
Fast and Succinct Population Protocols for
Presburger Arithmetic
Philipp Czerner # Ñ

Department of Informatics, Technische Universität München, Germany

Roland Guttenberg #

Department of Informatics, Technische Universität München, Germany

Martin Helfrich # Ñ

Department of Informatics, Technische Universität München, Germany

Javier Esparza # Ñ

Department of Informatics, Technische Universität München, Germany

Abstract
In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that,
given any Presburger predicate as input, outputs a leaderless population protocol that decides the
predicate. The protocol for a predicate of size m (when expressed as a Boolean combination of
threshold and remainder predicates with coefficients in binary) runs in O(m · n2 log n) expected
number of interactions, which is almost optimal in n, the number of interacting agents. However,
the number of states of the protocol is exponential in m. This is a problem for natural computing
applications, where a state corresponds to a chemical species and it is difficult to implement protocols
with many states. Blondin et al. described in STACS 2020 another construction that produces
protocols with a polynomial number of states, but exponential expected number of interactions. We
present a construction that produces protocols with O(m) states that run in expected O(m7 · n2)
interactions, optimal in n, for all inputs of size Ω(m). For this, we introduce population computers,
a carefully crafted generalization of population protocols easier to program, and show that our
computers for Presburger predicates can be translated into fast and succinct population protocols.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases population protocols, fast, succinct, population computers

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.11

Related Version Full Version: https://arxiv.org/abs/2202.11601v2 [11]

Funding This work was supported by an ERC Advanced Grant (787367: PaVeS) and by the Research
Training Network of the Deutsche Forschungsgemeinschaft (DFG) (378803395: ConVeY).

Acknowledgements We thank the anonymous reviewers for many helpful remarks. In particular,
one remark led to Lemma 11, which in turn led to a nicer formulation of Theorem 2, one of our
main results.

1 Introduction

Population protocols [4, 5] are a model of computation in which indistinguishable, mobile
finite-state agents, randomly interact in pairs to decide whether their initial configuration
satisfies a given property, modelled as a predicate on the set of all configurations. The
decision is taken by stable consensus; eventually all agents agree on whether the property
holds or not, and never change their mind again. Population protocols are very close to
chemical reaction networks, a model in which agents are molecules and interactions are
chemical reactions.

© Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:czerner@in.tum.de
https://nicze.de/philipp
https://orcid.org/0000-0002-1786-9592
mailto:guttenbe@in.tum.de
https://orcid.org/0000-0001-6140-6707
mailto:helfrich@in.tum.de
https://martinhelfrich.de
https://orcid.org/0000-0002-3191-8098
mailto:esparza@in.tum.de
https://www7.in.tum.de/~esparza
https://orcid.org/0000-0001-9862-4919
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://arxiv.org/abs/2202.11601v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Fast and Succinct Population Protocols for Presburger Arithmetic

In a seminal paper, Angluin et al. proved that population protocols decide exactly the
predicates definable in Presburger arithmetic (PA) [7]. One direction of the result is proved
in [5] by means of a construction that takes as input a Presburger predicate and outputs a
protocol that decides it. The construction uses the quantifier elimination procedure for PA:
every Presburger formula φ can be transformed into an equivalent boolean combination of
threshold predicates of the form a⃗ · x⃗ ≥ c and remainder predicates of the form a⃗ · x⃗ ≡m c,
where a⃗ is an integer vector, c and m are integers, and ≡m denotes congruence modulo m [14].
Slightly abusing language, we call the set of these boolean combinations quantifier-free
Presburger arithmetic (QFPA).1 Using that PA and QFPA have the same expressive power,
Angluin et al. first construct protocols for all threshold and remainder predicates, and then
show that the predicates computed by protocols are closed under negation and conjunction.

The two fundamental parameters of a protocol are the expected number of interactions
until a stable consensus is reached, and the number of states of each agent. The expected
number of interactions divided by the number of agents, also called the parallel execution
time, is an adequate measure of the runtime of a protocol when interactions occur in parallel
according to a Poisson process [6]. The number of states measures the complexity of an
agent. In natural computing applications, where a state corresponds to a chemical species, it
is difficult to implement protocols with many states.

Given a formula φ of QFPA, let m be the number of bits of the largest coefficient of φ

in absolute value, and let s be the number of atomic formulas of φ, respectively. Let n be
the number of agents participating in the protocol. The construction of [5] yields a protocol
with O(s · n2 log n) expected interactions. Observe that the protocol does not have a leader
(an auxiliary agent helping the other agents to coordinate), and agents have a fixed number
of states, independent of the size of the population. Under these assumptions, which are also
the assumptions of this paper, every protocol for the majority predicate needs Ω(n2) expected
interactions [1], and so the construction is nearly optimal.2 However, the number of states is
Ω(2m+s), or Ω(2|φ|) in terms of the number |φ| of bits needed to write φ with coefficients in
binary. This is well beyond the only known lower bound, showing that for every construction
there exist an infinite subset of predicates φ for which the construction produces protocols
with Ω(|φ|1/4) states [9]. So the constructions of [5], and also those of [6, 3, 13], produce fast
but very large protocols.

In [9, 8] Blondin et al. exhibit a construction that produces succinct protocols with
O(poly(|φ|)) states. However, they do not analyse their stabilisation time. We demonstrate
that they run in Ω(2n) expected interactions. Loosely speaking, the reason is the use of
transitions that “revert” the effect of other transitions. This allows the protocol to “try out”
different distributions of agents, retracing its steps until it hits the right one, but also makes
it very slow. So [9, 8] produce succinct but very slow protocols.

Is it possible to produce protocols that are both fast and succinct? We give an affirmative
answer. We present a construction that yields for every formula φ of QFPA a protocol with
O(poly(|φ|)) states and O(poly(|φ|) · n2) expected interactions. So our construction achieves
optimal stabilisation time in n, and, at the same time, yields more succinct protocols than
the construction of [8]. Moreover, for inputs of size Ω(|φ|) (a very mild constraint when
agents are molecules), we obtain protocols with O(|φ|) states.

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
2 If the model is extended by allowing a leader (and one considers the slightly weaker notion of convergence

time), or the number of states of an agent is allowed to grow with the population size, O(n · polylog(n))
interactions can be achieved [6, 3, 2, 13, 12].

