
Splitting Spanner Atoms:
A Tool for Acyclic Core Spanners
Dominik D. Freydenberger
Loughborough University, UK

Sam M. Thompson
Loughborough University, UK

Abstract
This paper investigates regex CQs with string equalities (SERCQs), a subclass of core spanners. As
shown by Freydenberger, Kimelfeld, and Peterfreund (PODS 2018), these queries are intractable,
even if restricted to acyclic queries. This previous result defines acyclicity by treating regex formulas
as atoms. In contrast to this, we propose an alternative definition by converting SERCQs into
FC-CQs – conjunctive queries in FC, a logic that is based on word equations. We introduce a way
to decompose word equations of unbounded arity into a conjunction of binary word equations.
If the result of the decomposition is acyclic, then evaluation and enumeration of results become
tractable. The main result of this work is an algorithm that decides in polynomial time whether
an FC-CQ can be decomposed into an acyclic FC-CQ. We also give an efficient conversion from
synchronized SERCQs to FC-CQs with regular constraints. As a consequence, tractability results for
acyclic relational CQs directly translate to a large class of SERCQs.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Document spanners, information extraction, conjunctive queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2022.10

Related Version Full Version: https://arxiv.org/abs/2104.04758

Funding Dominik D. Freydenberger : Supported by EPSRC grant EP/T033762/1.

Acknowledgements The authors would like to thank Justin Brackemann, and the anonymous
reviewers for all their helpful comments and suggestions.

1 Introduction

Document spanners were introduced by Fagin, Kimelfeld, Reiss, and Vansummeren [7] as a
formalization of AQL, an information extraction query language used in IBM’s SystemT.
Informally, they can be described in two steps. First, so-called extractors convert an input
document, a word over a finite alphabet, into relations of so-called spans. We assume the
extractors to be regex formulas (as described in [7]), which are regular expressions with
capture variables. Consider the following example of a regex formula

γ(x) := Σ∗ · x{(EBDT) ∨ (ICDT)} · Σ∗.

Given some input word, γ(x) can be used to extract a unary relation of spans such that each
span represents a factor of the input word that is either “EBDT” or “ICDT”.

The second step is that the extracted relations are combined using a relational algebra.
Classes of spanners can be defined by the choice of relational operators. Regular spanners
allow for union ∪, projection π, and natural join ▷◁. Depending on how they are represented,
regular spanners have been shown to be efficient. For example, if a regular spanner is
given as a so-called vset-automaton, results can be enumerated with constant delay after

© Dominik D. Freydenberger and Sam M. Thompson;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Database Theory (ICDT 2022).
Editors: Dan Olteanu and Nils Vortmeier; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5088-0067
https://orcid.org/0000-0002-3476-6739
https://doi.org/10.4230/LIPIcs.ICDT.2022.10
https://arxiv.org/abs/2104.04758
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Splitting Spanner Atoms

linear time preprocessing [9, 2]. However, if a regular spanner is given as a join of regex
formulas, evaluation is intractable – as shown in [13], evaluation for spanners of the form
P := π∅(γ1 ▷◁ γ2 · · · ▷◁ γn) is NP-complete, even if P is acyclic.

Core spanners extend regular spanners by allowing equality selection ζ=, which checks
whether two (potentially different) spans represent the same factor of the input document.
Even when core spanners are restricted to queries of the form π∅ζ

=
x1,y1

· · · ζ=
xm,ym

γ for a single
regex formula γ, the evaluation problem is NP-complete [11]. Therefore, both joins and
equalities introduce computational hardness.

Regex CQs can be understood as the spanner version of relational CQs, which are a
central topic in database theory. In each case, a conjunctive query is a projection over a join
of atoms. Apart from the setting, the key difference is that while the tables for relational
CQs are usually part of the input, the tables for regex CQs are defined implicitly through the
regex formulas. Hence, while one could extract these tables and then perform a standard CQ
over the extractions, the number of tuples in the materialized relations may be exponential.
As a consequence, tractable restrictions on relational queries (such as acyclic CQs) do not
lead to tractable fragments of regex CQs [13].

So-called SERCQs extend regex CQs by also allowing string equality, thus allowing us to
examine both previously discussed sources of intractability. Consider the following SERCQ

P := πx,y ζ
=
x,x′ (γsen(z) ▷◁ γprod(x) ▷◁ γpos(y) ▷◁ γfactors(x, x′, z) ▷◁ γfactor(y, z)) ,

where we assume γsen extracts sentences, γprod extracts product names, γpos extracts positive
sentiments (such as “enjoyed”), and γfactors(x, x′, z) and γfactor(y, z) ensure that x and x′ are
successive (but not necessarily consecutive) factors of z, and y is a factor of z respectively.
Therefore, P extracts spans representing products that are mentioned twice within a sentence,
along with a positive sentiment that appears in the same sentence.

Syntactic restrictions on conjunctive queries have been incredibly fruitful for finding
tractable fragments. A well known result of Yannakakis [22] is that for acyclic conjunctive
queries, evaluation can be solved in polynomial time. Further research on the complexity
of acyclic conjunctive queries [15] and the enumeration of results for acyclic conjunctive
queries [3] has shown the efficacy of this restriction. On the other hand, for document
spanners, such syntactic restrictions are yet to unlock tractable fragments.

To address this gap, we consider a different approach and represent SERCQs as a conjunc-
tive query fragment of the logic FC[REG], introduced by Freydenberger and Peterfreund [14].
This logic is based on word equations, regular constraints, and first-order logic connectives.
Consider the following FC[REG] conjunctive query

φ := Ans(x, y)← (z =̇ z2 ·x · z3 ·x · z4)∧ (z =̇ z5 · y · z6)∧ (z ∈̇ γsen)∧ (x ∈̇ γprod)∧ (y ∈̇ γpos).

If γsen is a regular expression that accepts sentences, γprod accepts a product name, and
γpos accepts a positive sentiment, then φ is “equivalent” to the previously given SERCQ.
They are not equivalent in a strict sense – a key difference being that SERCQs reason over
spans, whereas FC[REG]-CQs reason over factors of the input words. Reasoning over words
does bring some advantages: For example, φ simply uses relations of words (for example,
γprod) encoded as a regular expression, and if we wanted to do something analogous for
regex-formulas, we would first have to extract the corresponding relation of spans.

When dealing with word equations, we run into an issue that we already encountered for
regex formulas: Their relations may contain an exponential number of tuples. This is due to
the unbounded arity of word equations. However, an FC atom can be considered shorthand
for a concatenation term. For example, the word equation y =̇ x1x2x3x4 can be represented

D. D. Freydenberger and S. M. Thompson 10:3

as y =̇ f(f(x1, x2), f(x3, x4)) where f denotes binary concatenation. This then lends itself to
the “decomposition” of the word equation into a CQ consisting of smaller word equations.
We can express the above word equation as (y =̇ z1 · z2) ∧ (z1 =̇ x1 · x2) ∧ (z2 =̇ x3 · x4). For
such a decomposition, the relations defined by each word equation can be stored in linear
space and we can enumerate them with constant delay. Thus, if the resulting query is acyclic,
then the tractability properties of acyclic conjunctive queries directly translate to the FC-CQ.

Contributions of this paper. The goal of this work is to bridge the gap between acyclic
relational CQs and information extraction. To this end, we define FC[REG]-CQs, a conjunctive
query fragment of FC[REG], and show show that any so-called synchronized SERCQ can be
converted into an equivalent FC[REG]-CQ in polynomial time (Lemma 3.6).

We define the decomposition of an FC-CQ into a 2FC-CQ, where 2FC-CQ denotes the
set of FC-CQs where the right-hand side of each word equation is of at most length two.
Our first main result is a polynomial-time algorithm that decides whether a pattern1 can be
decomposed into an acyclic 2FC-CQ (Theorem 4.12).

Building on this, we give a polynomial-time algorithm that decomposes an FC-CQ into
an acyclic 2FC-CQ, or determines that this is not possible (Theorem 5.14). As soon as we
have an acyclic 2FC-CQ, the upper bound results for model checking and enumeration of
results follow from previous work on relational acyclic CQs [15, 3].

We mainly focus on FC-CQs (i. e., no regular constraints) due to the fact that we can
add regular constraints for “free”. This is because regular constraints are unary predicates,
and therefore can be easily incorporated into a join tree. Thus, our work defines a class of
FC[REG]-CQs for which model checking can be solved in polynomial time, and results can be
enumerated with polynomial-delay (both in terms of combined complexity).

