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—— Abstract
We formalise a variant of Datalog that allows complex values constructed by nesting elements of
the input database in sets and tuples. We study its complexity and give a translation into sets
of tuple-generating dependencies (TGDs) for which the standard chase terminates on any input
database. We identify a fragment for which reasoning is tractable. As membership is undecidable
for this fragment, we develop decidable sufficient conditions.
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1 Introduction

Complex values (also called complex objects) are formed by combining domain elements
into sets, tuples, and sets and tuples of other complex values. Numerous extensions of the
relational data model with complex values have been studied since the 1980s: LDL1 [37, 6]
and LPS [27] support non—nested sets, whereas COL [1] can express all complex values.
Several fixed point logics for complex values, as well as their tractable fragments, have
also been studied [33, 36, 22]. Extensions of Datalog include Relationlog [28], Set-extended
Datalog [39], IQL [3], O-Logic [25] and Higher-order Datalog [14]. Abiteboul et al. [2] provide
an extensive treatment of the complex values algebra and calculus, and briefly introduce a
variant of stratified Datalog with complex values, though without any formal definition.
These expressive data models have recently regained much interest. A popular example
are JSON objects, which can be viewed as sets of attribute-value pairs. Such “values” are
at the heart of NoSQL systems, such as CouchDB and RethinkDB, and also supported by
classical RDBMS, such as PostgreSQL and MariaDB. Query languages for JSON include
J-Logic [23] and RNJL [9]. Another important example are rich graph models, such as
Property Graph [34, 35] and the Wikidata knowledge graph [38], which are widely used in
applications. There, one often deals with sets of “annotations” (e.g., attribute—value pairs)
attached to edges, which can be naturally represented as complex values. Query languages
such as MARPL [30], eMARPL [29], and G-CORE [5] have been proposed for this scenario.
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Graphs also bring up the need for recursive queries, even for basic tasks such as reachability.
Languages like G-CORE go beyond this by supporting “paths as first class citizens” [5] in
queries that return paths. Similar functionality can be realised using complex values:

» Example 1. Consider a database encoding a directed graph using facts edge(s,t) to denote
edges from vertex s to vertex t. In our proposed formalism Datalogcv, we can query for
paths (represented as sets of edges, i.e., as sets of pairs of vertices) from z to y as follows:

edge(z,y) — path(z,y, {(z,4)}) (1)
path(z,y, P) A edge(y, 2) — path(z, 2, PU{(y,2)}) 2)

Intuitively, rule (1) states that whenever there is an edge from z to y, there is also a path
going along that edge. Rule (2) extends a path from z to y along an edge from y to z.
Consider a database with the following facts:

edge(a, b) edge(b, ¢) edge(a, ¢)
edge(a, d) edge(d, c) edge(d, e)

Then we can derive the following three paths from a to c:

path(a,c, {{a,c)}) path(a, ¢, {{a,b), (b,c)}) path(a, ¢, {{a,d),(d,c)})

Other examples of even more complex recursive queries over complex values are found
in symbolic Al, where Datalog with set values has been successfully used to reason with
description logics and guarded Horn logics [32, 4, 13, 12].

Many of the above extensions involve declarative rules, which are of interest for applications
such as data exchange or ontology-based query answering. Surprisingly, however, there is
almost no practical support for such rules, even for limited uses of complex values. One of
the most advanced systems available is DLV-complex [10], a logic programming engine that
is not intended for database use (and only available as a 32bit-binary, i.e., limited to 4GB of
memory). Hence, to realise set-based reasoning in practice, Carral et al. [13] have translated
their “datalog plus sets” programs into sets of tuple-generating dependencies (TGDs), for
which modern engines exist. Similar to Datalog, a bottom-up algorithm (the standard chase)
can be used for reasoning, and Carral et al. show that, under certain restrictions on the
order of rule applications, this approach will successfully terminate on any input database.

In this paper, we set out to generalise existing ad-hoc extensions into Datalogcv7 an
extension of Datalog with full support for complex values. The language corresponds to the
positive variant of Datalog with complex values as informally described by Abiteboul et al. [2],
but we add a detailed analysis of complexity and expressivity, with a modern focus on tractable
fragments and TGD-based implementation. Concretely, our contributions are as follows:

we formalise Datalog with complex values (Datalogcv) and obtain complexity bounds,

showing that our formalism is intractable even for data complexity;

we develop a translation into TGDs that preserves entailments in a certain sense, and

for which the standard chase is guaranteed to terminate for all input databases and (in

contrast to earlier work [13]) all strategies;

we identify the tractable fragment (with respect to data complexity) of bounded-cardinality

programs, which still supports non-trivial use of complex values, and develop two sufficient

criteria for recognising it; and

we show that, unlike for Datalog and TGDs, linear rules do not guarantee tractability.
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2 Preliminaries

We consider fixed, pairwise disjoint, and countably infinite sets C of constants, P of predicate
names, V of variables, and N of labelled nulls. With each predicate name p € P, we associate
an arity ar(p) € N>g. An atom is of the form p(ty,...,¢;), where p is an f-ary predicate
name and tq,...,t, € CUV UN are terms. We may abbreviate such a list ¢1,...,%y as t,
and denote by ¢, the list t1,...,t;-1,s,ti11,...,t¢ obtained from ¢ by replacing the i-th
element by s. An atom is null-free if it does not contain any labelled nulls, variable-free
if does not contain any variables, and ground if it is both null-free and variable-free. A
tuple-generating dependency (TGD) or rule p is a formula of first-order logic of the form

Va,y. o[z, y] — Iz. Y[y, 2] (3)

where (i) @,y and z are mutually disjoint lists of variables, (ii) ¢ and ¢ are conjunctions of
null-free atoms, (iii) ¢ contains only variables from @ Uy, and (iv) ¢ contains only variables
from z U z.

We tacitly omit the universal quantifiers when writing TGDs, and call body(p) = ¢
the body, head(p) = 1 the head, and frontier(p) = y the frontier of (3). We may treat
conjunctions such as ¢ and v as sets of atoms, respectively.

A boolean conjunctive query (BCQ) ¢ is a first-order sentence of the form Jx. ¢[z], where
© is a conjunction of null-free atoms. A rule set 3 is a finite set of TGDs. A predicate name
p is an intensional database predicate (IDB) with respect to X if p occurs in the head of a
rule in X. All other predicate names are extensional database predicates (EDB). An EDB
schema is a finite set PEPB C P of predicate names. A rule set ¥ is compatible with the
EDB schema if all predicate names p € PEPB are EDB predicates with respect to . A
PEPB i5 a finite set
of ground atoms using only predicate names from PEPB. If D is used with rule set ¥, we
always assume that D is over an EDB schema that ¥ is compatible with.

database instance is a set of variable-free atoms. A database D over

Let 7 be a database instance, X a rule set, and D a database for X. Given a set A of atoms,
a homomorphism is a function h : A — T that maps terms in A to (variable-free) terms in Z,
such that (i) h(c) = c for all ¢ € C and (ii) p(h(t1),...,h(te)) € T for all p(ty,...,t,) € A. A
match of a rule p in Z is a homomorphism & : body(p) — Z; it is satisfied in Z if there is a
homomorphism A’ : head(p) — Z with h(x) = h'(x) for all x € frontier(p). T satisfies

a rule p (written Z |= p) if every match of p is satisfied,

the rule set ¥ (written Z = X) if Z = p for all p € &, and

a BCQ ¢ = Jx. [x] (written Z = q) if there is a homomorphism h : p[x] — Z.