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:3

Our construction relies on population computers, a carefully crafted generalization of
the population protocol model of [5]. Population computers extend population protocols in
three ways. First, they can exhibit certain k-way interactions between more than two agents.
Second, they have a more flexible output condition, defined by an arbitrary function that
assigns an output to every subset of states, instead of to every state.3 Finally, population
computers can use helpers: auxiliary agents that, like leaders, help regular agents to coordinate
themselves but whose number, contrary to leaders, is not known a priori. We exhibit succinct
population computers for all Presburger predicates in which every run is finite, and show
how to translate such population computers into fast and succinct population protocols.

Organization of the paper. We give preliminary definitions in Section 2 and introduce
population computers in Section 3. Section 4 gives an overview of the rest of the paper and
summarises our main results. Section 5 describes why previous constructions were either not
succinct or slow. Section 6 describes population computers for every Presburger predicate.
Section 7 converts these computers into succinct population protocols. Section 8 shows that
the resulting protocols are also fast.

An extended version of this paper, containing the details of the constructions and all
proofs, can be found at [11]. It contains several appendices. Appendix A completes the
proofs of Section 5. For the other appendices, there is no one-to-one correspondence to
sections of the main paper, instead they are grouped by the construction they analyse.
Appendix B concerns the construction of Section 6, but also analyses speed. The four parts
of our conversion process are analysed separately, in Appendices C, D, E and F. Appendix G
combines the previous to prove the complete conversion theorem. Appendix H summarises
the definitions for our speed analyses, and Appendix I contains minor technical lemmata.

2 Preliminaries

Multisets. Let E be a finite set. A multiset over E is a mapping E → N, and NE denotes the
set of all multisets over E. We sometimes write multisets using set-like notation, e.g. Ha, 2 · bI
denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is also denoted ∅.

For E′ ⊆ E, v(E′) :=
∑

e∈E′ v(e) is the number of elements in v that are in E′. The size
of v ∈ NE is |v| := v(E). The support of v ∈ NE is the set supp(v) := {e ∈ E | v(e) > 0}. If
E ⊆ Z, then we let sum(v) :=

∑
e∈E e · v(e) denote the sum of all the elements of v. Given

u, v ∈ NE , u + v and u − v denote the multisets given by (u + v)(e) := u(e) + v(e) and
(u − v)(e) := u(e) − v(e) for every e ∈ E. The latter is only defined if u ≥ v.

Multiset rewriting transitions. A multiset rewriting transition, or just a transition, is a
pair (r, s) ∈ NE × NE , also written r 7→ s. A transition t = (r, s) is enabled at v ∈ NE if
v ≥ r, and its occurrence leads to v′ := v − r + s, denoted v →t v′. We call v →t v′ a step.
The multiset v is terminal if it does not enable any transition. An execution is a finite or
infinite sequence v0, v1, ... of multisets such that v →t1 v1 →t2 · · · for some sequence t1, t2, ...

of transitions. A multiset v′ is reachable from v if there is an execution v0, v1, ..., vk with
v0 = v and vk = v′; we also say that the execution leads from v to v′. An execution is a run
if it is infinite or it is finite and its last multiset is terminal. A run v0, v1, ... is fair if it is
finite, or it is infinite and for every multiset v, if v is reachable from vi for infinitely many
i ≥ 0, then v = vj for some j ≥ 0.

3 Other output conventions for population protocols have been considered [10].

SAND 2022

11:4 Fast and Succinct Population Protocols for Presburger Arithmetic

Presburger arithmetic. Angluin et al. proved that population protocols decide exactly
the predicates Nk → {0, 1} definable in Presburger arithmetic, the first-order theory of
addition, which coincide with the semilinear predicates [14]. Using the quantifier elimination
procedure of Presburger arithmetic, every Presburger predicate can be represented as a
Boolean combination of threshold and remainder predicates. A predicate φ : Nv → {0, 1} is a
threshold predicate if φ(x1, ..., xv) = (

∑v
i=1 aixi ≥ c), where a1, ..., av, c ∈ Z, and a remainder

predicate if φ(x1, ..., xv) = (
∑v

i=1 aixi ≡m c), where a1, ..., av ∈ Z, m ≥ 1, c ∈ {0, ..., m−1},
and a ≡m b denotes that a is congruent to b modulo m. We call the set of these formulas
quantifier-free Presburger arithmetic, or QFPA. The size of a predicate is the minimal number
of bits of a formula of QFPA representing it, with coefficients written in binary.

3 Population Computers

Population computers are a generalization of population protocols that allows us to give very
concise descriptions of our protocols for Presburger predicates.

Syntax. A population computer is a tuple P = (Q, δ, I, O, H), where:
Q is a finite set of states. Multisets over Q are called configurations.
δ ⊆ NQ ×NQ is a set of multiset rewriting transitions r 7→ s over Q such that |r| = |s| ≥ 2
and |supp(r)| ≤ 2. Further, we require that δ is a partial function, so s1 = s2 for all
r, s1, s2 with (r1 7→ s1), (r2 7→ s2) ∈ δ. A transition r 7→ s is binary if |r| = 2. We call a
population computer is binary if every transition binary.
I ⊆ Q is a set of input states. An input is a configuration C such that supp(C) ⊆ supp(I).
O : 2Q → {0, 1, ⊥} is an output function. The output of a configuration C is O(supp(C)).
An output function O is a consensus output if there is a partition Q = Q0 ∪ Q1 of Q such
that O(Q′) = 0 iff Q′ ⊆ Q0, O(Q′) = 1 iff Q′ ⊆ Q1, and O(Q′) = ⊥ otherwise.
H ∈ NQ\I is a multiset of helper agents or just helpers. A helper configuration is a
configuration C such that supp(C) ⊆ supp(H) and C ≥ H.

Graphical notation. We visualise population computers as Petri nets (see e.g. Figure 3).
Places (circles) and transitions (squares) represent respectively states and transitions. To
visualise configurations, we draw agents as tokens (smaller filled circles).

Semantics. Intuitively, a population computer decides which output (0 or 1) corresponds
to an input CI as follows. It adds to the agents of CI an arbitrary helper configuration CH

of agents to produce the initial configuration CI + CH . Then it starts the computation and
lets it stabilise to configurations of output 1 or output 0. Formally, the initial configurations
of P for input CI are all configurations of the form CI + CH for some helper configuration
CH . A run C0C1... stabilises to b if there exists an i ≥ 0 such that O(supp(Ci)) = b and Ci

only reaches configurations C ′ with O(supp(C ′)) = b. An input CI has output b if for every
initial configuration C0 = CI + CH , every fair run starting at C0 stabilises to b. A population
computer P decides a predicate φ : NI → {0, 1} if every input CI has output φ(CI).