Our approach offers a new research direction for tractable document spanners. Most of
the current literature approaches regular spanners by “compiling” the spanner representation
(regex formulas that are combined with projection, union, and joins) into a single automaton,
where the use of joins can lead to a number of states that is exponential in the size of the
original representation. Instead, we look at decomposing FC conjunctive queries into small
and tractable components. This allows us to use the wealth of research on relational algebra,
while also allowing for the use of the string equality selection operator.

Related Work. Regarding data complexity, Florenzano, Riveros, Vgarte, Vansummeren,
and Vrgoc [9] gave a constant-delay algorithm for enumerating the results of deterministic
vset-automata, after linear time preprocessing. Amarilli, Bourhis, Mengal, and Niewerth [2]
extended this result to non-deterministic vset-automata. Regarding combined complexity,
Freydenberger, Kimelfeld, and Peterfreund [13] introduced regex CQs and proved that their
evaluation is NP-complete (even for acyclic queries), and that fixing the number of atoms and
the number of string equalities in SERCQs allows for polynomial-delay enumeration of results.
Freydenberger, Peterfreund, Kimelfeld, and Kröll [12] showed that non-emptiness for a join
of two sequential regex formulas is NP-hard, under schemaless semantics, even for a single
character document. Connections between the theory of concatenation and spanners have
been considered in [11, 10, 14], which give many of the lower bound complexity results for
core spanners. Schmid and Schweikardt [21] examined a subclass of core spanners called refl-
spanners, which incorporate string equality directly into a regular spanner. Peterfreund [19]
considered extraction grammars, and gave an algorithm for unambiguous extraction grammars
that enumerates results with constant-delay after quintic preprocessing.

1 For the purposes of this introduction, a pattern can be considered a single FC atom.

ICDT 2022

10:4 Splitting Spanner Atoms

2 Preliminaries

Let ∅ denote the empty set, and for n ≥ 1 let [n] := {1, 2, . . . , n}. Given a set S, we use |S|
for the cardinality of S. If S is a subset of T then we write S ⊆ T and if S ̸= T also holds,
then S ⊂ T . We write P(S) for the powerset of S. The difference of two sets S and T is
denoted as S \ T . If x⃗ is a tuple, we write x ∈ x⃗ to indicate that x is a component of x⃗. Let
A be an alphabet. We use |w| to denote the length of some word w ∈ A∗ and ε to denote
the empty word. The number of occurrences of a ∈ A within w is |w|a. We write u · v or just
uv for the concatenation of words u, v ∈ A∗. If u = p · v · s for p, s ∈ A∗ then v is a factor of
u, denoted v ⊑ u. If u ̸= v also holds, then v ⊏ u. Let Σ be an alphabet of terminal symbols
and let Ξ be an infinite alphabet of variables. We assume that Σ ∩ Ξ = ∅ and |Σ| ≥ 2.

If T := (V,E) is a tree, then a path between x1 ∈ V and xn ∈ V is the shortest sequence
of edges from x1 to xn. If ({x1, x2}, {x2, x3}, . . . , {xn−1, xn}) is a path, then we say a node
y lies on this path if y = xj for some j ∈ [n]. We call the number of edges on a path from x1
to xn the distance between x1 and xn.

Document Spanners. Given w := w1 · w2 · · ·wn where wi ∈ Σ for all i ∈ [n], a so-called
span of w is an interval [i, j⟩ where 1 ≤ i ≤ j ≤ n + 1. A span [i, j⟩ defines a factor
w[i,j⟩ := wi ·wi+1 · · ·wj−1 of w. Let V ⊂ Ξ, where V is finite, and let w ∈ Σ∗. A (V,w)-tuple
is a function µ that maps each x ∈ V to a span µ(x) of w. A spanner P , with variables V ,
is a function that maps every w ∈ Σ∗ to a set P (w) of (V,w)-tuples. By Vars (P), we denote
the set of variables of P .

Like [7], we use regex formulas as the primary extractors. Regex formulas are an extension
of regular expressions with so-called capture variables. More formally: ∅, ε, and a where
a ∈ Σ are all regex formulas, and if γ1 and γ2 are regex formulas then so are (γ1 · γ2),
(γ1 ∨ γ2), (γ1)∗, and x{γ1} where x ∈ Ξ. We use Σ as a shorthand for

∨
a∈Σ a. We can

omit the parentheses when the meaning is clear. A variable binding x{γ} matches the same
words as γ and assigns the corresponding span of the input word to x. A regex formula is
functional if on every match, each variable is assigned exactly one span. We denote the set
of functional regex formulas by RGX. For γ ∈ RGX, we use JγK to define the corresponding
spanner as follows. Every match of γ on w defines µ, a (Vars (γ), w)-tuple, where for each
x ∈ Vars (γ), we have that µ(x) is the span assigned to x. We use JγK(w) to denote the set
of all such (Vars (γ), w)-tuples. See [7] for more details.

We now define synchronized RGX-formulas (this follows the definition by Freydenberger,
Kimelfeld, Kröll, and Peterfreund in [12]). An expression γ ∈ RGX is synchronized if for all
sub-expressions of the form (γ1 ∨ γ2), no variable bindings occur in γ1 or γ2. We denote the
class of synchronized RGX-formulas by RGXsync.

The motivation for synchronized RGX-formulas is that non-synchronized formulas allow
for “hidden” disjunctions within the atoms. This goes (arguably) against the spirit of CQs
and (as shown in [12]) leads to “un-CQ-like” behavior.

▶ Example 2.1. Consider the regex formula γ := Σ∗ · x{a∨ (b)∗} · y{Σ∗} ·Σ∗. We have that
JγK(w) contains those µ such that µ(x) is a factor of w which is either an a or a sequence
of b symbols, and the span µ(y) occurs directly after µ(x). Since γ is functional, and for
every sub-expression of the form (γ1 ∨ γ2), we have that Vars (γ1) = Vars (γ2) = ∅, it follows
that γ is a synchronized regex formula.

Essentially, a synchronized regex formula is functional if no variable is redeclared, and no
variable is used inside of a Kleene star.

D. D. Freydenberger and S. M. Thompson 10:5

This is extended into a relational algebra comprised of ∪ (union), π (projection), ▷◁
(natural join), and ζ= (string equality). Let w ∈ Σ∗, and let P1 and P2 be spanners. We say
P1 and P2 are compatible if Vars (P1) = Vars (P2). If two spanners P1 an P2 are compatible,
then (P1 ∪ P2)(w) := P1(w) ∪ P2(w). For Y ⊆ Vars (P1), the projection πY P1(w) is defined
as the restriction of all µ ∈ P1(w) to the set of variables Y , and hence Vars (πY P1) := Y .

The natural join, P1 ▷◁ P2, is obtained by defining Vars (P1 ▷◁ P2) := Vars (P1) ∪ Vars (P2),
and (P1 ▷◁ P2)(w) as the set of all (Vars (P1) ∪ Vars (P2), w)-tuples for which there exists
µ1 ∈ P1(w) and µ2 ∈ P2(w) such that µ1(x) = µ2(x) for all x ∈ Vars (P1) ∩ Vars (P2). The
string equality operator ζ=

x1,x2
P1 is defined by ζ=

x1,x2
P1(w) := {µ ∈ P1(w) | wµ(x1) = wµ(x2)},

where Vars
(
ζ=

x1,x2
P1

)
:= Vars (P1).

Given a class of regex-formulas C and a spanner algebra O, we use CO to denote the set
of spanner representations which can be constructed by repeated combinations of operators
from O with a regex-formula from C. We write JCOK to denote the closure of JCK under O.

The class of core spanners (introduced by Fagin, Kimelfeld, Reiss, and Vansummeren [7])
is defined as JRGXcoreK where core := {π, ζ=,∪, ▷◁}. The class of regex CQs with string
equality (SERCQs) is defined as expressions of the form:

P := πY

(
ζ=

x1,y1
· · · ζ=

xl,yl
(γ1 ▷◁ · · · ▷◁ γk)

)
,

where γi ∈ RGX for all i ∈ [k]. We call an SERCQ a synchronized SERCQ if every regex
formula is a synchronized RGX-formula.