Z is a model of D and ¥ (written Z =D, X) if D CZ and Z = ¥. D and ¥ entail a BCQ
q (written X2, D = ¢q) if Z |= ¢ for all models Z of D and ¥. A model Z = D, ¥ is universal
if it admits homomorphisms into every model of ¥ and D. Universal models capture BCQ
entailment: for ¢ a BCQ and Z = D, ¥ a universal model, Z = ¢ iff ¥, D = q.

Universal models can be computed by, e.g., the standard chase (or restricted chase) [7]. A
chase sequence for a rule set X and database D is a sequence of database instances Dy, Dy, ...,
such that: (i) Dy = D; (ii) for every ¢ > 0, there is a rule ¢z, y] — Iz. Y[y, 2] in ¥ with an
unsatisfied match h in D;, and D; 1 = D; Uk (y), ' (2)], where h and h' agree on y, and
h'(z) € N are distinct labelled nulls not occurring in D; for all z € z; and (iii) if some rule p
has a match h in some D;, then there is a j > ¢ such that h is satisfied in D;. The chase of
D and ¥ is the database instance (J;~, D;. In general, termination of the chase can depend
on the order of rule applications in step (ii) [17]; see [26] for a discussion.
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3 Datalog with Complex Values

We now introduce Datalogcv, an extension of Datalog in which values are terms built from
tuples and sets of constants. We use sorts to represent different types of terms.

Syntax

The set 8 of sorts is defined inductively to contain (i) the domain sort A, (ii) for all 7 € 8,
the set sort {r}, and (iii) for all £ > 2 and 7,...,7¢ € 8, the tuple sort (T, 72,...,70). A
subsort of sort T is any sort that occurs syntactically in 7, including 7 itself. Every variable
v € V has a sort sort(v) € 8§ such that the sets V. = {v € V | sort(v) = 7} are countably
infinite. The sets T, of terms of sort T are defined as follows:
1. Tao := CUV, (terms of the domain sort are constants or variables);
2. Tiry oy = 1(51,..,80) | si € T, for 1 <i <L} UV, .,y (terms of tuple sorts are
tuples over the individual component sorts, or variables); and
3. T{T} ={{t1,.. ., tn}|n >0,t1,...,tn € T FU{(t1 Nt2), (t1 Uta)|t1,t2 € T{T}}UV{T}
(terms of set sorts are set literals over the component sort, intersections or unions of set
terms of the same sort, or variables).
We also write {} as @. Note that symbols like U are overloaded to denote different functions
for each sort. To avoid confusion, we sometimes use subscripts to emphasise the sort, as in
(Z){T}. A term is basic if it does not contain M or U, and ground if it is variable-free.
Every predicate p € P is associated with a sort sort(p). A schema S = (PEPB PIPB) js a
partition of P into EDB predicates PEPBand IDB predicates PIPB. An atom for predicate
p € P is an expression p(t) where t € Tso(p). If p is of a tuple sort, we write p(ty,. .., %)
instead of p({t1,...,t¢)). Similarly, we may omit the outermost parentheses in set terms
(t1 Uta) and (t1 Nta), writing ¢1 Uty and ¢ N ta, respectively. A DatalogCV fact is an atom
p(t), where t contains only basic ground terms. A DatalogCV rule is a formula of the form
V.o — 1 where the body ¢ and the head 1) are conjunctions of atoms, and « is a list of all
variables in the rule. We allow ¢ to be empty, but require ¥ to contain at least one atom.
Universal quantifiers are usually omitted. A Datalog®" program P for schema S is a finite set
of DatalogCV rules, where EDB predicates do not occur in rule heads. A DatalogCV database
D for schema S is a finite set of facts using only EDB predicates. A Datalog®” BCQ is a
sentence of the form Jx.p[x], where ¢ is a conjunction of atoms containing only basic terms.
Already before defining the semantics of Datalog®" formally, we can foster our intuitive
understanding of these definitions by considering some examples. This will also yield some
useful insights into the expressive power of this formalism.

» Example 2. An operation that is commonly studied in query formalisms with complex
values is the powerset function. We can capture this in atoms of the form PS, (.S, P) expressing
that a set S (of set sort ¢ = {7}) has the powerset P (of sort {o} = {{7}}). We use
auxiliary predicates PSU, of sort (7, {{7}}, {{7}}) where an atom PSU(t, P, Q) expresses,
informally speaking, that @ = {SU{t} | S € P}. As usual, we omit universal quantifiers.

— PSU.(2,0,0) (
PSU,(z, P,Q) — PSU,(z, PU{S}, QU {SU {z}}) (5
— PS,(0,{0}) (
PSo (S, P) APSU.(z,P,Q) — PS,(SU{z},PUQ) (

Rule (6) states that the powerset of @ is {@} and rule (7) states that, given the powerset
P of S, the powerset of S U {z} is obtained from P by adding Q U {«} for every Q € P.



M. Marx and M. Krotzsch

On a database containing only the constant ¢, the following facts are entailed:

PSU-(c,0,0) PSU(c, {0}, {{c}}) PSU(c, {{0}},{0.})
PS,(0,{0}) PS-({c}, {0, {c}})

Note that rules (4) and (5) are “unsafe”: they use variables in the head that do not
occur in the body. Our semantics restricts the scope of variables to a finite active domain
so that this is never a problem. Using auxiliary predicates AD, and additional rules, we
can transform any such rule into a safe rule: for every predicate p € PEPB of sort 7, we
add a rule p(z) — AD,(z). Furthermore, for tuple sorts 7 = (7y,...,7¢), we add rules
AD;(z1,...,2¢) = AD,, () for 1 <k < £ and AD,, (x1) A---AD;,(x¢) = AD (21, ..., 20);
for set sorts 7 = {0}, we add rules AD,(z) — AD.({z}), AD,({z}) — AD,(x), and
AD,(z) AAD.(y) = AD, (zNy) AAD,(x Uy). An unsafe variable v of sort 7 in rule p can
then be eliminated by adding an atom AD.(v) to the body of p. For (4) and (5), we would
thus obtain the following rules:

AD, (z) = PSU,(z,0,0) (8)
AD;(x) A ADg;3(S) APSUL(z, P,Q) — PSU. (2, PU{S}, QU {SU {z}}) (9)
» Example 3. We can also define further set-related predicates and functions. The following

rules show how to define predicates C,, €,, &, #,, and C, for a set sort ¢ and arbitrary
sort 7, where we write infix ¢; ¢t instead of o(t1,t2) for better readability:

L 5C,SUT (10)

Su{z}C,S—z€, 8 (11)
SN{z}C,0—z¢,S (12)

{z}n{y} Sy 0= #,y (13)

SC, ThNe €, TANx ¢, S—SC,T (14)

We may therefore assume without loss of generality that the shortcuts defined in Ex-
amples 2 and 3 are always available in DatalogCV programs. Similarly, unless stated to the
contrary, we assume throughout the paper that databases contain only facts of sort A or of
some tuple sort (A, ..., A), since all other facts can be constructed using appropriate rules.