Terminating and bounded computers. A population computer is bounded if no run starting
at an initial configuration C is infinite, and terminating if no fair run starting at C is infinite.
Observe that bounded population computers are terminating.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:5

Size and adjusted size. Let P = (Q, δ, I, O, H) be a population computer. We assume
that O is described as a boolean circuit with size(O) gates. For every transition t = (r 7→ s)
let |t| := |r|. The size of P is size(P) := |Q| + |H| + size(O) +

∑
t∈δ|t|. If P is binary, then

(as for population protocols) we do not count the transitions and define the adjusted size
size2(P) := |Q| + |H| + size(O). Observe that both the size of a transition and the size of
the helper multiset are the number of elements, i.e. the size in unary, strengthening our later
result about the existence of succinct population computers.

Population protocols. A population computer P = (Q, δ, I, O, H) is a population protocol
if it is binary, has no helpers (H = ∅), and O is a consensus output. It is easy to see that
this definition coincides with the one of [5]. The speed of a binary population computer with
no helpers, and so in particular of a population protocol, is defined as follows. We assume a
probabilistic execution model in which at configuration C two agents are picked uniformly at
random and execute a transition, if possible, moving to a configuration C ′ (by assumption
they enable at most one transition). This is called an interaction. Repeating this process, we
generate a random execution C0C1... . We say that the execution stabilises at time t if Ct

reaches only configurations C ′ with O(supp(C ′)) = O(supp(Ct)), and we say that P decides
φ within T interactions if it decides φ and E(t) ≤ T . See e.g. [6] for more details.

Population computers vs. population protocols. Population computers generalise popula-
tion protocols in three ways:

They have non-binary transitions, but only those in which the interacting agents populate
at most two states. For example, Hp, p, qI 7→ Hp, q, oI (which in the following is written
simply as p, p, q 7→ p, q, o) is allowed, but p, q, o 7→ p, p, q is not.
They use a multiset H of auxiliary helper agents, but the addition of more helpers does
not change the output of the computation. Intuitively, contrary to the case of leaders,
agents do not know any upper bound on the number of helpers, and so the protocol
cannot rely on this bound for correctness or speed.
They have a more flexible output condition. Loosely speaking, population computers
accept by stabilising the population to an accepting set of states, instead of to a set of
accepting states.

4 Overview and Main Results

Given a predicate φ ∈ QFPA over variables x1, ..., xv, the rest of this paper shows how
to construct a fast and succinct population protocol deciding φ. First, Section 5 gives an
overview of previous constructions and explains why they are not fast or not succinct. Then
we proceed in five steps:
1. Construct the predicate double(φ) ∈ QFPA over variables x1, ..., xv, x′

1, ..., x′
v by syn-

tactically replacing every occurrence of xi in φ by xi +2x′
i. For example, if φ = (x−y ≥ 0)

then double(φ) = (x + 2x′ − y − 2y′ ≥ 0). Observe that |double(φ)| ∈ O(|φ|).
2. Construct a succinct bounded population computer P deciding double(φ).
3. Convert P into a succinct population protocol P ′ deciding φ for inputs of size Ω(|φ|).
4. Prove that P ′ runs within O(n3) interactions.
5. Use a refined running-time analysis to prove that P ′ runs within O(n2) interactions.

Section 6 constructs bounded population computers for all predicates φ ∈ QFPA. This
allows us to conduct steps 1 and 2. More precisely, the section proves:

SAND 2022

11:6 Fast and Succinct Population Protocols for Presburger Arithmetic

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

Section 7 proves the following conversion theorem (steps 3 and 4).

▶ Theorem 2. Every bounded population computer of size m deciding double(φ) can be
converted into a terminating population protocol with O(m2) states which decides φ in at
most O(f(m) n3) interactions for inputs of size Ω(m), for some function f .

Section 8 introduces α-rapid population computers, where α ≥ 1 is a certain parameter,
and uses a more detailed analysis to show that the population protocols of Theorem 2 are in
fact smaller and faster (step 5):

▶ Theorem 3.
(a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The restriction to inputs of size Ω(m) is very mild. Moreover, it can be lifted using a
technique of [8], at the price of adding additional states (and at no cost regarding asymptotic
speed, since the speed of the new protocol only changes for inputs of size O(m)):

▶ Corollary 4. For every φ ∈ QFPA there exists a terminating population protocol with
O(poly(|φ|)) states that decides φ in O(f(|φ|) n2) interactions, for a function f .

It is known that the majority predicate can only be decided in Ω(n2) interactions by
population protocols [1], so — as a general construction — our result is optimal w.r.t. time.
Regarding space, an Ω(|φ|1/4) lower bound was shown in [9], leaving a polynomial gap.

5 Previous Constructions: Angluin et al. and Blondin et al.

The population protocols for a quantifier free Presburger predicate φ constructed in [5] are
not succinct, i.e. do not have O(|φ|a) states for any constant a, and those of [8] are not fast,
i.e. do not have speed O(|φ|anb) for any constants a, b. We explain why with the help of
some examples.

▶ Example 5. Consider the protocol of [5] for the predicate φ = (x − y ≥ 2d). The states are
the triples (ℓ, b, u) where ℓ ∈ {A, P}, b ∈ {Y, N} and −2d ≤ u ≤ 2d. Intuitively, ℓ indicates
whether the agent is active (A) or passive (P), b indicates whether it currently believes
that φ holds (Y) or not (N), and u is the agent’s wealth, which can be negative. Agents
for input x are initially in state (A, N, 1), and agents for y in (A, N, −1). If two passive
agents meet their encounter has no effect. If at least one agent is active, then the result of
the encounter is given by the transition (∗, ∗, u), (∗, ∗, u′) 7→ (A, b, q), (P, b, r) where b = Y

if u + u′ ≥ 2d else N ; q = max(−2d, min(2d, u + u′)); and r = (u + u′) − q. The protocol
stabilises after O(n2 log n) expected interactions [5], but it has 2d+1 + 1 states, exponentially
many in |φ| ∈ Θ(d).

