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Abstract
In this paper, we study the problem of optimizing a linear program whose variables are the answers
to a conjunctive query. For this we propose the language LP(CQ) for specifying linear programs
whose constraints and objective functions depend on the answer sets of conjunctive queries. We
contribute an efficient algorithm for solving programs in a fragment of LP(CQ). The naive approach
constructs a linear program having as many variables as there are elements in the answer set of
the queries. Our approach constructs a linear program having the same optimal value but fewer
variables. This is done by exploiting the structure of the conjunctive queries using generalized
hypertree decompositions of small width to factorize elements of the answer set together. We
illustrate the various applications of LP(CQ) programs on three examples: optimizing deliveries
of resources, minimizing noise for differential privacy, and computing the s-measure of patterns in
graphs as needed for data mining.
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1 Introduction

When modeling optimization problems it often seems natural to separate the logical con-
straints from the relational data. This holds for linear programming with AMPL [5] and
for constraint programming in MiniZinc [15]. It was also noticed in the context of database
research, when using integer linear programming for finding optimal database repairs as
proposed by Kolaitis, Pema and Tan [12], or when using linear optimization to explain the
result of a database query to the user as proposed by Meliou and Suciu [14]. Moreover, tools
like SolveDB [19] have been developed to better integrate mixed integer programming and
thus linear programming into relational databases.
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5:2 Linear Programs with Conjunctive Queries

We also find it natural to define the relational data of linear optimization problems
by database queries. For this reason, we propose the language of linear programs with
conjunctive queries LP(CQ) in the present paper. The objective is to become able to specify
weightings of answer sets of database queries, that optimize a linear objective function subject
to linear constraints. The optimal weightings of LP(CQ) programs can be computed in a
naive manner, by first answering the database queries, and then solving a linear program
parametrized by the answer sets. We then approach the question – to our knowledge for the
first time – of whether this can be done with lower complexity for subclasses of conjunctive
queries such as the class of acyclic conjunctive queries.

As our main contribution we present a more efficient algorithm for computing the optimal
value of a program in the fragment of so-called projecting LP(CQ) programs for which we
also bound the hypertree width of the queries. The particular case of width 1 covers the
class of acyclic conjunctive queries. By using hypertree decompositions, our algorithm is
based on a factorized interpretation of a projecting LP(CQ) program over a database. The
factorized interpretation uses other linear program variables, that represent sums of the
linear program variables in the naive interpretation. The number of linear program variables
in the factorized interpretation depends only on the widths of the hypertree decompositions
of the queries in the LP(CQ) program, rather than on the number of query variables. In
this manner, our more efficient algorithm can decrease the data complexity, i.e., the degree
of the polynomial in the upper bound of the run time of the naive algorithm. With respect
to the combined complexity, the special case of projecting LP(CQ) programs with bounded
quantifier depth becomes tractable for acyclic conjunctive queries, while it is NP-complete
in general.

We prove the correctness of the factorized interpretation with respect to the naive
interpretation. For this we have to show a correspondence between weightings of answer sets
on the naive interpretation, and weightings of answer sets on the factorized interpretation.
This correspondence can be seen as an independent contribution as it shows that one can
reconstruct a relevant weighting of the answer set of a quantifier free conjunctive query by
only knowing the value of the projected weighting on the bags of the tree decomposition.

Conjunctive queries with existential quantifiers are dealt with by showing that one can
find an equivalent projecting LP(CQ) program with quantifier free conjunctive queries only.

1.1 Applications
A wide range of applications of linear programs can benefit from conjunctive queries.

Resource Delivery Optimization. We consider a situation in logistics where a company
received orders for specific quantities of resource objects. The objects must be produced
at a factory, then transported to a warehouse before being delivered to the buyer. The
objective is to fulfill every order while minimizing the overall delivery costs and respecting
the production capacities of the factories as well as the storing capacities of the warehouses.

Let F be the set of factories, O the set of objects, W the set of warehouses and B the set
of buyers. We consider a database D with elements in the domain D = F ⊎ O ⊎ W ⊎ B ⊎ R+.
The elements d ∈ D encoding a positive real number can be decoded back by applying the
database’s functions numD, yielding the positive real number numD(d) ∈ R+. The database
D has four tables. The first table prodD ⊆ F × O × R+ contains triples (f, o, q) stating that
the factory f can produce up to q units of object o. The second table orderD : B × O × R+
contains triples (b, o, q) stating that the buyer b orders q units of object o. The third table
storeD ⊆ W × R+ contains pairs (w, l) stating that the warehouse w has a storing limit of l.
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minimize∑
(f,w,c):route(f,w,c) num(c) weight(f ′,w′,b′,o′):f ′ .=f∧w′ .=w(Q)

+
∑

(w,b,c):route(w,b,c) num(c) weight(f ′,w′,b′,o′):w′ .=w∧b′ .=b(Q)
subject to

∀(f, o, q):prod(f, o, q).weight(f ′,w′,b′,o′):f ′ .=f∧o′ .=o(Q) ≤ num(q)
∧ ∀(b, o, q):order(b, o, q).weight(f ′,w′,b′,o′):b′ .=b∧o′ .=o(Q) ≥ num(q)
∧ ∀(w, l):store(w, l).weight(f ′,w′,b′,o′):w′ .=w(Q) ≤ num(l)

Figure 1 A LP(CQ) program for the resource delivery optimization where Q = dlr(f ′, w′, b′, o′).

The fourth table routeD : (F × W ×R+) ∪ (W × B ×R+) contains triples (f, w, c) stating that
the transport from factory f to warehouse w costs c, and triples (w, b, c) stating that the
transport from warehouse w to buyer b costs c. The query:

dlr(f, w, b, o) = ∃q.∃q2.∃c∃c2. prod(f, o, q) ∧ order(b, o, q2) ∧ route(f, w, c) ∧ route(w, b, c2)

selects from the database D all tuples (f, w, b, o) such that the factory f can produce some
objects o to be delivered to buyer b through the warehouse w. Let Q = dlr(f ′, w′, b′, o′). The
goal is to determine for each of these possible deliveries the quantity of the object that should
actually be sent. These quantities are modelled by the unknown weights θα

Q of the query
answers α ∈ solD(Q). For any factory f and warehouse w the sum

∑
α∈solD(Q∧w′ .=w∧f ′ .=f) θα

Q

is described by the expression weight(f ′,w′,b′,o′):f ′ .=f∧w′ .=w(Q) when interpreted over D.
We use the LP(CQ) program in Figure 1 to describe the optimal weights that minimize

the overall delivery costs. The weights depend on the interpretation of the program over the
database, since D specifies the production capacities of the factories, the stocking limits of
the warehouses, etc. The program has the following constraints:

for each (f, o, q) ∈ prodD the overall quantity of object o produced by f is at most q.
for each (b, o, q) ∈ orderD the overall quantity of objects o delivered to b is at least q.
for each (w, l) ∈ storeD the overall quantity of objects stored in w is at most l.

By answering the query Q on the database D and introducing a linear program variable
θα

Q for each of the query answers α, we can interpret the LP(CQ) program in Figure 1 as a
linear program. However the number of answers of Q and thus the number of variables in
this program could be cubic in the size of the database, which quickly grows too big.