▶ Example 2.2. Consider P := ζ=
x1,x2

(γ1 ▷◁ γ2) where γ1 := Σ∗ · x1{Σ+} · a · Σ∗ and
γ2 := Σ∗ ·x2{Σ+} ·b ·Σ∗. Given w ∈ Σ∗, we have that JP K(w) contains those µ such that the
factor wµ(x1) is non-empty, and is immediately followed by the symbol a, the factor wµ(x2)
is immediately followed by the symbol b, and wµ(x1) = wµ(x2). Since both γ1 and γ2 are
synchronized, P is a synchronized SERCQ.

Computational Model and Complexity Measures. We use the random access machine
model with uniform cost measures, where the size of each machine word is logarithmic in the
size of the input. We represent factors of a word w ∈ Σ∗ as spans of w. This allows us to
check whether u = v for u, v ⊑ w in constant time after preprocessing that takes linear time
and space [16, 5] (see Proposition 4.1 for more details). The complexity results we state are
in terms of combined complexity. That is, both the query and the word are considered part
of the input. When considering the enumeration of results for a query executed on a word,
we say that we can enumerate results with polynomial-delay if there exists an algorithm
which returns the first result in polynomial time, the time between two consecutive results is
polynomial, and the time between the last result and terminating is polynomial.

3 Conjunctive Queries for FC

This section introduces FC[REG]-CQs, a conjunctive query fragment of FC with regular
constraints. We give some complexity results regarding SERCQs and show an efficient
conversion from synchronized SERCQs to FC[REG]-CQs.

A pattern is a word α ∈ (Σ ∪ Ξ)∗, and a word equation is a pair η := (αL, αR) where
αL, αR ∈ (Σ ∪ Ξ)∗ are patterns known as the left and right side respectively. We usually
write such η as (αL =̇αR). The length of a word equation, denoted |(αL =̇αR)|, is |αL|+ |αR|.
A pattern substitution is a morphism σ : (Σ ∪ Ξ)∗ → Σ∗ such that σ(a) = a holds for all
a ∈ Σ. Since σ is a morphism, we have σ(α1 · α2) = σ(α1) · σ(α2) for all α1, α2 ∈ (Σ ∪ Ξ)∗.

ICDT 2022

10:6 Splitting Spanner Atoms

A pattern substitution σ is a solution to a word equation (αL =̇ αR) if and only if
σ(αL) = σ(αR). When applying a pattern substitution σ to a pattern α, we assume that its
domain dom(σ) satisfies var(α) ⊆ dom(σ). Freydenberger and Peterfreund [14] introduced
FC as a first-order logic that is based on word equations. In the present paper, we do not
consider the full logic FC. Instead, we introduce its conjunctive queries.

▶ Definition 3.1. An FC-CQ is an FC-formula of the form φ(x⃗) := ∃y⃗ :
∧n

i=1 ηi, where
ηi := (xi =̇ αi), xi ∈ Ξ, and αi ∈ (Σ ∪ Ξ)∗ for all i ∈ [n]. We use the shorthand
φ := Ans(x⃗)←

∧n
i=1 ηi where x⃗ is the tuple of free variables. We call Ans(x⃗) the head of φ,

and
∧n

i=1 ηi the body of φ.

We write φ(x⃗) to denote that x⃗ is the set of free variables of φ. The set of all variables used
in φ is denoted by var(φ). We distinguish a variable u ∈ Ξ, called the universe variable,
that shall represent the input document w. The universe variable is not considered a free
variable, and we adopt the convention that u /∈ var(φ) for all φ (even if u occurs in φ). Next,
we define the semantics for FC-CQs.

▶ Definition 3.2. For φ ∈ FC-CQ and a pattern substitution σ with var(φ) ∪ {u} ⊆ dom(σ),
we define σ |= φ as follows: σ |= (αl =̇ αR) if σ(ηL) = σ(ηR) and σ(x) ⊑ σ(u) for all
x ∈ var(αL =̇ αR). For σ |= ∃x : φ we have that σx 7→u |= φ holds for some u ⊑ σ(u), where
σx 7→u is defined as σx 7→u(x) := u and σx 7→u(y) := σ(y) for all y ∈ (Σ ∪ Ξ) where y ̸= x. We
use the canonical definition for conjunction.

Hence, for all σ |= φ(x⃗), the universe for variables in var(φ) is the set of factors of σ(u).
If φ(x⃗) ∈ FC-CQ and w ∈ Σ∗, then JφK(w) denotes the set of all σ(x⃗) such that σ |= φ

and σ(u) = w. When determining JφK(w) for a given w, we know that u represents w, and
hence u can be treated as a constant (see [14] for more information on the role of the universe
variable). If φ ∈ FC is Boolean (that is, it has no free variables), JφK(w) is either the empty
set, or the set containing the empty tuple, which we interpret as False and True, respectively.

In [14], FC was extended to FC[REG] by adding regular constraints. This allows for atoms
of the form (x ∈̇γ), where γ is a regular expression; and σ |= (x ∈̇γ) if and only if σ(x) ∈ L(γ)
and σ(x) ⊑ σ(u). We extend FC-CQ to FC[REG]-CQ in the same way.

Complexity. We now define various decision problems for FC-CQ and FC[REG]-CQ: The
non-emptiness problem is, given w ∈ Σ∗ and φ, decide whether JφK(w) ̸= ∅. The evaluation
problem is, given σ and φ, decide whether σ |= φ. The model checking problem is the special
case of non-emptiness and evaluation that only considers Boolean queries, note that for
Boolean queries Dom(σ) = {u}. Given w ∈ Σ∗ and φ, the enumeration problem is outputting
all JφK(w). The containment problem is, given φ and ψ, decide whether JφK(w) ⊆ JψK(w) for
all w ∈ Σ∗. Previous results on patterns and FC (see [4, 6, 14]) directly imply the following.

▶ Proposition 3.3. For each of FC-CQ and FC[REG]-CQ, the evaluation problem is NP-
complete, and the containment problem is undecidable.

As discussed in [14], FC and FC[REG] can be evaluated analogously to relational first-order
logic (FO), by materializing the tables that are defined by the atoms and then proceeding
“as usual”. Hence, bounding the width of a formula (the maximum number of free variables
in a subformula) bounds the size of the intermediate tables, and thereby the complexity of
evaluation. As the complexity of evaluating FC and FO are the same (PSPACE-complete
in general, NP-complete for the existential-positive fragment), it is no surprise that this
correspondence also translates to conjunctive queries. From Section 5 on, we further develop
this connection by finding tractable subclasses of FC[REG]-CQ.

D. D. Freydenberger and S. M. Thompson 10:7

As containment for CQs is decidable (although NP-complete), it can be used for query
minimization (see Chapter 6 of [1]). But by Proposition 3.3, this does not apply to FC-CQ.

Document Spanners and FC-CQs. Our next goal is to establish a connection between
SERCQs and FC[REG]-CQs. However, first we must overcome the fact that FC reasons over
strings, whereas spanners reason over intervals of positions. We deal with this by defining
the notion of an FC-formula realizing a spanner, as described in [11, 10, 14].

▶ Definition 3.4. A pattern substitution σ expresses a (V,w)-tuple µ, if for all x ∈ V , we
have that Dom(σ) = {xP , xC | x ∈ V }, and σ(xP) = w[1,i⟩ and σ(xC) = w[i,j⟩ for the span
µ(x) = [i, j⟩. An FC[REG]-CQ φ realizes a spanner P if free(φ) = {xP , xC | x ∈ Vars (P)}
and σ |= φ for all w ∈ Σ∗ where σ(u) = w, if and only if σ expresses some µ ∈ P (w).

Less formally, for each µ ∈ P (w), we have that µ(x) = [i, j⟩ is uniquely represented by
the prefix, σ(xP) = w[1,i⟩, and the content, σ(xC) = w[i,j⟩.

▶ Example 3.5. Consider the following FC[REG]-CQ.

φ := Ans(xP
1 , x

C
1 , x

P
2 , x

C
2)← (u =̇ xP

1 · xC
1 · a · s1) ∧ (u =̇ xP

2 · xC
2 · b · s2)

∧ (xC
1 =̇ xC

2) ∧ (xC
1 ∈̇ Σ+) ∧ (xC

2 ∈̇ Σ+).

We can see that φ realizes the SERCQ given in Example 2.2.