▶ Example 6. We give a protocol for φ = (x − y ≥ 2d) with a polynomial number of states.
This is essentially the protocol of [8]. We remove states and transitions from the protocol of
Example 5, retaining only the states (ℓ, b, u) such that u is a power of 2, and some of the
transitions involving these states:

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:7

(∗, ∗, 2i), (∗, ∗, 2i) 7→ (A, N, 2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 2
(∗, ∗, 2d−1), (∗, ∗, 2d−1) 7→ (A, Y, 2d), (P, Y, 0)

(∗, ∗, −2i), (∗, ∗, −2i) 7→ (A, N, −2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 1
(∗, ∗, 2i), (∗, ∗, −2i) 7→ (A, N, 0), (P, N, 0) for every 0 ≤ i ≤ d − 1

The protocol is not yet correct. For example, for d = 1 and the input x = 2, y = 1, the
protocol can reach in one step the configuration in which the three agents (two x-agents and
one y-agent) are in states (A, Y, 2), (P, Y, 0), (A, N, −1), after which it gets stuck. In [8] this
is solved by adding “reverse” transitions:

(A, N, 2i+1), (P, N, 0) 7→ (A, N, 2i), (P, N, 2i) for every 0 ≤ i ≤ d − 2
(A, Y, 2d), (P, Y, 0) 7→ (A, N, 2d−1), (P, N, 2d−1)

(A, N, −2i+1), (P, N, 0) 7→ (A, N, −2i), (A, N, −2i) for every 0 ≤ i ≤ d − 1

The protocol has only Θ(d) states and transitions, but runs within Ω(n2d−2) interactions.
Consider the inputs x, y such that x−y = 2d, and let n := x+y. Say that an agent is positive
at a configuration if it has positive wealth at it. The protocol can only stabilise if it reaches
a configuration with exactly one positive agent with wealth 2d. Consider a configuration
with i < 2d positive agents. The next configuration can have i − 1, i, or i + 1 positive agents.
The probability of i + 1 positive agents is Ω(1/n), while that of i − 1 positive agents is only
O(1/n2), and the expected number of interactions needed to go from 2d positive agents to
only 1 is Ω(n2d−1) [11, Appendix A.1].

▶ Example 7. Given protocols P1, P2 with n1 and n2 states deciding predicates φ1 and φ2,
Angluin et al. construct in [5] a protocol P for φ1 ∧ φ2 with n1 · n2 states. It follows that the
number of states of a protocol for φ := φ1 ∧ · · · ∧ φs grows exponentially in s, and so in |φ|.
Blondin et al. give an alternative construction with polynomially many states [8, Section 5.3].
However, their construction contains transitions that, as in the previous example, reverse the
effect of other transitions, and make the protocol very slow. The problem is already observed
in the toy protocol with states q1, q2 and transitions q1, q1 7→ q2, q2 and q1, q2 7→ q1, q1.
(Similar transitions are used in the initialisation of [8].) Starting with an even number n ≥ 2
of agents in q1, eventually all agents move to q2 and stay there, but the expected number of
interactions is Ω(2n/10) [11, Appendix A.2].

6 Succinct Bounded Population Computers for Presburger Predicates

In Sections 6.1 and 6.2 we construct population computers for remainder and threshold
predicates in which all coefficients are powers of two. We present the remainder case in detail,
and sketch the threshold case. The generalization to arbitrary coefficients is achieved by means
of a gadget very similar to the one we used to compute boolean combinations of predicates.
This later gadget is presented in Section 6.3, and so we introduce the generalization there.

6.1 Population computers for remainder predicates
Let Pow+ = {2i | i ≥ 0} be the set of positive powers of 2.

We construct population computers Pφ for remainder predicates φ :=
∑v

i=1 aixi ≡m c,
where ai ∈ Pow+ ∩ {0, ..., m−1} for every 1 ≤ i ≤ v, m ∈ N, and c ∈ {0, ..., m−1}. We
say that a finite multiset r over Pow+ represents the residue rep(r) := sum(r)mod m.
For example, if m = 11 then r18 := H23, 23, 21I represents 7. Accordingly, we call the

SAND 2022

11:8 Fast and Succinct Population Protocols for Presburger Arithmetic

multisets over Pow+ representations. A representation of degree d only contains elements
of Pow+

d := {2d, 2d−1, ..., 20}. A representation r is a support representation if r(x) ≤ 1 for
every x ∈ Pow+; so its represented value is completely determined by the support. For
example, r18 is not a support representation of 7, but H25, 23I is.

0

x

y

(1)1

(2)1

(4)1

(8)1

(16)1

(1)2 (−1)2

(2)2 (−2)2

(4)2

(−4)2

(8)2 (−8)2

(16)2 (−16)2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

242

2

t

f

∃8

else

∃4

el
se

∃4 else

∃2el
se

else
∃2

∃1

else

else

∃1

t f

else∃1
6

∃−
16

∃−
8∃8

else

∃4

else

∃−
4

el
se

∃−2

else∃2

else∃1

Figure 1 (middle) Graphical Petri net representation (see Section 3) of population computer
for the predicate φ1 ∨ φ2 with φ1 = (8x + 5y ≡11 4) and φ2 = (y − 2x ≥ 5). All dashed arrows
implicitly lead to the reservoir state 0. It has 22 helpers although only 9 are drawn for space reasons.
(left) decision diagram for output function of remainder predicate 8x + 5y ≡11 4. It checks if the
total value is 15 or 4. Starting at the top node of the diagram: if state 8 is populated, we move to
the left child, otherwise to the right child; at the left child, if state 4 is populated we move to the
right child, etc. (right) decision diagram for output function of threshold predicate y − 2x ≥ 5.

We proceed to construct Pφ. Let us give some intuition first. Pφ has Pow+
d ∪ {0} as set

of states. We extend the notion of representation to configurations by disregarding agents in
state 0; a configuration is therefore a support representation if all states except 0 have at
most one agent. The initial states of Pφ are chosen so that every initial configuration for an
input (x1, ..., xv) is a representation of the residue z :=

∑v
i=1 aixi mod m. The transitions

transform this initial representation of z into a support representation of z. Whether z ≡m c

holds or not depends only on the support of this representation, and the output function
thus returns 1 for the supports satisfying z ≡m c, and 0 otherwise. Let us now formally
describe Pφ for φ :=

∑v
i=1 aixi ≡m c where ai ∈ Pow+ ∩ {0, ..., m−1}.

States and initial states. Let d := ⌈log2 m⌉. The set of states is Q = Pow+
d ∪ {0}. The

set of initial states is I := {a1, ..., av}. Observe that an input CI = Hx1 · a1, ..., xv · avI is a
representation of z, but not necessarily a support representation.

