurations to be
folded there and only there.

B.2 Write pocket
Write pocket operation. Its primary purpose is to hide the W unused entries of the
(W+1)-long transition tables as can be observed in Fig. 6. These pockets are placed between
the write modules so that only the entries to be written are exposed on the border, at the
locations of the write modules; all the others are hidden in the write pockets. The Read layer
does not fill the write pocket but simply “coats” its border. The Write layer, however, enters
it and folds inside into its compact switchback form, hiding away the W unused entries of
each transition table, encoded each in one p-part of the Write layer. Finally, the Exit layer
simply jumps over it by folding into a hardcoded bridge to get across its entrance.

As for the read pocket, write pockets are also used in the interchange blocks to switch
between the three variants of the write layer Write1 ↔ Write12 ↔ Write2 (see Fig. 4).

Write pocket design. This pocket differs from the read pocket in three ways: 1) as opposed
to the read pocket, both layers Read and Write will enter the pocket unconditionally; 2) the
Read and Write layers will enter the pocket from opposite directions; 3) only the Write layer
fills the pocket: the Read layer must not fill the pocket. It follows that:

Been “coated” by the Read layer, both sides of the write pocket entrance will attract the
Write layer. To avoid unwanted interactions, we need thus to make the entrance wider. It
follows that the Exit layer will not be able to jump over the entrance as the Write layer
does over the read pocket. Fortunately, as the Exit layer is never shifted, we can hardcode
a bridge G4..16 in this layer at this precise location to solve this issue (see top of Fig. 11).
Furthermore, as the Read layer will enter the pocket with an arbitrary shift, the interactions
of the pocket with the Write layer cannot be directly hardcoded. As illustrated in Fig. 5,
a pocket has essentially three kinds of interactions with the layer that fills it: 1) full
attraction (highlighted in yellow), 2) no attraction (in blue), and 3) localised specific
attractions (in green). We create similar interactions using two mechanisms: A) two
pitfalls are located at the bottom left and at the middle right of the pocket (see Fig. 11)
that introduce and then cancel a phase difference between the Read and Write layers;
B) the bottom and bottom right borders of the pocket are moved out of reach of the
Write layer switchbacks. A) and B) ensure at the bottom right that the Write layer is not
attracted by the bottom nor opposite border while it folds in switchbacks. Specifically
programmed interactions between the in-sync write bead types @b78..80@q81..83 and
the out-of-sync read bead types rp24..25rb26..28rq29 that appear just before the second
pitfall in the middle of the right border, ensure that the Write layer glues back to the
border once it has ended its switchback pattern and not earlier.

Fitting all these constraints together contributes to the choice of n = 26 for the period of our
folding meters.

Geometry. The pocket geometry is determined by four integer parameters: its width w,
height k, remainder ρ < 2k + 1, and extension ℓ. The two “bubbles” to the right of the
pocket are used to keep synchronised the three layers Read, Write and Exit. Their sizes are
determined by two extra integer parameters x and y which are adjusted as follows:

STACS 2022
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(a) The length of the Write layer path from Wt0/Wb26 to Wt0 inside the upper bubble
should be equal to 0 modulo 2n if ρ is even or equal to n modulo 2n if ρ is odd. The total
length is 2(x+w+ 17)+ ρn; thus, x should be set to: x = (w + 17).complement(to: n).

(b) The length of the Read layer path from Rt0/Rb26 to Rb26 inside the lower bubble should
be equal to 0 modulo 2n if ρ is odd, or equal to n modulo 2n if ρ is even. The total
length is 2(w + y + 12)+ (2k + 1 − ρ)n; thus, we set: y = (w + 12).complement(to: n).

(c) Lastly, in order to avoid collision with other modules, we set the extension
ℓ so that the pocket module ends to the right of the two bubbles, that is:
ℓ = (2w + max(x + 8, y − 3)).nextMultiple(of: 2n)/2n.
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Capacity. The capacity of a write pocket is defined as the length of the path taken by the
Write layer from the leftmost Wt0 to the rightmost Wt0, and it is determined by the three
independent parameters k, w, ρ with ρ < 2k + 1, and one dependent parameter ℓ as:

capacity(w, k, ρ, ℓ) = 2n((2k + 1)w + ρ) + 2(w + 17).nextMultiple(of: n) + 2nℓ.

Building a write pocket with a given capacity. Various parameters can yield the same
capacity, thus we aim for the parameters that yield the shortest transcript. The length of the
transcript is given by the Read layer, whose asymptotic length is ∼ 4nk + 6w. Minimizing
this value subject to a fixed asymptotic capacity of 2w(2k + 1)n yields to the ideal ratio of
w ∼ 2nk/3. Now, to obtain a write pocket of target capacity 2nW we proceed as follows:

solving capacity(w = 2nk/3, k, ρ = 0, ℓ = 0) = 2nW yields a suggested value for k of:

k ∶= max (0, ⌊
√

12nW + n2 + 4n − 224
4 n

−
1

2n
−

1
4⌋)

we then set w by solving 2nW = capacity(w, k, ρ = 0, ℓ ∼ w/n) which yields:

w ∶= max (1, ⌊ nW − 19
n(2k + 1) + 2

⌋)

x, y, and ℓ are then computed according to the formulas (a), (b), and (c).
we conclude by setting:

ρ ∶= max(0, 2nW −

capacity(w,k,ρ=0,ℓ)Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
(2n((2k + 1)w + 1) + 2(w + 17).nextMultiple(of: n) + 2nℓ))/n,

if ρ > 2k, then rerun the two last steps with w ∶= w + 1.
This ensures that: 2nW ⩽ capacity(w, k, ρ, ℓ) ⩽ 2n(W + 2) and that k, w, and ℓ are O(

√
W).
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1 Introduction

Consider a binary matrix M , that is, one with entries in {0, 1}. Given two consecutive
columns c1, c2 of M , the operation of contracting those columns consists of replacing them
with a single column c with entries reconciled as follows. If in a row r columns c1, c2 agree,
that is, both contain symbol 0 or both contain symbol 1, then in column c in row r we put
the same symbol. Otherwise, we put a special mismatch symbol ⊥. Contracting consecutive
rows is defined analogously. Contractions of rows and columns can be then applied further
with the rule that reconciling any entry with the mismatch symbol ⊥ again results in ⊥.
For a nonnegative integer d ∈ N, we say that M is d-twin-ordered if M can be contracted to
a 1× 1 matrix in such a way that at every point during the process, every row and every
column contains at most d symbols ⊥. Finally, the twin-width of M is the least d for which
one can permute rows and columns of M so that the resulting matrix is d-twin-ordered.

The notion of twin-width was introduced very recently by Bonnet et al. in [5], and
has immediately gathered immense interest. As shown in [5] and in multiple subsequent
works [1, 2, 3, 4, 6, 9, 10], twin-width is a versatile measure of complexity not only for matrices,
but also for permutations and for graphs by considering a suitable matrix representation,
which in the latter case is just the adjacency matrix. In particular, for every fixed t ∈ N,
graphs excluding Kt as a minor and graphs having cliquewidth at most t have bounded twin-
width, which means that the concept of boundedness of twin-width is a vast generalization of
boundedness of cliquewidth that does not assume tree-likeness of the structure of the graph.
As shown in the aforementioned works, this generalization is combinatorially rich [1, 5, 9],
algorithmically useful [2, 4, 5], and exposes deep connections with notions studied in finite
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model theory [3, 5, 6, 10]. In particular, assuming a suitable contraction sequence is provided
on input, model-checking First-Order logic on graphs of bounded twin-width can be done in
linear fixed-parameter time [5].

One of the fundamental directions in the work on twin-width is that of estimating the
asymptotic growth of considered classes of objects. It has been proved in [1] that the number
of distinct graphs on vertex set {1, . . . , n} that have twin-width at most d is bounded by
2Od(n) · n!, which renders the class of graphs of twin-width at most d small. Similarly,
the number of distinct n × n binary matrices that are d-twin-ordered is upper bounded
by 2Od(n) [3] (see also the proof of Lemma 16).

The latter result raises a natural data structure question, which we address in this work.
In principle, a binary n × n matrix of twin-width at most d can be encoded using Od(n)
bits, just because the number of such matrices is bounded by 2Od(n). However, would it be
possible to design such a representation so that it is algorithmically useful in the following
sense: the representation may serve as a data structure that supports efficient queries for
entries of the matrix. This question originates from the area of compact representations, see
for instance the work on such representations for graphs of bounded cliquewidth [11].

Let us review some solutions to the above problem that to smaller or larger extent follow
from existing literature. The quality of a representation is measured by the number of bits it
occupies and the worst-case time complexity of a query for an entry. Here, we assume the
standard word RAM model with word length O(log n).

Storing the matrix explicitly is a representation with bitsize O(n2) and query time O(1).
In [1], Bonnet et al. presented an adjacency labelling scheme for graphs of bounded
twin-width, which can be readily translated to the matrix setting. This scheme assigns
to each row and each column of the matrix a label – a bitstring of length Od(log n) – so
that the entry in the intersection of a row and a column can be uniquely decoded from
the pair of their labels. In [1] the time complexity of this decoding is not analyzed, but a
straightforward implementation runs in time linear in the length of labels. This gives a
representation with bitsize Od(n log n) and query time Od(log n).
It follows from the results of [2] that if matrix M is d-twin-ordered, then the entries 1
in M can be partitioned into ℓ = Od(n) rectangles, say R1, . . . , Rℓ (see Lemma 10 for
a proof). This reduces our question to 2D orthogonal point location: designing a data
structure that for a given point in (i, j) ∈ {1, . . . , n}2, may answer whether (i, j) belongs
to any of the rectangles R1, . . . , Rℓ. For this problem, Chan [7] designed a data structure
with bitsize O(n log n) and query time O(log log n) assuming ℓ = O(n). So we get a
representation of M with bitsize Od(n log n) and query time Od(log log n).
For 2D orthogonal point location one can also design a simple data structure by persistently
recording a sweep of the square {1, . . . , n}2 using a B-ary tree for B = nε, for any fixed
ε > 0. This gives a representation with bitsize Od(n1+ε) and query time O(1/ε). See
Appendix A for details.

Note that in all solutions above, the bitsize of the representation is Ω(n log n), and thus does
not reach the information-theoretic limit of Θd(n).

Our result. We design a compact representation for d-twin-ordered matrices that simultan-
eously occupies Od(n) bits and offers query time Od(log log n). The result is summarized in
the statement below.
▶ Theorem 1. Let d ∈ N be a fixed constant. Then for a given binary n× n matrix M that
is d-twin-ordered one can construct a data structure that occupies Od(n) bits and can be
queried for entries of M in worst-case time O(log log n) per query. The construction time is
Od(n log n log log n) in the word RAM model, assuming M is given by specifying ℓ = Od(n)
rectangles R1, . . . , Rℓ that form a partition of symbols 1 in M .
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The proof of Theorem 1 proceeds roughly as follows. Consider a parameter m that
divides n and a partition of the given matrix M into (n/m)2 zones – square submatrices
– each of which is induced by m consecutive rows and m consecutive columns. Such a
partition is called the regular (n/m)-division. Even though the total number of zones in the
regular (n/m)-division is (n/m)2, one can use the connections between the notions of being
twin-ordered and that of mixed minors, developed in [5], to show that actually there will
be only Od(n/m) different zones, in the sense that zones are considered equal if they have
exactly the same values in corresponding entries.

Our data structure describes the zones in the regular (n/m)-divisions of M for m ranging
over a sequence of parameters m0 > m1 > . . . > mℓ for ℓ = O(log log n), where mj divides
mi whenever i ≤ j. Roughly speaking, we set m0 = n and mi = m

2/3
i−1 for i ≥ 1, though for

technical reasons we resort to the recursion mi = mi−1/2 once mi reaches the magnitude
of log3 n. Each different zone present in the regular (n/mi)-division is represented by a square
matrix consisting of (mi/mi+1)2 pointers to representations of its subzones in the regular
(n/mi+1)-division. When we reach mi < cd · log n for some small constant cd depending
on d, we stop the construction and set ℓ = i. At this point the number of different zones
present in the regular (n/mℓ)-division of M is strongly sublinear in n, because we have such
an upper bound on the total number of different (cd log n)× (cd log n) binary matrices that
are d-twin-ordered, and n/mℓ ≤ cd log n. Therefore, all those matrices can be stored in the
representation explicitly within bitsize Od(n).

The query algorithm is very simple: just follow appropriate pointers through the
O(log log n) levels of the data structure and read the relevant entry in a matrix stored
explicitly in the last level. The analysis of bitsize is somewhat more complicated, but
crucially relies on the fact that in the ith level, it suffices to represent only Od(n/mi) different
matrices that are zones in the (n/mi)-division.

We remark that the idea of dividing the given matrix into a number of polynomially
smaller zones, and describing them recursively, is also the cornerstone of the approach used
by Chan for the orthogonal point location problem in [7]. However, when it comes to details,
his construction is quite different and technically more complicated. For instance, in [7] the
recursion can be applied not only on single zones, but also on wide or tall strips consisting of
several zones, or even submatrices induced by non-contiguous subsets of rows and columns.
The conceptual simplification achieved here comes from the strong properties implied by the
assumption that the matrix is d-twin-ordered, which is stronger than the assumption used
by Chan that the symbols 1 in the matrix can be partitioned into O(n) rectangles.

Organization of the paper. In Section 2 we define the twin-width of matrices formally and
recall a number of notions related to d-twin-ordered matrices. In Section 3, we prove several
new structural properties of those matrices. These properties are exploited in Section 4 to
derive an efficient and compact representation of d-twin-ordered matrices, completing the
non-constructive part of Theorem 1. The efficient algorithm for construction of the data
structure is deferred to the full version of the paper [14].

2 Preliminaries

For a positive integer p we write [p] = {1, . . . , p}. We use the Od(·) notation to hide
multiplicative factors depending on d.
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Matrices, divisions, and zones. A binary matrix is a matrix with entries in {0, 1}; all
matrices in this paper are binary unless explicitly stated.

Let M be a matrix. Note that rows of M are totally ordered, and similarly for columns
of M . A row block in M is a non-empty set of rows of M that are consecutive in this total
order; column blocks are defined analogously. If R is a row block and C is a column block,
then the zone induced by R and C is the rectangular submatrix of M consisting of entries at
the intersections of rows from R and columns from C. In general, by a submatrix of M we
mean the zone induced by some row block and some column block.

A submatrix is constant if all its entries are the same. It is horizontal if all its columns
are the same (equivalently, all rows are constant), and vertical if all its rows are the same
(equivalently, all columns are constant). Note that thus, a constant submatrix is both
horizontal and vertical. A submatrix that is neither horizontal nor vertical is called mixed.

A division of matrix M is a pair (R, C), where R is a partition of rows into row blocks
and C is a partition of columns into column blocks. Note that such a division partitions M

into |R| · |C| zones, each induced by a pair of blocks (R, C) ∈ R× C. We call them the zones
of the division (R, C). A t-division is a division where |R| = |C| = t.

Twin-width. Let M be a matrix. If (R, C) is a division of M , then a contraction of (R, C)
is any division (R′, C′) obtained from (R, C) by either merging two consecutive row blocks
R1, R2 ∈ R into a single row block R1 ∪ R2, or merging two consecutive column blocks
C1, C2 ∈ C into a single column block C1 ∪ C2. A contraction sequence for M is a sequence
of divisions

(R0, C0), (R1, C1), . . . , (Rp, Cp),

such that
(R0, C0) is the finest division where every row and every column is in a separate block;
(Rp, Cp) is the coarsest partition where all rows are in a single row block and all columns
are in a single column block; and
for each i ∈ {1, . . . , p}, (Ri, Ci) is a contraction of Ri−1, Ci−1.

Note that thus, p has to be equal to the sum of the dimension of M minus 2.
Finally, for a division (R, C) of M , the error value of (R, C) is the least d such that in

(R, C), every row block and every column block contains at most d non-constant zones.
With all these ingredients in place, we can formally define the twin-width of matrices.

There are a few alternative definitions spanning through [1, 2, 3, 5]; here we follow the
terminology from [5].

▶ Definition 2. A binary matrix M is d-twin-ordered if it admits a contraction sequence in
which every division has error value at most d. The twin-width of a binary matrix M is the
least d such that one can permute the rows and columns of M so that the obtained matrix is
d-twin-ordered.

It is straightforward to see that the definition above is equivalent to the one given in the
first paragraph of Section 1.

Observe that in the above definition, certifying that a matrix is d-twin-ordered requires
showing a suitable contraction sequence where all divisions have error value at most d. In our
algorithmic results we do not require that such a contraction sequence is given on input, as
we will exploit the assumption that the matrix is d-twin-ordered only through combinatorial
properties provided by the connections with mixed minors, which we discuss next. In fact,
as discussed [5], it is currently unknown how to efficiently compute a contraction sequence
witnessing that a matrix is d-twin-ordered.
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Matrix minors and Marcus-Tardos Theorem. We need the following definitions of matrix
minors, which intuitively are “complicated substructures” in matrices.

▶ Definition 3. Let M be a binary matrix. A t-grid minor in M is a t-division of M where
every zone contains at least one entry 1. A t-mixed minor in M is a t-division of M where
every zone is mixed. We say that M is t-mixed-free if M does not contain a t-mixed minor.

The celebrated result of Marcus and Tardos asserts that if a matrix has a large density of
entries 1, then it contains a large grid minor.

▶ Theorem 4 ([12]). For every t ∈ N there exists ct ∈ N such that the following holds.
Suppose M is an n×m binary matrix with at least ct ·max(n, m) entries 1. Then M has a
t-grid minor.

The currently best upper bound on ct is 8
3 (t + 1)224t, due to Cibulka and Kynčl [8]. From

now on we adopt the constant ct in the notation.
In [5], Bonnet et al. used the result of Marcus and Tardos to show that, intuitively, large

mixed minors are canonical obstacles for having bounded twin-width.

▶ Theorem 5 ([5]). Let M be a binary matrix. Then the following implications hold:
If M is d-twin-ordered, then M is (2d + 2)-mixed-free.
If M is t-mixed-free, then M has twin-width at most kt, where kt is a constant depending
only on t.

Note that the conclusion of the second implication of Theorem 5 is only a bound on
the twin-width: the matrix might still need to be permuted to be kt-twin-ordered. In this
work we will only rely on the first implication of Theorem 5: being d-twin-ordered implies
(2d + 2)-mixed-freeness.

We now derive some simple properties of mixed-free matrices that will be used throughout
the paper. First, in a t-mixed-free matrix every ℓ-division has only Ot(ℓ) mixed zones.

▶ Lemma 6. Let M be a t-mixed free matrix, and let (R, C) be an ℓ-division of M , for some
integer ℓ. Then (R, C) has at most ct · ℓ mixed zones.

Proof. Construct an ℓ × ℓ matrix A by taking the division (R, C) and substituting each
mixed zone with a single entry 1, and each non-mixed zone with a single entry 0. Observe
that A may have at most ct · ℓ entries 1, for otherwise, by Theorem 4, A would contain a
t-grid minor, which would correspond to a t-mixed minor in M . Hence (R, C) may have at
most ct · ℓ mixed zones. ◀

For the next observations we need the following notion. A corner in a matrix M is simply
a mixed 2×2 submatrix which is an intersection of two consecutive rows with two consecutive
columns. The following observation was pivotally used in the proof of Theorem 5 in [5].

▶ Lemma 7 ([5]). A matrix is mixed if and only if it contains a corner.

The next lemma is essentially proven in [5] but never stated explicitly. So we include a
proof for completeness.

▶ Lemma 8 (implicit in [5]). A t-mixed-free n×n matrix contains at most 2ct(n + 2) corners.

Proof. Let M be a t-mixed-free n× n matrix. Consider the ⌈n/2⌉-division (R, C) of M , in
which every row block consists of rows with indices 2i− 1 and 2i for some i ∈ {1, . . . , ⌊n/2⌋},
possibly except the last block that consists only of row n in case n is odd, and similarly
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for column blocks. By Lemma 6, (R, C) has at most ct ⌈n/2⌉ ≤ ct(n/2 + 1) mixed zones,
which implies that M has at most ct(n/2 + 1) corners in which the bottom-right entry is in
the intersection of an even-indexed row and an even-indexed column. Call such corners of
type 00; corners of types 01, 10, and 11 are defined analogously. By suitably modifying the
pairing of rows and columns in (R, C), we can analogously prove that the number of corners
of each of the remaining three types is also bounded by ct(n/2 + 1). Hence, in total there
are at most 4ct(n/2 + 1) = 2ct(n + 2) corners in M . ◀

Next, we will need a variant of Lemma 6 that focuses on mixed borders between neighboring
zones. Here, two different zones in a division (R, C) are called adjacent if they are either
in the same row block and consecutive column blocks, or in the same column block and
consecutive row blocks. A mixed cut in (R, C) is a pair of adjacent zones such that there is
a corner that crosses the boundary between them, i.e., has two entries in each of them. A
split corner in (R, C) is a corner intersecting four different zones, i.e., it has an entry in four
different zones.

The proof of the following observation is again essentially present in [5].

▶ Lemma 9. Let M be a t-mixed free matrix, and let (R, C) be an ℓ-division of M , for some
integer ℓ. Then (R, C) has at most ct · (ℓ + 2) mixed cuts and at most 2ct · (ℓ + 1) split corners.

Proof. Let (R00, C00) be the division obtained from (R, C) by merging the row blocks indexed
2i − 1 and 2i into a single row block, and merging the column blocks indexed 2i − 1 and
2i into a single column block, for each i ∈ {1, . . . , ⌊ℓ/2⌋}. Obtain divisions (R10, C10),
(R01, C01), and (R11, C11) in a similar manner, where if the first number in the superscript is
1 then we merge row blocks 2i and 2i + 1 for each i ∈ {1, . . . , ⌈ℓ/2⌉ − 1} instead, and if the
second number in the superscript is 1 then we merge column blocks 2i and 2i + 1 for each
i ∈ {1, . . . , ⌈ℓ/2⌉ − 1} instead.

Observe that for every mixed cut of (R, C), the two zones in the mixed cut end up in
the same zone in either (R00, C00) or in (R11, C11), rendering this zone mixed. However, by
Lemma 6, (R00, C00) and (R11, C11) have at most ct · (ℓ/2 + 1) mixed zones. It follows that
(R, C) has at most 2ct · (ℓ/2 + 1) = ct · (ℓ + 2) mixed cuts. The bound on the number of
split corners follows from the same argument combined with the observation that every split
corner in (R, C) is entirely contained in a single zone of exactly one of divisions (R00, C00),
(R10, C10), (R01, C01), and (R11, C11). ◀

Partitioning into rectangles. We conclude with another observation about twin-ordered
matrices: they can be decomposed into a small number of rectangles. Formally, for a
binary matrix M , a rectangle decomposition of M is a set K of pairwise disjoint rectangular
submatrices (i.e., zones induced by some row block and some column block) such that every
submatrix in K is entirely filled with 1s and there is no entry 1 outside the submatrices in K.
The following lemma is stated and proved in the graph setting in [2]; we adapt the proof
here to the matrix setting.

▶ Lemma 10. Let M be an n× n binary matrix that is d-twin-ordered. Then M admits a
rectangle decomposition K with |K| ≤ d(2n− 2) + 1.

Proof. Let (R0, C0), . . . , (R2n−2, C2n−2) be a contraction sequence for M with error value at
most d. Let Si be the set of zones of (Ri, Ci), and let

S =
2n−2⋃
i=0
Si.

Note that S is a laminar family, that is, every two submatrices in S are either disjoint or
one is contained in the other.
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Let K be the subfamily of S consisting of those submatrices that are entirely filled with
1s, and are inclusion-wise maximal in S subject to this property. Note that every entry
1 in M is contained in some member of K, for the zone of (R0, C0) in which this entry is
contained is a 1× 1 submatrix entirely filled with 1s. Since S is laminar, it follows that K is
a rectangle decomposition of M . So it remains to argue that |K| ≤ d(2n− 2) + 1.

Consider any A ∈ K and let i be the largest index such that A ∈ Si. We may assume
that i < 2n − 2, for otherwise the matrix M is entirely filled with 1s and the postulated
claim is trivial. By maximality, A is contained in a non-constant zone B ∈ Si+1 that resulted
from merging A with another adjacent zone A′ ∈ Si, which is not entirely filled with 1s.
In particular, B lies in the unique row block or column block of (Ri+1, Ci+1) that resulted
from merging two row blocks or two column blocks of (Ri, Ci). There can be at most d

non-constant zones in this row/column block of (Ri+1, Ci+1), and B is one of them. We infer
that i can be the largest index satisfying A ∈ Si for at most d different submatrices A ∈ K.
Since this applies to every index i ∈ {0, 1, . . . , 2n− 3}, we conclude that |K| ≤ d(2n− 2). ◀

Observe that Lemma 10 provides a way to encode an n × n d-twin-ordered matrix in
Od(n log n) bits: one only needs to specify the vertices of the submatrices of a rectangle
decomposition of size Od(n). The proof is also effective, in the sense that given a suitably
represented contraction sequence one can compute the obtained decomposition K. To abstract
away the nuances of representing contraction sequences, throughout this paper we assume that
d-twin-ordered matrices are provided on input through suitable rectangle decompositions.

3 Structural properties of divisions

Before we proceed to constructing the promised compact representation, we need to describe
some new combinatorial properties of twin-ordered matrices. For the remainder of this
section, we fix d ∈ N and consider a matrix M that is d-twin-ordered. In particular, by
Theorem 5, M is (2d + 2)-mixed-free.

Strips. We begin by considering non-constant vertical and horizontal zones of a given
division of M . We will show that these zones can be grouped into Od(t) strips that again
are vertical or horizontal, respectively. This partitioning is formalized as follows.

▶ Definition 11. Let (R, C) be a division of a matrix M . A vertical strip in (R, C) is
an inclusion-wise maximal set of non-constant vertical zones of D that are contained in the
same column block of (R, C), span a contiguous interval of row blocks, and whose union is
again a vertical submatrix. Horizontal strips are defined analogously.

1 1 1 1 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1

Figure 1 Strips in an example 4-division of a matrix. Horizontal strips are painted in shades of
yellow. Vertical strips are painted in shades of blue. Unpainted zones are constant or mixed.

STACS 2022



52:8 Compact Representation for Matrices of Bounded Twin-Width

Naturally, each non-constant vertical zone belongs to exactly one vertical strip; and
similarly, each non-constant horizontal zone belongs to exactly one horizontal strip.

We will now show an upper bound on the number of vertical and horizontal strips present
in any t-division of M .

▶ Lemma 12. For every t ∈ N, the total number of vertical and horizontal strips in any
t-division of M is at most Od(t).

Proof. We focus on the bound for vertical strips only; the proof for horizontal strips is
symmetric. Fix some t-division (R, C) of M . Observe that each vertical strip S of the division
either intersects the top row of the matrix, or the top-most zone of S is adjacent from the
top to another zone C such that adding C to S yields a submatrix that is not vertical. (We
say that C is adjacent to S from the top.) Thus, we partition the family of vertical strips in
the t-division of M into three types:

(I) strips intersecting the top row of M ;
(II) strips adjacent to a mixed zone C from the top; and

(III) strips adjacent to a non-mixed zone C from the top.
Obviously, there are at most t vertical strips of type (I). Next, each vertical strip of type (II)
can be assigned a private mixed zone C adjacent to it from the top. Hence, the number of
vertical strips of this type is upper bounded by the number of mixed zones in (R, C), which
by Lemma 6 is bounded by Od(t).

Finally, let us consider vertical strips of type (III). Let S be a vertical strip of this type,
D be its top-most zone, and C be the non-mixed zone adjacent to D from the top. Since D

is vertical, all rows of D are repetitions of the same row vector vD. Since D is non-constant,
vD is non-constant as well.

As C is non-mixed, it is either horizontal or vertical. If C is vertical, then all its rows are
repetitions of the same row vector vC . Observe that since strip S could not be extended by C,
we have vC ̸= vD. Now, as vD is non-constant, it follows that the union of the bottom-most
row of C and the top-most row of D contains a corner. On the other hand, if C is horizontal,
then the bottom-most row of C is constant and again there is a corner in the union of the
(constant) bottom-most row of C and the (non-constant) top-most row of D.

So in both cases we conclude that C and D form a mixed cut. By Lemma 9, the total
number of mixed cuts in (R, C) is bounded by Od(t), so also there are at most Od(t) vertical
strips of type (III). This concludes the proof. ◀

Regular divisions. We move our focus to a central notion of our data structure: regular
divisions of a matrix:

▶ Definition 13. Given M and an integer s ∈ N, we define the s-regular division of M as
the

⌈
n
s

⌉
-division of M in which each row block (respectively, column block), possibly except

the last one, contains s rows (resp. columns). Precisely, if s ∤ n, then the last row block and
the last column block contain exactly n mod s rows or columns, respectively.

In the data structure, given a square input matrix M , we will construct multiple regular
divisions of M of varying granularity (the value of s). Crucially, in order to ensure the space
efficiency of the data structure, we will require that the number of distinct zones in each
such regular division of M should be small. This is facilitated by the following definition:

▶ Definition 14. For s ∈ N, the s-zone family of M , denoted Fs(M), is the set of all
different zones participating in the s-regular division of M .
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Let us stress that we treat Fs(M) as a set of matrices and do not keep duplicates in it.
That is, if the regular s-division of M contains two or more isomorphic zones – with same
dimensions and equal corresponding entries – then these zones are represented in Fs(M)
only once.

For the remainder of this section, we will prove good bounds on the cardinality of Fs(M).
Trivially, the cardinality of Fs(M) is bounded by

⌈
n
s

⌉2 (i.e., the number of zones in the
s-regular division). Also, the same cardinality is trivially bounded by 2O(s2) (i.e., the total
number of distinct matrices with at most s rows and columns). However, given that M is
d-twin-ordered, both bounds can be improved dramatically. First, the dependence on n

s in
the former bound can be improved to linear:

▶ Lemma 15. For every s ∈ {1, . . . , n}, the cardinality of Fs(M) is bounded by Od( n
s ).

Proof. First assume that s | n; hence, each zone in the s-regular division of M has s rows
and s columns. Then, the matrices in Fs(M) can be categorized into four types:

Constant zones. There are at most 2 of them – constant 0 and constant 1.
Mixed zones. Here, Lemma 6 applies directly: since the considered division is an n

s -division
of M , there are at most Od( n

s ) mixed zones in M in total.
Vertical zones. By Lemma 12, all vertical zones of the considered division can be
partitioned into Od( n

s ) vertical strips. As all zones have the same dimensions, the zones
belonging to a single vertical strip are pairwise isomorphic. From this we infer the Od( n

s )
upper bound on the number of different vertical zones.
Horizontal zones are handled symmetrically to vertical zones.

Finally, if s ∤ n, then let M ′ be equal to M , truncated to the first n− (n mod s) rows and
columns; equivalently, M ′ is equal to M with all zones with fewer than s rows or columns
removed. The argument given above applies to M ′, yielding at most Od( n

s ) different s× s

zones in M ′ (and equivalently in M). The proof is concluded by the observation that M

contains exactly 2
⌈

n
s

⌉
− 1 = O( n

s ) zones in its s-regular division that have fewer than s rows
or columns. ◀

Second, from the works of Bonnet et al. [1, 3] one can easily derive an upper bound that
is exponential in s rather than in s2:

▶ Lemma 16. For every s ∈ {1, . . . , n}, the cardinality of Fs(M) is bounded by 2Od(s).

Proof. Observe that a submatrix of a d-twin-ordered matrix is also d-twin-ordered. Thus,
it is only necessary to upper bound the total number of different s × s matrices that are
d-twin-ordered. To this end, we use the notion of twin-width of ordered binary relational
structures introduced in the work of Bonnet et al. [3]. This notion is more general than twin-
orderedness in the following sense: each s× s matrix that is d-twin-ordered corresponds to
a different ordered binary structure over s elements of twin-width at most d. As proved in [3],
the number of different such structures is upper bounded by 2Od(s). The claim follows. ◀

While the bound postulated by Lemma 15 is more powerful for coarse regular divisions
of M (i.e., s-regular divisions for large s), Lemma 16 yields a better bound for s ≤ pd · log n,
where pd > 0 is a sufficiently small constant depending on d.

4 Data structure

In this section we present the data structure promised in Theorem 1. Recall that it should
represent a given binary n× n matrix M that is d-twin-ordered, and it should provide access
to the following query: for given (i, j) ∈ [n]2, return the entry M [i, j]. Here we focus only
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on the description of the data structure, implementation of the query, and analysis of the
bitsize. The construction algorithm promised in Theorem 1 is given in the full version of the
work [14].

Without loss of generality, we assume that n is a power of 2. Otherwise we enlarge M , so
that its order is the smallest power of 2 larger than n. We use dummy 0s to fill additional
entries. It is straightforward to see that the resulting matrix is (d+1)-twin-ordered. Similarly,
in the analysis we may assume that n is sufficiently large compared to any constants present
in the context.

Description. Our data structure consists of ℓ+1 layers: L0, . . . ,Lℓ. Recall from Definition 14
that Fs(M) is the family of pairwise different zones participating in the s-regular division
of M . Each layer Li in our data structure corresponds to Fmi(M) for a carefully chosen
parameter mi. Let low(x) be the largest power of 2 smaller or equal to x. We define
parameters mi inductively as follows: set m0 = n and for i ≥ 0,

mi+1 =
{

low(mi
2/3) if mi ≥ log3 n

mi/2 if log n/(2βd) ≤ mi < log3 n

where βd is the constant hidden in the Od(·) notation in Lemma 16, i.e., |Fs(M)| ≤ 2βd·s.
The construction stops when we reach mi satisfying mi < log n/(2βd), in which case we set
ℓ = i. Note that all parameters mi are powers of 2, so mj divides mi whenever i ≤ j.

We also observe the following.

▷ Claim 17. ℓ ∈ O(log log n).

Proof. Let k be the least index for which mk < log3 n. Observe that for i ∈ [1, k] we have
mi ≤ n(2/3)i . So it must be that k ≤ log3/2 log n + 1 ∈ O(log log n), for otherwise we would
have mk−1 ≤ n(2/3)log3/2 log n

= n1/ log n = 2 < log3 n. Next, observe that for i ∈ [k + 1, ℓ] we
have mi = mk/2i−k. Therefore, we must have ℓ − k ≤ log(log3 n) + 1 ∈ O(log log n), for
otherwise we have mℓ−1 ≤ mk/2log log3 n < log3 n/ log3 n = 1. The claim follows. ◁

Layer Lℓ is special and we describe it separately, so let us now describe the content of
layer Li for each i < ℓ. Since n is divisible by mi, every Z ∈ Fmi(M) is an mi ×mi matrix
that appears at least once as a zone in the (n/mi)-regular division of M . Such Z will be
represented by an object obj(Z) in Li. Each object obj(Z) stores (mi/mi+1)2 pointers to
objects in Li+1; recall here that mi+1 divides mi. Consider the mi+1-regular division of Z.
This division consists of (mi/mi+1)2 zones; index them as subzoneZ(i, j) for i, j ∈ [mi/mi+1]
naturally. Observe that for all i, j ∈ [mi/mi+1], it holds that subzoneZ(i, j) ∈ Fmi+1(M). In
our data structure, each object obj(Z) ∈ Li, corresponding to a matrix Z ∈ Fmi

(M), stores
an array ptr of (mi/mi+1)2 pointers, where ptr[i, j] points to the address of subzoneZ(i, j)
for all i, j ∈ [mi/mi+1]. This concludes the description of layer Li for i < ℓ.

We now describe layer Lℓ. It is also a collection of objects, and for each matrix Z ∈
Fmℓ

(M) there is an object obj(Z) ∈ Lℓ; these objects are pointed to by objects from Lℓ−1.
However, instead of storing further pointers, each object obj(Z) ∈ Lℓ stores the entire matrix
Z ∈ Fmℓ

(M) as a binary matrix of order mℓ × mℓ, using m2
ℓ bits. This concludes the

description of Lℓ.
Observe that in L0 there is only one object corresponding to the entire matrix M . We

store a global pointer ptrGlo to this object. Our data structure is accessed via ptrGlo upon
each query.
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Implementation of the query. The description of the data structure is now complete and
we move on to describing how the query is executed. The query is implemented as method
entry(i, j) and returns M [i, j]; see Algorithm 1 for the pseudocode (where ptrIt → stands
for dereference of a pointer ptrIt, i.e., the object pointed to by ptrIt). Given two integers
i, j ∈ [n], the method starts with pointer ptrGlo, and uses i and j and iterator pointer ptrIt to
navigate via pointers down the layers, ending with a pointer to an object in layer Lℓ. Initially,
the iterator ptrIt is set to ptrGlo and it points to obj(Z) for the only matrix Z ∈ Fm0(M).
Integers i, j are the positions of the desired entry with respect to zone Z. After a number of
iterations, ptrIt points to an object obj(Z) ∈ Lk for a matrix Z ∈ Fmk

(M), and maintains
current coordinates i and j. The invariant is that the desired output is the entry Z[i, j].
In one step of the iteration, the algorithm finds the matrix Z ′ in Fmk+1(M) containing the
desired entry Z[i, j], which is the zone subzoneZ(i div mk+1, j div mk+1) ∈ Fmk+1(M), and
moves the pointer ptrIt to obj(Z ′) ∈ Lk+1. The new coordinates of the desired entry with
respect to Z ′ are (i mod mk+1) and (j mod mk+1), so i and j are altered accordingly. Once
the iteration reaches Lℓ, the object pointed to by ptrIt contains the entire zone explicitly, so it
suffices to return the desired entry. Obviously, the running time of the query is O(log log n),
since the algorithm iterates through ℓ ∈ O(log log n) layers.

Algorithm 1 Query algorithm.

Input : Integers i, j ∈ [n]
Output : M [i, j]

1 ptrIt← ptrGlo
2 for k ← 0 to ℓ− 1 do
3 ptrIt← (ptrIt→ ptr[i div mk+1, j div mk+1] ;
4 i← i mod mk+1 ;
5 j ← j mod mk+1 ;
6 return ptrIt→ Z[i, j]

Analysis of bitsize. We now analyze the number of bits occupied by the data structure. First
note that the total number of objects stored is bounded by the total number of submatrices
of M , which is polynomial in n. Hence, every pointer can be represented using O(log n) bits.
Keeping this in mind, the total bitsize occupied by the data structure is proportional to

ℓ−1∑
i=0
|Fmi(M)|

(
mi

mi+1

)2
log n + |Fmℓ

(M)|m2
ℓ , (1)

This is because for all layers Li for i < ℓ we store |Fmi(M)| objects, each storing
(

mi

mi+1

)2

pointers, and in Lℓ we store |Fmℓ
(M)| objects, each storing a binary matrix of order mℓ×mℓ.

We first bound the second term of Equation (1). By Lemma 16, we have

|Fmℓ
(M)|m2

ℓ ≤ 2βd·mℓ ·m2
ℓ ≤ 2βd· log n

2βd ·
(

log n

2βd

)2
=
√

n ·
(

log n

2βd

)2
∈ o(n).

We move on to bounding the first term of Equation (1). Let k be the least index for
which mk < log3 n. We can split the first term of Equation (1) into two sums:
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ℓ−1∑
i=0
|Fmi(M)|

(
mi

mi+1

)2
log n =

=
k−1∑
i=0
|Fmi

(M)|
(

mi

mi+1

)2
log n+ (2)

+
ℓ−1∑
i=k

|Fmi
(M)|

(
mi

mi+1

)2
log n (3)

We first apply Lemma 15 to bound the sum (2). More precisely, if αd is the constant
hidden in the Od(·) notation in Lemma 15, we have

(2) ≤ log n ·
k−1∑
i=0

αd
n

mi
· 4m

2/3
i = 4αdn log n ·

k−1∑
i=0

1
m

1/3
i

(4)

Since for i ∈ [k − 1] we have mi+1 = low(m2/3
i ) and mi ≥ log3 n, we have mi/mi+1 ≥ 2.

Therefore mi ≥ 2k−i−1mk−1 for i ∈ [0, k − 1], so we can continue bounding the last expression
in Equation (4):

(4) ≤ αdn log n
k−1∑
i=0
· 1
(2k−i−1mk−1)1/3 ≤ αdn · log n

m
1/3
k−1

·
k−1∑
i=0

1
(2k−i−1)1/3 ∈ Od(n).

It remains to bound sum (3). We use Lemma 15 similarly as above:

(3) = 4 log n ·
ℓ−1∑
i=k

|Fmi(M)| ≤ 4αdn log n ·
ℓ−1∑
i=k

1
mi
≤ 4αdn log n ·

∞∑
i=0

1
( log n

2βd
) · 2i

∈ Od(n).

By summing up all the bounds we infer that the total number of bits occupied by our data
structure is Od(n).
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A Representation with bitsize O(n1+ε) and query time O(1/ε)

In this section we provide a brief sketch of another data structure representing twin-ordered
matrices. For any fixed ε > 0, we will construct a data structure that represents a given
d-twin-ordered n× n matrix M in bitsize O(n1+ε), and can be queried for entries of M in
worst-case time O(1/ε) per query.

Actually, the data structure solves the Orthogonal Point Location problem. An in-
stance of the problem is a set of O(n) orthogonal rectangles with pairwise disjoint interiors,
each with integer coordinates between 0 and n. In the problem, we are required to preprocess
the input rectangles and construct a data structure that can can efficiently locate the rect-
angle containing a given query point. As the set of 1 entries in any d-twin-ordered matrix M

admits a rectangle decomposition into Od(n) rectangles (Lemma 10), this also yields a data
structure representing M .

Famously, Chan [7] designed a data structure for Orthogonal Point Location that
can answer each query in worst-case time O(log log n) and can be constructed in time
O(n log log n). In the same work, he also observed that achieving constant query time is
much more difficult. Namely, Orthogonal Point Location can be reduced to the static
variant of the Predecessor Search problem. Pǎtraşcu and Thorup proved that each
data structure for Predecessor Search with O(n logO(1) n) bitsize necessarily requires
Ω(log log n) query time, even in a much more powerful cell probe model [13]. Therefore, for
general Orthogonal Point Location, one cannot expect to achieve constant query time
with bitsize significantly smaller than O(n1+ε).

Data structure for disjoint intervals. Consider integers k, h ≥ 1, and let n = kh. We
will first sketch a data structure that maintains a set of disjoint integer intervals that are
subintervals of [0, n− 1]. The data structure shall allow adding or removing intervals in time
O(kh) and querying whether a point is contained in any interval in time O(h).