Our factorized interpretation for the projecting LP(CQ) program in Figure 1 produces a
linear program that only has a quadratic number of variables since the query Q (as well as
the whole LP(CQ) program) has a hypertree decomposition of width 2.

Minimizing Noise for ε-Differential Privacy. The strategy of differential privacy is to add
noise to the relational data before publication. Roughly speaking, the general objective
of ε-differential privacy [4] is to add as little noise as possible, without disclosing more
than an ε amount of information. We illustrate this with the example of a set of hospitals
which publish medical studies aggregating results of tests on patients, which are to be kept
confidential. We consider the problem of how to compute the optimal amount of noise to
be added to each separate piece of sensitive information (in terms of total utility of the
studies) while guaranteeing ε-differential privacy. We show that this question can be solved
(approximately) by computing the optimal solution of a projecting program in LP(CQ)
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5:4 Linear Programs with Conjunctive Queries

with a single conjunctive query that is acyclic, i.e., of hypertree with 1. While the naive
interpretation yields a linear program with a quadratic number of variables in the size of
the database, the factorized interpretation requires only a linear number. The example is
worked out in the full version [2].

Computing the s-Measure for Graph Pattern Matching. A matching of a subgraph pattern
in a graph is a graph homomorphism from the pattern to the graph. The s-measure of
Wang et al. [20] is used in data mining to measure the frequency of matchings of subgraph
patterns, while accounting for overlaps of different matchings. The idea is to find a maximal
weighting for the set of matchings, such that for any node of the subgraph pattern, the set of
matchings mapping it on the same graph node must have an overall weight less than 1. This
optimization problem can be expressed by a projecting LP(CQ) program over a database
storing the graph. The conjunctive query of this program expresses the matching of the
subgraph pattern. The hypertree width of this conjunctive query is bounded by the hypertree
width of the subgraph pattern. Our factorized interpretation therefore reduces the size of
the linear program for subgraph patterns with small hypertree width. More information on
the LP(CQ) program can be found in the full version [2].

1.2 Related Work

Our result builds on well-known techniques using dynamic programming on tree decomposi-
tions of the hypergraph of conjunctive queries. These techniques were first introduced by
Yannkakis [21] who observed that so-called acyclic conjunctive queries could be answered
in linear time using dynamic programming on a tree whose nodes are in correspondence
with the atoms of the query. Generalizations have followed in two directions: on the one
hand, generalizations of acyclicity such as notions of hypertree width [6, 7, 8] have been
introduced and on the other hand enumeration and aggregation problems have been shown
to be tractable on these families of queries such as finding the size of the answer set [18] or
enumerating it with small delay [1]. These tractability results can be obtained in a unified and
generalized way by using factorized databases introduced by Olteanu and Závodný [16, 17],
from which our work is inspired. Factorized databases provide succinct representations for
answer sets of queries on databases. The representation enjoys interesting syntactic properties
allowing to efficiently solve numerous aggregation problems on answer sets in polynomial
time in the size of the representation. Olteanu and Závodný [17] have shown that when the
fractional hypertree width of a query Q is bounded, then one can construct, given a hypertree
decomposition of Q and a database D, a factorized databases representing the answers of Q

on D of polynomial size. They also give a O(1) delay enumeration algorithm on factorized
databases. Combining both results gives a generalization of the result of Bagan, Durand and
Grandjean [1] on the complexity of enumerating the answers of conjunctive queries.

Our result heavily draws inspiration from this approach as we use bottom up dynamic
programming on hypertree decomposition of the input query Q to construct a partial
representation of the answers set of Q on database D that we later use to construct a
factorized interpretation of the linear program to solve. While our approach could be made
to work directly on factorized representations of queries answer sets as defined by Olteanu
and Závodný [17], we choose to directly work on tree decompositions because we need to
incorporate some structure of the linear program into our tree decomposition to efficiently
handle complex linear programs.
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Linear expressions S, S′ ∈ Le ::= c | ξ | cS | S + S′

Linear constraints C, C ′ ∈ Lc ::= S ≤ S′ | C ∧ C ′ | true
Linear programs L ∈ Lp ::= maximize S subject to C

Figure 2 The set of linear programs Lp with variables ξ ∈ Ξ and constants c ∈ R.

Organization of the paper. Section 2 contains the necessary definitions to understand
the paper. Section 3 presents the language LP(CQ) of linear programs parametrized by
conjunctive queries and gives its semantics. Section 4 defines a fragment of LP(CQ) for
which we propose a more efficient algorithm. Finally, Section 5 presents encouraging practical
results on solving the delivery optimization problem using this algorithm. Due to space limit,
most proofs and full details on applications to differential privacy and s-measure computation
can be found in the full version [2].

2 Preliminaries

Sets, Functions and Relations. Let B = {0, 1} be the set of Booleans, N the set of natural
numbers including 0, R+ be the set of positive reals including 0 and subsuming N, and R
the set of all reals.

Given any set S and n ∈ N we denote by Sn the set of all n-tuples over S and by
S∗ = ∪n∈NSn the set of all words over S. A weighting on S is a (total) function f : S → R+.

Given a set of (total) functions A ⊆ DS = {f | f : S → D} and a subset S′ ⊆ S, we
define the set of restrictions A|S′ = {f|S′ | f ∈ A}. For any binary relation R ⊆ S × S,
we denote its transitive closure by R+ ⊆ S × S and the reflexive transitive closure by
R∗ = R+ ∪ {(s, s) | s ∈ S}.

Variable assignments. We fix a countably infinite set of (query) variables X . For any
set D of database elements, an assignment of (query) variables to database elements is a
function α : X → D that maps elements of a finite subset of variables X ⊆ X to values of
D. For any two sets of variable assignments A1 ⊆ DX1 and A2 ⊆ DX2 we define their join
A1 ▷◁ A2 = {α1 ∪ α2 | α1 ∈ A1, α2 ∈ A2, α1|I = α2|I} where I = X1 ∩ X2.

We also use a few vector notations. Given a vector of variables x = (x1, . . . , xn) ∈ X n we
denote by set(x) = {x1, . . . , xn} the set of the elements of x. For any variable assignment
α : X → D with set(x) ⊆ X we denote the application of the assignment α on x by
α(x) = (α(x1), . . . , α(xn)).

Linear programs. Let Ξ be a set of linear program variables. In Figure 2, we recall the
definition of the sets of linear expressions Le, linear constraints Lc, and linear programs Lp
with variables in Ξ. We consider the usual linear equations S

.=S′ as syntactic sugar for the
constraints S ≤ S′ ∧ S′ ≤ S. For any linear program L = maximize S subject to C we
call S the objective function of L and C the constraint of L. Note that the linear program
minimize S subject to C can be expressed by maximize − 1 S subject to C up to
negation.