Transitions. Transitions ensure that non-support representations, i.e. representations with
two or more agents in some state q, are transformed into representations of the same residue
“closer” to a support representation. For q ∈ 20, ..., 2d−1 we introduce the transition:

2i, 2i 7→ 2i+1, 0 for 0 ≤ i ≤ d − 1 〈combine〉

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:9

For q = 2d we introduce a transition that replaces an agent in 2d by a multiset of agents
r with sum(r) = 2d − m, preserving the residue. Let bdbd−1...b0 be the binary encoding of
2d − m, and let {i1, ..., ij} be the positions such that bi1 = · · · = bij

= 1. The transition is:

2d, 0, ..., 0 7→ 2i1 , ..., 2ij 〈modulo〉

These transitions are enough, but we also add a transition that takes d agents in 2d and
replaces them by agents with sum d · 2d mod m. Intuitively, this makes the protocol faster.
Let bdbd−1...b0 and {i1, ..., ij} be as above, but for d · 2d mod m instead of 2d − m.

2d, ..., 2d 7→ 2i1 , ..., 2ij , 0, ..., 0 〈fast modulo〉

Helpers. We set H := H3d · 0I, i.e. the computer initially places at least 3d helper agents in
state 0. This makes sure one can always execute the next 〈modulo〉 or 〈fast modulo〉 transition:
if no more agents can be combined, there are at most d agents in the states 20, ..., 2d−1.
Thus, there are at least 2d agents in the states 0 and 2d, enabling one of these transitions.
Observe that for every initial configuration CI + CH we have sum(CI + CH) = sum(CI), and
so, abusing language, every initial configuration for CI is also a representation of z.

Output function. The computer eventually reaches a support configuration with at most
one agent in every state except for 0. Thus, for every support set S ⊆ Q, we define O(S) := 1
if sum(S) ≡m c, and O(S) = 0 else. We show the existence of a small boolean circuit for the
output function O in the proof of Lemma 8; this can be found in [11, Appendix B.1].

▶ Lemma 8. Let φ :=
∑v

i=1 aixi ≡m c, where ai ∈ {2d−1, ..., 21, 20} for every 1 ≤ i ≤ v and
c ∈ {0, ..., m−1} with d := ⌈log2 m⌉. There is a bounded computer of size O(d) deciding φ.

The left half of Figure 1 shows the population computer for φ = (8x + 5y ≡11 4).

6.2 Population computers for threshold predicates
We sketch the construction of population computers Pφ for threshold predicates φ :=∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v and c ∈ N. As the
construction is similar to the construction for remainder, we will focus on the differences and
refer to [11, Appendix B.2] for details.

As for remainder, we work with representations that are multisets of powers of 2. However,
they represent the sum of their elements (without modulo) and we allow both positive and
negative powers of 2. Similar to the remainder construction, the computer transforms any
representation into a support representation without changing the represented value. Then,
the computer decides the predicate using only the support of that representation.

Again, there are 〈combine〉 transitions that allow agents with the same value to com-
bine. Instead of modulo transitions, 〈cancel〉 transitions further simplify the representation:
2i, −2i 7→ 0, 0. Note that even after exhaustively applying 〈combine〉 and 〈cancel〉 there can
still be many agents in 2d or many agents in −2d. This has two consequences:

In the construction for general predicates of Section 6.3, we need that computers for
remainder and threshold move most agents to state 0. In the remainder construction, all
but a constant number of agents are moved to 0. In contrast, the threshold construction
does not have this property. Thus, we do not design a single computer for a given
threshold predicate φ but a family: one for every degree d larger than some minimum
degree d0 ∈ Ω(|φ|). Intuitively, larger degrees result in a larger fraction of agents in 0.

SAND 2022

11:10 Fast and Succinct Population Protocols for Presburger Arithmetic

Assume we detect agents in 2d (−2d is analogous). If there are many, the predicate is
true. However, if there is just one, then the represented value might be small, due to
negative contributions −20, ..., −2d−1. We cannot distinguish the two cases, so we add
transition 〈cancel 2nd highest〉: 2d, −2d−1 7→ 2d−1, 0. It ensures that agents cannot be
present in both 2d and −2d−1; therefore, an agent in 2d certifies a value of at least 2d−1.

The right half of Figure 1 shows the population computer for φ = (−2x + y ≥ 5) with degree
d = 4. [11, Appendix B.2] proves:

▶ Lemma 9. Let φ :=
∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v.
For every d ≥ max{⌈log2 c⌉ + 1, ⌈log2|a1|⌉, ..., ⌈log2|av|⌉} there is a bounded computer of size
O(d) that decides φ.

6.3 Population computers for all Presburger predicates

We present a construction that, given threshold or remainder predicates φ1, ..., φs, yields a
population computer P deciding an arbitrary given boolean combination B(φ1, ..., φs) of
φ1, ..., φs. We only sketch the construction, see [11, Appendix B.3] for details. We use the
example φ1 = (y − 2x ≥ 5), φ2 = (8x + 5y ≡11 4) and B(φ1, φ2) = φ1 ∨ φ2. The result of
the construction for this example is shown in Figure 1. The construction has 6 steps:

1. Rewrite Predicates. The constructions in Sections 6.1 and 6.2 only work for predicates
where all coefficients are powers of 2. We transform each predicate φi into a new predicate φ′

i

where all coefficients are decomposed into their powers of 2. In our example, φ′
1 := φ1 because

all coefficients are already powers of 2. However, φ2(x, y) = (8x + 5y ≡11 4) is rewritten as
φ′

2(x, y1, y2) := (8x + 4y1 + 1y2 ≡11 4) because 5 = 4 + 1. Note that φ2(x, y) = φ′
2(x, y, y)

holds for every x, y ∈ N. Let r be the size of the largest split of a coefficient, i.e. r = 2 in the
example.

2. Construct Subcomputers. For every 1 ≤ i ≤ s, if φi is a remainder predicate, then let
Pi be the computer defined in Section 6.1. If φi is a threshold predicate, then let Pi be the
computer of Section 6.2, with d = d0 + ⌈log2 s⌉. We explain this choice of d in step 5.

3. Combine Subcomputers. Take the disjoint union of Pi, but merging their 0 states.
More precisely, rename all states q ∈ Qi to (q)i, with the exception of state 0. Construct a
computer with the union of all the renamed states and transitions. Figure 1 shows the Petri
net representation of the computer so obtained for our example. We call the combined 0
state reservoir as it holds agents with no value that are needed for various tasks like input
distribution.