Recall that synchronized SERCQs consist of RGX-formulas that do not have variables
within sub-expressions of the form (γ1 ∨ γ2). As we observe in the following result, a
synchronized SERCQ can be efficiently translated into an equivalent FC[REG]-CQ.

▶ Lemma 3.6. Given a synchronized SERCQ P , we can construct in polynomial time an
FC[REG]-CQ that realizes P .

The proof of Lemma 3.6 follows from [14, 11, 10]. The converse of Lemma 3.6 follows
directly from [14]. However, one would need to define how FC[REG]-CQ-formulas can be
realized by regex formulas closed under spanner algebra (details on this can be found
in [10, 14]). We omit such a result as it is not the focus on this work.

In this section, we have introduced FC[REG]-CQs, and shown an efficient conversion from
synchronized SERCQs to FC[REG]-CQs. Therefore, while the present paper mainly considers
a tractable fragment of FC[REG]-CQ, this tractability carries over to a subclass of SERCQs.

4 Acyclic Pattern Decomposition

This section examines decomposing terminal-free patterns (i. e., patterns α ∈ Ξ+) into acyclic
2FC-CQs, where 2FC-CQ denotes the set of FC-CQs where each word equation has a right-hand
side of at most length two. Patterns are the basis for FC-CQ atoms, and hence, this section
gives us a foundation on which to investigate the decomposition of FC-CQs. We do not
consider regular constraints, or patterns with terminals. This is because regular constraints
are unary predicates, and therefore can be easily added to a join tree; and terminals can
be expressed through regular constraints. We use 2FC-CQs for two reasons. Firstly, binary
concatenation is the most elementary form of concatenation, as it cannot be decomposed
into further (non-trivial) concatenations. Secondly, this ensures that each word equation has
very low width, and therefore we can store the tables in linear space and enumerate them
with constant delay – as shown in the following.

ICDT 2022

10:8 Splitting Spanner Atoms

▶ Proposition 4.1. Given w ∈ Σ∗, we can construct a data structure in linear time that,
for x, y, z ∈ Ξ, allow us to enumerate Jx =̇ y · zK(w) with constant-delay, and to decide in
constant time if σ ∈ Jx =̇ y · zK(w) holds.

Although the cardinality of Jx =̇ y · zK(w) is cubic in |w|, Proposition 4.1 allows us to
represent this relation in linear space. As we can query such relations in constant time, they
behave “nicer” than relations in relational algebra. Furthermore, after materializing the
relations defined by each atom of an 2FC-CQ, Proposition 4.1 allows us to treat the 2FC-CQ
as a relational conjunctive query. We now introduce a way to decompose a pattern into a
conjunction of word equations where the right hand side of each atom is at most length two.
We start by looking at a canonical way to decompose terminal-free patterns.

Let α ∈ Ξ+ be a terminal-free pattern. To decompose α, first we factorize α so that it
can be written using only binary concatenation We define BPat, the set of all well-bracketed
patterns, recursively as follows:

▶ Definition 4.2. x ∈ BPat for all x ∈ Ξ, and if α̃, β̃ ∈ BPat, then (α̃ · β̃) ∈ BPat.2

We extend the notion of a factor to a sub-bracketing. We write α̃ ⊑ β̃ if α̃ is a factor of β̃ and
α̃, β̃ ∈ BPat. Let α ∈ Ξ+, by BPat(α) we denote the set of all bracketings which correspond
to the pattern α (i. e., if we remove the brackets, then the resulting pattern is α). Every
α̃ ∈ BPat(α) can be converted into an equivalent formula Ψα̃ ∈ 2FC-CQ using the following.

▶ Definition 4.3. While there exists β̃ ⊑ α̃ where β̃ = (x · y) for some x, y ∈ Ξ, we replace
every occurrence of β̃ in α̃ with a new, unique variable z ∈ Ξ \ var(α) and add the word
equation (z =̇ x · y) to Ψα̃. When α̃ = β̃, we have that z = u.

Therefore, up to renaming of variables, every α̃ ∈ BPat has a corresponding formula
Ψα̃ ∈ 2FC-CQ. We call Ψα̃ the decomposition of α̃. The decomposition can be thought of as
a logic formula expressing a straight-line program of the pattern (see [17] for a survey on
algorithms for SLPs). We now give an example of decomposing a bracketing.

▶ Example 4.4. Let α := x1x2x1x1x2 and let α̃ ∈ BPat(α) be defined as follows:

α̃ := (((x1 · x2) · x1) · (x1 · x2)).

We now list α̃ after every sub-bracketing is replaced with a variable. We also give the
corresponding word equation that is added to Ψα̃.

(((x1 · x2) · x1) · (x1 · x2)) z1 =̇ x1 · x2

((z1 · x1) · z1) z2 =̇ z1 · x1

(z2 · z1) u =̇ z2 · z1

Therefore, we get the decomposition Ψα̃ ∈ 2FC-CQ, which is defined as

Ψα̃ := Ans()← (z1 =̇ x1 · x2) ∧ (z2 =̇ z1 · x1) ∧ (u =̇ z2 · z1).

Notice that every sub-bracketing of α̃ has a corresponding word equation in Ψα̃.

The decomposition of α̃ is somewhat similar to the Tseytin transformations, see [20],
which transforms a propositional logic formula into a formula in Tseytin normal form.

Our next focus is to study which patterns can be decomposed into an acyclic 2FC-CQ.

2 For convenience, we tend use α̃ to denote a bracketing of the pattern α ∈ Ξ+.

D. D. Freydenberger and S. M. Thompson 10:9

▶ Definition 4.5 (Join Tree). A join tree for Ψ ∈ 2FC-CQ with body
∧n

i=1 χi is an undirected
tree T := (V,E), where V := {χi | i ∈ [n]}, and for all χi, χj ∈ V , if x ∈ var(χi) and
x ∈ var(χj), then x appears in all nodes that lie on the path between χi and χj in T .

Note that we use χ (with indices) to denote atoms of a 2FC-CQ to distinguish them from
word equations with arbitrarily large right-hand sides – which we denote by η (with indices).
We call Ψ ∈ 2FC-CQ acyclic if there exists a join tree for Ψ. Otherwise, we call Ψ cyclic.

▶ Definition 4.6 (Acyclic Patterns). If Ψα̃ ∈ 2FC-CQ is a decomposition of α̃ ∈ BPat and
Ψα̃ is acyclic, then we call α̃ acyclic. If Ψα̃ is cyclic, then we call α̃ cyclic. If there
exists α̃ ∈ BPat(α) which is acyclic, then we say that α is acyclic. Otherwise, α is cyclic.

When determining whether a decomposition Ψα̃ ∈ 2FC-CQ is acyclic, we treat each word
equation (atom) of Ψα̃ as a single relational symbol. We also consider u to be a constant
symbol, since σ(u) = w always holds. This raises the question as to whether every pattern
has an acyclic decomposition. The answers is no, as the following result shows.

▶ Proposition 4.7. x1x2x1x3x1 is a cyclic pattern, and x1x2x3x1 is an acyclic pattern that
has a cyclic bracketing.

This leads to the following question: Can we decide whether a pattern is acyclic in
polynomial time? Given a pattern α ∈ Ξ+, we have that |BPat(α)| = C|α|−1, where Ci is the
ith Catalan number, see [18]. As the Catalan numbers grow exponentially, a straightforward
enumeration of bracketings to finding an acyclic bracketing is not enough.

If Ψα̃ ∈ 2FC-CQ is a decomposition of α̃ ∈ BPat(α), then we call the variable x ∈ Ξ
which represents the whole pattern the root variable. If x is the root variable, then the atom
(x =̇ y · z) for some y, z ∈ Ξ, is called the root atom. So far, the root variable has always
been u. In Section 5, different root variables will be considered.

Let Ψα̃ ∈ 2FC-CQ be the decomposition of α̃ ∈ BPat(α), where α ∈ Ξ+. We define the
concatenation tree of Ψα̃ as a rooted, undirected, binary tree T := (V, E , <,Γ, τ, vr), where V
is a set of nodes and E is a set of undirected edges. If v and v′ have a shared parent node,
then we use v < v′ to denote that v is the left child and v′ is the right child of their shared
parent. We also have Γ := var(Ψα̃) and the function τ : V → Γ that labels nodes from the
concatenation tree with variables from var(Ψα̃). We use vr to denote the root of T . The
concatenation tree of Ψα̃ is defined as follows.