Consider a perfect k-ary tree of depth h. The tree has kh leaves, numbered from 0
to n − 1 according to the pre-order traversal of the tree. Each internal node at depth
i ∈ {0, 1, . . . , h− 1} in the tree corresponds to a contiguous interval of leaves of length kh−i.
Each such interval is called a base interval. Each internal node contains an array of k pointers
to the children in the tree, allowing access to the j-th child in constant time. Additionally,
alongside each node v of the data structure, we store an additional bit bv, initially set to 0.
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Assume an interval [ℓ, r] is to be inserted to the set. We traverse the tree recursively,
starting from the root, entering only nodes whose base intervals intersect [ℓ, r], and cutting
the recursion at nodes whose base intervals are entirely within [ℓ, r]. It can be shown that
the recursion visits at most O(kh) nodes and decomposes [ℓ, r] into O(kh) disjoint base
intervals. For each node v corresponding to such a base interval, we set bv ← 1. Removing
an interval from the set is analogous. Now, to verify whether an element y belongs to the
set, we descend recursively from the root of the tree to the y-th leaf of the tree and verify if
any of the visited nodes v has bv = 1. This requires time O(h).

Since each update and query to the data structure is essentially a recursive search from
the root of the tree, the data structure can be made persistent: on each update, we create
a copy of each altered node and each of their ancestors, and we reset the pointers in the
copies accordingly. As O(kh) nodes are updated at each query, and each internal node stores
an array of O(k) pointers, the update time increases to O(k2h) due to the copying of the
nodes; and each update increases the bitsize of the data structure by O(k2h log n). Thus,
after Od(n) updates, the bitsize of the data structure is Od(nk2h log n). The query time
remains at O(h).

Orthogonal point location with small coordinates. Fix any ε > 0. Given a matrix M of
order n, we set h := ⌈2/ε⌉ + 1 and k :=

⌈
n1/h

⌉
. We instantiate a persistent k-ary tree of

depth h as above. We sweep the set of rectangles from the left of the right, maintaining
a vertical sweep line. The tree maintains an intersection of the sweep line with the union
of rectangles as a set of disjoint intervals contained in [0, n]. Hence, for each rectangle, the
tree is updated twice: a vertical interval is added when the sweep line reaches the left end of
the rectangle, and is removed as soon as it reaches the right end of the rectangle. At each x

coordinate, we store the pointer verx to the root of the current version of the tree. After the
preprocessing, for each query (x, y), we fetch the pointer verx and check whether this version
of the tree contains y as an element.

Let us analyze the query time and the bitsize of the data structure. For convenience,
let δ := 1/h. We can see that 0 < δ < ε

2 . Each query is performed in time O(h) = O(1/ε).
Storing pointers verx requires bitsize O(n log n). Since we processed Od(n) rectangles, the
persistent tree has bitsize Od(nk2h log n) = Od(n1+2δ log n/ε) = Od(n1+ε).
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dimension of partial derivatives captures Waring rank up to polynomial factors, then the model of
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1 Introduction

The central question in algebraic complexity theory: the theory concerning computation of
polynomials, is to understand the most efficient way of computing a polynomial f(x1, . . . , xn)
using the basic arithmetic operations of addition and multiplication. One of the earliest
works to study the computational complexity of an explicit polynomial is perhaps the famous
work of Strassen [22] on matrix multiplication. However, the seminal work of Valiant [23] that
proposed the “VP vs VNP” question (the algebraic analogue of P vs NP) is widely regarded
as the starting point of algebraic complexity theory.

Algebraic circuits are a fundamental model for computing polynomials, and the complexity
of a polynomial is determined by the size of the smallest circuit that computes it. This
definition also coincides with the fewest number of arithmetic operations required to evaluate
a polynomial. Valiant’s above mentioned work however, uses the model of algebraic branching
programs (ABPs) to capture efficiently computable polynomials. Informally, an ABP computes
a polynomial f(x) as the (1, 1)th entry of a product of matrices, each of which has linear
forms in the x variables as its entries. While VP is the class of n-variate polynomials having
poly(n) size algebraic circuits, the class of n-variate polynomials that have an ABP of size
poly(n) is called VBP. The class VBP is known to be a subclass of VP, and at the moment
it is unclear if this inclusion is strict. The VBP vs VNP question remains a central question
in algebraic complexity theory as it is captured by the “determinant vs permanent” question
(see e.g. [10]).

Although proving strong lower bounds against algebraic circuits seems currently un-
attainable, even proving lower bounds against ABPs remains a challenging task. In fact,
even a super-quadratic lower bound against ABPs will be a massive improvement over the
state of the art ([1, 2]). A significant amount of work in the area has therefore focused
on analysing more structured variants of ABPs which could potentially be easier to tackle.
Indeed, a celebrated result of Nisan [14] gives an exact characterisation of the complexity of a
non-commutative ABP computing any non-commutative polynomial1. This characterisation
yields a 2Ω(n) lower bound against non-commutative ABPs for the determinant, which among
other things, highlights the power of commutativity.

We now turn to the protagonists of our work, Read-once Oblivious ABPs (ROABPs),
which are the commutative analogues of non-commutative ABPs. ROABPs were first
introduced by Forbes and Shpilka [6], in the context of polynomial identity testing: another
central problem in algebraic complexity, which we discuss in more detail in the full version.
An ROABP is an algebraic branching program that uses exactly n matrices, one for each
variable; and the entries in the matrix corresponding to an xi are univariate polynomials
from C[xi] (formally defined in Definition 9). It is easy to check that ROABPs can compute
any monomial, and are closed under taking sums. Thus, every n-variate, degree-d polynomial
trivially has an ROABP of size dO(n). On the other hand, Nisan’s characterisation [14] for
non-commutative ABPs also extends to ROABPs, and hence most of the strong lower bounds
against non-commutative ABPs can be suitably translated to ROABPs.

Since all ROABPs use n matrices, the parameter of interest is the width of an ROABP,
which is the maximum dimension of any of the underlying matrices. Furthermore, since every
matrix in an ROABP is associated with exactly one variable in {x1, . . . , xn}, one can naturally
identify an order σ ∈ Sn (permutation on {x1, . . . , xn}) in which the ROABP “reads the
variables”. Indeed, there are polynomials which are computable by poly(n)-width ROABPs

1 A non-commutative polynomial is one in which the variables do not commute, i.e. xy ̸= yx.



C. Ramya and A. Tengse 53:3

in one order, but require exponential width in a different order. In fact, a straight-forward
application of Nisan’s characterisation shows that the 2n-variate polynomial (x1 + y1)(x2 +
y2) · · · (xn + yn) is computable by a width-2 ROABP in the order (x1, y1, x2, y2, . . . , xn, yn);
but any ROABP that reads all the x-variables before the y-variables (e.g. in the order
(x1, . . . , xn, y1, . . . , yn)) requires width 2Ω(n). The existence of such polynomials naturally
leads to the following classes of polynomials (defined in Section 2).

ROABP[∃](n, d, w) - n-variate, individual degree d polynomials that are computable by
a width-w ROABP in some order σ ∈ Sn.
ROABP[∀](n, d, w) - n-variate, individual degree d polynomials that are computable by
a width-w ROABP in every order.

Clearly, ROABP[∀](n, d, w) ⊆ ROABP[∃](n, d, w), and the former class requires exponential
width to simulate the latter, due to the example discussed above.

Observe that an ROABP in the order id = (x1, . . . , xn), can be written as u⊺ · M1(x1) ·
M2(x2) · · · Mn(xn)·v, with entries of each Mi being univariate polynomials in C[xi]. Alternat-
ively, we can view the same, as u⊺

(∏
i∈[n]

(
Ai,0 + Ai,1xi + · · · + Ai,dxd

i

))
v, by interpreting

each Mi as a univariate with matrices as coefficients. We refer to these matrices {Ai,j} as
the coefficient matrices of the ROABP.

Now based on the properties of the coefficient matrices {Ai,j}, one can define the following
models and the corresponding classes.

Commutative ROABPs: ROABPs where all the n(d + 1) coefficient matrices commute
with each other (see Definition 12).
commROABP(n, d, w) - n-variate, individual degree d polynomials that are computable
by a width w commutative ROABP.
Diagonal ROABPs: ROABPs where all the n(d + 1) coefficient matrices are diagonal
matrices (see Definition 13).
diagROABP(n, d, w) - n-variate, individual degree d polynomials that are computable by
a width w diagonal ROABP.

First of all, commROABP(n, d, w) ⊆ ROABP[∀](n, d, w) for any n, d, w, since the coef-
ficient matrices in any commutative ROABP are commutative, and one can multiply the
matrices in any order to get the same result. Likewise, as all diagonal matrices commute
with each other, diagROABP(n, d, w) ⊆ commROABP(n, d, w). In this paper, we investigate
commutative and diagonal ROABPs to understand if and when these two classes are the
essentially (up to polynomial-factors) equal.

While it is indeed true that even diagonal ROABPs are universal, it is reasonable to ask if
there are any interesting polynomial families that are efficiently computable by commutative
and diagonal ROABPs. In this regard, let us begin by looking at the constructions of “all-
order-ROABPs” for two well studied polynomial families: elementary symmetric polynomials
and powers of linear forms. Incidentally, these constructions can naturally be interpreted as
commutative ROABPs, and further, they even lead to diagonal ROABPs that achieve the
best known upper bounds. We believe that these examples should serve as an additional
motivation to study the models of commutative and diagonal ROABPs.

▶ Definition 1 (Elementary Symmetric Polynomials). The n-variate elementary symmetric
polynomial of degree d, denoted by ESymd

n is defined as follows.

ESymd
n(x) :=

∑
S⊂[n]
|S|=d

∏
i∈S

xi (1.1)

STACS 2022



53:4 On Finer Separations Between Subclasses of ROABPs

Following is a folklore construction (with a minor tweak) of an ROABP for ESymd
n which

is provably tight owing to the characterisation result by Nisan [14] (see full version). We
illustrate the construction for n = 5 and d = 3 in the full version, and give the general recipe
here without a proof of correctness.

▶ Construction 1.2. For any n, d ∈ N such that d ≤ n, we have the following.

ESymd
n(x) = (M(x1)M(x2) · · · M(xn)) [1, d + 1],

where for all i, M(xi) is a (d + 1) × (d + 1) matrix such that M(xi)[k, k] = 1 for all
1 ≤ k ≤ (d + 1), and M(xi)[k, k + 1] = 1 for all 1 ≤ k ≤ d; all other entries of M(xi) are
zero.

The matrix M(xi) can also be written as (I + Axi), where A is a matrix with 1s on its super-
diagonal and zeros everywhere else, and I is the identity matrix. This gives the expression:
ESymd

n(x) = ((I + Ax1)(I + Ax2) · · · (I + Axn))(1,d+1) = u⊺
(∏

i∈[n](I + Axi)
)

v, for the
obvious choice of u, v ∈ C(d+1).
We can now make the following sequence of simple observations about this construction.

All the coefficient matrices of the above ROABP: I and A, commute with each other.
Thus, it is a commutative ROABP.
(I +Ax1)(I +Ax2) · · · (I +Axn) =

∑
0≤j≤n ESymj

n Aj =
∑

0≤j≤d ESymj
n Aj , since Aj = 0

for all j ≥ (d + 1).
For every 0 ≤ j ≤ d, only the jth power of A that has a 1 in the (1, 1 + j)th entry.
Therefore, the (1, d + 1)th entry of (I + Ax1)(I + Ax2) · · · (I + Axn) exactly computes
the coefficient of Ad, which is ESymd

n.

This perspective along with elementary interpolation, then leads us to the following depth-
3-multilinear circuit for ESymd

n of top fan-in (n + 1) for all values of d, that is attributed
to Ben-Or ([21]). This also happens to give the following nearly-optimal construction for a
diagonal ROABP computing ESymd

n.

▶ Construction 1.3. For any n, d ∈ N and distinct a0, a1, . . . , an ∈ F, there exist constants
β0, β1, . . . , βn ∈ F such that

ESymd
n(x) =

∑
0≤j≤n

βj(1 + ajx1)(1 + ajx2) · · · (1 + ajxn)

Just as the commutative ROABP for ESymd
n(x) leads us to Ben-or’s construction of a

diagonal ROABP, we also observe that the commutative ROABP computing dth power of
an n-variate linear form (x1 + x2 + · · · + xn)d gives us the duality trick of Saxena [18] (see
e.g. [19, Lemma 17.13]). We refer the interested reader to the full version.

As the coefficient matrices of diagonal ROABPs are diagonal matrices it is not difficult to
observe that they are exactly sums-of-products-of-univariates. Thus, from the duality trick, we
observe that diagonal ROABPs can efficiently simulate diagonal depth 3 circuits (a.k.a. depth-3
powering circuits) denoted by Σ∧Σ. That is, Σ∧Σ(n, d, s) ⊆ diagROABP(n, d, O(n, d, s)).Also,
a separation between these two classes is known due to the exponential lower bound from
[15] for x1 . . . xn against the model Σ ∧ Σ. In essence, we have the following containments
between classes2, where each C stands for the class of n-variate, degree-d polynomials whose
C-size is poly(n, d).

Σ ∧ Σ ⊊ diagROABP ⊆ commROABP ⊆ ROABP[∀] ⊊ ROABP[∃]

2 We have more intricate relationships between classes concerning ROABPs. See Subsection 1.3
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Looking at the above hierarchy, we firstly realise that nearly optimal separations are
known at the two “extremes”, but nothing is known about the intermediate levels. Further,
since the intermediate levels are far more algebraically structured (coefficient matrices arising
from special commutative algebras), it is reasonable to expect finer separations for these
classes. Unfortunately, all the lower bounds that we know for diagonal and commutative
ROABPs are those that are known for ROABP[∀].

Secondly, even though diagonal ROABPs (sum-of-products-of-univariates) may be of
independent interest as they subsume Σ ∧ Σ circuits, they are also interesting from the point
of view of polynomial identity testing. Owing to the algebraic structure of their coefficients,
one can expect efficient PIT algorithms for these classes. But again, the best PIT algorithms
that we know for diagonal and commutative ROABPs are those we know for ROABP[∀]. We
discuss more about polynomial identity testing algorithms for these classes in the full version.

1.1 Our Results
We now move to the central questions addressed in this article. In particular, we wish to
understand if the classes commROABP and diagROABP are equal up to polynomial factors;
this can be more formally stated as follows.

▶ Question 1.4. Given an n-variate, individual degree d polynomial f(x) computable by a
width w commutative ROABP(i.e. f ∈ commROABP(n, d, w)), does there exist a diagonal
ROABP computing f of width poly(n, d, w)?

A measure that is often used to prove lower bounds against structured models (e.g.
almost every lower bound against Σ ∧ Σ, and more recently [11]) is the dimension of partial
derivatives, a complexity measure which was introduced by Nisan and Wigderson [15] (see
Definition 16). For any polynomial f ∈ C[x], the partial derivative complexity of f (denoted
by DPD(f)) is the dimension of the space spanned by all the partial derivatives of f . Nisan
and Wigderson [15] observed that any n-variate, degree d polynomial f(x) that has a Σ ∧ Σ
circuit of size s has DPD(f) ≤ s(d + 1). Therefore it is natural to ask whether the Σ ∧ Σ-size
of every polynomial f is polynomially related to its dimension of partial derivatives. We
formalize this question as follows.

▶ Question 1.5. Does there exist a constant c such that for any n-variate, degree-d polynomial
f(x) with DPD(f) ≤ s, we have that the smallest Σ ∧ Σ circuit that computes f(x) has size
at most (nds)c?

The size of the smallest Σ ∧ Σ circuit for a polynomial is a well studied notion called
the Waring rank of f (denoted by WR(f)). Question 1.5 essentially asks if the Waring
rank and the dimension partial derivatives of a polynomial are same up to polynomial
factors. Unfortunately, at the moment we do not know the answers to either Question 1.4
or Question 1.5. However, our main result gives a rather surprising connection between
Question 1.4 and Question 1.5. Specifically, we show that an positive answer to Question 1.5
answers Question 1.4 in the affirmative!

▶ Theorem 2. For any n, r ∈ N, let S(r, m) denote the smallest Σ ∧ Σ-size required to
compute any r-variate polynomial f with DPD(f) ≤ m.
Then for all n, d, w ∈ N, commROABP(n, d, w) ⊆ diagROABP

(
n, d, S(w2, w2)nw4).

▶ Remark 3. In fact, it can be inferred from our proof that a super-polynomial separation
between commROABP and diagROABP will yield an explicit polynomial that witnesses a
super-polynomial separation between dimension of partial derivatives and Waring rank. We
elaborate on this in Remark 22.
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A different (and perhaps equally surprising) consequence of Theorem 2 is that a super-
polynomial separation between commutative ROABPs and diagonal ROABP will also give a
super-polynomial separation dimension of partial derivatives and Waring rank. Note that not
only do we not know the answers to Question 1.4 or Question 1.5, it is somewhat frustrating
that we do not even know of a candidate polynomial that could potentially separate these
classes. We expect that our analysis of these models that goes into proving the result above
could help in making some progress in either of these questions.

1.2 An overview of the proof
We start by asking when diagonal ROABPs can efficiently simulate commutative ROABPs.
This question naturally leads us to study properties of matrices that commute with each
other. In particular, we analyse commutative rings generated by matrices that commute
with each other.

A very high level overview. The results of Marinari, Möller, Mora [12], and Möller and
Stetter [13] provide a characterisation of commutative rings of w × w matrices in terms of
polynomials whose dimension of partial derivatives is at most poly(w). In the special case
when these matrices are all diagonal, the same polynomials happen to have Waring rank at
most w. Further, we observe that if the polynomials corresponding to a n-variate, width-w
commutative ROABP have Waring rank at most s, then it can be simulated by a diagonal
ROABP of width poly(n, w, s). This is essentially our main result. We now explain the
characterisation given by [12] and [13] in a bit more detail.

Characterising rings of matrices

Consider the ring generated by a w × w matrix A, given by C[A] := {q(A) : q(t) ∈ C[t]}. The
ring has at most w linearly independent matrices, as the characteristic polynomial of A gives
a way to express Aw as a linear combination of lower powers of A. In fact, the ring C[A] is
characterised by the ideal of all polynomials that are divisible by the minimal polynomial
of A (see Fact A.1). This characterisation has an appropriate analogue for general matrix
rings, as follows.

Suppose that A1, . . . , Ar ∈ Cw×w commute with each other, and let C[A1, . . . , Ar], defined
as {g(A1, . . . , Ar) : g(t) ∈ C[t]}, be the ring generated by them3. Analogous to the univariate
(singly-generated) case, we then consider the ideal of dependencies for the matrices A1, . . . , Ar:
J = {p(t) ∈ C[t] : p(A1, . . . , Ar) = 0}. As it turns out, C[A1, . . . , Ar] is indeed characterised
by the ideal J (see Lemma 23).

Before delving further into the ideal of dependencies, we remark a structural property of
polynomials that admit a diagonal ROABP of a certain width.

Understanding diagonal ROABPs. Consider the diagonal ROABP (depth-3 multilinear
circuit) for the elementary symmetric polynomial ESymn,d that is attributed to Ben-Or (see
e.g. [21]). One first constructs the polynomial g(t, x) := (1 + tx1)(1 + tx2) · · · (1 + txn), and
then obtains ESymn,d as the coefficient of td in g(t, x), using interpolation. It turns out that
any diagonal ROABP computing a polynomial f(x) can similarly be seen as expressing f as
a linear combination of evaluations of a low-degree g(t, x) that is a “product of univariates”

3 Any ring of w × w matrices is generated by at most w2 matrices.
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(see Observation 18). Here, the number of evaluations needed is equal to the width of the
ROABP. Moreover the converse of this statement is also true, thus giving us an equivalent
formulation for diagonal ROABPs.

Therefore, we analyse the ideal J with the goal of expressing the corresponding commut-
ative ROABP as a sum of t-evaluations of some G(t, x) = G1(t, x1) · G2(t, x2) · · · Gn(t, xn).

The ideal of dependencies. Let us first make our statement about C[A1, . . . , Ar] being
characterised by J a bit more precise: there is a ring-isomorphism between C[A1, . . . , Ar]
and the quotient ring C[t]/J. Therefore it is crucial to understand J (and C[t]/J) to understand
the ring of matrices, in order to move towards the above mentioned goal.

Let p(t) be the minimal polynomial of some matrix A, and consider the ideal ⟨p⟩.
If p(t) = (t − 5)3, then we know that any q(t) belongs to ⟨p⟩ if and only if the first
3 derivatives of q(t) vanish at t = 5; i.e. q(5) = q′(5) = q′′(5) = 0. In general, for
p(t) = (t − a1)e1(t − a2)e2 · · · (t − ak)ek , membership in the ideal ⟨p⟩ is characterised by the
first ei derivatives vanishing at t = ai, for each i = 1, 2, . . . , k. Moreover, the polynomial
“q(t) mod p(t)” can be obtained by applying a linear transformation on the evaluations of
the e1, . . . , ek derivatives at the respective points a1, . . . , ak.

We now extend this understanding to the multivariate setting. We already have the correct
analogue for ⟨p⟩, which we call the ideal of dependencies J . Next, we need a characterisation
for “g(t) mod J” in terms of some derivatives of g(t) evaluated at some points related to J .
While these choices were quite clear in the univariate setting from p; the multivariate setting
requires a little more care. Fortunately for us, the works of Marinari, Möller, Mora [12], and
Möller and Stetter [13] provide an adequate solution.

Firstly, observe that J has a finite variety (common zeroes of all polynomials in J). Thus
the variety V(J) is a good multivariate analogue for the set of evaluation points. The other
ingredient that we require is a compatible notion of “multiplicity of J” at a point ᾱ in its
variety. For this, [12] look at the set of all partial derivative operators (see Definition 25)
which map every polynomial in J to a polynomial that vanishes at ᾱ. These operators form
a vector space over C, and the “multiplicity of J at ᾱ” is then defined as the dimension of
this vector space.

In the univariate setting, the multiplicity of q at a point ai is defined as the highest
number ei such that the first ei derivatives of q vanish at the point ai. Thus, one can naturally
identify a “highest derivative”, with the other derivatives being its “down-shifted versions”.
Analogously, the derivative operator space corresponding to J and a point v ∈ V(J) is closed
under taking down-shifts (see Definition 29). An ideal J with V(J) = {ᾱ1, . . . , ᾱk}, is then
captured by a collection of z vector spaces of derivative operators ∆1, ∆2, . . . , ∆k, in the
following sense (see Lemma 32).

For each i ∈ [k], ∆i corresponds to the point ᾱi and is down-closed.
Dimension of the quotient ring C[t]/J is w = dim(∆1) + dim(∆2) + · · · + dim(∆k).
Let {Di,1, . . . , Di,wi} be a basis of ∆i. Then there exists a map Φ : Cw → C[t]/J such
that for any polynomial q(t), Φ maps the w values: {Di,j(q)(vi)}, to the “remainder
polynomial” (q(t) mod I).

Further, Möller and Stetter [13] show that the map Φ stated above is just a linear transform-
ation (see Lemma 36).

Consequences for ROABPs. We now outline the proof of our main result (Theorem 2).
Given a commutative ROABP f(x) = b⊺ ·

∏
i∈[n]

(
Ai,0 + Ai,1xi + · · · + Ai,dxd

i

)
·c of width

w, we define F (x) :=
∏

i∈[n]
(
Ai,0 + Ai,1xi + · · · + Ai,dxd

i

)
to be a matrix of polynomials.

Then, f(x) is just a linear combination (given by bc⊺) of the entries of F .
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We then identify a set of matrices A1, . . . , Ar that generate the coefficient-matrix-ring; i.e.
C[A1, . . . , Ar] = C[A1,0, . . . , A1,d, . . . , An,d]. As we can always use the coefficient matrices
themselves, and because we are dealing with w × w matrices, r ≤ min(w2, n(d + 1)).
Let J be the ideal of dependencies for A1, . . . , Ar and suppose the normal set of J (see
Definition 35) has size, say m ≤ w2. Then each Ai,j is a polynomial in A1, . . . , Ar that
has ≤ m monomials.
For each i, j, suppose Gi,j(t1, . . . , tr) is the polynomial such that Gi,j(A1, . . . , Ar) =
Ai,j ; the entries of Ai,j are linear combinations of t-coefficients of Gi,j = (Gi,j mod J).
Then we observe that G(t, x) :=

∏
i∈[n]

(
Gi,0(t) + Gi,1(t)xi + · · · + Gi,d(t)xd

i

)
, such that

G(A1, . . . , Ar, x) = F (x). This means that even f(x) is a linear combination of the
t-coefficients of (G(t, x) mod J), as it is a linear combination of the entries of F (x). We
prove this in Lemma 20.
Now let V(J) = {v1, . . . , vk} and for each ℓ ∈ [k] let {Dℓ,1, . . . , Dℓ,mℓ

} be a basis for the
derivative operator space corresponding to vℓ. Then from the results of [12, 13] we get
that for any g(t), every t-coefficient of (g(t) mod J) is a fixed linear combination of the
m values given by (Dℓ,∗(g))(vℓ).
This brings us one step away from our goal of expressing f(x) as a linear combination of
t-evaluations of some G(t, x) which is a product of univariates. What we need is a way
to express each of (Dℓ,∗(G))(v) as a linear combination of t-evaluations of G(t, x).
It turns out that the number of evaluations of G(t, x) required to compute (Dℓ,∗(G))(v)
is poly(deg(hℓ,∗), WR(hℓ,∗)), where hℓ,∗ is the polynomial corresponding to Dℓ,∗ (see
paragraph below Definition 25). This is a non-trivial fact; we prove it in Lemma 21.
Finally, since each space ∆ℓ is down-closed, we have that the dimension of partial
derivatives DPD(hℓ,∗) ≤ dim(∆ℓ) ≤ m for each hℓ,∗. Therefore, using the hypothesis that
WR(h) = poly(r, DPD(h)) for any r-variate h, we get that (Dℓ,∗(G))(v) can be expressed
as a linear combination of poly(r, DPD(hℓ,∗), deg(hℓ,∗)) = poly(r, m) evaluations of G(t, x)
for each Dℓ,∗.
Combining all the above observations, we can see that the hypothesis implies that f(x)
can indeed be written as a linear combination of poly(r, m) = poly(n, d, w) evaluations of
G(t, x), thereby proving Theorem 2.

1.3 Landscape of ROABP classes
As mentioned earlier, although Theorem 2 relates Question 1.4 and Question 1.5, the answer
to both these questions remain unknown. In this regard, we would like to conjecture that
the answer to both questions is false.

▶ Conjecture 4. There exists an explicit n-variate degree d polynomial f(x) such that
f ∈ commROABP(n, d, poly(n, d)) and any diagonal ROABP computing f requires width
nω(1).

▶ Conjecture 5. There exists an explicit n-variate polynomial f(x) of degree poly(n) such
that DPD(f) = poly(n) but WR(f) = nω(1).

Even though many would agree that Conjecture 4 and Conjecture 5 are probably true, we
do not even know of any candidate polynomial that will witness the truth of this conjecture.
In relation to this, we remark that the following statement can be inferred from our proof
of Theorem 2. If there exists a commutative ROABP of width poly(n, d) computing an
n-variate, degree-d polynomial f , which requires diagonal ROABPs of super-polynomial
width, then the commutative ROABP for f gives a different explicit polynomial h that has
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polynomial dimension of partial derivatives, but has super-polynomial Waring rank (see
Remark 22 for details). As a result, even a candidate polynomial for proving Conjecture 4
remains unknown.

In the context of Conjecture 4, we remark the following connection between diagonal
ROABPs and tensor rank.
▶ Remark 6. Observe that the width of a diagonal ROABP exactly captures the tensor rank
of the corresponding tensor. A tensor T : [d]n → C of order4 n can naturally be viewed as
a polynomial fT =

∑
i∈[d]n T (i1, . . . , in)xi1

1 · · · xin
n . The (tensor) rank of any T (denoted by

TR(T )) is the smallest r such that T can be expressed as sum of r elementary tensors. Thus
for any tensor T , TR(T ) = r if and only if fT (x) can be expressed as sum of r many products
of univariates; which immediately implies diagROABP(n, d, w) = {fT ∈ C[x] | TR(T ) ≤ w}.
Obtaining strong lower bounds on the rank of explicit tensors is a major open problem in
algebraic complexity theory, where the goal is to obtain an explicit tensor T of order-n such
that TR(T ) = dn(1−o(1)) (see e.g. [17]).
Remark 6 tells us that proving strong width lower bounds against diagonal ROABPs could
potentially imply lower bounds on the rank of explicit tensors. While this could partially
explain why there are no separations between diagonal ROABPs and commutative or “all-
order” ROABPs, it is also worth mentioning that order-n tensors for a growing parameter n

are rarely studied in the context of tensor rank lower bounds.

With regard to Conjecture 5, we briefly discuss some known results about the problem of
computing the dimension of the partial derivative space.

Shitov [20] showed that given any degree 3 polynomial f in its sparse representation,
computing WR(f) is NP-hard, by reducing it to computing the tensor rank of order 3
symmetric tensors. On the other hand, when a polynomial f is presented in its sparse
representation (as sum of monomials), García-Marco, Koiran, Pecatte and Thomassé [7]
prove that computing the dimension of the partial derivative space is #P-hard (not known
to be #P-complete). Thus, even though computing Waring rank is a hard problem, it is
not quite clear if disproving Conjecture 5 goes against it. Moreover, it is possible that
Waring rank is easy to approximate up to polynomial factors, which is all that a disproof of
Conjecture 5 would imply. On a related note, Kayal [9] gave a randomised poly(n, d)-time
algorithm to compute the waring rank of an n-variate, degree-d polynomial that is given as
a blackbox (in the non-degenerate case).

Although the results in this article entirely concern Question 1.5 and Question 1.4, there
are several other interesting open questions surrounding the landscape of complexity classes
involving ROABPs. We discuss these interconnections between ROABP classes now, and
later illustrate them in Figure 1.

Let us consider the class of polynomials computed by ROABPs that remain unchanged by
interchanging layers in the branching program5. We prefer to use the term layer-commutative
ROABPs (denoted by layer-commROABP(n, d, w)) to denote the class of n-variate degree
d polynomials computed by an ROABPs such that if f = uT M1(x1) · · · Mn(xn)v then
the matrices of univariate polynomials M1, . . . , Mn commute. That is, Mi(xi)Mj(xj) =
Mj(xj)Mi(xi) for all i, j ∈ [n]. Clearly, layer-commROABP(n, d, w) ⊆ ROABP[∀](n, d, w),
and commROABP(n, d, w) ⊆ layer-commROABP(n, d, w). This immediately leads us to the
following two open questions whose answer seems unclear at the moment.

4 Commonly used term in the literature about tensors; not be confused with the order of an ROABP.
5 The class ROABP[∀](n, d, w) has been studied in the context of PIT, and is sometimes called commutative

ROABPs in some works (e.g. [8]). We use a different notation to avoid any ambiguity.
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▶ Question 1.6.
1. Are layer-commROABP(n, d, w) and ROABP[∀](n, d, w) equivalent up to a polynomial

blow-up in the width w?
2. Are commROABP(n, d, w) and layer-commROABP(n, d, w) equivalent up to a polynomial

blow-up in the width w?
We hope that a better understanding the algebra associated with commutative ROABPs
may shed light on the answers to above questions.

Along with the complexity of computing polynomials exactly, another notion that is
considered in algebraic complexity theory and more specifically in geometric complexity theory,
is border complexity of polynomials. Let C be a class of polynomials. We say that f is in the
class C (border of C), if f can be “arbitrarily-approximated” by a circuit in C. That is, there
exists a polynomial g(ϵ) ∈ C(ϵ) in class C such that f = limϵ→0 g. The border-complexity of
f is then at most the size of the circuit computing g. Clearly, C ⊆ C. Understanding whether
C = C for interesting classes such as VP and VBP are major open problems in algebraic
complexity theory. Here, we are interested in the case when C = diagROABP(n, d, w) (defined
in Definition 17).

▶ Question 1.7. Is there a super-polynomial separation between the classes
diagROABP(n, d, w) and diagROABP(n, d, w)?

As diagROABP(n, d, w) = {fT ∈ C[x] | TR(T ) ≤ w}, we have diagROABP(n, d, w) = {fT ∈
C[x] | TRC(f) ≤ w}. Here, TR(f) denotes the border rank of tensors. Border rank of tensors
is studied extensively in several contexts for instance, border rank of matrix multiplication
tensor is used to obtain bounds on the arithmetic complexity of matrix multiplication. In
this setting, the order of the tensor is usually bounded by a constant, and this setting slightly
deviates from the main theme algebraic circuit complexity.

It can be checked that just like commROABP(n, d, w), diagROABP(n, d, w) is also con-
tained in ROABP[∀](n, d, w) (because ROABP-complexity is characterised by rank, which is
a continuous measure). However, it is unclear if these two ways of “generalising” diagonal
ROABPs have different computational powers. This brings us to the following question.

▶ Question 1.8. Are the classes diagROABP(n, d, w) and commROABP(n, d, w) equivalent
up to polynomial factors?

Note that Question 1.8 is linked to the question of understanding commROABP(n, d, w)
and ROABP[∀](n, d, w) in Question 1.6. Also, answering this question in the affirmative is
similar in spirit to the recent “de-bordering” results due to Dutta et al. [5]. They proved
that the border of constant top fan-in depth three circuits is contained in the class VBP.
Here, Question 1.8 is essentially asking if for the class of diagonal ROABPs (albeit with
unbounded fan-in), the border is contained in a much simpler class of commutative ROABPs?
However, answering this in the negative could potentially be as hard as (or even harder than)
separating commutative ROABPs from diagonal ROABPs. In fact, it is not even clear if
these two classes should be comparable (contained in one another). We believe that any
answer to Question 1.8 would be an interesting development in algebraic complexity theory.

We summarize all the models and the interconnections between the structured ROABP
classes in Figure 1.

2 Preliminaries

We now formally define the classes of polynomials and other algebraic models of computation
that we study in this paper. First, we fix some notation.
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poly-width ROABP in some order
ROABP[∃](n, d, poly(n, d))

(Definition 10)

poly-width ROABP in every order
ROABP[∀](n, d, poly(n, d))

(Definition 11)

poly-width commutative ROABP
comm-ROABP(n, d, poly(n, d))

(Definition 12)

poly-width diagonal ROABP
diag-ROABP(n, d, poly(n, d))

(Definition 13)

poly-size Σ ∧ Σ circuits
{f ∈ C≤d[x] | WRF(f) ≤ poly(n, d)}

(Definition 14)

poly dimension of partial derivates
{f ∈ C≤d[x] | DPD(f) ≤ poly(n, d) }

(Definition 16)

poly-width border of diagonal ROABP
diag-ROABP(n, d, poly(n, d))

(Definition 17)

̸=

?=

?=

̸=

?=

̸=

?=

?=

⇒

Figure 1 The ROABP landscape: edges denote bottom-up inclusion, Theorem 2 is in red.

Notation

We use the shorthand [n] to denote the set {1, 2, . . . , n}.
We use boldface letters like x, t, A, b, to denote sets/vectors. The individual elements/-
coordinates are denoted by indexed versions of the same characters: A = {A1, . . . , Ar}.
Whenever the size of these sets is not clear from context, we denote them using subscripts:
x[n] = {x1, . . . , xn}.
For a polynomial f(x), we denote support of f the set of monomials appearing in f with
a nonzero coefficient by supp(f).
For x = {x1, . . . , xn}, and any vector e ∈ Nn, we use the shorthand xe to denote the
monomial xe1

1 xe2
2 · · · xen

n .
For a polynomial f(x) and a monomial xe, we use ∂ef to denote the partial derivative

∂|e|f
∂x

e1
1 ···∂xen

n
.

For a matrix M , M [i, j] denotes its (i, j)th entry.

We start by defining algebraic circuits and algebraic branching programs. Note that we
work with the field of complex numbers unless mentioned otherwise.
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▶ Definition 7 (Algebraic circuits). An algebraic circuit is specified by a directed acyclic graph,
with leaves (in-degree zero; also called inputs) labelled by field constants or variables, and
internal nodes labelled by + or ×. The nodes with out-degree zero are called the outputs of
the circuit. Computation proceeds in the natural way, where inductively each + gate computes
the sum of its children and each × gate computes the product of its children.

The size of the circuit is defined as the number of nodes in the underlying graph.

▶ Definition 8 (Algebraic Branching Programs). An algebraic branching program is a layered,
directed graph. There are two special vertices, source s and sink t which are the only vertices
in the first and last layers, respectively. All the edges in the graph are from one layer to the
consecutive layer. Each edge is labelled by a univariate polynomial in the underlying variables
over the underlying field. Each path from s to t computes the product of the edge labels and
the ABP computes the sum of all the paths from s to t. Then, any ABP can be viewed as a
product of matrices (each matrix having univariate polynomials as its entries) and the ABP
computes the (1, 1)th entry of the matrix product. The maximum number of vertices in a
single layer (dimension of the largest matrix in the product) is called its width. The size of
the ABP is the total number of vertices in it.

We now define the various structured ROABPs and other related classes that are the
main objects of interest in our paper. We start by defining the basic model of ROABPs.

▶ Definition 9 (Read-once Oblivious ABPs). Over the field C of complex numbers, a read-once
oblivious algebraic branching program or an ROABP, computes an n-variate, individual
degree d polynomial using a matrix-vector product of the following form.

R(x) = u⊺ · M1(xσ(1)) · M2(xσ(2)) · · · Mn(xσ(n)) · v

where
For each i ∈ [n], the matrix Mi(xσ(i)) has entries that are univariates of degree ≤ d in
the variable xσ(i),
u ∈ Cw0 , M1(xσ(1)) ∈ (C[xσ(1)])w0×w1 , . . . , Mi(xσ(i)) ∈ (C[xσ(i)])wi×wi+1 , . . . , v ∈ Cwn ,
the width w of the ROABP R is defined as w = max {w0, w1, . . . , wn},
the permutation σ is called as the order of the ROABP R.

The following two subclasses of polynomials then follow naturally from the definition of
ROABPs.

▶ Definition 10 (ROABPs in some order). For n, d, w ∈ N, an n-variate polynomial f(x) of
individual degree d is said to have an ROABP of width w in the order σ ∈ Sn, if there exists
a width w ROABP R(x) that computes f(x) in the order σ. We denote the class of such
polynomials by ROABP[σ](n, d, w).
Further, we use ROABP[∃](n, d, w) to denote the class of polynomials that have a width w

ROABP in some order. That is, ROABP[∃](n, d, w) =
⋃

σ∈Sn
ROABP[σ](n, d, w).

We can then extend this definition naturally as follows.

▶ Definition 11 (ROABPs in every order). For n, d, w ∈ N, an n-variate polynomial f(x)
of individual degree d is said to have an ROABP of width w in every order, if for all
permutations σ ∈ Sn, there exists a width w ROABP R(σ)(x) that computes f(x) in the
order σ.
We denote this class of polynomials by ROABP[∀](n, d, w).
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Now, based on the properties of the coefficient matrices, we define the two subclasses of
ROABPs that Theorem 2 talks about.

▶ Definition 12 (Commutative ROABPs). An n-variate, individual degree d ROABP of width
w is called a commutative ROABP if its coefficient matrices are all w × w matrices that are
(pairwise) commutative.
We refer of the class of polynomials computed by such ROABPs by commROABP(n, d, w).

▶ Definition 13 (Diagonal ROABPs). An n-variate, individual degree d ROABP of width w

is called a diagonal ROABP if its coefficient matrices are w × w diagonal matrices. We refer
of the class of polynomials computed by such ROABPs by diagROABP(n, d, w).

Further, we define other concepts about polynomials like depth-3 powering circuits, Waring
rank and Tensor rank, since we talk about the connections between them and subclasses of
ROABPs defined above.

▶ Definition 14 (Depth 3 powering circuits (Σ ∧ Σ)). Over the field C, a depth 3 powering
circuit of size s, computes an n-variate, (total) degree d polynomial as an C-linear combination
of s terms, each of which is a ≤ dth power of an C-linear form in the underlying variables
x1, . . . , xn.
That is, vectors a1, . . . , as ∈ Cn+1, constants β1, . . . , βs, and d1, d2, . . . , ds ∈ {0, . . . , d},
define the following n-variate, degree-d, size s depth 3 powering circuit.

C(x) =
∑
i∈[s]

βi (a0 + a1x1 + a2x2 + · · · + anxn)di

▶ Definition 15 (Waring rank). For an n-variate, degree-d polynomial f(x) ∈ C[x], the
Waring rank of f is defined to be the size of the smallest depth 3 powering circuit that
computes it. We will denote the Waring rank of a polynomial f by WR(f).

▶ Definition 16 (Dimension of partial derivatives). For an n-variate polynomial f(x) ∈
C[x], the dimension of partial derivatives, which we shall denote by DPD(f) is defined as
DPD(f) = dim (spanC {∂ef : e ∈ Nn}). Here, ∂ef denotes the partial derivative ∂|e|f

∂x
e1
1 ···∂xen

n
.

Finally, we define the border of diagonal ROABPs as follows, which coincides with the
definition of commonly known definition of border-tensor-rank.

▶ Definition 17 (Border of diagonal ROABPs). For any polynomial f(x) ∈ C[x], f(x) is in the
class diagROABP(n, d, w) if there exists a polynomial g ∈ C(ϵ) in the class diagROABP(n, d, w)
such that f = lim

ϵ→0
g.

Organization of the paper

The proof the main theorem of this paper(Theorem 2) can be found in Section 4. The
appendix is dedicated to studying the algebraic structure of commutative ROABPs, which
gives us the necessary ingredients to prove the main theorem. There we first study the
“singly-generated” case in Subsection A.1, followed by the structure of general commutative
matrix rings in Subsection A.2.

STACS 2022
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3 Open questions

Owing to the connections of subclasses of ROABPs with other well-studied models, we
believe that resolving any of the questions stated in Section 1 in any direction would be very
interesting to the algebraic complexity community, and might even lead to new approaches
for PIT of ROABPs and depth 3 powering circuits.

A specific follow-up question to our main theorem(Theorem 2) is that of finding an
appropriate converse. For example, is it true that if diagonal ROABPs can efficiently
simulate commutative ROABPs, then dimension of partial derivatives essentially captures
the Waring rank of any polynomial? It is not clear how one would go about proving the
above statement directly. For proving the contrapositive, the main technical challenge seems
to be to arrive at a candidate commutative ROABP using a polynomial that would witness
the separation between dimension of partial derivatives and Waring rank.

4 Proof of the main theorem

We start with an observation about diagonal ROABPs that gives an equivalent alternate
view of the model, which will be useful for our results.

▶ Observation 18 (Alternate view of diagonal ROABPs). If f(x1, . . . , xn) has a diagonal
ROABP of width w, then there is a polynomial g(t, x) with degt(g) ≤ nw, such that f(x) =∑

j∈[w] g(j, x).