The formal semantics of linear programs is recalled in the full version [2]. Since we
will only be interested in variables for positive real numbers – and do not want to impose
positivity constraints all over – we restrict variables of linear programs to always be positive

ICDT 2022



5:6 Linear Programs with Conjunctive Queries

Expressions E1, . . . , En ∈ ExC ::= x | a

Conjunctive queries Q, Q′ ∈ CqΣ ::= E1
.=E2 | r(E1, . . . , En) | Q ∧ Q′ | ∃x.Q | true

Figure 3 The set of conjunctive queries CqΣ with schema Σ = ((R(n))n∈N, C) where x ∈ X ,
a ∈ C, and r ∈ R(n).

real numbers. For any weightings ω : Ξ → R+, the value of a sum S ∈ Le is the real
number JSKω ∈ R, and the value of a constraint C ∈ Lc is the truth value JCKω ∈ B. The
optimal solution JLK ∈ R of a linear program L with objective function S and constraint C

is JLK = max{JSKω | ω : Ξ → R+, JCKω = 1}. It is well-known that the optimal solution of
a linear program can be computed in polynomial time [10].

Rooted trees. A digraph is a pair (V, E) with node set V and edge sets E ⊆ V × V. A
digraph is acyclic if there is no v ∈ V for which (v, v) ∈ E+. For any node u ∈ V, we denote
by ↓ u = {v ∈ V | (u, v) ∈ E∗} the set of nodes in V reachable over some downwards path
from u, and by ↑u = (V \ ↓ u) ∪ {u} the context of u. A rooted tree is an acyclic digraph
where (u, v), (u′, v) ∈ E implies u = u′, and there exists a node r ∈ V such that V = ↓ r. In
this case, r is unique and called the root of the tree. Observe that in this tree, the paths are
oriented from the root to the leaves of the tree.

Relational Databases. A database schema is a pair Σ = (R, C) where C a finite set of
constants ranged over by a, b and R = ∪n∈NR(n) is a finite set of relation symbols. The
elements r ∈ R(n) are called relation symbols of arity n ∈ N.

A database D ∈ dbΣ is a tuple D = (Σ, D, ·D), where Σ is a schema, D a finite set of
database elements, and rD ⊆ Dn a relation for any relation symbol r ∈ R(n) and aD ∈ D a
database element for any constant a ∈ C. We also define the database’s domain dom(D) = D.

A database with real numbers is a tuple D = (Σ, D, ·D, numD) such that D = (Σ, D, ·D) is
a relational database and numD a partial function from D to R.

Conjunctive Queries. In Figure 3 we recall the notion of conjunctive queries on relational
databases. An expression E ∈ ExC is either a (query) variable x ∈ X or a constant a ∈ C.
The set of conjunctive queries Q ∈ CqΣ is built from equations E1

.=E2, atoms r(E1, . . . , En),
the logical operators of conjunction Q ∧ Q′ and existential quantification ∃x.Q. Given a
vector x = (x1, . . . , xn) ∈ X n and a query Q, we write ∃x.Q instead of ∃x1. . . . .∃xn.Q.

The set of free variables fv(Q) ⊆ X are those variables that occur in Q outside the scope
of an existential quantifier. A conjunctive query Q is said to be quantifier free if it does not
contain any existential quantifier.

For any conjunctive query Q ∈ CqΣ, set X ⊇ fv(Q) and database D ∈ dbΣ we define
the answer set solDX(Q). It contains all those assignments α : X → dom(D) for which Q

becomes true on D. We also write solD(Q) instead of solDfv(Q)(Q). Observe that solD(∃x.Q) =
solD(Q)|fv(Q)\set(x).

Hypertree Decompositions. Hypertree decompositions of conjunctive queries are a way of
laying out the structure of a conjunctive query in a tree. It allows to solve many aggregation
problems (such as checking the existence of a solution, counting or enumerating the solutions
etc.) on quantifier free conjunctive queries in polynomial time where the degree of the
polynomial is given by the width of the decomposition.
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▶ Definition 1. Let X ⊆ X be a finite set of variables. A decomposition tree T of X is a
tuple (V, E , B) such that:

(V, E) is a finite directed rooted tree with edges from the root to the leaves,
the bag function B : V → 2X maps nodes to subsets of variables in X,
for all x ∈ X the subset of nodes {u ∈ V | x ∈ B(u)} is connected in the tree (V, E),
each variable of X appears in some bag, that is

⋃
u∈V B(u) = X.

Now a hypertree decomposition of a quantifier free conjunctive query is a decomposition
tree where for each atom of the query there is at least one bag that covers its variables.

▶ Definition 2 (Hypertree width of quantifier free conjunctive queries). Let Q ∈ CqΣ be a
quantifier free conjunctive query. A generalized hypertree decomposition of Q is a decompos-
ition tree T = (V, E , B) of fv(Q) such that for each atom r(x) of Q there is a vertex u ∈ V
such that set(x) ⊆ B(u). The width of T with respect to Q is the minimal number k such that
every bag of T can be covered by the variables of k atoms of Q. The generalized hypertree
width of a query Q is the minimal width of a tree decomposition of Q.

We call a conjunctive query α-acyclic if it has general hypertree width 1. The query
r(x, y) ∧ r(y, z) has the generalized hypertree decomposition (V, E , B) with V = {1, 2, 3},
E = {(1, 2), (1, 3)}, and B = [1/{y}, 2/{x, y}, 3/{y, z}] of width 1, so it is α-acyclic.

Many problems can be solved efficiently on conjunctive queries having a small hypertree
width. We will mainly be interested in the problem of efficiently computing solD(Q).

▶ Lemma 3. Given a tree decomposition T = (V, E , B) of a quantifier free conjunctive
query Q ∈ CqΣ of width k and a database D ∈ dbΣ, one can compute the collection of bag
projections (solD(Q)|B(u))u∈V in time O((|D|k log(|D|)) · |T |).

Lemma 3 is folklore: it can be proven by computing the semi-join of every bag in a
subtree in a bottom-up fashion, as it is done in [13, Theorem 6.25]. This yields a superset
Su of solD(Q)|B(u) for every u. Then, with a second top-down phase, one can remove tuples
from Su that cannot be extended to a solution of solD(Q).

Note that if Q contains n atoms, solD(Q) may be of size O(|D|n) while (solD(Q)|B(u))u∈V

has size O(|D|k · |T |) where k is the width of T . In the particular case of α-acyclic conjunctive
queries, where k = 1, the overall size of the projections is linear. It gives a succinct way of
describing the set of solutions of Q that we exploit in this paper.

We observe here that Lemma 3 is still valid if one replaces hypertree width with the
more general notion of fractional hypertree width [9]. Since our tractability results only
follows from the bounds presented in Lemma 3, it implies that our results also holds for tree
decomposition having bounded fractional hypertree width. We however choose to present
our result by using hypertree width since it is easier to define.

Parts of our result will be easier to describe on so-called normalized decomposition trees:

▶ Definition 4. Let T = (V, E , B) be a decomposition tree. We call a node u ∈ V of T :
- an extend node if it has a single child u′ and B(u) = B(u′) ∪ {x} for some x ∈ X \ B(u′),
- a project node if it has a single child u′ and B(u) = B(u′) \ {x} for some x ∈ X \ B(u),
- a join node if it has k ≥ 1 children u1, ..., uk with B(u) = B(u1) = ... = B(uk).
We call T normalized 1 if all its nodes in V are either extend nodes, project nodes, join nodes,
or leaves.