▶ Definition 4.8. Let Ψα̃ := Ans(x⃗)←
∧n

i=1(zi =̇ xi · x′
i) be a decomposition of α̃ ∈ BPat(α).

We carry out the construction of a concatenation tree in two steps. First, we build a tree
recursively. If v ∈ V is labeled with zi for i ∈ [n], then there exists a left and right child of v
that are labeled with xi and x′

i respectively.
In the second step, we prune the result of the above construction to remove redundancies.

For each set of non-leaf nodes that share a common label, we define an ordering ≪. If
τ(vi) = τ(vj) and the distance from the root of T to vj is strictly less than the distance from
the root to vi, then vj ≪ vi. If τ(vi) = τ(vj) and the distance from vr to vi and vj is equal,
then vj ≪ vi if and only if vj appears to the right of vi. For each set of non-leaf nodes that
share a common label, all nodes other than the ≪-maximum node are called redundant. All
descendants of redundant nodes are removed.

Concatenation trees for 2FC-CQs can be understood as a variation of derivation trees
for straight-line programs [17]. While the pruning may seem somewhat unnatural, the
concatenation tree of a decomposition is a useful tool that we shall use in Lemma 4.11 to
characterize acyclic bracketings.

ICDT 2022

10:10 Splitting Spanner Atoms

v1 (u)

v3 (z1)v2 (z1)

v4 (x1) v5 (x2)

v6 (u)

v8 (x2)v7 (z2)

v9 (z1) v10 (x1)

v11 (x1) v12 (x2)

Figure 1 Concatenation trees for the decompositions of ((x1 ·x2) ·(x1 ·x2)) and (((x1 ·x2) ·x1) ·x2).
This figure is used to illustrate Example 4.10.

Due to the pruning procedure, every non-leaf node represents a unique sub-bracketing. For
every node v with left child vl and right child vr, we define atom(v) := (τ(v) =̇ τ(vl) · τ(vr)).
Note that for any two non-leaf nodes v, v′ ∈ V where v ̸= v′, we have that atom(v) ̸= atom(v′).
We call v ∈ V an x-parent if one of the child nodes of v is labeled x. If v is an x-parent,
then atom(v) must contain the variable x.

▶ Definition 4.9. Let Ψα̃ ∈ 2FC-CQ be the decomposition of α̃ ∈ BPat and let T be the
concatenation tree for Ψα̃. For some x ∈ var(Ψα̃), we say that Ψα̃ is x-localized if all nodes
that exist on the path between any two x-parents in T are also x-parents.

Since there is exactly one concatenation tree for a decomposition Ψα̃ ∈ 2FC-CQ of
α̃ ∈ BPat, we can say Ψα̃ is x-localized without referring to the concatenation tree of Ψα̃.

▶ Example 4.10. Consider the pattern α := x1x2x1x2 and the following two bracketings:

α̃1 := ((x1 · x2) · (x1 · x2)) and α̃2 := (((x1 · x2) · x1) · x2).

The bracketing α̃1 is decomposed into Ψ1 := Ans()← (z1 =̇ x1 · x2) ∧ (u =̇ z1 · z1) and α̃2 is
decomposed into Ψ2 := Ans()← (z1 =̇x1 ·x2)∧ (z2 =̇z1 ·x1)∧ (u =̇z2 ·x2). The concatenation
trees for Ψ1 and Ψ2 are given in Figure 1. The label for each node is given in parentheses
next to the corresponding node. We can see that atom(v2) = (z1 =̇x1 ·x2). It follows that Ψ2
is x1-localized, but Ψ2 is not x2-localized. Observe that v3 ≪ v2, since v2 appears to the left
of v3. Therefore, v3 does not have any descendants, since it is a redundant node.

Utilizing concatenation trees for the decomposition Ψα̃ of α̃ ∈ BPat(α), and the notion
of Ψα̃ being x-localized for x ∈ var(Ψα̃), we are now able to state sufficient and necessary
conditions for α ∈ Ξ+ to be acyclic.

▶ Lemma 4.11. The decomposition Ψα̃ ∈ 2FC-CQ of α̃ ∈ BPat(α) is acyclic if and only if
Ψα̃ is x-localized for every x ∈ var(Ψα̃).

The proof of the if-direction is rather straightforward: Take the concatenation tree
of Ψα̃, replace each non-leaf node v ∈ V with atom(v), then remove all leaf nodes from
the concatenation tree of Ψα̃. This gives us a join tree for Ψα̃. The only-if direction
for Lemma 4.11 is somewhat more technical. This is because we need to prove this direction
for the most general join tree of Ψα̃. We prove this by contradiction, showing that there
does not exist a valid label for certain non-leaf nodes of the concatenation tree if Ψα̃ is not
x-localized for some variable x ∈ var(Ψα̃).

Refering back to Example 4.10, we see that Ψ2 is not x2-localized and therefore Ψ2 is
cyclic, whereas we have that Ψ1 is x-localized for all x ∈ var(Ψ1) and hence Ψ1 is acyclic.

D. D. Freydenberger and S. M. Thompson 10:11

▶ Theorem 4.12. Whether α ∈ Ξ+ is acyclic can be decided in time O(|α|7).

We prove Theorem 4.12 by giving a bottom-up algorithm that continuously adds larger
acyclic subpatterns of α to a set. To determine whether concatenating two acyclic subpatterns
results in a larger acyclic subpattern, we also keep an edge relation and check whether x is
localized, see Lemma 4.11. We terminate the algorithm when the edge relation has reached
a fixed-point. In the proof of Theorem 4.12, we also show that if α is acyclic, then we can
construct a concatenation tree for a decomposition for α̃ ∈ BPat(α) in O(|α|7) time.

5 Acyclic FC-CQs

In this section, we generalize from decomposing patterns to decomposing FC-CQs. The main
result of this section is a polynomial-time algorithm to determine whether an FC-CQ can be
decomposed into an acyclic 2FC-CQ. We do this to find a notion of acyclicity for FC-CQs
such that the resulting fragment is tractable.

Decomposing a word equation (x =̇ α) where x ∈ Ξ and α ∈ (Ξ \ {x})+ is analogous to
decomposing α, but whereas u is the root variable when decomposing a pattern, we use x as
the root variable when decomposing (x =̇ α).

If every atom of φ ∈ FC-CQ is acyclic, then φ does not necessarily have tractable model
checking. If this were the case, then any decomposition Ψα̃ ∈ 2FC-CQ of some α̃ ∈ BPat
would have tractable model checking (because every word equation of the form z =̇ x · y
is acyclic). This would imply that the membership problem for patterns can be solved in
polynomial time, which contradicts [6], unless P = NP. Furthermore, if we define φ ∈ FC-CQ
to be acyclic if there exists a join tree for φ where every word equation is an atom, then
model checking for φ is not tractable. To show this, consider φ := Ans()← (u =̇ α). Model
checking for φ is equivalent to the membership problem for α, which is NP-complete [6].
Therefore, we require a more refined notion of acyclicity for FC-CQs.

In Section 4, we studied the decomposition of terminal-free patterns. If φ is an FC-CQ
with the body Ans(x⃗)←

∧n
i=1 ηi, then the right-hand side of some ηi may not be terminal-free.

Therefore, before defining the decomposition of FC[REG]-CQs, we define a way to normalize
FC[REG]-CQs in order to better utilize the techniques of Section 4.

▶ Definition 5.1. We call an FC-CQ with body
∧n

i=1(xi =̇ αi) normalized if for all i, j ∈ [n],
we have αi ∈ Ξ+, xi /∈ var(αi), u /∈ var(αi), and αi = αj if and only if i = j.

An FC[REG]-CQ with body
∧n

i=1(xi =̇ αi) ∧
∧m

j=1(yj ∈̇ γ) is normalized if the subformula∧n
i=1(xi =̇ αi) is normalized.

Since we are interested in polynomial time algorithms, the following lemma allows us to
assume that all FC-CQs are normalized without affecting any claims about complexity.

▶ Lemma 5.2. Given φ ∈ FC[REG]-CQ, we can construct an equivalent, normalized
FC[REG]-CQ in time O(|φ|2).