Semantics

As usual for Datalog, we consider a Herbrand interpretation whose domain is the set of
constants that syntactically occur in a given program and database, where we interpret
constants as themselves (unique name assumption). To this end, we interpret sorts and
ground terms with a function eval(-). For sorts, let eval(A) = C, eval({ry,..., 7)) =
eval(ry) x - - - x eval(7y), and eval({7}) := P(eval(7)) where P(S) denotes the set of all subsets
of S. For ground terms ¢, we recursively define eval(t) as follows:

eval(c) :== ¢ for ¢ € C;
{t1,...,tn}) = {eval(t1),...,eval(t,)};
(81,...,8¢0)) == (eval(sy),...,eval(sp));
t1 Nty) == eval(ty) Neval(tz); and
t1 Uts) == eval(t;) Ueval(ts).

eval
eval
eval
eval

—_—— —

The domain dom(P, D) of a Da’calogCV program P and database D is the set of all constants
that occur in P or D. An interpretation Z for P and DD maps every predicate p to a set
p? C eval(sort(p)) that contains only constants from dom(P, D). Z satisfies a ground atom
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p(t), written Z [= p(t), if eval(t) € pT; it satisfies a conjunction ¢ of such atoms, written
T E ¢, if 7T | aforall ain ¢; and it satisfies a variable-free rule ¢ — 1, written Z = ¢ — 1,
if Z @ orZ . T satisfies P if 7 = p’ holds for every ground instance p’ of p, i.e., for
every variable-free rule p’ obtained from a rule p € P by replacing each variable v € V. in p
with a ground term ¢, € eval(r) that uses only constants from dom(P, D). Z satisfies D if
T = a for all a € D. If 7 satisfies X, we also say that Z is a model of X.

This model theory gives rise to entailment as usual: a ground fact « is entailed by P and
D, written P, D |= «, if 7 |= « for all models Z of P and D. BCQ entailment can be reduced
to ground fact entailment by using BCQs as bodies of a rule with some ground head atom
that is not derived by any other rule. As in the case of Datalog, entailment can be decided
by considering a single least model, which could also be computed by a chase-like process, as
the following theorem shows.

» Theorem 4. Let S be a schema, P be a Datalogcv program for S, and D be a Datalogcv
database for S. Then P,D has a unique least model Z such that for all ground facts,
T E a iff P,D | «. Furthermore, I is the least fized point of the immediate consequence
operator Tp applied to D: for a set S of ground facts, Tp(S) = S U {head(p) | body(p') €
S for a ground instance p' of p € P} is the union of S and the set of ground facts obtained
by adding all heads of ground instances of rules that have their bodies contained in S.

Complexity

The complexity of deciding entailment for a DatalogCV program P depends crucially on the
set sorts occurring in P, motivating the following definition.

» Definition 5. The set height s-height(7) of a sort T is defined recursively:

s-height(A) :== 0;

s-height({c}) == s-height(c) + 1; and

s-height({o1, ..., 0¢)) == maxj<;<¢ s-height(o;).
Analogously, the tuple height t-height(7) of a sort T is

t-height(A) := 0;

t-height({c'}) = t-height(o); and

t-height({71,...,7¢)) == 1 + max; <,<¢ t-height(r;).
The set height (tuple height) of a term, predicate, or variable is the set height (tuple height)
of its sort, the set height (tuple height) of a schema S is the largest set height (tuple height)
of any predicate in S, and the height of S is the sum of its set height and its tuple height.

We get the following lower bounds for reasoning in Datalogcv, where OEXPTIME denotes
PTiME. Matching upper bounds are shown in Section 4.

» Theorem 6. Consider a Datalogcv program P and a database D for schema S, and a
ground fact a. Deciding P,D = « is kEXPTIME-hard with respect to the size of D (data
complexity ) and (k + 2)EXPTIME-hard with respect to the size of D and P (combined
complexity ), where k = s-height(S).

If t-height(S) is bounded, combined complexity is only (k + 1)EXPTIME-hard.

Since Datalog has bounded tuple height 1 and set height 0, our complexity bounds
(PTIME data and EXPTIME combined) are optimal in this case [16].

Proof. For data complexity, we reduce from the halting problem for k-exponentially time-
bounded (in the size of D) Turing machines on the empty tape, where P encodes the Turing
machine. The main challenge is the construction of the tape, as Turing machines can be
simulated already in Datalog [16].
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Assuming that a linear order s; < so < --- < s for sort 7 is encoded using unary
predicates first,(s1) and last,(s¢) and a binary predicate next,(s;, $;11), the rules in Figure 1
derive an exponentially longer chain for sort o = {7}. Let S = {s1, 82,..., ¢}

Intuitively, the program enumerates the power set P(S) of S in lexicographic order,
producing the exponentially longer linear order ) < {s1} < {s1,82} < -+ < {s1,82,...,80} <
{s2} < -+ < {s2,...,80} < -+ < {se}. A fact mkStep,(S5,t,x) will lead to next,-facts
corresponding to the segment SU {z} < --- < SU {s,}, with ¢ tracking the least element
not contained in S. Similarly, a fact step,(S,t,x,T) corresponds to the segment S <
SU{z} <--- < T, where t is again the least element not contained in S.

To see that rules (15)—(19) are correct, we show the following claim: for any set S C S
and any t,x € {s € S|Vy € S. y <t Ay <z}, the fact mkStep, (S, t,z) will result in facts
next, (SU {z},...),...,nexty(...,SU{s¢}) corresponding to the segment SU {z} < --- <

S U {s,} of the lexicographic order on P(S), and furthermore a fact step,. (S, ¢, z, S U {s¢}).

We show the claim by induction on the third position in mkStep,-facts. For the base
case, consider mkStep,, (S, s¢, s¢). From rule (16), we immediately get next, (S, SU {s,}), and
rule (17) derives step, (S, s¢, s¢, SU {s¢}). For the induction step, suppose that z has the

direct successor y. Rule (18) derives the facts mkStep, (S U U z,y,y) and mkStep, (S, t,y).

By the induction hypothesis, we therefore derive next, and step,-facts corresponding to
the segments SU{z} < SU{z,y} < --- < SU{x, s¢} of successors containing z, and
SU{y} < -+ < SU{s¢} of successors not containing x. Since y is the direct successor of
x, the immediate successor of SU {z, s,} is SU {y}, and rule (19) therefore connects the

two segments. Lastly, whenever ¢t = z, rule (16) makes SU {x} the direct successor of S.

Such mkStep,-facts are derived by rule (15), where we immediately see that this is correct,

since {s1} is indeed the direct successor of @,, and by rule (18), where we consider S U {z}.

Since y is the direct successor of x, this makes S'U {z,y} the direct successor of SU {z}.