1 In the literature this property is referred to as “nice” tree decompositions.
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5:8 Linear Programs with Conjunctive Queries

Constant numbers N ∈ NumC ::= c | num(E)
LP(CQ) expressions S, S′ ∈ LeΣ ::= weightx:Q′(Q) |

∑
x:Q S | NS | S + S′ | N

LP(CQ) constraints C, C ′ ∈ LcΣ ::= S ≤ S′ | C ∧ C ′ | true | ∀x:Q.C

LP(CQ) programs L ∈ LpΣ ::= maximize S subject to C

where fv(S) = fv(C) = ∅.

Figure 4 The set of LP(CQ) programs LpΣ where c ∈ R, E ∈ ExC , x ∈ X ∗ and Q, Q′ ∈ CqΣ.

It is well-known that tree decompositions can always be normalized without changing the
width. Thus normalization does not change the asymptotic complexity of the algorithms.

▶ Lemma 5 (Lemma of 13.1.2 of [11]). For every tree decomposition of T = (V, E , B) of
Q of width k, there exists a normalized tree decomposition T ′ = (V ′, E ′, B′) having width k.
Moreover, one can compute T ′ from T in polynomial time.

3 Linear Programs with Conjunctive Queries

We want to assign weights to the answers of a conjunctive query on a database, such that
they maximize a linear objective function subject to linear constraints. For this, we introduce
the language LP(CQ) of linear programs with conjunctive queries.

3.1 Syntax
Its syntax is given in Figure 4. Note that an example of an LP(CQ) program for optimal
warehouse selection was already given in Figure 1. LP(CQ) programs are interpreted as linear
programs whose variables describe the solutions of conjunctive queries. As a consequence,
they do not contain any explicit linear program variables. Instead, they may contain weight
expressions weightx:Q′(Q) over conjunctive queries Q, Q′ ∈ CqΣ. Intuitively, this expression
is interpreted as a linear expression over linear program variables representing a solution of
Q ∧ Q′. Variables of Q and Q′ however may be bound in the context, for example through
universal quantifiers or Σ-operators. The query variables in x are bound by the expression
taking scope over Q and Q′. The free (query) variable of weight expressions must however
be bound by the context, so that they will be instantiated to some database values before
evaluation. Weight expressions without free variables reason about an unknown weighting of
the answer set of query Q on the given database D with the variables in set(x). Its value is
then the sum over the weights of tuples in the answer set of Q ∧ Q′ on the database D with
variables in set(x).

Beside weight expressions, LP(CQ) expressions in LeΣ may also contain expression
N ∈ NumC or NS where S ∈ LeΣ and N is a constant number expression, which is either a
real number c ∈ R or a number expression num(E) with E ∈ X ∪ C. An expression num(a)
denotes the real number numD(aD) if this value is defined. Note that the real value of
num(a) over D is constant from the perspective of the linear program once the database
D is fixed. LP(CQ) constrains C ∈ LcΣ are conjunctions of inequalities S ≤ S′ between
LP(CQ) expressions S, S′ ∈ LeΣ, and universally quantified constraints ∀x:Q.C ′ requiring
that C ′ must be valid for all possible values of x in the solution of Q over the database (after
instantiation of the free variables of ∀x:Q.C ′). The bound variables in x have scope over Q

and C.
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fv(c) = ∅ fv(num(E)) = fv(E)
fv(weightx:Q′(Q)) = fv(Q) ∪ fv(Q′) \ set(x) fv(

∑
x:Q S) = fv(S) ∪ fv(Q) \ set(x)

fv(NS) = fv(N) ∪ fv(S) fv(S ≤ S′) = fv(S) ∪ fv(S′)
fv(S + S′) = fv(S) ∪ fv(S′) fv(C ∧ C ′) = fv(C) ∪ fv(C ′)
fv(∀x:Q. C) = fv(Q) ∪ fv(C) \ {x} fv(true) = ∅
fv(maximize S subject to C) = ∅

Figure 5 Free variables of LP(CQ) expressions, constraints, and programs.

LP(CQ) programs L ∈ LpΣ are built from LP(CQ) expressions and LP(CQ) constraints
as one might expect. Note, however, that free query variables are ruled out at this level,
while being permitted in nested LP(CQ) constraints in LcΣ and expressions in LeΣ.

The sets of free variables of LP(CQ) expressions, constraints, and programs are formally
defined in Figure 5. For instance, the following LP(CQ) constraint C from the warehouse
example has three free variables in fv(C) = {f, o, q}:

weight(f ′,w′,b′,o′):f ′ .=f∧o′ .=o(dlr(f ′, w′, b′, o′)) ≤ num(q)

The variables f ′, w′, b′, o′ are bound by the weight expression. The free variables f, o, q

are bound by a quantifier in the context, which in the resource delivery example is the
universal quantifier ∀(f, o, q):prod(f, o, q).

3.2 Semantics
We next define the semantics of an LP(CQ) program L ∈ LpΣ with respect to a database
D ∈ dbΣ with real numbers by an interpretation to a linear program ⟨L⟩D ∈ Lp, that we will
refer to as the naive interpretation from now on.

For doing so, one step is to replace the free variables of the queries of LP(CQ) programs
by elements from the database. For this we assume that we have constants for all elements
of the database domain, that is dom(D) ⊆ C. We then define for any conjunctive query
Q and variable assignment γ : Y → D a conjunctive query sbsγ(Q), by replacing in Q all
free occurrences of variables y ∈ Y in Q by γ(y). The formal definition is given in the full
version [2].

In order to define the semantics of an LP(CQ) program L over a database D we consider
the following set of linear program variables:

ΘD
L = {θα

sbsγ (Q) | S = weightx:Q′(Q) in L, α : set(x) → dom(D), γ : fv(S) → dom(D)}

Let S = weightx:Q′(Q) be a weight expression and γ : Y → dom(D) a variable assignment
for the free variables fv(S) ⊆ Y such that set(x) ∩ Y = ∅. The interpretation of the
weight expression ⟨S⟩D,γ is the overall weight of the solutions α ∈ solDset(x)(sbsγ̃(Q′ ∧ Q))
where γ̃ = γ|Y \set(x) in the table solDset(x)(sbsγ̃(Q)). It is described by the following linear
expression:

⟨S⟩D,γ =
∑

α∈solDset(x)(sbsγ̃ (Q∧Q′))

θα
sbsγ̃ (Q)

The (naive) interpretations ⟨S⟩D,γ and ⟨C⟩D,γ of other kinds of LP(CQ) expressions S ∈ LeΣ
and constraints C ∈ LcΣ over a database D and an environment γ are rather obvious. Note
that LP(CQ) programs L can be interpreted as linear programs ⟨L⟩D ∈ Lp without any
environment as they do not have free variables. The definitions are summarized in Figure 6.
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5:10 Linear Programs with Conjunctive Queries

⟨weightx:Q′ (Q)⟩D,γ =
∑

α∈solDset(x)(sbsγ̃ (Q∧Q′)) θα
sbsγ̃ (Q)

⟨∀x:Q.C⟩D,γ =
∧

γ′∈solDset(x)(sbsγ̃ (Q))⟨C⟩D,γ̃∪γ′

⟨
∑

x:Q S⟩D,γ =
∑

γ′∈solDset(x)(sbsγ̃ (Q))⟨S⟩D,γ̃∪γ′

⟨NS⟩D,γ = ⟨N⟩D,γ⟨S⟩D,γ

⟨num(a)⟩D,γ = numD(aD) (may be undefined)

⟨S1 + S2⟩D,γ = ⟨S1⟩D,γ + ⟨S2⟩D,γ

⟨S1 ≤ S2⟩D,γ = ⟨S1⟩D,γ ≤ ⟨S2⟩D,γ

⟨C1 ∧ C2⟩D,γ = ⟨C1⟩D,γ ∧ ⟨C2⟩D,γ

⟨true⟩D,γ = true
⟨c⟩D,γ = c

⟨maximize S subject to C⟩D = maximize ⟨S⟩D,∅ subject to ⟨C⟩D,∅

Figure 6 Naïve interpretation of linear expressions (constraints and programs) with conjunctive
queries F over database D as standard linear expression (constraints and programs respectively)
FD,γ , where γ : Y → dom(D) and fv(F ) ⊆ Y ⊆ X and γ̃ = γ|Y \set(x).