4. Input Distribution. For each variable xi add a corresponding new input state xi. Then
add a transition that takes an agent in state xi and agents in 0 and distributes agents to the
input states of the subcomputers that correspond to xi. In our example, we add two states x

and y and the transitions x, 0 7→ (1)1 , (8)2 and y, 0, 0 7→ (−2)1 , (4)2 , (1)2. The distribution
for x needs one helper, because we need one agent in each subcomputer. The distribution
for y needs two helpers, one for P1 and two for P2, as 5y was split into 4y1 + 1y2. This
way, once the input states are empty, the correct value is distributed to each subcomputer.
Crucially, this input distribution can be fast as it is not reversible.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:11

5. Add Extra Helpers. In addition to all helpers from the subcomputers, add r − 1 more
helpers to state 0. Intuitively, this allows to distribute the first input agent. Because of
our choice for d in threshold subcomputers, each subcomputer returns most agents back to
state 0. More precisely, for each distribution the number of agents that do not get returned
to 0 only increases by at most 1

s (per subcomputer). So in total only one agent is “consumed”
per distribution and enough agents are returned to 0 for the next distribution to occur. In
our example, the agents that stay in each of the s = 2 subcomputers only increases by at
most 1

2 per distribution. (In fact, remainder subcomputers return all distributed agents.)

6. Combine Output. Note that we can still decide φi from the support of the states in the
corresponding subcomputer Pi. We compute the output for φ by combining the outputs of
the subcomputers P1, ..., Ps according to B(φ1, ..., φs). In our example, we set the output to
1 if and only if the output of P1 or P2 is 1.

In [11, Appendix B.3], we show that this computer is succinct, correct and bounded:

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

7 Converting Population Computers to Population Protocols

In this section we prove Theorem 2. We proceed in four steps, which must be carried out in
the given order. Section 7.1 converts any bounded computer P for double(φ) of size m into
a binary bounded computer P1 with O(m2) states. Section 7.2 converts P1 into a binary
bounded computer P2 with a marked consensus output function (a notion defined in the
section). Section 7.3 converts P2 into a binary bounded computer P3 for φ — not double(φ)

— with a marked consensus output function and no helpers. Section 7.4 shows that P3 runs
within O(n3) interactions. Finally, we convert P3 to a binary terminating (not necessarily
bounded) computer P4 with a normal consensus output and no helpers, also running within
O(n3) interactions. This uses standard ideas; for space reasons it is described only in the full
version at [11, Appendix F]. Similarly, the other conversions and results are only sketched,
with details in [11].

7.1 Removing multiway transitions
We transform a bounded population computer with k-way transitions r 7→ s such that
|supp(r)| ≤ 2 into a binary bounded population computer. Let us first explain why the
construction introduced in [9, Lemma 3], which works for arbitrary transitions r 7→ s, is too
slow. In [9], the 3-way transition t : q1, q2, q3 7→ q′

1, q′
2, q′

3 is simulated by the transitions

t1 : q1, q2 7→ w, q12 t2 : q12, q3 7→ c12, q′
3 t3 : q′

3, w 7→ q′
1, q′

2 t1 : w, q12 7→ q1, q2

Intuitively, the occurrence of t1 indicates that two agents in q1 and q2 want to execute t, and
are waiting for an agent in q3. If the agent arrives, then all three execute t2t3, which takes
them to q′

1, q′
2, q′

3. Otherwise, the two agents must be able to return to q1, q2 to possibly
execute other transitions. This is achieved by the “revert” transition t1. The construction
for a k-way transition has “revert” transitions t1, ..., tk−2. As in Example 6 and Example 7,
these transitions make the final protocol very slow.

We present a gadget without “revert” transitions that works for k-way transitions r 7→ s

satisfying |supp(r)| ≤ 2. Figure 2 illustrates it, using Petri net notation, for the 5-way
transition t : H3p, 2qI 7→ Ha, b, c, d, eI. In the gadget, states p and q are split into (p, 0), ..., (p, 3)

SAND 2022

11:12 Fast and Succinct Population Protocols for Presburger Arithmetic

c

b

a

d

e

q

p

2

3
⇝

2 1 0

q

〈execute〉
a

b

c

d

e

1 023

〈commit〉

p

2

22

Figure 2 Simulating the 5-way transition H3 · p, 2 · q 7→ a, b, c, d, eI by binary transitions.

and (q, 0), ..., (q, 2). Intuitively, an agent in (q, i) acts as representative for a group of i agents
in state q. Agents in (p, 3) and (q, 2) commit to executing t by executing the binary transition
〈commit〉. After committing, they move to the states a, ..., e together with the other members
of the group, who are “waiting” in the states (p, 0) and (q, 0). Note that 〈commit〉 is binary
because of the restriction |supp(r)| ≤ 2 for multiway transitions.

To ensure correctness of the conversion, agents can commit to transitions if they represent
more than the required amount. In this case, the initiating agents would commit to a
transition and then elect representatives for the superfluous agents, before executing the
transition. This requires additional intermediate states.

[11, Appendix C] formalises the gadget and proves its correctness and speed.

7.2 Converting output functions to marked-consensus output functions
We convert a computer with an arbitrary output function into another one with a marked-
consensus output function. An output function is a marked-consensus output function if there
are disjoint sets of states Q0, Q1 ⊆ Q such that O(S) := b if S ∩ Qb ≠ ∅ and S ∩ Q1−b = ∅,
for b ∈ {0, 1}, and O(S) := ⊥ otherwise. Intuitively, for every S ⊆ Q we have O(S) = 1
if all agents agree to avoid Q0 (consensus), and at least one agent populates Q1 (marked
consensus). We only sketch the construction, a detailed description as well as a graphical
example can be found in [11, Appendix D].

Our starting point is some bounded and binary computer P = (Q, δ, I, O, H), e.g. as
constructed in Section 7.1. Let (G, E) be a boolean circuit with only NAND-gates computing
the output function O. We simulate P by a computer P ′ with a marked consensus output and
O(|Q| + |G|) states. This result allows us to bound the number of states of P ′ by applying
well known results on the complexity of Boolean functions.