Proof. Suppose f(x) =
∑

j∈[w]
∏

i∈[n] fj,i(xi). Then we define polynomials L1(t), . . . , Lw(t)
such that for each j, k ∈ [w], Lj(k) = 1 if j = k and Lj(k) = 0 otherwise. Such polynomials
always exist, and are called Lagrange basis polynomials.

For each i ∈ [n], define gi(t, xi) :=
∑

j∈[w] Lj · fj,i(xi), and let g(t, x) =
∏

i∈[n] gi(t, xi).
Then g(t = j, x) =

∏
i∈[n] fj,i(xi), and hence f(x) =

∑
j∈[w] g(j, x) as required. ◀

4.1 An alternate view of commutative ROABPs
▶ Definition 19. For an ideal J ⊂ C[t], and a G ∈ C[t, x] given by G =

∑
e coeffxe(G)(t) ·xe,

we define the polynomial G̃ = (G mod J) as follows.

G̃ :=
∑

e
(coeffxe(G)(t) mod J) · xe

Here (g(t) mod J) for any g(t) is defined as per Definition 34.

Using the above definition, given any commutative ROABP, we can come up with a
product of univariates over xs that is related to it in the following sense.

▶ Lemma 20. Suppose f(x) = b⊺
(∏

i∈[n]
(
Ai,0 + Ai,1xi + · · · + Ai,dxd

i

))
c, is a

commutative-ROABP of width w computing f(x).
Then there exists an ideal J ⊂ C[t1, . . . , tr] with a finite variety, and G(t, x) :=∏

i Gi(t, xi), such that for G̃(t, x) := G(t, x) mod J , f(x) can be expressed as a linear
combination of the t-coefficients of G̃.

Furthermore, |t| = r ≤ min
{

w2, n(d + 1)
}

and the t-degree of each Gi is at most w2.

Proof. Let F (x) denote the w × w matrix with entries in C[x], so that f(x) = b⊺F (x)c. Let
A = {A1, . . . , Ar} be such that the ring C[A1, . . . , Ar] is the same as that generated by the
coefficient matrices {Ai,j}. It is easy to see that r ≤ min

{
w2, n(d + 1)

}
.
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We define the ideal J as follows: J = {g(t) ∈ C[t] : g(A1, . . . , Ar) = 0}. Let NJ =
{ta1 , . . . , tam} be the normal set of J ; then |NJ | = m ≤ w2, as the quotient ring of J is
isomorphic to C[A] ⊂ Cw×w (see Lemma 23). For each i, j let Gi,j(t) be the polynomial
with monomials from NJ such that Gi,j(A) = Ai,j . We define Gi(t, xi) =

∑
j Gi,0(t)xj

i for
each i ∈ [n]. Since NJ is closed under divisions, the degree of any ta ∈ NJ is at most w2,
and hence degt(Gi) = deg(Gi,j) ≤ w2 for all i.

Let G̃ := (G mod J) =
∑

a∈NJ
g̃a(x)ta for some g̃a(x)s, which we call the “t-coefficients

of G”.

f(x) =
∑

k,ℓ∈[w]

bkcℓ · F (x)[k, ℓ]

(By definition of G) =
∑

k,ℓ∈[w]

bkcℓ · (G(A, x)) [k, ℓ]

(By definition of J) =
∑

k,ℓ∈[w]

bkcℓ ·
(
G̃(A, x)

)
[k, ℓ]

(Expanding G̃) =
∑

k,ℓ∈[w]

bkcℓ ·

(∑
a∈NJ

g̃a(x)Aa

)
[k, ℓ]

(For Aa = Aa) =
∑

a∈NJ

 ∑
k,ℓ∈[w]

bkcℓAa[k, ℓ]

 g̃a(x) =
∑

a∈NJ

βag̃a(x)

In the last line above, Aa ∈ Fw×w is the matrix that the “monomial” Aa evaluates to. ◀

4.2 Evaluating derivatives of polynomials

We now show that for any polynomials g(t), h(t), and any point ᾱ ∈ Cr, the value (Dh(g))(ᾱ)
can be obtained as a linear combination of O(d′, WR(h)) evaluations of the polynomial g,
where d′ = max{deg(g), deg(h)}. This is a known fact (see e.g. [16]). We only state the
lemma here, and provide a proof in the full version.
We start with a fact about the “symmetry” between Dh(g)(0̄) and Dg(h)(0̄) that we will
need.

▶ Fact 4.1. For any g, h ∈ C[t1, . . . , tr], Dg(h)(0̄) = Dh(g)(0̄) =
∑

e∈Nr e!gehe.

▶ Lemma 21 (Functionals and Waring rank). Let g, h ∈ C[t1, . . . , tr] be polynomials of degree
at most d′, and suppose WR(h) ≤ s. Then there exist W = O(s · d′) points y1, . . . , yW such
that Dh(g)(0̄) = Dg(h)(0̄) can be expressed as a linear combination of g(y1), . . . , g(yW ).

4.3 The proof

We now have all the pieces required to prove the main theorem, which we first restate.

▶ Theorem 2. For any n, r ∈ N, let S(r, m) denote the smallest Σ ∧ Σ-size required to
compute any r-variate polynomial f with DPD(f) ≤ m.
Then for all n, d, w ∈ N, commROABP(n, d, w) ⊆ diagROABP

(
n, d, S(w2, w2)nw4).

Proof. Let F (x) =
∏n

i=1

(∑d
j=0 Ai,jxj

i

)
, and let f(x) = b⊺F (x)c be the corresponding

commutative ROABP of width w.

STACS 2022
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Moving to the polynomial world: From Lemma 20, there is a G(t, x) =
∏

i∈[n] Gi(t, xi)
such that f(x) is a linear combination of the t-coefficients of G̃ := G mod J , where J is
the ideal of dependencies of the coefficient matrices {Ai,j}.
Let r = |t|, V(J) = {ᾱ1, . . . , ᾱz}, and NJ = NS(J) with m = |NJ |. Then r, m ≤ w2 and
degt(Gi) ≤ w2 for all i ∈ [n], and there exist βas and g̃a(x)s such that

f(x) =
∑

a∈NJ

βag̃a(x).

Coefficients from derivatives: Next, the results from [12, 13] (Lemma 36) imply that there
exist m polynomials {hu,v(t)} such that:

DPD(hu,v) ≤ m for all hu,v, and
For any a ∈ NJ , coeffa(G̃) =

∑
u,v γa

u,v(Dhu,v (G))(ᾱu), for some
{

γa
u,v

}
⊂ C.

Derivatives using evaluations: Then, using Lemma 21 we see that for any polynomial h

with s := WR(h) and for any polynomial G with deg(g), deg(h) ≤ d′, there exist at most
s · d′ points y1, . . . , ysd′ ∈ Cr and constants λ1, . . . , λsd′ ∈ C such that :

(Dh(G))(ᾱ) =
sd′∑
q=1

λqG(yq).

Thus, for all u, v, O(WR(hu,v) ·max {degt(G), deg(hu,v)}) = O(S(r, m) ·nw2) evaluations
of G are enough to obtain (Dhu,v

(G))(ᾱu).
Putting everything together: Combining all the steps, we get the following.

f(x) =
∑

a∈NJ

βag̃a(x)

=
∑

a∈NJ

βa
∑
u,v

γa
u,v(Dhu,v

(G))(ᾱu)

(Rearranging) =
∑
u,v

(∑
a∈NJ

βaγa
u,v

)
(Dhu,v (G))(ᾱu)

(For appropriate β′s) =
∑
u,v

β′
u,v(Dhu,v

(G))(ᾱu)

(
DPD(hu,v) ≤ m, deg(G) ≤ nw2) =

∑
u,v

β′
u,v

S(r,m)·nw2∑
q=1

λqG(yq, x)

∴ f(x) =
m·S(r,m)·nw2∑

q′=1
µq′

∏
i∈[n]

Gi(yq, xi)

Thus, as m, r ≤ w2, we get a diagonal ROABP for f(x) of width O(w2 ·S(w2, w2) ·nw2) =
O(S(w2, w2) · nw4). ◀

▶ Remark 22. Suppose there exists an explicit polynomial f that is computable by a
commutative ROABP of polynomial width but any diagonal ROABP computing f requires
width super-polynomial in n. Let w be the width of the commutative ROABP, and let J be
the ideal of dependencies of its coefficient matrices. By Lemma 36 there exist polynomials
{hu,v(t)} with |t| ≤ w2, such that DPD(hu,v) ≤ w2. But if WR(hu,v) = poly(w) for each
u, v, then we should get a diagonal ROABP of width poly(w), which is a contradiction.
Thus, a separation between commutative and diagonal ROABPs also leads to an explicit
polynomial that witnesses the separation dimension of partial derivatives and Waring rank.
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A Algebraic structure of commutative ROABPs

This section is aimed at equipping the reader with the algebraic-geometric concepts about
rings generated by commuting matrices, that are required to understand the results in [12]
and [13] (Lemma 32 and Lemma 36). It is therefore largely expository, and readers who are
comfortable with these concepts may skip it.

We start by analysing rings generated by a single matrix in Subsection A.1, and then
extend our observations to general rings of matrices in Subsection A.2.

A.1 Rings generated by a single matrix
For any matrix A ∈ Cw×w, the commutative ring generated by A that is denoted by C[A], is
the set of all matrices that can be written as univariate polynomials in terms of A. In other
words, C[A] := {p(A) : p(t) ∈ C[t]}.

Observe that the matrices I(= A0), A, A2, . . . , Aw satisfy the linear dependency that is
given by the characteristic polynomial of A: det(A − tI) ∈ C[t]. Thus, C[A] is a vector space
(over C) of dimension at most w.

In fact the dimension of C[A] could be even smaller, and it is captured by the degree
of the minimal polynomial of A: the smallest degree polynomial p(t) such that p(A) is
the zero matrix; and the ideal generated by p, ⟨p⟩ := {q(t) ∈ C[t] : q(t) is divisible by p(t)},
characterises the ring C[A]. The following fact formalises this relationship.

▶ Fact A.1. Let A ∈ Cw×w and let p(t) ∈ C[t] be its minimal polynomial. Then the ring
generated by A, C[A], is isomorphic to the quotient ring C[t]/⟨p⟩.

Proof. Define Φ : C[t] → C[A] such that Φ(q(t)) = q(A) for any q. Then the following facts
together show that the restriction of Φ on C[t]/⟨p⟩ is a ring isomorphism by the first ring
isomorphism theorem (see e.g. [4]).

Φ is a ring homomorphism: Φ(q1 + q2 · q3) = (q1 + q2 · q3)(A) = q1(A) + q2(A) · q3(A).
Φ is onto: Trivially follows from the definition of C[A].
ker Φ = ⟨p⟩: Suppose Φ(q) = 0. Then q(A) = 0, which implies that q(t) = p(t) · q′(t) as
p(t) is the minimal polynomial of A. ◀

Let us now focus on the quotient ring of the ideal generated by an arbitrary polynomial
p(t); we shall later rephrase our findings in terms of matrices.

Suppose p(t) = (t − α1)e1(t − α2)e2 · · · (t − αz)ez , of degree m =
∑

u eu. Since we are
working over C, this is true without loss of generality. Let pu be the polynomial (t − αu)eu ,
for each u ∈ [z]. Then any polynomial q(t) is divisible by pu whenever αu is a root of q(t)
and its first (eu − 1) derivatives. In fact, q(t) is divisible by p =

∏
u pu, exactly when the

above condition holds for each u ∈ [z].

https://github.com/dasarpmar/lowerbounds-survey/releases/
http://arxiv.org/abs/1611.01559
https://doi.org/10.1007/PL00001609
https://doi.org/10.1007/BF02165411
https://doi.org/10.1145/800135.804419
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▶ Fact A.2. A polynomial q(t) is divisible by p(t) =
∏

u∈[z](t − αu)eu if and only if:

∀u ∈ [z], q(αu) = ∂q

∂t
(αu) = ∂2q

∂t2 (αu) = · · · = ∂eu−1q

∂teu−1 (αu) = 0.

In other words, the
∑

u eu = m values obtained by evaluating the appropriate derivatives of
q at the corresponding roots of p, tell us whether p divides q. These evaluations of derivatives
in fact give us some more information about q with respect to the ideal ⟨p⟩, which we now
see.

Derivatives characterise the quotient ring. For any polynomials p(t), q(t) we define the
“remainder polynomial” q(t) mod p(t) as follows.

q(t) mod p(t) = q̃(t), such that q(t) = q′(t)p(t) + q̃(t), with deg(q̃) < deg(p)

Suppose p(t) is a polynomial of degree m, then q̃(t) is clearly a polynomial of degree at most
m − 1. It turns out that the d evaluations of derivatives of q given in Fact A.2 completely
determine q̃.

▶ Fact A.3. Suppose p(t) =
∏

u∈[z](t − αu)eu has degree m, then there exist m2 constants{
γa

u,v

}
⊂ C such that for any polynomial q(t), we have

∀0 ≤ a ≤ m − 1, q̃a =
∑

u∈[z]
v∈[eu]

γ(a)
u,v · ∂vq

∂tv
(αu),

where q̃(t) :=
∑

0≤j≤m−1 q̃jtj = q(t) mod p(t).

A.2 General commutative matrix rings
The above observations about “univariate” rings can be summarised as follows. Firstly,
any matrix ring is isomorphic to the quotient ring of an ideal, where this ideal contains all
polynomial dependencies that the generator matrix satisfies (Fact A.1); thus every matrix in
the ring corresponds to a polynomial modulo this ideal.
Secondly, the remainder of any polynomial q with respect to this ideal is completely determined
by the evaluations of certain derivatives of q at appropriate points (Fact A.3).

We shall now see the multivariate analogues of the above facts, which tell us about rings
generated by multiple commuting matrices.

To fix some notation, suppose that we have been given the w × w matrices A1, . . . , Ar

that all commute with each other. These matrices therefore generate a commutative ring of
matrices denoted by C[A1, . . . , Ar], whose algebraic properties we shall now provide.

A.2.1 Matrix rings as quotient rings of ideals
Recall that for the ring C[A], the corresponding ideal was ⟨p(t)⟩, where p was the minimal
polynomial of A. The ideal ⟨p(t)⟩ precisely contains all the polynomials q(t) for which
q(A) = 0. Therefore a natural choice for the multivariate ideal is the ideal of dependencies
of A1, . . . , Ar, J := {q(t1, . . . , tr) ∈ C[t] : q(A1, . . . , Ar) = 0}. Indeed, the quotient ring of J

is isomorphic to C[A1, . . . , Ar].

▶ Lemma 23. Suppose A1, A2, . . . , Ar ∈ Cw×w are mutually commutative, and let J be
their ideal of dependencies inside the r-variate polynomial ring C[t]. Then C[A1, . . . , Ar] is
isomorphic to C[t]/J.
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Proof. Similar to the proof of Fact A.1, we define the map Φ : C[t] → C[A1, . . . , Ar],
which maps q(t) to the matrix q(A1, . . . , Ar). This naturally defines the (restricted) map
ϕ : C[t]/J → C[A1, . . . , Ar], with ϕ(q̃) = q̃(A).

The following facts are now easy to verify for Φ, which together prove that ϕ is an
isomorphism by the first ring isomorphism theorem (see e.g. [4]).

Φ is a ring homomorphism: Φ(q1+q2 ·q3) = (q1+q2 ·q3)(A1, . . . , Ar) = q1(A)+q2(A)·q3(A)
= Φ(q1) + Φ(q2) · Φ(q3).
Φ is onto: Trivially follows from the definition of C[A].
ker Φ = J : Suppose Φ(q) = 0. Then q(A) = 0, which implies that q(t) ∈ J . ◀

We note an important property of the ideal J , before moving on to the next part. Notice
that the minimal polynomials of each of the matrices A1, . . . , Ar, say p1(t1), p2(t2), . . . , pr(tr)
are elements of J . This means that J contains univariate polynomials in each of its
underlying variables. Thus, the set of common zeroes of polynomials in J , also known
as the variety of J(denoted by V(J)), is finite. One way to see this is that V(J) ⊆
roots(p1) × roots(p2) × · · · × roots(pr), where roots(pi) denotes the constants in C where pi

vanishes, and × denotes the Cartesian product of sets. Such ideals are called zero dimensional
ideals, because their variety is a zero dimensional set in the ambient space Cr.

▶ Definition 24 (Zero-dimensional ideals). An ideal J ⊆ C[t] is called zero-dimensional if its
variety is finite; i.e. |V(J)| < ∞.

A.2.2 Quotient rings of zero dimensional ideals
Since we are interested in zero dimensional ideals J , we shall now assume that V(J) =
{v1, . . . , vz} for some z ∈ N.

Arguably, the statements we have discussed till this point are fairly well-known. But we
believe that most of the ideas we shall now see are not as commonly known, especially in the
theoretical computer science community. We remark that much of the non-trivial ideas and
proofs in this section (Appendix A) belong to previous works [12, 13].

Taking a cue from Fact A.3, for a zero-dimensional ideal J we expect the “multiplicities”
of the points in its variety V(J) to help us find the correct derivatives. In this case, the
commonly used definition of multiplicity for multivariate polynomials: multiplicity of w

means all partial derivatives of order < w vanish, turns out to be a little too coarse. In
order to formally introduce the suitable definition, we need the following notion of derivative
operators, which are like polynomials whose monomials are partial derivatives.

▶ Definition 25 (Derivative operators). A derivative operator on C[t1, . . . , tr] is a C-linear
combination of finitely many partial derivatives of the form ∂a : C[t] → C[t], where a ∈ Nr.

The operator D =
∑

a γa∂a naturally maps a polynomial q(t) ∈ C[t], to (
∑

a γa · ∂aq(t))
which we denote by D(q).

Any polynomial h(t) naturally defines a derivative operator Dh :=
∑

a∈supp(h) coeffh(a)∂a.
Likewise, one can talk about the polynomial that underlies a derivative operator.

In Fact A.3, the set of derivative-evaluations that characterise the ideal generated
by a p = (t − α)e, are evaluations at α of derivatives with respect to the monomials{

te−1, te−2, . . . , t, 1
}

; for multiple factors we take the union of the evaluations for each factor.
In particular, there is a “maximum” derivative ∂e

/∂te, and the other derivatives are obtained
by “down-shifting” it (similar to taking all possible derivatives of the underlying monomial).
This observation leads us to define the following notion of shifts of derivatives and derivative
operators.
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▶ Definition 26 (Shifts of derivatives and derivative operators). For a partial derivative
∂e : C[t] → C[t] and a vector a ≥ 0̄, we define the a-shift of ∂e, denoted by σa(∂e), as
follows.

σa(∂e) :=
{ e!

(e−a)! · ∂e−a if a ≤ e,

0 otherwise.

The definition naturally extends to a-shift of Dh, denoted by σa(Dh), as follows.

σa(Dh) :=
∑

e:e≥a

coeffe(h) · σa (∂e) =
∑

e:e≥a

coeffe(h) · e!
(e − a)! · ∂e−a

The following observations about derivative operators and their shifts will be useful.

▶ Observation 27. For any derivative operator Dh and vector a, σa(Dh) = D∂a(h).

▶ Observation 28. For any derivative operator Dh and polynomials p(t), q(t), we have the
following.

Dh(p · q) =
∑

a

1
a! · ∂a(p) · σa(Dh)(q) =

∑
a

1
a! · ∂a(p) · D∂a(h)(q)

In the language of shifts of derivative operators, we can say that the set of derivatives
with respect to

{
te, te−1, . . . , t, 1

}
is down-closed: closed under taking shifts. The following

definitions then follow naturally.

▶ Definition 29 (Down-closed spaces of derivative operators). A C-vector space of derivative
operators ∆ is said to be down-closed if for all D ∈ ∆, any shift D′ of D, also belongs to ∆.

▶ Definition 30 (Closure of an operator). For a polynomial h(t1, . . . , tr) ∈ C[t] and the
corresponding derivative operator Dh, we define the closure of Dh as follows.

∆(h) :=
{

D∂e(h) : e ∈ Nr, ∂e(h) ̸= 0
}

.

Ideals with a single point in their variety and closed spaces of derivative operators have the
following interesting connection, similar to a univariate ideal ⟨(t − α)e⟩.

▶ Lemma 31. Let J ∈ C[t1, . . . , tr] be an ideal with V(J) = {ᾱ}, then the set ∆(J) of
derivative operators defined by ∆(J) := {D ∈ C[∂t1, . . . , ∂tr] : ∀g ∈ J, D(g)(ᾱ) = 0} a closed
vector space.

Proof. Firstly, for all D1, D2, and β ∈ C, (βD1 + D2)(f)(ᾱ) = βD1(f)(ᾱ) + D2(f)(ᾱ) = 0,
just by linearity of differentiation. So ∆(J) is a vector space over C.

To see that it is closed, suppose Dh ∈ ∆(J) for a polynomial h(t), and let i ∈ [r] be such
that the partial derivative h′ := ∂h/∂ti ̸= 0. Then using Observation 28, for any g ∈ J we
have that Dh(ti ·g)(ᾱ) = (ti ·Dh(g)+1 ·Dh′(g))(ᾱ) = vi ·Dh(g)(ᾱ)+1 ·Dh′(g)(ᾱ). Now since
J is an ideal, g ∈ J implies that ti · g ∈ I and therefore Dh(ti · g)(ᾱ) = 0; and Dh(g)(ᾱ) = 0
because g ∈ J and Dh ∈ ∆(J). Thus, Dh′(g)(ᾱ) = 0 for any Dh ∈ ∆(J) and i ∈ [r] such that
∂h/∂ti ̸= 0. The closure under an arbitrary shift a then follows by induction on the a. ◀

We are now ready to state the following result which follows from the work of Marinari,
Möller and Mora [12, Theorem 2.6], which is a suitable multivariate analogue for Fact A.2.

▶ Lemma 32 (Zero dimensional ideals and derivative operator spaces). Suppose an ideal J ⊆ C[t]
has variety V(J) = {ᾱ1, . . . , ᾱz} and dimC (C[t]/J) = m. Then there exist closed spaces of
derivative operators ∆1, . . . , ∆z of dimensions m1, . . . , mz with

∑
u mu = m, such that for any

polynomial g(t) ∈ C[t] we have that g ∈ J , if and only if ∀u ∈ [z], ∀D ∈ ∆u : D(g)(ᾱu) = 0.
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Thus, every zero-dimensional ideal is characterised by a set of closed spaces of derivative
operators, where the number of spaces is equal to the size of the variety. Next, we see how
one can obtain “g mod J” given the

∑
u mu = m derivative-evaluations corresponding to the

z bases of ∆1, . . . , ∆z. To that end, we first formalise what g mod J means and then state a
result from [13] that provides the above solution.

A.2.3 Matrices and polynomials in the quotient ring

When dealing with univariate polynomials, it is quite straightforward to define q(t) mod p(t)
as r(t), such that q(t) = q′(t)p(t) + r(t) for some polynomial q′(t) with deg(r) < deg(p). This
is because we intuitively identify r(t) to be “less than” p(t) since it has smaller degree, and
thus the concepts of division and remainders extend naturally. However, things are a little
more tricky for multivariate polynomials: e.g. which monomial is “smaller”? x2 or y2?

We therefore need to fix a consistent way of comparing any two given monomials; we need
a monomial ordering: a total ordering on monomials that “respects” division/multiplication
(see e.g. [3, Chapter 2]). We shall skip the formal definition of a monomial ordering, and
just work with the “dictionary ordering” or lexicographic ordering: ta ≺ ta′ if the smallest
i ∈ [r] with ai ̸= a′

i is such that ai < a′
i. Using the monomial ordering ≺, we can define the

leading monomial of a polynomial, and then leading monomials of J for an ideal J .

▶ Definition 33 (Leading monomials). For a polynomial g(t), a monomial ta ∈ supp(g) is
said to be the leading monomial of g, denoted by LM(g), if for all ta′ ∈ supp(g) we have that
ta′ ≺ ta.

Similarly, we define LM(J) := {LM(g) : g ∈ J} for an ideal J .

We can then define the remainder of a polynomial with respect to an ideal J .

▶ Definition 34 (Remainder modulo an ideal). For a polynomial g(t) and an ideal J ⊂ C[t],
we say that g(t) mod J = g̃(t), if there exist polynomials gJ(t) ∈ J and g̃(t) such that
g(t) = gJ(t) + g̃(t), where LM(g̃) does not belong to the ideal ⟨LM(J)⟩.

Observe that if LM(g̃) ̸∈ ⟨LM(J)⟩, then in fact no monomial in supp(g̃) belongs to the
ideal ⟨LM(J)⟩. And thus supp(g̃) is contained in the “complement of ⟨LM(J)⟩”, called the
normal set of J .

▶ Definition 35 (Normal set of an ideal). For an ideal J ∈ C[t1, . . . , tr], the normal set of J

is defined as NS(J) := {ta : a ∈ Nr, ta ̸∈ ⟨LM(J)⟩}.
We sometimes overload notation to denote NS(J) as the set of exponent vectors. That is,

NS(J) = {a1, . . . , am} means NS(J) = {ta1 , . . . , tam}.

Here are some important properties of the normal set of an ideal (see e.g. [12]).

▶ Fact A.4. For any ideal J , its normal set NS(J) has the following properties.
For any g(t), the polynomial g mod J is a linear combination of monomials in NS(J),
and further, |NS(J)| = dimC (C[t]/J).
NS(J) is closed under divisions. That is, if ta ∈ NS(J) and ta′ |ta, then ta′ ∈ NS(J). In
particular, 1 ∈ NJ for all ideals J .

We can now state the result of Möller and Stetter [13] that gives a more explicit version
of the correspondence in Lemma 32. The following is a multivariate analogue of Fact A.3.
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▶ Lemma 36 (Consequence of [13, Theorem 1]). Suppose J ⊂ C[t1, . . . , tr] is an ideal with
variety V(J) = {ᾱ1, . . . , ᾱz} and normal set NJ := NS(J) = {a1, . . . , aw}. Let ∆1, . . . , ∆z

be the characterising derivative operator spaces, with each ∆u spanned by {Du,1, . . . , Du,mu
},

such that |NJ | = m =
∑

u mu.
Then there exists a set of m2 constants

{
γ

(a)
u,v

}
⊂ C, such that for any polynomial

g(t) ∈ C[t] and g̃(t) := (g(t) mod J), we have coeffa(g̃) =
∑

u,v γ
(a)
u,v(Du,v(g))(ᾱu) for all

a ∈ NJ .
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Abstract
Meta-complexity studies the complexity of computational problems about complexity theory, such as
the Minimum Circuit Size Problem (MCSP) and its variants. We show that a relativization barrier
applies to many important open questions in meta-complexity. We give relativized worlds where:
1. MCSP can be solved in deterministic polynomial time, but the search version of MCSP cannot be

solved in deterministic polynomial time, even approximately. In contrast, Carmosino, Impagliazzo,
Kabanets, Kolokolova [CCC’16] gave a randomized approximate search-to-decision reduction for
MCSP with a relativizing proof.

2. The complexities of MCSP[2n/2] and MCSP[2n/4] are different, in both worst-case and average-
case settings. Thus the complexity of MCSP is not “robust” to the choice of the size function.

3. Levin’s time-bounded Kolmogorov complexity Kt(x) can be approximated to a factor (2 + ϵ) in
polynomial time, for any ϵ > 0.

4. Natural proofs do not exist, and neither do auxiliary-input one-way functions. In contrast,
Santhanam [ITCS’20] gave a relativizing proof that the non-existence of natural proofs implies
the existence of one-way functions under a conjecture about optimal hitting sets.

5. DistNP does not reduce to GapMINKT by a family of “robust” reductions. This presents a
technical barrier for solving a question of Hirahara [FOCS’20].
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1 Introduction

Meta-complexity refers to the complexity of computing complexity. A prominent example
of a meta-complexity problem is the Minimum Circuit Size Problem (MCSP): Given as
input the (length-2n) truth table of a function f : {0, 1}n → {0, 1}, output the size of the
smallest circuit that computes f . MCSP was recognized as a fundamental problem in the
Soviet Union since 1950s [43], and has received a lot of attention in the last two decades
since the seminal work of Kabanets and Cai [28]. Other examples include computing variants
of Kolmogorov complexity such as polynomial-time bounded Kolmogorov complexity and
Levin’s time-bounded Kolmogorov complexity Kt [2, 29]. Questions about the circuit size
of Boolean functions are closely related to Kolmogorov complexity and incompressibility,
because a circuit is essentially a compressed representation of the truth table of the function
it computes.

There has been plenty of interplay between meta-complexity and other areas of complexity
theory such as average-case complexity [15,16,18,19], cryptography [32,38,39,42], learning
theory [10,36] and pseudorandomness [2, 17,28,36].

We highlight a couple of recent breakthrough results. The first gives a non-black-box worst-
case to average-case reduction for a problem about Kolmogorov complexity (“GapMINKT”)
that many believe to be NP-hard.
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▶ Theorem 1 ([15], building on [10]). There is a randomized polynomial-time worst-case to
average-case reduction for GapMINKT.

The second gives an equivalence between the existence of one-way functions and the
bounded-error average-case hardness over the uniform distribution of the functional version
of MINKT. This result characterizes the most fundamental primitive in cryptography by a
notion in meta-complexity.

▶ Theorem 2 ([32]). One-way functions exist if and only if there is a polynomial p such that
the p(n)-time bounded Kolmogorov complexity of a string x of length n cannot be computed
in polynomial time on average, when x is chosen uniformly at random from n-bit strings.

Results such as these give hope for a rich theory connecting complexity lower bounds,
meta-complexity, average-case complexity, learning theory and cryptography, among other
fields. However, despite much effort, many basic questions about meta-complexity remain
elusive. In addition, the recent advances on meta-complexity also propose new questions,
some of which are seemingly beyond our reach. (See Section 1.1 for a sample of these
questions.)

In this work, we seek a more fine-grained understanding of the current landscape of
meta-complexity by using the classical perspective of relativization [9]. It is noteworthy
that Theorem 1 and Theorem 2 relativize. Of course, we need to be careful here to define
what relativization means, as the notion typically applies to complexity classes and not to
computational problems. However, meta-computational problems do indeed have natural
notions of relativizations, where the algorithms solving the problem as well as the algorithms
defining the problem get access to the same oracle A. Results such as Theorem 1 and
Theorem 2 use techniques from the theory of pseudorandomness [27,34,44], which typically
relativize, and it is worth asking how much these techniques can achieve. Can they be used
to solve the major open problems in the area?

We give a largely negative answer to this question, by giving oracles relative to which
many of the questions in the area have answers opposite to what we expect. However, we do
not necessarily infer that there are fundamental barriers to solving the major open questions;
we can only say that new techniques will be required in many cases. Our perspective also
contributes to formulating new notions and questions which might still be approachable using
current techniques. We also note that there are some exciting recent works in meta-complexity
by Ilango and others (e.g. [22–25]) using gate elimination and related ideas. It is not clear
yet whether relativization is a barrier to these techniques.

1.1 Our Questions
We first introduce the questions with which we are concerned.

1.1.1 Easiness or Hardness of Meta-Complexity Problems
Arguably, the most important and fundamental problem about MCSP is whether MCSP is
easy or hard. Is MCSP in polynomial time, or if not, is MCSP NP-complete? It is reported
in [5, 30] that Levin delayed the publication of his NP-completeness results [31] because he
wanted to show NP-hardness for MCSP. A long line of research [3, 4, 12, 20, 21, 28, 33, 41]
showed that the NP-completeness of MCSP implies breakthrough results in complexity
theory. For instance, if MCSP is NP-complete under polynomial-time Karp reductions,
then EXP ̸= ZPP [33]. However, these results do not indicate whether MCSP is or is not
NP-complete; they merely suggest that this problem will be hard to solve.
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▶ Question 3. Is MCSP NP-complete under polynomial-time Karp reductions?

Just as with MCSP, it is open to show the NP-hardness of MINKT. A further motivation
for this problem is the recent “non-black-box” worst-case to average-case reduction for
MINKT [15]. As a consequence, if GapMINKT is NP-hard, then the worst-case and average-
case complexities of NP are equivalent. As there are serious obstacles to showing the NP-
completeness of MINKT by “weak” reductions, [15] proposed, as a weakening of Question 3,
that MINKT could be NP-hard via very powerful reductions:

▶ Question 4. Is GapMINKT NP-hard under coNP/poly-Turing reductions?

In terms of unconditional lower bounds, there is an intriguing question about the meta-
complexity of Levin’s Kt complexity, raised in [2]. It is known that MKtP is EXP-complete,
but only under rather powerful reductions such as P/poly-truth-table reductions or NP-Turing
reductions. Therefore, it is reasonable to conjecture that MKtP is not in P. However, the
aforementioned reducibilities are too strong, so we cannot apply the time hierarchy theorem
directly to prove that MKtP ̸∈ P. Still, it may be surprising that this problem has been open
for almost 20 years:1

▶ Question 5. Is MKtP computable (or at least approximable) in polynomial-time?

(We note that a randomized version of MKtP, called MrKtP, is known to be not in BPP
unconditionally [35].)

1.1.2 Structural Properties of Meta-Complexity Problems
Every NP-complete problem admits a search-to-decision reduction. For instance, given
an oracle that decides SAT, for every input formula φ that is satisfiable, we can find a
satisfying assignment of φ in polynomial time. However, it is unknown whether MCSP has
this property.

▶ Question 6. Does MCSP admit a search-to-decision reduction?

We remark that there has been some progress on Question 6: [10] showed that if MCSP
is in BPP, then a certain “weak” version of search-MCSP can be solved in probabilistic
polynomial time; [23] presented a “non-trivial” search-to-decision reduction for the problem
of minimizing formulas.

Another mystery about MCSP is whether its various parameterized versions are equivalent.
Specifically, let MCSP[s(n)] denote the problem that given a truth table of a function
f : {0, 1}n → {0, 1}, determine whether f can be computed by a circuit of size s(n). It is
easy to see that MCSP[2n/2] reduces to MCSP[2n/4],2 but the converse direction is unknown:

▶ Question 7. Is MCSP[2n/4] reducible to MCSP[2n/2] under polynomial-time Karp reduc-
tions?

The average-case version of Question 7 is also open. It is observed in [19] that any errorless
heuristic for MCSP[2n/2] can be transformed into an errorless heuristic for MCSP[2n/4], but
the converse is unknown.

1 The conference version of [2] was published in 2002.
2 Given an input truth table f of length 2n, let f ′ be the concatenation of 2n copies of f , then

f ′ : {0, 1}2n → {0, 1} is a function that only depends on half of its input bits, and the circuit complexities
of f and f ′ are exactly the same. Therefore f ∈ MCSP[2n/2] if and only if f ′ ∈ MCSP[2n/4].
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▶ Question 8. If MCSP[2n/4] is easy on average, does this imply that MCSP[2n/2] is also
easy on average?

One drawback of the worst-case to average-case reduction of [15] is that it only works
for zero-error average-case complexity. Ideally, we would like to establish a worst-case to
two-sided-error average-case reduction for MINKT. Can we extend the results in [15] to the
two-sided-error setting?

▶ Question 9. Is there a natural distribution such that, if MINKT is easy on this distribution
with two-sided error, then GapMINKT is solvable in the worst case? In particular, does the
uniform distribution satisfy the above condition?

1.1.3 Meta-Complexity, Average-Case Complexity and Cryptography
Some of the most compelling questions around meta-complexity relate to connections with
average-case complexity and cryptography. A partial converse of [15] was established in [16,17],
where it was shown that if GapMINKTSAT ∈ P, then DistNP ⊆ AvgP, i.e. NP is easy on
average. Here GapMINKTSAT is the problem of determining the (time-bounded) Kolmogorov
complexity of a string with a SAT oracle. Based on this result, [16] characterized the average-
case complexity of the polynomial hierarchy by the worst-case complexity of meta-complexity.
An important open question, a positive answer to which would imply a characterization of
the average-case complexity for NP, is whether the SAT oracle can be removed, that is:

▶ Question 10. Does GapMINKT ∈ P imply DistNP ⊆ AvgP?

There seems to be strong correspondences between the hardness of MCSP and problems
in cryptography. For example, if MCSP is easy, then one-way functions (OWFs) do not
exist [28, 38]. Under the unproven Universality Conjecture, [42] established the converse
direction, i.e. if MCSP is zero-error average-case hard, then OWFs exist. Of course, an
unconditional answer would be much more interesting:

▶ Question 11. Can we base the existence of OWF from the nonexistence of natural proofs?

A recent exciting work [32] established the equivalence between the two-sided error
average-case hardness of MINKT and the existence of one-way functions. Given the result
in [32], it is perhaps natural to conjecture that GapMINKT ∈ CZK unconditionally, where
CZK is the set of languages with a computational zero-knowledge proof system [14]. One
could imagine a win-win argument as follows: If MINKT is easy, then of course it is in CZK;
on the other hand, if MINKT is hard, then one-way functions exist, and by the result of [14],
every language in NP is in CZK. However, there are some gaps between the “easy” and “hard”
in the above argument, as we do not know what happens if MINKT is only worst-case hard
and one-way functions do not exist.

▶ Question 12. Does (some gap version of) MCSP or MINKT admit a computational zero
knowledge proof system?

2 Our Results

In this work, we investigate the above questions in the perspective of relativization. Due
to page limits, we only describe our results in this section and provide a proof overview in
Section 3. The detailed proofs can be found in the full version of this paper [40].
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2.1 Meta-Complexity Problems Are Not Robust in Relativized Worlds
In our first set of results, we present evidence for the following hypothesis: A slight change in
the definition of a meta-complexity problem could result in a completely different problem. For
example, we show that there are relativized worlds where MCSP is significantly easier than
search-MCSP, and relativized worlds where MCSP[2n/2] and MCSP[2n/4] have dramatically
different complexities.

▶ Theorem 13 (Informal version). For each of the following items, there is a relativized world
where it becomes true.

MCSP ∈ P, but search-MCSP is very hard.
MCSP[2n/2] ∈ P, but MCSP[2n/4] is very hard.
MCSP[2n/4] admits a polynomial-time errorless heuristic, but MCSP[2n/2] does not.

As direct consequences of Theorem 13, we have the following nonreducibility results:
For example, unless nonrelativizing techniques are used, MCSP does not admit a search-to-
decision reduction, and MCSP[2n/4] does not reduce to MCSP[2n/2].

2.2 Barriers for Proving Hardness of Kt Complexity
Our second result concerns Question 5.

▶ Theorem 14 (Informal version). There is a relativized world where Levin’s Kt complexity
can be (2 + ϵ)-approximated in polynomial time.

We note that Question 5 also appeared in a stronger form in literature. In particular,
let RKt be the set of strings x such that Kt(x) ≥ |x|/3, it is conjectured that any “dense
enough” subset of RKt is not in polynomial time. Our result shows that this conjecture needs
nonrelativizing techniques to prove.

Actually, our message is even stronger than the above statement of Theorem 14. We
define a nonstandard variant of Levin’s Kt complexity, and denote it as K̃t, such that K̃t
approximates Kt, i.e. for every string x, K̃t(x) ≤ Kt(x) ≤ (2+o(1))K̃t(x). Then we construct
a relativized world where K̃t is computable in polynomial time exactly, and Theorem 14
follows directly.

However, non-relativizing techniques already play an important role in characterizing
the complexity of RKt. It was shown that any dense subset of RKt is EXP-complete under
P/poly-truth-table reductions and NP-Turing reductions [2], and these results use the non-
relativizing “instance checkers” for EXP-complete problems [7,8]. An algebrization barrier
would be more satisfying for showing limitations of such techniques. However, we could not
extend our oracle world to an algebrizing one in the sense of either [1], [26], or [6].

Nevertheless, we managed to construct an oracle world where K̃t is computable in
polynomial time, and EXP = ZPP holds simultaneously.

▶ Theorem 15. There is a relativized world where K̃t complexity is computable in determin-
istic polynomial time, and EXP = ZPP.

In this world, EXP-complete problems have trivial instance checkers, since they are in
ZPP. We also get some other non-relativizing theorems such as IP = PSPACE for free, since
PSPACE ⊆ EXP = ZPP ⊆ IP. As a result, we cannot prove that K̃t is not in polynomial time,
even if we combine IP = PSPACE or the instance checkers for EXP-complete problems with
relativizing techniques. We believe that this oracle world serves as a “fundamental obstacle”
([2]) to proving MKtP ̸∈ P.
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We think our new complexity measure K̃t is of independent interest. Understanding K̃t
using nonrelativizing techniques may serve as the first step towards solving Question 5.

2.3 Natural Proofs Versus Cryptography
Our third set of results is motivated by Question 11. Under the so-called “Universality
Conjecture”, [42] answered Question 11 affirmatively, i.e. the non-existence of natural proofs
is equivalent to the existence of one-way functions. In contrast, we show that the answer of
Question 11 is false in some relativized world, establishing a barrier for constructing one-way
functions from nonexistence of natural proofs. We can even rule out auxiliary-input one-way
functions (a primitive weaker than one-way functions) in our world.

Consequently, the Universality Conjecture fails in this world. As we will discuss in
Section 3.3, in this world, the Universality Conjecture actually fails in a very intuitive way.

▶ Theorem 16 (informal version). There is a relativized world where P/poly-natural properties
useful against SIZE[2δn] do not exist, and auxiliary-input one-way functions do not exist
either.

The non-existence of natural proofs corresponds to the zero-error average-case hardness
of MCSP [19]. We also extend our results by showing a relativized world where MCSP or
MINKT is hard even for two-sided error heuristics.

▶ Theorem 17 (informal version). There is a relativized world where GapMCSP is hard on
average under some samplable distribution, and auxiliary-input one-way functions do not
exist.

▶ Theorem 18 (informal version). There is a relativized world where GapMINKT is hard on
average under some samplable distribution, and auxiliary-input one-way functions do not
exist.

Besides Question 11, we also show the following consequences based on our relativized
worlds:

(Question 9) Extending the results in [15] to the bounded-error case requires nonrelativizing
techniques, if the underlying distribution for MINKT is still the uniform distribution.
(This is because [32] showed the equivalence between the existence of one-way functions
and the bounded-error average-case hardness of MINKT under the uniform distribution.)
(Question 12) It requires nonrelativizing techniques to show that GapMINKT ∈ CZK, or
even that GapMINKT can be solved on average by a CZK protocol, on infinitely many
input lengths. This is because [37] showed that if auxiliary-input one-way functions do
not exist, then CZK = BPP.
Note that the proof that if one-way functions exist then NP ⊆ CZK [14] is already
nonrelativizing. On the other hand, we show that basing GapMINKT ∈ CZK on the
nonexistence of one-way functions also requires a nonrelativizing proof.