To prove Lemma 5.2 we use a simple re-writing procedure. We replace every terminal
factor in our formula with a new variable, and use a regular constraint to determine which
terminal word that variable represents. If σ is a morphism that satisfies (x =̇ α) for some
α ∈ Ξ, then |σ(x)| = |σ(α)|. Therefore, if x ∈ α, then |σ(x)| = |σ(α1)| + |σ(x)| + |σ(α2)|
where α = α1 · x · α2. We can then determine that σ(α1) · σ(α2) = ε. Hence, x =̇ α can
be replaced with (x =̇ y) ∧

∧
z∈var(α1·α2)(z ∈̇ ε) where y is a new and unique variable. An

analogous method is used if u ∈ var(α).

ICDT 2022

10:12 Splitting Spanner Atoms

▶ Example 5.3. We define an FC[REG]-CQ along with an equivalent normalized FC[REG]-CQ:

φ :=Ans(x⃗)← (x1 =̇ x2 · u · x2) ∧ (x4 =̇ x4) ∧ (x3 =̇ aab),
φ′ :=Ans(x⃗)← (u =̇ x1) ∧ (x2 ∈̇ ε) ∧ (x4 =̇ z2) ∧ (x3 =̇ z1) ∧ (z1 ∈̇ aab).

We now generalize the process of decomposing patterns to decomposing FC-CQs. For
every FC-CQ φ := Ans(x⃗) ←

∧n
i=1 ηi, we say that a 2FC-CQ Ψφ := Ans(x⃗) ←

∧n
i=1 Ψi is a

decomposition of φ if every Ψi is a decomposition of ηi and, for all i, j ∈ [n] with i ≠ j, the
sets of introduced variables for Ψi and Ψj are disjoint.

▶ Example 5.4. Let φ ∈ FC-CQ be defined as follows:

φ := Ans(x⃗)← (x1 =̇ y1 · y2 · y3) ∧ (x2 =̇ y2 · y3 · y3 · y4).

We now consider the following decompositions for each word equation of φ:

Ψ1 := (x1 =̇ y1 · z1)∧ (z1 =̇ y2 · y3), and Ψ2 := (x2 =̇ z2 · y4)∧ (z2 =̇ z3 · y3)∧ (z3 =̇ y2 · y3).

Therefore, Ψφ := Ans(x⃗)← Ψ1 ∧Ψ2 is a decomposition of φ.

▶ Definition 5.5 (Acyclic FC-CQs). If Ψφ ∈ 2FC-CQ is a decomposition of φ ∈ FC-CQ, we
say that Ψφ is acyclic if there exists a join tree for Ψφ. Otherwise, Ψφ is cyclic. If there
exists an acyclic decomposition of φ, then we say that φ is acyclic. Otherwise, φ is cyclic.

Recall that, since u is always mapped to w, we can consider u a constant symbol. Therefore,
if T := (V,E) is a join tree for some decomposition of φ, then there can exist two nodes that
both contain u, yet it is not necessary for all nodes on the path between these two nodes to
also contain u. Referring back to Example 5.4, we can see that φ is acyclic by executing the
GYO algorithm on the decomposition (see Chapter 6 of [1] for more information on acyclic
joins). Our next focus is to study which FC-CQs are acyclic, and which are not.

▶ Lemma 5.6. If Ψφ ∈ 2FC-CQ is a decomposition of φ := Ans(x⃗)←
∧n

i=1 ηi, and we have
a join tree T := (V,E) for Ψφ, then we can partition T into T 1, T 2, . . . Tn such that for each
i ∈ [n], we have that T i is a join tree for a decomposition of ηi.

To prove Lemma 5.6, we consider a join tree T := (V,E) for the acyclic decomposition
Ψφ ∈ 2FC-CQ of φ ∈ FC-CQ, along with the induced subgraph of T on the set of atoms for a
decomposition of a single atom of φ. We show that this subgraph is connected, and since the
introduced variables are disjoint for separate atoms of φ, this forms a partition on T .

Let φ := Ans(x⃗)←
∧n

i=1 ηi be a normalized FC-CQ. A join tree T := (V,E) for φ where
V = {ηi | i ∈ [n]} is called a weak join tree. If there exists a weak join tree for φ, then we
say that φ is weakly acyclic. Otherwise, φ is weakly cyclic. Clearly weak acyclicity is not
sufficient for tractability, as discussed at the start of the current section.

▶ Example 5.7. Consider the following normalized FC-CQ:

φ := Ans(x⃗)← (u =̇ x1 · x2 · x1 · x3 · x1) ∧ (x1 =̇ x4 · x5 · x5) ∧ (x6 =̇ x7 · x7 · x7).

Using the GYO algorithm, we can see that φ is weakly acyclic.

Let φ := Ans(x⃗)←
∧n

i=1 ηi be an FC-CQ, and let Ψφ be an acyclic decomposition of φ.
If T := (V,E) is a join tree of Ψφ, then for each i ∈ [n], we use T i := (V i, Ei) to denote the
subtree of T that is a join tree for the decomposition of ηi. We know that T i and T j are
disjoint for all i, j ∈ [n] where i ̸= j, see Lemma 5.6.

D. D. Freydenberger and S. M. Thompson 10:13

▶ Lemma 5.8. Let φ := Ans(x⃗)←
∧n

i=1 ηi be a normalized FC-CQ. If any of the following
conditions holds, then φ is cyclic:
1. φ is weakly cyclic,
2. ηi is cyclic for any i ∈ [n],
3. |var(ηi) ∩ var(ηj)| > 3 for any i, j ∈ [n] where i ̸= j, or
4. |var(ηi) ∩ var(ηj)| = 3, and |ηi| > 3 or |ηj | > 3 for any i, j ∈ [n] where i ̸= j.

Condition 1 can be proven by simply replacing T i with a single node ηi for all i ∈ [n].
Condition 2 follows directly from Lemma 5.6. Conditions 3 and 4 can be proven by a
contradiction: Consider the shortest path from any atom of the decomposition of ηi to any
atom of the decomposition of ηj . Since the end points of these paths cannot contain all the
variables that ηi and ηj share, it follows that T := (V,E) is not a join tree.

While Conditions 3 and 4 might seem strict, we can pre-factor common subpatterns. For
example, the conjunction (x1 =̇ α1 · α2 · α3) ∧ (x2 =̇ α4 · α2 · α5), where αi ∈ Ξ+ for i ∈ [5],
can be written as (x1 =̇α1 · z ·α3)∧ (x2 =̇α4 · z ·α5)∧ (z =̇α2) where z ∈ Ξ is a new variable.
We illustrate this further in the following example.

▶ Example 5.9. Consider the following FC-CQ:

φ := Ans()← (x1 =̇ y1 · y2 · y3 · y4 · y5) ∧ (x2 =̇ y6 · y2 · y3 · y4 · y5).

Using Lemma 5.8, we can see that φ is cyclic. However, since the right-hand side of the two
word equations share a common subpattern, we can rewrite φ as

φ′ := Ans()← (x1 =̇ y1 · z) ∧ (x2 =̇ y6 · z) ∧ (z =̇ y2 · y3 · y4 · y5).

One could alter our definition of FC-CQ decomposition so that if two atoms share a
bracketing, then the bracketing is replaced with the same variable (analogously to how
decompositions are defined on patterns). The authors believe it is likely that such a
definition of FC-CQ decomposition is equivalent to our definition of FC-CQ decomposition
after “factoring out” common subpatterns between atoms.

Our next consideration is how the structure of a join tree for a decomposition of an
acyclic query φ ∈ FC[REG]-CQ relates to the structure of a weak join tree for φ.

▶ Definition 5.10 (Skeleton Tree). Let Ψφ ∈ 2FC-CQ be an acyclic decomposition of the
query φ := Ans(x⃗)←

∧n
i=1 ηi, and let T := (V,E) be a join tree for Ψφ. We say that a weak

join tree Tw := (Vw, Ew) is the skeleton tree of T if there exists an edge in E from a node in
V i to a node in V j if and only if {ηi, ηj} ∈ Ew.

In the proof of Lemma 5.8 (Condition 1), we show that every join tree for a decomposition
has a corresponding skeleton tree. We shall leverage the fact that every join tree of a
decomposition of an acyclic FC[REG]-CQ has a skeleton tree in the algorithm given in the
proof of Theorem 5.14.