Intuitively, P ′ consists of two processes running asynchronously in parallel. The first one
is (essentially, see below) the computer P itself. The second one is a gadget that simulates
the execution of G on the support of the current configuration of P . Whenever P executes a
transition, it raises a flag indicating that the gadget must be reset (for this, we duplicate
each state q ∈ Q into two states (q, +) and (q, −), indicating whether the flag is raised or
lowered). Crucially, P is bounded, and so it eventually performs a transition for the last
time. This resets the gadget for the last time, after which the gadget simulates (G, E) on the
support of the terminal configuration reached by P.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:13

The gadget is designed to be operated by one state-helper for each q ∈ Q, with set of
states Qsupp(q), and a gate-helper for each gate g ∈ G, with set of states Qgate(g), defined as
follows:

Qsupp(q) := {q} × {0, 1, !}. These states indicate that q belongs/does not belong to the
support of the current configuration (states (q, 0) and (q, 1)), or that the output has
changed from 0 to 1 (state (q, !)).
Qgate(g) := {g} × {0, 1, ⊥}3 for each gate g ∈ G, storing the current values of the two
inputs of the gate and its output. Uninitialised values are stored as ⊥.

Recall that a population computer must also remain correct for a larger number of helpers.
This is ensured by letting all helpers populating one of these sets, say Qsupp(q), perform
a leader election; whenever two helpers in states of Qsupp(q) meet, one of them becomes
a non-leader, and a flag requesting a complete reset of the gadget is raised. All resets are
carried out by a reset-helper with set of states Qreset := {0, ..., |Q| + |G|}, initially in state 0.
(Reset-helpers also carry out their own leader election!) Whenever a reset is triggered, the
reset-helper contacts all other |Q| + |G| helpers in round-robin fashion, asking them to reset
the computation.

Eventually the original protocol P has already reached a terminal configuration with
some support Qterm, each set Qsupp(q) and Qgate(g) is populated by exactly one helper, and
all previous resets are terminated. From this moment on, P never changes its configuration.
The |Q| state-helpers detect the support Qterm of the terminal configuration by means of
transitions that move them to the states Qterm × {1} and (Q \ Qterm) × {0}; the gate-helpers
execute (G, E) on input Q′ by means of transitions that move them to the states describing
the correct inputs and outputs for each gate. State-helpers use Q × {!} as intermediate states,
indicating that the circuit must recompute its output.

It remains to choose the sets Q0 and Q1 of states the marked consensus output. We do it
according to the output b of the output gate gout ∈ G: Qb is the set of states of Qgate(gout)
corresponding to output b.

7.3 Removing helpers
We convert a bounded binary computer P deciding the predicate double(φ) over variables
x1, ..., xk, x′

1, ..., x′
k into a computer P ′ with no helpers deciding φ over variables x1, ..., xk.

In [8], a protocol with helpers and set of states Q is converted into a protocol without helpers
with states Q × Q. We sketch a better construction that avoids the quadratic blowup. A
detailed description can be found in [11, Appendix E].

Let us give some intuition first. All agents of an initial configuration of P ′ are in
input states. P ′ simulates P by liberating some of these agents and transforming them
into helpers, without changing the output of the computation. For this, two agents in
an input state xi are allowed to interact, producing one agent in x′

i and one “liberated”
agent, which can be used as a helper. This does not change the output of the computation,
because double(φ)(..., xi, ..., x′

i, ...) = double(φ)(..., xi − 2, ..., x′
i + 1, ...) holds by definition

of double(φ).
Figure 3 illustrates this idea. Assume P has input states x, y, x′, y′ and helpers H =

Hq1, q2, q3, q4I, as shown on the left-hand side. Assume further that P computes a predicate
double(φ)(x, y, x′, y′). The computer P ′ is shown on the right of the figure. The additional
transitions liberate agents, and send them to the helper states H. Observe that the initial
states of P ′ are only x and y. Let us see why P ′ decides φ(x, y). As the initial configuration of

SAND 2022

11:14 Fast and Succinct Population Protocols for Presburger Arithmetic

x

x′

q1 q2 q3 q4

y

y′ ⇝

x

x′

liberated y

y′

q2q1 q3 q4

2 2

4

Figure 3 Illustration in graphical Petri net notation (see Section 3) of construction that removes
helpers. Initial states are highlighted.

P ′ for an input x, y puts no agents in x′, y′, the computer P ′ produces the same output on input
x, y as P on input x, y, 0, 0. Since P decides double(φ) and double(φ)(x, y, 0, 0) = φ(x, y) by
the definition of double(φ), we are done. We make some remarks:

P ′ may liberate more agents than necessary to simulate the multiset H of helpers of P.
This is not an issue, because by definition additional helpers do not change the output of
the computation.
If the input is too small, P ′ cannot liberate enough agents to simulate H. Therefore, the
new computer only works for inputs of size Ω(|H|) = Ω(|φ|).
Even if the input is large enough, P ′ might move agents out of input states before
liberating enough helpers. However, the computers of Section 6 can only do this if there
are enough helpers in the reservoir state (see point 3. in Section 6.3). Therefore, they
always generate enough helpers when the input is large enough.

7.4 A O(n3) bound on the expected interactions
We show that the computer obtained after the previous conversion runs within O(n3)
interactions. We sketch the main ideas; the details are in [11, Appendix G].

We introduce potential functions that assign to every configuration a positive potential,
with the property that executing any transition strictly decreases the potential. Intuitively,
every transition “makes progres”. We then prove two results: (1) under a mild condition,
a computer has a potential function iff it is bounded, and (2) every binary computer with
a potential function and no helpers, i.e. any bounded computer for which speed is defined,
stabilises within O(n3) interactions. This concludes the proof.

Fix a population computer P = (Q, δ, I, O, H).

▶ Definition 10. A function Φ : NQ → N is linear if there exist weights w : Q → N s.t.
Φ(C) =

∑
q∈Q w(q)C(q) for every C ∈ NQ. We write Φ(q) instead of w(q). A potential

function (for P) is a linear function Φ such that Φ(r) ≥ Φ(s) + |r| − 1 for all (r 7→ s) ∈ δ.

Observe that k-way transitions reduce the potential by k − 1, binary transitions by 1. At
this point, we consider only binary computers, but this distinction becomes relevant for the
refined speed analysis.

If a population computer has a potential function, then every run executes at most O(n)
transitions, and so the computer is bounded. Applying Farkas’ Lemma we can show that the
converse holds for computers in which every state can be populated – a mild condition, since
states that can never be populated can be deleted without changing the behaviour.

▶ Lemma 11. If P has a reachable configuration Cq with Cq(q) > 0 for each q ∈ Q, then P
is bounded iff there is a potential function for P.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:15

Consider now a binary computer with a potential function and no helpers. At every
non-terminal configuration, at least one (binary) transition is enabled. The probability that
two agents chosen uniformly at random enable this transition is Ω(1/n2), and so a transition
occurs within O(n2) interactions. Since the computer has a potential function, every run
executes at most O(n) transitions, and so the computer stabilises within O(n3) interactions.