We note that α-renaming the bound variables in weight expressions does not always
preserve the semantics of LP(CQ) programs. It may make previously equal queries different,
so that different weights may be assigned to their answer sets.

3.3 Simple example
We start with the conjunctive query Q = R(x′) ∧ R(y′) and the database D with table
RD = {(0), (1)}. The answer set of Q is solD(Q) = {α | α : {x′, y′} → {0, 1}}. We then
consider the following LP(CQ) program L:

maximize weight(x′,y′):true(Q)
subject to ∀(x):R(x).weight(x′,y′):x′ .=x(Q) ≤ 1

The naive interpretation ⟨L⟩D is the following linear program with variables in ΘD
L, where

we denote any query answer α ∈ solD(Q) by a pair (α(x′), α(y′)) in the cartesian product
{0, 1}2 for simplicity:

maximize θ
(0,0)
Q + θ

(0,1)
Q + θ

(1,0)
Q + θ

(1,1)
Q

subject to θ
(0,0)
Q + θ

(0,1)
Q ≤ 1

∧ θ
(1,0)
Q + θ

(1,1)
Q ≤ 1

The objective function θ
(0,0)
Q + θ

(0,1)
Q + θ

(1,0)
Q + θ

(1,1)
Q is the naive interpretation of the

expression weight(x′,y′):true(Q). The left-hand side of the first constraint θ
(0,0)
Q + θ

(0,1)
Q is

obtained by naivly interpreting the expression weight(x′,y′):x′ .=x(Q) with free variable x in
the environment [x/0]. Note that these sums share the linear program variables θ

(0,0)
Q and

θ
(0,1)
Q , so the two weight expressions of L are semantically related.

3.4 Hardness of solving LP(CQ) programs
In this section, we consider study the complexity of the problem DECIDE̸=0(LP(CQ)) of
deciding whether the optimal value of ⟨L⟩D given an LP(CQ) L and a database D is non-zero.

▶ Theorem 6. DECIDE̸=0(LP(CQ)) is NP-hard.

Proof. The proof follows by reduction to the problem of deciding whether solD(Q) ̸= ∅
given a conjunctive query Q and a database D in the input, which is known to be NP-
complete [3]. We consider, given a conjunctive query Q, the following LP(CQ): LQ :=
maximize weightx:true(Q) subject to weightx:true(Q) ≤ 1.
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The hardness now follows from the fact that for every Q and D, ⟨LQ⟩D ̸= 0 if and
only if solD(Q) ̸= ∅. Indeed, if solD(Q) = ∅, then ⟨LQ⟩D = maximize 0 subject to 0 ≤
1. The optimal value of ⟨LQ⟩D is thus 0. However, if solD(Q) ̸= ∅, we have ⟨LQ⟩D =
maximize ϕ subject to ϕ ≤ 1 where ϕ =

∑
α∈solD(Q) θα

Q. Let α ∈ solD(Q) and consider
the weighting ωα such that ωα(θα

Q) := 1 and for every α′ ∈ solD(Q) such that α′ ≠ α,
ωα(θα′

Q ) := 0. This weighting clearly respects the constraints of ⟨LQ⟩D and has value 1,
showing that the optimal value of ⟨LQ⟩D ≥ 1. ◀

4 An Efficiently Solvable Fragment

Motivated by Theorem 6, we now look for a tractable fragment of LP(CQ). We introduce a
subclass of projecting LP(CQ) programs and define a notion of width of LP(CQ) programs
in this fragment through a collection of hypertree decompositions of the queries they contain.
We then show one can find the optimal solution of such programs L more efficiently than by
explicitly computing the interpretation over a database D as a linear program ⟨L⟩D. For this
we will present an alternative factorized interpretation of L to a linear program having fewer
variables, while preserving the optimal solution.

4.1 Projecting LP(CQ) Programs
We start with the definition of projecting LP(CQ) programs, whose main restriction resides
on how they can use conjunctive queries.

▶ Definition 7. The fragment LP(CQ)proj is the set of LP(CQ) programs L such that:
for any subexpression weightx:Q′(Q) of L, we have that set(x) = fv(Q) and Q′ is a
projecting query of the form x′ .=y with set(x′) ⊆ set(x) and set(x) ∩ set(y) = ∅.
for any sum

∑
x:Q S and any universal quantifier ∀x:Q.C of L, the query Q is of the

form ∃z.r(y) for some relation symbol r ∈ R(n), vector y ∈ X n and vector z ∈ X ∗ such
that set(x) ⊆ fv(Q).

We denote by LP(CQqf )proj the subset of LP(CQ)proj where every conjunctive query Q

appearing in a weight expression is quantifier free.

Any expression weightx:Q′(Q) of a projecting LP(CQ) program is restricted to projection
in Q′. Furthermore Q may not have any variables that are free in the weight expression.
This condition ensures that the interpretation in environment γ of Q does not substitute any
variables, that is sbsγ(Q) = Q. Thus, it is interpreted as a sum over θα

Q variables where α

are solutions of Q taking the same value γ(y) on variables x′. Our algorithm will exploit
this fact by utilizing tree decompositions of Q to interpret weightx:Q′(Q) of LP(CQqf )proj

with one variable instead of |solD(Q ∧ Q′)| needed in the naive interpretation.
Another restriction of LP(CQ)proj is that universal quantifiers and sums are guarded by

a database relation. Our algorithm does not exploit the structure of conjunctive queries in
universal quantifiers and sums so we interpret these expressions in the same way as in Figure 6.
To avoid a blow up in the number of constraints, we chose to guard these constructions.

Hypertree Width of Projecting LP(CQ) Programs. We next lift the concept of generalized
hypertree width from quantifier free conjunctive queries to LP(CQqf )proj programs. The
complexity of our algorithm will depend on this.

For any program L in LP(CQ)proj , we define the set of queries cqs(L) that are weighted
when interpreting L as cqs(L) = {Q | weightx:Q′(Q) is a subexpression of L}. Observe that
the resource delivery problem L is in LP(CQ)proj with cqs(L) = {dlr(f ′, w′, b′, o′)}.
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5:12 Linear Programs with Conjunctive Queries

▶ Definition 8. Let L be an LP(CQqf )proj program and T = (TQ)Q∈cqs(L) a collection of
decomposition trees. We call T a tree decomposition of L if for any expression weightx:x′ .=y(Q)
in L, TQ = (VQ, EQ, BQ) is a tree decomposition of Q and there is a node u of TQ such that
BQ(u) = set(x′). We define the width of T to be the maximal width of TQ for Q ∈ cqs(L).
The size of T is defined to be |T| =

∑
Q∈cqs(L) |VQ|.