2.4 Limits of GapMINKT as an Oracle
We also present technical barriers for showing stronger reductions to the GapMINKT oracle,
such as coNP-Turing reductions or P/poly-Turing reductions.

We view (Turing) reductions to a promise problem L = (L.Yes, L.No) as machines that
interact with an (adversarial) oracle, and tries to solve a problem L′. We say a reduction is
robust, if it works even if the adversary is inconsistent on queries not in the promise. That is,
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on queries outside (L.Yes ∪ L.No), the adversary can sometimes return 0 and sometimes
return 1. Furthermore, the adversary is allowed to see the input of L′ or the nondeterministic
branch the reduction is running on, and decide whether to return 0 or 1 accordingly.

We show that a reduction that is both robust and relativizing cannot solve Question 10 or
(a harder version of) Question 4. However, as the requirement of robust reductions seem very
strong, we mainly treat these results as technical barriers rather than conceptual barriers. It
is also worth mentioning that we use the “Gap” in GapMINKT in a very crucial way.

▶ Theorem 19 (informal version). Each of the following items cannot be proved by a reduction
that is both robust and relativizing.

Either GapMINKT ∈ coNP, or GapMINKT is NP-complete under coNP-Turing reduc-
tions.
Every problem in DistNP has a polynomial-size two-sided error heuristic with GapMINKT
oracles.

We did not manage to prove non-hardness results under coNP/poly-Turing reductions, as
mentioned in Question 4. We leave it as an open problem.

▶ Open Problem 20. Is there a relativized world where GapMINKT ̸∈ coNP/poly, and
GapMINKT is not NP-complete under robust coNP/poly-Turing reductions?

3 Technical Overview

3.1 Meta-Complexity Problems Are Not Robust in Relativized Worlds
We briefly discuss the proof techniques of the first bullet of Theorem 13 here, i.e. there is
an oracle world such that MCSP is easy but search-MCSP is hard. The framework for the
other two bullets will be similar.

Making MCSP easy. We can add an MCSP oracle in our oracle world, but the circuit
minimization problem in our world becomes MCSPMCSP. Then we also need to add an
MCSPMCSP oracle, but again, the circuit minimization problem becomes MCSPMCSPMCSP

now. Therefore, a natural approach is to add the “limit” of

MCSPMCSPMCSP...

into our oracle world. Indeed, this is what we do: We add an oracle itrMCSP (which stands
for “iterated MCSP”) into our world, such that (roughly speaking)

itrMCSP[k, x, s] = MCSPMCSPMCSP...︸ ︷︷ ︸
iterate k times

[x, s].

(Recall that MCSPO[x, s] = 1 if and only if in the oracle world with oracle O, the circuit
complexity of the truth table x is at most s.)

In our world, MCSP is indeed easy. Actually, let x be a truth table of length 2n, then
the circuit complexity of x is at most s in our world if and only if itrMCSP[2n, x, s] = 1.

Making search-MCSP hard. We define an oracle O that diagonalizes against every
polynomial time Turing machine M , and define itrMCSP relative to O. (That is, for
example, itrMCSP[1, x, s] = MCSPO[x, s] and itrMCSP[2, x, s] = MCSPMCSPO

[x, s].) For
every Turing machine M , we find a large enough integer N and a hard truth table xhard
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of length poly(N). Then we feed xhard to M . How we answer the O queries of M is not
important, but each time M makes a query itrMCSP[k, x, s], we pretend x has the lowest
possible circuit complexity, and answer this query accordingly.

To be more precise, we fix the oracle O up to input length N − 1 before we simulate M

on input xhard. This has the effect that for every integer k, truth table x, and parameter
s ≤ N − 1, we already know whether itrMCSP[k, x, s] = 1 regardless of how we fix the rest
of O; see Claim 3.3 of the full version. Then upon every query itrMCSP[k, x, s], if s ≤ N − 1
we already know how to reply to it; otherwise we simply reply 1.

At last, for every query itrMCSP[k, x, s] where s ≥ N and we returned 1, we need to
put the truth table x in the length-N slice of O so that its circuit complexity is indeed at
most N . Since M only runs in polynomial time, and only probes very few positions of O, we
can indeed put it somewhere in O without letting M notice. We do not need to care about
the parameter k here, as MCSP[x, N ] = 1 implies itrMCSP[k, x, N ] = 1 for every k.3 To
diagonalize against M , we also put xhard into the length-N slice of O, but in a place that M

did not probe at all. In this way, we can guarantee that there is a size-N circuit for xhard,
but M fails to find it.

3.2 Barriers for Proving Hardness of Kt Complexity
We first define the complexity K̃t. For a string x, let K̃t(x) denote the minimum possible
value of |M | + ⌊log t⌋, where after we run the machine M on the empty input for t steps, the
content of some tape of M is exactly x. The difference between Kt and K̃t is that in the
definition of Kt, we require M to halt after outputting x; while in the definition of K̃t, x can
be an intermediate step of the computation.

A fixed-point oracle. Our approach will be to find a “fixed-point” of K̃t: an oracle O such
that O[x] = K̃t

O
(x) for every string x. Then, in the world with oracle O, we can compute

K̃t(x) by simply calling O[x].
We proceed in stages, and in stage n, we fix the strings that have K̃t complexity exactly

n. We enumerate every (M, t) such that |M | + ⌊log t⌋ = n, and run M for t steps. For every
intermediate tape content x, if O[x] is not fixed yet, then we fix O[x] = n. A natural problem
is: how to respond to the O queries made by M? The answer is surprisingly simple: for
every query O[y] that M makes, we already have K̃t(y) ≤ n by definition, so if O[y] is not
fixed to a value smaller than n yet, then we can return O[y] = n confidently! It is not hard
to show that the oracle O is indeed a “fixed-point” of K̃t.

Achieving EXP = ZPP. It is also simple to achieve EXP = ZPP in the above oracle. To
simulate exponential time, we give the zero-error probabilistic polynomial-time machine a
“cheat” oracle Cheat that embeds the truth tables of a certain EXP-complete problem. It is
natural to choose the EXP-complete problem as

L = {(M, t) : M on empty input outputs 1 in time t},

since we can construct O and obtain the truth tables of L at the same time. We can reply
arbitrarily when M queries the Cheat oracle.

Now we have a “fixed-point” oracle O such that O[x] = K̃t
O,Cheat

(x) for every x. We
also have a length-2n truth table (of L), which we want to “embed” into Cheat. We can
simply embed it into the length-3n (say) slice of Cheat, as there are still many empty slots

3 It is possible to define itrMCSP such that this is satisfied.
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not asked in the construction of O. Actually, the number of empty slots is so large (around
23n − 2npoly(n)) that we can embed it “everywhere we can”. A ZPP algorithm can simply
guess a pointer in the length-3n slice of Cheat, and it will likely point to the truth table of L.

3.3 Natural Proofs Versus Cryptography
We only discuss how we prove Theorem 16. Our starting point is an oracle world in [45, Section
5], in which there is a hard-on-average problem but no auxiliary-input one-way functions.
Given a function f : {0, 1}n → {0, 1}n (think of f as a uniformly random function), the
world consists of two oracles: A PSPACE-complete oracle, and a “verification” oracle for f :

Vf [x, y] =
{

1 if f(x) = y,

0 otherwise.

Inverting auxiliary-input one-way functions. We use essentially the same argument as
in [45]. Roughly speaking, given any circuit C of size s, it is possible to “eliminate” every Vf

gate in C, and obtain a circuit C ′ of size poly(s), such that C and C ′ agree on a 1 − 1/s

fraction of inputs, but C ′ does not use Vf at all. This is because Vf behaves like an oracle
that is both random and sparse. Therefore, for each Vf gate, we only need to store its
answers to the inputs that appear frequently, and Vf is likely zero on other inputs.

Now, given any circuit C, we want to “invert” C, i.e. given C(z) for a uniformly random
input z, output any string in C−1(C(z)). We simply find a circuit C ′ that is close to C, uses
no Vf gates, and is only polynomially larger than C. Then we use the PSPACE-complete
oracle to invert C ′.

Ruling out natural proofs. It suffices to show there is a succinct pseudorandom distribution,
i.e. a distribution D over truth tables with small circuits, such that D is indistinguishable
from the uniform distribution by small circuits. (Actually, this approach is inspired by recent
circuit lower bounds [11,19] for MCSP.)

Let D be any distribution over poly(s) strings, that fools PSPACE-oracle circuits of size
s. The existence of D can be proven by the probabilistic method. For each x ∈ {0, 1}O(log s),
let Dx be the x-th truth table in D. We “embed” Dx into the oracle Vf [x, f(x)], as follows:

Vf [x, y, β] =
{

Dx[β] if f(x) = y,

⊥ otherwise.

Here, Dx[β] is the β-th bit of Dx. Now we have artificially made D a succinct distribution:
the circuit complexity of every string in D is small. We also need to prove D is pseudorandom,
i.e. it fools every size so(1) circuit. For every circuit C with Vf gates and PSPACE gates, we
use the same method as above to eliminate every Vf gate in C, to obtain a circuit C ′ that is
close to C. Note that the distribution under which we measure the closeness of C and C ′ is
a hybrid of D and the uniform distribution. After that, we can use the fact that D fools C ′

to also show that D fools C, therefore C cannot be a natural proof.

How did the Universality Conjecture fail? The Universality Conjecture of [42] roughly says
that if there are succinct pseudorandom distributions, then there are efficiently samplable
succinct pseudorandom distributions. However, in our oracle world, the succinct pseudoran-
dom distribution D does not appear to be efficiently samplable: to sample from D, it seems
that we need be able to compute f , which is hard when f is a random function.

STACS 2022
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3.4 Limits of GapMINKT as an Oracle
At the core of our proofs is the following weakness of GapMINKT: It may hide a small
change of the oracle. In particular, suppose we have two oracles O and O′, such that they only
differ at one input, then the “Gap” in GapMINKT allows us to choose an instantiation of
GapMINKT that is both consistent with GapMINKTO and GapMINKTO′

. (See Lemma 6.2
in the full version.) This instantiation of GapMINKT would not help the reduction distinguish
between O and O′ at all; however, an NP problem on O and O′ may have very different
answers.

NP-intermediateness under coNP-Turing reductions. It is not hard to construct a re-
lativized world where GapMINKT ̸∈ coNP (see, e.g. [29, Theorem 4.1]). For the “non-
completeness” part, we construct a diagonalizing oracle O such that there is no robust
reduction from the NP problem

L = {0n : O ∩ {0, 1}n ̸= ∅}

to GapMINKT. On input length N , we construct a GapMINKT oracle that is both consistent
with “O ∩ {0, 1}N = ∅” and “|O ∩ {0, 1}N | = 1”. This oracle does not reveal whether 0N ∈ L,
and we can still use the standard method to diagonalize against every co-nondeterministic
Turing machine. In particular, we run this machine and reply 0 to all its queries to O. If it
rejects some branch, we put a string of length N that is not probed in this branch into O;
otherwise we do nothing.

Non-DistNP-hardness under P/poly-Turing reductions. [13] showed that a random per-
mutation π : {0, 1}n → {0, 1}n cannot be computed on average by circuits of size 2o(n), even
with a verification oracle

Π[α, β] =
{

1 if π(α) = β,

0 otherwise.

We show the same thing for (robust) circuits with Π and GapMINKT oracle gates. To
oversimplify, the argument boils down to the following task: Given an input α, a circuit
C that computes π correctly on α, and every value {π(β)}β ̸=α, recover π(α). Without
GapMINKT gates, it suffices to use log |C| bits to store a number k, such that on input α,
the k-th Π gate of C contains the correct answer π(α). (For comparison, the trivial solution
needs to record n ≫ log |C| bits.)

Now, the circuit C has GapMINKT gates, and it is robust in the sense that CΠ,B(α) =
π(α) for every oracle B consistent with GapMINKT. Now we let B′ be the MINKT oracle
in the world where Π[α, π(α)] = 0, and other entries of Π are not changed. As the new
oracle Π does not depend on π(α) at all, we can simulate CΠ,B′(α) without knowing π(α).
On the other hand, we only modified one entry in Π, therefore B′ is still consistent with
GapMINKT. We still record the number k defined above for the simulation CΠ,B′(α), which
suffices to recover π(α).

4 Related Works

In the paper that defined MINKT, Ko [29] studied the properties of MINKT in relativized
worlds. Among other results, [29] showed that there is a relativized world where MINKT
is neither in coNP, nor NP-complete under polynomial-time Turing reductions. This result
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indicates that the MINKT counterpart of Question 3 cannot be shown affirmatively using
relativizing techniques. Also, [29] constructed a relativized world where NP ̸= coNP, but
MINKT is NP-complete under coNP-Turing reductions (“≤SNP

T -reductions”). This leads to
the conjecture [15, 29] that MINKT might be NP-complete under coNP-Turing reductions in
the unrelativized world (Question 4).

Our third set of results build upon the results of Wee [45]. The motivation of [45] was to
show that a certain cryptographic object (succinct noninteractive argument, SNARG) does
not imply one-way functions in a relativizing way. The framework of [45] was very helpful
for us, as we also need to rule out (auxiliary-input) one-way functions.

Xiao [46] presented a relativized world where learning is hard against circuits and auxiliary-
input one-way functions do not exist either. It may seem that our results are direct corollaries
of this result, since [10] proved that natural proofs imply learning algorithms. However, [46]
only ruled out learning algorithms that use uniform samples, while the learning algorithms in
[10] need membership queries. It seems that our results and [46] are incomparable. However,
we remark that the techniques underlying [45,46] and our results are quite similar.

We also mention the negative results of Hirahara and Watanabe [20] that has a different
but similar setting compared to ours. In particular, they consider reductions to MCSP (in
the unrelativized world) that are oracle-independent, i.e. work for MCSPA for every oracle
A. Two particular results in [20] are that deterministic oracle-independent reductions cannot
reduce problems outside P to MCSP, and that randomized oracle-independent reductions
that only make one query cannot reduce problems outside AM∩coAM to MCSP. As discussed
in [20], the difference between relativization and their model is that in the relativized world
with A oracle, a Turing reduction has access to not only MCSPA but also A itself; however
in their model, the reduction does not have access to A.
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We introduce techniques for proving superlinear conditional lower bounds for polynomial time
problems. In particular, we show that CircuitSAT for circuits with m gates and log(m) inputs
(denoted by log-CircuitSAT) is not decidable in essentially-linear time unless the exponential time
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1 Introduction

1.1 Motivation
Developing a deeper understanding of polynomial time problems is essential to the fields
of algorithm design and computational complexity theory. In this work, we build on prior
concepts from the topic of limited nondeterminism to show a new kind of conditional lower
bound for polynomial time problems where a small runtime improvement for one problem
would lead to a substantial runtime improvement for another.

We proceed by introducing basic notions and explaining how they relate to existing work.
A polynomial time problem is a decision problem that can be decided in O(nk) time for some
constant k, where n denotes the input length. As usual, P denotes the class of polynomial
time problems. A decision problem has an unconditional time complexity lower bound
t(n) if it cannot be decided in o(t(n)) time. Polynomial time problems with unconditional
superlinear time complexity lower bounds do not commonly appear in complexity theory
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research (aside from problems with lower bounds based on restrictive models such as one-tape
Turing machines [24, 34]). Such problems are known to exist by the deterministic time
hierarchy theorem [23], but to the best of our knowledge, there are few examples that appear
in the literature. Most of the known examples are related to pebbling games [3] or intersection
non-emptiness for automata [39, 41]. For these examples, the unconditional lower bounds are
proven by combining Turing machine simulations with classical diagonalization arguments.

Although unconditional lower bounds are rare, many polynomial time problems have been
shown to have conditional lower bounds in recent works on fine-grained complexity theory
(see surveys [45, 7]). Our primary goal is to introduce superlinear conditional lower bounds
based on weaker hypotheses than existing works, by applying new relationships between
deterministic and nondeterministic computations.

1.2 Our Contribution

In this work, all logarithms are base 2 and we say that a problem is solvable in essentially-linear
time if it is decidable in O(n1+ε) time for all ε > 0.

The log-CircuitSAT decision problem (previously investigated in [8, 2]) is a natural
restriction of circuit satisfiability to bounded fan-in Boolean circuits with m gates and log(m)
inputs. Like many problems in polynomial time, it is not currently known if unconditional
superlinear time complexity lower bounds exist for log-CircuitSAT. We prove a superlinear
conditional lower bound for log-CircuitSAT, as our main contribution. (Our conditional lower
bound is in fact superquasilinear, where f is a quasilinear function if f(n)/n ∈ polylog(n).)
In particular, we show in Theorem 22 that log-CircuitSAT is not decidable in essentially-
linear time unless the Exponential Time Hypothesis (ETH) is false. This result is significant
because existing works have only obtained conditional lower bounds for polynomial time
problems based on the Strong Exponential Time Hypothesis (SETH). It is well known that
SETH implies ETH but the reverse implication is not known to hold [16, Theorem 14.5]. In
fact, it has been claimed that while ETH is plausible, SETH “is regarded by many as a quite
doubtful working hypothesis that can be refuted at any time” [16, p. 470]. We therefore
believe that a conditional lower bound for a natural polynomial time problem based on ETH
instead of SETH represents significant progress.

As a further contribution, in Theorem 24 we show that log-CircuitSAT is not decidable
in essentially-linear time unless k-Clique is decidable in essentially-linear time in terms of
the graph’s size for all fixed k. This result is significant because the current best known
algorithm for deciding k-Clique runs in O(v0.792k) time [40] where v denotes the number of
vertices. Furthermore, showing that there exists a constant c such that k-Clique is decidable
in O(vc) time for all fixed k would constitute a major breakthrough.

Our results for log-CircuitSAT follow from Speed-up Theorems 12, 14, and 16. These
theorems show how a small runtime improvement for the deterministic simulation of non-
deterministic machines with short witnesses would imply a substantial runtime improvement
for the deterministic simulation of nondeterministic machines with large witnesses. Further-
more, these results advance our knowledge of limited nondeterminism by exploring possible
trade-offs between time and witness length.

Our techniques are straightforward adaptations of existing approaches to simulation; our
contribution is a more detailed analysis of these simulations and how they behave when
composed and iterated. This more detailed analysis is made possible by our novel approach
to limited nondeterminism in Section 3.1.
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2 Background

Let N denote the set of positive integers {1, 2, . . . }. The class of polynomial functions is

poly(n) =
⋃
c>0

{ f(n) : N → N | f(n) = O(nc) },

and in a slight abuse of notation, we also sometimes use poly(n) to mean an arbitrary
function from this class. We also refer to the class of polylogarithmic functions

polylog(n) =
⋃
c>0

{ f(n) : N → N | f(n) = O((log(n))c) }.

2.1 Conditional Lower Bounds
Fine-grained complexity theory is a subject focused on exact runtime bounds and conditional
lower bounds. A conditional lower bound for a polynomial time problem typically takes the
following form: polynomial time problem A is not decidable in O(nα−ε) time for all ε > 0
assuming that problem B is not decidable in O(t(n)β−ε) time for all ε > 0, where α and
β are constants and t(n) is a function (typically t(n) is either polynomial or exponential).
This is referred to as a conditional lower bound because problem A has a lower bound under
the assumption that B has a lower bound. Conditional lower bounds are known for many
polynomial time problems including Triangle Finding, Orthogonal Vectors Problem (OVP),
3SUM, and All Pairs Shortest Path (APSP) [45, 7].

2.2 Exponential Time Hypothesis
Decision problems related to Boolean formulas have been significant to the study of compu-
tational hardness [13, 32]. As a result, satisfiability of Boolean formulas (SAT) is a natural
candidate for lower bound assumptions. In particular, it is common to focus on satisfiability
of Boolean formulas in conjunctive normal form with clause width at most k (denoted by
k-CNF-SAT) for a fixed k.

The exponential time hypothesis (ETH) states that there is some ε > 0, such that
3-CNF-SAT cannot be decided in poly(n) · 2ε·v time, where n denotes the input size and v

denotes the number of variables [26]. The strong exponential time hypothesis (SETH) states
that for every ε > 0, there is a sufficiently large k such that k-CNF-SAT cannot be decided
in poly(n) · 2(1−ε)·v time [26, 27, 11].

Conditional lower bounds are frequently shown relative to k-CNF-SAT. For instance, it
is well known that the Orthogonal Vectors Problem (OVP) on polylogarithmic length vectors
is not decidable in O(n2−ε) time for all ε > 0 assuming SETH [42, 45, 7].
▶ Remark 1. As far as we know, the current best reduction shows that an O(nα) time
algorithm for OVP would lead to a poly(n) · 2 α·v

2 time algorithm for k-CNF-SAT for all k

[42, 45, 7]. This isn’t sufficient to show a lower bound conditional on ETH. Furthermore, we
do not know if the existence of an essentially-linear time algorithm for OVP would imply
that ETH is false.

2.3 Limited Nondeterminism
A nondeterministic polynomial time problem is a problem that can be decided in polynomial
time by a nondeterministic machine. Nondeterminism can appear in a computation in
multiple different ways. For instance, a machine could have nondeterministic bits written on
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a tape in advance, or could make nondeterministic guesses during the computation. Such
variations do not appear to make much difference for nondeterministic polynomial time (NP).
However, the definitions do require special care for notions of limited nondeterminism, which
refers to the restriction or bounding of the amount of nondeterminism in a computation.

We proceed by reviewing some prior models of limited nondeterminism. Consider a
machine model consisting of a multitape Turing machine with a special guess tape; all the
remaining tapes are standard. In this model, the number of bits of nondeterminism used by
the machine is the number of cells of the guess tape that are accessed by the machine during
a computation, multiplied by the number of bits represented by each cell. The contents of
the guess tape are referred to as the witness.

Kintala and Fischer [29, 30] defined Pf(n) as the class of languages that can be decided by
a polynomial time bounded machine which scans at most f(n) cells of the guess tape for each
input of size n. Note that this concept uses an exact limit for the amount of nondeterminism.
Abandoning this exactness, Àlvarez, Díaz and Torán [4, 17], making explicit a concept of Xu,
Doner, and Book [35], then defined βk as the class of languages that can be decided by a
polynomial-time bounded machine which uses at most O((log(n))k) bits of nondeterminism.
Farr took a similar approach [18], defining f(n)-NP as the languages that can be decided
by a polynomial-time bounded machine which scans at most f(q(n)) cells of the guess tape
for each input of size n. Here q is a polynomial that depends only on the machine, so again
there is an unspecified constant factor allowed in the amount of nondeterminism. Note
that f(n)-NP is the union over all k of the classes Pf(nk). Another related approach was
taken by Buss and Goldsmith [8] where NmPl is defined as the class of languages decided
by nondeterministic machines in quasi-nl time making at most m · log(n) nondeterministic
guesses. In this approach the limit on the amount of nondeterminism is exact, but arbitrary
poly-logarithmic factors are allowed in the time bound. Finally, in the survey by Goldsmith,
Levy and Mundhenk [21] the βk classes were then extended to verifiers other than those with
a polynomial time bound. In this notation, βk−C is defined relative to a complexity class C
that bounds the power of the verifier. Therefore, we have βk = βk−P.

Taking a slightly different approach, Cai and Chen [10] focused on machines that partition
access to nondeterminism, by first creating the contents of the guess tape, and then using a
deterministic machine to check this guess. In this terminology, GC(s(n), C) is the class of
languages that can be decided by a machine that guesses O(s(n)) bits and then uses the
power of class C to verify. Again an arbitrary constant factor is allowed in the number of
nondeterministic bits, to allow classes to contain complete languages.

Santhanam [38] then returned to a definition that uses an exact limit for the amount of
allowed nondeterminism: NTIGU(t(n), g(n)) is the class of languages that can be decided by
a machine that makes g(n) guesses and runs for O(t(n)) time. These classes have also been
denoted NTIMEGUESS(t(n), g(n)) in a more recent work [20].

It follows from the definitions that

P = PO(log(n)) = NTIGU(poly(n), O(log(n))) = GC(O(1), P) = NO(1)PO(1) = β1

and

NP = n-NP = PnO(1) = NTIGU(poly(n), poly(n)) = GC(nO(1), P).

Furthermore, the βk classes are meant to capture classes between P and NP.
▶ Remark 2. In this work, we focus on the log-CircuitSAT problem and the levels within
P = β1. It is worth noting that a loosely related work [19] investigated the log-Clique problem
which is in β2 = NTIGU(poly(n), O(log(n)2)).
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3 Time-Witness Trade-offs

In the following, we introduce a new notion of limited nondeterminism that we use to prove
new relationships between deterministic and nondeterministic computations. In particular,
we prove that if faster deterministic algorithms exist, then there are straightforward trade-offs
between time and witness length. For our notion of limited nondeterminism, unlike existing
models, the nondeterministic guesses are preallocated as placeholders within an input string.
These placeholders can then be filled with nondeterministic bits. It is important to note that
different models of limited nondeterminism could be used. However, our model allows us to
preserve the input size enabling us to prove technical results, Lemmas 9 and 10. Attempting
to prove a result like Lemma 9 for a model such as NTIGU introduces unnecessary challenges
with managing input and guess strings.

3.1 A New Model for Limited Nondeterminism
The attempts at constructing robust classes containing complete problems by allowing
arbitrary factors in the amount of nondeterminism were challenged by the various downward
collapses of the β hierarchy shown by Beigel and Goldsmith relative to oracles [5]. We
therefore need a notion of limited nondeterminism that tracks constant factors in the amount
of nondeterminism, accepting a lack of complete problems in our complexity classes to gain
greater precision in reductions. This suggests using the NTIGU notation.

However, we found that attempting to use the NTIGU notion directly leads to difficulties
with bookkeeping when composing multiple reductions because of the necessary simultaneous
management of input and guess strings. Since composing reductions is at the heart of our
approach for proving speed-up theorems in Subsection 3.3, we sought a different notion that
overcomes these unnecessary technical obstacles.

We now introduce our model of limited nondeterminism which allows us to be more explicit
than the NTIGU classes in keeping track of the witness bits when composing reductions.
Reminiscent of the Cai and Chen guess-and-check classes, in our model the nondeterministic
guesses will be preallocated as placeholder characters within an input string. This means
that we can only fill in placeholder characters with nondeterministic bits. This property
is essential for proving structural properties (see the translation and padding lemmas in
Subsection 3.2). With other models, proofs of structural properties appear to be intrinsically
more complex, requiring separate treatment of various overheads and applications of tape
reduction theorems.

Consider strings over a ternary alphabet Σ = {0, 1, p} where p is referred to as the
placeholder character. We index the bits of a string starting from position 0. For any string
x ∈ Σ∗, we let |x| denote the length of x and #p(x) denote the number of placeholder
character occurrences in x.

▶ Definition 3. Let a string r ∈ {0, 1}∗ be given. Define a function

subr : Σ∗ → Σ∗

such that for each string x ∈ Σ∗, subr(x) is obtained from x by replacing placeholder characters
with bits from r so that the ith placeholder character from x is replaced by the ith bit of r for
all i satisfying 0 ≤ i < min{|r|, #p(x)}. Also, define SUB(n) := { subr | |r| ≤ n }. We call
subr a prefix filling and SUB(n) a set of prefix fillings.

▶ Example 4. Consider strings x = 11p01p0p and r = 0110. By applying the preceding
definition, we have that subr(x) = 11001101.
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A prefix filling subr replaces the first |r| placeholder characters with the bits of r in order
(from the least index to the greatest). If there are fewer placeholder characters then some of
the bits of r remain unused. We also consider the notion of an unrestricted filling, which is
any injective replacement of placeholder characters, without specifying the particular order.

▶ Definition 5. For strings x and y ∈ Σ∗, we write x ⪯ y if x can be obtained from y by
replacing any number of placeholder characters in y with 0 or 1. Given a language L ⊆ Σ∗,
we let the closure of L under unrestricted fillings be

Clo(L) := { x ∈ Σ∗ | (∃ y ∈ L) x ⪯ y }.

▶ Example 6. Consider a language L = {0p1p}. By applying the preceding definition, we
have that Clo(L) = {0p1p, 0p10, 0p11, 001p, 011p, 0010, 0011, 0110, 0111}.

In the following, DTIME(t(n)) represents the class of languages decidable in O(t(n)) time
by multitape Turing machines that have read and write access to all tapes (including the
input tape). We proceed by defining a complexity class DTIWI(t(n), w(n)) where intuitively
t(n) represents a time bound and w(n) represents a bound on witness length.

▶ Definition 7. Let Σ = {0, 1, p} and consider a language L ⊆ Σ∗. We write

L ∈ DTIWI(t(n), w(n))

if there exist languages U and V ⊆ Σ∗ satisfying the following properties:
U ∈ DTIME(n),
Clo(U) ∈ DTIME(n),
V ∈ DTIME(t(n)), and
for all x ∈ Σ∗, x ∈ L if and only if x ∈ U and there exists s ∈ SUB(w(|x|)) such that
s(x) ∈ V .

We refer to V as a verification language for L with input string universe U .

There are many different ways to encode structures as strings over a fixed alphabet, so
decision problems can take many different forms as formal languages. To put a problem
within DTIWI(t(n), w(n)), we therefore need to provide an encoding for its inputs with
placeholder characters at the appropriate positions.

▶ Example 8. SAT can be represented such that each input has placeholder characters out
front followed by an encoding of a Boolean formula. Each variable is represented as a binary
number representing an index to a placeholder. The placeholders will be nondeterministically
filled to create a variable assignment.

3.2 Structural Properties of Limited Nondeterminism

The following two lemmas demonstrate structural properties relating time and witness length.
These properties will be essential to proving speed-up theorems in Subsection 3.3 that reveal
new relationships between deterministic and nondeterministic computations.

▶ Lemma 9 (Translation Lemma). If DTIWI(t(n), w(n)) ⊆ DTIME(t′(n)), then for all w′,

DTIWI(t(n), w(n) + w′(n)) ⊆ DTIWI(t′(n), w′(n)).
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Proof. Suppose that DTIWI(t(n), w(n)) ⊆ DTIME(t′(n)).
Let a function w′ be given. Let L ∈ DTIWI(t(n), w(n) + w′(n)) be given. By definition,

there exist an input string universe U and a verification language V ∈ DTIME(t(n)) satisfying
that ∀x ∈ Σ∗, x ∈ L if and only if x ∈ U and there exists s ∈ SUB(w(|x|) + w′(|x|)) such
that s(x) ∈ V . Consider a new language

L′ := { x ∈ Clo(U) | (∃s ∈ SUB(w(|x|))) s(x) ∈ V }.

By interpreting V as a verification language for L′ with input string universe Clo(U), we get
L′ ∈ DTIWI(t(n), w(n)). By assumption, it follows that

L′ ∈ DTIME(t′(n)).

Finally, by interpreting L′ as a verification language for L with input string universe U , we
get L ∈ DTIWI(t′(n), w′(n)). ◀

Recall that a function f : N → N is fully time-constructible if there is a deterministic
multitape Turing machine M that for every input of length n runs for exactly f(n) steps [25].
By convention, if f(n) is a fully time-constructible function, then f(n) ≥ n for all n ∈ N.

▶ Lemma 10 (Padding Lemma). If DTIWI(t(n), w(n)) ⊆ DTIME(t′(n)), then for all fully
time-constructible functions f ,

DTIWI(t(f(n)), w(f(n))) ⊆ DTIME(t′(f(n))).

Proof. Suppose that DTIWI(t(n), w(n)) ⊆ DTIME(t′(n)), and that f : N → N is fully time-
constructible. By definition, there exist an input string universe U and a verification language

V ∈ DTIME(t(f(n)))

so that ∀x ∈ Σ∗, x ∈ L if and only if x ∈ U and there exists

s ∈ SUB(w(f(|x|)))

such that s(x) ∈ V . Consider new languages L′, V ′, and U ′ such that

L′ := { 1k−1 · 0 · x | k + |x| = f(|x|) ∧ x ∈ L },

V ′ := { 1k−1 · 0 · x | k + |x| = f(|x|) ∧ x ∈ V }, and
U ′ := { 1k−1 · 0 · x | k ≥ 1 ∧ x ∈ U }.

Since V ∈ DTIME(t(f(n))), we have that V ′ ∈ DTIME(t(n)). By interpreting V ′ as a
verification language for L′ with input string universe U ′, we get L′ ∈ DTIWI(t(n), w(n)). By
assumption, it follows that L′ ∈ DTIME(t′(n)). We conclude that L ∈ DTIME(t′(f(n))). ◀

▶ Remark 11. Initially, we tried to use other notions of limited nondeterminism such as NTIGU
to prove the preceding lemmas. However, the proofs were messy and required increasing the
number of Turing machine tapes or the time complexity. In contrast, our model for limited
nondeterminism (DTIWI) preserves the input size leading to straightforward proofs with
tighter complexity bounds.
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3.3 Speed-up Theorems
In this subsection, we carefully prove three speed-up theorems relating time and witness length.
It is important to mention that there are existing speed-up theorems in the recent literature
relating different computational resources such as those relating time and space in [43, 9]
and relating probabilistic circuit size and success probability in [36]. In addition, although
relevant, we note that our speed-up results are distinct from recent hardness magnification
results [12] which amplify circuit lower bounds rather than speed up computations.

The first speed-up theorem follows by repeatedly applying the structural properties of
limited nondeterminism from the preceding subsection.

▶ Theorem 12 (First Speed-up Theorem). Let α be a rational number such that 1 ≤ α < 2. If

DTIWI(n, log(n)) ⊆ DTIME(nα),

then for all k ∈ N, DTIWI(n, (Σk
i=0αi) log(n)) ⊆ DTIME(nαk+1).

Proof. Suppose α is rational and 1 ≤ α < 2. (Note that when α = 1 some of the following
formulas can be simplified, but the proof still holds for this case.)

Now suppose that DTIWI(n, log(n)) ⊆ DTIME(nα). We prove by induction on k that for
all k ∈ N,

DTIWI(n, (Σk
i=0αi) log(n)) ⊆ DTIME(nαk+1

).

The base case (k = 0) is true by assumption. For the induction step, suppose that

DTIWI(n, (Σk
i=0αi) log(n)) ⊆ DTIME(nαk+1

).

By applying this assumption with Lemma 9, we get that

DTIWI(n, (Σk+1
i=0 αi) log(n)) ⊆ DTIWI(nαk+1

, αk+1 · log(n)).

Let f(n) = nαk+1 , which is fully time-constructible [31, Example 1]. Next, we apply our
initial assumption and Lemma 10 with f(n), w(n) = log(n), t(n) = n, and t′(n) = nα.
Therefore,

DTIWI(nαk+1
, αk+1 · log(n)) ⊆ DTIME(nαk+2

).

It follows that DTIWI(n, (Σk+1
i=0 αi) log(n)) ⊆ DTIME(nαk+2). ◀

▶ Remark 13. Theorem 12 is a speed-up result because when 1 ≤ α < 2, the exponent
from the runtime divided by the constant factor for the witness string length decreases as k

increases. In particular, we have

lim
k→∞

αk+1

Σk
i=0αi

= (α − 1) · lim
k→∞

αk+1

αk+1 − 1 = α − 1 < 1.

The second speed-up theorem follows by combining the first speed-up theorem with the
padding lemma. We say that a function g : N → N is well-computable if g(n) ≤ n for every
n ∈ N, g(n) = ω(log(n)), and g(n) can be computed in poly(n) steps.

▶ Theorem 14 (Second Speed-up Theorem). Suppose that g is a well-computable function.
Let α be a rational number such that 1 < α < 2. If

DTIWI(n, log(n)) ⊆ DTIME(nα),

then

(∀ε > 0) DTIWI(poly(n), g(n)) ⊆ DTIME(2(1+ε)·(α−1)·g(n)).
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Proof. Let α be a rational number such that 1 < α < 2. Let z(α, k) = Σk
i=0αi. Note that

z(α, k) = αk+1 − 1
α − 1 .

Suppose that DTIWI(n, log(n)) ⊆ DTIME(nα). Let ε > 0 be given. By Theorem 12, we
have that for all k ∈ N,

DTIWI(n, z(α, k) log(n)) ⊆ DTIME(nαk+1
).

Let f(n) = 2⌈g(n)/z(α,k)⌉ if g(n) ≥ z(α, k) log(n) and f(n) = n otherwise. Because
g(n) = ω(log(n)), there is some c > 1 such that f(n) > cn for all but finitely many
n ∈ N. Now, since g(n) can be computed in poly(n) time and z(α, k) is rational, f(n) can be
computed in binary in poly(n) time. Furthermore, since f(n) is superpolynomial, f(n) can be
computed in O(f(n)) time. Therefore, by [31, Theorem 4.1], f(n) is fully time-constructible.
Next, we apply Lemma 10 with f(n), w(n) = z(α, k) log(n), and t(n) = n. Therefore

DTIWI(2g(n)/z(α,k), g(n)) ⊆ DTIME(2(αk+1)·g(n)/z(α,k)).

Again, since 2g(n)/z(α,k) is superpolynomial, we have

DTIWI(poly(n), g(n)) ⊆ DTIME(2(αk+1)·g(n)/z(α,k)).

Then, since

lim
k→∞

αk+1

αk+1 − 1 = 1,

there exists k sufficiently large such that

αk+1

αk+1 − 1 ≤ 1 + ε.

Therefore, by choosing sufficiently large k, we have

DTIWI(poly(n), g(n)) ⊆ DTIME(2(1+ε)·(α−1)·g(n)). ◀

▶ Corollary 15. Suppose that g is a well-computable function. If for all α > 1,

DTIWI(n, log(n)) ⊆ DTIME(nα),

then (∀ε > 0) DTIWI(poly(n), g(n)) ⊆ DTIME(2ε·g(n)).

Proof. Follows directly from Theorem 14. ◀

The third speed-up theorem follows by carefully applying the first speed-up theorem.

▶ Theorem 16 (Third Speed-up Theorem). If for all α > 1,

DTIWI(n, log(n)) ⊆ DTIME(nα),

then for all k ∈ N and all α > 1, DTIWI(n, k · log(n)) ⊆ DTIME(nα).
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Proof. Suppose that for all α > 1, DTIWI(n, log(n)) ⊆ DTIME(nα). By Theorem 12, for all
rational α such that 1 < α < 2 and for all k ∈ N,

DTIWI(n, (Σk
i=0αi) log(n)) ⊆ DTIME(nαk+1

).

Notice that when α > 1, we have k < (Σk
i=0αi). Therefore, for all rational α such that

1 < α < 2 and for all k ∈ N,

DTIWI(n, k · log(n)) ⊆ DTIME(nαk+1
).

Now, let k ∈ N and a rational number α1 > 1 be given. We can choose a rational number
α2 > 1 sufficiently close to 1 so that αk+1

2 ≤ α1. It follows that

DTIWI(n, k · log(n)) ⊆ DTIME(nαk+1
2 ) ⊆ DTIME(nα1).

As the rationals form a dense subset of the reals, the result follows. ◀

4 Superlinear Conditional Lower Bounds

4.1 log-CircuitSAT Decision Problem
A common generalization of SAT is the problem of deciding satisfiability of Boolean circuits
(denoted by CircuitSAT). There is a natural restriction of CircuitSAT to bounded fan-in
Boolean circuits with m gates and log(m) inputs (denoted by log-CircuitSAT) [8, 2]. We
encode this problem so that the placeholder characters are out front followed by an encoding
of a bounded fan-in Boolean circuit. Such an encoding can be carried out so that if n denotes
the total input length and m denotes the number of gates, then n = Θ(m · log(m)).

The log-CircuitSAT decision problem is decidable in polynomial time because we can
evaluate the circuit on every possible input assignment. Whether or not we can decide
log-CircuitSAT in O(n2−ε) time for some ε > 0 is an open problem. Furthermore, as far as
we know, no unconditional superlinear lower bounds are known for log-CircuitSAT. Later in
this section, we prove a superlinear conditional lower bound for log-CircuitSAT. In particular,
we show that if log-CircuitSAT is decidable in essentially-linear time, then ETH is false
(Theorem 22) meaning that a small runtime improvement for log-CircuitSAT would lead to
a substantial runtime improvement for NP-complete problems.

4.2 Simulating Turing Machines Using Boolean Circuits
Let a fully time-constructible function t be given. Any O(t(n)) time bounded Turing machine
can be simulated by an oblivious Turing machine in O(t(n) · log(t(n))) time [37]. Moreover,
any O(t(n)) time bounded Turing machine can be simulated by Boolean circuits of size
O(t(n) · log(t(n))) which can be computed efficiently by a Turing machine [14].

▶ Theorem 17 ([37, 14, 8, 28]). Let a fully time-constructible function t be given. If
L ∈ DTIME(t(n)), then in

O(t(n) · poly(log(t(n))))

time, we can compute Boolean circuits for L of size at most O(t(n) · log(t(n))).

We now use Theorem 17 to show that any problem in DTIWI(n, log(n)) is efficiently
reducible to log-CircuitSAT.
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▶ Theorem 18. Any L ∈ DTIWI(n, log(n)) is reducible to logarithmically many instances of
log-CircuitSAT in essentially-linear time by a Turing machine.

Proof. Let L ∈ DTIWI(n, log(n)) be given. Let V ∈ DTIME(n) denote a verification language
for L with input string universe U ∈ DTIME(n).

Let an input string x ∈ U of length n be given. By Theorem 17, we can compute a
Boolean circuit1 C for V with at most O(n · log(n)) gates in essentially-linear time on a
Turing machine. In the following, let [log(n)] denote {1, 2, . . . , ⌊log(n)⌋}. Now, we construct
a family of circuits {Ci}[log(n)] such that for each i ∈ [log(n)], Ci is obtained by fixing the
characters of x into the circuit C so that only i input bits remain where these input bits
are associated with the first i placeholders within x. Therefore the circuit Ci has at most
log(n) inputs and at most O(n · log(n)) gates. It follows that x ∈ L if and only if there exists
i ∈ [log(n)] such that Ci is satisfiable. ◀

▶ Corollary 19. If for all α > 1 we have log-CircuitSAT ∈ DTIME(nα), then for all α > 1

DTIWI(n, log(n)) ⊆ DTIME(nα).

Proof. Follows directly from Theorem 18. ◀

4.3 ETH-hardness
We combine results from Subsection 4.2 with the Second Speed-up Theorem to prove
superlinear conditional lower bounds for log-CircuitSAT. In particular, existence of essentially-
linear time algorithms for log-CircuitSAT would imply that ETH is false.

▶ Corollary 20. Suppose that g is a well-computable function. If for all α > 1,

log-CircuitSAT ∈ DTIME(nα),

then (∀ε > 0) DTIWI(poly(n), g(n)) ⊆ DTIME(2ε·g(n)).