Since no other mkStep,-facts are derived, no cycles in next,-facts can appear, and thus
we indeed obtain a linear order. Correctness then follows since rule (15) derives first, (0, ),
mkStep,, (05, 51, s1), and last, ({s¢}).

By instantiating these rules for multiple set sorts, we can thus construct k-exponentially
long linear orders from a linear order in the input database, which we can use as a Turing
tape for our simulation [16].

For combined complexity, we use a tuple sort of nested tuples of height ¢ and constants
at the lowest level. We then construct a chain of doubly-exponential length in ¢ by ordering
tuples at each of the ¢ levels lexicographically, starting from the length-¢ chain of database
constants. If tuples have arity > a, this yields a chain of length > ¢ The construction then
proceeds as before, using this chain as a basis for an even longer chain of sets. Note that if ¢
is bounded by a constant (but a is not), then e s merely single exponential. <

4 From Complex Values to TGDs

In this section, we reduce query answering over DatalogCv programs and DatalogCV databases
to query answering over sets of TGDs and (unsorted) databases for which the standard chase
terminates reliably (i.e., under all strategies).

We build upon prior work by Carral et al. [13], which established a translation from
“Datalog with Sets” Datalog(S) to sets of TGDs. Datalog(S) can be seen as the restriction
of Datalog®V to schemas where every predicate has sort A, {A}, or {my,...,7¢) with 7; €
{A,{A}} for 1 < ¢, i.e., where every position is either an element of the domain or a set
over such elements. The key idea is to represent sets by recursively constructing them

13:7

ICDT 2022



13:8 Tuple-Generating Dependencies Capture Complex Values

first, () A last,(z) — firsty (B,) A mkStep,, (0, z, z) Alasty ({z}) (15)

mkStep,, (S, t,t) — next, (S, SU {t}) (16)

mkStep,, (S, t, x) A last.(x) — step, (S, ¢, 2z, SU {z}) (17)

mkStep,, (S, ¢, ) A next.(x,y) — mkStep, (SU {z},y,y) A mkStep,(S,t,y) (18)
mkStep,, (S, t, ) A next,(x,y) A

step, (SU {z},y,y, X) Astep,(S,t,y, Z) — next, (X, SU {y}) Astep, (S, t,z,Z) (19)

Figure 1 A Datalog®Y program for a set sort ¢ = {7} deriving an exponentially long linear order.

/\f:1 sort,, (z;) — Jz.tuple, (2, 21,...,2¢) Asorty(z) (20)

— AV.empty, (V) A sort, (V') A done, (V) (21)

done, (V) Asort,(x) — IW.SU, (z, V, W) A sort, (W) A todo, (W, W) (22)

todo, (V, W) A SUy (2, U, V) — SU,(z, W, W) A todo, (U, W) (23)
todo, (V, W) A empty, (V) — done, (W) (24)

Figure 2 TGDs for axiomatising Datalog®V sorts and terms; we instantiate (20) for sorts
m={r,...,7e), and (21)—(24) for sorts o = {7}.

as unions of singletons and smaller sets. While our translation shares this approach, an
important difference is that our translation produces sets of TGDs for which the standard
chase terminates on any database, irregardless of the order of rule applications, while the
translation of Carral et al. relies on the prioritisation of certain rules to ensure termination.

The translation consists of two parts: a set of auxiliary rules that axiomatise the semantics
of set functions and predicates for all sorts used in the program, and, for every given rule, a
rewritten rule that uses these defined predicates instead of set functions. After the translation,
all DatalogCV terms are represented by individual nulls or constants. For example, facts

tuple, (r,t1,...,t¢) express that r represents the tuple (¢1,...,t¢) of sort m. To encode sets,
we use facts SU,(x, S, T) (“singleton union”), which can be read as “{z} U ,S = T'” Together
with a representative cg_ for @, this allows us to represent every set {ei,...,e,} by a term

¢y, for which we give a list of facts SU,(e1,¢cp,,c1),...,SUs(€n,cn-1,¢,). Note that this
representation is not unique; in general we have indeed multiple representatives for every set.
This may, in turn, lead to multiple representatives for the same tuple if sets occur somewhere
in the component sorts. To ensure that this does not pose problems, our translated programs
will include congruence rules that propagate derived facts between different representatives
of the same value.

The rules for axiomatising these basic predicates are as given in Figure 2, which also
defines empty, (t) (“t represents @,”) and sort,(t) (“¢t represents a term of sort 77). We
assume (and will ensure) that facts for sorta are defined for the constants in the active
domain. Rule (20) creates representatives for m-tuples. The remaining rules (21)—(24) create
representatives for sets by generalising an approach that we outlined in our previous work
[26] to arbitrary set sorts o = {7}: Rule (21) creates a unique representative for @, which is
immediately marked as “done”. Given any “done” set V and an element z of sort 7, rule (22)
introduces a representative W for S U {z}, which is marked as “todo”. Then rule (23) derives
facts representing W = U U {z} for all sets U C V and all x € U. Only when all such facts
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sort, (V) A sort, (W) — ckSub, (V, V, W) (25)

ckSuby (U, V, W) A SU, (2, U, U) A SUy (2, V, V) — ckSub, (U, V, W)  (26)

ckSub, (U, V, W) A empty, (U) — subset,(V, W) (27)

subset, (V, W) A subset, (W, V) — eqa(V W) (28)

empty, (V') A sort, (W) U, (V, W, W) (29)

SU, (2, W, W) AU, (V, W', U) A SU, (, V, V') — Uy (V! W, U) (30)

sorty (V) Asort,(x) = ckNIn, (V, 2, V) (31)

ckNIn, (U, 2, V) ASU,(y,U’,U) ANEq..(z,y) — ckNIn, (U, 2, V) (32)

ckNIn, (U, z, V) A empty,(U) — Nin,(z,V) (33)

tuple, (z,@1,...,x¢) Atuple (2',y1,...,y¢) ANEq, (wi,4:) — NEq,(z,2") (34)
SU, (2, V,V) ANIn, (2, W) — NEq,(V, W) A

NEq, (W, V) (35)

empty (V) Asorty,(W) = 1, (V,W, V) (36)

|, (U, V,W) A SU, (2, U, U") ANlng (2, V) — 1 (U", V, W) (37)

lo (U, V,W) ASU,(2,U,U") ASUy (2, V, V') ASU,(z, W,W') = 1,(U'", V', W") (38)

Figure 3 TCDs for axiomatising Datalog®" sort functions and predicates; we instantiate (34) for
sorts ™ = (71,...,7¢) and all 1 < i < ¢, and all other rules for sorts o = {7}.

have been derived is W marked “done” (rule (24)). But since rule (22) is only applicable for
“done” sets, it will always be blocked for sets V' and elements = with x € V. Thus, it can
only be applied finitely often, and termination is therefore guaranteed.