The goal of this section is to show how one can take advantage of such tree decompositions
in order to solve an LP(CQqf )proj more efficiently than the naive approach of computing
its interpretation. To do so, we will use the tree decomposition to compute a smaller
interpretation of the linear program that we call factorized interpretation and whose definition
is given in Section 4.2. The correctness of our approach relies on the following theorem.

▶ Theorem 9 (Main). Let L be a LP(CQqf )proj program, T a decomposition of L of width
k and D a database. The factorized interpretation ρT,D(L) from Figure 7 has O(|T||D|k)
variables and the same optimal value as the naïve interpretation ⟨L⟩D.

Observe that the number of variables of ⟨L⟩D is roughly the total number of solutions
of the conjunctive queries in cqs(L), which may be up to O(|D|n), where n is the number
of atoms in the conjunctive queries. In Theorem 9, the degree of the polynomial now only
depends on the width of the queries, which may be much smaller, resulting in a more succinct
linear program that is easier to solve. In the resource optimization example, this allows to
go from a cubic number of variables to a quadratic one, but the improvement may be much
better on queries having many atoms and small width.

4.2 Factorized Interpretation
The idea of the factorized interpretation is to reduce the number of variables by introducing
“group” variables. In the simple example from Section 3.3, we can observe that by grouping
together the variables θ

(0,0)
Q and θ

(0,1)
Q into a group variable ξQ,[x/0] and similarly θ

(1,0)
Q and

θ
(1,1)
Q into a group variable ξQ,[x/1] we can reduce the number of variables from four to two,

leading to the following linear program:

maximize ξQ,[x/0] + ξQ,[x/1]
subject to ξQ,[x/0] ≤ 1

∧ ξQ,[x/1] ≤ 1

Using hypertree decompositions we can develop the grouping idea systematically. We
start with a projecting LP(CQ) program L with quantifier free conjunctive queries. Let
T = (TQ)Q∈cqs(L) be a tree decomposition of L of width k where TQ = (VQ, EQ, BQ). The
set of group variables for the factorized interpretation ρT,D(L) is defined by:

ΞT,D
L = {ξQ,u,β | Q ∈ cqs(L), u ∈ VQ, β ∈ solD(Q)|BQ(u)}.

Observe that since TQ is a tree decomposition of Q of width at most k, solD(Q)|BQ(u) is of
size at most |D|k. Thus we have at most |T||D|k group variables in ΞT,D

L .
The T-factorized interpretation ρT,D(L) of L is defined in Figure 7. Since we are using

the group variables from ΞT,D
L , it uses at most |T||D|k many variables as stated in Theorem 9.

It mainly mirrors the naive interpretation of Figure 6 but significantly differs in two places:
the first one is the way weightx:x′ .=y(Q) is interpreted and the second one is the addition of
the local soundness constraints lscT,D(Q) to the program.
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ρT,D,γ(∀x:r(x).C) =
∧

γ′∈solD(r(x)) ρT,D,γ∪γ′
(C)

ρT,D,γ(
∑

x:r(x) S) =
∑

γ′∈solD(r(x)) ρT,D,γ∪γ′
(S)

ρT,D,γ(NS) = ρT,D,γ(N)ρT,D,γ(S)
ρT,D,γ(num(a)) = numD(aD)

(may be undefined)

ρT,D,γ(S1 + S2) = ρT,D,γ(S1) + ρT,D,γ(S2)
ρT,D,γ(S1 ≤ S2) = ρT,D,γ(S1) ≤ ρT,D,γ(S2)
ρT,D,γ(C1 ∧ C2) = ρT,D,γ(C1) ∧ ρT,D,γ(C2)
ρT,D,γ(true) = true
ρT,D,γ(c) = c

ρT,D,γ(weightx:x′ .=y(Q)) =
{

ξQ,u,β if β = [x′/γ(y)] ∈ solD(Q)|BQ(u)
0 else

where u is a node of TQ such that set(x′) = BQ(u).

ρT,D(maximize S subject to C)
= maximize ρT,D,∅(S) subject to ρT,D,∅(C) ∧

∧
Q∈cqs(L) lscT,D(Q)

Local soundness constraints for Q ∈ cqs(L) where A = solD(Q):

lscT,D(Q) =
∧

(u,v)∈EQ

∧
γ∈A|BQ(u)∩BQ(v)

∑
β∈A|BQ(u),β|BQ(u)=γ

ξQ,u,β
.=

∑
β′∈A|BQ(v),β′

|BQ(v)=γ

ξQ,v,β′

Figure 7 T-factorized interpretation of LP(CQqf )proj programs with respect to database D.

In the simple example from Section 3.3 we consider the generalized hypertree decomposi-
tion (V, E , B) of Q with V = {r, u, v}, E = {(r, u), (r, v)}, and B = [r/{}, u/{x}, v/{y}]. The
factorized interpretation then yields the following linear program, whose form is similar to
the one we showed at the beginning of the subsection:

maximize ξQ,r,[]
subject to ξQ,u,[x/0] ≤ 1

∧ ξQ,u,[x/1] ≤ 1
∧ ξQ,r,[] = ξQ,u,[x/0] + ξQ,u,[x/1] local soundness constraints lscT,D(Q)
∧ ξQ,r,[] = ξQ,v,[y/0] + ξQ,v,[y/1]

4.3 Complexity
In this section, we analyse the complexity of constructing the factorized interpretation
by applying the inductive definition of Figure 7. Let L be an LP(CQ)proj program and
T = (TQ)Q∈cqs(L) be a tree decomposition of L of width k where TQ = (VQ, EQ, BQ).. We
first start by bounding the number of variables in ρT,D(L). The set of variables of ρT,D(L)
is, by definition, ΞT,D

L . Variables are indexed by a query Q of cqs(L), a node of u in the
tree decomposition TQ of Q and a partial assignment β of B(Q), projected on a bag of TQ.
By Lemma 3, we have at most |D|k elements in solD(Q)|BQ(u). Thus, ΞT,D

L has size at most
|T||D|k and this set of variables can be computed in time O(|T||D|k log(|D|)) by Lemma 3.

We now evaluate the number of constraints in ρT,D(L). It is clear from Figure 7 that
ρT,D(L) contains the constraints from L where ∀ quantifiers have been unfolded plus the local
soundness constraints. By definition, there are at most t |T||D|k local soundness constraints.
Moreover, once the projection of solD(Q) on the bags of TQ have been precomputed thanks
to Lemma 3, it is easy to see that each local soundness constraints can be computed in
time O(|T||D|k log(|D|)) by taking the join of every bags that are neighbor in one tree
decomposition.
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Now, let d∀ the the maximum number of nested ∀ appearing in L. It is easy to see that
ρT,D(∀x:r(x).C) multiplies the number of constraints in ρT,D(C) by |r| ≤ |D|. Thus, apart
from the local soundness constraints, there are at most |L||D|d∀ constraints in ρT,D(L).