Proof. Follows by combining Corollary 19 with Corollary 15. ◀

We now relate log-CircuitSAT and CircuitSAT, showing that an essentially-linear upper
bound for log-CircuitSAT would imply a subexponential upper bound for CircuitSAT.

▶ Theorem 21. If for every α > 1 we have that log-CircuitSAT ∈ DTIME(nα), then

(∀ε > 0) CircuitSAT ∈ DTIME(poly(n) · 2ε·m),

where m is the number of gates.

Proof. Suppose that for all α > 1, log-CircuitSAT ∈ DTIME(nα). Letting lg x =
max{1, log(x)} and applying Corollary 20 with g(n) = n

lg(n) (which is well-computable),
we conclude that

(∀ε > 0) DTIWI(poly(n), n

log(n) ) ⊆ DTIME(2ε· n
log(n) ).

1 Since L and V are over a ternary alphabet, the input strings are encoded into binary before being fed
into the Boolean circuits.
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Recall that we encode Boolean circuits so that n = Θ(m · log(m)) where m is the number
of gates. Therefore, n

log(n) is Θ(m). Also, under reasonable encoding conventions, n
log(n) will

actually be larger than the number of gates and inputs. (Note that one could always scale
up the witness size by a rational constant factor if needed.) Hence,

CircuitSAT ∈ DTIWI(poly(n), n

log(n) ).

Therefore, (∀ε > 0) CircuitSAT ∈ DTIME(2ε· n
log(n) ). It follows that

(∀ε > 0) CircuitSAT ∈ DTIME(poly(n) · 2ε·m). ◀

We now show that log-CircuitSAT cannot be decided in essentially-linear time unless
ETH fails. Note that this is a conditional lower bound based on ETH rather than the more
common (and stronger) SETH assumption.

▶ Theorem 22. If log-CircuitSAT ∈ DTIME(nα) for every α > 1, then ETH is false.

Proof. Because 3-CNF-SAT is a special case of CircuitSAT, Theorem 21 implies that

(∀ε > 0) 3-CNF-SAT ∈ DTIME(poly(n) · 2ε·m)

where m is the number of bounded AND, OR, and NOT gates (which is approximately three
times the number of clauses). By applying the Sparsification Lemma [27, 33], we get that

(∀ε > 0) 3-CNF-SAT ∈ DTIME(poly(n) · 2ε·v)

where v is the number of variables. It follows that ETH is false. ◀

4.4 Hardness for k-Clique
We combine results from Subsection 4.2 with the Third Speed-up Theorem to prove that
the existence of essentially-linear time algorithms for log-CircuitSAT would imply that k-
Clique has essentially-linear time algorithms for all fixed k. It is important to note that
our construction is non-uniform meaning that we obtain differing algorithms that cannot
necessarily be combined into a single efficient approach for solving k-Clique on non-constant
k. As a result, our argument is not sufficient to conclude FPT = W[1].

▶ Corollary 23. If for every α > 1 we have that log-CircuitSAT ∈ DTIME(nα), then

DTIWI(n, k · log(n)) ⊆ DTIME(nα)

for every k ∈ N and every α > 1.

Proof. Follows by combining Corollary 19 with Theorem 16. ◀

From this, we are able to obtain a meaningful connection between the log-CircuitSAT
and k-Clique problems.

▶ Theorem 24. If for every α > 1 we have that log-CircuitSAT ∈ DTIME(nα), then

k-Clique ∈ DTIME(nα)

for every k ∈ N and every α > 1.
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Proof. The variable n denotes the total length of the graph’s encoding which is Θ((v + e) ·
log(v)) where v is the number of vertices and e is the number of edges. We observe that for
all fixed k, we have

k-Clique ∈ DTIWI(n, k · log(n)).

We combine this observation with Corollary 23 to obtain the desired result. ◀

▶ Remark 25. Although we do not focus on parameterized complexity theory here, the
preceding arguments can also be used to show that if log-CircuitSAT is decidable in essentially-
linear time, then W[1] ⊆ non-uniform-FPT. Moreover, we suggest that this implication could
be extended to W[P] ⊆ non-uniform-FPT. We refer the reader to [2] for background on W[P]
and the W hierarchy.

5 Conclusion

We have demonstrated superlinear conditional lower bounds for the log-CircuitSAT decision
problem by carefully investigating properties of limited nondeterminism. In particular,
in Theorem 22 we showed that the existence of essentially-linear time Turing machines
for log-CircuitSAT would imply that ETH is false. This means that a small runtime
improvement for log-CircuitSAT would lead to a substantial runtime improvement for NP-
complete problems. Through this investigation we revealed new relationships between
deterministic and nondeterministic computations.

We leave two important questions unanswered that we hope will inspire future work.

▶ Question 26. Would the existence of essentially-linear time random access machines
for log-CircuitSAT imply that ETH is false? This question is related to whether linear
time for random access machines can be simulated in subquadratic time by multitape Turing
machines [15]. It is also related to whether random access machines can be made oblivious [22].

▶ Question 27. Can the construction from the first speed-up theorem (Theorem 12) be
carried out for a non-constant number k of iterations? We speculate that if it can, then
DTIWI(n, log(n)) ⊆ DTIME(n · log(n)) would imply that NTIME(n) ⊆ DTIME(2

√
n).

In addition, although this work does not focus on circuit lower bounds, we suggest
that recent results connecting the existence of faster algorithms with circuit lower bounds
[1, 44, 43, 6] could be applied to show that the existence of faster algorithms for log-CircuitSAT
would imply new circuit lower bounds for ENP as well as other complexity classes.

Finally, we leave the reader with the thought that the speed-up theorems for limited
nondeterminism (Theorems 12, 14, and 16) might be special cases of a more general speed-up
result connecting nondeterminism, alternation, and time.
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matchings needed to cover all the edges of G; it is correctly defined for every bridgeless cubic graph.
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other hand, a long-standing conjecture of Berge suggests that π(G) never exceeds 5. It was proved
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for a 2-connected cubic graph whether π(G) ≤ 4. A disadvantage of the proof (noted by the authors)
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1 Introduction

It is well known [7] that every bridgeless cubic graph has a perfect matching that contains
an arbitrarily preassigned edge. As a consequence, each such graph can be expressed as a
union of a collection of its perfect matchings. The smallest number of perfect matchings
needed for this purpose is its perfect matching index, denoted by π(G). Although no constant
bound on π(G) is known, a fascinating conjecture of Berge (see [8]) suggests that five perfect
matchings should do for every bridgeless cubic graph G.

Clearly, π(G) = 3 if and only if G is 3-edge-colourable, so if G has chromatic index 4,
the value of π(G) is at least 4. Understanding the cubic graphs that require more than four
perfect matchings to cover their edges is fundamental for any approach that might lead to
proving or disproving Berge’s conjecture. However, nontrivial examples of cubic graphs with
perfect matching index at least 5 appear to be very rare and are difficult to find. In the list
comprising all 64 326 024 nontrivial snarks – cyclically 4-edge-connected cubic graphs of
girth at least 5 with no 3-edge-colouring – on up to 36 vertices, generated by Brinkmann
et al. [2], there are only two graphs that cannot be covered with four perfect matchings:
the Petersen graph and the windmill snark W34 on 34 vertices displayed in Figure 1. The
latter snark provides the starting point for several infinite families of snarks with π ≥ 5,
see [1, 2, 3, 5].
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Figure 1 Windmill snark W34 on 34 vertices.

It transpires that the structure of graphs with perfect matching index at least 5 is far
from being simple. In fact, deciding whether π(G) ≤ 4 is an NP-complete problem, which
was proved by Esperet and Mazzuoccolo [3] in 2014. However, as the authors write in [3],
“The gadgets used in the proof of NP-completeness have many 2-edge-cuts, so our [first]
result does not say much about 3-edge-connected cubic graphs.” In particular, they leave the
NP-completeness problem open for nontrivial snarks. In this context it may be useful to
realise that it is the class of nontrivial snarks which is particularly important for the problem.
Indeed, several profound conjectures in graph theory, including the celebrated cycle double
cover conjecture and the shortest cycle cover conjecture (also known as the 7/5-conjecture),
can be reduced to nontrivial snarks with perfect matching index at least 5, see Steffen [9,
Theorem 3.1].

The purpose of this contribution is to prove that deciding whether π(G) ≤ 4 remains
NP-complete even in the family of nontrivial snarks. Like the proof of NP-completeness due
to Esperet and Mazzuoccolo [3], our proof employs reduction to 3-edge-colourability, which
is known to be NP-complete by a result of Holyer [4]. On the other hand, its characteristic
feature consists in avoiding direct use of perfect matchings, replacing them with nowhere-zero
flows possessing an additional geometric structure within the 3-dimensional projective space
P3(F2) over the 2-element field. Although our methods heavily depend on the theory of
tetrahedral flows developed in [5], we include all the necessary definitions and results from [5]
to make the present paper self-contained.

We finish this section with a brief list of basic definitions used throughout the paper.
Our graphs will be mostly cubic, simple, although parallel edges and loops are not

automatically excluded. A circuit is a connected 2-regular graph. A graph G is said to
be cyclically k-edge-connected if the removal of fewer than k edges from G cannot create a
graph with at least two components containing circuits. An edge cut S in G that separates
two circuits from each other is cycle-separating. A (proper) edge-colouring of a graph G

is a mapping from the edge set of G to a set of colours such that adjacent edges receive
distinct colours. A k-edge-colouring is an edge colouring using k colours. A 2-connected
cubic graph that does not admit a 3-edge-colouring is called a snark. A snark is nontrivial if
it is cyclically 4-edge-connected and has no circuits of length smaller than 5.

For for more details and general context we refer the reader to [5].

2 Main results

Our point of departure is the result of Esperet and Mazzuoccolo [3, Theorem 2] which
establishes NP-completeness of deciding whether π(G) ≤ 4 in the class of bridgeless cubic
graphs. We briefly summarise their proof.
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Let G be an arbitrary bridgeless cubic graph. Inflate every vertex of G to a triangle,
thereby producing a graph G′. Next, construct a new cubic graph G′′ as follows. Take the
Tietze graph T , which arises from the Petersen graph by inflating one of the vertices to a
triangle, and remove an edge e lying on the triangle of T . For each edge x lying on a triangle
of G′ take a copy Tx of T − e, remove x from G′, and connect the two 2-valent vertices of
G′ − x to the two 2-valent vertices of Tx in such a way that 3-regularity is restored. The
graph G′′ is now obtained by repeating the just described procedure with each edge of G′

lying on a triangle, see Figure 2. The substantial part of the proof of NP-completeness
presented in [3] consists in checking that π(G′′) = 4 if and only if G is 3-edge-colourable.

Figure 2 The construction of Esperet and Mazzuoccolo; T − e denotes the Tietze graph with one
edge removed.

.

Clearly, each copy Tx of T − e is separated from the rest of G′′ by a 2-edge-cut, so G′′ has
a plenty of 2-cuts. Considering the importance of nontrivial snarks for Berge’s conjecture and
other related conjectures it is a legitimate question to ask whether small cuts in the proof of
NP-completeness can be avoided. Our main result answers this question in the positive.

▶ Theorem 1. Deciding whether a nontrivial snark G satisfies π(G) ≤ 4 is an NP-complete
problem.

The previous theorem is a direct consequence of the following more detailed statement.

▶ Theorem 2. For every 2-connected cubic graph G of order n one can construct a derived
graph G♯ on 102n vertices which is a nontrivial snark. Moreover, π(G♯) = 4 if and only if G
is 3-edge-colourable.

The derived graph G♯ will be constructed by substituting the vertices of G with “fat
vertices” (vertex gadgets, which we call tripoles) and the edges of G with “fat edges” (edge
gadgets, which we call dipoles). Dipoles and tripoles, and more generally multipoles, are
structures similar to graphs: like graphs, they consist of vertices and edges, each edge having
two half-edges. In addition to proper edges, multipoles may contain dangling edges, with only
one half-edge incident with a vertex, and even isolated edges, which are not incident with
any vertex at all. Thus a dangling edge has one free half-edge while an isolated edge has
two free half-edges. A dipole is a multipole whose free half-edges are partitioned into two
subsets, the input connector and the output connector, while a tripole has its free half-edges
distributed into three connectors. All multipoles in this paper are cubic, that is to say, every
vertex is incident with exactly three half-edges. Moreover, all connectors will be of size 2.

We now describe the conctruction of G♯ in detail. Let G be an arbitrary 2-connected
cubic graph.

STACS 2022
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For vertex gadgets we use copies of the tripole W0 consisting of three isolated edges a, b,
and c (and no vertices) in which each connector consists of half-edges that belong to two
distinct edges; the tripole W0 is shown in Figure 3.

Figure 3 The tripole W0.

For edge gadgets we take copies of a dipole H68 on 68 vertices; it is somewhat more
complicated to describe. First, take the windmill snark W34 of order 34 shown in Figure 1
and severe the edges uu′ and vv′ indicated in the figure thereby producing four dangling
edges distributed into two pairs. The resulting dipole, which we denote by D34, is displayed
in Figure 4. The input connector {d, k} is formed from the half-edges belonging to the
dangling edges incident with u and v, respectively, while the output connector {q,m} is
formed from those incident with u′ and v′. To finish the construction of H68, take two copies
of D34 and weld the half-edges of their input connectors identically, that is to say, join d to
d and k to k. The result is the dipole on 68 vertices whose both connectors are copies of the
output connector of D34 – this is the required H68.

Figure 4 The dipole D34.

Finally, we assemble G♯ from the building blocks.
1. For each vertex v of G we take a cyclic permutation Rv of the edges incident with v.

The collection R = (Rv)v∈V (G) is the rotation system for G, as it is generally known in
topological graph theory [6]. The choice of R is irrelevant, yet R is important for keeping
the track of the construction. (We will not pursue the topological connection any further.
No knowledge of topological graph theory is therefore required.)

2. Next, we create the corresponding vertex gadget Xv as a copy of the tripole W0. We
associate each connector of Xv with an edge of G incident with v: for each such edge z
we let {z′, z′′} be the corresponding connector and we further require that the half-edges
z′ and (Rv(z))′′ constitute one edge, see Figure 5.
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3. For any edge e = uv of G incident with v we create the corresponding edge gadget Ye as
a copy of H68 and associate its connectors with the endvertices of e.

4. Finally, we glue Ye to Xv. If {q′,m′} is the connector of Ye associated with v, we take
the connector {e′, e′′} of Xv associated with e and attach q′ to e′ and m′ to e′′. As soon
as the gluing procedure is performed with each edge e and with both its endvertices,
the construction of the derived graph G♯ is completed. It is easy to see that if G has n
vertices, then G♯ has 102n vertices. It follows that G♯ can be constructed from G in a
polynomial number of steps with respect to the number of vertices of G.

Figure 5 Substituting a vertex of G with a vertex gadget.

Recall that deciding whether a cubic graph is 3-edge-colourable is a well known NP-
complete problem [4]. Therefore, from the construction of G♯ it is clear that to prove
Theorem 1 it suffices to show that π(G♯) = 4 if and only if G is 3-edge-colourable.

3 Geometric background

In this section we prepare the machinery required for the proof of Theorem 1. As already
indicated, the main idea of our proof consists in representing covers of a cubic graph with
four perfect matchings by flows possessing a certain geometric structure. We now explain
this idea in detail.

First of all, recall that a flow on a graph G is a function ϕ : E(G) → A, with values in
an abelian group A, together with an orientation of G, such that the following property is
fulfilled: at each vertex of G the sum of all incoming values equals the sum of all outgoing
ones (Kirchhoff’s law). More specifically, ϕ is an A-flow. A flow ϕ is nowhere-zero if ϕ(e) ̸= 0
for each edge e of G. The choice of an orientation for a flow is immaterial because the
orientation of any edge can be reversed and its value can be replaced with the inverse
without violating the Kirchhoff law. Furthermore, if x = −x for every x ∈ A, one can ignore
orientation altogether. This is possible precisely when A is isomorphic to an elementary
abelian 2-group Zn

2 .
Let G be a cubic graph that admits a covering C = {P1, P2, P3, P4} of its edges with four

perfect matchings; note that the matchings need not be pairwise distinct. Clearly, C can be
unambiguously represented by the mapping

ξC : E(G) → Z4
2

where the i-th coordinate of ξC(e) equals 1 ∈ Z2 whenever the edge e does not belong to the
perfect matching Pi. It is not difficult to see that ξC is a nowhere-zero Z4

2-flow on G.

STACS 2022
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In order to reveal important properties of this flow it is convenient to identify the set
Z4

2 − {0} with the point set of the 3-dimensional projective space PG(3, 2) over the 2-element
field. Recall that the n-dimensional projective space PG(n, 2) = Pn(F2) over the 2-element
field F2 is an incidence geometry whose points can be identified with the nonzero vectors of
the (n+ 1)-dimensional vector space Fn+1

2 and whose lines are formed by the triples {x, y, z}
of points such that x+ y + z = 0. The 3-dimensional projective space PG(3, 2) consists of 15
points and 35 lines. The crucial observation concerning the flow ξC is that for every vertex
v of G the values assigned by ξC to the edges incident with v form a line of PG(3, 2). The
theory which we now outline generalises this observation.

Figure 6 The tetrahedron in P G(3, 2) spanned by points p1, p2, p3, and p4.

We start with the necessary geometric concepts. A tetrahedron T = T (p1, p2, p3, p4)
in PG(3, 2) is a configuration consisting of ten points and six lines spanned by a set
{p1, p2, p3, p4} of four points of PG(3, 2) in general position; the latter means that the set
{p1, p2, p3, p4} constitutes a basis of the vector space F4

2. These four points are the corner
points of T . Any two distinct corner points c1, c2 ∈ {p1, p2, p3, p4} belong to a unique line
ℓ = {c1, c2, c1 + c2} of T whose third point c1 + c2 is the midpoint of ℓ. Each line of T
is uniquely determined by its midpoint. The tetrahedron T (p1, p2, p3, p4) is depicted in
Figure 6.

Given a tetrahedron T , a T -flow on a cubic graph G is a mapping ϕ : E(G) → P (T ) from
the edge set of G to the point set P (T ) of T such that for each vertex v of G the three edges
e1, e2, and e3 incident with v receive values that form a line of T . The latter means that
ϕ(e1) +ϕ(e2) +ϕ(e3) = 0, which amounts to the Kirchhoff law for ϕ. Thus a T -flow is indeed
a flow. A tetrahedral flow on G is a T -flow for some tetrahedron T in PG(3, 2). Note that
any tetrahedal flow is also a proper edge colouring, which is why we occasionally refer to a
T -flow as a colouring.

The next theorem provides a characterisation of cubic graphs with perfect matching index
at most 4 in terms of tetrahedral flows. Due to the result of Esperet and Mazzuocollo [3],
this characterisation is not efficient in the strict algorithmic sense, nevertheless, it is very
useful.

▶ Theorem 3. A cubic graph G can have its edges covered with four perfect matchings if
and only if it admits a tetrahedral flow. Moreover, there exists a one-to-one correspondence
between coverings of G with four perfect matchings and T -flows, where T is an arbitrary fixed
tetrahedron in PG(3, 2).
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The way in which we apply Theorem 3 to the investigation of cubic graphs with perfect
matching index at least 5 is based on the following idea: Suppose that a graph G in question
has a cycle-separating 4-edge-cut S. Severing the edges of S produces two multipoles X1 and
X2 with four dangling edges each, which we arrange into dipoles correspondingly. Choosing
an input connector in each of them permits us to analyse how pairs of points of a tetrahedron
in PG(3, 2) are transformed via a tetrahedral flow from the input connector to the output,
and to check whether the tetrahedral flows through X1 are always in conflict with the
tetrahedral flows through X2. This is why we need to examine which pairs of points can
occur on the connectors of a dipole equipped with a tetrahedral flow.

For the rest of this section fix an arbitrary tetrahedron T (p1, p2, p3, p4) = T in PG(3, 2).
Consider a dipole X = X(I,O) with input connector I = {g1, g2} and output connector
O = {h1, h2}. Given subsets {x, y} and {x′, y′} of P (T ), we say that X has a transition

{x, y} → {x′, y′}

or that {x, y} → {x′, y′} is a transition through X, if there exists a T -flow ϕ on X such
that {ϕ(g1), ϕ(g2)} = {x, y} and {ϕ(h1), ϕ(h2)} = {x′, y′}. By the Kirchhoff law, for each
transition {x, y} → {x′, y′} through X we have x+ y = x′ + y′. This common value is called
the trace of the transition; it can be any element of Z4

2.
In order to get better insight into possible transitions through a dipole it is useful to

classify pairs of points of T according to their geometric shape. We say that two sets A
and B of points of a tetrahedron T have the same shape if there exists a collineation (in
other words, an automorphism) of PG(3, 2) that preserves T and takes A to B. A geometric
shape, or simply a shape, is an equivalence class of all point sets having the same shape.
The shape of a set of points of T is a geometric shape it belongs to. It is proved in [5] that
each pair {x, y} of points of T , where possibly x = y, falls into one of the following seven
shapes: line segment ls, half-line hl, angle ang, altitude alt, axis ax, double corner point
dc, and double midpoint dm. Their typical representatives are, respectively, the following
pairs: {p1, p2}, {p1, p1 + p2}, {p1 + p2, p1 + p3}, {p1, p2 + p3}, {p1 + p2, p3 + p4}, {p1, p1},
and {p1 + p2, p1 + p2}. The set

Σ = {ls, hl, ang, alt, ax, dc, dm}

comprises all shapes of point pairs of T .

Figure 7 An angle (left) and a line segment (right).

Each transition {x, y} → {x′, y′} through a dipole X between point pairs induces a
transition between their shapes. To be more precise, for elements s and t of Σ we say that
X has a transition

s → t

STACS 2022
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if X has a transition {x, y} → {x′, y′} such that s is the shape of {x, y} and t is the shape
of {x′, y′}. It can be shown (see [5, Theorem 5.1]) that all transitions through any dipole
have the form s → s except possibly the transitions ls → ang or ang → ls, and the
transitions dc → dm and dm → dc between the degenerate point pairs. The two exceptional
non-degenerate shapes ang and ls are illustrated in Figure 7.

For a detailed account of the theory of tetrahedral flows we refer the reader to [5].

4 The proof

In this section we prove Theorems 1 and 2. As previously mentioned, it suffices to prove the
latter.

Our first step is to stablish several useful properties of the edge gadget, the dipole H68.
Recall that H68 consists of two copies of the dipole D34 whose input connectors have been
identically glued together. The dipole D34 is the smallest example of what in [5] is called an
extended Halin dipole. Every extended Halin dipole arises from a Halin snark (defined in [5])
by severing two edges in a manner similar to the construction of D34 from W34 (the latter
being the smallest Halin snark). The crucial property of an extended Halin dipole, proved in
[5, Theorem 8.8], is that every transition through it has the form

ang → ls.

One such transition through D34 is displayed in Figure 8. The flow is encoded as follows:
the label i stands for the corner point pi of the tetrahedron T (p1, p2, p3, p4) while the label
ij stands for the midpoint pi + pj . We will use this encoding in the rest of this paper.

The fact that ang → ls is the only possible transition of shapes through D34 can be
checked directly, but without deeper involvement of the theory outlined in the previous
section the proof would be quite tedious.

Figure 8 Transition ang → ls through D34; encoding of colours: i 7→ pi, ij 7→ pi + pj .

We need the following lemma.

▶ Lemma 4. Every transition {x, y} → {x′, y′} through the dipole H68 has the form

ls → ls.

Such a transition exists for any line segment {x, y} in T . Moreover, {x, y} = {x′, y′}, and
the two points may occur on the connectors of H68 in any order.



M. Škoviera and P. Varša 56:9

Proof. Recall that H68 is created from two copies of the dipole D34 whose input connectors
are joined identically. Since ang → ls is the only possible transition through D34, it follows
that the only transition through H68 is of the form ls → ls. If {x, y} → {x′, y′} is any such
transition, then x+ y = x′ + y′ by the Kirchhoff law. Each line of a tetrahedron is uniquely
determined by its midpoint, so x+ y and x′ + y′ must be midpoints of the same line, and in
turn the line segments {x, y} and {x′, y′} must be identical.

Now, let ψ+ denote the flow displayed in Figure 8. In terms of ordered pairs of points,
ψ+ induces the transition (p1 + p3, p2 + p3) → (p1, p2), where the input pair stands for
(ψ+(d), ψ+(k)) and the output pair stands for (ψ+(q), ψ+(m)). The dipole D34 has another
tetrahedral flow ψ−, namely one that represents the transition (p1 + p3, p2 + p3) → (p2, p1)
with the output values swapped. This flow can easily be obtained from ψ+ by interchanging
p1 and p2 on the unique path in D34 which starts with the half-edge q of the output connector,
leads through two internal edges, one incident with u′ and the other incident with v′, and
terminates in the output connector with the half-edge m. The flows ψ+ and ψ− can be
combined into four distinct tetrahedral flows on H68 which transform the line segment
{p1, p2} into itself in such a way that both the input pair and the output pair occur in any
preassigned ordering. By symmetry, the same is true for any other line segment of T . The
lemma follows. ◀

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We first prove that G♯ is not 3-edge-colourable irrespectively of the
choice of G. Observe that in the language of tetrahedral flows a cubic graph is 3-edge-
colourable if and only if it admits a tetrahedral flow using a single line of the tetrahedron. As
we already know, every tetrahedral flow on D34 induces a transition of the form ang → ls.
Since the points of an angle do not lie on the same line of T , every tetrahedral flow on D34
must use points of at least two lines of the tetrahedron. Thus D34 is not 3-edge-colourable,
and consequently neither is G♯.

Next we prove that G♯ is a nontrivial snark. Obviously, the girth of G♯ is 5. To see
that G is cyclically 4-edge-connected it is sufficient to realise that the underlying graph G is
2-connected and that each edge gadget arises from a cyclically 4-edge-connected cubic graphs
by severing two independent edges. A straightforward case analysis, which we leave to the
reader, shows that G♯ has no k-edge-cut with k < 4 that separates a subgraph containing a
cycle from the rest of G♯. Summing up, G♯ is a nontrivial snark.

We proceed to proving that π(G♯) = 4 if and only if G is 3-edge-colourable. We do it in
two steps.

▷ Claim. If π(G♯) = 4, then G is 3-edge-colourable.

Proof. Assume that π(G♯) = 4. By Theorem 3, G♯ admits a T -flow ϕ where T = T (p1, p2,

p3, p4). For each edge e of G let ϕ′(e) denote the trace of the transition through the edge
gadget Ye of G♯ induced by ϕ. Since all edge gadgets of G♯ are copies of H68, for each edge e
of G the value ϕ′(e) is a midpoint of T .

Consider an arbitrary vertex v of G, and let e1, e2, and e3 be the edges incident with v.
By Kirchhoff’s law, the outflow from the vertex gadget Xv must be 0, which in turn implies
that ϕ′(e1) + ϕ′(e2) + ϕ′(e3) = 0. The values ϕ′(e1), ϕ′(e2), and ϕ′(e3) are nonzero and
therefore pairwise distinct. It follows that ϕ′ : E(G) → Z4

2 is a nowhere-zero flow and the
same time a proper edge colouring. As a colouring, ϕ uses (at most) six colours, the midpoints
of T .
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Next we prove that ϕ′(e1), ϕ′(e2), and ϕ′(e3) are midpoints of the same triangle of T .
By a triangle we mean a configuration of three lines of T spanned by three distinct corner
points of T . Clearly, three distinct lines of T form a triangle if and only if any two of them
intersect, but the intersection of all three is empty. Set ϕ′(ei) = mi for each i ∈ {1, 2, 3}; as
already mentioned, m1, m2, and m3 are pairwise distinct. Let ℓi denote the unique line of T
containing mi. We first prove that any two of the lines ℓ1, ℓ2, and ℓ3 intersect. Suppose not,
and assume that, say, ℓ1 and ℓ2 are disjoint. The position of any pair of disjoint lines of T
implies that exists a permutation σ of {1, 2, 3, 4} such that ℓ1 is the line through pσ(1) and
pσ(2), and ℓ2 is the line through pσ(3) and pσ(4). Since m1 +m2 +m3 = 0, we conclude that

m3 = pσ(1) + pσ(2) + pσ(3) + pσ(4) = p1 + p2 + p3 + p4,

which is not a midpoint of any line of T . Therefore ℓ1, ℓ2, and ℓ3 are distinct pairwise
intersecting lines. Next we prove that ℓ1 ∩ℓ2 ∩ℓ3 = ∅. Indeed, if there is a point p ∈ ℓ1 ∩ℓ2 ∩ℓ3,
then p is a corner point of T and ℓ1, ℓ2, and ℓ3 are the three lines of T containing p. But then
m1 +m2 +m3 = p1 + p2 + p3 + p4 ̸= 0, which is impossible. The only remaining possibility
is that ℓ1, ℓ2, and ℓ3 form a triangle. The latter means that there exist three distinct corner
points c1, c2, and c3 of T such that m1 = c2 + c3, m2 = c1 + c3, and m3 = c1 + c2.

Now we are ready to produce a proper 3-edge-colouring of G. Let us define the mapping
ψ from the set of all midpoints of T to the set {1, 2, 3} as follows:

p1 + p2, p3 + p4 7→ 1,
p1 + p3, p2 + p4 7→ 2,
p1 + p4, p2 + p3 7→ 3.

Since every triangle is determined by three distinct corner points c1, c2 and c3 of T , its
midpoints c1 + c2, c2 + c3, and c1 + c3 receive from ψ three distinct values. In other words,
ψϕ′ is a proper 3-edge-colouring of G, which establishes the claim. ◁

▷ Claim. If G is 3-edge-colourable, then π(G♯) = 4.

Proof. Assume that G is 3-edge-colourable. By Theorem 3, it is sufficient to find a tetrahedral
flow on G♯. Our aim is to construct a tetrahedral flow γ♯ of G♯ by departing from a 3-edge-
colouring γ : E(G) → {1, 2, 3}.

First of all, we colour the vertex gadgets. With respect to the chosen rotation system R

for G the vertices of G fall into two types depending on whether the cyclic order of colours
around the vertex is (1, 2, 3) (Type 1 ) or (1, 3, 2) (Type 2 ). Consider a vertex v of G, which
is incident with edges f , g, and h, and let Xv be the corresponding vertex gadget. Recall
that the connectors of Xv are {f ′, f ′′}, {g′, g′′}, and {h′, h′′}, and that for each edge x of G
incident with v, the free half-edges x′ and (R(x))′′ constitute one edge of Xv, see Figure 5.
Let a, b, and c be the edges of Xv that have the half-edges f ′, g′, and h′, respectively.

Without loss of generality we may assume that γ(f) = 1. We intend to colour the edges
of Xv with three distinct corner points of the tetrahedron T , say p1, p2, and p3, in such a
way that the connector {f ′, f ′′} receives colours from the line segment {p2, p3}. This choice
implies that under the colouring γ♯ the edge b must receive colour p1. The colours of the
remaining two edges will depend on the type of v. If v is Type 1, then γ(g) = 2, and γ(h) = 3,
and we set γ♯(a) = p3, γ♯(b) = p1, and γ♯(c) = p2, see Figure 9. If v is Type 2, then γ(g) = 3,
and γ(h) = 2, and we set γ♯(a) = p2, γ♯(b) = p1, and γ♯(c) = p3, see Figure 10. We have
thus coloured every vertex gadget of Xv in such a way that the connector {x′, x′′} of Xv

corresponding to the edge x of G incident with v receives colours from the line segment
{p1, p2, p3} − {pi} if and only if γ(x) = i ∈ {1, 2, 3}.
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Figure 9 Colouring a vertex gadget that corresponds to a vertex of Type 1.

Figure 10 Colouring a vertex gadget that corresponds to a vertex of Type 2.

Next we colour the edge gadgets of G♯. Consider an arbitrary edge x = uv of G of
colour, say, γ(x) = 1. We know that the half-edges in the connectors of both Xu and
Xv corresponding to x receive colours from the line segment {p2, p3}. We now choose the
tetrahedral colouring for the edge gadget Yx which transforms the line segment {p2, p3} into
itself in such a way that the ordering of colours in both the input and the output of Yx fits
the ordering in the corresponding connectors of Xu and Xv. As argued in Lemma 4, such a
colouring always exists. For edges of colours 2 and 3 we proceed analogously. In this way we
transform a 3-edge-colouring γ of G into a tetrahedral colouring (that is, a tetrahedral flow)
of G♯. By Theorem 3, π(G♯) = 4. This completes the proof of the claim as well as that of
Theorem 2. ◁

◀

5 Final remark

The statement of Theorem 2 implies that the derived graph G♯ is cyclically 4-edge-connected.
If we relax cyclic 4-connectivity to 2-connectivity or 3-connectivity, the corresponding
statement becomes significantly easier to prove. Indeed, take an arbitrary 2-edge-connected
cubic graph G and substitute each vertex v with a copy Xv of the 3-pole Q obtained from
the Petersen graph by removing a vertex. Identify the dangling edges of Xv with the edges
of G incident with v, thereby producing a 2-connected cubic graph G+; if G is 3-connected,
so is G+. Since Q is uncolourable, G+ is a snark, though a trivial one. By employing our
geometric theory it can be proved that π(G+) = 4 if and only if G is 3-edge-colourable.
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Optimal Oracles for Point-To-Set Principles
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Abstract
The point-to-set principle [14] characterizes the Hausdorff dimension of a subset E ⊆ Rn by the
effective (or algorithmic) dimension of its individual points. This characterization has been used to
prove several results in classical, i.e., without any computability requirements, analysis. Recent work
has shown that algorithmic techniques can be fruitfully applied to Marstrand’s projection theorem,
a fundamental result in fractal geometry.

In this paper, we introduce an extension of point-to-set principle - the notion of optimal oracles
for subsets E ⊆ Rn. One of the primary motivations of this definition is that, if E has optimal
oracles, then the conclusion of Marstrand’s projection theorem holds for E. We show that every
analytic set has optimal oracles. We also prove that if the Hausdorff and packing dimensions of E

agree, then E has optimal oracles. Moreover, we show that the existence of sufficiently nice outer
measures on E implies the existence of optimal Hausdorff oracles. In particular, the existence of
exact gauge functions for a set E is sufficient for the existence of optimal Hausdorff oracles, and
is therefore sufficient for Marstrand’s theorem. Thus, the existence of optimal oracles extends the
currently known sufficient conditions for Marstrand’s theorem to hold.

Under certain assumptions, every set has optimal oracles. However, assuming the axiom of
choice and the continuum hypothesis, we construct sets which do not have optimal oracles. This
construction naturally leads to a generalization of Davies’ theorem on projections.
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1 Introduction

Effective, i.e., algorithmic, dimensions were introduced [12, 1] to study the randomness of
points in Euclidean space. The effective dimension, dim(x) and effective strong dimension,
Dim(x), are real values which measure the asymptotic density of information of an individual
point x. The connection between effective dimensions and the classical Hausdorff and packing
dimension is given by the point-to-set principle of J. Lutz and N. Lutz [14]: For any E ⊆ Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and (1)

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) . (2)

Call an oracle A satisfying (1) a Hausdorff oracle for E. Similarly, we call an oracle
A satisfying (2) a packing oracle for E. Thus, the point-to-set principle shows that the
classical notion of Hausdorff or packing dimension is completely characterized by the effective
dimension of its individual points, relative to a Hausdorff or packing oracle, respectively.

Recent work as shown that algorithmic dimensions are not only useful in effective settings,
but, via the point-to-set principle, can be used to solve problems in geometric measure theory
[15, 17, 18, 19, 30]. It is important to note that the point-to-set principle allows one to use
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algorithmic techniques to prove theorems whose statements have seemingly nothing to do
with computability theory. In this paper, we focus on the connection between algorithmic
dimension and Marstrand’s projection theorem.

Marstrand, in his landmark paper [21], was the first to study how the dimension of a set
is changed when projected onto a line. He showed that, for any analytic set E ∈ R2, for
almost every angle θ ∈ [0, π),

dimH(pθ E) = min{dimH(E), 1}, (3)

where pθ(x, y) = x cos θ + y sin θ1. The study of projections has since become a central theme
in fractal geometry (see [8] or [25] for a more detailed survey of this development).

Marstrand’s theorem begs the question of whether the analytic requirement on E can
be dropped. It is known that, without further conditions, it cannot. Davies [5] showed
that, assuming the axiom of choice and the continuum hypothesis, there are non-analytic
sets for which Marstrands conclusion fails. However, the problem of classifying the sets
for which Marstrands theorem does hold is still open. Recently, Lutz and Stull [20] used
the point-to-set principle to prove that the projection theorem holds for sets for which the
Hausdorff and packing dimensions agree2. This expanded the reach of Marstrand’s theorem,
as this assumption is incomparable with analyticity.

In this paper, we give the broadest known sufficient condition (which makes essential use
of computability theory) for Marstrand’s theorem. In particular, we introduce the notion of
optimal Hausdorff oracles for a set E ⊆ Rn. We prove that Marstrand’s theorem holds for
every set E which has optimal Hausdorff oracles.

An optimal Hausdorff oracle for a set E is a Hausdorff oracle which minimizes the
algorithmic complexity of “most”3 points in E. It is not immediately clear that any set E

has optimal oracles. Nevertheless, we show that two natural classes of sets E ⊆ Rn do have
optimal oracles.

We show that every analytic, and therefore Borel, set has optimal oracles. We also
prove that every set whose Hausdorff and packing dimensions agree has optimal Hausdorff
oracles. Thus, we show that the existence of optimal oracles encapsulates the known
conditions sufficient for Marstrand’s theorem to hold. Moreover, we show that the existence
of sufficiently nice outer measures on E implies the existence of optimal Hausdorff oracles.
In particular, the existence of exact gauge functions (Section 2.1) for a set E is sufficient for
the existence of optimal Hausdorff oracles for E, and is therefore sufficient for Marstrand’s
theorem. Thus, the existence of optimal Hausdorff oracles is weaker than the previously
known conditions for Marstrand’s theorem to hold.

We also show that the notion of optimal oracles gives insight to sets for which Marstrand’s
theorem does not hold. Assuming the axiom of choice and the continuum hypothesis, we
construct sets which do not have optimal oracles. This construction, with minor adjustments,
proves a generalization of Davies’ theorem proving the existence of sets for which (3) does
not hold. In addition, the inherently algorithmic aspect of the construction might be useful
for proving set-theoretic properties of exceptional sets for Marstrand’s theorem.

1 This result was later generalized to Rn, for arbitrary n, as well as extended to hyperspaces of dimension
m, for any 1 ≤ m ≤ n (see e.g. [22, 23, 24]).

2 Orponen [29] has recently given another proof of Lutz and Stull’s result using more classical tools.
3 By most, we mean a subset of E of the same Hausdorff dimension as E
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Finally, we define optimal packing oracles for a set. We show that every analytic set
E has optimal packing oracles. We also show that every E whose Hausdorff and packing
dimensions agree have optimal packing oracles. Assuming the axiom of choice and the
continuum hypothesis, we show that there are sets with optimal packing oracles without
optimal Hausdorff oracles (and vice-versa).

The structure of the paper is as follows. In Section 2.1 we review the concepts of measure
theory needed, and the (classical) definition of Hausdorff dimension. In Section 2.2 we review
algorithmic information theory, including the formal definitions of effective dimensions. We
then introduce and study the notion of optimal oracles in Section 3. In particular, we give a
general condition for the existence of optimal oracles in Section 3.1. We use this condition to
prove that analytic sets have optimal oracles in Section 3.2. We conclude in Section 3.3 with
an example, assuming the axiom of choice and the continuum hypothesis, of a set without
optimal oracles. The connection between Marstrands projection theorem and optimal oracles
is explored in Section 4. In this section, we prove that Marstrands theorem holds for every
set with optimal oracles. In Section 4.1, we use the construction of a set without optimal
oracles to give a new, algorithmic, proof of Davies’ theorem. Finally, in Sectino 5, we define
and investigate the notion of optimal packing oracles.

2 Preliminaries

2.1 Outer Measures and Classical Dimension
A set function µ : P(Rn) → [0, ∞] is called an outer measure on Rn if
1. µ(∅) = 0,
2. if A ⊆ B then µ(A) ≤ µ(B), and
3. for any sequence A1, A2, . . . of subsets,

µ(
⋃

i

Ai) ≤
∑

i

µ(Ai).

If µ is an outer measure, we say that a subset A is µ-measurable if

µ(A ∩ B) + µ(B − A) = µ(B),

for every subset B ⊆ Rn.
An outer measure µ is called a metric outer measure if every Borel subset is µ-measurable

and

µ(A ∪ B) = µ(A) + µ(B),

for every pair of subsets A, B which have positive Hausdorff distance. That is,

inf{∥x − y∥ | x ∈ A, y ∈ B} > 0.

An important example of a metric outer measure is the s-dimensional Hausdorff measure.
For every E ⊆ [0, 1)n, define the s-dimensional Hausdorff content at precision r by

hs
r(E) = inf

{∑
i

d(Qi)s |
⋃

i

Qi covers E and d(Qi) ≤ 2−r

}
,

where d(Q) is the diameter of ball Q. We define the s-dimensional Hausdorff measure of E by

Hs(E) = lim
r→∞

hs
r(E).
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▶ Remark 1. It is well-known that Hs is a metric outer measure for every s.
The Hausdorff dimension of a set E is then defined by

dimH(E) = inf
s

{Hs(E) = ∞} = sup
s

{Hs(E) = 0}.

Another important metric outer measure, which gives rise to the packing dimension of a
set, is the s-dimensional packing measure. For every E ⊆ [0, 1)n, define the s-dimensional
packing pre-measure by

ps(E) = lim sup
δ→0

{∑
i∈N

d(Bi)s | {Bi} is a set of disjoint balls and Bi ∈ C(E, δ)
}

,

where C(E, δ) is the set of all closed balls with diameter at most δ with centers in E. We
define the s-dimensional packing measure of E by

Ps(E) = inf

∑
j

ps(Ej) | E ⊆
⋃

Ej

 ,

where the infimum is taken over all countable covers of E. For every s, the s-dimensional
packing measure is a metric outer measure.

The packing dimension of a set E is then defined by

dimP (E) = inf
s

{Ps(E) = 0} = sup
s

{Ps(E) = ∞}.

In order to prove that every analytic set has optimal oracles, we will make use of the
following facts of geometric measure theory (see, e.g., [7], [2]).

▶ Theorem 1. The following are true.
1. Suppose E ⊆ Rn is compact and satisfies Hs(E) > 0. Then there is a compact subset

F ⊆ E such that 0 < Hs(F ) < ∞.
2. Every analytic set E ⊆ Rn has a Σ0

2 subset F ⊆ E such that dimH(F ) = dimH(E).
3. Suppose E ⊆ Rn is compact and satisfies Ps(E) > 0. Then there is a compact subset

F ⊆ E such that 0 < Ps(F ) < ∞.
4. Every analytic set E ⊆ Rn has a Σ0

2 subset F ⊆ E such that dimP (F ) = dimP (E).