The final step to produce a population protocol is to translate computers with marked-
consensus output function into computers with standard consensus output function, while
preserving the number of interactions. For space reasons this construction is presented in [11,
Appendix F].

8 Rapid Population Computers: Proving a O(n2) Bound

We refine our running-time analysis to show that the population protocols we have constructed
actually stabilise within O(n2) interactions. We continue to use potential functions, as
introduced in Section 7.4, but improve our analysis as follows:

We introduce rapidly-decreasing potential functions. Intuitively, their existence shows
that progress is not only possible, but also likely. We prove that they certify stabilisation
within O(n2) interactions.
We introduce rapid population computers, as computers with rapidly-decreasing potential
functions that also satisfy some technical conditions. We convert rapid computers into
protocols with O(|φ|) states, and show that the computers of Section 6 are rapid.

In order to define rapidly-decreasing potential functions, we need a notion of “probability
to execute a transition” that generalises to multiway transitions and is preserved by our
conversions. At a configuration C of a protocol, the probability of executing a binary
transition t = (p, q 7→ p′, q′) is C(q)C(p)/n(n − 1). Intuitively, leaving out the normalisation
factor 1/n(n − 1), the transition has “speed” C(q)C(p), proportional in the product of the
number of agents in p and q. But for a multiway transition like q, q, p 7→ r1, r2, r3 the
situation changes. If C(q) = 2, it does not matter how many agents are in p – the transition
is always going to take Ω(n2) interactions. We therefore define the speed of a transition as
min{C(q), C(p)}2 instead of C(q)C(p).

For the remainder of this section, let P = (Q, δ, I, O, H) denote a population computer.

▶ Definition 12. Given a configuration C ∈ NQ and some transition t = (r 7→ s) ∈ δ,
we let tmint(C) := min{C(q) : q ∈ supp(r)}. For a set of transitions T ⊆ δ, we define
speedT (C) :=

∑
t∈T tmint(C)2, and write speed(C) := speedδ(C) for convenience.

▶ Definition 13. Let Φ denote a potential function for P and let α ≥ 1. We say that Φ
is α-rapidly decreasing at a configuration C if speed(C) ≥ (Φ(C) − Φ(Cterm))2/α for all
terminal configurations Cterm with C → Cterm.

We have not been able to find potential functions for the computers of Section 6 that are
rapidly decreasing at every reachable configuration, only at reachable configurations with
sufficiently many helpers, defined below. Fortunately, that is enough for our purposes.

▶ Definition 14. C ∈ NQ is well-initialised if C is reachable and C(I) + |H| ≤ 2
3 n.

Observe that an initial configuration C can only be well-initialised if C(supp(H)) ∈
Ω(C(I)). We now define rapid population computers, and state the result of our improved
analysis.

SAND 2022

11:16 Fast and Succinct Population Protocols for Presburger Arithmetic

▶ Definition 15. P is α-rapid if
1. it has a potential function Φ which is α-rapidly decreasing in well-initialised configurations,
2. every state of P but one has at most 2 outgoing transitions,
3. all configurations in NI are terminal, and
4. for all transitions t = (r 7→ s), q ∈ I we have r(q) ≤ 1 and s(q) = 0.

▶ Theorem 3.
(a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The detailed proofs can be found in the full version [11], in the following sections. The
proof of (a) is given in Appendix B. For (b), we prove separate theorems for each conversion
in Appendices C, D, E, and F. To achieve a tighter analysis of our conversions, we generalise
the notion of potential function; this is described in Appendix H.

9 Conclusions

We have shown that every predicate φ of quantifier-free Presburger arithmetic has a population
protocol with O(poly(|φ|)) states and O(|φ|7 · n2) expected number of interactions. If only
inputs of size Ω(|φ|) matter, we give a protocol with O(|φ|) states and the same speed.
The obvious point for further improvement is the |φ|7 factor in the expected number of
interactions.

Our construction is close to optimal. Indeed, for every construction there is an infinite
family of predicates for which it yields protocols with Ω(|φ|1/4) states [9]; further, it is known
that every protocol for the majority predicate requires in Ω(n2) interactions.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in population protocols. In SODA, pages 2560–2579. SIAM, 2017.
2 Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols.

SIGACT News, 49(3):63–73, 2018.
3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population

protocols. In PODC, pages 47–56. ACM, 2015.
4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. In PODC, pages 290–299. ACM, 2004.
5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
6 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols

with a leader. Distributed Comput., 21(3):183–199, 2008.
7 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power

of population protocols. Distributed Comput., 20(4):279–304, 2007.
8 Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax. Succinct

population protocols for Presburger arithmetic. In STACS, volume 154 of LIPIcs, pages
40:1–40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

9 Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: On the minimal
size of population protocols. In STACS, volume 96 of LIPIcs, pages 16:1–16:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:17

10 Robert Brijder, David Doty, and David Soloveichik. Democratic, existential, and consensus-
based output conventions in stable computation by chemical reaction networks. Natural
Computing, 17(1):97–108, 2018.

11 Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza. Fast and succinct
population protocols for Presburger arithmetic, 2022. arXiv:2202.11601v2.

12 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Grzegorz Stachowiak, and
Przemyslaw Uznanski. Brief announcement: A time and space optimal stable population
protocol solving exact majority. In PODC, pages 77–80. ACM, 2021.

13 Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority
and leader election. Bull. EATCS, 126, 2018.

14 Christoph Haase. A survival guide to Presburger arithmetic. ACM SIGLOG News, 5(3):67–82,
2018.

SAND 2022

http://arxiv.org/abs/2202.11601v2

	1 Introduction
	2 Preliminaries
	3 Population Computers
	4 Overview and Main Results
	5 Previous Constructions: Angluin et al. and Blondin et al.
	6 Succinct Bounded Population Computers for Presburger Predicates
	6.1 Population computers for remainder predicates
	6.2 Population computers for threshold predicates
	6.3 Population computers for all Presburger predicates

	7 Converting Population Computers to Population Protocols
	7.1 Removing multiway transitions
	7.2 Converting output functions to marked-consensus output functions
	7.3 Removing helpers
	7.4 A O(n^3) bound on the expected interactions

	8 Rapid Population Computers: Proving a O(n^2) Bound
	9 Conclusions