Finally, we turn to the complexity of constructing these constraints of ρT,D(L). To
evaluate the constraints of ρT,D(L), one has to unfold

∑
x:r(x) S statements. Let dΣ be the

maximum number of nested
∑

in L. Each unfolding of a
∑

x:r(x) S leads to at most |r| ≤ |D|
inductive construction. Thus, in a quantifier free constraint from L, one has to evaluate at
most |D|dΣ S-terms. The main complexity of evaluating such term comes from computing
ρT,D(weightx:x′ .=y(Q)). Each of them can easily be computed by scanning the structure
given by Lemma 3 in time O(|T||D|k).

Overall, the complexity of constructing ρT,D(L) is thus O(|T||D|k(log |D|+|D|k +|D|d∀+dΣ).

4.4 Correctness

We now discuss how to prove the correctness statement of Theorem 9 that ρT,D(L) has the
same optimal value as ⟨L⟩D.

One can see that given a context γ such that ρT,D,γ(weightx:x′ .=y(Q)) = ξQ,u,β , the
usual interpretation would have been ⟨weightx:x′ .=y(Q)⟩D,γ =

∑
α∈solDset(x)(Q):α|x′ =β θα

Q, that
is, intuitively, ξQ,u,β represents the linear sum of variables θα

Q in the naive interpretation
with α compatible with β.

For general programs L we will reconstruct a solution to ⟨L⟩D from a solution to ρT,D(L)
such that the value of ξQ,u,β indeed corresponds to the sum of the values of variables θα

Q

with α compatible with β and vice-versa. To ensure that this is always possible, we have to
be careful that variables ξQ,u,β and ξQ,v,β′ are compatible with one another because they
may correspond to two sums on θα

Q variables having a non-empty intersection. We ensure
this through local soundness constraints lscT,D(Q) for every query Q ∈ cqs(L).

Weightings on Tree Decompositions. One can observe that the key idea in the definition
of ρT,D(L) is to introduce linear program variables that will intuitively encode the sum of
several linear program variables in the naive interpretation ⟨L⟩D. A solution to ⟨L⟩D maps a
variable θα

Q to a non-negative real number where α ∈ solD(Q). In other words, it assigns a
weight ω(α) ∈ R+ to every α ∈ solD(Q) for every Q ∈ cqs(L). A solution to ρT,D(L) maps a
variable ξQ,u,β to a non-negative real number where β ∈ solD(Q)|BQ(u). In other words, it
assigns a weight Wu to every β that is in solD(Q)|B(u) for every node u of TQ.

To reconstruct a solution of ⟨L⟩D from a solution W of ρT,D(L), we need to be able to
reconstruct a weighting ω of solD(Q) such that

∑
α|BQ(u)=β ω(α) = Wu(β). In this section,

we explain that this is always possible as long as the Wu are compatible with one another,
which is ensured by local soundness constraints lscT,D(Q) in ρT,D(L).

The technique is not specifically tied to the fact that the weights are assigned to the
solutions of a quantifier free conjunctive query, thus we formulate our result in a more general
setting by considering weightings on a set A ⊆ DX = {α | α : X → D} for a finite set
of variables X. Intuitively however, one can think of A as solD(Q) for a quantifier-free
conjunctive query Q.

We start by introducing a few notations. Let X ′ ⊆ X ⊆ X . For any α′ : X ′ → D we
define the set of its extensions into A by A[α′] = {α ∈ A | α|X′ = α′}. Moreover, given a
weighting ω : A → R+ of A, we define the projection πX′(ω) : A|X′ → R+ such that for all
α′ ∈ A|X′ : πX′(ω)(α′) =

∑
α∈A[α′] ω(α).
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We now fix T = (V, E , B) a decomposition tree for X. Given two nodes u, v ∈ V we
denote the intersection of their bags by Buv = B(u) ∩ B(v).

▶ Definition 10. A family W = (Wv)v ∈V is a weighting collection on T for A if it satisfies
the following conditions for any two nodes u, v ∈ V:
- Wu is a weighting of A|B(u), i.e., Wu : A|B(u) → R+.
- Wu is sound for T at {u, v}, i.e., πBuv (Wu) = πBuv (Wv).

Intuitively, the soundness of a weighting collection on T is a minimal requirement for the
existence of a weighting ω of A such that Wu is the projection of ω on the bag B(u) of T ,
that is Wu = πB(u)(ω) since we have the following:

▶ Proposition 11. For any weighting ω : A → R+, the family (πB(v)(ω))v∈V is a weighting
collection on T for A.

What is more interesting is the other way around, that is, given (Wu)u∈V a weighting
collection on T , whether we can find a weighting ω of A such that Wu = πB(u)(ω) for every
u. It turns out that soundness is not enough to ensure the existence of such a weighting.
However it becomes possible when A is conjunctively decomposed:

▶ Definition 12. Let T = (V, E , B) be a decomposition tree of X ⊆ X . We call a subset
of variable assignments A ⊆ DX conjunctively decomposed by T if for all u ∈ V and
β ∈ A|B(u): {α1 ∪ α2 | α1 ∈ A|B(↑u)[β], α2 ∈ A|B(↓u)[β]} ⊆ A[β] where B(V ) =

⋃
v∈V B(v)

for any V ⊆ V.

Note that the inverse inclusion holds in general. Of course, this property holds if A is the
answer set of a conjunctive queries and the tree is a tree decomposition of Q:

▶ Proposition 13. For any tree decomposition T of a quantifier free conjunctive query
Q ∈ CqΣ and database D ∈ dbΣ, the answer set solD(Q) is conjunctively decomposed by T .

Proposition 13 does not hold when Q is not quantifier free. It explains why the technique
only works for the fragment LP(CQqf )proj . We however explain how one can use the same
technique on LP(CQ)proj in Section 4.5.

Soundness and conjunctive decomposition are enough to prove this correspondence
theorem that allows us to transform solutions of ρT,D(L) to solutions of ⟨L⟩D and vice-versa.

▶ Theorem 14 (Correspondence). Let T = (V, E , B) be a normalized decomposition tree of
X ⊆ X and A ⊆ DX be a set of variable assignments that is conjunctively decomposed by T .
1. For every weighting ω of A, (πB(u)(ω))u∈V is a weighting collection on T for A.
2. For any weighting collection W on T for A there exists a weighting ω of A such that

∀u : Wu = πB(u)(ω).

While the first item of Theorem 14 follows by Proposition 11 and can be proven by a simple
calculation, the second item is harder to prove. We present here one way of constructing
ω from (Wu)u∈V . The proof of correctness of this construction can be found in the full
version [2].

Let T = (V, E , B) be a normalized decomposition tree of X and W = (Wu)u∈V a weighting
collection on T for A ⊆ DX . For any node u ∈ V , we inductively construct ωu : A|B(↓u) → R+.

If u is a leaf of T , we define ωu such that for all α ∈ A|B(↓u), ωu(α) := Wu(α).
Now, assume ωu′ is defined for all children u′ of u. Let α ∈ A|B(↓u) and denote by

β = α|B(u). We define ωu(α) as follows:
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If u is an extend node with a single child v then ωu(α) := Wu(β)
Wv(α|B(v)) ωv(α|B(↓v)) if

Wv(α|B(v)) > 0 and ωu(α) := 0 otherwise.
If u is a project node with a single child v then ωu(α) := ωv(α|B(↓v)).