It is possible to generalize the definition of Hausdorff measure using gauge functions. A
function ϕ : [0, ∞) → [0, ∞) is a gauge function if ϕ is monotonically increasing, strictly
increasing for t > 0 and continuous. If ϕ is a gauge, define the ϕ-Hausdorff content at
precision r by

hϕ
r (E) = inf

{∑
i

ϕ(d(Qi)) |
⋃

i

Qi covers E and d(Qi) ≤ 2−r

}
,

where d(Q) is the diameter of ball Q. We define the ϕ-Hausdorff measure of E by

Hϕ(E) = lim
r→∞

hϕ
r (E).

Thus we recover the s-dimensional Hausdorff measure when ϕ(t) = ts.
Gauged Hausdorff measures give fine-grained information about the size of a set. There are

sets E which Hausdorff dimension s, but Hs(E) = 0 or Hs(E) = ∞. However, it is sometimes
possible to find an appropriate gauge so that 0 < Hϕ(E) < ∞. When 0 < Hϕ(E) < ∞, we
say that ϕ is an exact gauge for E.
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▶ Example. For almost every Brownian path X in R2, H2(X) = 0, but 0 < Hϕ(X) < ∞,
where ϕ(t) = t2 log 1

t log log 1
t .

For two outer measures µ and ν, µ is said to be absolutely continuous with respect to ν,
denoted µ ≪ ν, if µ(A) = 0 for every set A for which ν(A) = 0.
▶ Example. For every s, let ϕs(t) = ts log 1

t . Then Hs ≪ Hϕs .
▶ Example. For every s, let ϕs(t) = ts

log 1
t

. Then Hϕs ≪ Hs.

2.2 Algorithmic Information Theory
The conditional Kolmogorov complexity of a binary string σ ∈ {0, 1}∗ given binary string
τ ∈ {0, 1}∗ is

K(σ|τ) = min
π∈{0,1}∗

{ℓ(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and ℓ(π) is the length of π. The
Kolmogorov complexity of σ is K(σ) = K(σ|λ), where λ is the empty string. An important
fact is that the choice of universal machine affects the Kolmogorov complexity by at most an
additive constant (which, especially for our purposes, can be safely ignored). See [11, 28, 6]
for a more comprehensive overview of Kolmogorov complexity.

We can naturally extend these definitions to Euclidean spaces by introducing “precision”
parameters [16, 14]. Let x ∈ Rm, and r, s ∈ N. The Kolmogorov complexity of x at precision
r is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩ Qm} .

The conditional Kolmogorov complexity of x at precision r given q ∈ Qm is

K̂r(x|q) = min {K(p | q) : p ∈ B2−r (x) ∩ Qm} .

The conditional Kolmogorov complexity of x at precision r given y ∈ Rn at precision s is

Kr,s(x|y) = max
{

K̂r(x|q) : q ∈ B2−s(y) ∩ Qn
}

.

We typically abbreviate Kr,r(x|y) by Kr(x|y).
The effective Hausdorff dimension and effective packing dimension4 of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

.

By letting the underlying fixed prefix-free Turing machine U be a universal oracle machine,
we may relativize the definition in this section to an arbitrary oracle set A ⊆ N. The definitions
of KA

r (x), dimA(x), DimA(x), etc. are then all identical to their unrelativized versions, except
that U is given oracle access to A. Note that taking oracles as subsets of the naturals is
quite general. We can, and frequently do, encode a point y into an oracle, and consider the
complexity of a point relative to y. In these cases, we typically forgo explicitly referring
to this encoding, and write e.g. Ky

r (x). We can also join two oracles A, B ⊆ N using any
computable bijection f : N × N → N. We denote the join of A and B by (A, B). We can
generalize this procedure to join any countable sequence of oracles.

4 Although effective Hausdorff was originally defined by J. Lutz [13] using martingales, it was later shown
by Mayordomo [26] that the definition used here is equivalent. For more details on the history of
connections between Hausdorff dimension and Kolmogorov complexity, see [6, 27].
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As mentioned in the introduction, the connection between effective dimensions and the
classical Hausdorff and packing dimensions is given by the point-to-set principle introduced
by J. Lutz and N. Lutz [14].

▶ Theorem 2 (Point-to-set principle). Let n ∈ N and E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

An oracle testifying to the the first equality is called a Hausdorff oracle for E. Similarly, an
oracle testifying to the the second equality is called a packing oracle for E.

3 Optimal Hausdorff Oracles

For any set E, there are infinitely many Hausdorff oracles for E. A natural question is
whether there is a Hausdorff oracle which minimizes the complexity of every point in E.
Unfortunately, it is, in general, not possible for a single oracle to maximally reduce every
point. We introduce the notion of optimal Hausdorff oracles by weakening the condition to a
single point.

▶ Definition 3. Let E ⊆ Rn and A ⊆ N. We say that A is Hausdorff optimal for E if the
following conditions are satisfied.
1. A is a Hausdorff oracle for E.

2. For every B ⊆ N and every ϵ > 0 there is a point x ∈ E such that dimA,B(x) ≥
dimH(E) − ϵ and for almost every r ∈ N

KA,B
r (x) ≥ KA

r (x) − ϵr.

Note that the second condition only guarantees the existence of one point whose complexity
is unaffected by the addtional information in B. However, we can show that this implies the
seemingly stronger condition that “most” points are unaffected. For B ⊆ N, ϵ > 0 define the
set

N(A, B, ϵ) = {x ∈ E | (∀∞r) KA,B
r (x) ≥ KA

r (x) − ϵr}.

▶ Proposition 4. Let E ⊆ Rn be a set such that dimH(E) > 0 and let A be an oracle.
Then A is a Hausdorff optimal oracle for E if and only if A is a Hausdorff oracle and
dimH(N(A, B, ϵ)) = dimH(E) for every B ⊆ N and ϵ > 0.

A simple, but useful, result is if B is an oracle obtained by adding additional information
to an optimal Hausdorff oracle, then B is also optimal.

▶ Lemma 5. Let E ⊆ Rn. If A is an optimal Hausdorff oracle for E, then the join C = (A, B)
is Hausdorff optimal for E for every oracle B.

We now give some basic closure properties of the class of sets with optimal Hausdorff
oracles.

▶ Observation 6. Let F ⊆ E. If dimH(F ) = dimH(E) and F has an optimal Hausdorff
oracle, then E has an optimal Hausdorff oracle.

We can also show that having optimal Hausdorff oracles is closed under countable unions.

▶ Proposition 7. Let E1, E2, . . . be a countable sequence of sets and let E = ∪nEn. If every
set En has an optimal Hausdorff oracle, then E has an optimal Hausdorff oracle.
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3.1 Outer Measures and Optimal Oracles
In this section we give a sufficient condition for a set to have optimal Hausdorff oracles.
Specifically, we prove that if dimH(E) = s, and there is a metric outer measure, absolutely
continuous with respect to Hs, such that 0 < µ(E) < ∞, then E has optimal Hausdorff oracles.
Although stated in this general form, the main application of this result (in Section 3.2) is
for the case µ = Hs.

For every r ∈ N, let Qn
r be the set of all dyadic cubes at precision r, i.e., cubes of the

form

Q = [m12−r, (m1 + 1)2−r) × . . . × [mn2−r, (mn + 1)2−r),

where 0 ≤ m1, . . . , mn ≤ 2r. For each r, we refer to the 2nr cubes in Qr as Qr,1, . . . , Qr,2nr .
We can identify each dyadic cube Qr,i with the unique dyadic rational dr,i at the center of
Qr,i.

We now associate, to each metric outer measure, a discrete semimeasure on the dyadic
rationals D. Recall that discrete semimeasure on Dn is a function p : Dn → [0, 1] which
satisfies Σr,ip(dr,i) < ∞.

Let E ⊆ Rn and µ be a metric outer measure such that 0 < µ(E) < ∞. Define the
function pµ : Dn → [0, 1] by

pµ,E(dr,i) = µ(E ∩ Qr,i)
r2µ(E) .

▶ Observation 8. Let µ be a metric outer measure and E ⊆ Rn such that 0 < µ(E) < ∞.
Then for every r, every dyadic cube Q ∈ Qr, and all r′ > r,

µ(E ∩ Q) =
∑

Q′⊂Q
Q′∈Qr′

µ(E ∩ Q′).

▶ Proposition 9. Let E ⊆ Rn and µ be a metric outer measure such that 0 < µ(E) < ∞.
Relative to some oracle A, the function pµ,E is a lower semi-computable discrete semimeasure.

In order to connect the existence of such an outer measure µ to the existence of optimal
oracles, we need to relate the semimeasure pµ and Kolmogorov complexity. We achieve this
using a fundamental result in algorithmic information theory.

Levin’s optimal lower semicomputable subprobability measure, relative to an oracle A,
on the dyadic rationals D is defined by

mA(d) =
∑

π : UA(π)=d

2−|π|.

▶ Lemma 10. Let E ⊆ Rn and µ be a metric outer measure such that 0 < µ(E) < ∞. Let
A be an oracle relative to which pµ,E is lower semi-computable. Then is a constant α > 0
such that mA(d) ≥ αpµ,E(d), for every d ∈ Dn.

Proof. Case and Lutz [3], generalizing Levin’s coding theorem [9, 10], showed that there is a
constant c such that

mA(dr,i) ≤ 2−KA(dr,i)+KA(r)+c,

for every r ∈ N and dr,i ∈ Dn. The optimality of mA ensures that, for every lower
semicomputable (relative to A) discrete semimeasure ν on Dn,

mA(dr,i) ≥ αν(dr,i). ◀
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The results of this section have dealt with the dyadic rationals. However, we ultimately
deal with the Kolmogorov complexity of Euclidean points. A result of Case and Lutz [3]
relates the Kolmogorov complexity of Euclidean points with the complexity of dyadic rationals.

▶ Lemma 11 ([3]). Let x ∈ [0, 1)n, A ⊆ N, and r ∈ N. Let Qr,i be the (unique) dyadic cube
at precision r containing x. Then

KA
r (x) = KA(dr,i) − O(log r).

▶ Lemma 12. Let E ⊆ Rn and µ be a metric outer measure such that 0 < µ(E) < ∞. Let A

be an oracle relative to which pµ,E is lower semi-computable. Then, for every oracle B ⊆ N
and every ϵ > 0, the set

N = {x ∈ E | (∃∞) KA,B
r (x) < KA

r (x) − ϵr}

has µ-measure zero.

We now have the machinery in place to prove the main theorem of this section.

▶ Theorem 13. Let E ⊆ Rn with dimH(E) = s. Suppose there is a metric outer measure µ

such that

0 < µ(E) < ∞,

and either
1. µ ≪ Hs−δ, for every δ > 0, or
2. Hs ≪ µ and Hs(E) > 0.

Then E has an optimal Hausdorff oracle A.

Proof. Let A ⊆ N be a Hausdorff oracle for E such that pµ,E is computable relative to A.
Note that such an oracle exists by the point-to-set principle and routine encoding. We will
show that A is optimal for E.

For the sake of contradiction, suppose that there is an oracle B and ϵ > 0 such that, for
every x ∈ E either
1. dimA,B(x) < s − ϵ, or
2. there are infinitely many r such that KA,B

r (x) < KA
r (x) − ϵr.

Let N be the set of all x for which the second item holds. By Lemma 12, µ(N) = 0. We
also note that, by the point-to-set principle,

dimH(E − N) ≤ s − ϵ,

and so Hs(E − N) = 0.
To achieve the desired contradiction, we first assume that µ ≪ Hs−δ, for every δ > 0.

Since µ ≪ Hs−δ, and dimH(E − N) < s − ϵ,

µ(E − N) = 0.

Since µ is a metric outer measure,

0 < µ(E)
≤ µ(N) + µ(E − N)
= 0,

a contradiction.
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Now suppose that Hs ≪ µ and Hs(E) > 0. Then, since Hs is an outer measure,
Hs(E) > 0 and Hs(E − N) = 0 we must have Hs(N) > 0. However this implies that
µ(N) > 0, and we again have the desired contradiction. Thus A is an optimal Hausdorff
oracle for E and the proof is complete. ◀

Recall that E ⊆ [0, 1)n is called an s-set if

0 < Hs(E) < ∞.

Since Hs is a metric outer measure, and trivially absolutely continuous with respect to itself,
we have the following corollary.

▶ Corollary 14. Let E ⊆ [0, 1)n be an s-set. Then there is an optimal Hausdorff oracle
for E.

3.2 Sets with optimal Hausdorff oracles
We now show that every analytic set has optimal Hausdorff oracles.

▶ Lemma 15. Every analytic set E has optimal Hausdorff oracles.

Proof. We begin by assuming that E is compact, and let s = dimH(E). Then for every
t < s, Ht(E) > 0. Thus, by Theorem 1(1), there is a sequence of compact subsets F1, F2, . . .

of E such that

dimH(
⋃
n

Fn) = dimH(E),

and, for each n,

0 < Hsn(Fn) < ∞,

where sn = s − 1/n. Therefore, by Theorem 13, each set Fn has optimal Hausdorff oracles.
Hence, by Proposition 7, E has optimal Hausdorff oracles and the conclusion follows.

We now show that every Σ0
2 set has optimal Hausdorff oracles. Suppose E = ∪nFn is

Σ0
1, where each Fn is compact. As we have just seen, each Fn has optimal Hausdorff oracles.

Therefore, by Proposition 7, E has optimal Hausdorff oracles and the conclusion follows.
Finally, let E be analytic. By Theorem 1(2), there is a Σ0

2 subset F of the same Hausdorff
dimension as E. We have just seen that F must have an optimal Hausdorff oracle. Since
dimH(F ) = dimH(E), by Observation 6 E has optimal Hausdorff oracles, and the proof is
complete. ◀

Crone, Fishman and Jackson [4] have recently shown that, assuming the Axiom of
Determinacy (AD)5, every subset E has a Borel subset F such that dimH(F ) = dimH(E).
This, combined with Lemma 15, yields the following corollary.

▶ Corollary 16. Assuming AD, every set E ⊆ Rn has optimal Hausdorff oracles.

▶ Lemma 17. Suppose that E ⊆ Rn satisfies dimH(E) = dimP (E). Then E has an optimal
Hausdorff oracle. Moreover, the join (A, B) is an optimal Hausdorff oracle, where A and B

are Hausdorff and packing oracles, respectively, of E.

5 Note that AD is inconsistent with the axiom of choice.
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Proof. Let A be a Hausdorff oracle for E and let B be a packing oracle for E. We claim
that that the join (A, B) is an optimal Hausdorff oracle for E. By the point-to-set principle,
and the fact that extra information cannot increase effective dimension,

dimH(E) = sup
x∈E

dimA(x)

≥ sup
x∈E

dimA,B(x)

≥ dimH(E).

Therefore

dimH(E) = sup
x∈E

dimA,B(x),

and the first condition of optimal Hausdorff oracles is satisfied.
Let C ⊆ N be an oracle and ϵ > 0. By the point-to-set principle,

dimH(E) ≤ sup
x∈E

dimA,B,C(x),

so there is an x ∈ E such that

dimH(E) − ϵ/4 < dimA,B,C(x).

Let r be sufficiently large. Then, by our choice of B and the fact that additional
information cannot increase the complexity of a point,

KA,B
r (x) ≤ KB

r (x)
≤ dimP (E)r + ϵr/4
= dimH(E)r + ϵr/4
< dimA,B,C(x)r + ϵr/2
≤ KA,B,C

r (x) + ϵr.

Since the oracle C and ϵ were arbitrarily, the proof is complete. ◀

3.3 Sets without optimal Hausdorff oracles
In the previous section, we gave general conditions for a set E to have optimal Hausdorff
oracles. Indeed, we saw that under the axiom of determinacy, every set has optimal Hausdorff
oracles.

However, assuming the axiom of choice (AC) and the continuum hypothesis (CH), we are
able to construct sets without optimal Hausdorff oracles.

▶ Lemma 18. Assume AC and CH. Then, for every s ∈ (0, 1), there is a subset E ⊆ R with
dimH(E) = s such that E does not have optimal Hausdorff oracles.

Let s ∈ (0, 1). We begin by defining two sequences of natural numbers, {an} and {bn}.
Let a1 = 2, and b1 = ⌊2/s⌋. Inductively define an+1 = b2

n and bn+1 = ⌊an+1/s⌋. Note that

lim
n

an/bn = s.

Using AC and CH, we order the subsets of the natural numbers such that every subset
has countably many predecessors. For every countable ordinal α, let fα : N → {β | β < α}
be a function such that each ordinal β strictly less than α is mapped to by infinitely many n.
Note that such a function exists, since the range is countable assuming CH.
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We will define real numbers xα, yα via transfinite induction. Let x1 be a real which is
random relative to A1. Let y1 be the real whose binary expansion is given by

y1[r] =
{

0 if an < r ≤ bn for some n ∈ N
x1[r] otherwise

For the induction step, suppose we have defined our points up to α. Let xα be a real
number which is random relative to the join of

⋃
β<α(Aβ , xβ) and Aα. This is possible, as

we are assuming that this union is countable. Let yα be the point whose binary expansion is
given by

yα[r] =
{

xβ [r] if an < r ≤ bn, where fα(n) = β

xα[r] otherwise

Finally, we define our set E = {yα}. This set E satisfies dimH(E) = s, however E does
not have an optimal Hausdorff oracle.

3.3.1 Generalization to higher dimension
In this section, we use Lemma 18 to show that there are sets without optimal Hausdorff
oracles in Rn of every possible dimension. We will need the following lemma on giving
sufficient conditions for a product set to have optimal Hausdorff oracles. Interestingly, we
need the product formula to hold for arbitrary sets, first proven by Lutz [17]. Under the
assumption that F is regular, the product formula gives

dimH(F × G) = dimH(F ) + dimH(G) = dimP (F ) + dimH(G),

for every set G.

▶ Lemma 19. Let F ⊆ Rn be a set such that dimH(F ) = dimP (F ), let G ⊆ Rm and let
E = F × G. Then E has optimal Hausdorff oracles if and only if G has optimal Hausdorff
oracles.

▶ Theorem 20. Assume AC and CH. Then for every n ∈ N and s ∈ (0, n), there is a subset
E ⊆ Rn with dimH(E) = s such that E does not have optimal Hausdorff oracles.

4 Marstrand’s Projection Theorem

The following theorem, due to Lutz and Stull [20], gives sufficient conditions for strong lower
bounds on the complexity of projected points.

▶ Theorem 21. Let z ∈ R2, θ ∈ [0, π], C ⊆ N, η ∈ Q∩ (0, 1) ∩ (0, dim(z)), ε > 0, and r ∈ N.
Assume the following are satisfied.
1. For every s ≤ r, Ks(θ) ≥ s − log(s).
2. KC,θ

r (z) ≥ Kr(z) − εr.
Then,

KC,θ
r (pθz) ≥ ηr − εr − 4ε

1 − η
r − O(log r) .

The second condition of this theorem requires the oracle (C, θ) to give essentially no
information about z. The existence of optimal Hausdorff oracles gives a sufficient condition
for this to be true, for all sufficiently large precisions. Thus we are able to show that
Marstrands projection theorem holds for any set with optimal Hausdorff oracles.
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▶ Theorem 22. Suppose E ⊆ R2 has an optimal Hausdorff oracle. Then for almost every
θ ∈ [0, π],

dimH(pθE) = min{dimH(E), 1}.

This shows that Marstrand’s theorem holds for every set E with dimH(E) = s satisfying
any of the following:
1. E is analytic.
2. dimH(E) = dimP (E).
3. µ ≪ Hs−δ, for every δ > 0 for some metric outer measure µ such that 0 < µ(E) < ∞.
4. Hs ≪ µ and Hs(E) > 0, for some metric outer measure µ such that 0 < µ(E) < ∞.
For example, the existence of exact gauged Hausdorff measures on E guarantees the existence
of optimal Hausdorff oracles.
▶ Example. Let E be a set with dimH(E) = s and Hs(E) = 0. Suppose that 0 < Hϕ(E) < ∞,
where ϕ(t) = ts

log 1
t

. Since Hϕ ≪ Hs−δ for every δ > 0, Theorem 13 implies that E has
optimal Hausdorff oracles, and thus Marstrand’s theorem holds for E.
▶ Example. Let E be a set with dimH(E) = s and Hs(E) = ∞. Suppose that 0 < Hϕ(E) <

∞, where ϕ(t) = ts log 1
t . Since Hs ≪ Hϕ, Theorem 13 implies that E has optimal Hausdorff

oracles, and thus Marstrand’s theorem holds for E.

4.1 Counterexample to Marstrand’s theorem
In this section we show that there are sets for which Marstrand’s theorem does not hold.
While not explicitly mentioning optimal Hausdorff oracles, the construction is very similar
to the construction in Section 3.3.

▶ Theorem 23. Assuming AC and CH, for every s ∈ (0, 1) there is a set E such that
dimH(E) = 1 + s but

dimH(pθE) = s

for every θ ∈ (π/4, 3π/4).

This is a modest generalization of Davies’ theorem to sets with Hausdorff dimension strictly
greater than one. In the next section we give a new proof of Davies’ theorem by generalizing
this construction to the endpoint s = 0.

We will need the following simple observation.

▶ Observation 24. Let r ∈ N, s ∈ (0, 1), and θ ∈ (π/8, 3π/8). Then for every dyadic
rectangle

R = [dx − 2−r, dx + 2−r] × [dy − 2−sr, dy + 2−sr],

there is a point z ∈ R such that Kθ
r (pθz) ≤ sr + o(r).

For every r ∈ N, θ ∈ (π/4, 3π/4), binary string x of length r and string y of length sr, let
gθ(x, y) 7→ z be a function such that

Kθ
r (pθ (x, z)) ≤ sr + o(r).

That is, gθ, given a rectangle

R = [dx − 2−r, dx + 2−r] × [dy − 2−sr, dy + 2−sr],

outputs a value z such that Kr(pθ(x, z)) is small.
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Let s ∈ (0, 1). We begin by defining two sequences of natural numbers, {an} and {bn}.
Let a1 = 2, and b1 = ⌊2/s⌋. Inductively define an+1 = b2

n and bn+1 = ⌊an+1/s⌋. We will
also need, for every ordinal α, a function fα : N → {β | β < α} such that each ordinal β < α

is mapped to by infinitely many n. Note that such a function exists, since the range is
countable assuming CH.

Using AC and CH, we first order the subsets of the natural numbers and we order the
angles θ ∈ (π/4, 3π/4) so that each has at most countably many predecessors.

We will define real numbers xα, yα and zα inductively. Let x1 be a real which is random
relative to A1. Let y1 be a real which is random relative to (A1, x1). Define z1 to be the real
whose binary expansion is given by

z1[r] =
{

gθ1(x1, y1)[r] if an < r ≤ bn for some n ∈ N
y1[r] otherwise

For the induction step, suppose we have defined our points up to ordinal α. Let xα be a
real number which is random relative to the join of

⋃
β<α(Aβ , xβ) and Aα. Let yα be random

relative to the join of
⋃

β<α(Aβ , xβ), Aα and xα. This is possible, as we are assuming CH,
and so this union is countable. Let zα be the point whose binary expansion is given by

zα[r] =
{

gθβ
(xα, yα)[r] if an < r ≤ bn, for fα(n) = β

yα[r] otherwise

Finally, we define our set E = {(xα, zα)}.

4.2 Generalization to the endpoint
▶ Theorem 25. Assuming AC and CH, there is a set E such that dimH(E) = 1 but

dimH(pθE) = 0

for every θ ∈ (π/4, 3π/4).

For every r ∈ N, θ ∈ (π/4, 3π/4), binary string x of length r and string y of length sr, let
gs

θ(x, y) 7→ z be a function such that

Kθ
r (pθ (x, z)) ≤ sr + o(r).

That is, gs
θ, given a rectangle

R = [dx − 2−r, dx + 2−r] × [dy − 2−sr, dy + 2−sr],

outputs a value z such that Kr(pθ(x, z)) is small.
We begin by defining two sequences of natural numbers, {an} and {bn}. Let a1 = 2, and

b1 = 4. Inductively define an+1 = b2
n and bn+1 = (n + 1)⌊an+1⌋. We will also need, for every

ordinal α, a function fα : N → {β | β < α} such that each ordinal β < α is mapped to by
infinitely many n. Note that such a function exists, since the range is countable assuming
CH.

Using AC and CH, we first order the subsets of the natural numbers and we order the
angles θ ∈ (π/4, 3π/4) so that each has at most countably many predecessors.
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We will define real numbers xα, yα and zα inductively. Let x1 be a real which is random
relative to A1. Let y1 be a real which is random relative to (A1, x1). Define z1 to be the real
whose binary expansion is given by

z1[r] =
{

g1
θ1

(x1, y1)[r] if an < r ≤ bn for some n ∈ N
y1[r] otherwise

For the induction step, suppose we have defined our points up to ordinal α. Let xα be a
real number which is random relative to the join of

⋃
β<α(Aβ , xβ) and Aα. Let yα be random

relative to the join of
⋃

β<α(Aβ , xβ), Aα and xα. This is possible, as we are assuming CH,
and so this union is countable. Let zα be the point whose binary expansion is given by

zα[r] =
{

g
1/n
θβ

(xα, yα)[r] if an < r ≤ bn, for fα(n) = β

yα[r] otherwise

Finally, we define our set E = {(xα, zα)}.

5 Optimal Packing Oracles

Similarly, we can define optimal packing oracles for a set.

▶ Definition 26. Let E ⊆ Rn and A ⊆ N. We say that A is an optimal packing oracle (or
packing optimal) for E if the following conditions are satisfied.
1. A is a packing oracle for E.

2. For every B ⊆ N and every ϵ > 0 there is a point x ∈ E such that DimA,B(x) ≥
dimP (E) − ϵ and for almost every r ∈ N

KA,B
r (x) ≥ KA

r (x) − ϵr.

Let E ⊆ Rn and A ⊆ N. For B ⊆ N, ϵ > 0 define the set

N(A, B, ϵ) = {x ∈ E | (∀∞r) KA,B
r (x) ≥ KA

r (x) − ϵr}.

▶ Proposition 27. Let E ⊆ Rn be a set such that dimP (E) > 0 and let A be an oracle. Then
A is packing optimal for E if and only if A is a packing oracle and for every B ⊆ N and
ϵ > 0, dimP (N(A, B, ϵ)) = dimP (E).

▶ Lemma 28. Let E ⊆ Rn. If A is packing optimal for E, then the join C = (A, B) is
packing optimal for E for every oracle B.

We now give some basic closure properties of the class of sets with optimal packing oracles.

▶ Observation 29. Let F ⊆ E. If dimP (F ) = dimP (E) and F has an optimal packing
oracle, then E has an optimal packing oracle.

We can also show that having optimal packing oracles is closed under countable unions.

▶ Lemma 30. Let E1, E2, . . . be a countable sequence of sets and let E = ∪nEn. If every set
En has an optimal packing oracle, then E has an optimal packing oracle.

We will need a specific set which has optimal Hausdorff and optimal packing oracles. For
every 0 ≤ α < β ≤ 1 define the set

Dα,β = {x ∈ (0, 1) | dim(x) = α and Dim(x) = β}.
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▶ Lemma 31. For every 0 ≤ α < β ≤ 1, Dα,β has optimal Hausdorff and optimal packing
oracles and

dimH(Dα,β) = α

dimP (Dα,β) = β.

5.1 Sufficient conditions for optimal packing oracles
▶ Lemma 32. Let E ⊆ Rn be a set such that dimH(E) = dimP (E) = s. Then E has optimal
Hausdorff and optimal packing oracles.

▶ Theorem 33. Let E ⊆ Rn with dimP (E) = s. Suppose there is a metric outer measure µ

such that

0 < µ(E) < ∞,

and either
1. µ ≪ Ps, or
2. Ps ≪ µ and Ps(E) > 0.

Then E has an optimal packing oracle A.

We now show that every analytic set has optimal packing oracles.

▶ Lemma 34. Every analytic set E has optimal packing oracles.

5.2 Sets without optimal oracles
In this section, we state results which show that, assuming CH and AC, there are sets without
Hausdorff optimal and without packing optimal oracles of arbitrary dimension.

▶ Theorem 35. Assuming CH and AC, for every 0 < s1 < s2 ≤ 1 there is a set E ⊆ R
which does not have Hausdorff optimal nor packing optimal oracles such that

dimH(E) = s1 and dimP (E) = s2.

▶ Corollary 36. Assuming CH and AC, for every 0 < s1 < s2 ≤ 1 there is a set E ⊆ R
which has optimal Hausdorff oracles but does not have optimal packing oracles such that

dimH(E) = s1 and dimP (E) = s2.

▶ Theorem 37. Assuming CH and AC, for every 0 < s1 < s2 ≤ 1 there is a set E ⊆ R
which has optimal packing oracles but does not have optimal Hausdorff oracles such that

dimH(E) = s1 and dimP (E) = s2.
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Abstract
We consider the consistent digital rays (CDR) of curved rays, which approximates a set of curved
rays emanating from the origin by the set of rooted paths (called digital rays) of a spanning tree
of a grid graph. Previously, a construction algorithm of CDR for diffused families of curved rays
to attain an O(

√
n log n) bound for the distance between digital ray and the corresponding ray is

known [11]. In this paper, we give a description of the problem as a rounding problem of the vector
field generated from the ray family, and investigate the relation of the quality of CDR and the
discrepancy of the range space generated from gradient curves of rays. Consequently, we show the
existence of a CDR with an O(log1.5 n) distance bound for any diffused family of curved rays.
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1 Introduction

Digital pictures and graphic displays are modeled by using a digital plane consisting of pixels
in the square region [0, n] × [0, n]. A pixel often means the unit square that is a cell of the
integer grid, but it is represented by the grid point at its lower-left corner, and the unit
square is called pixel square if necessary in this paper. In the digital plane, geometric objects
are represented by sets of pixels. In such a pixel-based representation, geometric computation
(e.g. the intersection computation) can be done pixel-wise using the pixel buffers equipped
in GPU. Thus, the pixel-based representation of digital objects would lead to an additional
methodology for geometric computation.

However, conversion of geometric objects into digital objects is a nontrivial problem [14],
and it may cause several inconsistencies of computation. In particular, the digital objects
representing basic objects in Euclidean geometry do not always satisfy Euclidean axioms.
The first two Euclidean axioms are the properties on line segments: (1) we can draw a line
segment between any given two points, and (2) we can extend a line segment straightly
and continuously to a line. Also, it is implied that the line segment between two points is
unique, and it is a subset of any longer line segment going through them. As a consequence,
a nonempty intersection of two line segments must be either a point or a line segment (the
second case happens if the line segments are on the same line). These axioms are also
considered in non-Euclidean geometries, where line segments are replaced by geodesic curves.

A naive digital line segment representing the line segment pq between two pixels p and
q is the set of pixels corresponding to pixel squares intersecting the real line segment pq.
However, the axioms do not hold for this definition of digital line segments. As a consequence,
as shown in Figure 1, the intersection of a pair of such digital line segments may have more
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than one connected components in the 4-neighbor topology of the digital plane, which may
cause inconsistency in computation. It is a curious and important issue in mathematics and
computer science to investigate a digital representation of a family of geometric objects such
that they satisfy discrete counterparts of the Euclidean axioms.

Figure 1 The intersection (purple pixel squares) of naive digital line segments may be disconnected.

The concept of consistent digital rays gives a model of digitization of a family of rays in
the first quadrant[11, 12], which enables us to investigate the theoretical limit of digitization
quantitatively by using the discrepancy theory [5, 16]. Here, a ray is a nondecreasing curve
in the first quadrant emanating from the origin, and a pair of rays in the family do not
intersect each other except at the origin (a concrete definition is given in Section 3).

Consider the triangular region ∆ defined by {(x, y) | x ≥ 0, y ≥ 0, x + y ≤ n} in the plane,
and the integer grid G = {(i, j) | i, j ∈ {0, 1, . . . , n}, i + j ≤ n} in the region.

Each element of G is called a pixel (corresponding to the pixel in a digital picture). A
pixel is called a boundary pixel if it lies on the off-diagonal boundary x + y = n of ∆. The
directed grid graph structure G = (G, E(G)) corresponding to the four-neighbor topology is
given such that we have directed edges from (i, j) ∈ G to (i+1, j) and (i, j +1) if i+j ≤ n−1.

A digital ray is a directed path in G from the origin o to a pixel p. A digital ray is
identified with the set of pixels on it, and regarded as a subset of G. Let us consider a family
Π = {Π (p) | p ∈ G} of digital rays. The family is called consistent if the following three
properties hold:
1. Uniqueness property: For each p ∈ G, there exists a unique digital ray Π (p) from the

origin o to p in the family. We define Π (o) = {o}.
2. Subsegment property: If q ∈ Π (p), then Π (q) ⊆ Π (p).
3. Prolongation property: For each Π (p), there is a (not necessarily unique) boundary pixel

r such that Π (p) ⊆ Π (r).

These properties are considered as the digital counterparts of the Euclidean axioms
modified for the family of all halflines (called linear rays) emanating from the origin in the
first quadrant.1

It is observed that the union of edge sets of paths in a consistent family of digital rays
forms a (directed) spanning tree T of G rooted at o such that all leaves are boundary pixels
(this condition corresponds to the prolongation property). The tree T is identified with the
family Π of digital rays, and both of them are called CDR (Consistent Digital Rays). See
the pictures (a) and (b) of Figure 2 for examples of CDR.

1 The shortest-path property given in [12, 11, 7] is omitted by defining G as a directed graph in this paper.



T. Tokuyama and R. Yoshimura 58:3

(a) (b) (c) (d)

Figure 2 CDR for linear rays and parabolic rays in the triangular region of a 20 × 20 grid, and
sampled linear and parabola digital rays in a 400 × 400 square grid.

Given a family of rays, it is desired to find a CDR approximating rays simultaneously.
The quality of the approximation is measured by the largest distance between the digital ray
Π (p) and the corresponding ray C(p) going through p over all p ∈ G. The Hausdorff distance
is a popular distance between geometric objects, and considered in the previous works.

Historically, the theory started with how to realize digital straightness[14] to find a
digitization of lines and line segments. Luby [15] first gave a construction of a CDR, where
each Π (p) simulates a linear ray within Hausdorff distance O(log n), and showed that the
bound is asymptotically tight using geometric discrepancy. The construction was re-discovered
by Chun et al. [12] in the formulation shown above. Christ et al. [10] gave a construction of
consistent digital line segments where the lines need not go through the origin. There are
works on variations and the high-dimensional generalizations [7, 8, 9].

The theory is extended by Chun et al. to families of curved rays [11]. A typical example is
the family of parabolas y = ax2 for a ≥ 0. In Figure 2, the combinatorial difference between
two CDRs (a) and (b) can be observed. The difference leads to the visual difference of digital
rays illustrated in Figure 2, where it can be seen that the digital rays in (b) approximate
parabolas as shown in (d) extended to a sufficiently large grid, while (a) approximates linear
rays as shown in (c). A construction method of CDR for a wide class of families of curved
rays called diffused ray families (its definition is given in Section 3.3) is given in [11]. However,
the usage of discrepancy theory is limited because of difficulty to handle curved rays, and
the attained distance bound is O(

√
n log n).

In this paper, we give a novel description of the problem as a rounding problem of a vector
field, and regard the problem as a variant of the linear discrepancy problem. Intuitively, the
rays are considered as geodesic curves for the vector field, and the rounding of the vector field
naturally leads to a CDR. Then, in order to solve this variant of discrepancy problem, we apply
the transference theory from the combinatorial discrepancy to the geometric discrepancy,
and generate a tailor-made low-discrepancy pseudo-random sequence for the given family F .

This enables us to prove the existence of a CDR with an O(log1.5 n) upper bound for
the distance between rays and their corresponding digital rays for any diffused ray family.
Although the above proof uses a non-constructive method in discrepancy theory, a CDR
with a slightly weaker O(log2 n) distance bound is computed in polynomial time.
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2 Preliminaries on discrepancy theory

We introduce the definitions of three kinds of discrepancies used in this paper.

2.1 Range space and geometric Discrepancy
Consider a family A of subregions of R = [0, n] × [0, 1] and a set P of n points in R. The
pair (P, A) forms a range space. Let vol(A) be the area of A ∈ A. We define

D(P, A) = |vol(A) − |P ∩ A|| for A ∈ A,

D(P, A) = sup
A∈A

D(P, A), and

D(n, A) = inf
|P |=n

D(P, A).

D(P, A) and D(n, A) are called the geometric discrepancies of the range space (P, A)
and the region family A, respectively. See [16] for the geometric discrepancy theory. 2

2.2 Combinatorial Discrepancy
For a finite set X, a family S ⊆ 2X is called a set system on X. It generates a hypergraph
H = (X, S). A hypergraph coloring (bi-coloring) of H is a mapping χ : X → {−1, +1}, and
we define χ(S) =

∑
x∈S χ(x) for S ∈ S. The combinatorial discrepancy is a measure of the

balance of the coloring defined as follows:

disc(χ, S) = max
S∈S

|χ(S)|,

disc(S) = min
χ

disc(χ, S).

Given a range space (P, A), A|P = {P ∩ A | A ∈ A} is a set system on P , and we can
consider its combinatorial discrepancy disc(A|P ). We define the combinatorial discrepancy
of the region family A by disc(n, A) = max|P |=n disc(A|P ).

The combinatorial discrepancy of a range space and the geometric discrepancy are strongly
related via transference principle (Theorem 14).

2.3 Linear discrepancy
Given a hypergraph H = (X, S) and a real valued function w : X → [−1, 1] called weight
function, we consider a function χ : X → {−1, 1} called a rounding of w. For each S ∈ S,
w(S) and χ(S) are the summations of the values of w and χ over S, respectively. The linear
discrepancy of the rounding χ is

lindisc(w, χ) = max
S∈S

|χ(S) − w(S)|.

minχ lindisc(w, χ) and maxw minχ lindisc(w, χ) are called the linear discrepancy of w and H ,
respectively. The combinatorial discrepancy disc(S) is equivalent to the linear discrepancy of
the weight function w ≡ 0.

2 The geometric discrepancy is defined more generally in [16] for range spaces in [0, 1]d instead of
[0, n] × [0, 1].



T. Tokuyama and R. Yoshimura 58:5

3 Consistent Digital Rays

3.1 The structure of consistent digital rays
As mentioned in the introduction, a CDR is regarded as a rooted directed spanning tree T of
the grid graph G on the triangular grid G, such that T has no leaf in the interior of ∆. Let
ℓ(z) be the off-diagonal line defined by x + y = z. L(k) = {(x, y) ∈ G | x + y = k} = ℓ(k) ∩ G

is a level set of G for a natural number k ≤ n. By definition, all leaves of T are in L(n).
Each non-root pixel has exactly one incoming edge of T . Also, as illustrated in Figure 3,

there is a unique pixel (named branching pixel) in L(k) with two outgoing edges for k ≠ n,
since |L(k + 1)| = |L(k)| + 1 and there is no leaf vertex in L(k). Accordingly, there exists
a point (not necessarily a pixel) p ∈ ℓ(k + 1) such that all incoming edges to the pixels on
the left (resp. right) of p are vertical (resp. horizontal). Such a point is called a split point,
which partitions the incoming edges to each level into vertical and horizontal ones.

Figure 3 The branching pixels (colored yellow) and a split point are illustrated in the left picture,
which shows the first five levels of the CDR in the right picture.

3.2 Off-diagonal distance between rays
A non-decreasing curve segment in ∆ emanating from the origin is called a partial ray. We
slightly abuse the notation so that a rooted path in G is also a partial ray, which consists
of horizontal and vertical segments corresponding to its edges. We say that a partial ray
terminates on ℓ(t) if it ends at a point on ℓ(t). A partial ray is called a ray if it terminates
on the off-diagonal boundary ℓ(n) of ∆.

Given a partial ray C crossing ℓ(z), let qC(z) = (xC(z), yC(z)) be the unique intersection
point of C and ℓ(z). We define the discrete off-diagonal-wise L∞ distance (off-diagonal
distance in short) using xC(z) as follows:

Given partial rays C and C ′ both terminating on ℓ(m) for a natural number m ≤ n, their
off-diagonal distance is defined by

do(C, C ′) = max
k=1,2,...,m

|xC(k) − xC′(k)|.

In other words, we measure the distance between two partial rays by the maximum horizontal
distance (the vertical distance is the same) between their intersection points with ℓ(k) over
natural numbers k ≤ m. In particular, we can consider the off-diagonal distance do(Γ , C)
between a rooted path Γ in G and a partial ray C terminating at the same pixel.

STACS 2022
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Figure 4 The vector field of the gradient vectors (left), a CDR approximating it (center), and its
corresponding rounding χ (right, shown up to L(8).)

The off-diagonal distance is a discrete variant of the L∞-Hausdorff distance (i.e., the
Hausdorff distance based on the L∞ distance), which equals sup0<z≤m |xC(z) − xC′(z)| for
partial rays. It is observed that the Hausdorff distance (i.e., the Hausdorff distance based
on the Euclidean distance) between C and C ′ is at most

√
2(do(C, C ′) + 1), and at least

do(C, C ′) (see textbooks or [12] for the definition of the Hausdorff distance). Thus, we use the
off-diagonal distance in our analysis, since its asymptotic bound gives that of the Hausdorff
distance.

3.3 CDR as rounding of a vector field

A family F of rays is called a ray family if for each point p = (x, y) ∈ ∆ \ {o} there exists a
unique ray C(p) of F going through it. We denote the partial ray that is the part of C(p)
terminating at p by C̃(p).

A ray family F is called smooth if each ray in F is differentiable.
Let us focus on a smooth ray family F . We give a description of CDR as a rounding

problem of a vector field induced from F to a discrete vector field on pixels (see Figure 4).
For p = (xp, yp) for xp > 0, suppose that the ray C(p) is given by a function y = fp(x) in

a neighbourhood of p. The slope of C(p) at p is given by f ′
p(xp) using the derivative of f .

Since the slope is nonnegative, we can write f ′
p(xp) = 1−αp

αp
uniquely by using a real number

0 < αp ≤ 1. It defines the gradient vector Vp = (αp, 1 − αp) to give the direction of the curve
C(p) at p normalized with respect to the L1 norm. We set Vp = (0, 1) if xp = 0 and yp > 0.
We do not define a gradient vector at o = (0, 0). This defines a vector field V : ∆ \ {o} → R2

on the triangular region.3

As illustrated in the center picture of Figure 4, the CDR problem can be regarded as the
problem to find an assignment of either (1, 0) or (0, 1) to each pixel of G \ {o} such that the
unit vector indicates the kind (horizontal or vertical) of the incoming edge of T to the pixel.
If the CDR approximates the ray family F , the assignment should approximate the vector
field V.