The essential correctness claim for these rules is as follows:

» Lemma 7. Let ¥ be the set of rules (21)—~(24) for a sort o = {1}. For every database
D that contains only facts of the form sort,(c), every standard chase sequence over ¥ and
D terminates after O(2‘D|) many steps, producing a finite result T that is unique up to
isomorphism. For this result T and the sets Sy == {c | SU,(c,t,t) € T}, we have:

if empty,(t) € Z then Sy =0,

if SUs(c,t,u) € T then S, = Sy U{c}, and

{S; | sort,(t) € I} is the powerset of {c | sort,(c) € D}.

To complete the translation, we use further facts eq, (t1,t2) (“t1 = t2”), Uy (t1,t2,1)
(“t1 Uty = t7), and I, (t1,t2,t) (“t1 Nty = t7), axiomatised in Figure 3. Expressing eq is
necessary since our modelling in Figure 2 may lead to several representatives for the same
set. To reconcile this, we compute facts for subset,: for every pair (V, W) of sets (25), we
iterate over elements of V' (26) to verify that they are in W, until all elements have been
processed (27). Equality follows from mutual inclusion (28).

Unions are defined from singleton unions by a simple recursion (29)—(30). To compute
intersections, we define inequality NEq, (for all sorts 7) and non-containment NIn, (for
set sorts o) by mutual recursion (31)—(35). Facts for NEq, will be defined explicitly for
constants of the active domain by our translation. Rules (31)-(33) are similar to rules
(25)—(27). Deriving inequalities for tuples and sets is then straightforward (34)—(35). Finally,
intersections are defined starting from the empty set (36), and recursively adding elements
that are missing/present in the other set (37)/(38). Reusing the notation S; from Lemma 7,
we state the essential correctness results for this translation:
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» Lemma 8. Let ¥ be the set of rules (21)—(24) and (25)—(30) for a sort o = {r}. For
every database D that contains only facts of the form sort.(c), the standard chase over ¥ and
D produces a finite result T that is unique up to isomorphism, such that:

eq,(t,u) € T iff Sy = S,

U, (t,u,v) € T implies Sz U S,, = S,, and

for all sort,(t),sort,(u) € Z, there is some fact Uy (t,u,v) € T.

> Lemma 9. Let X be the set of rules (21)—(24), (31)—(33), and (35)—(38) for a sort o = {7}.
For every database D of the form {sort.(c) | ¢ € I} U{NEq, (c,d) | ¢ # d;c,d € I1} for some
finite set I1 C C of constants, the standard chase over ¥ and D produces a finite result T
that is unique up to isomorphism, such that:

Nin,(c,t) € T iff ¢ ¢ S,

NEq, (t,u) € T iff St # Su,

I, (t,u,v) € T implies St NS, = S,, and

for all sort,(t),sort, (u) € Z, there is some fact |, (t,u,v) € Z.

To translate rules in P, we associate with every non-constant term ¢t € T, a distinct
variable z; € V.. Let tr(t) ==t if t € C and set tr(t) == x; otherwise, and define a set of
atoms flat(¢) for terms ¢ of sort 7 recursively as follows:

if t € CU V.. then flat(¢) := {sort,(tr(t))};

if t = (t1,...,ts) then flat(t) := {tuple (z¢,tr(xe,), ..., tr(ae,)) U Ule flat(¢;);

if t =0, then flat(¢) := {empty(z¢)};

if t = {t1,...,t,} then flat(t) == {SU(tr(t1), zs, ) } Uflat(t1) Uflat(s) for s = {to,...,t,}

(which can be empty);

if t = ¢ Uty then ﬂat(t) = {UT(tr(tl), tr(tg), J,‘t)} U ﬂat(h) U ﬂat(tg); and

if t = t1 Nty then flat(t) = {1 (tr(t1), tr(ta), x+)} U flat(¢1) U flat(ts).

To translate a rule p to a TGD tr(p), replace each term ¢ in p by tr(¢) and add flat(¢) to
the body of p. For a fact p(t), let tr(p(t)) = {p(tr(¢))} U flat(t), and for a conjunction
0 =Ny @i, let tr(p) = U;_, tr(¢:;). A BCQ Jz.p[x] is translated into the BCQ obtained
by existentially quantifying all variables in tr(¢).

For Datalog®" program P, let tr(PP) consist of (1) tr(p) for all p € P, (2) all rules in
Figures 2 and 3, instantiated for all subsorts of sorts in P, (3) the congruence rules — eq(x, x)
and p(x) Aeq(xz;, 25) — p(x|,_,,,) for all predicates p and all 1 <14 < ar(p), and (4) the facts
{sorta(c) | ¢ € IT} U {NEqx (¢, d)l| ¢ # d;c,d € I} for II the set of constants in P. Likewise,
let tr(D) consist of all facts obtained by uniformly replacing, for each DatalogCv fact a € D,
the variables in tr(«) with fresh constants. We note that tr can be computed in polynomial
time (even in logarithmic space) in all cases. We obtain the following correctness result:

» Theorem 10. For every Datalog® program P and database D for P:

1. for every Datalog®’ BCQ q: P,D = q iff tr(P),tr(D) [= tr(q),

2. for k = s-height(IP), every standard chase sequence for tr(P) over tr(D) terminates in a
number of steps that is k-exponential in the size of D and (k + 2)-exponential in the size
of P. Assuming bounded tuple height, it is (k + 1)-exponential in the size of P.

Proof sketch. The correctness of the transformation has been discussed before. For the
complexity, we estimate the maximal number of complex terms that may be required. For
t

.20/
a set height k, we find that this is in O(22° ), where there are k occurrences of 2, a is
the maximal arity of tuples, and ¢ is the tuple height. Our simulation admits up to m!

many representations of each set of size m, corresponding to the order of adding elements,
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which is still exponential in a polynomial over m since m! < m™ = 2™1°8™ The number of
facts and rule applications in the chase for tr(P) over tr(D) is polynomial in the resulting
(k 4+ 2)-exponential number of terms, since every fact is completely determined by a fixed
number of complex terms (defined by our translation rather than by the input). <

Although this matches the lower complexity bounds of Theorem 6, the above translation
is not efficient, already since the rules in Figure 2 create all possible terms over the given
sorts. This can instead be done “on demand” if we add additional premises, e.g., mkSU(z, V)
in rule (22). For any rule ¢ — 1 with a body atom SU(x, V, W) € ¢, we can then create an
additional rule ¢ \ {SU(z,V, W)} — mkSU(z, V) to trigger the computation of a relevant
fact for SU(z, V, W). If several auxiliary predicates occur, they are ordered and computed
successively, in the manner of the magic sets transformation [2].

5 A Tractable Fragment

We now turn our attention to a fragment of DatalogCV that still supports sets but keeps
reasoning tractable. To this end, we require that the cardinality of any set derived by the
program on any database remains bounded by a fixed k. Although it is generally undecidable
whether a program has this property, we develop sufficient conditions for bounded cardinality.

» Definition 11. A Datalogcv ground fact o has k-bounded cardinality if all set terms
occurring in a are of the form {t1,...,t,} withn < k. A Datalogcv program P has k-
bounded cardinality if, for any database D, all ground facts o with P,D = « have k-bounded
cardinality. P has bounded cardinality if it has k-bounded cardinality for some k € N.