▶ Example 5.11. We define φ ∈ FC-CQ and a decomposition Ψφ as follows:

φ := Ans(x⃗)← (x1 =̇ x2 · x3 · x2) ∧ (x2 =̇ x4 · x4 · x5),
Ψφ := Ans(x⃗)← (x1 =̇ x2 · z1) ∧ (z1 =̇ x3 · x2) ∧ (x2 =̇ z2 · x5) ∧ (z2 =̇ x4 · x4).

The skeleton tree along with the join tree of Ψφ are given in Figure 2.

One might assume that some skeleton trees are more “desirable” than others in terms
of using it for finding an acyclic decomposition of an FC[REG]-CQ. However, as we observe
next, any skeleton tree is sufficient.

ICDT 2022

10:14 Splitting Spanner Atoms

x1 =̇ x2 · z1 z1 =̇ x3 · x2

x2 =̇ z2 · x5 z2 =̇ x4 · x4

x1 =̇ x2 · x3 · x2

x2 =̇ x4 · x4 · x5

Figure 2 The join tree (left) and the skeleton tree of the join tree (right) for Example 5.11.

▶ Lemma 5.12. Let Ψφ ∈ 2FC-CQ be a decomposition of φ ∈ FC-CQ. If Ψφ is acyclic, then
any weak join tree can be used as the skeleton tree.

Given a weak join tree of an acyclic query φ, the proof of Lemma 5.12 transforms the
join tree of Ψφ so that the resulting join tree has the given weak join tree as its skeleton
tree. Thus, we can use any weak join tree as a “template” for the eventual join tree of the
decomposition (under the assumption that the query is acyclic).

While Lemma 5.8 and Lemma 5.12 give some insights and necessary conditions for
deciding whether φ ∈ FC-CQ is acyclic, these conditions are not sufficient. We therefore
give the following lemma which is needed in the proof of Theorem 5.14 to find an acyclic
decomposition of φ.

▶ Lemma 5.13. Given a normalized FC-CQ of the form φ := Ans(x⃗) ← (z =̇ α) and a
set C ⊆ {{x, y} | x, y ∈ var(z =̇ α) and x ̸= y}, we can decide whether there is an acyclic
decomposition Ψ ∈ 2FC-CQ of φ such that for every {x, y} ∈ C, there is an atom of Ψ that
contains both x and y in time O(|α|7).

We prove Lemma 5.13 using a variant of the algorithm given in the proof of Theorem 4.12.
The purposes of Lemma 5.13 should become clearer after giving the following necessary and
sufficient criteria for an FC[REG]-CQ to be acyclic: Let φ :=

∧m
i=1(xi =̇ αi) ∧

∧n
j=1(yj ∈̇ γj)

be a normalized FC[REG]-CQ. Then, there exists an acyclic decomposition Ψ ∈ 2FC[REG]-CQ
of φ if and only if the following conditions hold:
1. φ is weakly acyclic,
2. for all i ∈ [m] the pattern αi is acyclic, and
3. for every i ∈ [m], there is a decomposition Ψi of xi =̇αi such that for all j ∈ [m]\{i} there

is a decomposition Ψj of xj =̇ αj where there exists an atom χi of Ψi and an atom χj

of Ψj that satisfies var(χi) ∩ var(χj) = var(xi =̇ αi) ∩ var(xj =̇ αj).

We are now ready to give the main result of the paper.

▶ Theorem 5.14. Whether φ ∈ FC[REG]-CQ is acyclic can be decided in time O(|φ|8).

To prove Theorem 5.14, we first check whether φ ∈ FC-CQ has any of the conditions
from Lemma 5.8. If so, then we know that φ is cyclic. Then, we construct a weak join tree
for φ. If there is an edge {ηi, ηj} of the weak join tree such that ηi and ηj share exactly
two variables, then we use Lemma 5.13 to decompose ηi and ηj such that there is an atom
of the decomposition (of ηi and ηj), which contains the variables that ηi and ηj share. In
the full proof, we show that if such decompositions do not exist, then φ is cyclic. For all
other atoms of φ we can use any decomposition. The resulting acyclic decomposition is the
conjunction of the decompositions of each atom. The proof of Theorem 5.14 also shows that
if φ is acyclic, an acyclic decomposition can be constructed in polynomial time.

▶ Example 5.15. We revisit the FC[REG]-CQ that was given in the introduction:

φ := Ans(x, y)← (z =̇ z2 ·x · z3 ·x · z4)∧ (z =̇ z5 · y · z6)∧ (z ∈̇ γsen)∧ (x ∈̇ γprod)∧ (y ∈̇ γpos).

D. D. Freydenberger and S. M. Thompson 10:15

We can see this is acyclic by considering the following decomposition:

Ψ := Ans(x, y)← (y1 =̇ x · z3) ∧ (y2 =̇ y1 · x) ∧ (y3 =̇ z2 · y2) ∧ (z =̇ y3 · z4)
∧ (y4 =̇ z5 · y) ∧ (z =̇ y4 · z6) ∧ (z ∈̇ γsen) ∧ (x ∈̇ γprod) ∧ (y ∈̇ γpos).

Due to the small width of the tables that each word equation of the form (x =̇ y · z)
produces, we conclude the following:

▶ Proposition 5.16. If Ψ ∈ 2FC[REG]-CQ is acyclic, then:
1. Given w ∈ Σ∗, the model checking problem can be solved in time O(|Ψ|2|w|3).
2. Given w ∈ Σ∗, we can enumerate JΨK(w) with O(|Ψ|2|w|3) delay.

For FC[REG]-CQs, we first find an acyclic decomposition Ψφ ∈ 2FC[REG]-CQ of φ in
O(|φ|7). Then, the upper bound for model checking follows from [15]. Polynomial-delay
enumeration follows from [3], where it was proven that given an acyclic (relational) conjunctive
query ψ and a database D, we can enumerate ψ(D) with O(|ψ||D|) delay. Our “database” is
of size O(|φ| · |w|3) as each atom of the form (z =̇ x · y) defines a relation of size O(|w|3).

Considering techniques from [3], it may seem that the results of an acyclic FC[REG]-CQ
without projections can be enumerated with constant-delay after polynomial time prepro-
cessing. However this is not the case. New variables, that are not free, are introduced in the
decomposition of φ and therefore the resulting 2FC[REG]-CQ may not be free-connex, which
is required for the results of a CQ to be enumerated with constant-delay [3].

From FC[REG]-CQs to SERCQs. Combining Lemma 3.6 and Proposition 5.16 gives us
a class of SERCQs for which model checking can be solved in polynomial-time, and we
can enumerate results with polynomial-delay. The hardness of deciding semantic acyclicity
(whether a given SERCQ can be realized by an acyclic FC[REG]-CQ) remains open. The
authors believe that semantic acyclicity for SERCQs is undecidable, partly due to the fact
that various minimization problems are undecidable for FC [11, 14]. For now, all we have are
sufficient critiera for a SERCQ to be realized by an acyclic FC[REG]-CQ.

▶ Definition 5.17. We say that a query of the form P := πY

(
ζ=

x1,y1
· · · ζ=

xk,yk
(γ1 ▷◁ · · · ▷◁ γn)

)
is pseudo-acyclic if for every i ∈ [n], we have that γi := βi1 · xi{βi2} · βi3 where xi ∈ Ξ, and
where βi1 , βi2 , and βi3 are regular expressions.

We now show that Definition 5.17 gives sufficient criteria for an SERCQ to be realized by
an acyclic FC[REG]-CQ.

▶ Proposition 5.18. Given a pseudo-acyclic SERCQ query, we can construct in polynomial
time an acyclic FC[REG]-CQ that realizes P .

Freydenberger et al. [13] proved that fixing the number of atoms and the number of string
equalities in a SERCQ allows for polynomial-delay enumeration of results. In contrast to
this, Proposition 5.18 allows an unbounded number of joins and string equality selection
operators. However, in order to have this tractability result, the expressive power of each
regex formula is restricted to only allow one variable. While Proposition 5.18 gives sufficient
criteria for a SERCQ to be represented by an acyclic FC[REG]-CQ, many other such classes
of SERCQs likely exist. Research into finding large classes of SERCQs that map to acyclic
FC[REG]-CQs seems like a promising direction for future work.