3 If a potential function Φ to present gradient vectors as ( ∂Φ
∂x , ∂Φ

∂y ) is given, the rays are considered as
geodesic paths in the potential field.



T. Tokuyama and R. Yoshimura 58:7

Each vector Vp is uniquely determined by αp ∈ [0, 1], and the vector field is converted
to a [0, 1]-valued function w defined by w(p) = αp. We call w the gradient weight of the
vector field V in this paper. The vectors (1, 0) and (0, 1) are converted to 1 and 0 by this
transformation.

Therefore, the CDR problem is converted to the problem to compute an assignment
χ : G \ {o} → {0, 1} from the gradient weight (see the right picture of Figure 4). This is
analogous to the linear discrepancy problem, if we scale the range of the weight from [−1, 1]
to [0, 1]. Thus, we call χ a rounding of w.

By definition, the off-diagonal distance between the digital ray Γ = Π (p) and the partial
ray C = C̃(p) towards p ∈ L(m) is do(Γ , C) = maxk=1,2,...m |xΓ(k) − xC(k)|, where xΓ(k)
is the x-coordinate value of the pixel qΓ(k) = Γ ∩ L(k). The following lemma relates the
gradient weight and the rounding to the off-diagonal distance.

▶ Lemma 1. xC(k) =
∫ k

0 w(qC(z))dz, and xΓ(k) =
∑k

i=1 χ(qΓ(i)).

Proof. If a ray goes through a point q = (x, y) on ℓ(z) and reaches a point (x + dx, y + dy)
on ℓ(x + dz) for an infinitesimally small dz, then dx = αqdz = w(q)dz by the definition of the
gradient vector. If C is the ray, q = qC(z) = (xC(z), yC(z)). Thus, xC(k) =

∫ k

0 w(qC(z))dz.
The x-value of a pixel q = qΓ(k) on a path Γ is the number of horizontal edges up to

the pixel, which is the prefix sum of χ over the path Γ up to the level L(k), and hence
xΓ(k) =

∑k
i=1 χ(qΓ(i)). ◀

A function f on ∆ is called off-diagonal monotone if it is non-decreasing on each off-
diagonal line ℓ(z). That is, f(p) ≥ f(q) if xp ≥ xq and p, q ∈ ℓ(z). It is called strongly
off-diagonal monotone if it is increasing on each off-diagonal line.

The function χ corresponding to a spanning tree of G if χ(0, k) = 0 and χ(k, 0) = 1
for 1 ≤ k ≤ n (i.e., the edges of T are vertical on the y-axis and horizontal on the x-axis).
However, the spanning tree might have leaves in the interior of G (such a spanning tree is
called a weak CDR in [7]). The spanning tree becomes a CDR if and only if χ is off-diagonal
monotone, which is equivalent to the fact that there is a split point in each level.

We call a smooth ray family F diffused if the gradient weight w of its corresponding
vector field is strongly off-diagonal monotone and continuous on each ℓ(z). This definition of
the diffused ray family is equivalent to the one given in [11].

From now on, we focus on a CDR of a diffused family of rays, and regard it as the
problem of seeking for a rounding χ minimizing the off-diagonal distance. The difference of
this rounding problem from the ordinary linear discrepancy problem is as follows:
1. The set system is {Π (p) | p ∈ G}, which depends on T , and hence on the choice of χ.
2. The rounding must preserve the off-diagonal monotonicity.
3. We must relate the off-diagonal distance to the discrepancy.

We apply the discrepancy theory to this vector field rounding problem.

4 Construction of CDR for diffused ray families

4.1 Construction algorithm of CDR via level-wise threshold rounding
We give a construction algorithm named θ-threshold rounding algorithm of a CDR approxim-
ating given diffused ray family F by using a (0, 1]-valued sequence θ : {1, 2, . . . n} → (0, 1].

▶ Definition 2. Given a gradient weight w and a (0, 1]-valued sequence θ, the θ-threshold
rounding χ of w is defined by the following:

For q ∈ L(k) (k = 1, 2, . . . , n), χ(q) = 1 if and only if w(q) ≥ θ(k).

STACS 2022
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The construction algorithm is very simple: Given a diffused ray family F , we consider its
gradient weight w, compute its θ-threshold rounding, and obtain the corresponding CDR.

▶ Example 3. Consider the linear ray family F = {C lin
a : y = ax | a ∈ [0, ∞]}, where C lin

∞ is
the line x = 0. The derivative of y = ax is a, which is equal to y

x . Hence, the slope of C(p)
at p = (x, y) is y

x , and the vector field V is defined by Vp = ( x
x+y , y

x+y ), and w(p) = x
x+y . If

p = (kt, k(1 − t)) ∈ L(k), w(p) = t. Thus, χ(p) = 1 if and only if t ≥ θ(k).

▶ Example 4. Consider the parabola family F = {Cpara
a : y = ax2 | a ∈ [0, ∞]}, where Cpara

∞
is the line x = 0. The derivative of y = ax2 is y′ = 2ax = 2y

x , and hence the slope of C(p) at
p = (x, y) is 2y

x . Thus, the vector field V is defined by Vp = ( x
x+2y , 2y

x+2y ), and w(p) = x
x+2y .

If p = (kt, k(1 − t)) ∈ L(k), w(p) = t
2−t . Thus, χ(p) = 1 if and only if t

2−t ≥ θ(k).

The model of geometric computation to discuss the complexity and some more examples
are given in the appendix.

4.2 Discrepancy that bounds the off-diagonal distance
The θ-threshold rounding algorithm is equivalent to the algorithm given in [11], where θ is
fixed to be a random sequence or a known low-discrepancy sequence independently of choice
of F . In contrast to it, we seek for a tailor-made sequence θ to fit each ray family F .

A ray C ∈ F defines its gradient curve φC : {(z, w(qC(z))) | 0 < z ≤ n} in the (z, w)
plane. Consider the family F∗ = {φC | C ∈ F} of gradient curves.

Given a curve φ : w = f(z) in F∗, let

R−(φ, (a, b]) = {(z, w) | a < z ≤ b, 0 ≤ w < f(z)} and
R+(φ, (a, b]) = {(z, w) | a < z ≤ b, f(z) < w ≤ 1} for 0 ≤ a ≤ b ≤ n.

In other words, R−(φ, (a, b]) (resp. R+(φ, (a, b])) is the subregion of (0, n] × [0, 1] below (resp.
above) φ and bounded by two vertical lines z = a and z = b. We define the family of regions

AF∗ = {Rϵ(φ, (a, b]) | 0 ≤ a ≤ b ≤ n, φ ∈ F∗, ϵ ∈ {+, −}}∪{(a, b]×[0, 1] | 0 ≤ a < b ≤ n}.

Figure 5 The gradient curves of parabola rays and a region R−(φ, (a, b]) in AF∗ .

▶ Example 5. For the linear ray C : y = ax (a ≥ 0), w(qc(z)) = 1
1+a , and hence φC is the

horizontal line defined by w = 1
1+a . Thus, AF∗ is the family of axis parallel rectangles.

▶ Example 6. For the parabola ray C : y = ax2 (a ≥ 0), qC(z) = ( −1+
√

1+4az
2a , z− −1+

√
1+4az

2a ),
and w(qC(z)) = 1√

1+4az
. The curve φC is defined by w = 1√

1+4az
. The gradient curves and

a region in AF∗ for the family F of parabola rays are illustrated in Figure 5.
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Let us fix the (0, 1]-valued sequence θ, and focus on the rounding χ and corresponding
CDR Π constructed by the θ-threshold rounding algorithm.

The point set S(θ) = {si = (i, θ(i)) | 1 ≤ i ≤ n} is called the θ-Hammersley point set, or
Hammersley point set if θ is implicitly given4.

The following lemma shows a relation between the positions of points of S(θ) in the
arrangement of gradient curves and the assignment of χ-values of pixels in the arrangement
of rays.

▶ Lemma 7. If sk = (k, θ(k)) ∈ S(θ) is below (resp. above) the gradient curve φC , χ(p) = 1
(resp. χ(p) = 0) for all pixels p ∈ L(k) lying on the right (resp. left) of C.

Proof. We assume sk is below φC (the other case is analogous). Hence, θ(k) < w(qC(k)).
Because of the continuity and strong monotonicity of w on ℓ(k), there is a unique point

u ∈ ℓ(k) satisfying w(u) = θ(k). The point u becomes a split point because of the definition
of the θ-threshold rounding.

By the assumption, w(u) = θ(k) < w(qC(k)), and the strong monotonicity of w implies
that u is on the left of C. Thus, each pixel p ∈ L(k) on the right of C is also on the right of
u, and thus χ(p) = 1 because of the definition of the split points. ◀

We consider the geometric discrepancy D(S(θ), AF∗), and the following theorem tells the
explicit relation of the discrepancy and the off-diagonal discrepancy.

▶ Theorem 8. Suppose that D(S(θ), AF∗) ≤ δ(n) for a function δ. Then, do(Π (p), C̃(p)) ≤
δ(n) + 1 for each pixel p in G.

Proof. Let S = S(θ), Γ = Π (p), and C = C̃(p). Without loss of generality, we assume
p ∈ L(n). We assume the off-diagonal distance max1≤k≤n |xΓ(k) − xC(k)| between Γ and C

is d, and derive d ≤ δ(n) + 1 to prove the theorem.
From the assumption, there exists k0 such that |xΓ(k0) − xC(k0)| = d. Thus, either

xΓ(k0) = xC(k0) + d or xΓ(k0) = xC(k0) − d, and we focus on the former case, since the
latter case can be handled analogously.

Consider the first index m > k0 such that xΓ(m) ≤ xC(m). In other words, m is the first
index after k0 such that the pixel of Γ in the level L(m) comes on the left of (or on) C. Such
m exists because both Γ and C reach p. Thus,

xΓ(m) − xC(m) ≤ 0 = xΓ(k0) − xC(k0) − d (1)

Consider R = R−(φC , (k0, m−1]) ∈ AF∗ , which is the region below φC and k0 < z ≤ m−1.
Let N(S, R) be the number of points of S in R.

The path Γ is on the right of C in the range k0 ≤ z ≤ m − 1, and it is derived from
Lemma 7 that χ(qΓ(k)) = 1 if sk ∈ R. Thus, we have the following:

m−1∑
k=k0+1

χ(qΓ(k)) ≥
∑

k:sk∈R

χ(qΓ(k)) =
∑

k:sk∈R

1 = N(S, R). (2)

From Lemma 1, xΓ(j) =
∑j

k=1 χ(qΓ(k)), and hence combined with (2),

xΓ(m − 1) − xΓ(k0) =
m−1∑

k=k0+1
χ(qΓ(k)) ≥ N(S, R). (3)

4 The original 2-dimensional Hammersley point set uses the van der Corput sequence as θ, but the
notation is abused to allow to use a general θ.
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By the definitions of R and φC ,

vol(R) =
∫ m−1

k0

φC(z)dz =
∫ m−1

k0

w(qC(z))dz.

On the other hand, from Lemma 1,∫ m−1

k0

w(qC(z))dz = xC(m − 1) − xC(k0).

Thus,

vol(R) = xC(m − 1) − xC(k0).

Since the geometric discrepancy D(S, AF∗) is bounded by δ(n),

N(S, R) ≥ vol(R) − δ(n) = xC(m − 1) − xC(k0) − δ(n).

Thus, combined with (3),

xΓ(m − 1) − xΓ(k0) ≥ N(S, R) ≥ xC(m − 1) − xC(k0) − δ(n),

and hence

xΓ(m − 1) − xC(m − 1) + δ(n) ≥ xΓ(k0) − xC(k0). (4)

From (1) and (4), we have

xΓ(m − 1) − xC(m − 1) + δ(n) ≥ xΓ(m) − xC(m) + d.

Equivalently,

xC(m) − xC(m − 1) + δ(n) ≥ xΓ(m) − xΓ(m − 1) + d.

Since the x-value of a ray increases by at most one if the ray proceeds one level, xC(m) −
xC(m − 1) ≤ 1 and xΓ(m) − xΓ(m − 1) ≥ 0. Hence, we have

1 + δ(n) ≥ d.

This is what we desire to obtain. ◀

5 Construction of the tailor-made low-discrepancy sequence

We give an upper bound of D(n, AF∗) using the transference principle that derives an
upper bound of the geometric discrepancy from that of the combinatorial discrepancy.
Then, we construct θ such that S(θ) = {(i, θ(i)) | i = 1, 2, . . . , n} attains this discrepancy
asymptotically.

5.1 Combinatorial property of the range space of gradient curves
▶ Lemma 9. Given a diffused family F , for any point v = (z0, w0) in the rectangle (0, n]×[0, 1],
there exists a unique gradient curve φC going through v.

Proof. The range of w on ℓ(z0) is [0, 1] since F contains x-axis and y-axis. Because of the
strong off-diagonal monotonicity and the continuity of w, there exists a point q ∈ ℓ(z0)
such that w(q) = w0. Because of the definition of a ray family, there exists a unique ray
C ∈ F going through q, and wC(q) = w(q). Thus, φC is the unique gradient curve going
through v. ◀
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▶ Corollary 10. For a diffused family F , each pair of gradient curves in F∗ do not intersect
each other in the domain 0 < z ≤ n.

▶ Definition 11 (Pseudo-rectangles). Given a family C of x-monotone curves in (0, n] × [0, 1]
such that each pair of curves do not intersect each other, a region bounded by a pair of curves
and two vertical lines is called a pseudo-rectangle associated with C. A (possibly infinite) set
of such pseudo-rectangles is called a family of pseudo-rectangles associated with C

The following lemma follows the definition of AF∗ , Definition 11, and Corollary 10. See
Figure 5 to get intuition.

▶ Lemma 12. For a diffused ray family F , AF∗ is a family of pseudo-rectangles associated
with F∗.

5.2 Discrepancies for the pseudo-rectangles
The Hammersley point set using the van der Corput sequence (van der Corput-Hammersley
point set) is known to give an O(log n) bound for the geometric discrepancy for the family of
axis-parallel rectangles (see [16]). However, it is known that its discrepancy becomes Ω(

√
n)

if we consider a rotated rectangle (Exercise 3, Section 2.1 of [16]), and hence the O(log n)
bound cannot be applied to pseudo-rectangles. It seems difficult to directly convert the
O(log n) bound of geometric discrepancy for rectangles to the one for pseudo-rectangles.

Fortunately, the combinatorial structure for the hypergraph of the range space of the
pseudo-rectangles is the same as that of axis-parallel rectangles.

The problem to investigate the combinatorial discrepancy disc(n, R) for the family R
of axis-parallel rectangles is called Tusnády’s problem. An O(log4 n) bound [4] was given
by Beck, and it was improved by Bohus to O(log3 n) as an application of k-permutation
problem [6]. The current best bound is O(log1.5 n) given by Nikolov [17], although it is not
constructive. The construction given by Bansal and Garg [2, 3] has an O(log2 n) discrepancy,
and their algorithm runs in polynomial time using the semi-definite programming as a
subroutine.

Because the combinatorial discrepancy only depends on the combinatorial properties of
the range space, all these bounds hold for the combinatorial discrepancy of a range space of
pseudo-rectangles. Thus, we obtain the following theorem from Lemma 12.

▶ Theorem 13. disc(n, AF∗) = O(log1.5 n), and a set P of n points attaining disc(AF∗ |P ) =
O(log2 n) can be computed in polynomial time.

It is known that an upper bound of the combinatorial discrepancy for range spaces can
be converted to that of the geometric discrepancy as shown in the following theorem named
Transference Principle or Transference Lemma (Proposition 1.8 of [16]):

▶ Theorem 14 (Transference Principle). Let A be a range space. If D(n, A) = o(n) and
disc(n, A) = O(f(n)) for a function satisfying f(2n) ≤ (2 − δ)f(n) for all n and fixed δ > 0,
then D(n, A) = O(f(n)).

The assumptions on f(n) and the condition that D(n, A) = o(n) hold for the range
space of pseudo-rectangles. Therefore, an upper bound of the combinatorial discrepancy is
transferred to that of geometric discrepancy for the pseudo-rectangles. (A more general result
is given by Aistleitner, Bilyk and Nikolov [1].) The transference is given in a constructive
fashion such that a point set P giving the geometric discrepancy bound can be obtained in
polynomial time in n if the coloring attaining the combinatorial discrepancy can be done in
polynomial time. Thus, we have the following:
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▶ Theorem 15. D(n, AF∗) = O(log1.5 n), and a set P of n points attaining D(P, AF∗) =
O(log2 n) can be computed in polynomial time.

Note: After the submission of this paper, Dutta [13] claimed an improved O(log7/4 n)
combinatorial discrepancy for the Tusnády’s problem with polynomial time construction.
Accordingly, the corresponding O(log2 n) bounds in Theorem 13, Theorem 15 and Theorem 17
is improved to O(log7/4 n) once the claim is confirmed.

5.3 Arraying a point set to obtain a uniform number sequence
We have shown that there exists a point set in [0, n]× [0, 1] attaining the O(log1.5 n) geometric
discrepancy for the region family AF∗ . However, we need θ(i) ∈ [0, 1] such that its Hammersley
point set S(θ) = {si = (i, θ(i)) | 1 ≤ i ≤ n} forms a low-discrepancy point set to attain the
discrepancy bound. We claim that any low-discrepancy point set for AF∗ can be arrayed to
become a Hammersley point set without losing the low-discrepancy property.

▶ Lemma 16 (Arraying lemma). If we have a set P of n points with δ(n) geometric discrepancy
for AF∗ , we can construct a Hammersley point set P ′ with O(δ(n)) geometric discrepancy.

Proof. Consider the sorted list p1, p2, . . . , pn of P in the abscissas in the (z, w) plane. Let
Ci be the unique gradient curve in F∗ going through pi, and p′

i be the point on Ci with the
abscissa i. In other words, each point pi is moved along Ci to the position of the abscissa i.
Now, we have the point set P ′. Consider a region R bounded by a gradient curve C ∈ F∗

and two vertical lines. Since each point is moved along a curve and no pair of curves intersect,
a point p′

i is below C if and only if pi is below C.
Consider the numbers N(P, ℓ) and N(P ′, ℓ) of points in P and P ′ to the left of a vertical

line ℓ : z = a, respectively. Since the points of P ′ are arrayed, N(P ′, ℓ) = ⌊a⌋. Since
D(P, AF∗) ≤ δ(n) and (0, a] × [0, 1] ∈ AF∗ has the area a, |N(P, ℓ) − a| ≤ δ(n). Thus,
|N(P, ℓ)−N(P ′, ℓ)| ≤ δ(n)+1. Therefore, at most δ(n)+1 points of P move crossing ℓ, since
the move of points keeps the sorting order. Thus, at most 2(δ(n) + 1) points move crossing
two vertical boundaries of R. Therefore, the discrepancy of P ′ is at most 3δ(n)+2 = O(δ(n)).
Given P ′, the sequence θ such that P ′ = S(θ) is automatically obtained. ◀

Thus, θ is constructed as desired, and we obtain our main result shown below. Note that
the asymptotic distance bounds hold for both of the off-diagonal and Hausdorff distances.

▶ Theorem 17. For a diffused ray family F , there exists a CDR with an O(log1.5 n) distance
bound between a partial ray towards a pixel and its digital ray. A CDR with an O(log2 n)
distance bound can be computed in polynomial time in n.

Proof. Immediate from Theorem 8, Theorem 15 and Lemma 16. ◀

6 Digital pseudoline arrangement

A family of curves is called a pseudoline arrangement if each pair of curves intersect at most
once to each other. The consistent digital pseudoline arrangement is defined by Chun et
al. [11].

One important class of the consistent digital pseudoline arrangement is given as a union
of translated copies of a CDR T . A translated copy T (s) is obtained by translating T so
that the origin is translated to (s, −s) for an integer s.
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The union ∪−k≤s≤kT (s) represents the set of digital rays emanating from 2k + 1 grid
points on the off-diagonal line x + y = 0. The union is called a family of shifted digital rays.

▶ Example 18. If we consider shifted digital rays using the CDR of linear rays given in
Example 3, we can generate digital line segments for a line segments (with nonnegative
slopes) between pixels in G as segments of shifted linear rays. This is a different construction
of digital line segments from [10].

▶ Example 19. If we consider shifted digital rays using the CDR for parabola rays given in
Example 4, we have an approximation of the family of parabolas with the vertical axes and
peaks on the off-diagonal line x + y = 0.

We can immediately apply our construction to improve the distance bound of shifted
digital rays for a general diffused ray family to O(log1.5 n) .

Another class of consistent digital pseudoline arrangements discussed in [11] is the digitized
homogeneous polynomial family approximating the family {Cj,a | y = axj for a > 0 and
j ∈ {1, 2, . . . , k}} for an integer k. We can apply our formulation to construct a union of
CDR for it, but unfortunately, we have technical difficulty to generalize the Arraying Lemma
(Lemma 16) to guarantee an improved distance bound.

7 Concluding remarks

The distance bound O(log1.5 n) is near to the known Ω(log n) lower bound, but it is curious
whether we can improve it to O(log n). Moreover, if we remove the off-diagonal monotonicity
condition on χ, we have a weak CDR. It is known that the distance bound for a weak CDR
is reduced to O(1) for the family of linear rays [7]. It is curious to investigate the weak CDR
for a general ray family.

Developing a practical algorithm for computing theoretically guaranteed CDR is also
an important problem. Although the θ-threshold rounding algorithm is very simple, the
sequence θ attaining the O(log1.5 n) distance bound is not constructed explicitly. The one
with O(log2 n) distance bound has a polynomial time construction. However, we need to deal
with hypergraphs on vertex sets with nearly n2 vertices and polylogarithmic vertex degrees if
we apply the transference principle. Moreover, the coloring of the hypergraph to attain the
combinatorial discrepancy in [2, 3] uses the semi-definite programming(SDP). Therefore, the
algorithm is not much efficient for practical use. It is desired to give an efficient construction
of CDR for a given family of curved rays with theoretically near optimal distance bound.

There are n! different CDRs in G corresponding to the ways to locate the branching
pixel of each L(k). Thus, it is implied that the infinite set of all diffused families of rays is
mapped to n! CDRs, and the inverse image of a CDR T is a class of families of rays within
O(log1.5 n) distance from the set of paths of T . It is curious to extend this observation to
more general geometric objects in the plane.
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A Appendix

A.1 Geometric Primitives
Although the existence of the CDR is given mathematically by using abstract properties
of the ray family, the θ-threshold rounding algorithm needs computation of the weight w

and the sequence θ. Therefore, necessary primitive geometric operations (which is called
geometric primitives) must be executed using information of the ray family.

Given s = (zs, ws) and t = (zt, wt) in the (z, w)-space, we say s is higher than t with respect
to F∗ if there exists a gradient curve (called separating curve) φC : {(z, w(qC(z))) | 0 < z ≤ n}
such that w(qC(zs)) < ws and w(qC(zt)) ≥ wt. If s and t are on the same gradient curve, we
say they have the same height.

The following two geometric primitives are necessary for the algorithm.
1. Given p ∈ ∆, compute the weight w(p) with a sufficient precision so that necessary

comparisons in the algorithm can be done properly.
2. Given s and t in the (z, w)-plane, decide which is higher (or they have the same height)

with respect to F∗.

A given set of points in the (z, w)-plane can be sorted with respect to the height by using
the second primitive. This enables to identify a range space of pseudo-rectangles to that of
axis-parallel rectangles combinatorially.

http://arxiv.org/abs/2109.05693
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We assume that each geometric primitive can be done in polynomial time in n in order
to guarantee the polynomial time complexity for computing a CDR.

The computation of the weight w(p) needs locally differentiable representations of rays,
and the computation of qC(z) needs solution of equations as shown in the examples given
below.

A.2 Examples

In the following examples, the geometric primitives need numerical computation such as
solution of non-algebraic equations.

▶ Example 20. Consider an increasing differentiable function f(x) such that f(0) = 0. Then,
the family F = {Ca : y = af(x) | a ∈ [0, ∞]} is a smooth ray family, if we consider C∞ as
the vertical line x = 0. Given any p = (x0, y0) ∈ ∆ for x0 > 0, Ca0 for a0 = y0

f(x0) is the
unique ray going through p, and w(p) = 1

1+a0f ′(x0) = f(x0)
f(x0)+y0f ′(x0) . The family F is diffused

if f(x) is a concave function.
For example, the sigmoid function σ(x) = 1−e−x

1+e−x is a concave function for x ≥ 0. Thus,
the family F = {Csig

a : y = aσ(x) | a ∈ [0, ∞]} is a diffused family. The derivative at
p = (x, y) is y′ = 2a e−x

(1+e−x)2 , which equals 2ye−x

1−e−2x and hence w(p) = 1−e−2x

1−e−2x+2ye−x .
The x-coordinate value of the point qC(z) for C = Csig

a is the root of the equation
x + a 1−e−x

1+e−x = z, and it does not have an explicit analytic expression. Thus, the geometric
primitive concerning φC(z) requires substantial numerical computation.

▶ Example 21. For 0 < a ≤ 1, define the function Fa(x) = (1 − a)n sin πx
2na for 0 ≤ x ≤ na.

We define Csin
a : y = Fa(x) for a > 0, and Csin

0 is defined to be the y-axis. Then, F =
{Csin

a | a ∈ [0, 1]} is a family of (increasing segments of) sine curves in ∆. It is a diffused
ray family, and we can apply our algorithm. The weight w(p) for p = (x, y) is not explicitly
expressed by using elementary functions of x and y, and should be computed numerically.

A.3 Preliminary implementation and experiment

We give a preliminary experimental report of an implementation of the proposed θ-threshold
rounding algorithm. The homogeneous polynomial ray families Fj = {y = axj | a ∈ [0, ∞]}
for j = 2, . . . , 6 are considered as the ray families in the experiment. We varied the grid size
n in the range n = 2k (1 ≤ k ≤ 14) to see the dependency of the maximum distance error
on n.

As stated in the concluding remarks, it seems to be difficult to implement the SDP
method with the theoretical O(log2 n) combinatorial discrepancy bound so that it gives a
practically good solution. Moreover, n1/4 < log2 n if n < 244 (the base of logarithm is 2),
and the SDP method needs O(n3) time, which is not feasible for a large n.

Hence, for the preliminary implementation, we have given a more casual method to
attain an O(n1/4) discrepancy. The hypergraph coloring is done by using the low-stabbing
matching based on the k-d tree data structure on the point set described in [16]. This gives a
randomized algorithm to attain an O(n1/4) expected bound for the combinatorial discrepancy.
To transfer this discrepancy bound, we apply the transference principle procedure given
in [16] starting with n1.5 = 23k/2 grid points.
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We measured the maximum Hausdorff distance between rays and digital rays as shown in
Figure 6. The chart shows the tendency of increase of the error is about 2n1/4 to support
the theory. From the chart, we can observe that the distance error is almost independent of
the choice of the ray family. If n = 14, the grid size (width) n is 16384, and the maximum
distance error is about 25 < n

640 pixels, which is 0.05 inch in the 32 inch display.

Figure 6 Distance error of the proposed algorithm.

The most expensive routine in the experiment is the measurement of the Hausdorff
distance, which needs O(n2) time (in proportional to the number of pixels of the grid) if we
want to measure exactly.

We compared our method with the θ-threshold rounding using the van der Corput
sequence as θ, which is equivalent (although the description is different) to the previous
method of Chun et al. [11]. Figure 7 shows that the distance error is about half in the van
der Corput method compared with ours.

The chart shows that van der Corput method is experimentally better by a factor of
approximately 2 than the low-stabbing matching method for the families considered in our
experiment in the range n ≤ 214.

This implies that although the van der Corput-Hammersley point set P gives only
O(

√
n log n) theoretical discrepancy bound of D(P, AF∗) in the worst case, the discrepancy

is practically better for most of curve families.
Therefore, although the results using the transference from the combinatorial discrepancy

is theoretically better, it might be advantageous to use the van der Corput sequence (or its
variants) to construct CDRs in practice.
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Figure 7 Distance error of the CDR using the van der Corput sequence.
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Abstract
We study the basic problem of distinguishing between two symmetric probability distributions over
n bits by observing k bits of a sample, subject to the constraint that all (k − 1)-wise marginal
distributions of the two distributions are identical to each other. Previous works of Bogdanov et
al. [3] and of Huang and Viola [8] have established approximately tight results on the maximal
possible statistical distance between the k-wise marginals of such distributions when k is at most a
small constant fraction of n. Naor and Shamir [12] gave a tight bound for all k in the special case
k = n and when distinguishing with the OR function; they also derived a non-tight result for general
k and n. Krause and Simon [9] gave improved upper and lower bounds for general k and n when
distinguishing with the OR function, but these bounds are exponentially far apart when k = Ω(n).
In this work we provide sharp upper and lower bounds on the maximal statistical distance that hold
for all k and n. Upper bounds on the statistical distance have typically been obtained by providing
uniform low-degree polynomial approximations to certain higher-degree polynomials. This is the
first work to construct suitable non-uniform approximations for this purpose; the sharpness and
wider applicability of our result stems from this non-uniformity.
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proximation
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1 Introduction

We consider pairs of distributions µ and ν over {0, 1}n. The distributions µ and ν are said to
be perfectly j-wise indistinguishable if for any subset S ⊆ [n] of size at most j, the marginal
distributions µS and νS over indices in S are identically distributed. The distributions are
k-wise reconstructible with advantage ϵ (alternatively, ϵ-distinguishable) if there exists a set
S ⊆ [n] of indices of size k and a statistical test T : {0, 1}|S| → {0, 1} such that

|EX∼µ[T (X|S)] − EY ∼ν [T (Y |S)]| ≥ ϵ,

where X|S is the restriction of random variable X to the bits located at the indices in S.
Equivalently, µ and ν are j-wise indistinguishable if all size ≤ j marginal distributions have
0 total variation distance; µ and ν are k-wise reconstructible with advantage ϵ if any of the
k-wise marginals have total variation distance at least ϵ. The distributions are symmetric if
µ and ν are invariant under permutation (see definitions in Section 2); for such distributions
the size of S is relevant for distinguishing but not the choice of indices.

Cryptographic motivation

Work of Bogdanov et al. [2] considered this notion of indistinguishability as a way to capture
cryptographic secret sharing schemes in a minimal setting. Their observation was that a
single bit secret can be shared by sampling n bits from µ or from ν, depending on the
secret: the j-wise indistinguishability of the distributions provides a security guarantee that
any size ≤ j coalition of colluding parties learn nothing about the secret from their joint
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shares. The secret reconstruction function for the scheme is a test T applied over the shares
of sufficiently many (possibly all) parties. A key question in their work was how large j

could be taken so that there exists a T that is both computable with AC0 circuits and has
reconstruction advantage ϵ = Ω(1) against some pair of j-wise indistinguishable distributions.
The special case of T = OR captures the notion of visual cryptography, introduced by Naor
and Shamir [12] in 1994. Their work considered j-wise indistinguishable distributions and
attempted to maximise the reconstruction advantage of OR taken over j + 1 bits. They gave
a tight bound for all j in the special case j = n − 1; they also derived a non-tight result for
general j and n. Krause and Simon [9] gave improved upper and lower bounds for general
j and n, but these bounds are exponentially far apart when j = Ω(n). In this work (as
in [4], [8]), we consider the statistical distance between the distributions, which includes the
study of tests T that are not in AC0 and reconstruction advantage ϵ that may be vanishing.
These results can be interpreted as tight existence or non-existence conditions for 1-bit secret
sharing schemes of arbitrary reconstruction complexity.

Approximate degree motivation

The work [2] largely proceeded by a connection to the theory of approximate degree of Boolean
functions. The ϵ-approximate degree of a Boolean function f : {0, 1}n → R, denoted d̃egϵ(f),
is the least degree of a multivariate real-valued polynomial p such that |p(x) − f(x)| ≤ ϵ

for all inputs x ∈ {0, 1}n. This quantity has received significant attention, owing to its
polynomial equivalence to many other complexity measures including sensitivity, exact degree,
deterministic and randomized query complexity [14], and quantum query complexity [5].
By linear programming duality, f has ϵ-approximate degree more than j if and only if
there exists a pair of probability distributions µ and ν over {0, 1}n such that µ and ν

are j-wise indistinguishable and n-wise reconstructible with advantage 2ϵ by f (see for
example [2, 17, 6]). The approximate degree of all symmetric Boolean functions was resolved
in the constant-error regime ϵ = Θ(1) by Paturi [15] and in the general error regime by de
Wolf [7] using an argument based on quantum algorithms (see also Sherstov [18] and Bun and
Thaler [6]). This implies tight upper and lower bounds on the ability of any given symmetric
Boolean function to reconstruct from indistinguishable distributions when given access to a
full sample of n bits. In this work, we consider reconstruction when given access to a subset
of the bits.

Prior work

Works of Bogdanov et al. [3] and of Huang and Viola [8] extended the study of the indis-
tinguishability of symmetric distributions to the setting of reconstructing with a subset of
indices. They considered the extent to which symmetric j-wise indistinguishable distributions
must have statistically close k-wise marginals for k > j. In particular, [3] shows that if µ and
ν are symmetric over n-bit strings and perfectly j-wise indistinguishable, then the statistical
distance between k-wise marginals is at most O(j3/2) · e−j2/1156k for all j < k ≤ n/64. The
analogous result in [8] gives a similar bound and also applies to k at most some (unspecified)
constant fraction of n. A matching lower bound given in [3] shows that there exists a pair of
distributions that are j-wise indistinguishable but reconstructable with the ORk function
with advantage at least k−1/2 · e−O(−j2/k). This lower bound extends to all j < k ≤ n.

We note that in the sharp reconstruction setting where k = j + 1, the upper bound
O(j3/2) · e−j2/1156k solely demonstrates a behaviour of monotonic exponential decrease in k.
Extension of this upper bound to k > n/64 is of particular interest because it would illuminate
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and quantify the behaviour that the maximum statistical distance must reach a minimum at
some k ∈ [n/64, n] and start to increase once k becomes large enough. Specifically, we know
this behaviour changes because the XORn function can distinguish perfectly between a pair
of symmetric distributions that are (n − 1)-wise indistinguishable (the two distributions are
uniform over n bits, conditioned on the sum of all n bits being either even or odd).

In addition, the lower bound for OR in [3] does apply to k up to n but is unlikely to
come close to matching any upper bound on statistical distance since OR is a weak statistical
distinguisher and the bound is also monotonically decreasing.

Our contribution

In the present work, we extend the results of [3] and [8] to the setting of parameters where
k may range freely from 0 to n − 1 (the case k = n is trivial in light of the XOR example
above). We consider the sharp threshold reconstruction setting j = k − 1 (see prior work
section) and our results are tight up to polynomial factors.

▶ Theorem 1. There exists an absolute constant c such that for any k ∈ [0, n − 1] and any
pair of symmetric (k − 1)-wise indistinguishable distributions µ, ν over {0, 1}n, the statistical
distance between all k-wise marginals of µ and ν is at most:

O(nc) · (n − k) n−k
2 · (n + k) n+k

2

2k · nn

▶ Theorem 2. For any k ∈ [0, n − 1], there exists a statistical test T : {0, 1}k → {0, 1} and a
pair of symmetric (k −1)-wise indistinguishable distributions µ, ν such that the reconstruction
advantage of T is at least

(n − k) n−k
2 · (n + k) n+k

2

2k · nn
.

An indistinguishability game. The upper and lower bounds of Theorems 1 and 2 allow us
to approximately find the value of k so that the task of using k bits to distinguish symmetric
perfectly (k − 1)-wise indistinguishable distributions over {0, 1}n is most difficult. For n an
integer fixed in advance, this can be expressed in terms of a game:

Player 1 selects integer k < n.
Player 2 chooses a pair µ, ν of symmetric, perfectly (k − 1)-wise indistinguishable distri-
butions over {0, 1}n.
The payoff p2 of Player 2 is defined as the statistical distance between the k-wise marginals
of µ and ν and the payoff of Player 1 is p1 = 1 − p2.

We show that the optimal strategy of Player 1 is essentially to select k = 0.6n. More precisely:

▶ Corollary 3. In the indistinguishability game defined above, let k∗ be an optimal strategy
of Player 1. Then, for any arbitrarily small positive constant ϵ, and n sufficiently large, k∗

satisfies:

|k∗ − 0.6n| ≤ ϵn.

A naive assumption would be that for a fixed n and k ranging in [0, n], the behaviour of the
quantity being bound in Theorems 1 and 2 is symmetric around the centre of the interval
[0, n], or namely that the optimal strategy of Player 1 is to choose k = n/2. Corollary 3
demonstrates that this is false.

STACS 2022
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Finally, Theorem 1 can be translated into Fourier analytic language. We consider a
function f : {−1, 1}n → R and write it in the Fourier basis as f(x) =

∑
S⊆[n] f̂(S) ·

∏
i∈S xi,

where f̂(S) = Ex∈{−1,1}n [f(x) ·
∏

i∈S xi].

▶ Corollary 4. Let f : {−1, 1}n → R be a real-value Boolean function that is symmetric
(|S| = |S′| =⇒ f̂(S) = f̂(S′)), has no low-degree terms (|S| ≤ k − 1 =⇒ f̂(S) = 0), and
has low 1-norm (

∑
z∈{−1,1}n |f(z)| = 1). Then, for any S of size k, we have:

f̂(S) ≤ O(nc) · (n − k) n−k
2 · (n + k) n+k

2

2k · nn
.

Techniques and roadmap

The established technique to develop indistinguishability upper bounds for symmetric distri-
butions is to decompose an arbitrary statistical test into a small basis using the fact that
without loss of generality, the best test is a symmetric function. The basis we work over is Qw

for w = 0, ..., k where Qw is a Boolean function that observes k bits and accepts if and only if
the observed Hamming weight is exactly w. Providing a low-degree polynomial approximation
to Qw rules out the existence of distributions that can be reconstructed with Qw. In practice,
a Minsky-Papert symmetrization (see Fact 13 for details) is applied to Boolean function Qw

to reduce the problem of its approximation to a problem of approximating a real-valued
univariate polynomial with a lower degree polynomial. Due to the discrete domain of Qw

(the Boolean cube), the univariate approximations need not be uniform, but are instead
over a set of separated points on the real line, each representing a Hamming weight of input
(for example, −1, −1 + 2/n, ..., 1 − 2/n, 1). However, this fact is not typically exploited, and
previous works have constructed approximations that have low error over the entire interval
[−1, 1].
Prior works have not obtained statistical distance upper bounds for k close to n because
the approach taken to approximating (the symmetrized version of) Qw has been to use
Chebyshev polynomials to provide uniform approximations to Qw over all of [−1, 1] instead
of discrete approximations. This strategy breaks down for large k because the difficulty of
uniform approximations diverges from the difficulty of the approximation over the relevant
discrete set. This observation motivates the use of discrete Chebyshev polynomials (also
known as Gram polynomials) to construct approximations that yield upper bounds on the
maximum statistical distance.
We provide a lower bound on statistical distance based on hardness of approximation with
discrete Chebyshev polynomials. This follows from their orthogonality and from linear
programming duality. We believe that prior techniques via orthogonality of (non-discrete)
Chebyshev polynomials could be used to show this result (indeed the lower bound res-
ult from [3] applies to all k up to n and the technique they use should be extendable to
distinguishers more powerful than OR).

2 Preliminaries

We use the standard notion of statistical distance (total variation distance) through-
out this paper. Specifically, the statistical distance between µ and ν is 1

2 ||µ − ν||1, or
1
2
∑

z∈{0,1}n | PrX∼µ[X = z] − PrY ∼ν [Y = z]|. This is equivalent to the reconstruction
advantage of the optimal statistical test for µ and ν that observes all n bits.
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We will be working with polynomial approximations over different discrete sets of points. We
define Dout

n as the set of points {−1, −1+2/n, ..., 1} and Din
n as {−1+1/n, −1+3/n, ..., 1−1/n}.

It is easy to check that |Dout
n | = n+1, that |Din

n | = n. Further, we have the basic relationships:

Dout
n =

{
n + 1

n
· x : x ∈ Din

n+1

}
(1)

Din
n ⊂

{
x − 1

n
: x ∈ Dout

n

}
(2)

For simplicity we will use ≲ to hide factors polynomial in n.

Symmetric distributions and functions

Let f : {0, 1}n → R be a function. We say that f is symmetric if the output of f depends
only on the Hamming weight of its input. A probability distribution µ is symmetric if the
corresponding probability mass function mapping inputs to probabilities is a symmetric
function. We also will need two further facts about distinguishing symmetric distributions.
Proofs of these appear in [3].

▶ Fact 5. Suppose that µ is a symmetric distribution over {0, 1}n. For S ⊆ {0, ..., n}, let
µ|S denote the restriction of µ to the indices in S. Then, µ|S is also symmetric.

▶ Fact 6. Suppose that µ and ν are symmetric distributions over {0, 1}n. Then without loss
of generality, the best statistical test Q : {0, 1}n → [0, 1] for distinguishing between µ and ν is
a symmetric function. In particular, we have:

max
symmetric Q

{EX∼µ[Q(X)] − EY ∼ν [Q(Y )]} = max
Q

{EX∼µ[Q(X)] − EY ∼ν [Q(Y )]}.

2.1 Discrete Chebyshev polynomials
The discrete Chebyshev polynomials, for parameter n are a family of real polynomials
{ϕd}d=0,...,n−1. Borrowing notation from [1], we have that the polynomials have the following
properties:

The family of polynomials {ϕd}d=0,...,n−1 are orthogonal with respect to the bilinear form
given by

(ϕi, ϕj) := 1
n

·
∑

x∈Din
n

ϕi(x) · ϕj(x) (3)

For each d:

||ϕd|| := (ϕd, ϕd)1/2 = 1 (4)

For each d:

deg(ϕd) = d (5)

The polynomials satisfy the recurrence:

ϕd(x) = 2αd−1 · x · ϕd−1(x) − αd−1

αd−2
· ϕd−2(x) (6)

STACS 2022
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αd−1 = n

d
·
(

d2 − 1/4
n2 − d2

)1/2

(7)

where we have ϕ0 = 1, ϕ−1 = 0, and α−1 = 1.

Every degree k < n polynomial p : R → R has a unique expansion in the discrete
Chebyshev basis:

p(t) =
k∑

d=0
cdϕd(t),

where c0, . . . , ck are the discrete Chebyshev coefficients of p.