Note that k-bounded cardinality implies k’-bounded cardinality for all ¥’ > k. Also note
that programs containing unsafe set variables generally do not have bounded cardinality,
since such variables range over all possible sets over the active domain.

» Example 12. The following program P has 2-bounded cardinality.

e(z) = s({z}) (39)
s(X)As(Y) = p(XUY) (40)

We obtain a program P’ that does not have bounded cardinality if we replace (40) by (41).
s(X)As(Y) =»s(XUY) (41)

Indeed, s is now closed under unions, hence it contains a set whose cardinality is the number
of e(z) facts, which depends on the size of the database.

» Theorem 13. FEvery k-bounded cardinality Datalogcv program P and database D for P

can be translated into a Datalog program dl(P) and a database dI(D) such that:

1. for every ground Datalog®Y fact a: P,D = o iff dI(P),dI(D) k= di(a),

2. the translations dI(-) are PTIME-computable with respect to k and the size of the input
and EXPTIME-computable with respect to the height of the schema of P.

Proof. Let P be a k-bounded cardinality DatalogCV program. The translation eliminates
complex sorts by increasing the arity of predicates: we replace every position of a set sort
7 = {0} by k positions of sort o, filling up the remaining positions with .., to represent
sets of cardinality less than k, and every position of some tuple sort m = (11,72, ...,7¢) is
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replaced by { positions of sorts 7y, 7o, ..., 7y, respectively. Repeating this process leads to
predicates in which every position is of the domain sort. Tuple terms (t1,%s,...,ts) are
easily translated, as each individual term ¢; is simply placed in one of the new positions.
Basic set terms are translated similarly, but for compound set terms, the situation is a bit
more complicated: Similarly to the translation into TGDs in Section 4, we add 3k-ary atoms
U, (t1,t2,t) and | (¢1,t2,t) to rules containing t; U -to and 1 N to, respectively, where the
individual terms are replaced by k-tuples of terms; and use the variables ¢ in the positions
corresponding to the original term. Analogously, terms P(t) are replaced by 2k-ary facts
PS,(t,p), where p is the k-tuple of variables corresponding to the evaluation of the term.
We can then simulate the behaviour of these set operations using further rules. Since all sets
have k-bounded cardinality, no more than k of the first 2k positions in U, can be distinct
from ., and no more than |log, k| of the first k positions in PS, can be distinct from |,
respectively, whereas all of the first 2k positions of |, may be distinct from ;. In either case,
however, the number of rules needed to simulate these operations depends polynomially on
k, and is exponential in the height of the schema of P. Applying these transformations to PP,
D, and g, respectively, we thus obtain dI(P), dI(D), and dl(g), in which all positions are of
the domain sort, i.e., dI(IP) is a Datalog program. <

If we consider schemas of unbounded height, then the arity of the required Datalog
predicates may grow exponentially, though it remains bounded in terms of the database size.

» Corollary 14. Every bounded cardinality Datalogcv program has PTIME-complete data
complezity and 2EXPTIME-complete combined complexity.

Proof sketch. Upper bounds follow from Theorem 13. PTiME-hardness is inherited from
plain Datalog. For the 2EXPTIME-hardness, it suffices to consider a signature without sets.
By ordering (nested) tuples, we can construct a doubly-exponentially long chain as in the
proof of Theorem 6. Simulating a Turing machine on this chain is again standard. |

The next two results establish that bounded cardinality is undecidable in general but
becomes decidable for a fixed bound k.

» Theorem 15. It is undecidable whether a Datalogcv program has bounded cardinality.

Proof. Let M be a deterministic Turing machine. We construct a DatalogCV program P
such that P has bounded cardinality iff M halts on the empty tape. We consider a schema
consisting of a unary predicate first and a binary predicate next. We intend databases to
encode initial segments of a linear order using these predicates, but we need to ensure that P
does not produce arbitrarily large sets on invalid encodings in a database. Hence, we collect
all predecessors of an element in a set: this allows us to detect cycles and untangles elements
with multiple predecessors. The next two rules realise this (stepped is explained below):

first(x) — step(@, {z}) A lift(x, {z}) (42)
next(z,y) Alift(z, X) Ay & X A stepped(X) — step(X, X U {y}) Alift(y, X U{y}) (43)

To axiomatise y € X without enforcing unbounded cardinality, we use rule (12), but replace
rule (10) by — @ C @, which is the only C-entailment needed for (12).

In addition, P contains rules that simulate M on the empty tape, constructing a suitable
grid using step-facts, starting at @. These rules do not require any further sets besides those
used as grid points. Once a valid transition of M has been performed, the used set is marked
as stepped, which allows P to extend the linear order by one further step. If the input contains
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cycles, rule (43) becomes inapplicable, as y ¢ X will not hold. Tt might happen that multiple
linear orders are derived, e.g., when an element has more than one next-successors. In this
case, P merely performs multiple simulations in parallel. If M halts on the empty tape after
k steps, then, for every simulation, there will only be k facts of the form stepped(X). Each of
these sets X contains at most £ — 1 elements, so P has bounded cardinality. If, however, M
does not halt on the empty tape, the databases D; = {first(0), next(0,1),...,next(i — 1,4)}
for ¢ > 0 witness that P has unbounded cardinality. |

» Theorem 16. Let k € N and let P be a Datalogcv program. Deciding if P has k-bounded
cardinality is 2EXPTIME-complete, and EXPTIME-complete for schemas of bounded height.

Proof. Let xq,...,*; be distinct constants not occurring in P. The k-critial instance Dy
has, for every EDB predicate p € PEPB, all possible facts constructed using *o, . .., x: if
p has sort A, then D contains facts p(xg),...,p(*k); if p has sort (Aq,...,Ay), then Dy,
contains all facts p(xi,,...,%;,) with i1,...,4, € {1,...,k}.

Since entailment for DatalogCV is monotonic (i.e., adding facts to a database only ever
leads to more entailed facts), any fact entailed by P over a database containing k + 1 distinct
constants is also entailed over Dy,.

If all facts entailed by P over Dy are k-bounded, then P has k-bounded cardinality,
otherwise we find at least one non-k-bounded fact witnessing that P does not have k-bounded
cardinality. To compute these facts, we can use the procedure from Theorem 4.

The computation can be stopped as soon as a fact with a set of cardinality > k is inferred.
Hence, for analysing complexity, we only need to consider inferences of facts with smaller
sets. We can estimate the number of terms that respect this restriction by viewing each term
as a tree of depth bounded by the height i of the schema, and branching factor f bounded
by the maximum of k£ and the arity of any tuple sort. Over k + 1 constants in Dy, there can
be at most (k + 1)f " such terms. This translates into a double exponential bound for the
number of derivable facts, and an according complexity bound as claimed. If the height of
the schema is bounded, h can be considered constant and the same calculation leads to a
single exponential bound (depending on f). <

Derivations of “large” sets involve either recursive rule applications to construct them from
smaller sets, or unsafe set variables. Thus, the absence of either feature is a sufficient condition
for bounded cardinality. This is similar to how acyclicity notions syntactically ensure chase
termination on all input databases for sets of TGDs by restricting the propagation of nulls [15].
Indeed, we adapt Weak Acyclicity [18, 19] into a criterion for bounded cardinality.