ICDT 2022

10:16 Splitting Spanner Atoms

6 A Note on k-ary Decompositions

We now generalize the notion of pattern decomposition so that the length of the right-
hand side of the resulting formula is less than or equal to some k ≥ 2. While the binary
decompositions might be considered the natural case, we show that generalizing to higher
arities increases the expressive power of acyclic patterns. By kFC-CQ we denote the set
of FC-CQ formulas that have a right-hand side of at most length k. We write BPatk for
the set of k-ary bracketed patterns over Ξ. We define BPatk formally using the following
recursive definition: For all x ∈ Ξ we have that x ∈ BPatk, and if α1, α2, . . . , αi ∈ BPatk

where i ≤ k, then (α̃1 · α̃2 · · · α̃i) ∈ BPatk. We write α̃ ∈ BPatk(α) for some α ∈ Ξ+ if the
underlying, unbracketed pattern of α̃ is α. We can convert α̃ ∈ BPatk into an equivalent
kFC-CQ analogously to the binary case, see Definition 4.3.

▶ Example 6.1. Consider the following 4-ary bracketing:

α̃ := (((x1 · x2 · x3) · (x4 · x2 · x4) · (x1 · x2) · (x5 · x5)) · x2).

As with the 2-ary case, we decompose α̃ to get the following 4FC-CQ:

Ψα̃ := Ans()← (z1 =̇ x1 · x2) ∧ (z2 =̇ x5 · x5) ∧ (z3 =̇ x4 · x2 · x4)
∧ (z4 =̇ x1 · x2 · x3) ∧ (z5 =̇ z4 · z3 · z1 · z2) ∧ (u =̇ z5 · x2).

The definition of k-ary concatenation tree for a decomposition Ψα̃ ∈ kFC-CQ of α̃ ∈ BPatk

follows analogously to the concatenation trees for 2-ary decompositions, see Definition 4.8.
The concatenation tree of the decomposition Ψα̃ ∈ kFC-CQ is a rooted, labeled, undirected
tree T := (V, E , <,Γ, τ, vr), where V is the set of nodes, the relation E is the edge relation,
and < is used to denote the order of children of a node (from left to right). We have
that Γ := var(Ψα̃) is the alphabet of labels and τ : V → Γ is the labeling function. The
semantics of a k-ary concatenation tree are defined by considering the natural generalization
of Definition 4.8. We say that Ψα̃ is x-localized if all nodes which exist on a path between
two x-parents (of T) are also x-parents.

▶ Proposition 6.2. There exists α̃ ∈ BPat3 such that the decomposition Ψ ∈ 3FC-CQ of α̃ is
acyclic, but there exists x ∈ var(Ψ) such that Ψ is not x-localized.

Proof. Consider α̃ := ((x3 · x3) · ((x3 · x3) · x2) · (x1 · ((x3 · x3) · x2))). The bracketing α̃ is
decomposed into Ψα̃ ∈ 3FC-CQ, which is defined as

Ψα̃ := Ans()← (z1 =̇ x3 · x3) ∧ (z2 =̇ z1 · x2) ∧ (z3 =̇ x1 · z2) ∧ (u =̇ z1 · z2 · z3).

The formula Ψα̃ can be verified to be acyclic. However, Ψα̃ is not z1-localized. ◀

In this section, we have briefly examined k-ary decompositions, and have shown that
there exists α̃ ∈ BPat3 such that the decomposition Ψ ∈ 3FC-CQ of α̃ is acyclic, but Ψ is
not x-localized for some x ∈ var(Ψ). The authors note that the if-direction in the proof
of Lemma 4.11 implies that x-locality for all variables is a sufficient criterion for a k-ary
decomposition to be acyclic. A systematic study into k-ary acyclic decompositions may yield
more expressive spanners, and could be useful for pattern languages, which have been linked
to FC-formulas with bounded width [14]. However, more general approaches such as bounded
treewidth for binary decompositions appear to be a more promising direction for future work.
Furthermore, the membership problem for a pattern α parameterized by |α| is W[1]-hard [8].
Since every pattern is trivially |α|-ary acyclic, the authors believe it to be likely that the
parameterized problem of model checking for k-ary acyclic decompositions is W[1]-hard.

D. D. Freydenberger and S. M. Thompson 10:17

7 Conclusions

Freydenberger and Peterfreund [14] introduced FC[REG] as a logic for querying and model
checking words that behaves similar to relational FO. The present paper develops this
connection further by providing a polynomial-time algorithm that either decomposes an
FC[REG]-CQ into an acyclic 2FC[REG]-CQ, or determines that this is not possible. These
acyclic 2FC[REG]-CQ formulas allow for polynomial-time model checking, and their results
can be enumerated with polynomial-delay. Consequently, the present paper establishes a
notion of tractable acyclicity for FC-CQs. Due to the close connections between FC[REG] and
core spanners, this provides us with a large class of tractable SERCQs.

But this is only the first step in the study of tractable SERCQs and FC[REG]-CQs. It
seems likely that more efficient algorithms for model checking and enumeration can be found
by utilizing string algorithms rather than materializing the relations for each atom.

Another future direction for research is the consideration of other structural parameters,
like treewidth. A systematic study of the decomposition of FC-CQs into 2FC-CQs of bounded
treewidth would likely yield a large class of FC-CQs with polynomial-time model checking. As
a consequence, one could define a suitable notion of treewidth for core spanners. Determining
the exact class of FC-CQs with polynomial-time model checking is likely a hard problem. This
is because such a result would solve the open problem in formal languages of determining
exactly what patterns have polynomial-time membership.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.

Addison-Wesley Reading, 1995.
2 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay

enumeration for nondeterministic document spanners. ACM SIGMOD Record, 49(1):25–32,
2020.

3 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In Proceedings of CSL 2007, pages 208–222, 2007.

4 Joachim Bremer and Dominik D. Freydenberger. Inclusion problems for patterns with a
bounded number of variables. Information and Computation, 220:15–43, 2012.

5 Stefan Burkhardt, Juha Kärkkäinen, and Peter Sanders. Linear work suffix array construction.
Journal of the ACM, 53(6):918–936, 2006.

6 Andrzej Ehrenfreucht and Grzegorz Rozenberg. Finding a homomorphism between two words
is NP-complete. Information Processing Letters, 9(2):86–88, 1979.

7 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:
A formal approach to information extraction. Journal of the ACM, 62(2):12, 2015.

8 Henning Fernau, Markus L Schmid, and Yngve Villanger. On the parameterised complexity of
string morphism problems. Theory of Computing Systems, 59:24–51, 2016.

9 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Constant delay algorithms for regular document spanners. In Proceedings of PODS
2018, pages 165–177, 2018.

10 Dominik D. Freydenberger. A logic for document spanners. Theory of Computing Systems,
63(7):1679–1754, 2019.

11 Dominik D. Freydenberger and Mario Holldack. Document spanners: From expressive power
to decision problems. Theory of Computing Systems, 62(4):854–898, 2018.

12 Dominik D. Freydenberger, Benny Kimelfeld, Markus Kröll, and Liat Peterfreund. Complexity
bounds for relational algebra over document spanners. In Proceedings of PODS 2019, pages
320–334, 2019.

ICDT 2022

10:18 Splitting Spanner Atoms

13 Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining extractions of
regular expressions. In Proceedings of PODS 2018, pages 137–149, 2018.

14 Dominik D. Freydenberger and Liat Peterfreund. The theory of concatenation over finite
models. In Proceedings of ICALP 2021, pages 130:1–130:17, 2021.

15 Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunctive
queries. Journal of the ACM, 48(3):431–498, 2001.

16 Dan Gusfield. Algorithms on Strings, Trees, and Sequences – Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

17 Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups-Complexity-
Cryptology, 4(2):241–299, 2012.

18 Gloria Olive. Catalan numbers revisited. Journal of mathematical analysis and applications,
111(1):201–235, 1985.

19 Liat Peterfreund. Grammars for document spanners. In Proceedings of ICDT 2021, pages
7:1–7:18, 2021.

20 Steven David Prestwich. CNF encodings. Handbook of satisfiability, 185:75–97, 2009.
21 Markus L. Schmid and Nicole Schweikardt. A purely regular approach to non-regular core

spanners. In Proceedings of ICDT 2021, pages 4:1–4:19, 2021.
22 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of VLDB 1981,

pages 82–94, 1981.

	1 Introduction
	2 Preliminaries
	3 Conjunctive Queries for FC
	4 Acyclic Pattern Decomposition
	5 Acyclic FC-CQs
	6 A Note on k-ary Decompositions
	7 Conclusions