2.2 Bounds on factorials and binomial coefficients

We will make use of double factorials, which are given by:

n!! :=
⌊n/2⌋∏
i=0

n − 2i (8)

and satisfy, when n is even:

n!! = 2n/2 · (n/2)! (9)

For n odd, we simply observe that (n − 1)!! ≲ n!! ≲ (n + 1)!! and apply the bound in (9).
We will bound factorials using

n! = Θ(
√

n) ·
(n

e

)n

(10)

and the central binomial coefficient using(
2n

n

)
= Θ(1/

√
n) · 22n (11)

2.3 Approximate degree of Boolean functions

Let f : {0, 1}n → {0, 1} be a Boolean function. We will use d̃egϵ(f) to denote the minimum
degree of any real polynomial p : {0, 1}n → R that approximates f to within ϵ at every point
in {0, 1}n.

Paper organisation. In Section 3, we prove a lemma about the expression of monomials
in the discrete Chebyshev basis. In Section 4 we construct discrete approximations to the
monomial and prove a complementary hardness of approximation result in Section 5. In
Section 6 we quantify the precise approximation problem that we need to solve and justify
this using symmetrization and linear programming duality techniques. Sections 7 and 8
justify Theorem 1 and Theorem 2, respectively. In the Appendix, we handle proofs of some
technical claims and proofs of Corollaries 3 and 4.
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3 Monomials in the discrete Chebyshev basis

▶ Lemma 7. Fix integer k < n. Let C be the leading coefficient in the expansion of xk in
the discrete Chebyshev polynomial basis with parameter n. Then, C satisfies:

1
(2n)k

·

√
(n + k)!
(n − k)! ≲ C ≲

1
(2n)k

·

√
(n + k)!
(n − k)!

Proof. From the recurrence definition of the discrete Chebyshev polynomials in Equation 6,
we have that

x · ϕi = 1
2αi−1

ϕi+1 + 1
2αi−2

ϕi−1

Application of this recursion, along with the base case ϕ0 = 1, yields that the discrete
Chebyshev representation of xk has its highest degree coefficient given by

C =
k−1∏
i=0

1
2αi

= 2−k ·
k−1∏
i=0

1
αi

(12)

From the definition of the αi in Equation 7, we have that
k−1∏
i=0

αi = nk−1

(k − 1)!

√
(12 − 1/4)(22 − 1/4) · ... · ((k − 1)2 − 1/4)

(n2 − 12)(n2 − 22) · ... · (n2 − (k − 1)2)

= nk−1

(k − 1)!

√
(12 − 1/4)(22 − 1/4) · ... · ((k − 1)2 − 1/4)

(n + 1)(n − 1)(n + 2)(n − 2) · ... · (n + k − 1)(n − k + 1)

= nk−1 ·

√
n!(n − k)!

(n − 1)!(n + k − 1)! ·

√
(12 − 1/4)(22 − 1/4) · ... · ((k − 1)2 − 1/4)

(k − 1)2 · ... · 12

= nk−1 ·

√
n · (n − k)!
(n + k − 1)! ·

√√√√k−1∏
i=1

(i − 1/2)(i + 1/2)
i2 .

Application of the upper bound in Claim 20 yields that
∏k−1

i=0 αi ≤ nk−1 ·
√

n·(n−k)!
(n+k−1)! .

This, in conjunction with Equation 12, justifies the lower bound in the statement of this
lemma. For the upper bound, application of the lower bound in Claim 20 yields that∏k−1

i=0 αi ≥ 3
4(k−1)2 · nk−1 ·

√
n·(n−k)!
(n+k−1)! , which completes the proof in light of Equation 12. ◀

4 Discrete approximations for the monomial

▶ Corollary 8. Fix integers k < n. There exists a degree at most k − 1 polynomial approxim-
ation for the monomial xk over Dout

n with error ϵ satisfying:

ϵ ≲ (2(n + 1))−k ·

√
(n + k + 1)!
(n − k + 1)!

Proof. It suffices to provide a degree at most k − 1 approximation p to the monomial
( n+1

n · x)k over Din
n+1 because then the degree at most k − 1 approximation p′ := p( n

n+1 · x)
will be an approximation to xk over Dout

n , by Equation 1. By Lemma 7, the expansion of
( n+1

n · x)k in the Gram basis with parameter n + 1 is given by

Ck · ϕk + Ck−1 · ϕk−1 + ... + C0 · ϕ0,

STACS 2022
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where Ck ≲
(

n+1
n

)k · 1
(2(n+1))k ·

√
(n+k+1)!
(n−k+1)! ≲ 1

(2(n+1))k ·
√

(n+k+1)!
(n−k+1)! . By Equation 4 and

Cauchy-Schwarz, maxDin
n+1

ϕk ≲ 1 and the corollary follows by taking the approximation∑k−1
i=0 Ci · ϕi. ◀

Comparison to the uniform approach

Newman and Rivlin [13], and Sachdeva and Vishnoi [16] showed that any degree ≤ k − 1
uniform approximation to the monomial xk over [−1, 1] will have error 2−k+1 (and that
this is tight). For large enough values of n and k, the upper bound in the statement of
Corollary 8 is smaller. In Section 7 we see that the bound 2−k+1 is insufficient to get a
non-trivial indistinguishability upper bound for k close to n.

5 Hardness of discrete monomial approximations

▶ Corollary 9. Fix integers k < n. Any degree at most k − 1 polynomial approximation to
the monomial xk must have error (pointwise over Dout

n ) at least:

(2n)−k ·

√
(n + k)!
(n − k)!

The proof of the main corollary of this section appears at the end of this section after
two lemmas have been established.

▶ Lemma 10. Let p be a degree k polynomial with degree k coefficient C in the discrete
Chebyshev basis with parameter n. Then, any degree k − 1 approximating polynomial will
have error at least |C| at some point over Din

n .

Proof. Let q be any degree at most k − 1 polynomial. Let ci be the degree i coefficient in
the discrete Chebyshev representation of p − q, and note that because the degree of q is at
most k − 1, we have that ck = C. By orthogonality of the discrete Chebyshev polynomials,
and Equations 3 and 4,

Et∼Din
n

[(p(t) − q(t))2] = c2
0 +

k∑
d=1

(cd)2 Et∼Din
n

[ϕd(t)2] ≥ c2
k = C2.

It follows that the approximation error |p(t) − q(t)| must exceed |C| for some t ∈ Din
n . ◀

▶ Lemma 11. Let p be a degree k polynomial such that for any degree at most k − 1
polynomial q, maxt∈Din

n
{|p(t) − q(t)|} ≥ ϵ. Then, for any degree k − 1 polynomial q′,

maxt∈Dout
n

{|p(t) − q′(t)|} ≥ ϵ.

Proof. We consider the contrapositive and show that existence of a degree at most k − 1
polynomial p̃ for p over Dout

n with error at most ϵ implies an approximation for p over
Din

n with the same degree and error parameters. We have that p̃(x + 1/n) is a degree
k − 1 ϵ−approximation of p(1 + 1/n) over {x − 1

n : x ∈ Dout
n } ⊃ Din

n , where the set
relation follows from Equation 2. Our approximation is then p̃(t + 1/n) + p(t) − p(t +
1/n), which is degree k − 1 because p(t) − p(t + 1/n) is degree k − 1. We have that
maxt∈Din

n
| (p̃(t + 1/n) + p(t) − p(t + 1/n))−p(t)| = maxt∈Din

n
|p̃(t+1/n)−p(t+1/n)| ≤ ϵ. ◀

Proof of Corollary 9. Lemma 7 and Lemma 10 imply that any degree at most k − 1 polyno-
mial approximation to xk must have error at least (2n)−k ·

√
(n+k)!
(n−k)! over Din

n . The corollary
then follows from Lemma 11. ◀
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6 Symmetrization and duality

Our main upper and lower bounds will be justified by reducing to an approximation theoretic
question using a linear programming duality relation.

▷ Claim 12 (see, for example, Theorem 1.2 in [2]). d̃egϵ/2(F ) ≥ k if and only if there
exists a pair of perfectly k-wise indistinguishable distributions µ, ν over {0, 1}n such that
EX∼µ[F (X)] − EY ∼ν [F (Y )] ≥ ϵ.

We are interested in Boolean functions as statistical tests that witness k bits of a sample
from a distribution. To this end, let Qw denote the function on {0, 1}k that outputs 1 if
and only if the Hamming weight is exactly w. We also use Qw(x|S) to represent Qw when
evaluated on a string of n bits, where x|S is the restriction of the n bits to the k indices in
the set S ⊆ [n].

▶ Fact 13. Let S ⊆ [n] be any set of size k. There exists a univariate polynomial pw of
degree at most k such that the following holds. For all t ∈ Dout

n , pw(t) = EZ [Qw(Z|S)]
where Z is a uniformly random string of n bits conditioned on having Hamming weight
ϕ−1(t) = (1 − t)n/2 ∈ {0, 1, . . . , n}.

Proof. This statement is a simple extension of Minsky and Papert’s classic symmetrization
technique [11] and also appears in [3]; we reproduce the proof here for convenience. Minsky and
Papert showed that for any polynomial P : {0, 1}n → R, there exists a univariate polynomial
p of degree at most the total degree of P , such that for all i ∈ {0, . . . , n}, p(i) = E|x|=i[P (x)].
Apply this result to P (x) = Qw(x|S) and let pw(t) = p(ϕ−1(t)) = p ((1 − t)n/2). The fact
then follows from the observation that the total degree of Qw(x|S) is at most k, since this
function is a k-junta. ◀

▶ Corollary 14. Suppose that for all degree ≤ k − 1 polynomials q we have that
maxt∈Dout

n
{|pw(t) − q|} ≥ ϵ. Then, d̃egϵ(Qw(x|S)) ≥ k − 1.

Proof. We prove the contrapositive. Let Q̃ be a degree at most k − 1 approximation to
Qw(x|S) over {0, 1}n with pointwise error strictly less than ϵ. Taking the Minsky-Papert
symmetrization of Q̃ in conjunction with a scale and shift, yields a univariate polynomial q

of degree at most k − 1 such that maxt∈Dout
n

{|pw(t) − q|} < ϵ. ◀

6.1 Properties of pw

The value pw(t) is a probability for every t ∈ Dout
n . Moreover, this probability must equal

zero when the Hamming weight of Z is less than w or greater than n − k + w. Therefore pw

has k distinct zeros at the points Zw = Z− ∪ Z+, where

Z− = {−1 + 2h/n : h = 0, ..., k − w − 1} , Z+ = {1 − 2h/n : h = 0, ..., w − 1}. (13)

and so pw must have the form

pw(t) = Cw ·
∏

z∈Zw

(t − z) (14)

for some Cw that does not depend on t.

▷ Claim 15. The coefficient Cw on the highest degree term of pw in the monomial basis has
absolute value:(

k
w

)(
n−k

1
2 (n−k)

)(
n

1
2 (n−k+2w)

) · nk · (n − k)!!2

(n − k + 2w)!! · (n − 2w + k)!!

STACS 2022
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Proof. The polynomial pw is of degree k with all of its zeroes lying in Zw. We evaluate pw

at a point t′ which is necessarily outside of Zw and thus not a zero of pw. We set:

t′ := 1
2 (max{Z−} + min{Z+}) = k − 2w

n

To evaluate pw(t′), we use that the value pw(t′) is the probability that Qw(x|S) accepts given
that x is chosen uniformly at random, conditioned on the event that the Hamming weight of
x is exactly ϕ−1(t′) = 1

2 (n − k + 2w).

Pr
[
Qw(x|S) = 1 : |x| = 1

2(n − k + 2w)
]

= pw(t′) = Cw ·
∏

z∈Zw

(t′ − z),

from which it follows that

Cw =

(
k
w

)(
n−k

1
2 (n−k)

)(
n

1
2 (n−k+2w)

)
·
∏

z∈Zw
(t′ − z)

We have that:∏
z∈Zw

(t′ − z) =
∏

z∈Z−

(t′ − z)
∏

z∈Z+

(t′ − z)

= (−1)|Z+|
∏

z∈Z+

(z − t′)2
∏

z∈Z−:−z ̸∈Z+

(t′ − z),

where the final equality assumes that w ≤ k/2. This is without loss of generality; when
w > k/2, the same calculation holds with the roles of Z+ and Z− reversed. From this we
compute that:

1
|
∏

z∈Zw
(t′ − z)|

= 1
(1 − k−2

n )2 · (1 − k−2
n + 2

n )2 · ... · (1 − k−2
n + 2(w−1)

n )2 ·
∏

z∈Z−:−z ̸∈Z+
(t′ − z)

= n2w · (n − k)!!2

(n − k + 2w)!!2 ·
∏

z∈Z−:−z ̸∈Z+
(t′ − z)

= n2w · (n − k)!!2

(n − k + 2w)!!2 ·
∏k−2w−1

i=0 ( k−2w
n + 1 − 2i

n )

= nk · (n − k)!!2

(n − k + 2w)!! · (n + k − 2w)!! ,

from which the claim follows. ◁

We also will need the following fact, which is justified in the Appendix.

▶ Lemma 16. The value Cw is maximized when w = k/2; in particular with

Ck/2 =
(

k
k/2
)(

n−k
(n−k)/2

)(
n

n/2
) · nk · (n − k)!!2

n!!2

7 Upper bound

We begin by providing an upper bound on the distinguishing advantage of a given Qw test.

▶ Lemma 17. For any w = 0, ..., k and pair of (k − 1)-wise indistinguishable distributions,
the function Qw reconstructs with advantage ϵ, satisfying:

ϵ ≲
(n − k) n−k

2 · (n + k) n+k
2

2k · nn
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Proof. By Corollary 8, there exists a degree k − 1 polynomial approximation to pw over
Dout

n with error

≲ Cw · 1
(2(n + 1))k

·

√
(n + k + 1)!
(n − k + 1)! (15)

By Claim 15 and Lemma 16 this is upper bounded by (up to poly(n) factors):(
k

k/2
)(

n−k
(n−k)/2

)(
n

n/2
) · nk · (n − k)!!2

n!!2 · 1
(2(n + 1))k

·

√
(n + k + 1)!
(n − k + 1)!

≲
k! · (n − k)! · nk

(k/2)!2 · n! · 2k
· 1

(2n + 2)k
·

√
(n + k + 1)!
(n − k + 1)!

≲
(n − k)n−k · (2e)k

nn
· nk

2k
· 1

(2n + 2)k
· (n + k + 1)(n+k+1)/2)

ek · (n − k + 1)(n−k+1)/2

≲
(n − k)(n−k−1)/2 · (n + k + 1)(n+k+1)/2

2k · nn

≲
(n − k)(n−k)/2 · (n + k)(n+k)/2

2k · nn
,

where we have used Equations 11, 10, and 9 to bound the central binomial coefficient, the
factorial, and the double factorial, respectively. ◀

Comparison to the uniform approach

We saw in Section 4 that any uniform approximation to the monomial would have error
2−k+1. Substituting that bound into Equation 15 and carrying out the same calculation
would yield an upper bound of ek·(n−k)n−k

2k·nn−k , which for k ≈ n is ≳ (e/2)n. Because any
distinguishing advantage must be at most 1, this is a vacuous bound.

7.1 Proof of upper bound: Theorem 1
▶ Theorem 18. For any pair of (k − 1)-wise indistinguishable distributions µ, ν over {0, 1}n,
the statistical distance ϵ between µ|k and ν|k satisfies:

ϵ ≲
(n − k) n−k

2 · (n + k) n+k
2

2k · nn

Proof. Let T be a general distinguisher on k inputs. By Facts 5 and 6, T can be assumed
to be a symmetric Boolean-valued function and has the representation T =

∑k
w=0 bw · Qw

where each of the bw is either 0 or 1. We bound the distinguishing advantage as follows.
Recalling that µ and ν are k − 1-indistinguishable symmetric distributions over {0, 1}n, for
any set S ⊆ [n] of size k we have:

EX∼µ[T (X|S)] − EY ∼ν [T (Y |S)] =
k∑

w=0
bw

(
E[Qw(X|S)] − E[Qw(Y |S)]

)
≤

k∑
w=0

∣∣E[Qw(X|S)] − E[Qw(Y |S)]
∣∣

≤ (k + 1) · max
w=0,...,k

∣∣E[pw(ϕ(|X|)] − E[pw(ϕ(|Y |))]
∣∣

≲
(n − k) n−k

2 · (n + k) n+k
2

2k · nn
,
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where the final upper bound is from Lemma 17. ◀

8 Proof of lower bound: Theorem 2

▶ Theorem 19. Let Qk/2 be the statistical test over k bits that accepts if and only if the
observed Hamming weight is k/2. There exists a pair of (k − 1)-wise indistinguishable
distributions X, Y such that the reconstruction advantage of Qk/2 is at least ϵ, satisfying:

ϵ ≳
(n − k) n−k

2 · (n + k) n+k
2

2k · nn
.

Proof. By Claim 12 and Corollary 14, it suffices to show that any degree k − 1 polynomial
approximation to pk/2 over Dout

n must have error at least ϵ. Lemma 11 reduces the problem
further to proving hardness of approximation of pk/2 over Din

n . From Claim 15 and Lemma 7,
the coefficient on the degree k term of the discrete Chebyshev representation of pk/2 is

≳

(
k

k/2
)(

n−k
(n−k)/2

)(
n

n/2
) · nk · (n − k)!!2

n!!2 · 1
(2n)k

·

√
(n + k)!
(n − k)! ,

which is ≳ ϵ, by trivially applying the bounds for the central binomial coefficient, factorial,
and double factorial in Section 2. The theorem then follows by applying Lemma 10. ◀

9 Future research

It would be worthwhile to explicitly construct the distributions of Theorem 2 (as done in [10]
to match the non-constructive bounds in [9]). We also ask whether similar methods can
be extended to work in the full setting of [3, 8] in which there may be a gap between the
indistinguishability and reconstruction parameters or in the context of distributions µ, ν

over Σn, where Σ is an alphabet of size larger than 2. Finally, we observe the interplay
between results stemming from classical approximation theory (often featuring Chebyshev
polynomials) and quantum algorithms (notably in the pair of papers [18, 7]) and ask whether
our results can be recovered with a quantum argument.
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A A technical claim

▷ Claim 20. Let v =
∏k

i=1
(i−1/2)(i+1/2)

i2 . Then,

3
4k2 ≤ v ≤ 1

Proof. We have that v =
∏k

i=1
(
1 − 1

4i2

)
, which is a product of numbers less than 1 and

justifies the upper bound. For the lower bound, we have:

1
v

=
k∏

i=1

4i2

4i2 − 1

= 4
3 · 16

15 · ... · 4k2

4k2 − 1

≤ 4
3 · 16

4 · ... · 4k2

4(k − 1)2

= 4k2

3 . ◁
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B Proof of Lemma 16

Proof. We find the maximising value of Cw by expanding the expression for Cw and removing
terms that do not depend on w:

arg max
w

Cw = arg max
w

(
k
w

)(
n−k

1
2 (n−k)

)(
n

1
2 (n−k+2w)

) · nk · (n − k)!!2

(n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

(
k
w

)(
n

1
2 (n−k+2w)

) · 1
(n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

k! · ( n−k+2w
2 )! · (n − n−k+2w

2 )!
w! · (k − w)! · n! · (n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

( n−k+2w
2 )! · ( n+k−2w

2 )!
w! · (k − w)! · (n − k + 2w)!! · (n − 2w + k)!!

= arg max
w

( n−k+2w
2 )! · ( n+k−2w

2 )!
w! · (k − w)! · 2n · ( n−k+2w

2 )! · ( n−2w+k
2 )!

= arg max
w

1
w! · (k − w)! = k/2 ◀

C Proof of Corollary 3

In this section we justify Corollary 3. The proof will rely on two technical lemmas which are
presented prior to the final proof of the corollary.

▶ Lemma 21. Let g = g(ϵ) be defined over [0, 0.4), where g is:

(1.6 + ϵ)0.8+ϵ/2 · (0.4 − ϵ)0.2−ϵ/2

20.6+ϵ

Then, for any positive ϵ in the domain of g, we have g(ϵ) > 4/5.

Proof. It suffices to show: (a) that g is minimised over its domain at 0 and g(0) = 4/5 and
(b) that g′ > 0 for all positive ϵ. Computing the derivative, we have:

g′(ϵ) = (1/5) ·
(

2−1.6−ϵ · (2 − 5ϵ)0.2−ϵ/2 · (8 + 5ϵ)0.8+ϵ/2 · (ln(1.6 + ϵ) − ln(1.6 − 4ϵ))
)

The statement (a) is justified by checking that 4/5 = g(0) ≤ limϵ→0.4 g(ϵ) and checking that
the derivative is zero only at ϵ = 0. Statement (b) follows from observing that g′ is a product
of exponential terms that are always positive and the factor ln(1.6 + ϵ) − ln(1.6 − 4ϵ), which
is also always positive for positive ϵ because the natural log is an increasing function. ◀

▶ Lemma 22. Let fn denote the function of k in the lower bound of Theorem 2, when n is
sufficiently large and fixed. Similarly, let Fn be the function of k in the upper bound Theorem 1
when n is sufficiently large and fixed. Then, for any fixed ϵ > 0, Fn(0.6n) < fn((0.6 + ϵ)n).

Proof. Fix ϵ > 0 and let δ be g(ϵ) − 4/5. By Lemma 21, δ > 0. The present lemma then
follows immediately from the inequalities:

Fn(0.6n) = O(nc) · (4/5)n ≤ (4/5 + δ)n ≤ gn(ϵ) = fn((0.6 + ϵ)n),

where the first equality is from Theorem 1, the first inequality is true for large enough n, the
second inequality follows from Lemma 21, and the final equality is from the definition of fn

and Theorem 2. ◀
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We now use Lemmas 21 and 22 to prove Corollary 3.

Proof. Fix arbitrary ϵ > 0. In the game of Corollary 3, suppose that Player 1 chooses k̃,
where

k̃ > (0.6 + ϵ) · n.

Then, by Theorem 2 and Lemma 22, Player 2 will be able to choose a symmetric pair
of perfectly (k̃ − 1)-wise indistinguishable distributions where the k̃-wise reconstruction
advantage is at least fn(k̃) > Fn(0.6n). Thus, the payoff of Player 1 will be strictly less than
1 − Fn(0.6n). This k̃ could not have been the optimal strategy for Player 1, since Player 1
can choose 0.6n, where by Theorem 1, Player 2 achieves payoff at most Fn(0.6n) and Player
1 gets payoff at least 1 − Fn(0.6n). Thus, the optimal strategy k∗ cannot be chosen to be as
large as k̃ and we have that

k∗ − 0.6n ≤ ϵn

We omit the proof of the complementary lower bound on k∗ because it follows exactly the
same structure as the upper bound. Together, these bounds imply that |k∗ − 0.6n| ≤ ϵn for
any arbitrarily small positive constant ϵ. ◀

D Proof of Corollary 4

Proof. Suppose that there exists an f that obeys the premises of the corollary, namely
symmetry, no low-degree terms, and symmetry of Fourier coefficients. Define distributions µ, ν

from f as follows (as in the method of [2]): µ(z) = 2 · max{0, f(z)}, ν(z) = 2 · max{0, −f(z)}.
The total weight of each distribution is 1 because

∑
z |f(z)| = 1 and because by assumption

f̂(∅) = 0, which implies that
∑

z f(z) = 0. Thus µ and ν are valid distributions. Next,
observe that for every function χS :=

∏
i∈S xi, the function χS has zero distinguishing

advantage between µ and ν when |S| ≤ k − 1:

f̂(S) = 0 =⇒
∑

z

χS(z)f(z) = 0 =⇒ 1
2

(∑
z

χS(z)µ(z) −
∑

z

χS(z)ν(z)
)

= 0

=⇒ EX∼µ[χS(X|S)] − EY ∼ν [χS(Y |S)] = 0.

The set of all χS for |S| ≤ k − 1 form a basis for all statistical tests on k − 1 bits; thus it
follows immediately that µ and ν are perfectly (k − 1)-wise indistinguishable. The symmetry
of µ and ν follows straightforwardly from the symmetry of the Fourier coefficients of f .

We then have that for any S ⊆ [n] where |S| = k,

f̂(S) = E[χS · f ] = 1
2E[χS · (µ − ν)] = EX∼µ[χS(X|S)] − EY ∼ν [χS(Y |S)]

≤ O(nc) · (n − k) n−k
2 · (n + k) n+k

2

2k · nn

The final inequality follows from Theorem 1 and fact that µ and ν obey the premises of
that theorem, the implication that the statistical distance between any k-wise marginals of µ

and ν is at most O(nc) · (n−k)
n−k

2 ·(n+k)
n+k

2

2k·nn , the fact that χS is a statistical test on k bits,
and the fact that EX∼µ[χS(X|S)] −EY ∼ν [χS(Y |S)] is precisely the reconstruction advantage
of the statistical test χS . ◀
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Abstract
In this note we present a simplified analysis of the quantum and classical complexity of the k-
XOR Forrelation problem (introduced in the paper of Girish, Raz and Zhan [7]) by a stochastic
interpretation of the Forrelation distribution.
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1 Introduction

The Forrelation problem [1] and variants of it have been useful in producing problems that
are efficiently solvable by quantum protocols but are hard for classical protocols, in various
different models. A recent line of work analyzing the Forrelation distribution builds on the
polarizing random walk framework introduced by Chattopadhyay, Hatami, Hosseini and
Lovett [4]. This framework views the Forrelation distribution as being generated by a random
walk in RN , producing a particular Gaussian distribution, and then rounded to the Boolean
cube {−1, 1}N . This approach lead to breakthroughs as Raz and Tal’s result on the oracle
separation of BQP and PH [9] and Bansal and Sinha’s proof that k-Forrelation exhibits an
optimal separation between quantum and classical query complexity [2]1.

The recent work of Girish, Raz and Zhan [7] analyzes the XOR of k copies of the
Forrelation function, and shows that the resulting problem is such that classical protocols
of quasipolynomial size can only achieve quasipolynomially small advantage over random
guessing, while there exist quantum protocols with complexity polylog(N). They show
this for quantum simultaneous-message communication protocols vs. classical randomized
communication protocols, as well as for quantum query complexity vs. classical query
complexity.

Stochastic calculus viewpoint

The approach here generalizes [13] (indeed, the k = 1 case is identical). There are two main
points where the stochastic approach simplifies the argument in [7].

1 The proof is phrased in terms of Gaussian interpolation, which is a different viewpoint on the stochastic
approach.
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First, the Forrelation distribution, prior to rounding, is a truncated multivariate Gaussian.
A multivariate N -dimensional Gaussian can also be realized as an N -dimensional Brownian
motion, stopped at some constant time. Using a continuous-time random walk allows us to
apply stochastic calculus techniques to bound how well f distinguishes the two distributions
directly using the 2kth order derivatives of f , without the need for additional intermediate
bounds. Furthermore, the Brownian motion approach allows for an induction on k, eliminating
the need for complex dimension-dependent bounds.

Second, viewing the Gaussian as a Brownian motion also allows us to use a stopping
time to encode the truncation. This allows us to directly encode the boundedness of the
distribution in the random variable. This eliminates the extra step to truncate the Gaussian
and bound the closeness in expectation between the truncated and non-truncated Gaussians.

Connections and future work

Conceptually, viewing a truncated Gaussian as a stopped Brownian motion enforces a
pathwise view of the random variable, i.e. sampling from the distribution means sampling
a path of a random walk. This makes calculations on the distributions easier, for instance
because the paths naturally split into “paths which always remain within the region” and
“paths which end by hitting the boundary”. This technique may also be interesting for other
applications using truncated Gaussians (or analogously, replacing a truncated exponential
distribution by a stopped geometric Brownian motion.) The stochastic calculus view of
Gaussians has also been useful for other Boolean analysis results, for instance in the proof of
Bobkov’s Two Point Inequality by Barthe and Maurey [3]. Ideas related to the pathwise view
of random variables also appear in the recent paper of Eldan and Gross [6], which expresses
the variance and influence of a Boolean function in terms of its action on a certain Brownian
motion.

2 Preliminaries

We state the main stochastic calculus result we will need in the proof. This is Dynkin’s
formula [8, Theorem 7.4.1] specialized to our scenario of the Brownian motion having mean
0 and constant covariance.

▶ Theorem 1. Let X be an n-dimensional Brownian motion with mean 0 and covariance Σ,
let τ be a bounded stopping time, and let f : RN → R be a twice continuously differentiable
function. We use Hf to denote the Hessian of f , the N × N matrix of second order partial
derivatives. The following holds:

E[f(Xτ )] = f(0) + E
[∫ τ

0

1
2 ⟨Σ, Hf(Xs)⟩ ds

]
.

We also need the following formula regarding random restrictions, which is essentially
Lemma 1 of [13]. A similar idea appears in the proof of Lemma 5.1 of [7], and previously
in [5, Claim A.5].

▶ Lemma 2. Let f : RN → R be a multilinear polynomial. For any x ∈ [−1/2, 1/2]N , there
exists a distribution Rx over restrictions ρ ∈ {−1, 1, ∗}N , such that for any S ⊆ [N ],

∂Sf(x) = 2|S| E
ρ∼Rx

[∂Sfρ(0)].
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Here we write ∂S =
∏

i∈S
∂
∂i

for the partial derivatives over the coordinates in S. We
further define the Fourier coefficient f̂(S) := ∂Sf(0). Note that this coincides with the usual
decomposition f(x) =

∑
S⊆[n] f̂(S)

∏
i∈S xi.

3 A bound on a product of Brownian motions

▶ Definition 3. Let k ∈ N+, and let X(1), . . . , X(k) be identical independent N -dimensional
Brownian motions with mean 0 and covariance matrix Σ, and let τ1, . . . , τk be stopping times.

We consider distributions on RkN ∼= (RN )k, which we take to be k copies of RN , indexed
by coordinates 1, . . . , k. Let S ⊆ [k]. Define the random variable XS

τ to be X(i)
τi in the ith

coordinate if i ∈ S, and 0 in the ith coordinate if i /∈ S. We set DS to be the distribution
of XS

τ .
We write S ∼ [k] to denote drawing S ⊆ [k] uniformly. We now define the distribution

Dodd, k to be the distribution of DS conditioned on |S| being odd. Similarly, we define Deven, k

to be DS conditioned on |S| being even. When k = 1, we define D1 = X(1)
τ1 = Dodd, 1.

For a multilinear function f : RkN → R, we note the identity

E[f(Deven, k)] − E[f(Dodd, k)] = 2 E
S∼[k]

[
(−1)|S|f(DS)

]
. (1)

The following bounds how well a Boolean function with bounded level-2k Fourier weight
can distinguish Deven, k and Dodd, k. This is essentially Theorem 3.1 of [7].

▶ Theorem 4. Let k ∈ N+, let f : {−1, 1}kN → {−1, 1} be a Boolean function, and let L > 0
be such that for any restriction ρ,∑

S⊆[kN ]
|S|=2k

|f̂ρ(S)| ≤ L.

Let γ > 0 and let X(1), . . . , X(k) be identical independent N -dimensional Brownian motions
with mean 0 and covariance matrix Σ. Further assume that |Σij | ≤ γ for i ̸= j.

Let ε > 0 and define the (bounded) stopping times for each i ∈ [k],

τi := min {ε, first time that X(i) exits [−1/2, 1/2]N }.

Then, identifying f with its multilinear expansion, we have

| E
S∼[k]

[
(−1)|S|f(DS)

]
| ≤ (εγ)kL.

Proof. We first prove by induction on k that for any multilinear function f ,

E
S∼[k]

[
(−1)|S|f(DS)

]
= E

[∫ τ1

0
· · ·

∫ τk

0

(−1)k−1

22k−1

〈
(Ik ⊗ Σ)⊗k, H⊗kf(X(1)

t1 , . . . , X(k)
tk

)
〉

dt1 . . . dtk

]
,

(2)

where H⊗kf denotes the (kN)k-dimensional matrix of all the 2kth order derivatives of f , Ik

is the k-dimensional identity matrix, and ⊗ denotes the Kronecker product.
The base case k = 1 is simply a direct application of Dynkin’s formula (Theorem 1):

E[f(X(1)
τ1

)] − f(0) = E
[∫ τ1

0

1
2

〈
Σ, Hf(X(1)

t1
)
〉

dt1

]
.
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For the induction step, we condition on the last coordinate to observe that

E
S∼[k]

[
(−1)|S|f(DS)

]
= 1

2 E
S∼[k−1]

[
(−1)|S|f(DS, 0)

]
− 1

2 E
S∼[k−1]

[
(−1)|S|f(DS, X(k)

τk
)
]

(3)

Now let S ∼ [k − 1]. We will proceed by applying Dynkin’s formula to g(x) =
ES, DS [(−1)|S|f(DS, x)]. Since f is a multilinear function, partial derivatives of g com-
mute with the expectation; in particular ∂ig(x) = E[(−1)|S|∂i+(k−1)N f(DS, x)], and so, with
ek ∈ Rk denoting the indicator of the kth coordinate,

E
S, DS, X(k), τk

[(−1)|S|f(DS, X(k)
τk

)] − E
S, DS

[(−1)|S|f(DS, 0)]

= E
X(k), τk

[
1
2

∫ τk

0

〈
ekeT

k ⊗ Σ, E
S, DS

[
(−1)|S| Hf(DS, X(k)

tk
)
]〉

dtk

]
(4)

Finally, we apply the induction hypothesis to find, for (k − 1)N < i, j ≤ kN ,

E
S∼[k−1]

[
(−1)|S|∂i,jf(DS, X(k)

tk
)
]

= E
[∫ τ1

0
· · ·

∫ τk−1

0

(−1)k−2

22k−3

〈
(Ik−1 ⊗ Σ)⊗(k−1), H⊗(k−1)

X(1),...,X(k−1) ∂i,jf(X(1)
t1

, . . . , X(k)
tk

)
〉

dt1 . . . dtk−1

]
.

Combining with Equations (3) and (4) and using bilinearity of the inner product, we conclude

E
S∼[k]

[
(−1)|S|f(DS)

]
= − 1

2 E
X(k), τk

[
1
2

∫ τk

0

〈
ekeT

k ⊗ Σ, E
S, DS

[
(−1)|S| Hf(DS, X(k)

tk
)
]〉

dtk

]
= E

[ ∫ τ1

0
· · ·

∫ τk

0

(−1)k−1

22k−1

〈
ekeT

k ⊗ Σ, HX(k)

〈
(Ik−1 ⊗ Σ)⊗(k−1),

H⊗(k−1)
X(1),...,X(k−1) f(X(1)

t1
, . . . , X(k)

tk
)
〉〉

dt1 . . . dtk

]
= E

[∫ τ1

0
· · ·

∫ τk

0

(−1)k−1

22k−1

〈
(Ik ⊗ Σ)⊗k, H⊗kf(X(1)

t1
, . . . , X(k)

tk
)
〉

dt1 . . . dtk

]
.

Having completed the proof of Equation (2), we now use it to prove the theorem

E
S∼[k]

[
(−1)|S|f(DS)

]
≤ εk E

 sup
t1∈[0,τ1]

...
tk∈[0,τk]

| 1
22k

〈
(Ik ⊗ Σ)⊗k, H⊗kf(X(1)

t1
, . . . , X(k)

tk
)
〉

|

 (τ1, . . . , τk ≤ ε)

≤ (εγ)k

22k
sup

(x1,...,xk)∈[−1/2,1/2]kN

∑
S⊆[kN ]
|S|=2k

|∂Sf(x1, . . . , xk)| (|Σij | ≤ γ for i ̸= j, ∂iif = 0)

≤ (εγ)k sup
(x1,...,xk)∈[−1/2,1/2]kN

∑
S⊆[kN ]
|S|=2k

| E
ρ∼Rx1,...,xk

[∂Sfρ(0, . . . , 0)]| (Lemma 2)

≤ (εγ)k sup
(x1,...,xk)∈[−1/2,1/2]kN

E
ρ∼Rx1,...,xk

 ∑
S⊆[kN ]
|S|=2k

|f̂ρ(S)|


≤ (εγ)kL. ◀
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4 Application to complexity of k-XOR Forrelation

We now apply the bound from the previous section to prove the main theorem from [7,
Theorem 3.1], from which they derive separations in quantum versus classical query complexity,
communication complexity and circuit complexity (we refer to [7] for the exact details about
the definitions of the complexity classes and the full proof).

We briefly sketch how the proof in [7] proceeds. For the lower bounds on the classical
complexity classes, it suffices to exhibit two distributions that are hard for functions in the
complexity class to distinguish. These will be derived from Dodd, k and Deven, k, with Σ and ε

chosen appropriately ([7] uses the truncated Gaussian instead of the stopping time here). [7]
observes that these classical complexity classes are closed under restrictions. Then, Theorem 4
and Equation (1) combined with bounds on the level-k Fourier weights proven in [11] and [7]
shows the classical lower bounds.

For the quantum upper bound, we need to show that a quantum query algorithm
(or communication protocol respectively) can distinguish Dodd, k and Deven, k with high
probability. We will show that the concentration results proven in [7] hold in our context as
well.

We now set values for ε and k. We take ε = 1/(28k2 ln N), and k small enough that
ε2N ≤ poly(N) (e.g. k ≤ O(N1/5) suffices), and set

Σ :=
(

In Hn

Hn In

)
,

where N = 2n, n is a power of 2 and Hn is the normalized Hadamard matrix, so γ = 1√
n

.
Applying Theorem 4, the overall upper bound is L2k · polylog(N)/Nk, where L2k is the
bound on the Fourier weight at level 2k for the family of functions in the complexity class.

The quantum algorithm/communication protocol is based on the k-XOR Forrelation
problem, which we define here: Let ϕ : Rn ×Rn → R as ϕ(x, y) := 1

n ⟨x, Hny⟩. The Forrelation
decision problem is a partial function defined by

F (x, y) =
{

−1 if ϕ(x, y) ≥ ε/2,

1 if ϕ(x, y) ≤ ε/4.

The k-XOR Forrelation F (k) : {−1, 1}kN → {−1, 1} is defined by F (k)(z1, . . . , zk) =∏k
i=1 F (zi).

Since Dodd, k and Deven, k take values in [−1/2, 1/2]kN but F (k) is defined on {−1, 1}kN ,
we round them to distributions D̃odd, k and D̃even, k on {−1, 1}kN . A draw of z̃ ∼ D̃odd, k is
defined as follows:
nosep Sample z ∼ Dodd, k.
nosep For each coordinate i ∈ [N ], independently set z̃i = 1 with probability 1+zi

2 and −1
with probability 1−zi

2 . We denote z̃ ∼ z for this step. Now z̃ is sampled from D̃odd, k.
D̃even, k is defined analogously. Note that for a multilinear polynomial f : RN → R,
E[f(Dodd, k)] = E[f(D̃odd, k)] (analogously for D̃even, k).

Girish, Raz and Zhan showed the following about the rounding process:

▶ Proposition 5 (Claim A.2 [7]). Let z ∈ [−1/2, 1/2], and let z̃ ∼ z as in step 2 above. Then,

P[|ϕ(z̃) − ϕ(z)| > ε/4] ≤ exp(−Ω(N1/4)).

STACS 2022
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Finally, we show a concentration result analogous to Lemma 2.11 of [7] which shows that
F (k) decides correctly on D̃odd, k and D̃even, k with high probability. This is then sufficient
to deduce the applications described in [7].

First, we prove a concentration bound for ϕ(D1), i.e. (x, y) are generated by a single
N -dimensional stopped Brownian motion with covariance Σ.

▶ Lemma 6. In the above context, the following holds:

P
(x,y)∼D1

[ϕ(x, y) ≥ 3ε/4] ≥ 1 − O(1/N6k2
). (5)

Proof. Notice that an alternate way to sample (x, y) ∼ D1 is to let Xt be a n-dimensional
Brownian motion with covariance In stopped at the stopping time

τ := min{ε, first time that Xt or HnXt exits [−1/2, 1/2]n},

and let (x, y) = (Xτ , HnXτ ). Then, ϕ(x, y) = 1
n ∥Xτ ∥2

2. In order to prove the desired bound,
we first prove that with high probability τ = ε, i.e. the path of the Brownian motion did not
exit [−1/2, 1/2]N before time ε. We then show that 1

n ∥Xε∥2
2 ≥ 3ε/4 with high probability,

and conclude using a union bound. We can union bound over the N coordinates,

Pr[τ < ε] ≤ N · P[1st coordinate of Xt exits [−1/2, 1/2] earlier than ε/2].

Since each coordinate of Xt is a standard 1D Brownian motion Bt, we can apply Doob’s
submartingale inequality (e.g. [10, Proposition II.1.8]) to obtain

Pr
[

sup
0≤t≤ε/2

|Bt| ≥ 1
2

]
≤ 2e−1/4ε = 2e−7k2 ln N = 2

N7k2 .

Therefore,

Pr[τ < ε] ≤ 2/N7k2−1. (6)

Next, we consider 1
n ∥Xε∥2

2. Note that this is simply the average of the squares of n iid
Gaussians x1, . . . , xn with mean 0 and variance ε. Using [12, Example 2.11], we have the
tail bound

Pr
[

| 1
n

n∑
i=1

x2
i − ε| ≥ ε

4

]
≤ exp(−Ω(N)). (7)

Taking a union bound over Equations (6) and (7), we have P(x,y)∼D1 [ϕ(x, y) ≤ 3ε/4] ≤
O(1/N6k2). ◀

▶ Proposition 7. The following hold:

P
z̃∼D̃even, k

[F (k)(z̃) = 1] ≥ 1 − O
(

k

N6k2

)
and P

z̃∼D̃odd, k

[F (k)(z̃) = −1] ≥ 1 − O
(

k

N6k2

)
.

Proof. We first show F decides correctly on the coordinates with UN with high probability:

P
(x,y)∼UN

[ϕ(x, y) ≤ ε/4] ≥ 1 − exp(−Ω(Nε2)). (8)

To see this, note that x and y are independent, so x and Hny are independent. Hence ϕ(x, y)
is simply the average of random signs, and the bound holds by Hoeffding’s inequality.
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Finally, to prove the proposition it suffices to prove that for any fixed S ⊆ [k],
Pz∼DS , z̃∼z[F (k)(z̃) ̸= (−1)|S|] ≤ O(k/N6k2). If i ∈ S, then z̃i is distributed as D̃1, so
Lemma 6 combined with Proposition 5 implies P[F (z̃i) = 1] ≤ O(1/N6k2). Meanwhile if
i /∈ S, then z̃i is distributed as UN , so Equation (8) implies P[F (z̃i) = −1] ≤ exp(−Ω(Nε2)).
With k and therefore ε taken sufficiently small, a union bound over the k coordinates
completes the proof. ◀
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