» Definition 17. We encode positions in sorts and terms as lists of natural numbers, where
€ is the empty list and - is concatenation (which we generalise to sets of lists in the usual
way). The set of positions Pos(T) of a sort T, is defined recursively as follows:

Pos(A) == {e};

Pos({7'}) == {e} U (1 - Pos(7")); and

Pos((71,...,72)) == {e} UU'_, (i - Pos(m)).

Given a term t of sort T, the subterms At(t,w) at a position w € Pos(t) are defined
recursively as follows:

At(t,e) =t;

At({t1,...,tn}, 1 v) = Ul At(t;,v);

At({t1, ..., te),i-v) = At(t;,v);
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At(t; Utg,v) == At(t,v) U At(te,v); and

At(tl N tg, ’U) = At(tl, U) @] At(tQ, ’U),
where v is a (possibly empty) list of natural numbers. Note that At({},v-1) = 0.

All terms in At(t,w) are of the same sort, which we call the sort of ¢ at position w. A
variable © occurs at position w in term t of sort T if the sort of x is the sort of t at position
w, and x occurs in a term in At(t,w).

A predicate position is a list p - w for a position w € Pos(sort(p)); we denote by Pos(p)
the set of all predicate positions for p. A wariable x occurs at a predicate position p-w in a
formula ¢ if ¢ contains an atom p(t) and x occurs at position w in t.

» Example 18. Consider the term ¢ = {(a, {{z}, SU{y}}) of sort 7 = (A, {{A}}). The
positions of 7 are Pos(7) = {¢,1,2,2-1,2-1- 1}, and we have At(¢,1) = {a}, At(t,2) =
{{{z}, SU{y}}}, and At(¢,2-1) = {{z}, SU {y}}. We find that S occurs at 2 - 1 whereas
x and y occur at 2-1- 1.

» Definition 19. Consider a Datalog®Y program P. The WSA graph G(P) of P is a directed
graph with two kinds of edges (“normal” and “special”). The vertices of G(P) are all predicate
positions of predicates in P. G(P) contains the following edges:

1. For every rule ¢ — ¢ € P, and every variable x that occurs in a body atom q(s) € ¢ at
position q-v and in a head atom p(t) € ¥ at position p-w, there is an edge q-v — p-w; it
is special if & occurs in a subterm of the form SUT in At(t,w), and normal otherwise.

2. For every rule o — ¢ € P, and every variable x of set sort {7} or tuple sort {11,...,7¢),
where a set sort occurs (directly or transitively) in a component sort 7;, that occurs in
a head atom p(t) € 1 at position p - w and that does not occur in the body ¢, there is a
special edge p-w — p - w.

3. If there is an edge q-v — p - w, and if the sort T at position q - v (which is the same
as the sort at position p - w) has a position u € Pos(7), then there is a normal edge
q-v-u—>p-w-u.

P is weakly set-acyclic if G(IP) does not contain a directed cycle that involves a special edge.

Intuitively, edges of the first kind model the propagation of values by rule applications.
Edges of the second kind correspond to unsafe variables ranging over values containing sets.
Such values always include sets that contain all constants occurring in the database. Thus, a
program containing such a rule generally does not have bounded cardinality, and we thus
always force a cycle in the WSA graph. Lastly, edges of the third kind model the propagation
of values inside values of composite sorts. Indeed, weak set-acyclicity is easy to check:

» Lemma 20. Deciding if P is weakly set-acyclic is NL-complete.

Proof sketch. The WSA graph can be constructed by a logspace transducer, since the
presence of any edge can be decided in L. Checking for cycles in a logspace-computable
directed graph is NL-complete. |

We also note that any sufficiently large set produced by some program involves either an
unsafe set variable, or the recursive application of some rule:

» Lemma 21. For a Datalogcv program P without unsafe set variables, there is n € N such
that a minimal chase sequence deriving a set S with |S| > n has some rule p applied to a
match containing a set T, where p is again part of the subsequence deriving T'.
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Proof. Let p € P be a rule and consider a match h for p. There is a polynomial p(z) such
that any set obtained by applying p yields a set of cardinality at most p(z), provided that
no set in h has cardinality exceeding x. Let g(x) be a simultaneous upper bound for all
such polynomials for rules in P, consider the |P|-fold composition ¢/"! = ¢(--- (g(x))---), and
define n == ¢IFI(1) + 1.

If there is no database D such that P derives a set S of cardinality |S| > n on D, then
P has n-bounded cardinality, and the claim is vacuously true. Otherwise, let S be such a
set and D be such a database. Consider a minimal chase sequence deriving S. Any chase
sequence without duplicate rules has at most P steps, and since D does not contain sets,
such a sequence derives a set of cardinality at most ¢/¥ ‘(1) < n. Thus, the minimal chase
sequence deriving S must contain some rule p occurring in steps ¢ and j > i, where step ¢
derives a set T with |T'| < |S]. <

We therefore find weak set-acyclicity a sufficient condition for bounded cardinality:
» Theorem 22. [f P is weakly set-acyclic, then P has bounded cardinality.

Proof. Towards a contradiction, assume that P has unbounded cardinality, but G(P) does
not contain a directed cycle traversing a special edge. Let n be the constant from Lemma 21.
Since P has unbounded cardinality, there is a set S with |S| > n that P derives, consider a
minimal chase sequence for some fact containing it. Note that any rule application in this
sequence corresponds to at least one edge in G(P). By Lemma 21, there is a set T derived
by a rule p that is propagated to some fact partaking in another match for p. Thus, p is

part of a directed cycle in G(P). Furthermore |T| < |S|, since the chase sequence is minimal.

Thus one of the rule applications corresponding to this cycle must involve a union in the
head of the rule, making the corresponding edge in G(P) special. <

Weakly set-acyclic programs constitute a tractable fragment of DatalogCv for which
membership is decidable. But even simple bounded-cardinality programs may not be WSA:

» Example 23. Consider again the programs P and P’ from Example 12. The WSA graph of
P hasedgese-e > s-1,s-€e —>p-€,and s-1 — p-1. Therefore, P is WSA. The WSA graph
for P’ contains the special edge s-€ — s- ¢, and P’ is not WSA. Let P consist of PP and (44):

s(X)Ns(Y)ADP(S) = s(SN(XUY)) (44)
The WSA graph of P has the special edge s - € — s - €, but P has 2-bounded cardinality.

We can improve over WSA by estimating the maximal cardinality of sets produced by
a rule more cautiously. We therefore construct a system of inequalities that correspond to
lower bounds on the cardinalities of sets. These bounds are expressions built from natural
numbers and the operators 4+, min, and max. Then the sum of these lower bounds has a
minimum if and only if the program has bounded cardinality.