If u is a join node with children v1, . . . , vk then ωu(α) :=
∏k

i=1
ωvi

(α|B(↓vi))
Wu(β)k−1 if Wu(β) > 0

and ωu(α) := 0 otherwise.
Finally, we let ω be ωr where r is the root of T . The proof that ∀u : Wu = πB(u)(ω) is

done via two inductions. The first one is a bottom-up induction to prove that Wu = πB(u)(ω)
for every node u in the tree decomposition. Then, by top-down induction, one can prove that
ωu = πB(↓u)(ωr). The proof is tedious and mainly relies on calculations and careful analysis
on how A is decomposed along T .

Correctness Proof. We are now ready to prove that, given a tree decomposition T of a
LP(CQ) program L of LP(CQqf )proj , ρT,D(L) and ⟨L⟩D have the same optimal value.

For any weighting .
ω: ΘL → R+ we define a weighting Π( .

ω) : ΞT,D
L → R+ such that for all

ξQ,u,β ∈ ΞT,D
L : Π( .

ω)(ξQ,u,β) =
∑

α∈solD(Q)[β]
.
ω (θα

Q).
Observe that .

ω can be seen as a collection of weightings of solD(Q) for Q ∈ cqs(L). It
turns out that evaluating linear expressions and constraints of ⟨L⟩D with .

ω returns the same
value as the evaluation of linear expressions and constraints of ρT,D(L) with Π( .

ω):

▶ Lemma 15. For any T−projecting sum S ∈ LeΣ and environment γ : X → dom(D) where
fv(S) ⊆ X it holds that J⟨S⟩D,γK .

ω = JρT,D,γ(S)KΠ(
.
ω).

▶ Lemma 16. For any constraint C ∈ LcΣ that is T−projecting and environment γ : X →
dom(D) where fv(C) ⊆ X: J⟨C⟩D,γK .

ω = JρT,D,γ(C)KΠ(
.
ω).

Lemma 15 and Lemma 16 rely on Proposition 11. It is easy to see that they imply that if
.
ω is a solution of ⟨L⟩D (the fact that it respects the local soundness constraints follows from
Proposition 11), then Π( .

ω) is a solution of ρT,D(L) with the same value. Thus, the optimal
value of ρT,D(L) is greater or equal than the optimal value of ⟨L⟩D.

To prove the equality, it remains to prove that the optimal value of ⟨L⟩D is greater or
equal than the optimal value of ρT,D(L). To this end, consider a solution of ρT,D(L). It is a
weighting

.

W of ΞT,D
L which respects the local soundness constraints. By Theorem 14, we

will be able to reconstruct a weighting .
ω of ΘL which respects the constraint of ⟨L⟩D. It is

formalized in the following lemma whose proof can be found in the the full version [2].

▶ Lemma 17. For any weighting
.

W of ΞT,D
L such that J

∧
Q∈Q lscT,D(Q)K .

W
= 1, there exists

a weighting .
ω of ΘQ such that

.

W= Π( .
ω).

▶ Proposition 18. Let D be a database and T a collection of decomposition tree. Any
T−projecting LP(CQ) program L = (maximize S subject to C) ∈ LpΣ satisfies that:
1. For any solution .

ω of ⟨L⟩D there is a solution
.

W of ρT,D(L) s.t. J⟨S⟩D,∅K .
ω = JρT,D(S)K .

W
.

2. For any solution
.

W of ρT,D(L) there is a solution .
ω of ⟨L⟩D s.t. J⟨S⟩D,∅K .

ω = JρT,D(S)K .

W
.

4.5 Treatment of Existential Quantifiers
The previous method of factorized interpretation only works for the LP(CQqf )proj fragment,
where conjunctive queries are supposed to be quantifier free. It turns out that one can
similarly solve linear programs of LP(CQ)proj programs by applying a simple transformation.

For any LP(CQ)proj program L we can move the existential quantifiers of the con-
junctive query into the weight expression as follows, yielding an LP(CQqf )proj program
mvq(L): we replace every subexpression weightx:Q′(∃z.Q) of L, where Q is quantifier free,
by weightxz:Q′(Q) where xz is the concatenation of vectors x and z. We have:
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▶ Theorem 19 (Removing Existential Quantifiers). For any projecting LP(CQ) program, the
LP(CQqf )proj program mvq(L) has the same optimal value as L.

Observe that we can use this technique for the resource delivery problem L. In mvq(L),
there is only one query on variables (f ′, o′, q, q′, b′, w′, c, c′). It is easy to see that it has
hypertree width 2 since we can construct a tree decomposition having two connected bags
B(u) = {f ′, o′, b′, q, q′} and B(v) = {f ′, w′, b′, c, c′}. B(u) is covered by the first two atoms
and B(v) by the last two. Now, because of the weight expressions, we also need to add a
bag for {f ′, w′}, {w′} and {w′, b′} which can safely be connected to v, and for {f ′, o′} and
{b′, o′} which can safely be connected to u. It gives a decomposition of L of width 2, showing
that the factorized interpretation will have fewer variables than the naive interpretation.

5 Preliminary Experimental Results

The practical performances of our idea heavily depends on how linear solvers perform on
factorized interpretation. We compared the performances of GLPK on both the naive
interpretation and the factorized interpretation of the resource delivery problem from the
introduction using some synthetic data. For each run we fixed an input size m as well as a
domain D of size n = f(m). We then genereated each input table of arity k by uniformly
sampling m tuples from the nk possible tuples on D. The value of k was defined so that
the ratio of selected tuples m

nk was constant throughout the runs. We used Python and the
Pulp library to build the linear programs as well as a hard-coded tree-decomposition of the
dlr query. The tests were run on an office laptop by progressively increasing the size of the
generated input tables. A summary of our experiments is displayed on Figure 8.

As expected when comparing both linear programs we observed a larger number of
constraints (due to the soundness constraints) and a smaller number of variables in the
factorized interpretation. While building the naive interpretation quickly became slower
than building the factorized interpretation, we did not analyze this aspect further since we
are not using a database engine to build the naive interpretation and solve it directly from
the tree decomposition, which may not be the fastest method without further optimizations.
Most interestingly solving the factorized interpretation was faster than solving the naive
interpretation in spite of the increased number of constraints thanks to the decrease in the
number of variables. In particular for an instance with an input size of 2000 lines per table,
the naive interpretation had roughly 1.5 million variables while the factorized interpretation
had only roughly 150000. The solving time was also noticeably improved at 22s for the
factorized case against 106s for the naive one.

6 Conclusion and Future Work

Our preliminary experiments seem to confirm the efficiency of factorized interpretation, in
accordance with our complexity results. More thorough benchmarking is needed to evaluate
the practical relevance though. Another direction to explore would be to better integrate
our approach into a database engine, in the way it is done by SolveDB for example. Finally,
other optimization problems may benefit from this approach such as convex optimization
or integer linear programming. It would be interesting to define languages analogous to
LP(CQ) for these optimization problems and study how conjunctive query decompositions
could help to improve the efficiency.
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Figure 8 Number of variables and performances of GLPK for naive (blue) and factorized (red)
interpretation of the resource delivery problem with respect to table size.
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