» Definition 24. Let P be a Datalog®" program. For a set sort 7 = {r'}, let P, be the set
of all predicate positions of sort T. A predicate position p - w in P, is a target position if p
occurs in the head of some rule p € P. With every predicate position p-w € Pr, associate a
variable Tp.,. Set X =, _;n{@pw |p-w € Pr}, and let T C X be the set of all target
variables. Recursively define the lower bound [t]p.., of a term t occurring at p - w in rule p:
1. if t € V is a variable, let bpos(t) be the set of all predicate positions of body p that t
occurs at and set [t]5., = max{x., | ¢-v € bpos(t)};
2. [{tas-- st} pw = ¢;
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3. [(t1 N te)]pw = min([t1]pw, [t2]5-w); and

4. [(tr U t2)]pw = [t1lpw + [t2lpw-

Every variable x € X has the associated inequality x > 0, every target variable x,., has
associated inequalities for terms t occurring at p - w in the head of rule p: Tp., > [t]pw-
The system of cardinality constraints card(P) is the system of all such inequalities. The
cardinality constraints problem is minimising ) . x subject to card(PP).

Intuitively speaking, we obtain a bound ¢ for set literals {¢1,...,%,} by assuming that all
terms are distinct. For intersections t; N ¢y, the bound is the minimum of the bounds for t;
and to, whereas for unions, it is the sum of the bounds (assuming that, in the worst case,
the sets are disjoint). For variables, we simply take the maximum over all bounds for the
same sort that occur in the body of the rule.

The cardinality constraints problem allows us to strengthen the bound from Lemma 21:

» Lemma 25. Let P be a Datalogcv program. If the cardinality constraints problem has
optimal value k, any minimal chase sequence deriving a set S with |S| > k+ 1 has some rule
p applied to a match containing a set T', where p is again part of the subsequence deriving T

» Theorem 26. If the cardinality constraints problem for some Datalogcv program P has an
optimal solution, then P has bounded cardinality. Deciding whether this is the case can be
done in polynomial time with respect to the size of P.

Proof. Note that the cardinality constraints problem for P is always bounded, i.e., it always
has only finitely many possible solutions, since we require z > 0 for all variables z € X.
Thus, it has an optimal solution precisely when it has at least one solution, i.e., when it
is feasible. Assume for a contradiction that P has unbounded cardinality, but that the
cardinality constraints problem has optimal value k. By Lemma 25, there is a set S with
|S| > k + 1 such that any minimal chase sequence applies rule p to some set T' with p part of
the subsequence deriving T'. Without loss of generality, assume that both S and T occur at
the same predicate position p - w (since P has unbounded cardinality, we can chose S large
enough) in steps i and j > i. Let p-w = ¢* - v', ¢t - oL g7 wi T ¢f -0 =p-w be
the positions along the subsequence. We have xp., > @git1.pi41 2 -0 > Tgi-1.95-1 2 Tpyp.
Since |S| > |T|, one of the rules applied in the subsequence involves a union. Thus one of
the inequalities is strict and the cardinality constraints problem is infeasible, which is the
desired contradiction.

Since P only has polynomially many positions, the cardinality constraints problem for P is
of polynomial size with respect to P. By using additional variables, card(IP) can be transformed
into an equifeasible linear program (i.e., a system of linear inequalities that admits an optimal
solution precisely when card(P) does): inequalities of the form z > max{t;,...,t,} are
replaced by ¢ inequalities x > t1,...,z > ty, and inequalities of the form & > min(¢1,¢2) are
replaced by x = t; —y, y > 0, and y > t; — to, where y is a fresh variable. The resulting
linear program is still of polynomial size, and solving such linear programs can be done in
polynomial time [24]. <

The system of cardinality constraints is not a sufficient condition for bounded cardinality
either, but it can capture bounded cardinality for programs that are not weakly set-acyclic:

» Example 27. Consider again the program P from Example 23. Then card(P) consists of
the following inequalities with optimal solution xs.. = 2 = x,.. and optimal value k = 4:

Tse >0 Tp.e 20

Tge > 1 Tp.e > 2 Tge > MIN(Tpec, Ts.c + Ts.c)
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6 Linear Datalog®’

For both Datalog and TGDs, linearity is a syntactic criterion that corresponds to a fragment
with lower complexities [21, 20]. It thus seems prudent to investigate whether the analogous
fragment of Da’calogCV enjoys similarly reduced complexities.

» Definition 28. A Datalogcv rule ¢ — 1 is a linear Datalogcv rule if both ¢ and v each
comprise exactly one atom. A Datalogcv program P is linear if all rules p € P are linear.

Unlike for DatalogCV7 we allow databases for linear DatalogCV programs to contain facts
of arbitrary sorts, as such facts cannot generally be constructed using linear rules. We find
that with one added layer of nested sets, deciding entailment for linear Datalog®V is just
as hard as for Datalogcv. In other words, for the same set height, the complexity of linear
Datalog®V is indeed at most one exponent lower than for non-linear Datalog®".

» Theorem 29. Let S be a schema with k = s-height(S) > 0, let P be a linear Datalog®”
program and D a database over S, and let o be a ground fact. Deciding P,D = « is
(k— 1)EXPTIME-hard for data complexity and (k+ 1)EXPTIME-hard for combined complexity.
If t-height(S) is bounded, the combined complexity drops to kEXPTIME-hard.

Proof sketch. The proof follows the idea from the proof of Theorem 6. We use a single
predicate facts holding tuples of sets, with each component corresponding to one of the
original predicates: Let p1,p2,... be a fixed enumeration of all predicates occurring in P
with sorts 71, 79,.... Then facts has sort ({71}, {m2},...), and component i corresponds
to facts for p;. For a formula @, define tsg (p) := {t}, where ¢ is the (possibly empty) list
of terms ¢ for which p(¢) occurs in ®. We then translate a rule p = ¢ — ¢ into (45), and
translate D as dbFacts(tsp(p1), tsp(p2), - - . ), where we view D as a conjunction of atoms.

facts(y1 U tsy(p1), y2 U ts,(p2),...) — facts(y1 U ts,(p1),y2 U ts,(p2),...) (45)
Lastly, the linear rule dbFacts(y) — facts(y) derives the initial facts from D. <

Note that, even with this encoding, negation cannot be simulated by €, since we cannot
require rules to be applied only after all facts for some predicate p; have been derived.

7 Discussion and Future Work

We have formalised Datalogcv, a positive extension of Datalog with complex values, identified
its complexity, and developed a translation into terminating TGD sets. In sharp contrast to
Relationlog [28], which has the same complexity as Datalog, DatalogCV can express highly
complex queries, and unlike Set-extended Datalog [39], it supports tuples as well as sets.

We have shown that bounded cardinality programs form a fragment with tractable
reasoning. Since it is undecidable whether a program has bounded cardinality, we have
proposed two decidable sufficient conditions for bounded cardinality: weak set-acyclicity and
the cardinality constraints problem.

Regarding future works, our translations put complex value reasoning in reach of rule
engines such as VLog [11] and RDFox [31], which have the potential of addressing many of
the applications from the introduction. On the theoretical side, (stratified) negation would
be a natural extension to study, also regarding its utility for expressing query languages
such as MARPL [30] and eMARPL [29]. Moreover, while it was recently shown that chase-
terminating tuple-generating dependencies capture all decidable monotonic queries [8], the
expressive power of DatalogCV and its tractable fragments remains open.
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